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Preface 

 

  

The  term  “digital”  relates  to  information  and  communication  sciences  and technologies, including computing, digital electronics and telecommunications. Over the past 50 years, advancements in these fields, through discoveries, developments and applications, have grown at an exponential rate. Such progress has profoundly transformed  human  activities,  making  the  transition  to  an  “all  digital”  world  a significant  economic  and  political  issue.  At  the  same  time,  professions  related  to digital  technology  are  continuously  evolving.  It  is  noteworthy  that  these technological advancements are grounded in a substantial mathematical foundation. 

Consequently, any engineer or researcher aiming to drive innovation must possess extensive knowledge of mathematics. 

Many  students  opt  for  computer  science-related  courses  early  on  without  first acquiring  the  essential  mathematical  foundations  they  might  need  in  the  future. 

While they may excel as technicians, they might not be as well-prepared to become effective engineers or researchers. 

It should be recognized that computer science cannot be fully understood without a solid mathematical foundation. Advances in digital technologies have been closely linked  to  mathematical  support.  The  pioneers  of  computing  were  primarily mathematicians:  Alan  Turing,  Claude  Shannon,  John  von  Neumann  and  Charles Babbage,  often  referred  to  as  the  “grandfather  of  computing”.  They  could  never have  designed  computers  without  their  mathematical  expertise.  Other  historical figures such as Euclid, who formulated the first algorithm, George Boole, the father of  binary  algebra,  Ada  Lovelace,  a  pioneer  in  the  creation  of  the  first  computer Mathematics for Digital Science 3, 
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programs, Grace Hopper, who developed the first language compiler, and Margaret Hamilton,  a  key  figure  in  software  engineering, were  also  mathematicians.  Today, areas such as artificial intelligence, managing large datasets and information security are  central  to  computer  science  research.  Once  again,  it  is  evident  that  without  a robust mathematical foundation, innovation in these areas would be challenging. 

The digital mathematics courses offered are designed to provide the fundamental mathematical knowledge essential for mastering and advancing digital technologies. 

While the book primarily targets university and engineering students, it also serves as  a  resource  for  IT  professionals  looking  to  enhance  their  mathematical  skills  as part of their ongoing professional development in the field. 

The  three-volume  series  compiles  lessons  taught  to  multiple  generations  of students  in  the  first  two  university  cycles,  specifically  within  bachelor’s  and master’s  programs  in  Computer  Science  or  in  Computer  Methods  Applied  to Business  Management.  The  first  volume  covers  the  essential  mathematical foundations  necessary  for  understanding  digital  technologies.  The  second  volume focuses on digital information. The third – and current – volume is dedicated to data analysis and optimization, as detailed below. 

For  data  analysis,  Chapter  1  revisits  the  fundamentals  of  descriptive  statistics, linear regression and linear correlation, as covered in Volume 1. 

In Chapter 2, these concepts are extended to multi-dimensional arrays, which are graphically  represented  as  point  clouds  in  𝑛-dimensional  space.  Analyzing  these point clouds forms the basis for principal component analysis and factor analysis. 

Chapter  3  focuses  on  automatic  classification  through  partitioning  methods, highlighting  the  𝑘-means  algorithm,  as  well  as  hierarchical  classification  using aggregation strategies such as Ward’s method. 

Chapter  4  provides  a  detailed  examination  of  linear  programming  techniques, which  aim  to  identify  an optimal  solution  among  numerous  variable  combinations that must satisfy a set of linear constraints. 

Chapter  5  introduces  graph  theory  in  its  basic  form,  covering  fundamental definitions  and  properties,  before  progressing  to  more  advanced  concepts  such  as connectedness and extremal spanning trees. 

Chapter  6  focuses  on  the  classic  problem  of  finding  a  path  with  minimum  or maximum length in a graph, using various algorithms. 
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Chapter 7 presents several graph-based traffic problems that involve optimizing a function, including the maximum flow problem, the minimum cost transportation problem and the assignment problem. 

Finally, Chapter 8 examines scheduling problems related to project planning and shop floor scheduling, using the flow-shop and job-shop as examples. 

To achieve the goal of mastering the application of mathematical results, proofs are presented whenever they are accessible to the reader, who is assumed to have a basic knowledge of the subject. In some cases, the validity of the results is accepted without  detailed  proofs,  with  references  to  more  advanced  works  where  such demonstrations can be found. 

Each  chapter  includes  numerous  examples  illustrating  the  concepts  presented. 

These  examples  are  generally  elaborated  in  detail  to  enhance  the  reader’s understanding. 

Finally,  each  topic  is  presented  in  detail,  starting  with  the  foundational definitions and hypotheses. While many readers may already be familiar with these basic  concepts,  this  thorough  approach  is  designed  to  help  those  with  potential knowledge gaps, minimizing the need to consult additional sources. 

May 2025 
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Linear Modeling for  

Two-Dimensional Data 

 

  

CONCEPTS COVERED IN THIS CHAPTER.– 

This  brief  chapter  serves  as  a  reminder  of  the  concepts  presented  in  detail  in Volume  1.  It  primarily  provides  an  overview  of  basic  statistical  analysis  tools, particularly linear regression and correlation for two-dimensional data. 

References: [SAP 11]. 

1.1. Basic statistics 

Consider  a  population  of  𝑛    elements.  Each  element  𝑖    is  characterized  by  the value of a variable 𝑥  =   𝑥 . The 𝑛 values 𝑥  constitute a one-dimensional statistical series, whose characteristics are: 

– The  average 𝑥̅ is defined by:  

1

𝑥̅ =

𝑥  

𝑛

In this definition, it is assumed that all elements have the same statistical weight (𝑝 = ). If the weights are not equal, the following expression is used: Mathematics for Digital Science 3, 
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𝑥̿ =

𝑝 𝑥   with 

𝑝 = 1 

where 𝑝  represents the statistical weight of individual 𝑖 .  

–  Variance 𝑣(𝑥) is defined as the average of the squares of the deviations from the average:  

1

𝑣(𝑥) =

(𝑥 − 𝑥̅)  or 𝑣(𝑥) =

𝑝 (𝑥 − 𝑥̅)  

𝑛

Huygens’ theorem provides another method for calculating variance: 1

𝑣(𝑥) = 𝑥 − 𝑥̅ ,  where  𝑥 =

𝑥  or  𝑥 =

𝑝 𝑥  

𝑛

This  relationship  is  often  summarized  as  “the  average  of  squares  minus  the square of the mean”. 

–  Standard deviation 𝜎(𝑥) is defined as the square root of the variance:   

𝜎(𝑥) = 𝑣(𝑥) 

EXAMPLE  1.1.–  Consider  the  statistical  series  shown  in  Figure  1.1,  which represents  the  number  of  rainy  days  over  10  consecutive  years  at  a  given location. 



Figure 1.1 . Statistical series 
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The average 𝑥̅ = 84 can be easily calculated by assigning equal statistical weight to  each  measurement.  The  average  of  the  squares  𝑥 = 8340,  the  variance 𝑣(𝑥)   =  1284 and the standard deviation 𝜎(𝑥) = 35,83 are also determined. 

Figure 1.2 shows the graphical representation of the statistical series in the form of  a  histogram.  This histogram  illustrates  the distribution  of  data regarding  the number of rainy days over the 10 years. 

The average is a measure of the position of the statistical series along the number of  days  axis,  while  the  standard  deviation  serves  as  a  dispersion  parameter, providing an indicator of the spread of the statistical series. 



Figure 1.2.  Graphical representation  

 of the statistical series 

1.2. Linear adjustment 

Now,  consider  a  two-dimensional  statistical  series,  where  each  element  is characterized  by  the  values  of  two  variables,  𝑥  and  𝑦.  For  each  variable,  various statistical  measures  can  be  calculated,  such  as  the  average,  variance  and  standard deviation. 

To  graphically  represent  this  two-dimensional  series,  a  two-dimensional Cartesian  coordinate  system  is  used.  The  𝑥-axis  represents  the  variable  𝑥,  and  the 𝑦-axis  represents  the  variable  𝑦 .   Each  element  𝑖  of  the  series  is  represented  as  a point (𝑥 , 𝑦 ) in this coordinate system, where the coordinate 𝑥  corresponds to the value of the variable 𝑥, and the coordinate 𝑦  corresponds to the value of the variable 𝑦. Figure 1.3 shows examples of graphical representations of two two-dimensional series. 
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Figure 1.3.   Example of two  

 two-dimensional series 

When observing a two-dimensional series and detecting a certain structure in the set  of  representative  points,  we  may  be  inclined  to  model  this  structure  using  a curve.  This  involves  finding  a  mathematical  function  that  best  describes  the relationships between the variables 𝑥 and 𝑦 .  In the examples shown in Figure 1.3, a straight line can be proposed for modeling the first example, and a parabola for the second example, as shown in Figure 1.4. These models are  adjustments  that simplify the representation of trends or relationships observed in the data. 



Figure 1.4.   Examples of adjustments 

 The linear adjustment  is  the  simplest  of  all  analytical  adjustments.  It  involves obtaining  the  equation  of  the  straight  line  that  “best  fit”  the  set  of  representative points of the series. 

A classic method for obtaining the equation of the line in linear adjustment is the least  squares method.  This method  involves  minimizing  the  sum  of  the  squares  of the deviations between the observed values and the values predicted by the line. For the  variables  𝑥    and  𝑦 ,  the  respective  means,  denoted  by  𝑥̄  and  ȳ,  are  calculated assuming equal statistical weight for each value of 𝑖: 
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1

1

𝑥̅ =

𝑥  and  𝑦 =

𝑦  

𝑛

𝑛

Next,  the  deviations  from  these  averages  for  each  point  in  the  series  are calculated (convenient to work with “centered” coordinates): 𝑋 = (𝑥 − 𝑥̅) and 𝑌 = (𝑦 − ȳ). 

It is easy to verify that:  

X =

Y = 0 . 

The squares of these deviations are obtained by squaring these values: (𝑥 − 𝑥̅)  and (𝑦 − ȳ) . 

The  least  squares  method  involves  finding  the  coefficients  𝑎  and  𝑏  of  the equation  of  the  line 𝑦 = 𝑎𝑥 + 𝑏. Alternatively,  using the  centered  coordinates,  the equation  becomes  𝑌 = 𝐴𝑋 + 𝐵,  where  for  each  of  the  representative  points, 𝑌 = 𝐴𝑋 + 𝐵. The relationship between (𝐴, 𝐵) and (𝑎, 𝑏) is: 𝑎 = 𝐴 and 𝑏 = 𝐵 − 𝑎𝑥̅ + 𝑦 

The  goal  is  to  optimize  the  sum  of  squared  deviations  to  a  minimum. 

Mathematically, this involves minimizing the following objective function: 𝐹(𝑎, 𝑏) =

𝑦 − (𝑎𝑥 + 𝑏)



In other words, the aim is to minimize the following quantity: 𝑀 =

(𝑌 − 𝑌 )  

=

(𝑌 − 𝐴𝑋 − 𝐵) =

𝑌 − 2𝐴

𝑋 𝑌 + 𝐴

𝑋 + 𝑛𝐵 = 𝑓(𝐴, 𝐵) 

The minimum of 𝑀 corresponds to the cancellation of the first derivatives with respect to 𝐴 and 𝐵, the only unknowns in 𝑀. Taking the partial derivatives:  

[image: Image 6]
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∂𝑀

∂𝑀

= −2

𝑋 𝑌 + 2𝐴

𝑋 = 0   ⟺  

= 2𝑛𝐵 = 0 

∂𝐴

∂𝐵

which leads to:  

∑

𝑋 𝑌

𝐴 =

and  𝐵 = 0 

∑

𝑋

These conditions lead to the following equations: 

∑

𝑋 𝑌

∑

𝑥 𝑦 − 𝑛𝑥̅𝑦

𝑎 =

=

and 𝑏 = 𝑦 − 𝑎𝑥̅ 

∑

𝑋

∑

𝑥 − 𝑛𝑥̅

EXAMPLE 1.2.– Let us consider the statistical series showing the number of rainy days (𝑥) and umbrella sales in local currency (𝑦) (see Figure 1.5). 



Figure 1.5.  Statistical series (x, y) 



Figure 1.6.  Detailed adjustment calculations 
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Figure 1.7.  Adjustment line. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

Figure  1.6  summarizes  the  calculations  required  to  determine  the  best-fit adjustment  line,  with  the  values  of  𝑎 = 1311.53  and  𝑏 = 8831.78.  Figure  1.7 

displays the best-fit adjustment line. 

1.3. Linear correlation 



Figure 1.8.   Different correlation situations 

[image: Image 10]
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In the case of adjustment, the goal is to express 𝑦 as a function of 𝑥. This choice is arbitrary, as 𝑥 could be expressed as a function of 𝑦. In this case, two adjustment lines would be obtained, both intersecting at the point (𝑥̅, 𝑦): 𝑦 = 𝑎𝑥 + 𝑏 and 𝑥 = 𝑎 𝑦 + 𝑏  

By  treating  the  variables  𝑥  and  𝑦 symmetrically,  the  concept  of   correlation between  these  variables  can  be  introduced.  Correlation  measures  the  relationship between  two  variables  and  quantifies  the  possible  influence  of  one  on  the  other. 

Figure  1.8  presents  various  examples  of  scatter  plots  to  illustrate  different correlation situations. 

In particular, in the case of linear correlation, it is interesting to note that when the two best-fit adjustment lines, 𝑦 = 𝑓(𝑥) and 𝑥 = 𝑓 (𝑦), coincide, this indicates maximum linear correlation between the variables 𝑥 and 𝑦. 

EXAMPLE  1.3.–  For  the  series  in  Example  1.2,  the  following  two  best-fit adjustment lines are obtained:  

𝑦 = 1311.53𝑥 + 8831.78 and 𝑥 = 0.0007 𝑦 − 3.17. 

Figure  1.9  shows  that  the  two  straight  lines  are  very  close  to  each  other, indicating a strong correlation between the variables. 



Figure 1.9.  Adjustment lines. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 
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The two best-fit adjustment lines have direction coefficients 𝑎 and 𝑎 . If the lines coincide, then 𝑎  =    or equivalently, 𝑎 × 𝑎 = 1. Now, 

∑

𝑋 𝑌

∑

𝑋 𝑌

(∑

𝑋 𝑌 )

𝑎 =  

, 𝑎 =

, so 𝑎 × 𝑎 =

. 

∑

𝑋

∑

𝑌

(∑

𝑋 )(∑

𝑌 )

The maximum correlation corresponds to the following equality (known as the Cauchy–Schwarz equality):  

𝑋 𝑌

=

𝑋

𝑌 . 

The analytical definition of the linear correlation is: 

∑

𝑋 𝑌

𝑟 =



∑

𝑋

∑

𝑌

which is simply √𝑎 ×  𝑎 . 

EXAMPLE 1.3 (CONTINUED).– Let us return to Example 1.3. The equations of the adjustment lines are: 

𝑦 = 1311.53𝑥 + 8831.78  and  𝑥 = 0.0007 𝑦 − 3.17 

The linear correlation coefficient is close to 1, i.e. 𝑟 = 0.98 ≈  1. This indicates an almost maximal linear correlation between the variables 𝑥 and 𝑦. In this case, a strong relationship exists between 𝑥 and 𝑦. 

The  linear  correlation  coefficient  𝑟  is  often  written  in  another  form,  using  the standard deviations 𝜎(𝑥) and 𝜎(𝑦): 

∑

𝑋

∑

𝑌

𝜎(𝑥) = 𝑣(𝑥) =

and 𝜎(𝑦) = 𝑣(𝑦) =



𝑛

𝑛

Furthermore, the covariance cov(𝑥, 𝑦) is defined by: 

∑

𝑋 𝑌

cov(𝑥, 𝑦) =



𝑛
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It follows that:  

cov(𝑥, 𝑦)

𝑟 =



𝜎(𝑥)𝜎(𝑦)

In the case of linear fitting, the expression for 𝑀 is:  

𝑀 =

𝑌 − 2𝐴

𝑋 𝑌 + 𝐴

𝑋 + 𝑛𝐵  

The minimum is found by replacing 𝐴 and 𝐵 with the values obtained: (∑

𝑋 𝑌 )

(∑

𝑋 )(∑

𝑌 ) − (∑

𝑋 𝑌 )

𝑀

=

𝑌 −

=



∑

𝑋

∑

𝑋

By definition, 𝑀 and therefore 𝑀

are positive or zero quantities. This leads to 

the Cauchy–Schwarz inequality: 

𝑋

𝑌



(𝑋 𝑌 )  



Figure 1.10.   Variations in the linear  

 correlation coefficient 

This  inequality  implies  that  the  linear  correlation  coefficient  lies  in  the  range 

−1 

𝑟 

1.  This  means  that  the  linear  correlation  coefficient  can  take  values between  -1  and  1,  inclusive.  Figure  1.10  shows  such  a  correlation  scale,  where different ranges of r values are associated with specific degrees of correlation. 

Note that there can be “accidental” correlations, as the following example shows. 

It is important to distinguish between correlation and causation. 
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EXAMPLE  1.4.–  A  statistical  study  of  the  French  town  of  Perpette-les-Oisettes (Marne-et-Garonne)  has  determined  the  values  of  the  following  two  variables over  10  successive  years  (see  Figure  1.11):  the  annual  number  of  personal computers  purchased  (𝑥) and  the  annual  number  of  recorded  mental  illnesses (𝑦). 



Figure 1.11.  The statistical series 

The  calculations  described  in  Figure  1.12  allow  for  the  determination  of  the correlation coefficient 𝑟 .  The result is 𝑟  =  0.98, indicating a strong correlation. 

The conclusion is left to the reader! 

 

Figure 1.12.  Calculation details 
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Multidimensional  

Data Analysis 

 

  

CONCEPTS COVERED IN THIS CHAPTER.– 

The  accumulation  of  digital  data  results  in  vast  amounts  of  information  (Big Data),  from  which  it  is  often  necessary  or  advantageous  to  extract  additional information using statistical methods. 

After  introducing  multidimensional  tables,  which  represent  a  point  cloud  in  an 𝑛-dimensional space, an approach for analyzing this cloud in both the individual space and the variable space is presented. 

This  study  naturally  leads  to  principal  component  analysis,  illustrated  with  an example. In practice, calculations are performed not “by hand”, but with the aid of specialized software. Two such programs, Tanagra and R, are introduced. 

References: [CIB 84, COR 18, FOU 85, HUS 16, RAK 10, SAP 11, TAN 00]. 

Just a decade ago, the Data Scientist   profession was relatively unknown. Today, it  has  become  a  highly  sought-after  role  and  a  rapidly  growing  field.  A  data scientist’s primary responsibility is to explore and analyze data using advanced IT 

tools  to  identify  specific  characteristics  of  sub-populations  and  group  together individuals with similar traits. 

 Mathematics for Digital Science 3, 
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Chapters 2 and 3 introduce the essential tools of data mining. These tools allow data scientists   to uncover trends, patterns and hidden information within datasets. By applying  these  techniques,  data  scientists  can  extract  valuable  information  and support  informed  decision-making  across  fields,  including  business,  research, healthcare and more. 

2.1. Multidimensional tables 

Up to this point, one- and two-dimensional statistical series have been examined. 

This concept is now extended to multidimensional statistical series. These series are typically  represented  as  multidimensional  tables,  with  variables  organized  in columns and individuals in rows (see Figure 2.1). 



Figure 2.1.   Multidimensional table 

The  table  consists  of  𝑛  rows,  representing  the  number  of  individuals,  and  𝑝 

columns, corresponding to the number of independent variables a priori. Each value in  the  table,  𝑥 ,  represents  the  value  of  variable  𝑥   for  the  individual  𝑖. 

Mathematically, such a table is represented as a matrix of dimensions 𝑛 × 𝑝, often denoted by 𝑿,  which can be expressed as:  

𝑥

⋯ 𝑥

𝑿 =

⋮

⋱

⋮  

𝑥

… 𝑥

This table, or the corresponding matrix, can also be depicted graphically through a geometric representation in a multidimensional space (though  this requires some 
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imagination!).  For  ease  of  interpretation,  a  three-dimensional  diagram  is  provided below. In practice, two complementary spaces are considered for analysis: 

– Space ℝ  or  individual space (see Figure 2.2): In this space, an individual 𝑖 is represented as a point with coordinates 𝑥  (𝑗 = 1, … , 𝑝). 



Figure 2.2.   Individual space 

– Space  ℝ   or   variable space  (see  Figure  2.3.):  in  this  space,  a  variable  𝑥   is represented by a point with coordinates 𝑥  (𝑖 = 1, … , 𝑛). 



Figure 2.3.   Variable space 

In the individual space, a statistical weight  pi can be assigned to each individual, with the condition: 

𝑝 = 1 

If the set of individuals is  homogeneous, then 𝑝 = . 

For each variable 𝑥 , the following is defined: 

– The average: 𝑥 = ∑

𝑝 𝑥  
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– The variance: 𝑣 𝑥 = ∑

𝑝 𝑥 − 𝑥  

– The standard deviation: 𝜎 𝑥 = 𝑣 𝑥  

“Reduced-centered” coordinates 𝑋  are useful to calculations and are defined as: 𝑥 − 𝑥

𝑋 =



𝜎 𝑥

The “covariance”    between two variables 𝑥  and 𝑥  is defined as: 𝑐𝑜𝑣 𝑥 , 𝑥

=

𝑝 (𝑥 − 𝑥 )(𝑥 − 𝑥̅ ) = 𝜎(𝑥 )𝜎(𝑥 )

𝑝 𝑋 𝑋  

and the “correlation” between variables 𝑥  and   𝑥  is defined as: cov 𝑥 , 𝑥

∑

𝑝 𝑋 𝑋

cor 𝑥 , 𝑥

=

=



𝜎 𝑥 𝜎(𝑥 )

𝜎 𝑥 𝜎(𝑥 )

For 𝑗  =  𝑘, it follows that: cor 𝑥 , 𝑥 = 1 and 𝑉 = cov 𝑥 , 𝑥 = 𝑣(𝑥 ). 

Covariances and correlations can be arranged in matrices. For example, for three variables, the covariance matrix 𝑪 is: 

𝑉

cov(𝑥 , 𝑥 ) cov(𝑥 , 𝑥 )

𝑪 = cov(𝑥 , 𝑥 )

𝑉

cov(𝑥 , 𝑥 )  

cov(𝑥 , 𝑥 ) cov(𝑥 , 𝑥 )

𝑉

And the correlation matrix 𝒄 is: 

1

cor(𝑥 , 𝑥 ) cor(𝑥 , 𝑥 )

𝒄 = cor(𝑥 , 𝑥 )

1

cor(𝑥 , 𝑥 )  

cor(𝑥 , 𝑥 ) cor(𝑥 , 𝑥 )

1

These  two  matrices  are  symmetrical,  since  cov 𝑥 , 𝑥

= cov 𝑥 , 𝑥   and 

cor 𝑥 , 𝑥

= cor 𝑥 , 𝑥 .  The  correlation  coefficient  cor 𝑥 , 𝑥   has  the  special property of being between −1 and +1. This property follows from Cauchy–Schwarz’s inequality,  a  well-established  mathematical  result.  Cauchy–Schwarz’s  inequality guarantees (for any pair of variables 𝑥  and 𝑥 ) that:  
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𝑅

𝑆

≥  

(𝑅 𝑆 )  

where 𝑅  and 𝑆  are the two sequences of  n  real numbers. Taking: 𝑅 = 𝜎 𝑥

𝑝 𝑋  and 𝑆 = 𝜎(𝑥 ) 𝑝 𝑋  

the inequality becomes: 

(𝜎 𝑥

𝑝 𝑋 )(𝜎(𝑥 )

𝑝 𝑋 ) ≥ 𝜎 𝑥

𝜎(𝑥 )

𝑝 𝑋 𝑋



After reduction: 

𝑝 𝑋

𝑝 𝑋 ≥

𝑝 𝑋 𝑋



Yet, 

(𝑥 − 𝑥 )

1

𝑝 𝑋 =

𝑝

=

𝑣 𝑥 = 1 and similarly 

𝑝 𝑋 = 1 

𝜎 𝑥

𝜎 𝑥

which means that 𝑐

= 𝑐𝑜𝑟 𝑥 , 𝑥

≤ 1 

It is concluded that the correlation coefficient lies between −1 and +1. 

Covariance  matrices  𝑪  and  correlation  matrices  𝒄  have  some  remarkable properties: 

1) Matrices  𝑪  and  𝒄  are  symmetrical.  This  means  that  the  elements  at  position (𝑗, 𝑘) are equal to the elements at position (𝑘, 𝑗). 

2) Elements  𝒄   are  between  – 1  and  +1,  and  elements  𝑪   are  between 

−𝜎 𝑥 𝜎(𝑥 )    and    𝜎 𝑥 𝜎(𝑥 ) .   This  property  follows  from  the  definition  of correlation  and  covariance.  Correlation  coefficients  are  normalized  and  lie  in  the range −1 to +1, reflecting the direction of the linear relationship between variables. 

3) The matrix 𝒄 has 𝑝 positive or zero eigenvalues, usually numbered in descending order. Eigenvalues of the correlation matrix 𝒄 represent the variances explained by each principal  component.  They  are  often  ordered,  which  makes  it  possible  to  determine which dimensions are most important in explaining data variability. 
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4) Matrices   C   and   c   have  orthogonal  eigenvectors.  The  eigenvectors  of  these matrices  are  linear  combinations  of  the  original  variables.  They  are  orthogonal  to each other, meaning that they intersect at right angles. 

The eigenvectors 𝒖 , of the matrix  c  form an orthogonal matrix 𝑼 (the vectors 𝒖  are the columns of 𝑼):  

𝑢

𝑢

⋯ 𝑢

𝑢

𝑢

⋯ 𝑢

𝑼 = ⋮     ⋮       ⋱      ⋮ , with the properties 𝑢

𝑢

𝑢

⋯ 𝑢

= 1, 

𝑢 𝑢 = 0  for 𝛼 ≠ 𝛽 

The transposed matrix 𝑼𝒕 is orthogonal and is the inverse of 𝑼: 𝑢

𝑢

⋯ 𝑢

𝑢

𝑢

⋯ 𝑢

𝑼𝒕 =

⋮

⋮

⋱

⋮

, 

𝑢 = 1, 



𝑢 𝑢 = 0   for 𝑖 ≠ 𝑗 

𝑢

𝑢

⋯ 𝑢

In particular, the matrix product 𝒖

𝒕

𝜶𝒖𝜶 gives:  

𝑢

𝑢

𝑢 𝑢

⋯ 𝑢 𝑢

𝑢

⎡

⋯ 𝑢 𝑢 ⎤

𝒖 𝒕

𝑢

𝑢

⋯ 𝑢

⎢𝑢 𝑢

𝑢

⎥

𝜶𝒖𝜶 =

⋮

=



⎢

⋮

⋮

⋱

⋮

⎥

𝑢

⎣𝑢 𝑢

𝑢 𝑢

⋯ 𝑢

⎦

The  column  vectors  of  𝑼  and  𝑼𝒕,   denoted  by  𝒖   and  𝒘   (with  𝑤

= 𝑢 ), 

satisfy: 

⎡

⎤

⎢

𝑢

𝑢 𝑢

⋯

𝑢 𝑢 ⎥

⎢

⎥

⎢

⎥

𝒖 𝒕

⎢

𝑢 𝑢

𝑢

⋯

𝑢 𝑢 ⎥

𝜶𝒖𝜶 =



⎢

⎥

⎢

⋮

⋮

⋱

⋮

⎥

⎢

⎥

⎢

𝑢 𝑢

𝑢 𝑢

⋯

𝑢

⎥

⎣

⎦
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⎡

⎤

⎢

𝑤

𝑤 𝑤

…

𝑤 𝑤 ⎥

⎢

⎥

⎢

⎥

1 0 ⋯ 0

= ⎢

𝑤 𝑤

𝑤

…

𝑤 𝑤 ⎥ = 0 1 ⋯ 0 = 𝟏 

⎢

⎥

⋮

⋮

⋱

⋮

⎢

⋮

⋮

⋱     

⋮

⎥

0 0 ⋯ 1

⎢

⎥

⎢

𝑤 𝑤

𝑤 𝑤

⋯

𝑤

⎥

⎣

⎦

EXAMPLE 2.1.– Consider a study of 20 students in a class, where their marks (out of  20)  in  five  subjects  are  examined:  French  (𝑥 ),  Math  (𝑥 ), Physics  (𝑥 ), History (𝑥 ) and Geography (𝑥 ). These grades are shown in Figure 2.4, where the  first  column  of  the  table  represents  the  student  number  (ranging  from  1  

to 20). 



Figure 2.4.  Student results 

From the data in this table, the averages are calculated: 𝑥 = 10.2, 𝑥 = 11.55, 𝑥 = 11.65, 𝑥 = 10.1 𝑎𝑛𝑑  𝑥 = 11.7.  Similarly,  the  squares  of  the  variable values (see Figure 2.5) and their averages are calculated. Variances are computed using  the  relation  𝑣(𝑥 ) = 𝑥 − 𝑥  .  Standard  deviations  are  then  determined (see Figure 2.6). 
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The centered and reduced coordinates are then derived, leading to the matrix 𝑿 

(see Figure 2.7). From 𝑿, the covariance matrix 𝑪 and the correlation matrix 𝒄 

are obtained: 

18.760

−10.910 −8.880 16.280 −0.440

⎡−10.910 16.648 14.043 −9.255

0.815 ⎤

𝑪 = ⎢

⎥

⎢ −8.880

14.053

13.428 −7.065

2.245 ⎥  

⎢ 16.280

−9.255 −7.065 15.490

−0.720⎥

⎣ −0.440

0.815 2.245 −0.720

8.510 ⎦

1

−0.617 −0.559 0.955

−0.035

⎡−0.617

1

0.939

−0.576

0.068 ⎤

𝒄 = ⎢

⎥

⎢−0.559

0.939

1

−0.490

0.210 ⎥  

⎢ 0.955

−0.576 −0.490

1

−0.063⎥

⎣−0.035

0.068 0.210 −0.063

1

⎦



Figure 2.5.  Table of squared variables 

  

Figure 2.6.  Variance and standard deviation 

[image: Image 20]

[image: Image 21]

Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science University , Wiley Online Library on [01/07/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Multidimensional Data Analysis     21 

There is a significant correlation between French and History (0.955), as well as between Math and Physics (0.939), while the correlations between French and Geography (−0.035), Math and Geography (0.068), and History and Geography (−0.063) are practically non-existent. 

Using software such as MATLAB or Scilab (especially with Scilab, where [vecp, valp]=spec(c) is used), the eigenvalues and eigenvectors of the matrix  c  can be determined (see Figure 2.8). 



Figure 2.7.  Reduced centered coordinates 



Figure 2.8.  Eigenvalues and eigenvectors 
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It can be verified (with rounding errors) that:  

𝟓



u = 1     and    

u = 1       for      α = 1 to 5   

𝐢 𝟏



u u = 0    and   

u u = 0   for     𝛼, 𝛽 = 1 to 5 (𝛼 ≠ 𝛽) 



𝐮 𝐭

𝛂𝐮𝛂 = 1     for      𝛼 = 1 to 5 

To conclude this section, some useful expressions are provided for the matrix 𝑿 

of data in reduced centered coordinates. 

The matrix 𝑿 is of size 𝑛 × 𝑝. Its transpose, denoted by 𝑿𝒕, is a matrix of size 𝑝 × 𝑛. 

The  matrix  product  𝑿𝒕. 𝑿  is  therefore  a  matrix  of  size  𝑝 × 𝑝,  while  the  matrix product  𝑿. 𝑿𝒕  is  a  matrix  of  size  𝑛 × 𝑛.  More  precisely,  the  representation  of  the matrix 𝑿𝒕. 𝑿 is given by: 

⎡

𝑋

𝑋 𝑋

⋯

𝑋 𝑋 ⎤

⎢

⎥

⎢

⎥

⎢

⎥

𝑿𝒕. 𝑿 = ⎢

𝑋 𝑋

𝑋

⋯

𝑋 𝑋 ⎥ 

⎢

⎥

⎢

⋮

⋮

⋱

⋮

⎥

⎢

⎥

⎢

𝑋 𝑋

𝑋 𝑋

…

𝑋

⎥

⎣

⎦

and that of the matrix 𝑿. 𝑿𝒕 is given by:  

⎡

⎤

⎢

𝑋

𝑋 𝑋

⋯

𝑋 𝑋 ⎥

⎢

⎥

⎢

⎥

⎢

⎥

𝑿𝑿𝒕 =

𝑋 𝑋

𝑋

⋯

𝑋 𝑋

⎢

⎥ 

⎢

⎥

⎢

⋮

⋮

⋱

⋮

⎥

⎢

⎥

⎢

𝑋 𝑋

𝑋 𝑋

⋯

𝑋

⎥

⎣

⎦
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Note  that  these  two  matrices  are  symmetrical.  As  they  are  real,  they  are diagonalizable. 

In particular, if the population is homogeneous, i.e. if 𝑝 = , then: 𝑋 𝑋 = 𝑛 × cor 𝑥 , 𝑥  

and  

𝑥 − 𝑥

𝑣 𝑥

𝑋 =

=

= 𝑛 

𝜎 𝑥

𝑣 𝑥

so that 𝑿𝒕. 𝑿 = 𝑛𝒄 

EXAMPLE 2.2.– Calculate the matrices 𝑿𝒕. 𝑿 and 𝑿. 𝑿𝒕 (see Figure 2.9 for details) for Example 2.1. 



Figure 2.9.  The matrices XXt and Xt X  

It  can  be  confirmed  that  𝑿𝒕. 𝑿 = 𝑛𝒄, which  is  in  line  with  expectations. 

However, the matrix 𝑿. 𝑿𝒕 calculated here will be used later in Section 2.2.2. 
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2.2. Analysis of a point cloud 

The  graphical  representation  of  a  multidimensional  series  (𝑛  individuals, 𝑝 variables) is a point cloud in the space ℝ  of individuals and in the space ℝ  of variables.  In  the  following,  it  will  be  assumed  that  these  spaces  are  related  to orthonormal  reference  frames.  It  will  also  be  assumed  that  𝑛 > 𝑝,  in  order  to describe highly populated populations a priori. 

2.2.1.   Spatial analysis of individuals 

To begin with, consider the individual space and work with centered and reduced coordinates.  For  simplicity’s  sake,  assume  that  each  individual  has  the   same statistical weight, i.e. that 𝑝 = . In this scenario, the point cloud’s center of gravity lies at the origin of the axes. 

Similar to the practice of linear fitting for a one-dimensional series, it is relevant to look for the axis that aligns optimally with the scatterplot (see Figure 2.10). This axis is known as the  first factorial axis or  principal axis 1. 



Figure 2.10.   First factorial axis 1. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

The main axis 1 is characterized by a unit vector 𝒖𝟏 (of length 1). Let us clarify the meaning of the expression “at best”: it means that the sum of the squares of the distances of the points from axis 1 is minimal. 
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Figure 2.11.   The right-angled triangle OMi Pi. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

Since  the  points  M   are  fixed,  the  projection  of  M   onto  the  principal  axis  1 

satisfies Pythagoras’ theorem (see Figure 2.11): OM =   OP  +  M P . 

Minimizing  length  M P ,  means  maximizing  OP .  Therefore,  “at  best”  means maximizing the sum of the squares of the projections of the vectors 𝐎𝐌𝐢 onto the principal axis 1. 

As the principal axis 1 is defined by a unit vector 𝒖𝟏, 

OP = 𝐎𝐌𝐢 ∙ 𝐮𝟏 =

𝑋 𝑢 = 𝑋 u  

To maximize the quantity 𝑀, which is the sum of the squared projections of each data point onto the principal axis 1: 

𝑀 =

𝑋 𝑢



This can be expressed as: 

⎡

⎤

⎢

X u ⎥

⎢

⎥

⎢

⎥

⎢

⎥

𝐗. 𝐮

X u

𝟏 = ⎢

⎥    (𝐗𝐮𝟏) =

X u

X u

⋯

X u        

⎢

⎥

⎢

⋮

⎥

⎢

⎥

⎢

X u ⎥

⎣

⎦
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(𝑿𝒖𝟏)𝒕(𝑿𝒖𝟏) =

𝑋 𝑢



So, 𝑀 = (𝑿𝒖

𝒕

𝟏)𝒕(𝑿𝒖𝟏) = 𝒖𝟏𝑿𝒕𝑿𝒖𝟏 and using a result from the previous section, namely 𝑿𝒕. 𝑿 = 𝑛𝒄, we have 𝑀 = 𝑛𝒖𝒕𝟏𝒄𝒖𝟏. 

The  matrix  𝒄,  which  has  positive  or  zero  eigenvalues,  is  diagonalizable  in  an orthonormal basis. The basis change formula is:  

𝒄 = 𝑷𝒕𝒅𝑷 

where   𝑷 is the basis change matrix and 𝒅 is the diagonal matrix composed of the eigenvalues of 𝒄:  

𝜆

0

⋯ 0

0

𝜆

𝒅 =

⋯ 0  

⋮

⋮

⋱

⋮

0 0

⋯ 𝜆

The  eigenvalues  are  numbered  in  descending  order,  so  𝜆   is  the  largest  (and obviously positive). With the basis change formula, the expression becomes: 𝑀 = 𝑛𝒖𝒕

𝒕

𝟏𝒄𝒖𝟏 = 𝑛𝒖𝟏𝑷𝒕𝒅𝑷𝒖𝟏 = 𝑛(𝑷𝒖𝟏) 𝒅(𝑷𝒖𝟏) = 𝑛𝒘𝒅𝒘 

where  𝒘  =  𝑷𝒖

𝒕

𝟏.  Since  ‖𝒖𝟏‖ = 1,  then  𝒘 = (𝑷𝒖𝟏) (𝑷𝒖𝟏) = 𝒖𝟏 𝑷𝒕𝑷𝒖𝟏 =

𝒖𝒕𝟏𝒖𝟏 = 1. Therefore:  

w = 1 

On the other hand, 

𝜆

0

⋯ 0

𝑤

0

𝜆

… 0

𝑤

𝑀 = 𝑛  𝑤

𝑤

⋯ 𝑤

= 𝑛

𝜆 𝑤  

⋮

⋮

⋱

⋮

⋮

0 0

⋯ 𝜆

𝑤

Since   𝜆  is the largest eigenvalue of  c, the following holds: 𝑤 = 1 − 𝑤 − 𝑤 − ⋯ − 𝑤  
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and: 

𝑀 = 𝑛  𝜆 − (𝜆 − 𝜆 )𝑤 − (𝜆 − 𝜆 )𝑤 − ⋯ − 𝜆 − 𝜆 𝑤 ≤ 𝑛 𝜆  

The  maximum  value  of  𝑀  is  reached  when  it  is  equal  to  𝑛 𝜆 .  This  value corresponds to the value 𝑀 when 𝒖𝟏 is the eigenvector associated with 𝜆 . In this case, 

𝑀 = 𝑛𝒖𝒕

𝒕

𝟏𝒄𝒖𝟏 = 𝑛𝜆 𝒖𝟏𝒖𝟏 = 𝑛𝜆 . 

Thus, this eigenvector 𝒖𝟏 defines the principal axis 1. 

EXAMPLE  2.3.–  Take  Example  2.2.  again.  The  eigenvector  𝒖𝟏 (shown  below), which  was  obtained  from  Example  2.1,  corresponds  to  the  largest  eigenvalue λ = 3.086.  This  eigenvector  is  used  to  define  the  principal  axis  1  in  the space ℝ : 

−0.507

⎡ 0.508 ⎤

𝒖

⎢

⎥

𝟏 = ⎢ 0.488 ⎥  

⎢−0.489⎥

⎣ 0.089 ⎦

Axis 1 has been defined. Now, the other 𝑝 − 1 axes that best fit the point cloud need to be defined. The 𝑝 factor axes form an orthonormal reference frame. The unit vectors defining them satisfy the following relationships: 𝒖𝒋 = 𝒖 = 1             ∀ 𝑗 = 1, … , 𝑝 

𝒖 𝒖 = 0        ∀𝑗, 𝑘 = 1, … , 𝑝  𝑤𝑖𝑡ℎ  𝑗 ≠ 𝑘 

To  find  the  vectors  𝒖𝒋 (𝑗 > 1),  the  same  method  used  for  𝒖𝟏  is  applied. 

Consequently,  the  eigenvectors  𝒖 , 𝒖 , … , 𝒖   of  the  matrix  𝒄  are  the  vectors  of interest.  Furthermore,  since  the  system  𝒖 , 𝒖 , … , 𝒖   is  orthonormal,  the  above relationships hold. 

Thus,  the  search  for  factorial  axes  1, 2, , 𝑝  is  equivalent  to  calculating  the values  and  eigenvectors  of  the  correlation  matrix   c.  The  importance  of  a  factorial axis 𝑘 is quantified by the ratio 𝐼  as follows:  

𝜆

𝜆

𝐼 =

=



∑

𝜆

𝑝
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This  ratio  represents  the  inertia  of  the  point  cloud  with  respect  to  the  axis  𝑘, often expressed as a percentage. 

The  next  step  is  to  determine  the  coordinates  of  the  individual  points  on  the factorial axes. These coordinates are given by the matrix 𝑿. 𝒖, where 𝒖 is the matrix formed by juxtaposing the eigenvectors of matrix 𝑐:  

𝑋

𝑋

⋯ 𝑋

⎡

⎤ 𝑢

𝑢

⋯ 𝑢

⎢𝑋

𝑋

⋯ 𝑋 ⎥ 𝑢

𝑢

⋯ 𝑢

𝑿𝒖 = ⎢ ⋮

⋮

⋱

⋮ ⎥ ⋮

⋮

⋱

⋮

⎢ ⋮

⋮

⋱

⋮ ⎥ 𝑢

𝑢

⋯ 𝑢

⎣𝑋

𝑋

⋯ 𝑋 ⎦

⎡

⎤

⎢

𝑋 𝑢

𝑋 𝑢

⋯

𝑋 𝑢 ⎥

⎢

⎥

⎢

⎥

⎢

𝑋 𝑢

𝑋 𝑢

⋯

𝑋 𝑢 ⎥

= ⎢

⎥ 

⎢

⋮

⋮

⋱

⋮

⎥

⎢

⋮

⋮

⋮

⎥

⎢

⋱

⎥

⎢

𝑋 𝑢

𝑋 𝑢

⋯

𝑋 𝑢 ⎥

⎣

⎦

The  columns  of  the  matrix   u   are  the  components  of  the  eigenvectors  𝒖𝒌.  The rows  of  the  resulting  product  matrix  are  the  coordinates  of  the  individuals  on  the factorial axes. 

EXAMPLE 2.4.– Return to Example 2.3 and visualize the individual points in the (1, 2),  (1, 3)  and  (2, 3)  planes  of  the  factorial  axes.  The  coordinates  are calculated as shown in Figure 2.12 (formed by tables). Calculating the inertia of the  scatter  plot  in  relation  to each  axis  (see  Figure  2.13.),  it  becomes  apparent that  restricting  the  analysis  to  the  first  three  axes,  as  there  is  a  satisfaction,  as there is a significant decrease in the value of 𝜆  compared with 𝜆 . The first three axes  explain  over  98%  of  the  cumulative  inertia.  Consequently,  only  the projections  of  the  point  cloud  onto  the  (1, 2),  (1, 3)  and  (2, 3)  planes  (see Figure 2.14(a)–(c)). 
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Figure 2.12.  Coordinates in the factorial axes Figure 2.13.  Eigenvalues and inertia 



Figure 2.14(a).  Projection on the (1, 2) plane. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 
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Figure 2.14(b).  Projection on the (1, 3) plane (continued). For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 



Figure 2.14(c).  Projection on the (2, 3) plane (continued and end). For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

2.2.2.   Analysis in variable space 

Moving  on  to  variable  space,  denoted  by  ℝ , which  is  associated  with  an orthonormal  reference  frame,  factorial  axes  represented  by  the  orthonormal vectors 𝒗  can also be defined .  

Following a similar approach as for space ℝ , the objective is to minimize the following quantity:  
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𝑀 =

𝑋 𝑣

, 

where 𝒗  is a vector defining a principal axis 𝛼. 

Noting that:  

⎡

𝑋 𝑣 ⎤

⎢

⎥

⎢

⎥

⎢

⎥

𝑿𝒕𝒗

⎢

𝑋 𝑣 ⎥

𝜶 =

, (𝑿𝒕𝒗

⎢

⎥

𝜶) =

𝑋 𝑣

𝑋 𝑣

…

𝑋 𝑣   

⎢

⋮

⎥

⎢

⎥

⎢

𝑋 𝑣 ⎥

⎣

⎦

and: 

(𝑿𝒕𝒗𝜶) (𝑿𝒕𝒗𝜶) =

𝑋 𝑣



it follows that:  

𝑀′ = (𝑿𝒕𝒗

𝒕

𝜶) (𝑿𝒕𝒗𝜶) = 𝒗𝜶𝑿𝑿𝒕𝒗𝜶. 

As  in  the  individual  space,  the  maximum  of  𝑀′  is  achieved  when  𝒗𝜶  is  the eigenvector  corresponding  to  the  eigenvalue  𝜇   of  the  matrix  𝑿. 𝑿   (with eigenvalues 𝜇  numbered in descending order). 

The  vectors  𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏,  which  are  orthonormal,  define  the  main  axes  in  the variable space ℝ . 

EXAMPLE 2.5.– Returning to the previous example, consider the variable space ℝ  (here, 𝑛 = 20). 

The matrix 𝑿. 𝑿  is previously calculated (see Figure 2.9). 

Using  software  such  as  MATLAB  or  Scilab,  it  is  possible  to  compute  the eigenvalues and eigenvectors of 𝑿. 𝑿 . 
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Given  the  20  variables,  in  this  case,  the  matrix  yields  20  eigenvalues  and  20 

corresponding eigenvectors (see Figure 2.15). 

Similar  to  the  space  ℝ ,  the  first  three  eigenvalues  in  ℝ   stand  out  as  being significantly larger. This observation highlights that the first three principal axes hold the most relevance for data analysis within variable space. 



Figure 2.15 . Eigenvalues, eigenvectors 

2.2.3.   Link between the two spaces 

The relationship between the two spaces, ℝ  and ℝ  (the individual space and the  variable  space),  is  not  immediately  apparent  since  they  are  distinct.  However, when 𝑛  >  𝑝, a connection between eigenvectors 𝒗  and 𝒖  can be established for 𝑎  ≤  𝑝. 

Starting from the eigenvalue equation for the eigenvectors defining the principal axes of ℝ , 

𝑿𝑿𝒕𝒗𝜶 = 𝜇 𝒗𝜶 

and multiplying on the left by  Xt, results in:  
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𝜇

𝑿𝒕𝑿𝑿𝒕𝒗𝜶 = 𝜇 𝑿𝒕𝒗𝜶      or   (𝑿𝒕𝑿)𝑿𝒕𝒗𝜶 = 𝜇 𝑿𝒕𝒗𝜶      or    𝒄 𝑿𝒕𝒗𝜶 =

𝑿𝒕𝒗

𝑛

𝜶 

This  is  the  eigenvalue  equation  for  the  matrix 𝒄  when  𝛼 =  1, … , 𝑝.  From  this, the following relationships are deduced: 

𝜇

𝜆 =

,       𝛼 = 1, … , 𝑝 

𝑛

and  a  proportional  relationship  exists  between  the  eigenvectors  𝑿𝒕𝒗𝜶 and  𝒖𝜶  (for α =  1, … , 𝑝), i.e. 𝒖 = 𝑘 𝑿𝒕𝒗𝜶 ,   𝛼 = 1, … , 𝑝. 

Furthermore,  the  eigenvectors  𝒖𝜶 and  𝒗𝜶  belong  to  orthonormal  systems 𝒖𝒕

𝒕

𝜶𝒖𝜶 = 1  and  𝒗𝜶𝒗𝜶 = 1,  the constant 𝑘  satisfies: 1 = 𝑘 (𝑿𝒕𝒗

𝒕

𝒕

𝜶)𝒕(𝑿𝒕𝒗𝜶) = 𝑘 𝒗𝜶𝑿𝑿𝒕𝒗𝜶 = 𝑘 𝜇 𝒗𝜶𝒗𝜶 = 𝑘 𝜇 = 𝑛𝑘 𝜆    

This implies:  

1

𝑘 =

. 

nλ

Thus, the relationship between the vectors 𝒖𝜶 and 𝒗𝜶 is expressed as: 

1

1

𝟏

1

𝒖𝜶 =

𝑿𝒕𝒗

𝑿𝒕𝒗

𝑿𝒖

𝑿𝒖

𝑛𝜆

𝜶 =

𝜇

𝜶 or 𝒗𝜶 =

𝝁

𝜶 =

𝜶,  𝛼 = 1, … , 𝑝 

𝜶

𝑛𝜆

EXAMPLE 2.6.– Let us revisit the results of the previous examples. 

 

Figure 2.16.  Limitation to q = 3 
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Figure 2.17.  Variable space (q = 3) 

It is evident that limiting the analysis to one dimension is sufficient, with 𝑞  =  3. 

In both the individual and variable spaces, the first three principal axes account for a substantial proportion of the point cloud’s inertia. These results are shown in Figure 2.16. 

Based on the relationships established earlier, the following results are derived (with minor deviations due to rounding errors), as shown in Figure 2.17: 𝜇 = 20,     𝜆 = 61.728,    𝜇 = 20,    𝜆 = 20.76, 

𝜇 = 20,    𝜆 = 15.76  

The results align perfectly with those presented in Example 2.4, apart from the sign, which is inherently arbitrary. 
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2.3. Principal component factor analysis 

2.3.1.   Principles 

Principal component (factorial) analysis (PCA) is a statistical  method designed to  model  a  scatter  plot.  Statistics  outputs  often  take  the  form  of  multidimensional data tables with numerous observations, making it challenging to derive meaningful conclusions. The objective of PCA is to identify patterns in the data by “reducing” 

its dimensionality, thus facilitating interpretation. 

The fundamental problem arises as follows: the  matrix  𝑿,    representing the data table, contains 𝑛 × 𝑝 elements. Extracting relevant information from such a dataset is often complex. 

Therefore,  the  goal  is  to  construct  a  lower-dimensional  representation  that approximates the original matrix 𝑿 as closely as possible. 

Assume it is possible to find two vectors 𝑈 and 𝑉 such that: 𝑋 = 𝑈𝑉 . 

In this case, a substantial amount of data can be constructed using a smaller set of  elements:  with  only  𝑛  +  𝑝  elements,  𝑛 × 𝑝  elements  can  be  generated.  For example: 

𝑈

𝑈 𝑉

𝑈 𝑉

⋯ 𝑈 𝑉

⎡

𝑉

⎡

⎤

𝑈 ⎤

𝑉

⎢𝑈 𝑉

𝑈 𝑉

⋯ 𝑈 𝑉 ⎥

𝑼 = ⎢ ⎥

⎢ ⋮ ⎥        𝑽 = ⋮        𝑼𝑽𝒕 = ⎢ ⋮

⋮ ⋱

⋮ ⎥ 

⎢ ⋮ ⎥

⎢ ⋮

⋮ ⋱

⋮ ⎥

⎣𝑈 ⎦

𝑉

⎣𝑈 𝑉

𝑈 𝑉

⋯ 𝑈 𝑉 ⎦

The  inverse  problem  is  to  determine  𝑈  and  𝑉  from  𝑛 × 𝑝  elements  that approximate the original matrix. Generally, it is not possible to find vectors 𝑈 and 𝑉 

such  that  𝑋 = 𝑈𝑉 .  However,  it  is  possible  to  identify  vectors  𝑼𝟏, 𝑼𝟐, … , 𝑼𝒒  and 𝑽𝟏, 𝑽𝟐, … , 𝑽𝒒 (where 𝑈  and 𝑉  share the same dimension) such that: 𝑿 ≈ 𝑼

𝒕

𝒕

𝒕

𝟏 × 𝑽𝟏 + 𝑼𝟐 × 𝑽𝟐 + ⋯ + 𝑼𝒒 × 𝑽𝒒  +  𝑬, 

where 𝑬 is an error matrix assumed to be negligible. 
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This implies that the matrix 𝑋 can be approximated using a linear combination of 𝑞  pairs  of  vectors  𝑈  and  𝑉.  The  value  of  𝑞  depends  on  the  proportion  of  data deemed  important  to  retain.  Thus,  the  matrix  𝑋  is  nearly  reconstructed  using 𝑞 × (𝑛 + 𝑝) elements. 

Subsequent  sections  will  detail  the  methods  for  determining  the  vectors 𝑼𝟏, 𝑼𝟐, … , 𝑼𝒒 and 𝑽𝟏, 𝑽𝟐, … , 𝑽𝒒.. 

EXAMPLE  2.7.–  Consider  a  population  of  𝑛 = 1000  individuals  studied  using 𝑝 = 100  variables.  The  data  matrix  𝑿  therefore  contains  𝑛 × 𝑝 = 100,000 

elements.  By  approximating  the  date  with  𝑞  =  10,  the  number  of  elements  is reduced to:  

𝑞(𝑛 + 𝑝) = 10(1000 + 100) = 11,000. 

This  reduction  is  substantial,  representing  approximately  10  times  fewer elements  to  analyze.  This  simplification  allows  a  more  straightforward interpretation of the data while retaining the essential aspects of the information contained in the matrix 𝑿. 

PCA  builds  upon  the  results  obtained  from  scatterplots  by  reducing  the  spaces ℝ   and  ℝ   to  ℝ .  The  choice  of  dimension  𝑞  is  primordial  for  achieving  a meaningful representation of the data within the model. 

In  practice,  from  the  𝑝  factorial  axes  in  the  individuals’  space,  the  analysis focuses  on  the  𝑞  axes  that  capture  a  significant  portion  of  the  inertia.  Therefore, 𝑞  ≤  𝑝,  and  typically,  since  there  are  often  more  individuals  than  variables (𝑝  ≤  𝑛),  it  follows  that  𝑞  ≤  𝑛.  This  reduction  allows  for  a  smaller  number  of dimensions to be analyzed while retaining the most relevant information. 

Once  𝑞  has  been  determined,  it  is  necessary  to  verify  whether  the  𝑞(𝑛 + 𝑝) elements can adequately approximate the original 𝑛 × 𝑝 elements with a negligible error  E. In other words, the goal is to ensure that the reduced representation retains the essential information without significant loss. 

This verification can be performed by comparing the original data with the data reconstructed  from  the  𝑞  factorial  axes.  If  the  error   E   between  the  two  datasets  is negligible, the reduced representation is considered sufficiently accurate and faithful to the original data. 
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EXAMPLE 2.8.– In Example 2.1, the results for both the individual space and the variable space are presented. 

Subsequently,  in  Examples  2.3  and  2.4  (within  the  individual  space),  the eigenvalues and eigenvectors corresponding to the three primary axes of major significance were determined. 

Similarly, for the variable space (Example 2.5), the coordinates of the “variable” 

points in the (1,2), (1,3) and (2,3) planes were computed using the matrix 𝑿𝒕𝒗,  

where 𝒗 is the matrix whose columns are the vectors 𝒗𝒊. 

Figure 2.18(a)–(c) provides a graphical representation of these coordinates. 



Figure 2.18(a).  Coordinates of variables in the (1, 2) plane. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

  

Figure 2.18(b).  Coordinates of variables in the (1, 3) plane. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 
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Figure 2.18(c).  Coordinates of variables in the (2, 3) plane. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

To justify the reduction of 𝑿 (i.e. the data table) to just 𝑞(𝑛 + 𝑝) elements for its reconstitution, consider the equation expressing the eigenvalues: 𝑿𝒕𝑿𝒖𝜶 = 𝑛𝜆 𝒖𝜶                               𝟏  

For α =  1, … , 𝑝, a link can be established between the spaces ℝ  and ℝ . The relationship  between  the  eigenvectors  𝒖𝜶  of  the  individual  space  and  𝒗𝜶  of  the variable space is given as:  

1

1

𝒖𝜶 =

𝑿𝒕𝒗

𝑿𝒖

𝑛𝜆

𝜶       𝒗𝜶 =

𝑛𝜆

𝜶,  𝛼 = 1, … , 𝑝 

This implies: 

𝑿𝒖𝜶 = 𝑛𝜆 𝒗𝜶 

By multiplying on the left by 𝒖𝒕𝜶 and summing over α = 1, … , 𝑝, it follows: 𝑿

𝒖 𝒕

𝒕

𝜶𝒖𝜶 = 𝑿 =

𝑛𝜆 𝑣 𝑢 =

𝑿𝒖𝜶𝒖𝜶 

If 𝑞  ≤  𝑝 is chosen in a reasonable way (e.g. to achieve a significant cumulative inertia), the approximation is given by: 

𝑿  ≅  

𝑿𝒖 𝒕

𝜶𝒖𝜶 
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Thus,  𝑿𝒖𝜶  and  𝒖𝜶  play  the  roles  of  vectors  𝑼𝛂  and  𝑽𝜶  introduced  at  the beginning of this section. 

EXAMPLE 2.9.– Let the table 𝑿 be reconstructed with the approximation 𝑞  =  3. 

The results are shown in Figure 2.19. It can be observed that most of the values in the table 𝑿 are well approximated. However, there are also a few values that differ slightly from those in the original table. These differences may be due to the approximation made by using only the first three principal axes to reconstruct the table 𝑿. 



Figure 2.19.  Reconstructing table X  

In the variable space, an alternative to the Euclidean distance can be useful for defining  the  distance  between  two  points.  The  columns  of  the  matrix  𝑿  represent variable points 𝑿𝒋 with coordinates 𝑋 , 𝑋 , … , 𝑋  in ℝ . 

Using the Euclidean norm, which is commonly applied to measure the distance between two points in the variable space, yields: 

(𝑥 − 𝑥

𝑛𝑣 𝑥

𝑿𝒋 =

𝑋 =

=

= 𝑛     such that     𝑿 = √𝑛 

𝜎 𝑥

𝑣 𝑥
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To simplify the analysis, it is convenient to divide the variable coordinates by the square  root  of  𝑛  (i.e.  √𝑛),  thereby  placing  all  variable points  on a hypersphere of radius  1   in the variable space. 

When these variable points are projected onto a plane defined by two factorial axes, the projections lie within  a circle of radius  1,    known as the  correlation circle.  

If the following is defined:  

𝑋

𝑌 =



√𝑛

then the correlation between two variables 𝑥  and 𝑥  is expressed as: cov 𝑥 , 𝑥

1

𝑥 − 𝑥 𝑥 − 𝑥

cor 𝑥 , 𝑥

=

=

. 

𝜎 𝑥 𝜎(𝑥 )

𝑛

𝜎 𝑥

𝜎(𝑥 )

1

=

𝑋 𝑋 =

𝑌 𝑌 = 𝒀

𝑛

𝒋. 𝒀𝒌 

Thus,  the  correlation  between  two  variables  𝑥   and  𝑥  can  be  calculated  by taking  the  scalar product  of  the vectors 𝒀𝒋 and 𝒀𝒌 where the components of these vectors are the coordinates of the variable points representing the two variables. 

More  precisely,  the  projection  of  a  vector  𝒀   on  a  principal  axis  defined  by  a vector 𝒗𝜶 represents the correlation of the corresponding variable with this axis. If the vector 𝒀𝒋 is close to the principal axis and its length is close to 1, this indicates a strong correlation between the variable and the axis. 

Similarly, if the scalar product 𝒀𝒋. 𝒀𝒌 is close to 1 or – 1, this suggests a strong correlation between the variables 𝑗 and 𝑘. 

Conversely,  if the  scalar product 𝒀𝒋. 𝒀𝒌  is close to 0, this indicates little to no correlation between the two variables 𝑗 and 𝑘. 

EXAMPLE 2.10.– The graphical representations from Example 2.8 are scaled by dividing the point coordinates by √𝑛 = √20 (see Figure 2.20). 

In the (1,2) plane, a strong correlation appears between French and History, on the one hand, and Math and Physics, on the other. 
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The  Geography  vector  is  nearly  perpendicular  to  the  others,  indicating  a negligible correlation. 

In the other planes, (1,3) and (2,3), the proximity between Math and Physics, as well as French and History, confirms that their relationship in the (1,2) plane is not coincidental. 



Figure 2.20.  Correlation circles in various factorial designs. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

2.3.2.  Principal component factor analysis in practice 

PCA aims not only to model data with a reduced number of parameters but also to  explain  the  distribution  of  the  data  along  the  factor  axes  and  analyze  the correlation between variables. 

The  calculations  involved  can  be  automated  using  various  software  tools dedicated  to  PCA,  such  as  R  and  Tanagra.  A  brief  overview  of  these  programs  is provided  in  the  appendix.  Once  results  are  obtained,  interpreting  them  becomes 
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important.  As  with  many  statistical  methods,  interpreting  PCA  results  can  be challenging. 

A common question that arises in the interpretation of axes 1, 2, and others in the individual  space.  Understanding  their  meaning  and  implication  is  essential  for effective data analysis. 

EXAMPLE  2.11.–  In  the  previous  examples,  the  main  axes  for  the  student scatterplot were identified. Comparing the students’ coordinates on principal axis 1 with the marks in various subjects allows for a graphical representation to be constructed (see Figure 2.21). 



Figure 2.21.  Individual coordinate axis 1 – grades. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 
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Figure  2.21  shows  an  interpretation  of  principal  axis  1.  Grades  in  Math  and Physics  increase  along  this  axis,  while  grades  in  French  and  History  decrease. 

Consequently,  principal  axis  1  can  be  understood  as  distinguishing  students oriented  towards  “scientific”  disciplines  on  its  positive  side  and  those  inclined towards “literary” disciplines on its negative side. 

For  Geography,  the  distribution  along  axis  1  appears  relatively  “neutral”, showing  no  particular  trend.  This  observation  aligns  with  Figure  2.22,  which indicates no significant variation in Geography grades along axis 1. Geography may be considered a subject that bridges both “scientific” and “literary” aspects. 

However,  examining  axis  2  reveals  that  Geography  grades  increase  along  this axis.  Figure  2.22  shows  that  students  with  higher  Geography  grades  are positioned on the positive side of axis 2, while those with lower grades are on the negative  side.  This  distinction  helps  characterize  students  based  on  their geographical skills. 



Figure 2.22.  Axis 2 individual coordinates – Geography grades. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

With these observations, the interpretation shown in Figure 2.23 can be proposed for the individual space. 

On  axis  1,  students  are  distinguished  based  on  their  orientation  towards 

“scientific”  subjects  (Math  and  Physics)  versus  “literary”  subjects  (French  and History).  Math  and  Physics  grades  increase  along  axis  1,  whereas  French  and History grades decrease. 
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Axis  2  reflects  variations  in  Geography  grades.  Students  positioned  on  the positive  side of  axis  2  achieve  higher  marks  in  Geography,  while  those  on  the negative side show lower performance in this subject. 

Additionally,  the  graphical  representation  in  Example  2.9  confirms  the  strong correlations between French and History, as well as between Math and Physics, as  indicated  by  the  correlation  matrix  𝒄.  This  observation  highlights  the  close connections  between  these  pairs  of  variables,  aligning  with  the  results  of previous analyses. 



Figure 2.23.  Interpretation  

 of factorial axes 

Interpretation aids  are provided by  specific  PCA  parameters.  These  parameters include  eigenvalues,  percentages  of  explained  inertia,  contributions  of  individuals and  variables,  squared  cosines  of  variables,  variable-individual  correlations,  etc. 

They  provide  additional  information  on  the  significance  of  axes,  the  dispersion  of individuals, the contribution of variables, relationships between variables, etc.: 1) The “cosine squared” parameters measure the quality of the representation of an  individual  in  the  individual  space.  For  a  plane  defined  by  two  factorial  axes, α 

and  𝛽,  an  individual  point  𝑖  is  projected  onto  𝑃(𝑖),  with  coordinates  (𝑿𝒖𝜶)   and 𝑿𝒖𝜷 , as determined previously. 

The proximity of individual  i  to the plane (𝛼, 𝛽) is quantified by using the square of the cosine of the angle formed by the vector 𝜴  and its projection 𝜴𝑷(𝒊) onto the plane  (see  Figure  2.24).  The  closer  point  𝑖 is  to  the  plane  (𝛼, 𝛽),  the  closer  the  
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squared cosine value is to 1, indicating a better representation of the individual in the space defined by axes α and 𝛽: 

‖𝜴𝑷(𝑖)‖

(𝑋𝑢 ) + 𝑋𝑢

cos (𝜃) =

=



‖𝜴𝒊‖

∑

𝑋

Since: 

(𝑋𝑢 )

𝑋𝑢

cos (𝜃 ) =

and        cos 𝜃

=



∑

𝑋

∑

𝑋

It follows that:  

cos (𝜃) = cos (𝜃 ) + cos 𝜃 . 



Figure 2.24.   Proximity of individual i to the plane  αβ   

EXAMPLE 2.12.– For the example studied so far, the “cosine squared” parameters are  used  to  access  the  quality  of  the  representation  of  individuals  in  the individual space. 
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Figure 2.25.  cos2 (α ) values 

Figure 2.25 shows the cosine squared values for each individual projected onto the (1, 2) plane. It is evident that some individuals are closer to the plane, with cosine  squares  closer  to  1,  while  others  are  farther  away,  with  cosine  squares closer to 0. This variation reflects the quality of the representation of individuals in  this  space.  Specifically,  students  9  and  12  are  positioned  further  from  the (1, 2) plane, as indicated by the gray boxes in the last column of the figure. 

This  observation  aligns  with  what  is  seen  in  Figures  2.20  and  2.21,  where  the projections  of  students  9  and  12  onto  the  (1, 2)  plane  are  more  spread  out compared to the projections of the other students. In contrast, most other students are relatively close to the (1, 2) plane, suggesting that their projections are more tightly clustered together. 

2) The RTC (Rank Totalized Contributions) parameters measure an individual’s contribution to the inertia of a principal axis. They are defined as: (𝑿𝒖

𝐶𝑇𝑅(𝑖, 𝛼) =  

𝜶)



∑

(𝑿𝒖𝜶)
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Note that this definition implies that: 

𝐶𝑇𝑅(𝑖, 𝛼) = 1 

In practice, RTCs are typically presented as a percentage of inertia. 

Following the mechanical definition of inertia 𝐼 = 𝑚𝑑 , where 𝑚 =  represents the  “mass”  of  a  point  and  𝑑  is  the  point’s  distance  from  the  axis,  the  greatest contributions to inertia come from the points that are farthest from the axis. In other words, points that are farther from the main axis contribute more to the total inertia of the set of points. 

EXAMPLE 2.13.– From the vectors 𝑿𝒖𝜶, the RTC parameters shown in Figure 2.26 

are obtained. 

It  can  be  observed  that  student  8  contributes  the  most  to  axis  1,  student  17 

contributes the most to axis 2, student 12 contributes the most to axis 3, student 4 

contributes the most to axis 4 and student 1 contributes the most to axis 5. 



Figure 2.26.  RTC (i,  α ) values 
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Although the parameters COS  and RTC are typically used for individuals, they can also be defined in variable space. 

2.4. Appendix: useful software 

Numerous  software  packages  are  available  for  data  analysis.  This  section highlights two widely used free programs in the academic world: 1)  Tanagra   software:  Tanagra  is  a  software  package  developed  by  Ricco Rakotomalala at Lyon 2 University. It offers a user-friendly graphical interface for manipulating  objects  and  filling  in  data  tables.  It  can  be  used  alongside  the  Excel spreadsheet program to facilitate statistical analysis and data exploration. 

2)  R   software  (or   R   language):   R   is  a  programming  language  specifically designed for statistical analysis and data visualization. It provides a broad range of packages  and  functions  for  flexible  data  manipulation  and  analysis.  R   is  highly popular in the field of statistics and research, offering many advanced features for data analysis. 

The information provided here is not intended to serve as a complete guide to all software features. 

For  more  detailed  instructions,  users  are  encouraged  to  refer  to  the  specific documentation for each software. 

2.5. Tanagra software 

Tanagra1  is  a  free,  open-source  software  package  developed  by  Ricco Rakotomalala.  It  has  been  chosen  as  the  analysis  tool  due  to  its  ease  of  use. 

Although  many  other  software  packages  are  available,  Tanagra  is  preferred  for  its user-friendliness and accessibility. 

Tanagra software consists of three main windows. The left-hand window is used to define the desired treatment, while the right-hand window displays the results of the analysis. The bottom window contains a menu with various functions available (see Figure 2.27). 



1 See: https://tanagra.software.informer.com/2.0/. 
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Figure 2.27.  Tanagra windows. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

Tanagra can work in conjunction with the Excel spreadsheet program, which is particularly practical since the initial data is often available in a spreadsheet. To use Tanagra, it must first be installed, a process that can be done easily and routinely by following the steps outlined below (for a PC version): 

1) Download  the  Tanagra  software  by  clicking  on  the  appropriate  download button on the official website. 

2) Once  the  download  is  complete,  locate  the  “setup_tanagra.exe”  file  on  our computer and move it to an appropriate directory, for example, “C:\Tanagra”. 

3) Run “setup_tanagra.exe” to start the installation process. Follow the on-screen instructions to install Tanagra. 


4) During  installation,  it  is  recommended  to  choose  the  default  options,  which will create a Tanagra directory in “C:\Program Files”. 

5) Be  sure  to  check  that  the  installation  directory  contains  the  “tanagra.xla” 

macro, which is required for Tanagra to function correctly. 

Once  installation  is  complete,  Tanagra  can  be  opened  using  the  corresponding icon  on  our  desktop  or  by  accessing  the  installation  directory  and  running  the Tanagra application. 

Next, in Excel, the “tanagra.xla” macro needs to be installed by following these steps: 

 Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science University , Wiley Online Library on [01/07/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License 50     Mathematics for Digital Science 3 

1) Open Excel and access the “Tools” menu. 

2) Select the “Complementary macros” option from the drop-down menu. 

3) In  the  Add-ins  window,  click  on  the  “Browse”  button  to  locate  the 

“tanagra.xla” macro. 

4) Navigate to the “C:\Program Files” directory and select the “tanagra.xla” file. 

5) Click on the “OK” button to install the Tanagra macro. 

Once  the  macro  has  been  installed,  a  Tanagra  menu  should  appear  in  Excel’s 

“Add-ins”  tab.  If  a  visual  demonstration  is  needed  to  guide  us  through  the Tanagra  macro  installation  process,  we  can  visit  the  following  link: 

https://www.youtube.com/watch?v=LIedD4lPdG0. 

Note that the steps may vary slightly depending on the version of Excel we are using.  Be  sure  to  consult  the  documentation  specific  to  our  version  of  Excel  for detailed instructions. 

 a) Importing data into Tanagra 

To use Tanagra, follow these steps: 

1) Select the data table in Excel. 

2) Go to the “Add-ins” tab in the Excel menu bar. 

3) Click on the “Tanagra” option in the supplements drop-down menu. 

4) Select “Run Tanagra” from the submenu. 

5) A dialog box will appear to confirm the selected data range. 

6) Click “OK” to confirm the chosen area. 

Once this has been done, Tanagra will open, and we will be able to see the data imported into the software (as shown in Figure 2.28). 

To view the table loaded in Tanagra, follow these steps: 

1) In Tanagra’s Data visualization   section, select the  View dataset  component. 

2) Once selected, a window will open, displaying the loaded table. 

3) We  will  be  able  to  see  all  the  data  in  the  table,  including  the  variables  and their values. 
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Figure 2.29 gives an idea of the appearance of the table visualization in Tanagra. 



Figure 2.28.   Importing data. For a color version of this figure, 

 see www.iste.co.uk/cochard/mathematics3.zip 



Figure 2.29.   Imported data. For a color version of this figure, 

 see www.iste.co.uk/cochard/mathematics3.zip 
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 b) Basic statistics with Tanagra 

To  obtain  statistical  results  in  Tanagra,  use  the  Define  status    component, represented by the icon in Figure 2.30. 



Figure 2.30.   Define status component. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

In the submenu of this icon, select the Define parameters   option, as shown in Figure 2.31. Then, enter the variables “French”, “…”, “Geography” as  inputs. 

To obtain some results, go to the Statistics   menu (bottom window) and drag the Univariate  continuous  stat    icon  (note  that  the  variables,  although  appearing  as integers,  are  in  fact  continuous)  onto  Define  status.  This  will  provide,  for  each variable, the minimum and maximum values, the mean, the standard deviation and the ratio of standard deviation to mean, as shown in Figure 2.32. 

For more detailed results, the More univariate cont stat   icon can be used. This will provide access to additional statistics for each variable. 



Figure 2.31.   Attribute status definition. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 
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 c) PCA with Tanagra 

Moving on to PCA: 



Figure 2.32.   Statistical parameters. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 



Figure 2.33.   Options 
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1) Select the Factorial analysis   menu in the lower window. 

2) Then, drag the Principal component analysis   icon onto Define status. 

3) Define  the  PCA  parameters  by  right-clicking  and  selecting  the  Parameters  

menu. 

4) Choose to use three axes and calculate the values of  𝐂𝐎𝐒𝟐 and RTC values (see Figure 2.33). 

Next, visualize the results of the calculations by right-clicking and selecting the View   menu. 

In the right-hand window, several detailed results are obtained in tabular form. In the first table (see Figure 2.34), the “eigenvalues”    of the correlation matrix and the relative inertia of each factorial axis can be seen. 



Figure 2.34.   Eigenvalues. For a color version of this figure, 

 see www.iste.co.uk/cochard/mathematics3.zip 

The  histogram  shows  the  explanatory  importance  of  the  axes.  A  little  further on,  the  correlation  matrix  (see  Figure  2.35)  is  displayed,  highlighting  strong correlations. 

Using the View dataset   option in the Data visualization   section, the coordinates of the points in the factorial axes, as well as the RTC and COS2 parameters, can be obtained. 

Note  that  all  this  data  can  be  exported  to  a  spreadsheet  program  using  the Component/Copy  results    menu.  This  command  copies  the  results  from  the right-hand window into memory. Then, simply paste them into a spreadsheet. 
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Figure 2.35.   Correlation matrix. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 



Figure 2.36.   Projection on the (1,2) plane. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

Move on to the graphical representations. First, represent the individuals in the first three factorial axes, taken in pairs. To begin with, position a Define status   to include the variables “French” to “Geography” as Input, axes 1, 2 and 3 as Target and the students (their numbers) as Illustrative. 

Next, drag the Scatterplot with label   icon onto Define status. This will give the projections of the scatterplot onto the planes defined by the factorial axes 1, 2 and 3. 

Figure 2.36 shows the projection onto the (1, 2) plane. 

Now,  in  the  variable  space,  redefine  the  parameters  using  Define  status.  To obtain  the  correlation  circle  in  the  (1,2)  plane,  include  the  variables  “French”  to 

“Geography” as Input, axes 1 and 2 as Target and students as Illustrative. Then, in 
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the  Data  visualization    menu,  select  the  Correlation  scatterplot    icon  to  visualize the correlation circle (refer to Figure 2.37 for an overview of this graph). 



Figure 2.37.   Correlation circle. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

2.6. R software 

Released  in  1997,  R  has  become  a  very  popular  software  package.  It  offers  a wide range of statistical applications, including PCA. 

The  basic  R  distribution  is  R-Project  from  CRAN  (Comprehensive  R  Archive Network), which is a platform for installing the software. Other distributions are also available, such as Microsoft R Open. In this example, the R-Project distribution will be used. R’s interface is minimalist, which is why R-Studio was developed to offer a more user-friendly interface. 

For details of the installation procedure, consult:  

https://larmarange.github.io/analyse-R/installation-de-R-et-RStudio.html. 

To  install  R  from  http://cran.r-project.org,  simply  download  the  software  and follow  the  instructions  provided.  We  can  then  download  R-Studio  from 

https://www.rstudio.com. The installer should run smoothly. 
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Once R-Studio is open (see Figure 2.38), we will see a main window with four sub-windows  (script  window,  console  window,  environment  and  history  window, file window). 



Figure 2.38.   R-Studio’s four subwindows. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

The top-left window is the script window, where we can write and execute our code. The bottom-left window is the console, where we will see the “>” command prompt  to  enter  our  R  commands.  The  top-right  window  is  the  environment window, where we can see the objects and variables created in our R session. The bottom-right window is a resource window, where we can access files, graphics and other resources. 

To create a project in R-Studio, we can use the File   tab. It is recommended to create a folder with the project name to organize our files. 

Then, depending on the processing we want to perform, we will need to load the necessary libraries. R has a large number of libraries containing additional functions and tools. 
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Figure 2.39.   Importing data. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

 a) Importing data with R software 

R allows data import from various sources, such as text files (.txt or .csv), Excel files  and  statistical  software  files  such  as  SPSS  or  SAS.  This  example  focuses  on importing data from an Excel file using data from Example 2.1. 

To import data: 

1) Click on the Import dataset tab in the top right-hand window of R-Studio. 

2) Select the Excel option and confirm. 

3) A new window will  open  to  specify  the  location  of  the  Excel  file,  the  sheet containing the data and the data range (see Figure 2.39). 

4) After selecting the options, click Import. 

The  Console  window  will  show  the  corresponding  code  for  this  action.  The 

“readxl”    library will load automatically, and the “read_excel”    function will create a data  table,  typically  named  “Workbook15”.  The  view()    function  displays  the imported data in the top left-hand window: 
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> library(readxl) 

> Classeur15 <- 

read_excel(“F:/Mathématiques_du_Numérique/Master/Classeur15.xlsx”, 

+ sheet = “Feuil13”, range = “B2:G22”) 

> View(Classeur15) 

 b) Basic statistics with R software 

The summary()   function in R can be used to obtain basic statistical information for  each  column  in  a  dataset,  such  as  “Workbook15”.  This  function  provides  the following  statistics  for  each  variable:  the  minimum  value,  the  first  quartile  (25th percentile),  the  median  (50th  percentile),  the  mean,  the  third  quartile  (75th percentile) and the maximum value: 

> summary(Classeur15) 

students         French         Math       

Min.   : 1.00   Min.   : 2.00   Min.   : 5.00   

1st Qu.: 5.75   1st Qu.: 7.50   1st Qu.: 8.00   

Median :10.50   Median :10.00   Median :10.50   

Mean   :10.50   Mean   :10.20   Mean   :11.55   

3rd Qu. :15.25   3rd Qu. :13.25   3rd Qu. :15.25   

Max.   :20.00   Max.   :18.00   Max.   :18.00   

Physics        History       Geography    

Min.   : 7.00   Min.   : 3.00   Min.   : 6.00   

1st Qu.: 8.75   1st Qu.: 6.75   1st Qu.: 9.75   

Median :10.50   Median :10.00   Median :12.00   

Mean   :11.65   Mean   :10.10   Mean   :11.70   

3rd Qu. :15.00   3rd Qu. :13.25   3rd Qu. :14.25   

Max.   :19.00   Max.   :16.00   Max.   :17.00   
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Figure 2.40.   Histogram of the Math variable 

The  histogram  of  a  variable,  such  as  “Math”,  can  be  obtained  using  the  hist()  

function in R (see Figure 2.40). It is important to note that the “$” symbol is used to access a specific component of an object. In this example, “Classeur15$Math” refers to the “Math” column of the “Classeur15” object: 

> hist(Classeur15$Math) 

The  mean  can  be  calculated  using  the  mean()    function,  and  the  standard deviation  using  the  sd()  function.  For  example,  to  obtain  the  mean  of  the  “Math” 

variable in the “Workbook15” object, the following code can be used: 

> mean(Classeur15$Math) 

[1] 11.55 

and for the standard deviation: 

> sd(Classeur15$Math) 

[1] 4.18613 

 c) PCA with R software 

To perform PCA on the data table, first select only the columns corresponding to the  variables  of  interest.  In  the  example,  retain  only  the  variable  columns  and exclude any categorical variables, such as student identifiers: 

> tab <- Classeur15[,2:6] 
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In Classeur 15, only columns 2–6 are kept, while all the rows are retained. Note the “<-” assignment sign. 

To perform PCA, the PCA()   function in the FactoMineR   library will be used. 

Additionally, the factoextra   library is required to visualize the PCA results. Here is how to load these libraries and run the PCA: 

> library(FactoMineR) 

> library(factoextra) 

> res.PCA <- PCA(tab) 

res.PCA   contains the results of the factorial analysis. Note that the correlation circle is displayed automatically (see Figure 2.41). 



Figure 2.41.   Correlation circle 

The  summary()    function  displays  details  of  the  res.PCA    result,  including eigenvalues,  variance  explained,  variable  coordinates  on  factorial  axes  and  other information. Here is how to use the summary()   function: 

> summary(res.PCA) 

> summary(res.PCA) 

Call: 

 Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science University , Wiley Online Library on [01/07/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License 62     Mathematics for Digital Science 3 

PCA(X = tab)  

Eigenvalues 

Dim.1   Dim.2   Dim.3   Dim.4   Dim.5 

Variance               3.087   1.038   0.787   0.059   0.029 

% of var.             61.733  20.766  15.738   1.186   0.577 

Cumulative % of var.  61.733  82.499  98.236  99.423 100.000 

Individuals (the 10 first) 

Dist    Dim.1    ctr   cos2    Dim.2    ctr   cos2    Dim.3    ctr   cos2   

1 |  2.151 | -1.996  6.456  0.862 |  0.005  0.000  0.000 | -0.646  2.648  0.090| 

2 |  2.520 | -1.555  3.917  0.381 |  1.835 16.208  0.530 | -0.716  3.259  0.081| 

3 |  1.437 |  0.871  1.229  0.368 |  0.989  4.707  0.473 | -0.476  1.440  0.110| 

4 |  2.557 |  2.516 10.258  0.969 | -0.034  0.005  0.000 |  0.261  0.434  0.010| 

5 |  2.586 |  2.432  9.579  0.884 | -0.854  3.512  0.109 |  0.120  0.091  0.002| 

6 |  0.974 | -0.872  1.231  0.801 | -0.009  0.000  0.000 |  0.353  0.791  0.131| 

7 |  1.898 | -1.462  3.464  0.594 | -0.904  3.938  0.227 |  0.747  3.541  0.155| 

8 |  3.123 | -3.046 15.026  0.951 | -0.530  1.355  0.029 |  0.362  0.832  0.013| 

9 |  1.856 | -0.379  0.232  0.042 | -0.308  0.458  0.028 | -1.772 19.946  0.911| 

10|  2.237 |  1.970  6.284  0.776 |  0.745  2.674  0.111 | -0.722  3.316  0.104| 

Variables 

Dim.1    ctr   cos2    Dim.2    ctr   cos2    Dim.3    ctr   cos2   

French |   -0.890 25.659  0.792 |  0.253  6.154  0.064 |  0.348 15.405  0.121 | 

Math    |   0.892 25.774  0.796 |  0.086  0.706  0.007 |  0.415 21.913  0.172 | 

Physics |  0.858 23.831  0.736 |  0.255  6.277  0.065 |  0.422 22.623  0.178 | 

History | -0.860 23.945  0.739 |  0.248  5.946  0.062 |  0.425 22.903  0.180 | 

Geography|  0.156  0.791  0.024 |  0.917 80.916  0.840 | -0.367 17.156  0.135 | 
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To  obtain  the  eigenvalues  directly  and  display  their  histogram,  we  can  use  the get_eigenvalue()  function on the  res.PCA  object, followed by the  barplot()  function to plot the histogram: 

> get_eigenvalue(res.PCA) 

eigenvalue variance.percent cumulative.variance.percent 

Dim.1 3.08663727       61.7327454                    61.73275 

Dim.2 1.03828848       20.7657696                    82.49852 

Dim.3 0.78689880       15.7379759                    98.23649 

Dim.4 0.05932348        1.1864697                    99.42296 

Dim.5 0.02885197        0.5770393                   100.00000 

> fviz_eig(res.PCA) 



Figure 2.42.   Histogram of eigenvalues. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

To obtain the projection of the individual space onto the first two factorial axes, use the fviz_pca_ind()   function with the res.PCA   object as the argument. Similarly, to project the variable space, use the fviz_pca_var()   function, also with the res.PCA  

object as the argument (see Figure 2.43): 

> fviz_pca_ind(res.PCA) 

> fviz_pca_var(res.PCA) 
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Figure 2.43.   Individual projections on the (1, 2) plane For more details on PCA with R, visit the STHDA website2. 

This practical guide provides detailed explanations of the key concepts of PCA, along with sample R code for each stage of the analysis. It covers various aspects of PCA,  including  data  import,  pre-processing,  interpretation  of  results  and  graph visualization. 

Feel  free  to  consult  this  guide  to  deepen  our  knowledge  of  PCA  with  R  and discover practical tips for data analysis and visualization. 



2 See:  www.sthda.com/french/articles/38-methodes-des-composantes-principales-dans-r-guide-

pratique/73-acp-analyse-en-composantes-principales-avec-r-l-essentiel/. 
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Introduction to Automatic 

Classification 

 

  

CONCEPTS COVERED IN THIS CHAPTER.– 

This chapter serves as a natural extension of Chapter 2, focusing on data analysis within  a  specific  framework:  the  automated  categorization  of  a  population, commonly referred to as automatic classification. 

It begins by introducing the foundational concepts of similarity, dissimilarity and distance. Using principles from information theory and the notion of entropy, an example  illustrates  how  classification  can  be  performed  based  on  defined criteria. 

Two key classification approaches are then explored:  

– partitioning classification through the moving center method ( k-means), and 

– hierarchical  classification  using  aggregation  strategies,  including  Ward’s strategy. 

The  appendix  provides  practical  application  to  Tanagra  and  R  for  automatic classification, building on the methodologies discussed in the preceding chapter. 

References: [KEL 20, SAP 11, TUF 12, COR 18, HUS 16, TAN 00]. 
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The aim of classification, also referred to as clustering, is to group a statistical set of individuals into homogeneous categories. When the structure of the population of individuals is unknown and the number of individuals is large, as is often the case in statistical studies, mechanical procedures become essential. These procedures rely on algorithms, which are implemented using computer. Such an approach is termed 

“automatic” cluster analysis, in contrast to manual classification. 

3.1. Similarity and distance 

3.1.1.   Similarity, dissimilarity 

Several algorithms are essential for defining classes and assigning individuals to them.  To  belong  to  the  same  class,  individuals  must  share  similar  characteristics, whereas  those  in  different  classes  should  display  different  characteristics.  These requirements  necessitate  a  precise  definition  of  the  fundamental  concepts  of similarity and dissimilarity. 

 Similarity is a function, denoted by 𝑓, that assigns a real number 𝑓(𝑖, 𝑗) to any pair of individuals (𝑖, 𝑗), where individuals are numbered by integers. The function satisfies the following properties: 

– Symmetry: 𝑓(𝑖, 𝑗) = 𝑓(𝑗, 𝑖) for any pair (𝑖, 𝑗) of individuals. 

– Non-negativity: 𝑓(𝑖, 𝑗) ≥ 0 for any pair (𝑖, 𝑗) of individuals. 

– Increase: 𝑓(𝑖, 𝑖) ≥ 𝑓(𝑖, 𝑗) for any pair (𝑖, 𝑗) of distinct individuals (𝑖 ≠ 𝑗). 

These  properties  ensure  that  similarity  is  a  symmetrical,  non-negative  measure reflecting the degree of similarity (resemblance) between individuals. 

 Dissimilarity is a function, denoted by 𝑔, that assigns a real number  g( i, j) to any pair of individuals (𝑖, 𝑗). The function satisfies the following properties: 

– Symmetry: 𝑔(𝑖, 𝑗) = 𝑔(𝑗, 𝑖) for any pair (𝑖, 𝑗) of individuals. 

– Non-negativity: 𝑔(𝑖, 𝑗) ≥ 0 for any pair (𝑖, 𝑗) of individuals. 

– Reflexivity: 𝑔(𝑖, 𝑖) = 0 for any individual 𝑖. 

These  properties  guarantee  that  dissimilarity  is  a  symmetrical,  non-negative measure, with the dissimilarity between an individual and itself being zero. 
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3.1.2.   Distance 

The definition of dissimilarity is closely related to that of distance, which is more commonly used in statistics. 

A  distance is a function, denoted by 𝑑, that assigns a real number 𝑑(𝑖, 𝑗) to any pair of individuals (𝑖, 𝑗). The function satisfies the following properties: 

– Symmetry: 𝑑(𝑖, 𝑗) = 𝑑(𝑗, 𝑖) for any pair (𝑖, 𝑗) of individuals. 

– Non-negativity :  𝑑(𝑖, 𝑗) ≥ 0 for any pair (𝑖, 𝑗) of individuals. 

– Reflexivity :  𝑑(𝑖, 𝑖) = 0 for any individual i. 

– Identity: 𝑑(𝑖, 𝑗) = 0 if and only if 𝑖  =  𝑗 (the distance between two individuals is zero if and only if they are identical). 

– Triangular inequality: 𝑑(𝑖, 𝑗) ≤ 𝑑(𝑖, 𝑘) + 𝑑(𝑘, 𝑗) for any triplet of individuals (𝑖, 𝑗, 𝑘). 

Note that “distance” possesses all the properties of dissimilarity, but the reverse is  not  always  true.  This  distinction  allows  distance  to  be  used  as  a  measure  of dissimilarity.  However,  there  are  various  ways  to  define  a  distance,  which  will  be explored in more detail later. 

When  the  characteristics  of  individuals  are  expressed  as  numbers,  these characteristics  represent  quantitative  variables,  allowing  for  the  definition  of distance measures based on these numbers. 

For  simplicity,  assume  that  individuals  are  characterized  by  a  set  of   p quantitative  variables:  𝑥 , 𝑥 , … , 𝑥 .  For  each  individual   i,  a  set  of  values  is available:  𝑥 (𝑖), 𝑥 (𝑖), … , 𝑥 (𝑖).  In  practice,  all  values  for  all  individuals  can  be organized in a matrix of individuals by variables, as seen in factorial analysis. For an individual   i,  the  vector  𝒙(𝑖)  can  be  considered,  where  the  components  are 𝑥 (𝑖), 𝑥 (𝑖), … , 𝑥 (𝑖). 

The  most  common  definition  of  a distance (squared)  is given  by  the  following matrix expression: 

𝑑 (𝑖, 𝑗) = 𝑑 𝒙(𝑖), 𝒙(𝑗) = [𝒙(𝑖) − 𝒙(𝑗)]  𝑴 [𝒙(𝑖) − 𝒙(𝑗)], where  𝑴  is  a  square  matrix  of  size  𝑝 × 𝑝,  and  the  symbol  [. ]   represents  the transpose of a vector or matrix. 
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When the matrix 𝑴 is the identity matrix, the expression simplifies to: 𝑑 (𝑖, 𝑗) =

[𝑥 (𝑖) − 𝑥 (𝑗)]  

This  corresponds  to  the   Euclidean distance,  which  is  widely  used  in  classical geometry. 

If the matrix 𝑴 is a diagonal matrix with the values 1/𝜎  on the diagonal, where 𝜎  is the variance of the variable 𝑥 , the following squared distance is obtained:  

[𝑥 (𝑖) − 𝑥 (𝑗)]

𝑥 (𝑖)

𝑥 (𝑗)

𝑑 (𝑖, 𝑗) =

=

−



σ

σ

σ

This relationship expresses normalization by standard deviation. 

Another distance definition uses the matrix 𝑴 = 𝑽 , where   𝑽 is the covariance matrix of the variables (i.e. each element of 𝑽 represents the covariance between the variables  𝑥   and  𝑥 :  𝑐𝑜𝑣(𝑥 , 𝑥 )).  This  distance  is  known  as  the   Mahalanobis distance. 

The Mahalanobis distance between individuals 𝑖 and 𝑗 is defined as follows: 𝑑(𝑖, 𝑗) =

𝑥(𝑖) − 𝑥(𝑗) × 𝐕( ) × 𝑥(𝑖) − 𝑥(𝑗)  

This  allows  correlations  between  variables  to  be  considered,  and  the  similarity between individuals can be quantified while accounting for the statistical structure of the data. 

In  addition  to  the  distance  measures  discussed  above,  other  commonly  used distance measures include the “Manhattan distance” and the “Chebyshev distance”. 

The  Manhattan distance, also known as the 𝐿 -distance, is defined as follows: 𝑑(𝑖, 𝑗) =

|𝑥 (𝑖) − 𝑥 (𝑗)| 

This distance represents the total distance covered by moving exclusively along the axes (horizontally and vertically) in a  Cartesian plane, which is why it is called the  Manhattan distance, after the neighborhood where the streets are perpendicular. 
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As  for  the   Chebychev distance,  also  called  infinite  distance  or  distance 𝐿 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, is defined as:  

𝑑(𝑖, 𝑗) = max|𝑥 (𝑖) − 𝑥 (𝑗)| 

This distance measures the maximum difference along all axes, considering the greatest difference between the coordinates. 

Another  commonly  used  distance  measure  is  the   Minkowski distance,  which generalizes both the Manhattan and Euclidean distances. The Minkowski distance is defined as follows, for a parameter  q  greater than zero: 𝑑(𝑖, 𝑗) =

|𝑥 (𝑖) − 𝑥 (𝑗)|



Such  a  distance  includes  both  the  Manhattan  distance  (for  𝑞 = 1)  and  the Euclidean distance (for 𝑞 = 2). 

As illustrated (and this is just a sample), there are many different definitions of distance.  Consequently,  it  is  essential  to  specify  the  distance  definition  used  each time  it  is  referred.  However,  in  most  cases,  the  Euclidean  distance  is  commonly used, the distance normalized by standard deviations, which ensures all variables are given equal weight. 

It  is  also  worth  noting  that  the  Euclidean  distance  is  often  preferred  due  to  its simplicity  and  interpretability.  It  measures  the  geometric  distance  between  two points  in  a  multidimensional  space,  defined  as  the  square  root  of  the  sum  of  the squares  of  the  differences  between  the  values  of  the  variables.  However,  it  is important to note that the Euclidean distance is not always the best option, as it can be sensitive to the scale of the variables. 

3.2. Basics of information theory 

The  foundations  of  information  theory  were  primarily  established  by  Claude Shannon, who introduced the concept of information entropy (the term  entropy has already been used as a measure of state in thermodynamics). 

To  start  with  simple  concepts,  consider  a  text  composed  of  𝑛 symbols,  from which  one  symbol,  denoted  by  𝑖,  is  randomly  selected.  The  probability  of  the  
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symbol 𝑖 occurring is given by 𝑝(𝑖), and the amount of information conveyed by the symbol 𝑖 is defined as:  

𝑄(𝑖) = − log 𝑝(𝑖) . 

In  this  expression,  𝑠    represents  the  base  of  the  logarithm,  which  is  initially arbitrary.  The  negative  sign  (“−”)  is  used  to  ensure  positive  values.  Typically, 𝑠 = 2 is chosen, allowing the quantity of information to be measured in bits. Recall that:  

ln(x)

log (x) =



ln(s)

where “ln” represents the natural logarithm. 

Using  the  quantity  𝑄(𝑖), Claude  Shannon  defined  the  entropy  𝑆  of  the  set  of symbols by the following expression:  

𝑆 =

𝑝(𝑖)𝑄(𝑖) = −

𝑝(𝑖) log 𝑝(𝑖)  

This formula calculates the entropy of a set of symbols, taking into account the probabilities 𝑝(𝑖) associated with each symbol and the amount of information they contain, 𝑄(𝑖). 

EXAMPLE  3.1.–  Let  us  apply  this  definition  of  entropy  to  an  example  to  better understand its meaning. Consider a deck of 52 distinct cards. The probability of drawing any card  i  from this deck is 𝑝(𝑖)   =  

=  0.0192, and the entropy of 

the deck is: 

1

1

𝑆 = −52 ×

log

= 5.7 bits 

52

52

Now, consider drawing a card from a given suit (diamonds, or clubs, or hearts, or spades). The corresponding probability is 𝑝(𝑐𝑜𝑙𝑜𝑟) = , and the entropy of the game, where cards are distinguished by suit only, is: 

13

13

𝑆 = −4 ×

log

= 2 bits 

52

52
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Since −log (𝑥) decreases as 𝑥 increases, it is therefore normal to find a smaller result for 𝑆(𝑐𝑜𝑙𝑜𝑟) than for 𝑆(𝑐𝑎𝑟𝑑). 

Let us go a step further and consider a four-card deck. Here are various cases: 1) All cards identical 𝑝(𝑖) = 1: 

𝑆 = −1 × log (1) = 0 bit 

2) Three identical cards of one kind and one card of another kind: With 𝑝(𝑖) =   and  𝑝(𝑗) = , 

3

3

1

1

𝑆 = − × log

− × log

= 0.811 bits 

4

4

4

4

The reader can calculate the entropy for the other situations in Figure 3.1, and verify the results. 



Figure 3.1.  Entropy for various situations. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

An intuitive understanding of entropy can be derived from the previous example: it  measures  the  heterogeneity  of  a  set.  When  the  set  is  homogeneous,  meaning  all symbols have the same probability of occurrence, entropy is minimal and equal to zero. On the other hand, when the set is heterogeneous, with different probabilities for each symbol, entropy increases. 

This interpretation is consistent with common sense: low entropy indicates that the system is predictable and contains little information, while high entropy suggests a greater level of unpredictability and more information. 

So, what is the connection between entropy and classification? 
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EXAMPLE  3.2.–  For  better  clarity,  consider  the  following  example,  which involves  determining  whether  or  not  to  play  tennis  based  on  three  criteria:  the sky, wind and temperature. The possible values for each criterion are: 

–  Sky: sunny ( S), cloudy ( C), risk of rain ( R). 

–  Wind: strong ( s), light ( l). 

–  Temperature: high ( h), medium ( m), cool ( c). 

The objective is to decide whether or not tennis can be played according to these criteria. A set of observations is available to help with this decision. 

By  referring  to  the  table  in  Figure  3.2,  which  lists  the  observations,  a classification can be made using the three criteria of sky, wind and temperature. 

Figure 3.3 shows this classification. 

 

Figure 3.2.  Table of observations 



Figure 3.3.  Classification according to the three criteria 
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In the table in Figure 3.2, there are six observations where tennis is not played (no)  and  six  observations  where  tennis  is  played  (yes).  To  calculate  the  total entropy, the entropy formula given earlier is used: 

𝑆 = −𝑝(𝑛𝑜) × log 𝑝(no) − 𝑝(yes) × log 𝑝(yes)  

where 𝑝(no) is the probability of obtaining the no class (in this case, 6/12) and 𝑝(yes) is the probability of obtaining the “yes” class (also 6/12). 

The total entropy is calculated as: 

6

6

6

6

𝑆 = −

log

−

log

=  1 bit 

12

12

12

12

Thus, the total entropy in this example is 1 bit. 

In the tables of Figure 3.3, different datasets are provided, allowing for entropy calculations as follows: 

3

3

2

2

𝑆(𝑠𝑘𝑦, 𝑆) = −  log

−  log

= 0.971 bit  

5

5

5

5

3

3

1

1

𝑆(𝑠𝑘𝑦, 𝐶) =   −  log

−  log

= 0.811 bit  

4

4

4

4

1

1

2

2

𝑆(𝑠𝑘𝑦, 𝑅) = −  log

−  log

= 0.918 bit 

3

3

3

3

Thus, 𝑆(𝑠𝑘𝑦) =

𝑆(𝑠𝑘𝑦, 𝑆) +

𝑆(𝑠𝑘𝑦, 𝐶) +

𝑆(𝑠𝑘𝑦, 𝑅) = 0.904 bit. 

Similarly, 

5

5

𝑆(𝑤𝑖𝑛𝑑, 𝑠) = −  log

= 0 bit  

5

5

6

6

1

1

𝑆(𝑤𝑖𝑛𝑑, 𝑙) = −  log

−  log

= 0.592 bit  

7

7

7

7

Thus, 

5

7

𝑆(𝑤𝑖𝑛𝑑) =

𝑆(𝑤𝑖𝑛𝑑, 𝑠) +

𝑆(𝑤𝑖𝑛𝑑, 𝑙) = 0.345 bit  

12

12

and, 
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1

1

3

3

𝑆(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, ℎ) = −  log

−  log

= 0.811 bit 

4

4

4

4

3

3

1

1

𝑆(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑚) = −  log

−  log

= 0.811 bit 

4

4

4

4

2

2

2

2

𝑆(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑐) = −  log

−  log

= 1 bit 

4

4

4

4

Thus, 

𝑆(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)

4

4

=

𝑆(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, ℎ) +

𝑆(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑚)

12

12

4

+

𝑆(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑐) = 0.874 bit 

12

In  this  case,  the  “bulk”  system  corresponds  to  unclassified  data,  and  the 

“classified” system refers to data classified according to the criteria. 

The  information  gain  is  defined  as  the  difference  between  the  entropy  of  the 

“bulk” system and the entropy of the “classified” system. The information gain G  is calculated as follows: 

𝐺(𝑡𝑜𝑡𝑎𝑙  >  𝑠𝑘𝑦) = 𝑆(𝑡𝑜𝑡𝑎𝑙) –  𝑆(𝑠𝑘𝑦) = 1 –  0.904 = 0.096 bit 𝐺(𝑡𝑜𝑡𝑎𝑙  > 𝑤𝑖𝑛𝑑) = 𝑆(𝑡𝑜𝑡𝑎𝑙) –  𝑆(𝑤𝑖𝑛𝑑) = 1 –  0.345 = 0.655 bit 𝐺(𝑡𝑜𝑡𝑎𝑙  > 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) = 𝑆(𝑡𝑜𝑡𝑎𝑙) –  𝑆(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) =

1 –  0.874  = 0.126 bit  

The  highest  gain  among  the  three  classifications  is  that  of  𝐺(total  >  wind), indicating  that  the  wind  criterion  is  the  most  discriminating  in  the  decision-making process. This can be illustrated as the start of a decision tree, as shown in Figure 3.4. 



Figure 3.4.  Beginning of a decision tree 
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To continue tracing the decision tree from the light and strong wind situations, the  next  criterion  to  consider  is  either  sky  or  temperature  for  each  case.  The complete  decision  tree  is  shown  in  Figure  3.5.  It  displays  the  different combinations of the wind, sky and temperature criteria, along with the “yes” or 

“no” results associated with each combination. 



Figure 3.5.  Complete situation for the decision tree The following can be deduced from these tables:  

2

2

𝑆(𝑤𝑖𝑛𝑑 𝑙 > 𝑠𝑘𝑦 𝑆) = − log

= 0 bit 

2

2

3

3

𝑆(𝑤𝑖𝑛𝑑 𝑙 > 𝑠𝑘𝑦 𝐶) = − log

= 0 bit 

3

3

1

1

1

1

𝑆(𝑤𝑖𝑛𝑑 𝑙 > 𝑠𝑘𝑦 𝑅) = − log

− log

= 1 bit 

2

2

2

2

2

3

2

𝑆(𝑤𝑖𝑛𝑑 𝑙 > 𝑠𝑘𝑦) = × 0 + × 0 + × 1 = 0.286 bit 

7

7

7

1

1

𝑆(𝑤𝑖𝑛𝑑 𝑙 > 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ℎ) = − log

= 0 bit 

1

1

3

3

𝑆(𝑤𝑖𝑛𝑑 𝑙 > 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑚) = − log

= 0 bit 

3

3

2

2

1

1

𝑆(𝑤𝑖𝑛𝑑 𝑙 > 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑐) = − log

− log

= 0.918 bit 

3

3

3

3
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1

3

3

S(𝑤𝑖𝑛𝑑 𝑙 > 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) = × 0 + × 0 + × 0.918 = 0.393 bit 7

7

7

Hence, for the gains:  

 G(wind l > sky) = S(wind l) - S(wind l > sky) = 0.592 - 0.286 = 0.306 bit G(wind l > temperature) = S(wind l) - S(wind l > temperature)  =  

0.592 -  0.393 = 0.199 bit 

The highest gain is obtained for the  light wind > sky classification. This means that the sky criterion is the most informative for predicting the outcome when the wind  is  light.  In  other  words,  the  decision  tree  branch  continues  with  the  sky criterion. 

On the other hand: 

3

3

𝑆(𝑤𝑖𝑛𝑑 𝑠 > 𝑠𝑘𝑦 𝑆) =   − log

= 0 bit 

3

3

1

1

𝑆(𝑤𝑖𝑛𝑑 𝑠 > 𝑠𝑘𝑦 𝐶) = − log

= 0 bit 

1

1

1

1

𝑆(𝑤𝑖𝑛𝑑 𝑠 > 𝑠𝑙𝑦 𝑅) = − log

= 0 bit 

1

1

𝑆(𝑤𝑖𝑛𝑑 𝑠 > 𝑠𝑘𝑦) = 0 bit 

3

3

𝑆(𝑤𝑖𝑛𝑑 𝑠 > 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ℎ) = − log

= 0 bit 

3

3

1

1

𝑆(𝑤𝑖𝑛𝑑 𝑠 > 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑚) =   − log

= 0 bit 

1

1

1

1

𝑆(𝑤𝑖𝑛𝑑 𝑠 > 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑐) = − log

= 0 bit 

1

1

𝑆(𝑤𝑖𝑛𝑑 𝑠 > 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) = 0 

An analysis of the data shows that the information gain for the  strong wind > sky and  strong wind > temperature  classifications is equal to 0 bits. This means that both  criteria  provide  the  same  amount  of  information  for  predicting  the  result when the wind is strong. 
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Consequently,  either  the   sky  or  the   temperature  criterion  can  be  chosen  to continue the branch corresponding to strong wind in the decision tree. 

In this example, the  sky  criterion is selected to continue building the tree. After completing the decision tree (see Figure 3.6) based on the  wind and  sky criteria, the following correspondences for each branch can be observed: 

– The  light wind > sky  S branch corresponds only to “yes” answers. 

– The  light wind > sky C branch corresponds only to “yes” answers. 

– The  strong wind > sky  S branch corresponds solely to “no” answers. 

– The  strong wind > sky C branch corresponds only to “no” answers. 

– The  strong wind > sky  R branch corresponds solely to “no” answers. 



Figure 3.6.  The decision tree 

These correspondences indicate the resulting predictions of the decision tree for each  combination of  criteria.  For  example,  if  the wind  is strong  and  the  sky  is sunny ( S), then the prediction would be “no”. 

This  leaves  the   light wind > sky R  branch,  where  the  remaining  criterion, temperature,  must  be  considered.  However,  there  are  only  two  possibilities  for temperature in the observation set:  high ( h) and  cool (c). Thus, the branch  light wind > sky R >  temperature m remains empty, meaning that the observation set does not provide data for this specific combination. 

Indeed,  if  it  is  considered  that  there  are  two  possibilities  for  wind  (light  and strong),  three  possibilities  for  sky  (sunny,  overcast,  risk  of  rain)  and  three possibilities  for  temperature  (high,  medium,  cool),  this  results  in  a  total  of  18 

possible  combinations,  assuming  the  criteria  are  independent.  However,  the 
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observation  set  covers  only  10  of  these  combinations,  leaving  some  cases unobserved  and  limiting  the  ability  to  draw  complete  conclusions  from  the available data. 

Note  that  in  the  decision  tree,  all  observations  are  considered  and  classified appropriately.  Each  branch  of  the  tree  represents  a  combination  of  criteria  that leads  to  a  final  decision,  which  corresponds  to  the  classification  of  the observations. 

3.3. Classification methods 

Various  classification  methods  can  generally  be  grouped  into  two  main categories: 

– Partitioning  methods:  these  involve  dividing  the  dataset  into  a  number  of partitions or clusters, so that each element of the dataset belongs to a single cluster. 

– Hierarchical  methods:    these  construct  a  tree  structure  or   dendrogram  to represent the relationships between data. 

Recall  that,  in  set  theory,  a  “partition”  of  a  set   E   is  a  set  of  𝐾  parts  𝛺   (or subsets) of 𝐸 which satisfy the following conditions: 

– None of the parts are empty :  𝛺 ≠ ∅ for all 𝑘  =  1, … , 𝐾 .  

– The union of all parts is the whole 𝐸 = 𝛺 ∪ 𝛺 ∪ … ∪ 𝛺 . 

– The parts 𝛺  are disjoint two by two: 𝛺 ∩ 𝛺 = ∅ for  k ≠ k’. 

EXAMPLE 3.3.– Consider the set 𝐸 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓}. 

This set can be partitioned into three parts as follows: 

𝛺 = {𝑎, 𝑐, 𝑑},  𝛺 = {𝑏, 𝑓},  𝛺 = {𝑒}. 

Note that there are many other ways of partitioning this set into three parts, and this example represents just one of many possibilities. The way in which the set is  partitioned  often  depends  on  the  specific  criteria  and  objectives  of  the classification. 

In  classification,  partitioning  methods  aim  to  obtain  a  partition  of  the  set  of individuals,  where  each  partition  groups  together  individuals  with  similar characteristics.  In  this  case,  the  term  “cluster”  is  generally  used  to  designate  an 
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element  of  the  partition.  A  class,  therefore,  is  a  subset  of  individuals  who  share common properties and display a certain homogeneity. 

A  hierarchy  𝐻  is  defined  as  follows:  it  is  a  set  of  non-empty  clusters  𝛺 ,  also known as tiers, which satisfy the following properties: 

– The  hierarchy  𝐻 contains all singletons: for all   𝑖 ∈ 𝛺 , 𝑖 ∈ 𝐻 . 

– Two clusters 𝛺  and 𝛺  are: 

- either disjoint (𝛺 ∩ 𝛺 = ∅); 

- or one is contained in the other (𝛺 ⊂ 𝛺  or 𝛺 ⊂ 𝛺 ). 

EXAMPLE  3.4.–  Let  𝐸    be  the  set  defined  in  Example  3.3.  A  hierarchy  𝐻  =

{𝐸, {𝑎, 𝑐, 𝑑}, {𝑏, 𝑒, 𝑓}, {𝑎, 𝑐}, {𝑑}, {𝑏, 𝑒}, {𝑓}, {𝑏}, {𝑒}}  is  an  example  of  a hierarchy. This hierarchy can be represented as a tree, where the “leaves” of the tree  correspond  to  the  singletons.  In  this  tree-like  representation,  each  node represents a cluster in the hierarchy, with the root node representing the entire set 𝐸. The branches illustrate the relationships between the clusters, and the leaves represent  the  individual  elements.  The  resulting  tree  structure  visualizes  the relationships between the various classes in the hierarchy, showing how different elements are grouped at different levels (see Figure 3.7). 



Figure 3.7.  Hierarchy 

In hierarchical classification methods, two main approaches can be adopted: 1) Top-down approach: it starts with the initial set of individuals and performs successive  fragmentations,  breaking  the  set  into  smaller  and  smaller  groups, ultimately resulting in individual groups or “singletons”. This method progressively divides the data into smaller clusters. 

2) Bottom-up  approach:  each  individual  starts  as  its  own  group.  Successive regroupings  are  then  made,  merging  smaller  group  into  larger  ones,  until  a  single group represents the entire set of individuals. This method progressively combines data into larger clusters. 
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Both  approaches  lead  to  the  formation  of  group  hierarchies,  which  can  be represented visually as “classification trees”. 

3.4. Classification by partitioning 

3.4.1.   Partitioning principle 

Given  a  set  𝐸  composed  of  𝑛  individuals,  the  objective  is  to  find  an  optimal partition  of  this  set.  The  term  “optimal”  refers  to  a  criterion  𝑊  which  generally measures  the  homogeneity  of  the  classes  forming  the  partition.  Such  a  criterion  is optimized among all candidate partitions. In this case, a fixed number 𝐾 of partitions is generally defined. 

In a “good” partition, elements of the same class are as similar as possible, while elements  of  different  classes  are  as  dissimilar  as  possible.  Thus,  the  problem involves finding, among all possible partitions with 𝐾 classes, the one for which the criterion 𝑊 is “optimal”. 

A simple solution is to list all possible partitions with 𝐾 classes and calculate the value of the criterion 𝑊 for each of them. The partition that minimizes the value of 𝑊  is  then  selected  (typically,  the  optimization  consists  of  minimizing).  However, this method becomes difficult to apply when the number of individuals 𝑛 increases. 

In fact, the number of possible partitions with 𝐾 classes is of the order of magnitude of 

. For example, if 𝑛  =  100 individuals are involved and partitions made up 

! 

of three classes are sought, the number of such partitions would be of the order of 

. 

To  solve  this  problem  in  a  more  practical  way,  an  iterative  approach  is  used. 

Initially,  a  partition  𝑃   of  the  set  𝐸  with  𝐾  classes  is  found,  and  the  value  of  the criterion 𝑊  is calculated. Next, efforts are made to improve the initial partition 𝑃  

to  obtain  a  new  partition  𝑃   with  a  criterion  value  𝑊   less  than  or  equal  to  𝑊  

(because optimization  typically  involves minimization).  This  improvement  process is repeated on 𝑃  to obtain 𝑃 , then 𝑃 , etc. 

To apply this resolution method, it is necessary to define several elements:  

– The homogeneity criterion: this is generally intra-class inertia (to be discussed further). 

– The iterative algorithm: this could be an algorithm such as  k-means (which will be examined later). 
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3.4.2.   Inertia 

The  notion  of  inertia  is  well  known  in  mechanics  and  is  also  used  as  an optimality criterion  W for partitioning. 

Consider a set   𝐸 composed of 𝑛 individuals, each characterized by the values of 𝑝  variables 𝑋 .  Let  us  assume  that  each  individual  has  a  weight  𝜔  and  a distance 𝑑(𝑖, 𝑖 )    is  defined.  The  inertia  𝐼   with  respect  to  a  point  A  in  the  space  ℝ   of individuals is expressed by: 

𝐼 =

𝜔 𝑑 (𝑖, 𝐴) 

Thus, inertia will be lower, the closer the individuals are to A. 

The center of gravity (or barycenter or centroid) 𝑔 of the set of  n  individuals is defined by its coordinates: 

∑

𝜔 𝑥 (𝑖)

𝑔 =



∑

𝜔

where 𝑥 (𝑖) designates the coordinate 𝑗 of the point 𝑖. 

This relationship is fully equivalent to the following relationship, which can also be taken as a definition of the center of gravity: 

𝜔 𝑥 (𝑖) − 𝑔 = 0 

Total inertia 𝐼  is defined as the inertia of the cloud of individuals with respect to the center of gravity 𝑔:  

𝐼 =

𝜔 𝑑 (𝑖, 𝑔) 

Suppose  a  partition  𝑃  of    𝐾 classes  is  found.  For  each  class  𝐶 ,  calculate  the coordinates of the center of gravity 𝑔  of the class: 

∑ ∈ 𝜔 𝑥 (𝑖)

𝑔 =



∑ ∈ 𝜔
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as well as the inertia of a class 𝐶  in relation to its center of gravity: 𝐼 =

𝜔 𝑑 (𝑖, 𝑔 ) 

∈

where, for simplicity, denote 𝐼  for 𝐼(𝐶 ). 

The  intra-class inertia is defined as the sum of the inertia of each class: 𝑊 =

𝐼  

Similarly,  inter-class inertia can be defined  as  the  inertia of  the  cloud of  class centers of gravity in relation to the total center of gravity: 𝑄 =

𝜔 𝑑 (𝑔, 𝑔 ) 

∈

There is a simple relationship between total inertia, intra-class inertia and inter-class  inertia:  total  inertia  is  equal  to  the  sum  of  intra-class  inertia  and  inter-class inertia, i.e.: 

𝐼 = 𝑊 + 𝑄 

This  result  is  a  special  application  of  the  Huygens–König  theorem,  which  is demonstrated in Appendix 1. 

3.4.3.   Mobile center algorithm 

This  algorithm,  also  known  as   k-means  or  Forgy’s  algorithm,  is  based  on  a simple principle. It proceeds in the following iterative steps: 1) Start by searching for a partition into 𝐾 classes, where 𝐾 is a fixed number. 

2) Select  𝐾  individuals,  represented  by  points  in  space  ℝ   with  𝑝  descriptive variables, for example, at random. 

3) Calculate  the  distances  between  each  individual  and  the  selected  𝐾 

individuals. 
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4) Compare the distances between an individual 𝑖 and the 𝐾 selected individuals. 

Retain  the  minimum  distance,  which  defines  an  initial  partition  around  the  𝐾 

selected individuals. 

5) For  each  class  in  this  partition,  calculate  the  center  of  gravity  (sometimes called the barycenter or centroid). The 𝐾 centers of gravity replace the 𝐾 individuals from step 2. 

6) With these new 𝐾 individuals, repeat from step 3. 

Steps  3–6  are  repeated  until  the  partitioning  no  longer  changes  (convergence). 

Obviously,  the  result  largely  depends  on  the  choice  of  𝐾  points  (step  2)  of  the algorithm.  Different  choices  may  lead  to  different  results.  Running  the  algorithm with several initial choices yields a collection of results, and the best choice is the one that minimizes intra-class inertia. 

EXAMPLE 3.5.– The table in Figure 3.8 presents the scores (out of 20) in French and Mathematics (Math) for 20 students. 



Figure 3.8.  Student grades 

A three-class classification is chosen, a priori. 

Three  starting  points  –  such  as  1,  10  and  20  –  are  selected,  and  the  squared distances from these points to all others are calculated. 

For each point, the shortest distance is selected. This defines three classes (see Figure 3.9). 
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Figure 3.9.  First partition. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 



Figure 3.10.  Second partition. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

The centers of gravity (centroids) of these classes are calculated, and the squared distances of these centroids from all other points are calculated (see Figure 3.10). 

New classes are obtained, with only one point changing class in this case, along 
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with  new  centroids.  The  same  operations  are  repeated  (returning  to  step  2),  as shown in Figure 3.11. 



Figure 3.11.  Third partition 

The new iteration has not modified either the classes or the centroids, indicating that algorithm convergence has been reached. 

Using the previous table and assuming that all students have the same statistical weight, the value of the intra-class inertia is calculated as 𝑊  =  211.15. 

Example  3.5  shows  the  basic  algorithm.  Can  the  result  be  considered satisfactory? Of course not. Try again with a new choice of the three initial points. 

EXAMPLE 3.6.– Using the same data as in Example 3.5, selecting indices 4, 14 

and  18  as  initial  points  results  in  a  different  class  configuration,  as  shown  in Figure 3.12. For this new partition, the intra-class inertia is 𝑊  =  204.56. This value is lower (a minimization problem) than that of the previous partition (i.e. 

𝑊  =  211.15), indicating better class homogeneity. 
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Figure 3.12.  New partition. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

However,  the  question  of  whether  this  partition  is  “optimal”  remains  to  be examined and will be addressed later. 

Of  course,  to  determine  whether  there  is  another,  even  better  partition,  it  is necessary to explore all possible initial configurations. In the case of choosing three points from among 𝑛 points, the number of potential choices is: 𝑛! 

𝑛(𝑛 − 1)(𝑛 − 2)

=

=  1140 

(𝑛 − 3)! 3! 

6

Hence,  for  a  set  of  20  individuals,  as  in  Example  3.5,  this  provides  1,140 

possible configurations. 

However, this example is primarily used for teaching purposes. In the real world, problems  often  involve  much  larger  datasets,  with  much  larger  values  of  𝑛.  For example, for 𝑛  =  100 individuals, the number of possible choices of three points would  be  161,700.  As  a  result,  the  computation  times  required  to  determine  the 

“optimal”  partition  (i.e.  the  best  among  all  possible  configurations)  may  become considerably longer. 

When  using  specialized  software  (as  presented  in  appendix  3.6.2),  it  is  rarely necessary  to  explore  all  possible  combinations  of  initial  points.  Instead,  it  is common to set a predefined number of trials or iterations. 
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EXAMPLE 3.7.– Using dedicated partitioning software, a partition for the data from Example 3.5 is obtained, as shown in Figure 3.13, with a value of 𝑊 = 189.92. 



Figure 3.13.  New partition. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

 Efficient initialization:  a  variant  of  the  moving  center  method,  known  as k-means++,  often  provides  a  more  efficient  approach  to  the  initial  selection  of reference points. Instead of selecting several initial points at random, a single point, 𝑀 ,  is  chosen  initially.  Then,  the  point  𝑀   that  is  furthest  from  𝑀   is  selected. 

Following  this,  the  point  𝑀   ,  which  is  furthest  from  𝑀 ,  is  chosen.  This  process continues until the required number of reference points, say 𝐾 = 3 for three classes, is  reached.  The  standard  algorithm  is  then  applied.  This  method  significantly reduces  the  number  of  choices  to  be  explored,  as  it  requires  only  𝑛  choices  for   n points, making it a more efficient way to explore initial selection possibilities. 

In the moving center method, the choice of the number of classes 𝐾 is often set in  advance.  However,  determining  the  optimal  value  of  𝐾  can  be  challenging,  as there are generally no clear indications in the data that suggest the best value. 

One  of  the  most  common  ways  to  identify  a  “better”  value  for  𝐾  used  in approaches is through the elbow method. This involves testing different values of 𝐾 

and  plotting  the  curve  𝑊

= 𝑓(𝐾),  which  represents  the  evolution  of  minimum 

intra-class inertia as a function of  K. This curve typically shows a decreasing trend. 
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EXAMPLE 3.8.– In Example 3.5, it is possible to plot the curve representing the minimum  intra-class  inertia  (𝑊

)  as  a  function  of  the  number  𝐾  of  classes. 

This graph is shown in Figure 3.14. 



Figure 3.14.  Minimal intra-class inertia versus K 

  

Figure 3.15.  Partition for K = 4. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 
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It is observed that a plateau begins between 𝐾 = 4 and 𝐾 = 5. Consequently, it would be wiser to choose 𝐾 = 4 rather than 𝐾 = 3. 

This  leads  to  the  class  distribution  shown  in  Figure  3.15,  with  an  intra-class inertia of 𝑊  =  115.41. 

3.5. Hierarchical classification 

3.5.1.   Principle 

As  mentioned  above,  it  is  possible  to  adopt  either  a  bottom-up  or  top-down approach.  However,  the  bottom-up  method,  known  as  hierarchical  ascending classification (HAC), is the most commonly used. In this section, the focus is on this method. 

The  HAC  classification  principle  is  relatively  simple  and  is  based  on  the following aggregation strategy: 

1) Start with singletons as an initial base: as many classes as there are singletons. 

2) Calculate the distances between classes. 

3) Merge the two closest classes, i.e. those separated by the smallest aggregation measure, into a single class. 

4) Repeat steps 2 and 3, continuing the iteration until only one class remains. 

The  aggregation  measure  is  a  criterion  for  grouping  classes.  The  sequence  of classes can be represented by a tree, generally called a  dendrogram.    An example of a dendrogram is shown in Figure 3.16. 



Figure 3.16.   Dendrogram 
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Each horizontal line in the dendrogram in Figure 3.16 corresponds to a class, and each  vertical  line  has  a  defined  height.  The  height  of  a  class  (and  therefore  of  a bearing) is determined as follows: 

– For singletons (located at the bottom of the dendrogram), the height is 0. 

– For two different classes 𝐴 and 𝐵, with 𝐴 being a subset of   𝐵 ,  the height of 𝐴 

is less than that of 𝐴  𝐵,  ℎ(𝐴)

ℎ(𝐵) .  

In practice, the height is chosen as the value of the aggregation measure 𝐷(𝐴, 𝐵) (or a proportional number) of classes 𝐴 and 𝐵 when they are grouped together. The aggregation measure is defined in the aggregation strategies. 

3.5.2.   Aggregation strategies 

Classic strategies rely on simple aggregation measures to group two classes. The following measures are distinguished: 

– single linkage algorithm; 

– complete linkage algorithm; 

– average linkage   algorithm. 

These three measures correspond to simple definitions, as shown in Figures 3.17 

and 3.18. 



Figure 3.17.   Single linkage. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

 Single linkage:  the  aggregation  measure  𝐷(𝐴, 𝐵)  is  the  distance  between  the closest individuals in the two classes: 

𝐷 𝐴, 𝐵) = min 𝑑(𝑖, 𝑖 ) 

∈ , ∈

[image: Image 78]

[image: Image 79]

Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science University , Wiley Online Library on [01/07/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Introduction to Automatic Classification     91 



Figure 3.18.   Complete linkage. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

 Complete linkage: the aggregation measure  D(A, B)  is the distance between the most distant individuals in the two classes: 

𝐷(𝐴, 𝐵) = max 𝑑(𝑖, 𝑖 ) 

∈ , ∈

The “average linkage”    aggregation measure consists of calculating the average of  the  minimum  and  maximum  link  aggregation  measures.  This  also  provides  a more balanced measure of minimum and maximum proximities between classes. 

To  be  more  precise,  consider  the  Euclidean  distance  as  a  measure  of  distance between individuals. Using the minimum link algorithm to aggregate the classes, an aggregation  measure  matrix  is  constructed  using  the  distances  between  singletons, and the smallest measure is selected to merge two classes. Such a process is repeated until a single class containing all the individuals remains. 

EXAMPLE  3.9.–  French  metropolitan  regions  are  ranked  according  to  three criteria: unemployment rate, number of students and number of  movie theaters (see Figure 3.19). 



Figure 3.19.  Statistical table 
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Figure 3.20.  Reduced centered variables 

It  should  be  noted  that  this  example  is  essentially  intended  for  educational purposes and, to the best of our knowledge, does not correspond to any serious study.  The  three  criteria  are  expressed  differently:  the  unemployment  rate  is  a percentage of the working population, the student number is a percentage of the total  population,  and  the  number  of  movie  theaters  is  also  calculated  as  a percentage of the total population. With three criteria whose values are difficult to  compare,  reduced-centered  coordinates  are  used.  Thus,  each  region  is represented  by  a  point  in  three-dimensional  space,  where  the  coordinates correspond to the reduced-centered variables (see Figure 3.20). 

Next, the distance between each pair of points is calculated, resulting in the table shown in Figure 3.21 (for convenience, the squared distance is shown). 

 Step 1: the smallest distance, 0.11 (orange), is identified, indicating that regions B and PdL can be merged (see Figure 3.21).  



Figure 3.21.  Initial stage. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 
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Figure 3.22.  Step 1. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

The  result  is  shown  in  Figure  3.22.  The  rows  corresponding  to  the  B  and  PdL 

regions can be crossed out in the B and PdL columns. 

 Step 2: the smallest distance among the unstriped boxes, 0.22 (orange boxes), is identified.  This  indicates  that  the  ARA  region  can  be  added  to  the  previous aggregate (see Figure 3.22). 

The result is shown in Figure 3.23. 

 

Figure 3.23.  Step 2. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 
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Figure 3.24.  Step 3. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

  

Figure 3.25.  Step 4. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

 Step 3: several possibilities for the shortest distance are found, with a value of 0.25 appearing four times (orange boxes). These values are distributed in pairs: HdF  with  O  and  CVL  with  BFC.  Therefore,  the  HdF  and  O  regions  can be  grouped  together,  on  the  one  hand,  and  CVL  and  BFC,  on  the  other  (see Figure 3.23). The result is shown in Figure 3.24. 

 Step 4:  the  shortest  distance  is  now  0.32  (orange  boxes),  indicating  that  the  N 

and NA regions can be grouped together (see Figure 3.24). The result is shown in Figure 3.25. 
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 Step 5: the shortest distance, 0.53 (orange boxes), merges the regions ARA, B 

and PdL, on the one hand, and N and NA, on the other (see Figure 3.25). The result is shown in Figure 3.26. 



Figure 3.26.  Step 5. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

  

Figure 3.27.  Step 6. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

 Step 6: the shortest distance, 0.54 (orange boxes), merges the GE region with the ARA,  B,  PdL,  N  and NA  aggregates  (see Figure 3.26). The  result  is  shown  in Figure 3.27. 
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 Step 7: the shortest distance, 0.55 (orange boxes), merges the aggregates BFC, CVL and GE, ARA, B, PdL, N and NA (see Figure 3.27). The result is shown in Figure 3.28. 

 Step 8: the new shortest distance, 1.88 (orange boxes), prompts the merging of PACA with the HdF and O aggregates (see Figure 3.28). The result is shown in Figure 3.29. 

 Step 9:  the  shortest  distance,  now  2.53  (orange  boxes),  corresponds  to  the addition of C to the BFC, CVL, GE, ARA, B, PdL, N and NA aggregates (see Figure 3.29). The result is shown in Figure 3.30. 

  

Figure 3.28.  Step 7. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

  

Figure 3.29.  Step 8. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 
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Figure 3.30.  Step 9. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

 

Figure 3.31 . Step 10. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

  

Figure 3.32.  Dendrogram 
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 Step 10:  the  shortest  distance,  2.84  (orange  boxes),  is  used  to  merge  the  two previous aggregates (see Figure 3.30). The result is shown in Figure 3.31. 

 Step 11:  this  is  the  final  step,  where  the  IdF  region  joins  the  aggregate comprising  all  regions  with  a  distance  value  of  9.37  (orange  boxes)  (see Figure 3.31). 

In  these  steps,  the  regions were  grouped  in  an  ascending fashion,  starting with single regions (singletons) and ending with an aggregate comprising all regions. 

Reversing these steps produces the dendrogram shown in Figure 3.32. 

3.5.3.   Ward’s aggregation strategy 

To  aggregate  two  classes,  an  aggregation  measure  is  required  to  represent  the degree of similarity between these classes. 

One of the most commonly used measures is  Ward’s measure, calculated from the  distance  between  individuals.  Choosing  an  appropriate  distance  is  therefore important. This measure is expressed as follows, referred to as the “Ward measure”: 𝑑 (𝑔 , 𝑔 )

𝑛 𝑛

𝐷 (𝐴, 𝐵) = 1 1 =

𝑑 (𝑔 , 𝑔 ) 

𝑛 + 𝑛

𝑛 + 𝑛

where  d  represents the Euclidean distance. In this formula: 

– 𝑔  and 𝑔  are the centers of gravity of classes 𝐴 and 𝐵, respectively; 

– 𝑛  and 𝑛  denote the sizes (number of elements) of these classes. 

By assigning each center of gravity a weight equal to its size, this expression can be rewritten using the Euclidean distance. Let 𝑔 represent the center of gravity of 𝑔  

and 𝑔 . In the individual space with origin 𝑂, 𝑔  and 𝑔  can be represented by the vectors  𝒈𝑨 = 𝑶𝒈𝑨 and  𝒈𝑩 = 𝑶𝒈𝑩  (with  vectors  shown  in  bold  for  clarity).  The definition of the center of gravity 𝒈 can then be expressed as follows: (𝑛 + 𝑛 )𝒈 = 𝑛 𝒈𝑨 + 𝑛 𝒈𝑩 

From this, it follows that: 

(𝑛 + 𝑛 )(𝑔 − 𝒈𝑨) = 𝑛 (𝒈𝑩 − 𝒈𝑨) and (𝑛 + 𝑛 )(𝒈 − 𝒈𝑩) = 𝑛 (𝒈𝑨 − 𝒈𝑩) 
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Squaring these expressions yields: 

(𝑛 + 𝑛 ) (𝒈 − 𝒈 ) = 𝑛 (𝒈𝑩 − 𝒈𝑨)  and (𝑛 + 𝑛 ) (𝒈 − 𝒈𝑩)

= 𝑛 (𝒈𝑨 − 𝒈𝑩)  

Using the Euclidean distance yields: 

(𝑛 + 𝑛 ) 𝑑 (𝑔, 𝑔 ) = 𝑛 𝑑 (𝑔 , 𝑔 )𝑒𝑡(𝑛 + 𝑛 ) 𝑑 (𝑔, 𝑔 )

= 𝑛 𝑑 (𝑔 , 𝑔 ) 

The inertia of the points 𝑔  and 𝑔  with respect to 𝑔 is given by: 𝐼  = 𝑛 𝑑 (𝑔,  𝑔 ) + 𝑛 𝑑 (𝑔, 𝑔 ) 

Thus: 

𝑛 𝑛

𝐼 =

𝑑 (𝑔 , 𝑔 ) 

(𝑛 + 𝑛 )

Ward’s  measure  corresponds  to  the  inertia  of  the  two  classes  relative  to  their common  center  of  gravity.  Minimizing  𝐷 (𝐴, 𝐵)  is  therefore  equivalent  to minimizing the inertia 𝐼 . 

EXAMPLE 3.10.– Returning to the hierarchy of regions in Example 3.9, assuming they  have  equal  weighting,  Ward’s  measure  can  be  expressed  for  singletons (𝑛 = 𝑛 = 1) using the reduced centered coordinates 𝑋, 𝑌, 𝑍 (see Figure 3.33). 



Figure 3.33.  Ward’s measurements. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 
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Ward’s  measure  for  a  pair  of  singletons  equals  half  the  square  of  the  distance between the two singletons. The smallest observed value is 0.06 (orange boxes), which  permits  us  to  aggregate  the  B  and  PdL  regions  (see  Figure  3.34).  To achieve this, the coordinates of the center of gravity of B and PdL are calculated (as shown in Figure 3.34). The updated table of Ward’s measurements is shown in  Figure  3.35.  The  smallest  value  of  the  Ward  measure  is  now  0.12  (orange boxes), indicating the merging of the HdF and O regions. 



Figure 3.34.  Grouping of B and PdL 



Figure 3.35.  Ward measurement updates. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

The  reader  is  invited  to  continue  the  calculations,  keeping  the  following  two observations in mind: 
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1) The factor 

must be considered when calculating Ward’s measurements. 

2) The  coordinates  of  an  aggregate’s  center  of  gravity  must  be  recalculated  at each  step.  If  the  aggregate  includes  one  composed  of  𝑛   regions  and  another composed of 𝑛  regions, its coordinates are: 

𝑛 𝑋 + 𝑛 𝑋

𝑋 =  

  

𝑛 + 𝑛

and similarly, for 𝑌 and 𝑍. 

The  final  result  is  the  dendrogram  shown  in  Figure  3.36,  where  the  height corresponds to the square root of the Ward measure shared by two aggregates. 



Figure 3.36.  Dendrogram 

3.6. Appendices 

3.6.1.   Huygens–König theorem 

Consider  a  point  A  in  space  ℝ   and  a  cloud  of  𝑛  points   i   with  a  center  of gravity  G.  The  point  A  can  be  represented  by  a  vector  𝒙(A)  with  components 𝒙 (A), 𝒙 (A), … , 𝒙 (A).  Similarly,  the  center  of  gravity  can  be  represented  by  a vector  𝒙(G)  with  components 𝑥 (G), 𝑥 (G), … , 𝒙 (G).  Likewise,  the  point  𝑖 

corresponds to a vector 𝒙(𝑖) with components 𝑥 (𝑖), 𝑥 (𝑖), … , 𝑥 (𝑖) .  
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Let us calculate the inertia of the points 𝑖 with respect to point A using the classic definition of distance with a matrix 𝑴: 

𝐼 =

𝜔 𝑑 (𝑖, A) =

𝜔 [𝒙(𝑖) − 𝒙(A) 𝑴[𝒙(𝑖) − 𝒙(A)] 

Now, add and subtract 𝒙(G) in the square brackets: 

𝐼 =

𝜔 [𝒙(𝑖) − 𝒙(G) + 𝒙(G) − 𝒙(A)] 𝑴[𝒙(𝑖) − 𝒙(G) + 𝒙(G) − 𝒙(A)] 

Developing the matrix product: 

𝐼 =

𝜔 [𝒙(𝑖) − 𝒙(G)] 𝑴[𝒙(𝑖) − 𝒙(G)]

+

𝜔 [𝒙(G) − 𝒙(A)] 𝑴[𝒙(G) − 𝒙(A)]

+ 2

𝜔 [𝒙(𝑖) − 𝒙(G)] 𝑴[𝒙(G) − 𝒙(A)] 

Since G is the center of gravity of the point cloud, the following holds: 𝜔 [𝑥(𝑖) − 𝑥(G)] = 𝟎 

Thus, the inertia becomes: 

𝐼 =

𝜔 𝑑 (𝑖, G) +

𝜔 𝑑 (G, A) 

This shows that the inertia with respect to A is the sum of the inertia of points 𝑖 

in  relation  to  G  and  the  inertia  of  G  in  relation  to  A.  This  corresponds  to  the Huygens-König theorem. 

 Application:  consider  the  case  where  there  are  𝐾  classes  𝐶   representing  𝑛 

individuals. Let 𝑔  denote the center of gravity of the individuals in class 𝐶 , and 𝑔  
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denote the center of gravity of all 𝑛 individuals. Taking 𝑔 as point A and considering class  𝐶   as  a  cloud  of  points,  the  previous  general  result  leads  to  the  following expression:  

𝜔 𝑑 (𝑖, 𝑔) =

𝜔 𝑑 (𝑖, 𝑔 ) +

𝜔 𝑑 (𝑔 , 𝑔) 

∈

∈

∈

Now, summing over all classes, the result is: 

𝜔 𝑑 (𝑖, 𝑔) =  

𝜔 𝑑 (𝑖, 𝑔 ) +

𝜔 𝑑 (𝑔 , 𝑔) 

∈

∈

∈

Alternatively:  

𝜔 𝑑 (𝑖, 𝑔) =

𝜔 𝑑 (𝑖, 𝑔 ) +

𝜔 𝑑 (𝑔 , 𝑔) 

∈

∈

This leads to the result: 

𝐼 = 𝑊 + 𝑄. 

3.6.2.   Classification software 

Let us examine the two programs mentioned in the previous chapter. 

3.6.2.1.   Tanagra software 

 a) Partitioning 

Tanagra  software  provides   k-means   clustering  functionality.  After  loading  the data table and applying the “Define status” component, the  K-Means  function can be selected in the  Clustering  section (see Figure 3.37). 

After execution, the results are displayed in the right-hand window. To visualize the  classes,  the  “View dataset”     and  “Scatterplot with label”     functions  in  the   Data visualization  section can be used (see Figure 3.38). 
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Figure 3.37.   K-means functionality. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 



Figure 3.38.   Results. For a color version of this figure, 

 see www.iste.co.uk/cochard/mathematics3.zip 
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 b) Hierarchical methods 



Figure 3.39.   HAC function. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

To  perform  hierarchical  clustering,  Tanagra  offers  the  HAC  (Hierarchical Agglomerative  Clustering)  feature.  Alternatively,  the   CatVARHCA   method  can  be used. After preparing the data file in Excel, we can load it into Tanagra. Once the file is loaded and the “Define status”    component is added, we can access the  HAC 

function in the  Clustering  section (see Figure 3.39). 

In the  HAC  parameters, Tanagra allows us to select the option for automatically detecting the optimal number of classes. Additionally, we can choose to normalize variance and specify a maximum level for the tree, such as 10 (see Figure 3.40). 



Figure 3.40.   Options 
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To view the results in Tanagra, use the “View”    option. In the right-hand window, there are two tabs: “Report”    and “Dendrogram”. The “Report”    tab displays various results, such as the number of classes and the structure of the hierarchical tree, while the  “Dendrogram”     tab  provides  a  graphical  representation  of  the  hierarchical  tree (see Figure 3.41). 



Figure 3.41.   Dendrogram tab. For a color version of this figure, 

 see www.iste.co.uk/cochard/mathematics3.zip 

3.6.2.2.  R software 

 a) Partitioning 

As a reminder, the use of R software was covered in Chapter 2 for more detailed information. This section focuses mainly on the commands required for the study of this chapter. 

After loading the data table: 

> library( readxl ) 

> table <- read_excel (“cloud.xlsx”) 

Next, the  kmeans  function is used, specifying the table to be analyzed ( tab), the desired number of classes (e.g. 4) and the number of initializations ( nstart, here 10). 

The   nstart   parameter  represents  different  starting  configurations,  and  the  software chooses the one that gives the best result, i.e. with the smallest value of 𝑊: 

> tab_kmeans <- kmeans(tab, centers = 4, nstart=10) 

> print(tab_kmeans) 

The result includes the centers of gravity of each class, the composition of each class  and  the  intra-class  inertia  values  for  each  class.  For example,  for  the  data  in Example 3.5, the following results are obtained:  
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Cluster means: 

French Math 

1 15.000000 7.50000 

2 4.400000 16.00000 

3 9.857143 10.14286 

4 11.500000 17.50000 

Clustering vector: 

[1] 1 1 3 2 2 3 1 1 3 2 2 4 3 3 3 1 3 2 4 1 

Within cluster sum of squares by cluster: 

[1] 39.50000 19.20000 43.71429 13.00000 

(between_SS / total_SS = 83.7%) 

To  visualize  results  graphically,  the   factoextra   library  can  be  used.  It  provides additional features for visualizing results in cluster form: 

> fviz_cluster(tab_kmeans, data = tab) 

The classes are presented graphically in Figure 3.42. 



Figure 3.42.   Resulting classes. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

 b) Hierarchical methods 

Two  function  libraries  are  needed:   factoextra   and   cluster.  In  addition,  to  read data from Excel, the  readxl  library is used. These libraries provide specific functions for performing clustering analyses and visualizing results efficiently. 
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In this case, the following commands are used: 

> library(factoextra) 

> library(cluster) 

> library(readxl) 

> table <- read_excel(“cloud.xlsx”) 

It  is  convenient  to  work  with  reduced  centered  coordinates,  which  can  be achieved using the  scale()  function. This function centers the data by subtracting the mean of each variable and scales them by dividing by the standard deviation of each variable:  

> tab <- scale(table) 

The  function  to  be  used  for  hierarchical  clustering  is   agnes().  The  main arguments for this function are the data table to be explored (in this case,  tab) and the classification method to be used (in this case,  Ward): 

> clust <- agnes(tab, method = “ward”) 

> pltree(clust, ces = 0.6, hang = -1, main = “Dendrogram”) The  pltree()  function displays the dendrogram. 

The best method can also be chosen (which is not necessarily Ward) by applying a criterion that distinguishes the quality of the different methods: 

> m <- c(“average”, “single”, “complete”, “ward”) 

> names(m) <- c(“average”, “single”, “complete”, “ward”) 

> ac <- function(x){agnes(tab, method = x)$ac} 

> sapply(m; ac) 

The result is similar to 

average single complete ward 

0.6521194 0.2479916 0.7672700 0.7948758 

in favor of Ward. The first three methods are  average (average linkage aggregation measure),  single (minimum linkage aggregation measure) and  complete (maximum linkage aggregation measure). 
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Linear Programming 

 

  

CONCEPTS COVERED IN THIS CHAPTER.– 

Linear  programming  is  a  fundamental  tool  for  optimizing  functions  subject  to constraints. 

This chapter provides a detailed exploration of this technique, beginning with an introductory example that illustrates the type of problems it addresses. 

Next,  the  general  formulation  of  linear  programming  and  its  geometric interpretation are then introduced. Over the years, several algorithms have been developed to solve linear programs, with the simplex algorithm being the most prominent  and  widely  applied.  This  algorithm  is  described  in  detail, accompanied by illustrative examples. 

The simplex algorithm assumes that the solution where all variables are zero is a feasible solution. When this assumption fails, the “two-phase” method becomes necessary, and its principles and applications are explained. 

The  concept  of  duality,  which  links  two  complementary  formulations  of  the same  linear  program,  is  then  examined,  along  with  the  phenomenon  of degeneracy. 

Finally, as an extension of linear programming over non-negative real numbers, integer  linear  programming  is  introduced,  with  a  focus  on  techniques  such  as Gomory cuts and the Branch and Bound   algorithm. 
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References: [BRO 82, DES 76, ECO 98, FAU 74, FAU 79, FAU 14, JAC 98, KAU 75, PAP 92, PHE 75]. 

4.1. An introductory example 

A simple problem discussed herein serves to introduce the subject. 

In a factory, there are four different machines, designated by the letters A, B, C 

and  D.  These  machines  are  used  to  manufacture  saucepans  and  frying  pans,  with each machine having specific features and capabilities: 

– Machines A and B can produce both saucepans and frying pans. 

– Machine C is limited to making saucepans. 

– Machine D is limited to making frying pans. 

To  better  understand  the  situation,  the  detailed  quantitative  data  presented  in Figure 4.1 is useful. 



Figure 4.1.   The data 

The production of a saucepan requires the sequential use of machines A, B and C, while the production of a frying pan requires the sequential use of machines A, B 

and D. 

The net income from the sale of each item is as follows: 

– The sale of a saucepan earns 5 euros. 

– The sale of a frying pan brings in 4 euros. 

The  objective  is  to  determine  the  optimum  quantities  of  saucepans  and  frying pans to produce in order to maximize profit, assuming that all produced items can be sold. 
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The mathematical formulation of the problem is described as follows: 1) Objective  function:  the  goal  is  to  maximize  profit,  represented  by  𝑧.  Let  𝑥  

denote  the  number  of  saucepans  to  be  manufactured  and  𝑥   the  number  of  frying pans to be manufactured. The profit can be expressed as: 

𝑧 = 5𝑥 + 4𝑥  

2) Constraints: are based on the capacities of the machines, expressed as follows: 

– Machine A: takes 

hours to produce a saucepan and 

hours to produce a 

frying pan. For 𝑥  saucepans and 𝑥  frying pans, the total running time is less than 1 

hour:  

+ 

≤ 1 or equivalently,     0.200𝑥 + 0.125𝑥 ≤ 100   

[R1] 

– Machine B: requires 

hours to produce a saucepan and 

hours to produce 

a frying pan. The corresponding constraint is:  

+ 

≤ 1     or equivalently,    0.1176𝑥 + 0.25𝑥 ≤ 100   

[R2] 

– Machine  C:  this  machine  only  processes  saucepans,  requiring hours  per 

unit. The corresponding constraint is:  

≤ 1       or equivalently,           0.2222𝑥 ≤ 100       

[R3] 

– Machine D: this machine is used for frying pans, requiring hours per unit. 

The corresponding constraint is:  

≤ 1        or equivalently,           0.3333𝑥 ≤ 100    

[R4] 

3) Non-negativity  constraints:  as  this  is  a  production  problem,  the  decision variables must be non-negative: 

𝑥 ≥ 0                  

[R5] 

𝑥 ≥ 0                  

[R6] 

Note  on  fractional  and  integer  variables:  although  the  decision  variables  are inherently  integers  (since  fractional  quantities  cannot  be  manufactured),  this 
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formulation  focuses  on  the  fractional  version  of  the  problem.  Techniques  for addressing integer variables will be discussed later. 

The problem can be solved graphically because both the objective function and the constraints are linear in 𝑥  and 𝑥 , allowing them to be represented as straight lines on a Cartesian plane. 



Figure 4.2.   Graphic resolution. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

The line corresponding to the objective function (shown in green) can be moved parallel to itself. This is referred to as the contour line, with all such lines sharing the same slope. The constraint lines (shown in red) define regions in the plane. Possible solutions are confined to the polygon 𝑃, whose area is shaded gray (see Figure 4.2). 

As  the  objective  function  line  moves  from  the  origin  (representing  zero profit) towards  the  northeast,  the  profit  increases.  The  maximum  profit  is  reached  at  the vertex (354.19, 233.29) of the polygon 𝑃. The optimal profit value, 2704.11 euros, is  achieved  when  producing  𝑥   =  354.19  saucepans  and 𝑥   =  233.29  frying pans. 

However,  as  previously  noted,  fractional  values  for  𝑥   and  𝑥   are  impractical since 0.19 saucepans and 0.29 frying pans have no real-world meaning. 

A natural approach is to “round off” the results, yielding 𝑥  = 354 saucepans and 𝑥  = 233 frying pans, resulting in a profit of 𝑧 = 2702 euros. 
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NOTE  4.1.–  The  rounding  applied  may  not  necessarily  result  in  the  optimal solution. 



Figure 4.3.  Zoom. For a color version of this figure, 

 see www.iste.co.uk/cochard/mathematics3.zip 

Indeed,  a  closer  examination  of  the  assumed  values,  as  shown  in  Figure  4.3, reveals that the correct values are 𝑥  = 355 and 𝑥  = 232, resulting in  z = 2703! 

In the previous mathematical formulation, the variables x  and x  were assumed to  be  real,  non-negative  and  non-integer,  corresponding  to  a  linear  program  (also referred to as a real-number linear program). However, to obtain the correct solution in this example, it would be necessary to solve a linear program in integers, which is more  difficult  to  solve  than  the  previous  case.  The  topic  of  integer  linear programming  will  be  explored  in  section  4.8.  For  now,  the  focus  remains  on real-number linear programming. 

4.2. General formulation 

In the general case, a linear program is formulated as follows: 1) The objective function is expressed as: 

𝑧 =

𝑐 𝑥  

Here,  𝑥     represents  the  decision  variables,  while  𝑐   denotes  the  associated  unit 

“costs”.  Depending  on  the  problem,  the  function  𝑧  can  be  either  maximized  or minimized.  It  is  important  to  note  that  minimizing  𝑧  is  equivalent  to  maximizing 

−𝑧, and vice versa. In this study, the focus is on maximizing 𝑧. 
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2) There are 𝑚 linear constraints: 

𝑎 𝑥 ≤ 𝑏   for  𝑖 = 1, … , 𝑚 

3) The variables and constants are subject to the following conditions: 𝑥 ≥ 0  for  𝑗 = 1, … , 𝑛 

𝑏 ≥ 0  for 𝑖 = 1, … , 𝑚 

𝑎 ∈ 𝑅,  ∀𝑖 = 1, … , 𝑚, ∀𝑗 = 1, … , 𝑛 

4) In the basic (initial) problem, the goal is to maximize 𝑧. Note that maximizing 𝑧 is equivalent to minimizing −𝑧. 

The  standard  linear  program,  referred  to  as  P1,  is  expressed  in  canonical  form (though another canonical form is often used for minimization problems): 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝒛 =

𝑐 𝑥  

Subject to  ∑

𝑎 𝑥 ≤ 𝑏   𝑖 = 1, … , 𝑚 

𝑥 ≥ 0  𝑗 = 1, … , 𝑛 

𝑏 ≥ 0  𝑖 = 1, … , 𝑚 

𝑎 ∈ 𝑅   ∀𝑖 = 1, … , 𝑚, ∀𝑗 = 1, … , 𝑛 

To  derive  a  linear  system  with  𝑚  equations  and  𝑛 + 𝑚  unknowns,  slack variables   𝑥

, 𝑥

, … , 𝑥

are  introduced.  These  transform  the  inequality 

constraints into equations: 

𝑎 𝑥 + 𝑎 𝑥 + ⋯ + 𝑎 𝑥 + 𝑥

=   𝑏  

𝑎 𝑥 + 𝑎 𝑥 + ⋯ + 𝑎 𝑥              + 𝑥

=   𝑏  

⋮ 

𝑎 𝑥 + 𝑎 𝑥 + ⋯ + 𝑎 𝑥                                  + 𝑥

=   𝑏  
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In matrix form, this system is expressed as  AX = B, where: 𝑥

𝑎

𝑎

⋯ 𝑎

1 0 ⋯ 0

⎡𝑥 ⎤

𝑏

𝑎

𝑎

⋯ 𝑎

0

⎢ ⎥

𝑏

𝑨 =  

1 ⋯ 0

⋮

⋯

⋯

𝑿 =

𝑩 =



⋯ ⋯ ⋯ ⋯ ⋯ 0

⎢ ⋮ ⎥

⋮

𝑎

𝑎

⋯ 𝑎

0 0 ⋯ 1

⎢ ⋮ ⎥

𝑏

⎣𝑥 ⎦

This representation is referred to as the “standard form” of the linear program. 

The addition of m slack variables corresponds directly to the number of inequality constraints. Consequently, the total number of decision variables increases by 𝑚.    To solve this system, a matrix 𝑪   of dimensions  (𝑚) rows and (𝑛 + 𝑚)   columns must be identified such that 𝑪. 𝑨  =  𝑰, where 𝑰 is the 𝑚 × 𝑚 identity matrix. By multiplying both sides of 𝑨. 𝑿  =  𝑩 by the matrix 𝑪 (if it exists), the solution is obtained as: 𝑿  =  𝑪. 𝑩. 

Returning to the P1 program, minimizing the objective function 𝑧 is equivalent to  maximizing  −𝑧.  This  modification  does  not  after  the  constraints  of  P1,  which remain unchanged. 

The constraints in P1 can take different forms: 

𝑎 𝑥 ≤ 𝑏 ,    𝑖 = 1, … , 𝑚 

To  transform  an  inequality  into  an  equality,  additional  positive  terms  must  be introduced. These terms add slack variables into the model: 𝑎 𝑥 + 𝑎 𝑥 + ⋯ + 𝑎 𝑥 ≤ 𝑏 ⟶ 𝑎 𝑥 + 𝑎 𝑥 + ⋯ + 𝑎 𝑥 + 𝑥 = 𝑏  

where  𝑥   is  a  slack  variable.  This  variable  appears  with  a  coefficient  of  1  in  the constraint and a coefficient of 0 in the objective function. 

When a constraint is expressed with the inequality sign “≥”, the same approach is applied, but with a negative slack variable: 

𝑎 𝑥 + 𝑎 𝑥 + ⋯ + 𝑎 𝑥 ≥ 𝑏 ⟶ 𝑎 𝑥 + 𝑎 𝑥 + ⋯ + 𝑎 𝑥 − 𝒙𝒆 = 𝑏  

In this case, the slack variable 𝑥  is subtracted, appearing with a coefficient of 

−1  in  the  constraint  and  0  in  the  objective  function.  However,  the  solution   
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𝑥 = 𝑥 = ⋯ = 𝑥 = 0  must  remain  feasible.  This  would  lead  to  −1 × 𝑥 = 𝑏 , which contradicts the assumption 𝑏 ≥ 0. 

To  solve  this  problem,  an  “artificial variable”  𝑥   (𝑥 ≥ 0)  is  introduced.  The constraint becomes: 

𝑎 𝑥 + 𝑎 𝑥 + ⋯ . +𝑎 𝑥 ≥ 𝑏 ⟶ 𝑎 𝑥 + 𝑎 𝑥 + ⋯ . +𝑎 𝑥 − 𝑥 + 𝒙𝒂 = 𝑏  

The artificial variable 𝑥  has a coefficient of +1 in the constraint and 0 in the objective function. 

When the constraint is expressed as an equality (“=”), introducing an artificial variable is also necessary: 

𝑎 𝑥 + 𝑎 𝑥 + ⋯ . +𝑎 𝑥 = 𝑏 ⟶ 𝑎 𝑥 + 𝑎 𝑥 + ⋯ . +𝑎 𝑥 + 𝑥 = 𝑏  

In  this  case,  this  artificial  variable  𝑥   is  expected  to  equal  zero  in  the  final solution.  Artificial  variables  are  introduced  purely  to  facilitate  calculations.  For constraints  of  the  “≥”  or  “=”  type,  a  method  called  the  “two-phase  method”  is typically  used  to  eliminate  artificial  variables.  This  method  will  be  examined  in greater detail in section 4.5. 

4.3. Geometry of a linear program 

Some key mathematical results related to linear programming are as follows: 

– When 𝑛  =  𝑚, the system of linear equations has exactly one solution. 

– When 𝑛  <  𝑚,  the  system  has  infinitely  many  solutions. Among  these,  there exists a subset {𝑥 } where 𝑥 ≥ 0 for 𝑗  =  1, … , 𝑛 + 𝑚. These solutions are referred to as “possible solutions”. 

– When 𝑛  ≤  3, a graphical representation of the possible solutions is feasible. 

– When  𝑛  > 3,  a  graphical  solution  becomes  impractical.  In  this  case,  the 

“region”  of  possible  solutions  forms  a  hyperpolyhedron,  as  shown  in  Figure  4.4. 

This hyperpolyhedron is intersected by a hyperplane corresponding to the objective function. However, several mathematical results have been established for problems of this nature. While detailed demonstrations are beyond the scope of this section, these results form the basis of linear programming techniques. 
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Figure 4.4.   Objective function and basic solutions. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 



Figure 4.5.   Convexity 

– The hyperpolyhedra generated by the system are convex. A geometric set E is convex if, for any points A and B with E, the entire line segment AB lies within E (as shown in Figure 4.5). 

– The vertices of the hyperpolyhedron are the “basic” solutions. 

– The  desired  solution,  except  in  rare  cases,  is  located  at  one  of  these  basic solutions. 

– A  basic  solution  includes  at  most  𝑚  positive  variables,  with  the  remaining variables equal to zero. 

– The solution process involves transitioning from one basic solution to another in a manner that increases the value of 𝑧. 

These  results  are  essential  for  solving  the  linear  programming  problem efficiently. 
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These  results  can  be  validated  using  the  introductory  example  depicted  in Figure 4.6. 



Figure 4.6.   Application to the introductory example 4.4. Simplex algorithm 

Various algorithms have been developed to solve linear programming problems, but the most widely used is the “simplex algorithm”, introduced by George Dantzig in 1947. While the theoretical foundations of the algorithm will not be detailed here, its practical application and core concept are explained below. 

The  simplex  algorithm  operates  by  transitioning  from  one  basic  solution  to another  within  an  𝑚-dimensional  space,  where  𝑚  represents  the  number  of constraints  in  the  problem.  It  starts  with  an  initial  solution,  which  may  not necessarily be optimal, and iteratively improves the solution until an optimal one is reached. 



Figure 4.7.   Matrix representation 

Now,  consider  applying  the  simplex  algorithm  to  the  introductory  example, which  includes  two  decision  variables  and  four  constraints  (along  with  two additional integrity constraints on the decision variables). The initial problem can be represented  in  matrix  form  𝑨𝐗  =  𝐁   (known  as  the  “simplex table”),  as  shown  in Figure 4.7. The vectors 𝐕𝟏 and 𝐕𝟐 correspond to the decision variables, while V3,  V4,  

V5 and V6 represent the slack variables. 
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An obvious solution to the problem is: 𝑥 = 0, 𝑥 = 0, 𝑥 = 𝑥 = 𝑥 = 𝑥 = 100, which gives 𝑧 = 5𝑥 + 4𝑥 = 0. This solution is the known initial solution. 

By  examining  the  columns  of  the  matrix  𝐀 (𝐕𝟏, 𝐕𝟐,  𝐕𝟑,  𝐕𝟒, 𝐕𝟓, 𝐕𝟔)  and  the second  member  𝐁, it  is  evident  that  they  are  vectors  of  ℝ .  The  vectors 𝐕𝟑,  𝐕𝟒,  𝐕𝟓 and 𝐕𝟔 form a basis of ℝ . Thus, the vectors (columns) 𝐕𝟏 and 𝐕𝟐 can be expressed in terms of this basis: 

𝐕𝟏 = 0.200𝐕𝟑 + 0.1176𝐕𝟒 + 0.2222𝐕𝟓 

𝐕𝟐 = 0.125𝐕𝟑 + 0.250𝐕𝟒 + 0.3333𝐕𝟔 

In addition, the second member 𝐁 can be expressed as follows: 𝐁 = 100(𝐕𝟑 + 𝐕𝟒 + 𝐕𝟓 + 𝐕𝟔) 

These equations allow the columns of the matrix 𝐀 and the second member 𝐁 to be  represented  in  terms  of  the  basis  vectors  (columns)  𝐕𝟑,  𝐕𝟒,  𝐕𝟓 and 𝐕𝟔 .  To improve the current solution (with 𝑧  =  0), a basis change will be performed:  

{𝐕𝟑, 𝐕𝟒, 𝐕𝟓, 𝐕𝟔}   →    {𝐕𝟑, 𝐕𝟒, 𝐕𝟏, 𝐕𝟔} 

To  do  this,  it  is  checked  that  the  determinant  det(𝐕𝟑, 𝐕𝟒, 𝐕𝟏,  𝐕𝟔)  is  non-zero, which  would  indicate  that  the  vectors  𝐕𝟑, 𝐕𝟒, 𝐕𝟏 and 𝐕𝟔  are  linearly  independent. 

Indeed, if the determinant is zero, this would mean that there is a linear combination of  the  vectors  𝐕𝟑, 𝐕𝟒, 𝐕𝟏 and 𝐕𝟔  that  results  in  the  zero  vector.  Calculating  the determinant, the following is obtained: 

1 0 0.2000 0

0 1 0.1176 0

0 0 0.2222 0 = 0.2222  ≠ 0 

0 0 0.0000 1

The new basis {𝐕𝟑, 𝐕𝟒,  𝐕𝟏,  𝐕𝟔} can be chosen. In this case, 𝐕𝟓 leaves the basis, and 𝑽𝟏 enters the new basis. The form of the new equation 𝐀𝐗  =  𝐁   in this basis change is determined (see Figure 4.8). 

In  the  new  basis  {𝐕𝟑,  𝐕𝟒, 𝐕𝟏,  𝐕𝟔},  𝐕𝟓  can  be  expressed  in  terms  of  the  other vectors  in  the  basis.  Since  𝐕𝟏 = 0.2𝐕𝟑 + 0.1176𝐕𝟒 +  0.2222𝐕𝟓, it  follows  that 𝐕𝟓 =  4.5005𝐕𝟏–  0.9001𝐕𝟑–  0.5293𝐕𝟒. Hence,  𝐕𝟐 remains unchanged, depending only on 𝐕𝟑, 𝐕𝟒 and 𝐕𝟔. 
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Figure 4.8.   Base change 

The second member 𝐁 can also be rewritten according to this new basis: 𝐁 = 100(𝐕𝟑 + 𝐕𝟒 + 𝐕𝟓  + 𝐕𝟔) = 9.99𝐕𝟑 + 47.07𝐕𝟒 + 450.05𝐕𝟏 + 100𝐕𝟔 

The equation 𝐀𝐗  =  𝐁 in the new basis thus takes the form shown in Figure 4.8. 

By performing the base change, a new obvious solution arises: 𝑥 = 450.05,  𝑥 = 0,  𝑥 = 9.99,  𝑥 = 47.07,  𝑥 = 0,  𝑥 = 100, which gives a value for 𝑧 equal to 2250 (with a rounding error). 

In this way, the value of 𝑧 was improved with this base change. It is important to note that replacing 𝐕𝟓 with 𝐕𝟏 in the base was not done at random. Dantzig proposed two criteria (to be explained in this section) for selecting the incoming and outgoing vectors. 



Figure 4.9.   Practical table 

A  closer  look  will  be  taken  at  how  to  build  the  new  foundations  and  how  the solution gradually improves. First, the problem is presented in its initial version in the  form  of  a  table,  as  shown  in  Figure  4.9.  The  matrix  𝐀  and  the  vector  𝐁  are presented,   with  each  row  accompanied  by  a  corresponding  base  vector  (column), indicated  by  a  1  in  the  row.  The  last  row  represents  the  coefficients  𝑐   of  the 
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objective function. Finally, the box at the bottom right indicates the value of −𝑧 for the given base, which is equal to 0 in the initial phase. 

In  this  representation,  the  indices  of  the  table  elements  (including  the  last  row and column) must be specified. Columns are always numbered 𝑗  =  1, 2, 3, … , 𝑝 and correspond to vectors 𝐕𝟏, 𝐕𝟐, … , 𝐕𝐩. Rows, on the other hand, are numbered with the index of the base vectors. In Figure 4.9, the index 𝑖 runs from top to bottom, taking the values 3, 4, 5 and 6. For example, 𝑎

= 0.25,  𝑏 = 100  𝑎𝑛𝑑 𝑐 = 4. 

First Dantzig criterion:  select the vector (column)  𝐕𝐣  to be included in the basis by choosing the one with the highest  𝑐   coefficient.  

For this problem, 𝑐 = 5, so the (column) vector 𝐕𝟏 is likely to enter the basis. 

 Second Dantzig criterion: determine the vector (column) Vi  to remove from the basis, select the one corresponding to the smallest positive ratio  𝑏 /𝑎   (with 𝑎   > 0). 

In  this  case,  the  ration  𝑏 /𝑎   =  100/0.2222  gives  the  smallest  ratio,  so  the vector (column) 𝐕𝟓 leaves the basis. 

Basis change: after selecting the entering and leaving vectors, the components of the matrix are adjusted using two operations:  

– For  the  outgoing  vector  𝑖:  divide  the  row  corresponding  to  𝐕𝐢  (including  the column element 𝐁) by the pivot 𝑎  (where 𝑗 is the “incoming/entering” column): 𝑎 →   𝑎 /𝑎  

𝑏   →   𝑏 /𝑎  

– For the other rows: perform the following adjustments for each coefficient: 𝑎 → 𝑎 − 𝑎 × 𝑎 /𝑎  

𝑏   →   𝑏 − (𝑎 × 𝑏 )/𝑎  

𝑐   →   𝑐 − 𝑐 × 𝑎 /𝑎  

After  applying  these  operations,  the  line  corresponding  to  𝐕𝟓 becomes the line corresponding to 𝐕𝟏 with the values 1 0 0 0 4.5 0 | 450. The line corresponding to 𝐕𝟑 becomes 0 0.125 1 0 -0.9 0 | 10. This table is updated to reflect the changes, as shown in Figure 4.10. 

[image: Image 112]

[image: Image 113]

[image: Image 114]

Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science University , Wiley Online Library on [01/07/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License 122     Mathematics for Digital Science 3 



Figure 4.10.   V1 enters the base, V5 leaves The value of 𝑧 has increased to 2250 (the value −2250 reads 𝑧 − 2250 = 0). 

Repeat the process: the highest 𝑐  coefficient is 4, so the vector 𝐕𝟐 is added to the basis. The lowest ratio  𝑏 /𝑎  is 80, corresponding to the first row, which means the  vector  𝐕𝟑  is  removed  from  the  basis.  The  necessary  calculations  for  the  basis change result in the new table shown in Figure 4.11. 



Figure 4.11.   V4 enters the base, V3 leaves Figure 4.12.   V5 enters the base, V4 leaves The value of 𝑧 has increased again, and is now worth 2,570. 

Continuing  the  process:  the  highest  𝑐   coefficient  is  6.3,  which  means  the vector 𝐕𝟓 is added to the basis. The lowest 𝑏/𝑎  ratio is 27.06, which indicates that the  vector  𝐕𝟒  is  removed  from  the  basis.  The  necessary  calculations  for  the  basis change result in a new table shown in Figure 4.12. 
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There is no longer any positive 𝑐  coefficient, indicating that the optimum value of 𝑧 has been reached. Since integer values are expected for the decision variables, the solutions obtained are approximations: 𝑥 ≈ 354,  𝑥 ≈ 233,   and 𝑧 ≈ 2702. 

Despite rounding errors, this result is consistent with that obtained at the beginning of this section by graphical resolution. 

In  fact,  the  simplex  algorithm  is  designed  for   real   variables,  not   integer variables.  Thus,  it  can  be  concluded  that  an   approximate   solution  of  the  optimal solution  has  been  obtained.  The  problem  has  been  solved  in  its  “relaxed”  form, using  real  instead  of  integer  variables.  To  obtain  an  exact  solution,  integer  linear programming must be used, which will be covered later. 

NOTE  4.2.–  In  the  simplex  method,  the  Dantzig  criterion,  which  favors  the coefficient with the highest absolute value in the objective row, is a classic but not  mandatory  rule.  Alternative  approaches,  such  as  random,  lexicographic  or heuristic criteria, can be used to avoid cycles and adapt the method to specific situations. 

NOTE  4.3.–  The  discussion  here  implicitly  considers  a  linear  program  of  the 

“Maximize 𝑧” type with:  

𝑛



𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖,   𝑖 = 1, … , 𝑚,          with     𝑏𝑖 0.   

𝑗=1

However,  other,  more  complex  formulations  exist.  Alternative  forms  of  linear constraints will be explored in section 4.5. 

Note  that  practical  programs  are  available  for  obtaining  solutions  to  linear programs. A few examples include:  

– For a small number of variables: 

- PHPSimplex (http://www.phpsimplex.com/fr/). 

- Excel Solver. 

– For a large number of variables: 

- IBM’s CPLEX, a free download for university students. 

- Gurobi Optimizer (https://www.gurobi.com/solutions/gurobi-optimizer/). 

- Xpress Solver (https://www.solver.com/xpress-solver-engine). 
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However,  to  fully  understand  the  simplex  mechanism,  the  following  examples will continue with “by hand” calculations (preferably using a spreadsheet program). 

EXAMPLE  4.1.–  Return  to  the  introductory  example  of  this  chapter.  The  initial table of the simple algorithm is given in Figure 4.13. 



Figure 4.13.  Initial table 

The  Dantzig  criteria  indicate  that  the  vector  𝐕𝟏 must  enter  the  basis,  and  the vector 𝐕𝟓 must leave (see Figure 4.14). 



Figure 4.14.  V2 enters the base, V5 leaves This gives Figure 4.15. The Dantzig criteria indicate that 𝐕𝟐 must enter the basis, while 𝐕𝟑 must leave the basis (see Figure 4.16). 



Figure 4.15.  Base change 
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Figure 4.16.  V2 enters the base, V3 leaves 

  

Figure 4.17.  Base change 

After changing the basis, the result is shown in Figure 4.17. The Dantzig criteria indicate that 𝐕𝟓 must enter the basis and then 𝐕𝟒 must leave (see Figure 4.18). 



Figure 4.18.  V5 enters the base, V4 leaves After applying the basis change formulas, the result is shown in Figure 4.19. 



Figure 4.19.  Base change 
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Dantzig’s  first  criterion  can  no  longer  be  applied,  signifying  that  the  optimal solution  has  been  reached  with  𝑥 = 354.1076  (from  row  𝐕𝟏 and  column  𝐁), 𝑥 = 233.4278 (from row 𝐕𝟐 and column 𝐁). The other variables are zero. The result matches the graphical solution, except for rounding errors. 



EXAMPLE  4.2.–  This  example  is  taken  from  a  Diploma  of  Higher  Accounting exam. The manager of a Pro-Mer factory has decided to launch the production of diving suits: the Shorty model, denoted by S, and the Long John model, denoted by L. The diving suits are manufactured successively by three workshops: A, B 

and  C.  For  each  workshop,  the  machines  are  used  by  operators  S  and  L  for specific  times  (in  minutes,  in  this  case).  For  each  workshop,  the  machines  are used by operators S and L for specific times (in minutes, in this case). The table in Figure 4.20 summarizes the times allocated to S and L for each workshop, as well as the monthly time available for each workshop. 



Figure 4.20.  Manufacturing times 

Economic information is also grouped together in the table shown in Figure 4.21. 



Figure 4.21.  Economic information 

Profit is calculated by subtracting the manufacturing cost from the selling price (i.e. selling price – manufacturing cost). The goal is to determine the quantities 𝑥  (of S combinations) and 𝑥  (of L combinations) to be produced each month in order to achieve maximum profit. However, there are two market limitations: a maximum of 1,000 S combinations and 700 L combinations that can be absorbed each month. 
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The problem can be formulated as follows: the decision variables are 𝑥  and 𝑥  

(positive or zero). The objective function to be maximized is:  

𝑧 = (500– 350)𝑥 + (700– 500)𝑥 = 150𝑥 + 200𝑥   

For each workshop, the constraints are: 

20𝑥 + 25𝑥 ≤ 36000 

20𝑥 + 30𝑥 ≤ 45000 

15𝑥 + 15𝑥 ≤ 24000  

Finally, the commercial constraints are: 

𝑥 ≤ 1000 

𝑥 ≤ 700  

The  initial  simplex  table  is  shown  in  Figure  4.22  (which  requires  five  slack variables). 



Figure 4.22.  Initial table 

The first Dantzig criterion indicates that the vector 𝐕𝟐 enters the basis because 200 is the largest positive number in the last row. 

The  second  Dantzig  criterion  shows  that  the  700/1  ratio  is  the  smallest  of  all ratios  . Hence, the vector 𝐕𝟕 leaves the basis (see Figure 4.23). 
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Figure 4.23.  V2 enters the base, V7 leaves Apply the basis change relations (see Figure 4.24). 



Figure 4.24.  Base change 

Once again, Dantzig’s first criterion indicates that it is the vector 𝐕𝟏 that enters the basis. 

The second Dantzig criterion reveals that the ratio 13500/15 is the smallest of the ratios  , meaning that the vector 𝐕𝟓 leaves the basis (see Figure 4.25). 



Figure 4.25.  V1 enters the base, V5 leaves 
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Apply the basis change relations (see Figure 4.26). 



Figure 4.26.  Base change 

Since the first Dantzig criterion is no longer applicable, the optimization process is  complete.  The  values  of  𝑥   and  𝑥   can  be  read  in  the  𝐁  on  the  rows corresponding to 𝐕𝟏 and 𝐕𝟐: 𝑥 = 900,  𝑥 = 700,  and  𝑧 = 275000. 

4.5. Two-phase method 

As  explained  above,  when  there  are  constraints  with  the  signs  “≥”  or  “=”, artificial  variables  are  introduced,  which  must  then  be  reduced  to  zero.  This approach  is  known  as  the  “two-phase method”,  because  it  involves  applying  the simplex method twice. 

Phase 1 aims to minimize the sum of the artificial variables. This minimization must  lead  to  the  reduction  of  these  variables  to  zero  (if  this  is  not  the  case,  the problem  has  no  solution)  and  to  obtaining  an  initial  solution.  Phase  2  involves returning to the initial problem, using the initial solution obtained and considering the artificial variables as zero. 

Let  us  illustrate  the  process  with  an  example.  Consider  the  following  linear program: 

Max   𝑧 = 4𝑥 + 3𝑥 + 2𝑥  

s. t. (subject to): 

3𝑥 + 2𝑥 + 𝑥 ≤ 1200 

2𝑥 + 3𝑥 + 2𝑥 ≥ 1400 
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𝑥 + 𝑥 + 𝑥 = 600 

𝑥 + 𝑥 − 𝑥 ≤ 400 

𝑥 , 𝑥 , 𝑥 ≥ 0 

It  is  immediately  clear  that  the  solution  𝑥 = 𝑥 = 𝑥 = 0  does  not  satisfy  the initial constraints (as shown by the second and third constraints). Let us rewrite the linear  program  into  a  standard  form,  introducing  the  slack  variables  𝑒 , 𝑒 ,  𝑒   and the artificial variables 𝑎 ,  𝑎 : 

Max   𝑧 = 4𝑥 + 3𝑥 + 2𝑥 + 0. 𝑒 + 0. 𝑒 + 0. 𝑒 + 0. 𝑎 + 0. 𝑎  

s. t. 

3𝑥 + 2𝑥 + 𝑥 + 𝑒 = 1200 

2𝑥 + 3𝑥 + 2𝑥 − 𝑒 + 𝑎 = 1400 

𝑥 + 𝑥 + 𝑥 + 𝑎 = 600 

𝑥 + 𝑥 − 𝑥 + 𝑒 = 400 

𝑥 , 𝑥 , 𝑥 , 𝑒 , 𝑒 , 𝑒 , 𝑎 , 𝑎 ≥ 0 

 Phase 1: minimization of the sum of artificial variables. 

The standard form of the linear program is almost the same as the one previously presented. Only the objective function changes: 

Min   𝑧 = 𝑎 + 𝑎      or     Max   𝑧 = −𝒛 = −𝑎 − 𝑎  

The expression for 𝑧  is derived from the equations of the standard form: 𝑎 = 1400 − 2𝑥 − 3𝑥 − 2𝑥 + 𝑒  

𝑎 = 600 − 𝑥 − 𝑥 − 𝑥  

Thus,  𝑧 = −2000 + 3𝑥 + 4𝑥 + 3𝑥 − 𝑒 ,  and  maximizing  𝑧   is  equivalent to maximizing 𝑤 = 3𝑥 + 4𝑥 + 3𝑥 − 𝑒  with 𝑤 = 𝑧 + 2000. 

Figure  4.27  presents  the  equations  in  tabular  form  for  easier  visualization  (the notation  has  been  adjusted  to  clearly  distinguish  between  slack  and  artificial variables). 
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Figure 4.27.   Initial table for phase 1 

To  apply  Dantzig’s  criteria:  in  this  case,  the  vector 𝐕𝟐 has the highest positive coefficient,  so  it  is  the  vector  that  will  enter  the  basis,  and  the  vector 𝐄𝟑  has  the smallest ratio, so it leaves the basis (see Figure 4.28). 



Figure 4.28.   V2 enters the base, E3 leaves This leads to a modification of the basis, as shown in Figure 4.29 after the basis change. 



Figure 4.29.   Base change 

The Dantzig criteria indicate that 𝐕𝟑 enters the basis and 𝐀𝟏 leaves the basis (see Figure 4.30). 
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Figure 4.30.   V3 enters the base, A1 leaves Figure 4.31.   Base change 




Figure 4.32.   V1 enters the base, E1 leaves After  the  basis  change,  the  results  are  obtained  as  shown  in  Figure  4.31. 

According  to  the  Dantzig  criteria,  it  is  now  shown  that  𝐕𝟏 enters the base and 𝐄𝟏 

leaves (note that 𝐄𝟐 could also have entered the base, but a choice was made) (see Figure 4.32). 

After  the  new  basis  change,  the  results  are  obtained  as  shown  in  Figure  4.33. 

According to the Dantzig criteria, it is again shown that 𝐄𝟐 enters the basis and 𝐀𝟐 

leaves (note that 𝐄𝟑 could also have entered the base, as could 𝐀𝟐,  but a choice was made) (see Figure 4.34). 
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Figure 4.33.   Base change 



Figure 4.34.   E2 enters the base, A2 leaves After the basis change, the results are obtained as shown in Figure 4.35. 



Figure 4.35.   Base change 

Since  the  first  Dantzig  criterion  can  no  longer  be  applied,  the  optimization process for phase 1 is complete. The following initial solution is obtained: 𝑥 = 100,  𝑥 = 400,  𝑥 = 100,  𝑒 = 0,  𝑒 = 200,  𝑒 = 0,  𝑎 = 𝑎 = 0, and therefore 𝑧 = 0.   
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The  target  value  for  this  initial  solution  is  therefore  𝑧  =  1800.  Note  that  the artificial  variables  have  been  correctly  reduced  to  zero,  in  row  with  the  objective. 

Furthermore,  the  corresponding  vectors  are  no  longer  part  of  the  basis  vectors, consistent with the simplex approach. 

 Phase 2. Elimination of artificial variables. 

The previous table is modified as follows: 

a) Columns of artificial variables 𝐀𝟏 and 𝐀𝟐 are deleted. 

b) The  economic  function  from  the  initial  program  𝑧 = 4𝑥 + 3𝑥 + 2𝑥   is taken, but now expressed by replacing 𝑥 , 𝑥  and  𝑥 , which correspond to the basis vectors 𝐕𝟏, 𝐕𝟐and 𝐕𝟑,  with expressions in terms of the other variables. 



Figure 4.36.   Initial table for phase 2 

Standard program equations (with artificial variables cancelled out): 3𝑥 + 2𝑥 + 𝑥 + 𝑒      = 1200 

2𝑥 + 3𝑥 + 2𝑥 − 𝑒       = 1400 

𝑥 + 𝑥 + 𝑥          = 600 

𝑥 + 𝑥 − 𝑥 + 𝑒               = 400 

using the first three equations: 

𝑒

𝑒

𝑥 = 200 −

−  

2

2

𝑥 = 200 + 𝑒  

𝑒

𝑒

𝑥 = 200 +

−  

2

2
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Thus, 

𝑧 = 4𝑥 + 3𝑥 + 2𝑥 = 1800 − 𝑒  

Therefore, 𝑧 − 1800 =   −𝑒 . 

The  table  for  the  simplex  algorithm  is  shown  in  Figure  4.36.  Since  the  first Dantzig criterion cannot be applied, the optimal solution has already been reached (which was also the initial solution obtained in phase 1). Had this not been the case, the  simplex  algorithm  would  have  been  continued  until  an  optimal  solution  was found. Thus, the following values are obtained:  

𝑥 = 100,  𝑥 = 400,  𝑥 = 100,  𝑒 = 0,  𝑒 = 200,  𝑒 = 0,  and 𝑧 = 1800. 

Note that the first three equations were chosen to express 𝑥  ,  𝑥  and 𝑥  in terms of  the  variables  corresponding  to  the  vectors  not  in  the  basis.  However,  their expression involves 𝑒 , which is a base variable. The fourth equation allows for the evaluation of 𝑒  as a function of 𝑒  and 𝑒 , and the result of 𝑧 remains unchanged. 

4.6. Duality 

The general case of problem (P ), recently addressed, involves decision variables that can be defined as positive or arbitrary: 

⎧

Maximize z =

c x

⎪

(P )



⎨

⎪s. t. 

a x ≤ b  for i = 1, … , m

⎩

This can be compared to the following problem (P ):  

⎧

⎪

Minimize z =

b y

(P )



⎨

⎪s. t. 

a y ≥ c  for j = 1, … , n

⎩

Problems  (P )  and  (P )  are  referred  to  as  the   primal  and  the   dual  of  the  same linear  program.  Transitioning  between  the  primal  and  the  dual  involves  the following transformations: 
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1) Variable  exchange:  the  primal  variables  𝑥   (𝑗 = 1, … , 𝑛)  are  exchanged  with the dual variables 𝑦  (i = 1, … , 𝑚). 

2) Constant  exchange:  the  primal  constants  𝑐  (𝑗 = 1, … , 𝑛)  are  exchanged  with the dual constants 𝑏  (𝑖 = 1, … , 𝑚). 

3) Change  of  inequality  sign:  primal  constraints  expressed  with  inequality signs  (≤, ≥)  are  transformed  into  dual  constraints  with  the  opposite  inequality sign (≥, ≤). 

4) Exchange of maximization and minimization: a primal maximization problem corresponds to a dual minimization problem, and vice versa. 

These transformations establish the equivalence between the primal and the dual problems. The dual provides an alternative perspective on the primal,  highlighting the  marginal  costs  associated  with  the  constraints  and  allowing  the  derivation  of lower or upper bounds on the optimal value. 

To  provide  a  concrete  example,  consider  a  linear  program  with  two  decision variables (𝑛  =  2), 𝑥 ≥ 0 and 𝑥 ≥ 0, and four constraints (𝑚  =  4). This can be represented using a table, as shown in Figure 4.37. 



Figure 4.37.   Primal/dual comparison 

It is shown that solving the primal yields the solution of the dual and vice versa. 

More precisely: 

– The optimum value of 𝑧  is equal to the optimum value of 𝑧𝟏. 

– A  constraint  satisfied  as  an  equality  in  the  primal  corresponds  to  a  strictly positive variable in the dual, and vice versa. 
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– At  optimum,  the  𝑖 − th  dual  variable  is  equal  (to  the  nearest  sign)  to  the marginal values of the 𝑖 − th primal slack variable. 

EXAMPLE  4.3.–  Consider  the  following  linear  program  (primal)  with  two decision variables 𝑥  and 𝑥 , and with the following four constraints: 2𝑥 + 𝑥 ≤ 1000 

𝑥 + 𝑥    ≤ 800 

𝑥      ≤ 400 

𝑥      ≤ 700 

The objective function is: z = 20x + 30x  to be  maximized. 

The optimal solution to this problem is: 𝑥 = 100,  𝑥 = 700. 

The  dual  program  corresponding  to  the  primal  program  described  above  is  as follows: it has four decision variables 𝑦  ,  𝑦  ,  𝑦  and 𝑦 , and the following two dual constraints: 

2𝑦 + 𝑦 + 𝑦 ≥ 20 

𝑦 + 𝑦 + 𝑦 ≥ 30  

The objective function is:  

𝑧 = 1000𝑦 + 800𝑦 + 400𝑦 + 700𝑦   to be  minimized. 

To verify the announced result: the optimal value of 𝑧  is 23,000. The initial and optimal states for the maximization problem are shown in Figure 4.38. 



Figure 4.38.  Simplex solution 
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The optimal solution, yielding 𝑧𝟏 = 23000, is: 

𝑥 = 100,  𝑥 = 700,  𝑥 = 100,  𝑥 = 0,  𝑥 = 300, 𝑥 = 0  

For the optimal solution, the primal constraints are: 

900  ≤ 1000, 

800  =  800, 𝑦  strictly positive, 

100  ≤ 400, 

700  =  700, 𝑦  strictly positive. 

From the result on the slack variables, it is deduced that 𝑦  = 20 and 𝑦  = 10, which leads to the result:  

𝑧 =  800 × 20  +  700 × 10  =  23000. 

The  reader  can  verify  the  result  of  the  dual  program  by  using  the  simplex algorithm with the two-phase method. 

With  the  two-phase  method,  a  standard  form  of  the  primal  program  has  been used. However, in more general terms, the rules for transitioning from primal to dual are shown in Figure 4.39, where the various quantities are defined as follows: 𝑐

𝑎

𝑎

… 𝑎

𝑥

𝑏

𝑦

𝑐

𝑎

𝑎

… 𝑎

𝑥

𝑦

𝑪 =

𝑏

⋮  𝑨 =  

⋮

⋮

⋱

⋮

𝑿 =   ⋮  𝑩 =

𝒀 =



⋮

⋮

𝑐

𝑎

𝑎

… 𝑎

𝑥

𝑏

𝑦



Figure 4.39.   The different cases 
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4.7. Degeneracy 

It may occur that two quantities 𝑐  are equal, leading to uncertainty about which column should be included in the basis. In such cases, an arbitrary choice must be made to determine which column enters the basis. 

There may also be indeterminacy regarding which columns should be removed from the basis. This implies that the problem admits an infinite number of optimal solutions, and this indeterminacy must be considered when interpreting the results. 

A  simple  case  of  degeneracy  arises  when  the  hyperplane  representing  the objective  function  is  parallel  to  a  face  of  the  feasible  region  (the  polyhedron)  that contains an optimal solution. In this case, all the points on this face correspond to optimal solutions, leading to indeterminacy in the selection of the solution. There are an infinite number of solutions that satisfy the constraints and optimize the objective function, and this must be taken into account when analyzing the problem. 

EXAMPLE 4.4.– Consider the following linear program: the decision variables are 𝑥  and 𝑥 , with the following constraints: 

𝑥   ≤ 4 

𝑥 + 𝑥 ≤ 6 



Figure 4.40.  Graphical resolution. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

The objective function is as follows: 

𝑧 = 𝑥 + 𝑥       to be  maximized. 
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The graphical solution of the problem (see Figure 4.40) shows the degeneracy. 

All points on segment AB correspond to optimal solutions. 

4.8. Introduction to integer linear programming 

The  simplex  algorithm  typically  provides  real,  often  fractional,  solutions  for  a linear  program  (P).  When  integer  solutions  are  required,  an  initial  phase  called relaxation is performed, which consists of solving (P) while ignoring the integrality constraints. 

From  the  (real)  solution  obtained,  methods  such  as  “Gomory cuts”  or  the 

“Branch and Bound”  algorithm  are  used  to  find  an  integer  solution.  These techniques ensure an efficient exploration of the solution space, taking into account the integrality constraints into account to meet the requirements of the problem (P). 

4.8.1.  Gomory cuts 

Consider an integer linear program (P) defined by: 

Max z = 𝑐 𝑥 + 𝑐 𝑥 + ⋯ + 𝑐 𝑥

(P)

𝑠. 𝑡.                 𝑨𝒙  ≤ 𝑩



𝒙 ∈ N

To  solve  this  problem,  it  is  replaced  with  the  relaxed  linear  program  (P’) identical to (P), but with 𝒙  ∈   ℝ  



Figure 4.41.   Simplex table  

 at the optimality stage 
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The simplex algorithm is then applied to (P′), resulting in the optimal table, as shown in Figure 4.41. 

The base variables 𝑥  follow the equation: 

𝑥 +

𝛼 𝑥 = 𝛽  

[4.1] 

∈

where  HB represents the indices of the non-base variables. For any solution (real or integer),  each  coefficient  can  be  decomposed  into  an  integer  part  and  a  fractional part: 

𝛼 = 𝛼

+ 𝐹(𝛼 )    and    𝛽 = ⌊𝛽 ⌋ + 𝐹(𝛽 ), 

where  𝐹(𝑎 )  and  𝐹(𝛽 )    represent  the  fractional  parts,  with  0  ≤  𝐹  <  1. 

Substituting these expressions into equation [4.1] gives: 𝑥 +

𝛼 𝑥 +

𝐹 𝛼 𝑥 = ⌊𝛽 ⌋ + 𝐹(𝛽 ) 

∈

∈

Since ∑ ∈ 𝐹( 𝛼 )𝑥  is non-negative, it follows that: 

𝑥 +

𝛼 𝑥 ≤ ⌊𝛽 ⌋ + 𝐹(𝛽 ) 

[4.2] 

∈

Given that 𝑥  and  𝑥  are integers, the terms: 

𝑥 +

𝛼 𝑥    and    ⌊𝛽 ⌋  

∈

are integers, while 𝐹(𝛽 ) remains fractional. This leads to a specific constraint for integer solutions. 

By removing [4.1] from [4.2]: 

−

𝐹 𝛼 𝑥   ≤ −𝐹(𝛽 ) or

𝐹( 𝛼 )𝑥 ≥ 𝐹(𝛽 ) 

[4.3] 

∈

∈
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The  inequality  [4.3]  is  an  additional  constraint  that  any  integer  solution  must satisfy.  It  acts  as  a  limitation  on  the  solution  space  of  the  relaxed  program  (P’), reducing this space through “cuts”. These additional constraints are at the heart of the “Gomory cuts” method, also called Gomory truncations. 

EXAMPLE  4.5.–  Apply  the  method  to  the  introductory  example  of  this  chapter. 

Consider the following relaxed linear program: 

Maximize 𝑧  =  5𝑥  +  4𝑥    

s. t. 

0.2𝑥   +  0.125𝑥  + 𝑥   =  100  

0.1176𝑥  +  0.25𝑥  +  𝑥 =  100  

0.2222𝑥  + 𝑥   =  100  

0.3333𝑥  + 𝑥   =  100  

𝑥 ,  𝑥 ∈ ℝ  

where 𝑥 , 𝑥 , 𝑥  𝑎𝑛𝑑 𝑥  are slack variables. The non-integer solution obtained is: 𝑥   =  354.1076,      𝑥   =  233.4278,       𝑧  =  2704.2493. 

At  optimality,  the  simplex  table  is  shown  in  Figure  4.42,  where  the  row corresponding to V1 is singularized for further analysis. 



Figure 4.42.  Optimality simplex table 
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In  this  example,  apply  equation  [4.3]  to  the  simplex  table.  The  whole  and fractional parts of the relevant values are as follows:  

⌊7.0822⌋ = 7,      𝐹(7.0822) = 0.0822, 

⌊−3.5411⌋ = −4,      𝐹(−3.5411) = 0.4589, 

⌊354.1076⌋ = 354,     𝐹(354.1076) = 0.1076. 

This results in the inequality:  

0.1076 ≤ 0.0822𝑥 + 0.4589𝑥 . 

By substituting 𝑥  and 𝑥  with their respective expressions in terms of 𝑥  and 𝑥 : 𝑥 = 100 − 0.2𝑥 − 0,125𝑥       and      𝑥 = 100 − 0.1176𝑥 − 0.25𝑥 , the inequality becomes:  

0.1076 ≤ 0.0822𝑥 + 0.4589𝑥   

By replacing  x 3 and  x 4 with their respective functions as a function of  x 1 and  x 2, we obtain: 

𝑥 = 100 − 0.2𝑥 − 0.125𝑥       and      𝑥 = 100 − 0.1176𝑥 − 0.25𝑥 . 

Expanding and simplifying:  

0.1076 ≤ 0.0822(100 − 0.2𝑥 − 0.125𝑥 ) + 0.4589(100 −

0.1176𝑥 − 0.25𝑥 ). 

After combining terms, this simplifies to: 

0.1304𝑥 + 0.2315𝑥 ≤ 100  
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Figure 4.43.  Simplex solution. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

The  constraint  derived  from  the  Gomory  cut  is  added  to  the  relaxed  linear program, resulting in a new linear program! 
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Maximize 𝑧  =  5𝑥 +  4𝑥  

s. t. 

0.2𝑥  +  0.125𝑥  + 𝑥   =  100  

0.1176𝑥   +  0.25𝑥   + 𝑥   =  100  

0.2222𝑥  + 𝑥 =  100  

0.3333𝑥  + 𝑥 =  100   

0.1304𝑥  +  0.2315𝑥  + 𝑥   =  100  

The resolution of this linear program, after applying the Gomory cut, yields an integer solution: 

𝑥   =  355,     𝑥   =  232,     𝑧  =  2703. 

The  added  constraint,  𝑒,  is  represented  graphically  along  with  the  other constraints.  This  representation  removes  allowing  the  light  gray  area  (see Figure 4.44). The new constraint eliminates any ambiguity regarding the integer solution sought, ensuring that the solution is entirely clear and leaving no doubt about its validity. 



Figure 4.44.  Graphic resolution. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 
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EXAMPLE 4.6.– Consider the following integer linear program (P): Maximize  𝑧  =   7𝑥 +  9𝑥   

s. t. 

𝑥  +  3𝑥   ≤  6  

7𝑥  + 𝑥   ≤  35   

𝑥  , 𝑥 ∈ ℕ   

To  begin,  the  simplex  algorithm  is  applied  to  solve  the  relaxed  program  (P′), defined as: 

Maximize  𝑧  =   7𝑥  +  9𝑥   

s. t. 

𝑥  +  3𝑥   ≤  6  



7𝑥  + 𝑥  ≤ 35 

𝑥  , 𝑥 ∈ ℝ  

Figure 4.45 shows the resolution steps leading to an optimal value of z, which corresponds to: 

𝑥 = 4.95,   𝑥 = 0.35,    𝑧 = 37.8. 

To  obtain  a  Gomory  cut,  consider  the  row  corresponding  to  𝐕𝟐. The fractional parts of the values are computed as follows: 

⌊0.35⌋ = 0,    𝐹(0.35) = 0.35, 

⌊−0.05⌋ = −1,      𝐹(−0.05) = 0.95, 

⌊0.35⌋ = 0,      𝐹(0.35) = 0.35. 

Using these values, equation [4.3] is expressed as: 

0.35𝑥 + 0.95𝑥 ≥ 0.35. 
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Figure 4.45.  Program resolution (P’) 

Expression of 𝑥  and 𝑥  using the equations derived from the constraints: 𝑥 + 3𝑥 + 𝑥 = 6     gives     𝑥 = 6 − 𝑥 − 3𝑥 , 

7𝑥 + 𝑥 + 𝑥 = 35       gives        𝑥 = 35 − 7𝑥 − 𝑥 . 

Substituting  these  expressions  in  the Gomory  equation  results  in  the  additional constraint: 

7𝑥 + 2𝑥 ≤ 35. 

Defining  the  updated  program  (P′),  this  constraint  is  added  to  the  relaxed program (P′) to form the new linear program (P”): 

Maximize 𝑧  =   7𝑥  +  9𝑥   
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s. t. 

𝑥  +  3𝑥   ≤  6  

7𝑥  + 𝑥   ≤  35  

7𝑥  +  2𝑥   ≤  35  

𝑥  ,  𝑥   ∈ ℝ  

Solving (P”), as shown in Figure 4.46, gives a non-integer solution: 𝑥   =  4.895,      𝑥   =  0.368. 



Figure 4.46.  Program resolution (P’’) 

  

 Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science University , Wiley Online Library on [01/07/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Linear Programming     149 

To refine the solution, a new Gomory cut is added by considering the row 𝐕𝟏: 

⌊−0.105⌋ = −1,       𝐹(−0.105) = 0.895, 

⌊0.158⌋ = 0,     𝐹(0.158) = 0.158, 

⌊4.895⌋ = 4,     𝐹(4.895) = 0.895. 

Using the values derived, relation [4.3] is expressed as: 0.895𝑥 + 0.158𝑥 ≥ 0.4895. 

Substituting 𝑥  and 𝑥 :  

𝑥 = 6 − 𝑥 − 3𝑥 , 

𝑥 = 35 − 7𝑥 − 2𝑥 , 

into the inequality results in the following Gomory cut: 

2𝑥 + 3𝑥 ≤ 10. 

A new program (P′′′) is obtained, by adding the above constraint: Maximize 𝑧  =   7𝑥  +  9𝑥   

s. t. 

𝑥  +  3𝑥   ≤  6  

7𝑥  + 𝑥   ≤  35   

7𝑥  +  2𝑥   ≤  35  

2𝑥  +  3𝑥   ≤  10  

𝑥  , 𝑥   real numbers  
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Figure 4.47.  Program resolution (P’’’). For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

Figure 4.47 presents the steps in the simplex algorithm for solving the program (P′′′). 

This time, optimality is achieved with integer values for the decision variables: 𝑥   =  5,     𝑥   =  0,     𝑧  =  35. 

This result was obtained after the addition of two Gomory cuts. 
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4.8.2.  Branch and Bound algorithm 

The  Branch  and  Bound  algorithm  solves  integer  linear  programming  problems by exploring a tree of possible solutions in a structured manner. The first step is to solve  the  relaxed  linear  program  to  obtain  an  optimal  solution,  even  if  it  is  not integer.  Then,  the  tree  is  built  by  dividing  the  problem  into  subproblems  by imposing additional constraints, allowing for the exclusion of certain branches and thus reducing the search time. 

Suppose a linear maximization program with two integer decision variables, 𝑥  

and 𝑥 , provides the following relaxed solution:  

𝑥   =  3.14  and 𝑥   =  5.47. 

To  find  the  desired  integer  solution,  additional  constraints  are  imposed.  For example, for 𝑥 , the hypotheses are tested:  

𝑥 ≤  3   or   𝑥   ≥  4. 

To solve the initial problem using the Branch and Bound algorithm, assumptions are  introduced  to  explore  subdomains  of  integer  solutions.  Consider  a  linear maximization  program  (P)  with  two  integer  decision  variables,  𝑥   and  𝑥 ,  which provides a relaxed solution: 

𝑥 =  3.14   and   𝑥   =  5.47. 

The process can be outlined as follows: 

1)  Division into subproblems  

For 𝑥 , two branches are created by testing the following additional constraints: 

– (P1): program (P) with the additional constraint 𝑥 ≤  3; 

– (P2): program (P) with the additional constraint   𝑥   ≥  4 .  

2)  Solving subproblems  

Each  subproblem  is  solved  by  applying  the  simplex  algorithm  to  the  new constraints. 

3)  Selection criteria  

The solution is checked to see if it is integer or if a branch can be eliminated (for instance, in the case of infeasibility or if it cannot improve the overall solution). 
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4)  Recursive exploration  

These steps are repeated for each subproblem until all the solutions respect the integrality constraints. 

5)  Stopping criterion  

The exploration of branches stops when all variables have integer values or when a branch cannot improve the solution. 

Note that the case 3 < 𝑥 < 4 is not considered, as 𝑥  must be an integer. This observation  simplifies  the  tree  structure  of  the  Branch  and  Bound  algorithm  by limiting  the  subproblems  to  cases  where  𝑥 ≤ 3  and  𝑥 ≥ 4.  These  hypotheses ensure  that  each  branch  respects  the  integrality  constraint,  facilitating  the progression towards an integer optimal solution. 



Figure 4.48.   Start of a tree structure 

Consider  𝑧 , 𝑧   and  𝑧 ,  which  correspond  to  the  values  of  𝑧  obtained  from  the relaxed  linear  programs  (P), (P1)  and  (P2),  respectively.  These  values  allow  the creation of an initial tree structure, as shown in Figure 4.48. This structure facilitates the  exploration  of  sub-domains  in  the  Branch  and  Bound  algorithm  by  testing  the additional  constraints  𝑥 ≤ 3  and  𝑥 ≥ 4.  This  helps  us  to  identify  an  optimal integer solution while reducing the search space. 

If 𝑧   ≥   𝑧 ,  it becomes  worthwhile  to  explore  the program (P2).  This  leads  to the  creation  of  two  additional  sub-programs,  (P21)  and  (P22),  as  represented  in Figure 4.49. 
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Figure 4.49.   Two new subprograms, P21 and P22 

The  comparison  among  𝑧 , 𝑧  and 𝑧   determines  the  next  direction  to  follow when  developing  the  tree  structure.  This  method,  which  relies  on  branching (separation)  and  results  analysis  (evaluation),  is  why  the  Branch  and  Bound technique is also referred to as the separation–evaluation method. 

Not all branches of the tree are explored. Branches that are deemed  sterile  or are pruned correspond to the following cases: 

– No feasible solution exists within the branch. 

– The solution obtained is feasible, meaning all variables gave integer values, so further branching is unnecessary. 

– The value of 𝑧 obtained is lower than the current lower bound (in the case of maximization), meaning the branch is not promising for finding an optimal solution. 

EXAMPLE  4.7.–  Revisiting  the  introductory  example  from  this  chapter,  the solution to the relaxed linear program (P) is as follows: 𝑥   =  354.1076,      𝑥   =  233.4278,       𝑧  =  2704.2493. 
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To continue the search for an integer solution, program (P) is divided into two sub-programs by introducing the constraints:  

𝑥 ≤ 354   and   𝑥 ≥ 355. 

Figure 4.50 shows the initial tree structure corresponding to this separation. 



Figure 4.50.  Separation into two sub-programs (P1) and (P2) Program  (P2)  provides  an  integer  solution  with  𝑧 = 2703.  Since  further separation is unnecessary, this program is retained. 

Program  (P1),  however,  results  in  a  non-integer  solution  with  𝑧 = 2703.91.  It can  be  divided  (separated)  into  two  sub-programs,  (P3)  and  (P4),  as  shown  in Figure 4.51. 

(P3) yields an integer solution, but with 𝑧 = 2702 < 2703. 

(P4) produces a non-integer solution with 𝑧 = 2700.46 < 2703. 

Consequently, an optimal solution is obtained from program (P2). 
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Figure 4.51.  Separation into two sub-programs (P3) and (P4) EXAMPLE  4.8.–  Knapsack  problem.  This  problem  involves  optimizing  the  total value of objects placed in a bag while respecting a maximum capacity constraint 𝑊

(e.g. a weight limit). Each object is characterized by its weight 𝑤  and its value  𝑣 .  The  goal  is  to  determine  which  objects  to  include  in  the  bag  to maximize  the  total  value  without  exceeding  the  maximum  capacity  𝑊

(see 

Figure 4.52). This problem is a classic in combinatorial optimization. 



Figure 4.52.  The knapsack problem 
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The knapsack problem is formulated as an integer linear program that maximizes the total value of objects: 

𝑧 = ∑

𝑥 𝑣   

where 𝑥  is a Boolean variable (integer), such that: 

𝑥 = 1  if object 𝑖 is in the knapsack  

0 otherwise

The capacity constraint limits the total weight and is expressed as: 

∑

𝑥 𝑤 ≤ 𝑊



For the given data, the integer linear program (P) becomes: Maximize 𝑧  =  4𝑥 + 2𝑥 + 10𝑥 + 𝑥 + 2𝑥   

subject to        12𝑥 + 𝑥 + 4𝑥 + 𝑥 + 2𝑥 ≤ 15  

where 𝑥 ∈ {0,1}, ∀𝑖 = 1, … ,5. 

These  constraints  are  implicitly  handled  in  the  simplex  algorithm  by  the condition 0 ≤ 𝑥 ≤ 1, for each 𝑖,  𝑖 ∈ {1, … ,5}. 

Upon  solving  the  relaxed  linear  program  (P′)  using  the  simplex  algorithm,  the following solution is obtained: 

𝑥 = 0.583,     𝑥 = 𝑥 = 𝑥 = 𝑥 = 0,      𝑧 = 17.333. 

This solution is not valid because 𝑥  is not integer. The relaxed linear program (P′) can be divided into two sub-programs: 

– (P1):  adding  the  constraint  𝑥 ≤ 0,  which  fixes 𝑥 = 0.  The  solution obtained is integer: 𝑥 = 0, 𝑥 = 𝑥 = 𝑥   =   𝑥 =  1, 𝑧  =  15. 

– (P2):  adding  the  constraint  𝑥 ≥ 1. The  solution  is  non-integer:  𝑥 = 0, 𝑥 = 0,    𝑥 = 0.75,   𝑥 = 𝑥 = 0, 𝑧 = 11.5. 

There  is  no  need  to  separate  (P2),  as  𝑧 = 11.5 < 15.  Therefore,  an  optimal solution is provided by (P1). 
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EXAMPLE 4.9.– Let the linear program (P⋇) be 

Maximize 𝑧  =  8𝑥 +  5𝑥    

s. t. 

𝑥  + 𝑥   ≤  6  

9𝑥  +  5𝑥 2 ≤  45  

𝑥 , 𝑥   ∈ ℕ  

The relaxed version (P′) of (P) gives the solution:  

𝑥 = 3.75, 𝑥 = 2.25, 𝑧 = 41.25. 

To obtain an integer solution, (P′) is divided into two sub-programs: 

– (P1) with the constraint 𝑥 ≤ 3, giving 𝑥 = 3, 𝑥 = 3 and 𝑧 = 39. 

– (P2) with the constraint 𝑥 ≥ 4, giving 𝑥 = 4,   𝑥 = 1.8  and 𝑧 = 41. 

The value 𝑧  =  41  >  39 suggests exploring (P2), which is divided into: 

– (P3) with the constraint 𝑥 ≤ 1, giving 𝑥 = 4.4, 𝑥 = 1 and 𝑧 = 40.5. 

– (P4)  with  the  constraint 𝑥 ≥ 2,  which  has  no  solution  and  is  therefore abandoned. 

Since 𝑧  =  40.5  >  39 in (P3), (P3) is further divided into: 

– (P5) with the constraint 𝑥 ≤ 4, giving 𝑥 = 4, 𝑥 = 1  and 𝑧 = 37. 

– (P6) with the constraint 𝑥 ≥ 5, giving 𝑥 = 5, 𝑥 = 0 and  𝑧 = 40. 

The solution of (P6), where 𝑧  =  40, is better than the solution of (P1) and (P5). 

It is therefore an optimal solution. 
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Elements of Graph Theory 

 

  

CONCEPTS COVERED IN THIS CHAPTER.– 

Graphs  serve  as  powerful  tools  for  modeling  a  broad  spectrum  of  problems. 

Their origins trace back to 1741 with Euler’s solution to the Königsberg bridge problem. Over time, graph theory has been significantly advanced by numerous mathematicians, including König, Cayley, Menger, Berge, Erdös and others. 

This  chapter  introduces  the  fundamental  concepts  of  graph  theory,  with applications to be explored in subsequent chapters. 

It  begins  by  defining  a  graph,  examining  its  graphical  and  tabular representations, and introducing a range of specialized terminology (which is not always consistent across the literature). 

The  discussion  then  moves  to  the  transitive  closure  of  a  graph  and  its decomposition into strongly connected components of directed graphs. 

A section focuses on specific types of graphs and trees, exploring the concept of spanning trees. 

The chapter concludes with an exploration of extremum spanning trees, featuring a  discussion  of  prominent  algorithms,  including  those  of  Dijkstra,  Sollin  and Kruskal. 

References: [DRO 87, FAU 79, MOU 80, PHE 75]. 
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5.1. Definition and representations of a graph 

A  graph 𝐺 is generally defined as a pair  𝑋, 𝑈 , where 𝑋 is a set of vertices (or nodes)  and  𝑈  is  a  set  of  edges,  represented  by  ordered  pairs  of  elements  from  𝑋. 

Formally, 𝐺 = 𝑋, 𝑈  can be expressed as follows: 

𝐺 = 𝑥 , 𝑢 ,  𝑥 ∈ 𝑋,  𝑢 ∈ 𝑋 × 𝑋 

5.1.1.   Graphical representation 

The  elements  of  the  set  𝑋  are  represented  as   points   or   vertices,  while  the elements of the set 𝑈 are represented as  segments,  branches  or  arcs  connecting the vertices. 

EXAMPLE.5.1.– Figure 5.1 shows a graph with seven vertices and 10 arcs. 



Figure 5.1.  Example of a graph 

A graph is referred to as a  directed graph  when each arc has a specified direction (see  Figure  5.2).  In  this  case,  the  term   arc  means  that  there  is  an  orientation associated with the connection. 



Figure 5.2.   Arc of a directed graph 

Conversely,  a  graph  is  described  as   undirected graphs  when  its  arcs  lack  a specific  direction  (see  Figure  5.3).  In  such  cases,  the  connections  are  referred  to simply as  edge s. 
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Figure 5.3.   Edge of an undirected graph 

Note that the graph in Figure 5.1 is a directed graph. 

It  is  often  necessary  to  assign  each  arc  or  edge  one  or  more  numerical  values, such  as  travel  cost  or  capacity,  when  the  graph  represents  a  transport  network.  In such cases, the result is called a  valued graph. 

Additionally, multiple arcs or edges connect a pair of vertices, corresponding to several possible means of transport between them. 

5.1.2.   Tables associated with a graph 

A graph can be represented using various data structures, with several possible representations available. 

 Following or preceding a vertex 

This  representation,  also  known  as  a   graph dictionary,  involves  listing  the vertices that directly follow or precede each vertex in the graph. 

EXAMPLE 5.2.– Representation of the following and previous tables: Figure 5.4 

shows the following and preceding tables for the graph in Figure 5.1. 

 

Figure 5.4.  Dictionaries 

 Adjacency matrix 

An  adjacency  matrix  is  a  Boolean matrix  where  both  rows  and  columns correspond to vertices. Each cell of the matrix contains a value of 1 or 0, indicating 
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the presence or absence of an arc from the vertex corresponding to the row to the vertex corresponding to the column. 

EXAMPLE  5.3.–  The  adjacency  matrix  of  the  graph  shown  in  Figure  5.1  is presented in Figure 5.5. 



Figure 5.5.  Adjacency matrix. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

Reading  the  matrix  from  row  to  column  provides  the  dictionary  of  successors, while  reading  it  from  column  to  row  provides  the  dictionary  of  predecessors.  In particular,  elements  on  the  main  diagonal  indicate  the  presence  of  loops,  which  is not the case in Example 5.1. 

The adjacency matrix has the following characteristics: 

– For an undirected graph, the matrix is symmetrical. 

– If the edges are valued, the 1s are replaced by the numerical values associated with the corresponding edge. In this case, the matrix transitions from being Boolean to a  cost matrix. 

– It  is  also  possible  to  represent  the  matrix  by  leaving  empty  cells  where  a  0 

would otherwise be placed. 

5.2. Main concepts and technology 

This section distinguishes between concepts specific to directed graphs and those specific to undirected graphs. 

However, it is important to note that any undirected graph can be equivalently represented  as  a  directed  graph  by  replacing  each  edge  with  two  arcs  of  opposite directions connecting the same vertices. 
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5.2.1.   Elements of a graph  

 Elementary components 

The  constituent  elements  of  a  graph  are  referred  to  as   vertices,  whether  for  a directed  or  undirected  graph.  However,  the  terms  “arcs”  and  “edges”  are  used differently  depending  on  the  graph  type.  For  a  directed  graph,  the  term  “arc” 

designates connections between vertices. In contrast, for undirected graphs, the term 

“edge” is preferred to represent connections between vertices. 

Additionally,  a  branch  whose  origin  and  end  coincide  is  called  a  “loop”    (see Figure 5.6). 



Figure 5.6.   A loop 

 Combining these components 

1) In a directed graph, 

– A  “path”  is  a  sequence  of  adjacent  arcs  that  allows  movement  from  one vertex to another. 

– A “circuit” is a path whose initial vertex coincides with its final vertex. 

– An “elementary path”    is one in which all vertices are distinct. 

– A “Hamiltonian path” is a path that visits each vertex of the graph exactly once. 

– A “Hamiltonian circuit” is a circuit that traverses all the vertices of the graph exactly once. 

2) In an undirected graph, 

– A “chain” is a sequence of adjacent edges that allows movement from one vertex to another. 

– A “cycle” is a chain where the initial and final vertices coincide. 

– An “elementary chain”    is one in which all vertices are distinct. 

– A “Eulerian chain” is a chain that uses each edge of the graph exactly once. 

– A “Eulerian cycle” is a chain that traverses all the edges of the graph exactly once. 
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EXAMPLE  5.4.–  The  “Königsberg  bridge  problem”,  also  known  as  Kaliningrad bridge problem, is a famous problem in graph theory solved by Euler. 

The  city  is  divided  by  the  “Pregolya  River”  and  is  connected  by  seven bridges linking four districts: North (N), Center (C), South (S) and East (E) (see Figure 5.7). The challenge is to determine whether a walker can complete a tour by crossing each bridge exactly once. 



Figure 5.7.  Königsberg bridges. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

The  situation  of  Königsberg’s  bridges  can  be  represented  by  a  graph  (see Figure 5.8), where the edges represent the bridges and the vertices represent the districts:  N  for  North,  C  for  Center,  S  for  South  and  E  for  East.  This representation also helps to clarify the connections between neighborhoods and bridges. There are two bridges connecting the North (N) and Center (C) districts, as well as two bridges linking the Center (C) and South (S) districts. 

 

Figure 5.8.  Problem graph 
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The  problem  at  hand  is  to  find  the  “Eulerian cycles”  in  the  graph.  Given  the simplicity of the graph, it is possible to list all possible cycles in order to check if an  Eulerian cycle  exists (see Figure 5.9). 

As shown, none of the cycles listed meets the criteria for an Eulerian cycle in the Königsberg bridge graph. Specifically, none of these cycles traverse each edge exactly once or return to the starting point (see Figure 5.9). 

Therefore, the problem of finding an Eulerian cycle in this graph has no solution. 



Figure 5.9.  List of  

 possible cycles 

The following theorem is stated (Theorem 5.1). 

THEOREM 5.1 (EULER–HIERHOLZER).– 

A connected undirected graph  G  with even degree for all vertices ⇔ 𝑮 admits an Eulerian cycle. 

For a directed graph, the following two propositions are equivalent: 

– The graph has an Eulerian circuit. 

– The graph is strongly connected, and each vertex is both the origin and the end of the same number of arcs. 
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EXAMPLE 5.5.– Consider the undirected graph shown in Figure 5.10. 



Figure 5.10.  Eulerian cycle search 

Each vertex of this graph has an even degree, either 2 or 4. Consequently, this graph admits an Eulerian cycle. An example of an Eulerian cycle in this graph can be seen by following the vertex sequence: 𝑋 − 𝑋 − 𝑋 − 𝑋 − 𝑋 − 𝑋 −

𝑋 − 𝑋  . 



EXAMPLE 5.6.– Consider the directed graph shown in Figure 5.11. It can be seen that there is an Eulerian circuit: 𝑋 − 𝑋 − 𝑋 − 𝑋 − 𝑋 − 𝑋 − 𝑋 . All vertices have one origin and one endpoint, except for 𝑋 , which has two origins and two endpoints. 



Figure 5.11.  Eulerian cycle search 

 Other definitions 

The  “degree”  of  a  vertex  in  an  undirected  graph  is  defined  as  the  number  of edges having one of their endpoints at this vertex. Each loop is counted twice. The sum  of  the  degrees  of  all  the  vertices  in  a  graph  is  equal  to  twice  the  number  of edges in the graph. 
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In the case of a directed graph, the  exterior half-degree of a vertex corresponds to the number of arcs originating at the vertex in question (see Figure 5.12). 



Figure 5.12.   Exterior half-degree = 2 

The  interior half-degree  of a vertex corresponds to the number of arcs ending at the vertex in question (see Figure 5.13). 



Figure 5.13.   Interior half-degree = 2 

 Main types of graphs 

 A connected graph  (or  weakly  connected  for  a  directed  graph)  is  a  graph  in which  there  is  at  least  one  chain  connecting  each  pair  of  vertices  𝑥 , 𝑥   of  the graph. Figure 5.14 shows this property. 



Figure 5.14.   Connectedness 

Weak connectivity is an equivalence relation on the set of vertices of the graph, satisfying the following properties: 

– Reflexivity: a vertex 𝑋  is connected to itself. 

– Symmetry:  if  the  vertex  𝑋   is  connected  to  vertex  𝑋 ,  then  there  is  a  chain linking vertex 𝑋  to vertex 𝑋  .  

– Transitivity:  if  the  vertex  𝑋   is  connected  to  vertex  𝑋   and  vertex  𝑋   is connected to vertex 𝑋 , then there is a chain connecting vertex 𝑋  to vertex 𝑋 . 
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This equivalence relation allows the partitioning of the set of vertices into related components, which are disjoint parts of the set of vertices. The union of all related components gives the complete set of vertices in the graph. 

 A strongly connected directed graph  is  one  in  which  there  is  at  least  one  path connecting each pair of vertices  𝑋 , 𝑋  in both directions: from 𝑋  to 𝑋  and from 𝑋  to 𝑋 . Unlike weak connectivity, connections between vertices here are made via directed  paths.  The  difference  lies  in  the  use  of  directed  paths  instead  of  chains. 

Strong connectivity is also an equivalence relation on all the vertices of the graph, with  the  properties  of  reflexivity,  symmetry  and  transitivity.  Strongly  connected components are a partition of the set of vertices in the graph. 

 A complete directed graph is one in which there is always an arc between any two vertices. In other words, in a complete graph, if the arc  𝑋 , 𝑋  does not belong to the graph, then the arc  𝑋 , 𝑋  belongs to the graph. This means that every pair of vertices is connected by an edge. 

For an undirected graph,  a tree is a cycle-free connected graph. This means that there is a unique chain between each pair of vertices, and no cycle is present in the graph. For a directed graph, the definition is the same, provided “chain” is replaced by “path”, “connected” by “weakly connected” and “cycle” by “circuit”. 

5.2.2.   Analysis of graph structure 

The  following  sections  provide  key  concepts  that  simplify  graph  solving methods. 

 Finding circuits in a directed graph 

Loops are eliminated as elementary circuits, either directly on the graph or on the Boolean  matrix  (indicated  by  the  presence  of  non-zero  elements  on  the  main diagonal). 

All  vertices  that  are  either  origin-only  (see  Figure  5.12)  or  endpoint-only  (see Figure 5.13) are progressively eliminated. 

If, with this procedure, the graph is deleted (reduced to an empty set of vertices), then the graph contains no circuits. 
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EXAMPLE 5.7.– Consider the directed graph shown in Figure 5.15. 



Figure 5.15.  Directed graph 

From  the  graph  in  Figure  5.15,  eliminate  𝑋 ,  which  is  an  arrival  vertex,  then 𝑋  for the same reason, and finally 𝑋  for the same reason (see Figure 5.16). 

From the Boolean adjacency matrix (see Figure 5.17): 

– 𝑋 : null line (𝑋  is only an output); elimination of row and column 𝑋 . 

– 𝑋 : null row (𝑋  is only an output): elimination of row and column 𝑋 . 

– 𝑋 : becomes a null row (i.e. an output); elimination of row and column 𝑋 .   

This leaves 𝑋 , 𝑋  and 𝑋  with null rows, which form a circuit. 

 

Figure 5.16.  Elimination process  

 

Figure 5.17.  Elimination using the adjacency matrix 
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 Level decomposition of a directed graph 

Level  decomposition  is  a  technique  used  to  order  the  vertices  of  a  connected directed graph without circuits, in order to avoid backtracking. 

Two techniques are presented for performing this decomposition: 1)  From the graph:  this  method  consists  of  eliminating,  at  each  iteration 𝑘,  all vertices that have no predecessors. These vertices form level 𝑁 . Initially, the first level consists of vertices with no predecessors. Then, at each iteration, vertices with no predecessors in the current graph are eliminated and placed in the next level. This process is repeated until all vertices have been assigned to their respective levels. 

2)  From the dictionary of predecessors:  this  method  uses  a  predecessor dictionary,  which  associates  each  vertex  with  the  vertices  directly  connected  to  it. 

Vertices  with  no  predecessor  constitute  the  first  level.  Then,  at  each  iteration 𝑘, vertices  belonging  to  previous  levels  are  removed  from  the  predecessor dictionary. Vertices with no predecessor in the dictionary at iteration 𝑘 are placed in level 𝑁  . 

EXAMPLE 5.8.– Consider the graph in Figure 5.18. 



Figure 5.18.  Graph to explore 

Decomposition  from  the  graph  (see  Figure  5.19)  and  decomposition  from  the dictionary  of  predecessors  (see  Figure  5.20)  both  lead  to  the  graph  shown  in Figure 5.21, which is redrawn according to the levels. 
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Figure 5.19.  Decomposition from the graph 



Figure 5.20.  Decomposition from the dictionary of predecessors Figure 5.21.  Representation of the graph by levels 
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5.3. Transitive closure of a graph’s vertices  

The   transitive closure of  a vertex 𝑋   in  a  graph  is  the subset  of vertices  in  the graph, “including 𝑋 ”, such that there is a path from 𝑋  to each of them. The Boolean adjacency matrix 𝑨 is helpful in finding paths between two vertices. 

Calculating  𝑨𝟐 = 𝑨 × 𝑨  provides  paths  of  length  2.  The  matrix  multiplication refers  to  “logical”  matrix  multiplication,  which  uses  “logical”  multiplication (identical to arithmetic multiplication) and logical addition (distinct from arithmetic addition, where 1  +  1  =  1). Similarly, 𝑨𝟑 represents paths of length 3, etc. 

By  superimposing,  i.e.  logically  adding  𝑨, 𝑨𝟐,  𝑨𝟑, … , 𝑨𝒏 𝟏, all  possible  paths between two vertices (indicated by 1’s) in a graph with 𝑛   vertices are obtained. 

Adding the identity matrix 𝟏  (with 1’s on the main diagonal and 0’s elsewhere) represents the path from a vertex 𝑋  to itself. 

As  a  result,  the  matrix  𝑮  =  𝟏  +  𝑨  + 𝑨𝟐  + … + 𝑨𝒏 𝟏  provides  the  graph’s transitive closure. The row of 𝑮   corresponding   to vertex 𝑋  indicates the transitive closure of the vertex 𝑋 , with 1’s marking reachable vertices. 

EXAMPLE 5.9.– Consider the Boolean adjacency matrix  A  from Example 5.8. 

1 1 1 0 0 0

⎡

⎤

⎢0 1 0 1 0 0⎥

𝑨 = ⎢0 1 1 1 1 0⎥   

⎢0 0 0 1 0 1⎥

⎢0 0 0 1 1 1⎥

⎣0 0 0 0 0 1⎦

Calculate 𝑨𝟐,  𝑨𝟑, 𝑨𝟒, 𝑨𝟓.  

1 1 1 1 1 0

1 1 1 1 1 1

⎡

⎤

⎡

⎤

⎢0 1 0 1 0 1⎥

⎢0 1 0 1 0 1⎥

𝑨𝟐 = 𝑨 × 𝑨 = ⎢0 1 1 1 1 1⎥ 𝑨𝟑 = 𝑨 × 𝑨 = ⎢0 1 1 1 1 1⎥ 

⎢0 0 0 1 0 1⎥

⎢0 0 0 1 0 1⎥

⎢0 0 0 1 1 1⎥

⎢0 0 0 1 1 1⎥

⎣0 0 0 0 0 1⎦

⎣0 0 0 0 0 1⎦

1 1 1 1 1 1

⎡

⎤

⎢0 1 0 1 0 1⎥

𝑨 = 𝑨 × 𝑨 = ⎢0 1 1 1 1 1⎥ = 𝑨   

⎢0 0 0 1 0 1⎥

⎢0 0 0 1 1 1⎥

⎣0 0 0 0 0 1⎦
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1 1 1 1 1 1

⎡

⎤

⎢0 1 0 1 0 1⎥

𝑨𝟓 = 𝑨 × 𝑨 = ⎢0 1 1 1 1 1⎥ = 𝑨𝟑  

⎢0 0 0 1 0 1⎥

⎢0 0 0 1 1 1⎥

⎣0 0 0 0 0 1⎦

𝟏  + 𝑨𝟑   =   𝑨𝟑 provides all transitive closures: 

– Transitive closure of 𝑋 :  𝑋 , 𝑋 , 𝑋 , 𝑋 , 𝑋 , 𝑋  

– Transitive closure of 𝑋 ∶   𝑋 , 𝑋 , 𝑋  

– Transitive closure of 𝑋 ∶   𝑋 , 𝑋 , 𝑋 , 𝑋 , 𝑋  

– Transitive closure of 𝑋 ∶   𝑋 , 𝑋  

– Transitive closure of 𝑋 ∶   𝑋 , 𝑋 , 𝑋  

– Transitive closure of 𝑋 ∶    𝑋  

5.4.  Decomposition  of  a  directed  graph  into  strongly  connected components 

Several  techniques  can  be  used  to  decompose  a  directed  graph  into  strongly connected  components.  The  simplest  method  involves  determining,  for  any  given vertex 𝑋, the list of all its predecessors (both immediate or distant) and the list of all its successors (both immediate or distant). The vertices that appear in both lists form a strongly connected component. Thus, the intersection of these two lists represents the strongly connected component to which the vertex 𝑋 belongs. 

EXAMPLE 5.10.– Consider the graph shown in Figure 5.22. 



Figure 5.22.  Graph to explore 
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For 𝑋 : 

– List of predecessors:  𝑋 ,  𝑋 , 𝑋 ,  𝑋   

– List of successors:  𝑋 , 𝑋 , 𝑋 , 𝑋 ,  𝑋 ,  𝑋  

– Strongly connected component:  𝑋 , 𝑋 ,  𝑋 ,  𝑋  

Two vertices remain 𝑋  and 𝑋 . 

For 𝑋 : 

– List of predecessors:  𝑋 , 𝑋 , 𝑋 , 𝑋 , 𝑋  

– List of successors:  𝑋 , 𝑋  

– Strongly connected component:  𝑋  

For 𝑋 : 

– List of predecessors:  𝑋 , 𝑋 , 𝑋 , 𝑋 , , 𝑋 , 𝑋  

– List of successors:  𝑋  

– Strongly connected component:  𝑋  

This results in the three strongly connected components of the graph:  

– 𝐴  =    𝑋 , 𝑋 , , 𝑋 , 𝑋 , 

– 𝐵  =   𝑋 , 

– 𝐶  =   𝑋  

as shown in Figure 5.23. 



Figure 5.23.  Strongly related components 
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NOTE 5.1.– This result can be obtained from the graph’s transitive closure matrix by placing the vertices in the corrected order. 



Figure 5.24.  Strongly related components 

Indeed,  on 𝑨𝟒,  when  reordered,  the  strongly  connected  components  can  be clearly seen (highlighted in gray in Figure 5.24). 

5.5. Trees 

5.5.1.   Introduction 

Let 𝐺 = 𝑋, 𝑈  be an undirected finite graph. Each edge 𝑢 ∈ 𝑈, 𝑢 = 𝑥 , 𝑥 , is associated with a number 𝑑 𝑢 = 𝑑 , which can be positive, negative or zero, and is called  length. This length can represent various parameters, such as distance, travel time, transport cost, hourly capacity, reliability index, etc. 

In  this  graph,  the  objective  is  to  find  a  subset  of  edges  that  provides  a  direct  or indirect link between every pair of vertices. There are generally several such subsets that satisfy this condition. Among these, the goal is to find the one that minimizes (or maximizes)  an  objective  function  that  depends  on  the  lengths  of  the  selected  edges. 

Typically, the values on the edges correspond to the values of this objective function. 

This problem is known as  extremum  spanning tree (minimum or maximum) and is frequently encountered in networks. 

5.5.2.  Trees in a graph 

In a graph, there is a relationship between the number of vertices 𝑛, the number of edges 𝑚 and the number of related components 𝑝, which is stated here without proof: 𝑛  −  𝑝 

𝑚 
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The number 𝑛 𝐺 , called the  cyclomatic number,  is defined as: 𝑛 𝐺 = 𝑚 − 𝑛 + 𝑝, 

This number is non-negative (𝑛 𝐺

0) and plays an important role in the study 

of  graphs.  It  has  several  interesting  properties.  A  theorem,  also  presented  without proof, highlights the significance of this number. 

THEOREM  5.2.–  The  cyclomatic  number  𝑛 𝐺   of  a  graph  𝐺  is  equal  to  the number of independent cycles. 

The cyclomatic number 𝑛 𝐺  is an essential concept in the study of graphs and their topological properties. It provides information on the connectivity and structure of  the  graph  and  is  widely  used  in  the  fields  such  as  networks,  optimization, algorithmics and more. 

DEFINITION 5.1.– A  tree is a finite, connected, acyclic (cycle-free) graph. 

This  is  the  simplest  structure  with  these  properties.  Figure  5.25  shows  some examples of trees. 



Figure 5.25.   Some trees 

THEOREM 5.3.– A graph 𝐺 of order 𝑛 (with 𝑛 vertices) is a tree if and only if one of the following six equivalent properties holds: 

1) 𝐺 is connected and acyclic; 

2) 𝐺 is acyclic and has exactly  𝑛 − 1  edges; 

3) 𝐺 is connected and has exactly  𝑛 − 1  edges; 

4) 𝐺 is connected, and deleting an edge makes it unconnected; 
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5) 𝐺 is acyclic, and adding an edge between two non-adjacent vertices creates exactly one cycle; 

6) any pair of vertices is connected by exactly one chain. 

These  six  properties  are  equivalent  and  describe  different  characteristics  of  a graph that qualify it as a tree. 

Trees are widely used in various disciplines and fields to organize and represent information.  They  play  a  key  role  in  classification,  decision  processes,  computer architecture,  language  structure  (such  as  sentence  decomposition),  distribution networks and many other areas. 

5.5.3.   Spanning tree in a graph 

A spanning tree of a graph 𝐺 is a partial graph that contains  all the vertices  of 𝐺, but  only some of its edges, and has a tree structure. 

THEOREM  5.4.–  A  necessary  and  sufficient  condition  for  a  graph  𝐺  to  have  a spanning tree is that it must be connected. 

In  other  words,  if  the  graph  𝐺  is  not  connected,  it  consists  of  several  disjoint connected components and cannot have a spanning tree. On the other hand, if 𝐺 is connected, a spanning tree can be found as follows: 

1) Search for an edge in 𝐺 whose removal does not disconnect the graph. If no such edge exists, 𝐺 itself is a tree, in accordance with property 4 of Theorem 5.3. 

2) If such an edge exists, remove it from the graph 𝐺 and continue searching for another  edge  to  remove  in  the  remaining  graph.  The  goal  is  to  progressively eliminate edges that are not necessary to maintain the graph’s connectivity. 

3) Repeat  this  process  until  no  more  edges  can  be  removed  without disconnecting the graph. At this point, the result is a spanning tree of 𝐺 that retains the connectivity of the original graph. 

In summary, if the graph 𝐺 is connected, a spanning tree can be constructed by progressively  removing  non-essential  edges  while  maintaining  the  graph’s connectivity. This theorem characterizes the existence of a spanning tree in a graph and provides a method for constructing it. 
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EXAMPLE 5.11.– Consider the graph shown in Figure 5.26. 



Figure 5.26.  Explore graph 

Removing edges (1), (2), (3), (4), (5), (6) and (7), in any order, produces the tree shown in Figure 5.27, which can be simplified (see Figure 5.28). This tree is not unique; another spanning tree is shown in Figure 5.29. 



Figure 5.27.  Spanning tree 



Figure 5.28.  Another drawing of the spanning tree Figure 5.29.  Another spanning tree 
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5.6.  Finding  a  fundamental  system  of  independent  cycles  of  a connected graph 

Some  problems,  such  as  the  study  of  electrical  networks,  require  finding  a fundamental system of independent cycles in a given graph. Although the tree is a commonly used method for solving this problem, other approaches also exist. 

Suppose  the  graph  𝐺  is  connected.  Begin  by  constructing  a  spanning  tree 𝑋, 𝑈

, where 𝑢 , 𝑢 , … , 𝑢

are the edges of 𝑈 that are not present in 𝑈

. 

When one of these  edges  𝑢  is added to the spanning tree  𝑋, 𝑈

, a single cycle 

𝑃   is  created  (in  accordance  with  property  5  of  Theorem  5.3).  The  cycles  thus formed,  𝑃 , 𝑃 , . . . , 𝑃 ,  are  independent  of  each  other,  since  each  contains  an  edge that  is  absent  from  the  others.  Since  n 𝐺 = 𝑚 − 𝑛 + 1  (because  the  graph  is connected), a fundamental system of  n(G)  independent cycles is obtained. 

EXAMPLE 5.12.– Consider the graph shown in Figure 5.30. 



Figure 5.30.  Graph to explore 

  

Figure 5.31.  Existence of six independent cycles. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 
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In  this  case,  𝐺   =  11  −  6  +  1  =  6.  Therefore,  there  are  six  independent cycles. The spanning tree in Figure 5.31 is drawn with red lines, and the cycles obtained are numbered from 1 to 6. 

5.7. Extremum spanning tree 

5.7.1.   General information 

Of  all  the  spanning  trees  that  can  be  determined  in  a  given  graph,  the  one  of primary  interest  is  typically  the  one  that  minimizes  or  maximizes  an  objective function involving edge length. 

A common application is in telecommunications, where 𝑛 cities are connected by cables or transmitters, allowing communication between any pair of locations. The goal  is  to  find  the  links  that  minimize  the  total  length  of  cables  or  the  number  of transmitters  required.  Other  applications  involve  connecting  roads,  railroads, pipelines, canals, telephone lines, etc. 

5.7.2.   Extremum spanning tree search algorithms 

Several  search  algorithms  exist.  The  Prim  and  Dijkstra,  Solin  and  Kruskal algorithms are presented in what follows. 

 Prim and Dijkstra algorithm 

1) Select an arbitrary vertex. 

2) Select the shortest or longest edge from this vertex, depending on whether the objective is to find a minimal or maximal spanning tree. 

3) The  selected  edge  and  the  two  vertices  it  connect  define  a  connected component of the graph. 

4) Add the nearest neighbor of the vertices within this component and the edge with the smallest or largest corresponding value. 

5) Gradually extend the connected component in this way. 

6) Stop when the component contains all the vertices in the graph. 
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EXAMPLE 5.13.– Consider the graph shown in Figure 5.32. 



Figure 5.32.  Graph to explore 

– Choose 𝑋   as  the  starting  vertex.  Its  nearest  neighbor  is  𝑋 ,  forming  the component  𝑋 , 𝑋 . 

– The  nearest  vertex  to  this  component  is  𝑋 ,  forming  the  component 𝑋 , 𝑋 , 𝑋 . 

– The  nearest  vertex  to  this  component  is  𝑋 ,  forming  the  component 𝑋 , 𝑋 , 𝑋 , 𝑋 . 

– The  nearest  vertex  to  this  component  is  𝑋 ,  forming  the  component 𝑋 , 𝑋 , 𝑋 , 𝑋 , 𝑋 . 

– The  nearest  vertex  to  this  component  is  (obviously)  𝑋 ,  forming  the component  𝑋 , 𝑋 , 𝑋 , 𝑋 , 𝑋 , 𝑋   which  is  a  spanning  tree  of  minimum  length (see Figure 5.33). 



Figure 5.33.  Minimal spanning tree 

An analogous method can also be used to find the maximum spanning tree. 
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 Sollin’s algorithm  

Sollin’s algorithm works as follows: 

1) For  each  vertex,  select  the  edge  that  connects  it  to  the  nearest  vertex.  This enables sub-trees. 

2) Treat these subtrees as vertices and repeat the process until the subtrees forms a complete graph tree. 

Using  the  minimum  value  for  selection  results  in  the  minimum  spanning  tree, while using the maximum value results in the maximum spanning tree. 

EXAMPLE  5.14.–  Take  the  graph  from  Figure  5.32  as  a  double-entry  table  (see Figure 5.34). 



Figure 5.34.  Graph table 

The symbol “∞” is used to represent an indirect connection, i.e. the absence of a direct  edge  between  two  vertices,  or  the  presence  of  a  path  passing  through several vertices. 

The  numerical  values  in  the  graph  boxes  represent  the  lengths  of  the corresponding edges. 

Boxed values indicate minimum edge values. These minimum values are used to find  the  minimum  tree.  A  similar  approach  can  be  used  to  find  the  maximum tree: 

– For 𝑋 , the nearest vertex is 𝑋 . 

– For 𝑋 , the nearest vertex is 𝑋 . 

– For 𝑋 , the nearest vertex is 𝑋 . 
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This results in the first sub-tree (see Figure 5.35): 



Figure 5.35.  First sub-tree 

– For 𝑋 , the nearest vertex is 𝑋 . 

– For 𝑋 , the nearest vertex is 𝑋 . 

– For 𝑋 , the nearest vertex is 𝑋 . 

This results in the second sub-tree (see Figure 5.36). 



Figure 5.36.  Second sub-tree 

All the vertices have been visited. 

The smallest distance between the two sub-trees is sought. This is the distance between 𝑋  and 𝑋 , which are connected. This produces the minimal spanning tree of length 19 (see Figure 5.37). 



Figure 5.37.  Minimal spanning tree 
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 Kruskal’s algorithm 

Kruskal’s  algorithm  for  finding  a  spanning  tree  of  minimum  weight  can  be summarized in several steps: 

1)  Edge sorting: first, sort the edges of the graph in ascending order of weight (or length).  This  ensures  that  edges  with  the  lowest  weight  are  considered  first  when building the spanning tree (with the lowest weight). 

2)  Going through the sorted edges:  next,  go  through  the  sorted  edges  in ascending  order  of  weight.  For  each  edge,  check  whether  it  creates  a  cycle  in  the spanning tree built so far. If not, add it to the spanning tree. 

3)  Building the spanning tree:  repeat  the  previous  step  until  all  vertices  are included in the spanning tree. At each stage, add an edge that does not create a cycle in the spanning tree. The result is a spanning tree of minimum weight. 

Note that Kruskal’s algorithm guarantees the construction of a minimum weight spanning  tree  when  the  graph  is  weighted  and  connected.  Additionally,  the algorithm  can  be  applied  to  disconnected  graphs  by  considering  the  components separately. 

EXAMPLE 5.15.– Consider the graph shown in Figure 5.32. To rank the distances in  ascending  order,  here  is  the  sorted  list  of  edges  with  their  corresponding weights: 

– 𝑋 𝑋 : 1      

– 𝑋 𝑋 : 2     

– 𝑋 𝑋 : 3      

– 𝑋 𝑋 : 4     

– 𝑋 𝑋 : 5  

– 𝑋 𝑋 : 6       

– 𝑋 𝑋 : 7  

– 𝑋 𝑋 : 8      

– 𝑋 𝑋 : 9      

– 𝑋 𝑋 : 10            

– 𝑋 𝑋 : 11  

– 𝑋 𝑋 : 12  
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1) Start with the edges in ascending order: 

The first two edges 𝑋  𝑋 (1) and 𝑋 𝑋 (2) are added to the tree, as they do not form a cycle (see Figure 5.38(a)). 

2) Add the next smallest edge: 

The  edge  𝑋 𝑋 (3)  is  considered,  but  it  is  discarded  because  it  would  create  a cycle with the already included edges 𝑋 𝑋  and 𝑋  𝑋 . 

3) Proceed to the next smallest edges: 

𝑋 𝑋  (4) and 𝑋 𝑋 (5) are added to the three because they do not form any cycle (see Figure 5.38(b)). 

4) Next edge to consider: 

𝑋 𝑋  (6) is considered, but it is discarded because it would create a cycle with the edges 𝑋 𝑋 and 𝑋 𝑋  

5) Next edge: 

𝑋 𝑋  (7) is added to the tree (see Figure 5.38(c)), as it does not form a cycle. 

6) Remaining edges: 

All remaining edges  𝑋₁𝑋₆  8 , 𝑋₂𝑋₆  9 , 𝑋₂𝑋₄  10 , 𝑋₁𝑋₄  11 , 𝑋₂𝑋₅  12  are discarded because they would all create cycles with the edges already included in the three. 



Figure 5.38.  Successive steps 

Finally, the spanning tree is obtained as shown in Figure 5.37. 
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Of  course,  for  graphs  with  a  large  number  of  vertices,  solving  graph  problems efficiently  requires  computers  and  programming  algorithms.  While  the  previous examples  were  provided  for  illustration  purposes,  handling  large-scale  graphs requires efficient algorithms and adequate computational resources. 
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Path Optimization 

 

  

CONCEPTS COVERED IN THIS CHAPTER.– 

This chapter presents a first application of graph theory: finding the shortest or longest path. 

Several solution methods are explored, including the level method, enumeration method,  Bellman–Ford  algorithm,  Bellman–Kalaba  algorithm  and  Dijkstra algorithm. 

References: [BRO 82, DRO 87, FAU 74, FAU 14, MOU 80]. 

The term “traffic and transport problems” covers a wide variety of problems. The following is a brief overview: 

– Travel problems: optimizing routes for efficient travel. 

– Transportation  problems:  transporting  large  quantities  of  goods  at  the  lowest possible cost. 

– Maximum flow problems: maximizing the flow through a transport network to meet demand while accounting for resource availability. 

Assignment  problems  are  also  related  to  traffic  issues,  as  they  involve  optimal matching,  such  as  allocating  “resources”  to  “tasks”  in  the  most  efficient  way.  As Mathematics for Digital Science 3, 

by Gérard-Michel COCHARD and Mhand HIFI. © ISTE Ltd 2025. 
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will be shown, this category of problems shares similarities with the previous ones, particularly in their reliance on graph-based approaches. 

In this chapter, the focus is on path optimization. 

6.1. Extremal-length paths 

6.1.1.  General information 

Let 𝐺 be any directed graph, and let 𝑑  represent the length associated with the arc  𝑋 , 𝑋  or  X , X . For any path 𝑃, the path length 𝐷 𝑃  is given by: 𝐷 𝑃 =

𝑑 𝑢  

∈

where 𝑢 is an arc belonging to the path 𝑃, and 𝑑 𝑢 = 𝑑  is the length of the arc 𝑢, which joins two consecutive vertices 𝑋  and 𝑋  of the path 𝑃. 

The  problem  addressed  here  is  the  find  paths  (subject  to  certain  constraints) whose length is extremal, i.e. either minimum or maximum. 

The  nature  of  the  problem  of  finding  extremal  paths  varies  depending  on  the specific context that led to the modeling of the graph and the constraints imposed on the desired path. However, the search for an extremal path is typically the final step in solving a broader problem. 

For instance: 

– In  “scheduling  problems”,  the  arc  lengths  may  represent  the  “estimated” 

durations of tasks or operations, which are inherently challenging to predict. 

– In “transport problems”, these lengths often correspond to generalized costs, a function  of  distance,  transport  costs,  etc.,  and  are  similarly  difficult  to  define precisely. 

In such cases, relying solely on the shortest or longest calculated path makes no sense,  as  it  is  unlikely  to  yield  the  true  extremal  path,  especially  when  paths  of nearly  equivalent  lengths  exist.  Instead,  it  is  often  more meaningful  to identify  all paths  whose  lengths  deviate  by  at  most  a  given  amount  𝜀    from  the  length  of  the extremal path. These paths are refereed as 𝜀 - extremal   paths. 
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6.1.2.   Solving algorithms 

This section explores several algorithms, including some historical methods, for identifying  the  extremal  path  between  two  vertices  in  a  directed  graph.  These algorithms  will  be  illustrated  through  their  application  to  a  specific  case  study (Example 6.1). 

EXAMPLE 6.1.– Consider the directed graph shown in Figure 6.1. 



Figure 6.1.  Directed  graph for exploration. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

The objective is to determine the shortest path between 𝑋  and 𝑋 . 

 Level method 

The  procedure  involves  decomposing  the  graph  into  levels  to  present  it  in  an ordered form. 

Starting  from  the  initial  vertex  (which  has  no  predecessors),  the  subsequent vertices  are  marked  with  the  shortest  (or  longest)  length  of  the  arc  or  path connecting them to the current vertex. The process begins with the graph shown in Figure 6.2. 



Figure 6.2.   Application of the level method 
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If 𝑋  has no predecessor, it is marked with 0. For the shortest path between 𝑋  

and 𝑋 ,    𝑋  is marked with 0 + 2 = 2, and 𝑋  is marked with 0 + 1 = 1. 

For the longest path between 𝑋  and 𝑋 , 𝑋  is marked with 0 + 2 + 3 = 5. The corresponding  arcs  are  represented  by  “red  lines”.  Thus,  for  the  longest  path between 𝑋  and 𝑋 , the “red-line” path has a total length of 5. 

To find the extremal path between start and end points (as in the example), the previous phase is applied progressively to all the vertices of the graph. 

EXAMPLE 6.2.– The graph considered is free of circuits. 

The decomposition into levels yields the results shown in Figure 6.3. 



Figure 6.3.  Decomposition into levels 

From this decomposition, the ordered graph shown in Figure 6.4 is obtained. 



Figure 6.4.  Ordered graph 

The shortest and longest paths are then easily deduced, as shown in Figure 6.5. 
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Figure 6.5.  Shortest and longest paths 

Applying  the  procedure  produces  the  diagram  shown  in  Figure  6.6,  which represents the shortest path with a value of 10. 

The diagram in Figure 6.7 shows the longest path with a value of 15. 



Figure 6.6.  Shortest path. For a color version of this figure, 

 see www.iste.co.uk/cochard/mathematics3.zip 



Figure 6.7.  Longest path. For a color version of this figure, 

 see www.iste.co.uk/cochard/mathematics3.zip 

 Enumeration method 

This  method  is  suitable  only  for  graphs  with  a  limited  number  of  vertices.  It involves  listing  all  possible  paths  and  comparing  their  lengths.  However,  as  the number  of  vertices  and  paths  increases,  the  approach  becomes  computationally expensive and impractical due to the exhaustive nature of the exploration. 

EXAMPLE 6.3.– Enumerating the paths from 𝑋  to 𝑋  produces the tree shown in Figure 6.8. 

The levels of this tree, labeled from 𝑁1 to 𝑁6, are clearly visible. 
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A total of seven possible paths have been identified: 

– 𝐶1  =   𝑋 , 𝑋 , 𝑋 , 𝑋 , 𝑋 , 𝑋 , length 11  

– 𝐶2  =   𝑋 , 𝑋 , 𝑋 , 𝑋 , 𝑋 , length 10  

– 𝐶3  =   𝑋 , 𝑋 , 𝑋 , 𝑋 , length 13  

– 𝐶4  =   𝑋 , 𝑋 , 𝑋 , 𝑋4, 𝑋 , length 15  

– 𝐶5  =   𝑋 , 𝑋 , 𝑋 , 𝑋 , 𝑋 , length 13  

– 𝐶6  =   𝑋 , 𝑋 , 𝑋 , 𝑋 , length 14  

– 𝐶7  =   𝑋 , 𝑋 , 𝑋 , 𝑋 , length 12 

This  enumeration  allows  the  classification  of  paths,  revealing  the  shortest  path with a length of 10 and the longest with a length of 15. 

However, it is important to note that this method becomes increasingly tedious and impractical as the number of vertices grows. 



Figure 6.8.  Enumeration of all paths 

[image: Image 201]

Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science University , Wiley Online Library on [01/07/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Path Optimization     193 

 Bellman–Ford algorithm 



Figure 6.9.   Flowcharts of a Bellman–Ford algorithm The  Bellman–Ford  algorithm  was  historically  the  first  algorithm  developed  to optimize the search for an extremal path. While more efficient algorithms have since been developed, studying this algorithm is valuable due to its significant influence on  subsequent  advancements.  The  Bellman–Ford  algorithm  can  be  used  to  find either a minimum or an extremal path. 

The  principle  of  the  algorithm  involves  assigning  weights  to  the  vertices  of  a graph. These weights are progressively adjusted, decreased for a minimum path or increased for a maximum path. 

To  illustrate  the  process  for  finding  a  minimum  path,  all  vertices  are  initially assigned  an  infinite  weight  (∞),  except  for  the  starting  vertex  (𝑋 ,  which  is assigned a weight of 0. The operations of the algorithm are shown in the flowcharts in Figure 6.9: the left flowchart represents the minimization, and the right represents the maximization. 𝐿 denotes an ordered list. 

The  algorithm  will  now  be  applied  to  Example  6.1  to  determine  the  minimum path. 
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EXAMPLE  6.4.–  Bellman–Ford  algorithm:  Starting  with  the  graph  shown  in Figure 6.1, the initialization is shown in Figure 6.10. 



Figure 6.10.  Initialization 

 Step 1:  The weights of vertices 𝑋  and 𝑋 , which are directly connected to 𝑋 , are updated accordingly (see Figure 6.11). 



Figure 6.11.  Step 1 

 Step 2: The weight of vertex weight 𝑋  is adjusted (see Figure 6.12). 



Figure 6.12.  Step 2 

 Step 3:  The weight of 𝑋  is updated through the link 𝑋 − 𝑋 , as 7 is less than 6 + 4. 
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Similarly, the weight of 𝑋  is adjusted via the link 𝑋 − 𝑋 , resulting in a weight of 8 (see Figure 6.13). 

Using the 𝑋 − 𝑋  connection would result in a higher weight (10). 



Figure 6.13.  Step 3 

 Step 4:  The only vertex to be uploaded is 𝑋 , which receives a weight of 10 via the connection 𝑋 − 𝑋  (see Figure 6.14). 

Using the 𝑋 − 𝑋  connection would result in a higher weight of 11. 



Figure 6.14.  Step 4 

The process has reached a point where no further modifications to the weights are possible. 

Next, the second part of the algorithm is applied: 

– 𝐿  =   𝑋  

– 𝐿  =   𝑋 , 𝑋  

– 𝐿  =   𝑋 , 𝑋 , 𝑋  
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– 𝐿  =   𝑋 , 𝑋 , 𝑋 , 𝑋  

– 𝐿  =   𝑋 , 𝑋 , 𝑋 , 𝑋 , 𝑋  

The minimum path found is 𝑋 − 𝑋 − 𝑋 − 𝑋 − 𝑋 , with a total length of 10. 

 Bellman–Kalaba algorithm 

The  fundamental  concept  of  the  Bellman–Kalaba  algorithm  is  to  progressively consider paths originating from 𝑋 , increasing the number of arcs step by step. 



Figure 6.15.   Bellman–Kalaba algorithm 

Vertices  are  assigned  weights,  similar  to  the  Bellman–Ford  algorithm.  The Bellman–Kalaba algorithm also consists of two parts, with the second part identical to  the  first.  Figure  6.15  shows  the  algorithm’s  flowchart,  with  minimization represented on the left and maximization on the right. 

The algorithm is now applied to Example 6.1 to determine the minimum path. 
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EXAMPLE  6.5.–  Bellman–Kalaba  algorithm:  Initialization begins with  the  graph in Figure 6.1 (see Figure 6.16). 

Step  𝑝 = 0:  At  this  stage,  all  vertices  are  assigned  infinite  weight  (∞)  (see Figure 6.16). 



Figure 6.16.  Initialization 

Step 𝑝 = 1: The weights of 𝑋 , 𝑋 , and 𝑋  are updated (see Figure 6.17). 



Figure 6.17.  p = 1 

Step   𝑝 = 2: Update the weights of 𝑋  and 𝑋  (see Figure 6.18). 

Step 𝑝 = 3: Update the weights of 𝑋  and 𝑋  (see Figure 6.19). 

Step 𝑝 = 4: Update the weight of 𝑋  (see Figure 6.20). 
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Figure 6.18.  p = 2 



Figure 6.19.  p = 3 



Figure 6.20.  p = 4 
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At  this  stage,  it  is  evident  that  all  weights  for  𝑝 = 4  are  identical  to  those  for 𝑝 = 3, except for 𝑋 . However, an additional iteration for 𝑝 = 5 would result in a weight of 10. Consequently, the first part of the algorithm can be considered complete. 

For the second part, the vertices are successively determined as follows: 

– 𝐿  =   𝑋   

– 𝐿  =   𝑋 , 𝑋  because 10  −  2  =  8 

– 𝐿  =   𝑋 , 𝑋 , 𝑋  because 8  −  1  =  7 

– 𝐿  =   𝑋 , 𝑋 , 𝑋 ,  𝑋  because 7  −  3  =  4 

– 𝐿  =   𝑋 , 𝑋 , 𝑋 ,  𝑋 , 𝑋  because 4  −  4  =  0 

Thus, the minimum path is 𝑋  – 𝑋  – 𝑋  – 𝑋  – 𝑋 , with the graph as described in Example 6.4. 

 Dijkstra’s algorithm 



Figure 6.21.   Dijkstra’s algorithm 
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Also  referred  to  as  the  Moore-Dijkstra  algorithm,  Dijkstra’s  algorithm  is  more efficient  than  its  predecessors  and  is  specifically  designed  to  identify  paths  of minimum  length.  It  has  wide  application  in  route  minimization  and  is  extensively used in Global Positioning System (GPS) navigation. 

The starting point of Dijkstra’s algorithm differs from that of the Bellman–Ford and Bellman–Kalaba algorithms. 

When 𝜆   =  0, the other 𝜆  values are set to 𝑑 . If there is no direct arc connects vertex  1  to  vertex 𝑗,  𝜆   is  set  to  .  In  addition,  Dijkstra’s  algorithm  maintains  an up-to-date list 𝐷 of vertices. 

The algorithm consists of two parts, with the second part identical to that of the previous  algorithms  (see  Figure  6.21).  A  key  feature  of  this  algorithm  is  that iterations  do  not  revisit  vertices  that  have  already  been  marked  and  added  to  the list 𝐷. These vertices are often referred to as “marked vertices”. 

The algorithm will now be applied to Example 6.1. 

EXAMPLE 6.6.– Dijkstra’s algorithm: Initialization begins with the graph shown in Figure 6.1 (shown in Figure 6.22). 



Figure 6.22.  Initialization 

𝐷  =   𝑋 .  Among  all  vertices  other  than  𝑋 ,  the  vertex  𝑋   has  the  lowest weight. Therefore, the vertex 𝑋  is added to the list 𝐷, resulting in 𝐷  =   𝑋 , 𝑋  

(see  Figure  6.23).  The  weights  are  updated  as  follows:  𝜆 = 6  (unchanged), 𝜆 = 7, while the remaining weights stay unchanged. 
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Figure 6.23.  Step 1 

Among  the  four  vertices  𝑋 ,  𝑋 ,  𝑋 ,  and  𝑋 ,  vertex  𝑋   has  the  lowest  weight. 

Vertex 𝑋  is added to the list 𝐷, resulting in 𝐷 = {𝑋  𝑋 , 𝑋 } (see Figure 6.24). 

The weights are updated as follows: 𝜆 = 7 (unchanged) and 𝜆 = 10. 



Figure 6.24.  Step 2 

Among the three remaining vertices 𝑋 , 𝑋 , and 𝑋 , the vertex 𝑋  has the lowest weight. Therefore, the vertex 𝑋  is added to the list 𝐷, resulting in 𝐷 = {𝑋 , 𝑋 , 𝑋 ,  𝑋 }  (see  Figure  6.25).  The  weights  are  updated  as  follows:  𝜆 = 8  and 𝜆 = 11. 



Figure 6.25.  Step 3 
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Figure 6.26.  Step 4 

Among the two remaining vertices 𝑋  and 𝑋 , vertex 𝑋  has the lowest weight. 

Thus, the vertex 𝑋  is added to the list 𝐷, resulting in 𝐷 = {𝑋 , 𝑋 , 𝑋 , 𝑋 , 𝑋 } 

(see Figure 6.26). The weight is updated as follows: 𝜆 = 10. 

The  final  unmarked  vertex,  𝑋 ,  has  the  lowest  weight  and  is  marked.  The  list becomes 𝐷 = {𝑋 , 𝑋 , 𝑋 , 𝑋 , 𝑋 , 𝑋 } (see Figure 6.27). 



Figure 6.27.  Step 5 

All  the  vertices  in  the  graph  have  been  marked,  as  the  list  𝐷  contains  all  the vertices in the graph. The second part of the algorithm can now begin. The path construction proceeds as follows: 

–  L = {𝑋 } 

–  L = {𝑋 , 𝑋 } because 10  −  2  =  8 

–  L = {𝑋 , 𝑋 , 𝑋 } because 8  −  1  =  7 

–  L = {𝑋 , 𝑋 , 𝑋 , 𝑋 } because 7  −  3  =  4 

–  L = {𝑋 , 𝑋 , 𝑋 , 𝑋 , 𝑋 } because 4  −  4  =  0 
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This gives the minimum path: 𝑋  → 𝑋  → 𝑋  → 𝑋  → 𝑋 , with a length of 10. 

In practice, it is convenient to use a table, as shown in Figure 6.28. 



Figure 6.28.  Practical table 

 How to use the table: 

 Step 1: Start at the vertex 𝑋 . Since this vertex will not be revisited, eliminate its corresponding column (in dark gray). From 𝑋 , 𝑋  or 𝑋  can be reached. In the columns for 𝑋  and 𝑋 , the vertex from which the path came, i.e. 𝑋 , is used to calculate the distances: 

– From 𝑋  to 𝑋 : 0  +  4  =  4. 

– From 𝑋  to 𝑋 : 0  +  6  =  6. 

These  values  are  added  to  the  respective  columns.  Then,  the  smallest  value, which is 4, is selected, and 𝑋  is marked. 

 Step 2: The column for 𝑋  is now marked with the value 4 − 𝑋 . Revisiting this column is not necessary. From 𝑋 , 𝑋  is the only reachable vertex. In the column for  𝑋 ,  mark  the  value  7 − 𝑋   (since  7  =  4  +  3).  Now,  between  6 − 𝑋   and 7 − 𝑋 , the smallest value, 6 − 𝑋 , is chosen, marking the column for 𝑋 . 

 Step 3: The column for 𝑋  is marked with the value 6 − 𝑋 , and revisiting this column  is  not  necessary.  From  𝑋 ,  𝑋   and  𝑋   are  reachable,  giving  the  values 10 − 𝑋   and  10 − 𝑋   for  those  columns.  Between  7 − 𝑋 ,  10 − 𝑋 ,  and 10 − 𝑋 , the smallest value 7 − 𝑋  is selected, marking 𝑋 . 

 Step 4:  The  column  for  𝑋   is  marked  with  the  value  7 − 𝑋 .  Revisiting  this column  is  not  necessary.  From  𝑋 ,  𝑋   and  𝑋   are  reachable,  resulting  in  the values 8 − 𝑋  and 11 − 𝑋 . Between 10 − 𝑋 , 8 − 𝑋 , and 11 − 𝑋 , the smallest value, 8 − 𝑋 , is selected, marking the column for 𝑋 . 
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 Step 5:  The  column  for  𝑋   is  marked  with  the  value  8 − 𝑋 .  Revisiting  this column  is  not  necessary.  From  𝑋 ,  the  only  reachable  vertex  is  𝑋 ,  giving  the value  10 − 𝑋 .  Between  11 − 𝑋   and  10 − 𝑋 ,  the  smallest  value,  10 − 𝑋 ,  is selected, marking the column for 𝑋 . 

 Step 6: All vertices have now been explored. 

To obtain the minimum path, start from the destination point 𝑋 . 

– From 𝑋 , the previous vertex is 𝑋  (because of the value 10 − 𝑋 ). 

– From 𝑋 , the previous vertex is 𝑋 . 

– From 𝑋 , the previous vertex is 𝑋 . 

– From 𝑋 , the previous vertex is 𝑋 . 

Thus, the minimum path is 𝑋 → 𝑋 → 𝑋 → 𝑋 → 𝑋 , with a total length of 10. 

6.1.3.  Searching for ε  -extremal paths 

As previously discussed, the imprecision in determining arc lengths often needs to be considered. In such cases, the goal is not only to find the optimal or extremal path  length  but  also  to  identify  all  neighboring  paths  whose  lengths  differ  by  no more than a small margin, denoted as 𝜀, from the optimal path length. 

This  approach  helps  manage  uncertainties  in  the  system  and  offers  alternative routes. It is not always beneficial to route all goods via the shortest path, as this can lead to congestion and longer journey times. Instead, it is effective to diversify the paths taken by using paths of similar lengths. 

The  procedure  is  relatively  simple:  start  by  searching  for  the  optimal  path between two vertices or between the starting point (input) and the endpoint (output) of  the  graph.  Next,  search  for  neighboring  paths  whose  lengths  differ  by  at  most 𝜀 from the length of the optimal path. 

EXAMPLE 6.7.– Let us return to Example 6.43, where path enumeration provided the result shown in Figure 6.8. 

To obtain the two-minimal paths, the length of these paths must not exceed 12 

(10  +  2).  In  addition  to  the  minimum  path  with  a  length  of  10,  two  other two-minimal paths with lengths of 11 and 12 are also found. 
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6.2. Hamiltonian path search 

Recall the following definitions of a directed graph with vertices 𝑋 , 𝑋 , … , 𝑋 : 1) A  Hamiltonian  path   𝑋 , 𝑋 , … , 𝑋

is a path that passes through each vertex 

of the graph exactly once. 

2) A   Hamiltonian   circuit   𝑋 , 𝑋 , … , 𝑋 , 𝑋   is  a  circuit  that  passes  through each vertex of the graph exactly once, with the exception for 𝑋 , which is visited both at the beginning and the end. 

There are simple necessary conditions for a graph to have a Hamiltonian path: 

– If a directed graph is complete, then there is at least one Hamiltonian path. 

– If a directed graph is both complete and strongly connected, then at least one Hamiltonian circuit exists. 

– Any strongly connected directed graph without loops, composed of 𝑛   vertices, and whose degree of each vertex is at least equal to 𝑛, admits a Hamiltonian circuit. 

– A  symmetric,  connected,  loop-free  graph  composed  of  𝑛  vertices,  with  the degree of each vertex at least equal to  , admits a Hamiltonian circuit. 

These properties can also be useful: 

– If a graph 𝐺 contains a Hamiltonian path, then 𝐺 must be connected. 

– If a graph 𝐺 contains a Hamiltonian circuit, then every vertex of 𝐺 must have a degree of at least 2. 

Several  methods  can  be  used  to  find  Hamiltonian  paths.  The  following  are explanations of a few methods. 

6.2.1.   Decomposition into strongly connected components 

Once  the  strongly  connected  components  of  a  graph  have  been  identified,  it becomes possible to find the Hamiltonian paths. Indeed, if the directed graph 𝐺 is made  up  of  several  strongly  connected  components,  such  as  𝐴, 𝐵 and  𝐶,  then  a Hamiltonian path must connect these components, since they constitute a partition of 𝐺. In other words, for a path to be Hamiltonian, it must pass through at least one vertex of each strongly connected component of the graph. 
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EXAMPLE 6.8.– Consider the graph shown in Figure 6.29, which is made up of three strongly connected components: 𝐴, 𝐵 and 𝐶 (as shown in Figure 6.30). 



Figure 6.29.  Graph to explore 

It is obvious that the Hamiltonian paths link the three components and follow the pattern 𝐴  →  𝐵  →  𝐶, as no arc leaves component 𝐶. 

All that remains is to list the Hamiltonian paths of the component 𝐴, which must end at 𝑋  (since only the arc 𝑋  → 𝑋  allows the transition from component 𝐴 to component 𝐵). There is really only one possible path: 𝑋  → 𝑋  → 𝑋  → 𝑋 . 

Thus, the only Hamiltonian path in the graph is: 𝑋  → 𝑋  → 𝑋  → 𝑋  → 𝑋  → 

𝑋 . 



Figure 6.30.  Strongly connected components 

[image: Image 223]

Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science University , Wiley Online Library on [01/07/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Path Optimization     207 

6.2.2.   Branch and Bound algorithm 

The  classic  Traveling  Salesman  Problem  (TSP)  involves  finding  a minimum-length Hamiltonian circuit in a complete graph. The objective is to find a path that visits each vertex exactly once, with the starting and ending vertex being the  same,  while  minimizing  the  total  travel  cost.  In  other  words,  the  goal  is  to identify a Hamiltonian circuit that minimizes the overall distance or travel cost. 

Consider a complete graph, symmetrical or not, with 𝑛 vertices, where each arc X , X  is associated with a cost 𝑑 , represented in a cost matrix 𝑫. The objective is to  find  a  circuit  that  visits  all  the  vertices  while  minimizing  the  sum  of  the  costs along  this  circuit.  If  the  graph  is  not  complete  or  symmetrical,  edges  of  infinite length can be added between unconnected vertices, thus searching for Hamiltonian circuits. 

To illustrate these concepts, here is Example 6.9. 

EXAMPLE  6.9.–  The  traveling  salesman  must  visit  cities  1,  2,  3  and  4  exactly once, starting at city 1 and returning to city 1 after completing the tour. Figure 6.31 shows the corresponding graph (not to scale). 



Figure 6.31.  Graph to explore 

To find the minimum-length Hamiltonian circuit, several methods are available, some  of  which  allow  for  an  exact  (optimal)  solution  to  be  found.  These  include integer  linear  programming,  Branch  and  Bound  (BB),  and  dynamic  programming. 

There are also methods that provide approximate solutions, known as heuristics and metaheuristics. 

To begin with, the simplest method is to list all possible circuits. 
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EXAMPLE 6.10.– This list corresponds to the tree structure shown in Figure 6.32. 



Figure 6.32.  Route enumeration 

This process leads to solving the problem, which is circuit 1  −  3  −  2  −  4  −  1 

with a length of 170. It is important to note that circuit 1  −  4  −  2  −  3  −  1 is exactly the same Hamiltonian cycle as the previous one. In fact, all circuits go in pairs,  since  a  circuit  run  in  the  opposite  direction  is  also  a  circuit  of  the  same length. 

This  method  has  significant  limitations.  For  a  graph  of  𝑛  vertices,  there  are approximately 

! possible Hamiltonian cycles. In the previous example with only three vertices, there were three possible cycles. However, as the number of vertices increases  to  100,  for  example,  enumeration  becomes  impossible.  It  is  therefore necessary to find ways of reducing the tree of possible cycles. A common approach is to use the BB method. This method has already been encountered in the case of integer linear programming. 

The BB method is based on the following observations: For each node 𝑖 in the tree structure, a value 𝐸  is associated, which represents either a lower bound (in the case of minimization) or an upper bound (in the case of maximization). The value 𝐸  

increases  as  the  tree  is  traversed  downward  for  minimization  and  decreases  for maximization.  In  the  case  of  minimization,  if  a  solution  value  𝐸 is  already  known and 𝐸  

𝐸, the branch corresponding to node 𝑖 can be discarded, as it will not be possible to obtain a solution better than 𝐸. The inequality is reversed in the case of maximization. 
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To  make  these  concepts  more  concrete,  let  us  apply  the  BB  algorithm  to  the specific example in Figure 6.31, using its practical implementation. 

EXAMPLE  6.11.–  a)  To  begin  with,  the  distance  matrix  is  drawn  up,  with impossible paths replaced by the symbol  (see Figure 6.33). 



Figure 6.33.  Distance matrix 

b)  For  each  line,  the  minimum  value  is  identified  and  subtracted  from  the elements in that row (see Figure 6.34). 



Figure 6.34.  After line subtraction 

c)  For  each  column  of  the  new  matrix,  the  smallest  element  is  identified  and subtracted  from  the  elements  in  that  column  (see  Figure  6.35).  The  result  is recorded in the bottom right corner. 



Figure 6.35.  Column subtraction. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

This results in the reduced matrix corresponding to node 1 (number framed top left) and the value 𝐸   =  150 (the sum of the smallest elements found). 

[image: Image 228]

[image: Image 229]

[image: Image 230]

Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science University , Wiley Online Library on [01/07/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License 210     Mathematics for Digital Science 3 

This node is noted as shown in Figure 6.36. 



Figure 6.36.  The root. For a color version of this figure, 

 see www.iste.co.uk/cochard/mathematics3.zip 

In the first box, the node number is shown; in the second box, the graph vertex number (note that the tree node number should not be confused with the graph vertex number); and in the third box, the value of 𝐸 . 

Starting from vertex 1, three branches are considered: going to vertex 2, going to vertex 3, or going to vertex 4. This is shown in Figure 6.37. 



Figure 6.37.  The three branches to consider. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 



Figure 6.38.  Processing node 2. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

To calculate the values of 𝐸 , 𝐸 , and 𝐸 , the reduced matrices for nodes 2, 3 and 4 are derived from the reduced matrix of node 1. 

For node 2, Figure 6.38 is obtained. 
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The boxes  corresponding  to row 1  and  column  2  are  marked  as  impossible,  as vertices 1 and 2 can no longer be used. In addition, the path 2 − 1 is marked as 

“impossible”, as returning is not allowed. The aforementioned steps (b) and (c) are  then  applied.  The  same  process  is  followed  for  node  3  (see  Figure  6.39). 

Finally, for node 4, Figure 6.40 is obtained. 



Figure 6.39.  Processing node 3. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 



Figure 6.40.  Processing node 4. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 



Figure 6.41.  Current situation. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

The value of 𝐸  is calculated using the general relationship 𝐸 = 𝐸 + 𝑑 𝑎, 𝑏 +

𝛾 , where 𝑗 is the “parent” node of node 𝑖, 𝑑  is a distance calculated with the node  matrix  𝑗,  𝑎, 𝑏   is  the  path  involved  in  the  “node(𝑗)-vertex  𝑎”  to  

“node(𝑖)-top 𝑏”, and 𝛾  is the sum of the minimum node costs for node 𝑖. Here, 𝐸 = 𝐸 + 𝑑 1,2 + 𝛾 = 150 + 33 + 10 = 193  
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Similarly, 

𝐸 = 𝐸 + 𝑑 1,3 + 𝛾 = 150 + 10 + 10 = 170  

𝐸 = 𝐸 + 𝑑 1,4 + 𝛾 = 150 + 0 + 20 = 170  

This gives the situation shown in Figure 6.41. 

  

Figure 6.42.  New routes to examine. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

For  the  moment,  branch  1 − 2  (node  2)  can  be  temporarily  discarded,  and  the focus  is  shifted  to  branches 1 − 3  and 1 − 4  (nodes  3  and 4),  which  have  two equal values. 

Therefore, the paths 3 − 2, 3 − 4, 4 − 2, and 4 − 3, corresponding to nodes 5, 6, 7 and 8, respectively, need to be examined. These are shown in Figure 6.42. 

The reduced matrices for nodes 5, 6, 7 and 8 will now be calculated. 

Node 3 to node 5, or vertex 3 to vertex 2, is shown in Figure 6.43. 
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Figure 6.43.  Processing node 3 to node 5. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

Node 3 to node 6, or vertex 3 to vertex 4, is shown in Figure 6.44. 



Figure 6.44.  Processing node 3 to node 6. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

Node 4 to node 7, or vertex 4 to vertex 2, is shown in Figure 6.45. 



Figure 6.45.  Processing node 4 to node 7. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

Node 4 to node 8, or vertex 4 to vertex 3, is shown in Figure 6.46. 



Figure 6.46.  Processing node 4 to node 8. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 
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This gives the result shown in Figure 6.47. 



Figure 6.47.  Processing results. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

The  best  values  are  at  nodes  5  and  7.  Therefore,  the  other  branches  are temporarily discarded, and the branches from 5 and 7 are explored. 

There is little choice left (see Figure 6.48). 



Figure 6.48.  The current situation. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 
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The values of 𝐸  and 𝐸  are determined as follows: 

– Node 5 to node 9, or vertex 2 to vertex 4, is shown in Figure 6.49. 

– Node 7 to node 10, or vertex 2 to vertex 3, is shown in Figure 6.50. 



Figure 6.49.  Processing node 5 to node 9. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

 

Figure 6.50.  Processing node 7 to node 10. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

This leads to the situation shown in Figure 6.51 (note that paths 4 − 1 and 3 − 1 

have not been forbidden, as 1 is the last vertex to be reached: the return to the starting point is allowed). 



Figure 6.51.  Current situation. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 
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Figure 6.52.  Current result. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

All that remains is to finish by returning to vertex 1 (see Figure 6.52). 

– Node 9 to node 11, or vertex 4 to vertex 1, is shown in Figure 6.53. 

– Node 10 to node 12, or vertex 3 to vertex 1, is shown in Figure 6.54, with 𝐸 1 =  170 and 𝐸 = 170 (see Figure 6.55). 



Figure 6.53.  Processing node 9 to node 11. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 
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Figure 6.54.  Processing node 10 to node 12. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 



Figure 6.55.  Processing result. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

This results in two solutions: 1  −  3  −  2  −  4  −  1 and 1  −  4  −  2  −  3  −  1. 

In  fact,  the  second  solution  is  simply  the  reverse  of  the  first.  The  value  170 

represents the minimum distance. 
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Transportation Problems 

 

  

CONCEPTS COVERED IN THIS CHAPTER.–  

This chapter discusses optimization methods applied to transportation or traffic problems. Three types of problems are studied. 

 The maximum flow problem:  passing  a  maximum  flow  of  materials  through  a network whose arcs have limited capacities. The Ford–Fulkerson algorithm, which solves this problem, is examined in detail. 

 The minimum-cost transport problem:  minimizing  transport  costs  across  a network. Methods such as the Northwest Corner, Least Cost and Balas-Hammer are presented to obtain an initial solution, followed by the stepping stone algorithm and the potential method to find an optimal solution. 

 The assignment problem: finding a cost-minimizing bijection between two sets of 𝑛 elements. The Hungarian algorithm is used to solve this problem. 

References: [BRO 82, DES 76, DRO 87, FAU 79, FAU 74, FAU 14, PHE 75]. 

Under  this  heading,  different  types  of  problems  are  covered.  A  concise  list  is provided as follows: 

–  Travel problems: optimizing a route to get from one point to another. This type of problem was addressed in Chapter 6. 
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–  Maximum flow problems:  routing  a  maximum  flow  in  a  transport  network  to meet  a  demand,  considering  the  available  capacity  (goods,  liquids,  information, etc.). 

–  Transport cost optimization problems:  minimizing  the  costs  of  transporting goods between multiple sites, particularly in logistics and distribution. 

–  Assignment problems: determining the optimum  match between “means” and 

“tasks”, such as assigning employees to projects or resources to activities. 

These problems often rely on graph algorithms to model and solve constraints, providing optimized solutions. 

7.1. Maximum flow 

7.1.1.   General 

Let 𝐺 = (𝑋, 𝑈) be  an antisymmetric  directed graph with 𝑛 vertices. In this graph, if an arc 𝑋 ⟶ 𝑋  exists, then the arc 𝑋 ⟶ 𝑋  does not exist. Among the vertices, two particular vertices are distinguished: 𝑋  and 𝑋 . 

– 𝑋   is the  entry vertex  and has no predecessors. The set Γ  of predecessors of 𝑋  is empty: 𝛤 (𝑋 ) = ∅. 

– 𝑋  is the  exit vertex  and has no successors. The set Γ  of successors to 𝑋  is empty :  𝛤 (𝑋 ) = ∅. 

– Each arc of 𝐺 is associated with a capacity 𝑐 > 0. 

A  flow  in this graph is a set of non-negative quantities 𝛷  associated with each arc 𝑖𝑗. A flow is considered  feasible  if it satisfies the following constraints: 1) Capacity constraints: 𝛷    𝑐 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎𝑟𝑐𝑠 𝑖𝑗  𝑈. 

2) Flow  conservation  constraints:  for  vertices  other  than  𝑋   and  𝑋 ,  the  sum of  flows  entering  a  vertex  is  equal  to  the  sum  of  flows  leaving  that  vertex  (see Figure 7.1): 

𝛷 =

𝛷  

∈

( )

∈

( )
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Figure 7.1.   Flow conservation 

3) Flow conservation constraint for vertices 𝑋  and 𝑋  (see Figure 7.2): 𝛷 =

𝛷 = 𝐹 

∈

(

)

∈

(

)



Figure 7.2.   Flow conservation at the entry and exit vertices The  maximum value  of 𝐹, called  maximum flow, is examined. This value is not necessarily  unique.  Several  methods  can  be  used  to  solve  this  problem,  including linear  programming.  However,  the  Ford–Fulkerson  algorithm  is  particularly  suited to this type of problem. 

The maximum flow problem involves transport networks represented by acyclic graphs,  with  sender  and  receiver  nodes.  The  arcs  of  the  graph  have  maximum capacities,  which  represent,  for  example,  the  limits  of  freight  transport.  The objective is to route as many flows as possible while respecting two key constraints: the  capacity (constraint 1) and the  flow conservation constraint (constraint 2). 

Sender  nodes  have  “availabilities”,  and  receiver  nodes  have  “requests”.  It  is essential  that  the  total  availabilities   used   equals  the  total  of  requests   received.  To represent  this  network  as  a  graph  𝐺,  a  single  input  node   X 1  and  a  single  output node   X n  are  introduced.  The  outgoing  arcs  of  𝑋   have  capacities  equal  to availabilities,  while  the  incoming  arcs  to  𝑋   have  capacities  corresponding  to 
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demands.  This  structure  ensures  compliance  with  the  flow  conservation  constraint (constraint 3). 

EXAMPLE  7.1.–  Suppose  there  are  three  stores  and  four  customers  to  serve.  The table in Figure 7.3 shows the possible routes between stores and customers, along with the associated availabilities and requests. 



Figure 7.3.  Transportation constraints 

The  situation  described  corresponds  to  the  graph  shown  in  Figure  7.4,  which highlights the connections between stores (1, 2, 3) and customers (4, 5, 6, 7). The arcs between stores and customers are assigned maximum capacity. 

A  fictitious  vertex  𝐸  (representing  the  starting  vertex  𝑋 )  has  been  added  and linked  to  stores  1,  2  and  3  using  arcs,  with  capacities  determined  by  the availabilities.  Similarly,  a  fictitious  vertex  𝑆  (representing  the  arrival  vertex  𝑋 ) has  been  added,  with  arcs  linking  customers  (4,  5,  6,  7)  to  this  vertex.  The capacities on these arcs correspond to the respective demands. 



Figure 7.4.  The problem graph 
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7.1.2.   Ford–Fulkerson theorem 

A  “cut”  𝐶  in  a  graph  G  is  a  partition  of  the  set  of  vertices  into  two  disjoint subsets, 𝐴 and 𝐵, such that 𝑋 ∈ 𝐴 (the source vertex) and  𝑋 ∈ 𝐵 (the sink vertex), as shown in Figure 7.5. The directed arcs of A to B form the cut. The capacity of the cut is defined as: 

𝑐(𝐶) =

𝑐  

∈ ,    ∈

In  this  expression,  C  represents  the  “cut”  (𝐴, 𝐵),  where  𝐴  contains  the  source vertex 𝑋  and B contains the sink vertex 𝑋  . The arcs considered are those from 𝐴 

to 𝐵. 



Figure 7.5.   A C-cut with value c(C) = 10 + 3 + 4 = 17 

Let 𝐹 be a feasible flow. The following quantities are defined: 

– 𝑟 = 𝑐 − 𝛷   and  𝑟 = 𝛷   for  any  arc  𝑢 = (𝑖, 𝑗).  These  quantities  are commonly referred to as residual capacities. 

– The  value  𝑟   represents  the  maximum  possible  increase  in  flow  through  the arc (𝑖, 𝑗). The flow 𝜙  can be increased from its current value until it reaches the capacity 𝑐 . 

– The  value  𝑟   represents  the  minimum  possible  decrease  in  flow  through  the arc (𝑖, 𝑗). The flow 𝜙  can be decreased from its current value until it reaches 0. 

The following theorem is admitted. 

THEOREM 7.1 (FORD–FULKERSON).– Let F be the family of feasible flows and C the family of cuts in a graph. Let  Fmax = max{ F |  F ∈ F} and  Fmin = min{ c( C) |  C ∈ C}. 

Then, the following holds: 

𝐹 ≤ 𝑐

and      𝐹

= 𝑐

. 
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Figure 7.6.   Flow/capacity notation 

In Figure 7.6, the arcs are annotated in “flow/capacity” form. The cut shown in this figure has a minimum capacity, which can be verified, by 𝑐(𝐶) = 2 + 5 = 7. 

In addition, the flow 𝐹 in the graph is calculated as follows: 𝐹 = 3 + 4 = 7. 

Thus,  𝐹

= 𝐹 = 7.  This  result  confirms  that  “finding a maximal flow”     is equivalent to “finding a minimal cut”. 

7.1.3.  Ford–Fulkerson algorithm 

The algorithm relies on the construction of a “residual graph H”, based on the residual capacities of the arcs. This residual graph 𝐻 contains the same vertices as the  original  graph  𝐺,  but  arcs  are  added  or  removed  according  to  the  residual capacities, as shown in Figure 7.7: 

– If  the  residual  capacity  𝑟 > 0  (meaning  that  the  arc  𝑢 = 𝑋 𝑋   in  𝐺  is  not saturated), the arc 𝑋 𝑋  is included in 𝐻 with residual capacity 𝑟 = 𝑐 − 𝜙 .   

– If  the residual  capacity 𝑟 > 0  (indicating  a positive  flow from  𝑋  to 𝑋 ),  the arc 𝑢 = 𝑋 𝑋  is included in 𝐻 with the value 𝑟 = 𝜙 . 



Figure 7.7.   Residual capacities 

When  one  of  the  two  residual  arc  values  is  zero,  the  corresponding  arc  is excluded from the residual graph 𝐻. Note that in the second case, the arc (𝑗, 𝑖) does 
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not  belong  to  the  graph  𝐺  because  the  graph  is  antisymmetric.  However,  it  is included in the residual graph 𝐻. 

The following example, based on Example 7.1, illustrates how these operations lead to the solution of the maximal flow. 

EXAMPLE  7.2.–  Let  us  start  by  passing  a  null  flow  (𝐹 = 0),  which  is  always possible, as shown in Figure 7.8. 



Figure 7.8.  Flow graph G and residual graph H 

To simplify the presentation of the flow graph (see Figure 7.8), the arrows on the arcs have been omitted, as this does not pose a problem since all arcs are oriented from left to right. With this initial flow, all residual capacities  r ij are positive, and r ji  =  0.  Therefore,  the  residual  graph  is  equivalent  to  the  graph   G  but  with capacities only. 

The  arrows  in  the  residual  graph  indicate  the  possible  flow  progression  from vertex  E (entry) to vertex  S (exit). 

To increase the flow, an increasing path is identified in  H, i.e. a path that allows an additional flow to be transferred. For example, by following the path 𝐸 − 3 − 7 − 𝑆, the arc 3 − 7 can be saturated (see Figure 7.9), which modifies the flows on arcs 𝐸 − 3, 3 − 7, and 7 − 𝑆. The path 𝐸 − 3 − 7 -  −  S  is an “augmenting” path. After this step, the total flow becomes 𝐹  =  50. 

The new residual graph, recalculated according to the values of  r ij and  r ji, is shown in Figure 7.9. Saturated arcs in the flow graph are represented by “thick red lines”. 

On the arcs 𝐸 − 3 and 7 − 𝑆, the updated values imply the appearance of pairs of opposite arcs. For 3 − 7, the orientation of the arc is reversed. 
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Figure 7.9.  Flow graph G and residual graph H. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

The exploration of the residual graph 𝐻 continues to identify an augmenting path linking  𝐸    to  𝑆.  At  this  stage,  several  paths  remain  available.  For  example,  by following the path 𝐸 − 3 − 5 − 𝑆, it is possible to increase the flow by 80, leading to  saturation  of  the  arc  3 − 5.  The  result  of  this  update  is  depicted  in  the  flow graph,  as  shown  in  Figure  7.10.  After  this  step,  the  total  flow  now  reaches 𝐹  =  130. 

 

Figure 7.10.  Flow graph G and residual graph H. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

Figure  7.10  shows  the  residual  graph   H   after  increasing  the  flow  to  𝐹  =  130. 

Several  potential  augmenting  paths  remain  in  the  graph  𝐻.  By  following 𝐸 − 1 − 4 − 5,  the  arc  1 − 4  can  be  saturated,  increasing  the  flow  by  80.  This update is reflected in Figure 7.11, with the total flow no reaching 𝐹  =  210. 

Next,  by  following  the  path  𝐸 − 3 − 6 − 𝑆,  both  arcs  𝐸 − 3  and  3 − 6  are saturated  simultaneously.  This  results  in  the  configuration  shown  in  Figure  7.12 

for the flow graph. 
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Figure 7.11.  Flow graph G and residual graph H. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

 

Figure 7.12.  Flow graph G and residual graph H. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

 

Figure 7.13.  Flow graph G and residual graph H. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

The flow 𝐹 now reaches 280 units. The resulting residual graph in Figure 7.12 still allows  additional  augmenting  paths.  By  selecting  the  path  𝐸 − 2 − 4 − 𝑆,  arc 4 − 𝑆   becomes saturated, increasing the flow to 345 units. 
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At  this  stage,  the  flow  is  𝐹 = 345.  The  updated  residual  graph  𝐻,  as  shown  in Figure 7.13, continues to provide possible augmenting paths. 

Next,  along  the  path  𝐸 − 2 − 6 − 𝑆,  arc  2 − 6  reaches  saturation.  Figure  7.14 

represents  the  revised  flow  graph,  where  the  total  flow  increases  to  𝐹  =  375 

units. 

  

Figure 7.14.  Flow graph G and residual graph H. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

In the residual graph shown in Figure 7.14, the path 𝐸 − 1 − 5 − 𝑆 is selected to further  increase  the  flow.  This  operation  results  in  the  saturation  of  both  arc 1 − 5 and arc 5 − 𝑆. 

The update configuration of the flow graph is presented in Figure 7.15, where the total flow has now reached 𝐹  =  405 units. 

  


Figure 7.15.   Flow graph G and residual graph H. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

In the residual graph 𝐻 (see Figure 7.15), the available paths from 𝐸 to 𝑆 become limited.  The  path  𝐸 − 1 − 6 − 𝑆  is  selected,  resulting  in  the  saturation  of  arcs 𝐸 − 1 and 6 − 𝑆, bringing the total flow to 𝐹  =  435 (see Figure 7.16). 
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In the updated residual graph 𝐻 (see Figure 7.16), the only remaining feasible path is  𝐸 − 2 − 7 − 𝑆.  By  saturating  arcs  𝐸 − 2  and  7 − 𝑆,  a  final  flow  increase  of 5 units is achieved, leading to 𝐹 = 440. 

Figure 7.17 shows this final configuration. 

 

Figure 7.16.  Flow graph G and residual graph H. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

 

Figure 7.17.  Flow graph G and residual graph H. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

As shown in the final residual graph shows, no path from 𝐸 to 𝑆 remains available, indicating  that  the  optimal  solution  has  been  reached  with  a  maximum  flow  of 𝐹  =  440 units. 

This  process  highlights  the  fact  that  the  choice  of  augmenting  paths  can  be arbitrary.  However,  a  strategic  selection  of  these  paths  can  lead  to  a  faster convergence to the optimal solution, minimizing the number of iterations required to achieve the result. 
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7.1.4.  Practical solution method 

The  process  illustrated  in  Example  7.2  follows  the  Ford–Fulkerson  algorithm. 

This method can be reformulated in a more practical way by following these steps: 1)  Initialization:  start  with  an  arbitrary  feasible  flow  𝐹  that  satisfies  all constraints (1), (2) and (3), i.e. capacity, flow conservation and network structure. 

2)  Enhancement (optional):   enhance the initial flow so that any path from 𝑋  to 𝑋  contains  at  least  one  fully  saturated  arc  𝑋 𝑋   (i.e.  an  arc  where  the  maximum quantity is transported: 𝜙 = 𝑐 ). This flow is then considered  complete. 

This step can sometimes lead directly to the optimal solution but is not always sufficient. 

3)  Iteration: repeat the following steps. 

a) Mark the entry vertex 𝐸. 

b) For each marked vertex 𝑥: 

i) mark  adjacent  vertices  𝑦  for  which  the  arc  𝑥𝑦  is  unsaturated  (i.e. 

𝜙 < 𝑐 ), using the notation +𝑥; 

ii) mark  adjacent  vertices  𝑦  for  which  the  arc  𝑦𝑥  carries  a  positive  flow (i.e. 𝜙

> 0), using the notation −𝑥. 

c) If the exit vertex 𝑆 is marked, adjust the flow accordingly. 

4) Termination:  the  process  stops  when  𝑆  can  no  longer  be  marked,  indicating that the maximum flow has been reached. 

This  iterative  method  uses  markings  to  identify  augmenting  paths  efficiently, optimizing the computation of the maximum flow. 

Let us apply the algorithm, in its new form, to Example 7.1. 

EXAMPLE 7.3.–   

 Step 1: the process begins with the initial flow configuration shown in Figure 7.18. 

This initial flow is obtained manually, without applying any forced optimization. 

– Saturated arcs (where 𝜙 = 𝑐 ) are highlighted in red. 

– Null arcs (where 𝜙 = 0) are marked in blue. 
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Figure 7.18.  Starting flow. For a color version of this figure, 

 see www.iste.co.uk/cochard/mathematics3.zip 

Note:  This  initial  flow  is  not  complete.  The  following  paths: 𝐸– 1– 5– 𝑆, 𝐸– 1– 6– 𝑆, 𝐸 − 2 − 4 − 𝑆, 𝐸 − 2 − 6 − 𝑆, 𝐸 − 2 − 7 − 𝑆 

do 

not 

contain any saturated arcs. 

A complete flow would require that at least one arc in every path from 𝐸 to 𝑆 at least be saturated (𝜙 = 𝑐 ). At this stage, the total flow is 280 units. 

 Step 2: vertex marking (see Figure 7.19). 

Note  that  a  vertex  that  has  already  been  marked  is  not  marked  again.  Multiple paths may exist to reach the exit vertex 𝑆. Once the vertex 𝑆 is reached, additional markings are unnecessary. 



Figure 7.19.  Marking process. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 
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In the case of the marking in Figure 7.19, the vertex 𝑆 has been marked with the path  𝐸 − 2 − 6 − 𝑆.  This  path  is  identified  as  an  augmenting  path  using  the previous  vertex  markings.  By  improving  this  path  by  30  units,  the  arc  2 − 6 

becomes  saturated  (see  Figure  7.20).  As  a  result,  the  total  flow  increases  to 310 units. 



Figure 7.20.  Flow enhancement. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

Step  2  is  repeated  with  the  new  flow  shown  in  Figure  7.21(a).  Based  on  the unsaturated arcs, for example, the path 𝐸 − 1 − 5 − 𝑆 is selected (there are several possible choices, as shown in Figure 7.21(b). 

This  path  saturates  the  arcs  1 − 5  and  5 − 𝑆,  resulting  in  a  flow  increase  of 30 units (see Figure 7.22). 

 

Figure 7.21.  a) Flow graph and b) marking. For a color version of  

 this figure, see www.iste.co.uk/cochard/mathematics3.zip 
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Figure 7.22.  Flow enhancement. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

The flow increases to 340 units. Figure 7.23(a) shows the updated graph. 

 

Figure 7.23.  a) Flow graph and b) marking. For a color version of  

 this figure, see www.iste.co.uk/cochard/mathematics3.zip 

The  marking  shown  in  Figure  7.23(b)  corresponds  to  the  path  𝐸 − 2 − 4 − 1 −

6 − 𝑆, as shown in Figure 7.24. 

The possible increase is 30 units, added in the 𝐸  ⟶  𝑆 direction or subtracted in the 𝑆  ⟶  𝐸 direction, in order  to respect  the  equality  of  incoming  and outgoing flows for each vertex. This indicates that the arc 1 − 4 is no longer saturated. The flow is now 370 units. 
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Figure 7.24.  Flow enhancement. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

Figure 7.25(a) shows the updated graph. There are still possible markings, such as the one in Figure 7.25(b), which corresponds to the path 𝐸 − 2 − 7 − 𝑆. 



Figure 7.25.  a) Flow graph and b) marking. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

This  path  can  be  increased  by  5  units  (see  Figure  7.26),  increasing  the  flow  to 375 units (see Figure 7.27(a)). 



Figure 7.26.  Flow enhancement. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 
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The  marking  now  chosen  is  that  shown  in  Figure  7.27(b),  corresponding  to  the path  𝐸 − 1 − 4 − 𝑆,  which  can  be  increased  by  30  units  (see  Figure  7.28).  This results in the saturation of the arcs 𝐸 − 1 and 1 − 4. 

 

Figure 7.27.  a) Flow graph and b) marking. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 



Figure 7.28.  Flow enhancement. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

The flow is now 405 units. The new graph is shown in Figure 7.29(a). 

 

Figure 7.29.  a) Flow graph and b) marking. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 
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In Figure 7.29(b), it is observed that since 𝐸, a direct connection between vertices 1  and  3,  is  no  longer  possible.  By  marking  2,  then  4  and  finally  𝑆,  the  path 𝐸 − 2 − 4 − 𝑆  can  increase  the  flow  by  35  units,  saturating  the  arcs  𝐸 − 2  and 4 − 𝑆 (see Figure 7.30). 

As a result, the flow increases to 440 units. The new graph shown in Figure 7.31 

shows  that  none  of  the  three  vertices  1,  2  or  3  can  be  marked  from  𝐸. 

Consequently,  it  becomes  impossible  to  reach  𝑆,  indicating  that  optimality  has been achieved with a maximum flow of 𝐹 = 440 units. 



Figure 7.30.  Flow enhancement. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 



Figure 7.31.  Flow graph. For a color version of this figure, 

 see www.iste.co.uk/cochard/mathematics3.zip 

7.2. Least cost transportation 

7.2.1.   Issues 

The  goal  is  to  transport  goods  from  𝑚    sources  to  𝑛    destinations  while minimizing  transport  costs.  This  problem  can  be  represented  as  a  transportation 
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model, where the cost of moving goods along different routes must be optimized to minimize the total cost. 

EXAMPLE 7.4.– Let I, II, III and IV be the sources, and 1, 2, 3, 4, 5 and 6 be the destinations. 



Figure 7.32.  Problem data 

The source–destination cost matrix is shown in Figure 7.32. 

This  problem  can  be  formulated  as  a  linear  program  with  the  objective  of minimizing the following total cost: 

𝑧 =

𝑐 𝑥  

where  𝑐  represents  the  coefficients  of  the  cost  matrix  (unit  costs),  and  𝑥   is  a variable  representing  the  quantities  transported  on  the  route  from  source  𝑖  to destination 𝑗. 

There are three constraints to consider. First, the relationship that expresses the equality  between  supply  (𝑎 ,  representing  the  availability  at  source   i)  and  demand (𝑏 , representing the demand at destination 𝑗) is: 

𝑎 =

𝑏  

In  addition,  the  following  constraints  ensure  that  the  sum  of  the  quantities transported on the routes from each source 𝑖 is equal to the availability at the source 𝑎 , and the sum of the quantities transported on the routes to each destination 𝑗 is equal to the demand at that destination 𝑏 : 
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𝑥 = 𝑎          ∀𝑖 = 1, … , 𝑚 

𝑥 = 𝑏          ∀𝑗 = 1, … , 𝑛 

In addition to linear programming, there are algorithms for solving this problem, which  can  be divided  into  two  categories:  those  that  obtain  an  initial  solution  and those that improve the solution until optimality is reached. 

Among  the  most  popular  algorithms  for  obtaining  an  initial  solution  are  the Northwest Corner Method, the Least Cost Method and the Balas-Hammer Method (also known as Vogel’s Method). 

For  improving  an  initial  solution,  the   Stepping Stone Method  and  the  Potential Method are commonly used. 

7.2.2.   Northwest Corner algorithm 

The   Northwest Corner Algorithm  is  used  to  find  an  initial  solution  to  the transportation  problem.  The  decision  variables  are  the  quantities  𝑥 ,  which  must satisfy  a  set  of  𝑛 + 𝑚 + 1  independent  constraints.  A  feasible  solution  must therefore  have  𝑛𝑚 − (𝑛 + 𝑚 + 1) = (𝑚 − 1)(𝑛 − 1)  zero  variables.  For  instance, in Example 7.4, there will be (3 − 1)(4 − 1) = 6 zero variables. 

To find an acceptable solution using the Northwest Corner algorithm, start with the table of transported quantities (i.e. the first source and destination) and saturate the  availability  of  the  first  source  from  left  to  right.  Then,  move  on  to  the  second source and proceed in the same way. This process becomes clearer with the example provided. 

EXAMPLE 7.5.–  



Figure 7.33.  The Northwest Corner 
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Starting  at  the  Northwest  Corner  of  the  matrix  (see  Figure  7.33),  i.e.  cell  (I,1), 14 units are allocated to satisfy the demand of destination 1 (14), which fully satisfies its demand. Continuing along the same row of the matrix, 11 units are allocated to satisfy  the  demand  of  destination  2  (11),  which  fully  satisfies  its  demand.  This leaves an availability of 1 unit, which is allocated to destination 3. Thus, the initial availability of 26 at resource I has been fully used (see Figure 7.34). 



Figure 7.34.  Processing the first row 

Moving to the new Northwest Corner, i.e. cell (II,3), 4 units are allocated to fully satisfy destination 3’s demand, thus saturating it. The remaining availability of 10 

units at source II is then allocated to partially satisfy the demand of destination 4 

(see Figure 7.35). 



Figure 7.35.  Processing the second row 

Moving  to  the  new  Northwest  Corner,  i.e.  cell  (III,4),  the  only  unexplored  cell, destination 4 is allocated the total availability of source III (18), which saturates its demand (10 + 18 = 28) (see Figure 7.36). 



Figure 7.36.  Processing the third row 
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The resulting solution has a cost of: 𝑧 = 14 × 83 + 11 × 27 + 1 × 35 + 4 × 42 +

10 × 78 + 18 × 92 = 4,098. 

7.2.3.  Least cost method 

The  Least  Cost  method,  which  is  more  efficient  than  the  Northwest  Corner method (since it does not take costs into account), involves progressively filling the cells of the quantity table based on the lowest cost. Let us return to Example 7.5. 

EXAMPLE 7.6.–  

Let us create a table (see Figure 7.37) showing both quantities (still unknown) and unit costs. The costs are displayed at the top left of each cell. 



Figure 7.37.  Table with unit costs 

The  cell  with  the  lowest  cost  is  identified.  In  this  case,  cell  (I,2)  has  the  lowest cost, which is 27. Therefore, the demand of destination 2 can be satisfied with a quantity of 11, reducing the availability of source I and cancelling out the demand of  destination  2.  This  way,  there  is  no  need  to  return  to  column  2  for  further allocations (see Figure 7.38). 



Figure 7.38.  Least cost: 27 
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Of the remaining cells, cell (I,3) has the lowest cost, at 35. Therefore, the demand of destination 3 can be satisfied with a quantity of 5, which reduces the availability of source I and cancels out the demand of destination 3. This way, there is no need to return to column 3 for further allocations (see Figure 7.39). 



Figure 7.39.  Least cost:  35 

The lowest cost among the remaining cells is 53, found in cell (III,1). The demand of destination 1 can be completely satisfied by allocating a quantity of 14, which reduces the availability of source III and saturates the demand of destination 2. As a  result,  there  is  no  need  to  return  to  column  1  for  further  allocations  (see Figure 7.40). 



Figure 7.40.  Least cost: 53 

The lowest cost among the remaining cells is 61, found in cell (I,4). Therefore, a quantity of 10 is allocated to destination 4, exhausting the availability of source I. 

There will be no need to return to the first row (source I) later (see Figure 7.41). 
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Figure 7.41.  Least cost: 61 

The lowest cost among the remaining cells is 78, found in cell (II,4). Therefore, 14 

units are allocated to partially satisfy the demand of destination 4, saturating the availability of source II. There will be no need to return to row II (see Figure 7.42). 

All  that  remains  is  to  treat  the  final  cell  (III,4).  The  demand  for  destination  4  is fully satisfied by assigning the 4 units it was missing, completely exhausting the availability of source III (see Figure 7.43). 



Figure 7.42.  Least cost: 78 



Figure 7.43.  End of processing 
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Ultimately,  the  total  cost  is  𝑧 = 11 × 27 + 5 × 35 + 10 × 61 + 14 × 78 + 14 ×

53 + 4 × 92 = 3,284, which  provides  a  better  cost  solution  compared  to  the Northwest Corner method. 

7.2.4.   Balas-Hammer or Vogel’s algorithm 

Another  commonly  used  method  for  obtaining  an  initial  solution  is  the Balas-Hammer  algorithm, also known as the  Vogel  approximation   algorithm. What makes this method interesting is that, in many cases, the initial solution obtained is also the optimal one. 

The  algorithm  works  as  follows:  the  differences  between  the  smallest  element and  the  next  largest  (or  equal)  element  in  each  row  and  column  of  the  unit  cost matrix  are  calculated.  The  largest  of  these  differences  is  then  selected.  This maximum difference can be found either in a row or a column. 

Next, the smallest element in the corresponding row or column is chosen, and an attempt  is  made  to  satisfy  the  demand,  taking  the  corresponding  availability  into account. This step may result in either cancelation of a request (and a reduction in availability) or the cancellation of availability (and a reduction in demand). 

This  process  is  repeated  until  all  requests  have  been  satisfied,  and  all availabilities have been exhausted. Let us apply this method to Example 7.5. 

EXAMPLE 7.7.– At each iteration, two tables are updated: the difference table and the delivery table (see Figure 7.44). 



Figure 7.44.  Difference table and delivery table On the left-hand side of the table, the  DC  row (for column differences) and the  DL 

column (for row differences) have been added. For row I, the smallest cost value is 27,  and  the  next  highest  value  is  35,  so  𝐷𝐿 = 8.  Similarly,  for  column  3,  the smallest cost value is 35, and the next highest value is 42, so 𝐷𝐶 = 7. 
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Having filled in the 𝐷𝐶 row and 𝐷𝐿 column, the biggest difference is found in the 𝐷𝐶 row, with a value of 17. The smallest element in the corresponding column (4) is  61.  Therefore,  the  demand  of  destination  4,  which  requires  28  units,  can  be satisfied  using  the  availability  of  source  I.  All  of  the  availability,  26  units,  is allocated to destination 4. With the availability of source I exhausted, there is no need to return to row I (see Figure 7.44). 

After  recalculating  the  differences,  the  largest  difference  of  17  is  found  in column  2.  In  this  column,  the  smallest  value  is  39  in  cell  (II,2).  The  demand  of destination 2 can be fully satisfied with the availability of source II. Thus, there is no need to return to column 2 again (see Figure 7.45). 



Figure 7.45.  Largest difference DC = 17 

After recalculating the differences, the largest difference of 23 is found in row II. 

On  this  row,  the  smallest  value  is  42  in  the  cell  (II,3).  Destination  3  requires 5 units, but the remaining availability of source II is 3 units. Therefore, 3 units are allocated  for  destination  3.  This  operation  exhausts  the  availability  of  source  II, and there is no need to return to row II (see Figure 7.46). 



Figure 7.46.  Largest difference DL = 23 

After  recalculating  the  differences  for  𝐷𝐶,  and  in  the  case  of  row  III,  simply transferring  the  costs,  the  largest  difference  of  92  is  found  in  column  4.  The smallest value in this column is 92 (the only value) in cell (III,4). The remaining 2 units needed by destination 4 can be assigned, thus saturating its request. There is no need to return to column 4 (see Figure 7.47). 
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Figure 7.47 . Largest difference DC = 92 

After  recalculation  of  the  differences,  the  largest  difference  of  54  is  found  in column 3. The smallest (and only) value in this column is 54 in cell (III,3). The remaining 2 units are assigned to destination 3, thus saturating its request. There is no need to return to column 3 (see Figure 7.48). 



Figure 7.48.  Largest difference DC = 54 

All that remains is to satisfy destination 1’s demand by assigning it the 14 units from source III. Its demand is then satisfied (see Figure 7.49). 



Figure 7.49.  Finalization 

Now that all destinations have been delivered, the total cost is calculated as: 𝑧 = 26 × 61 + 11 × 39 + 3 × 42 + 14 × 53 + 2 × 54 + 2 × 92 = 3,175  

The  solution  with  this  cost  is  already  better  than  those  obtained  using  the Northwest Corner method or the Least Cost method. 
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7.2.5.   Stepping stone algorithm 

Now that an initial solution has been obtained, the next step is to improve it, if possible.  Assume  the  initial  solution  was  derived  using  the  Northwest  Corner method, resulting in a total cost of 𝑧 = 4,098. The stepping stone   algorithm can now be  explored.  The  basic  principle  of  this  algorithm  is  to  attempt  to  fill  empty  cells with appropriate quantities. 

The  quantity  matrix  for  the  initial  solution  includes  both  occupied  and  empty cells.  Let  𝑚    represents    the  number  of  sources,  and  𝑛    represent    the  number  of destinations.  The  expression  𝑚 + 𝑛 − 1  indicates  the  expected  structure  of  the solution.  If  the  number  of  occupied  cells,  denoted  𝑛𝑜,  satisfies  the  equation 𝑚 + 𝑛 − 1 = 𝑛𝑜,  then  the  solution  is  non-degenerate.  If  not,  the  solution  is degenerate, which will be discussed later. 

Returning  to  the  previous  example,  where  the  solution  was  obtained  using  the Northwest  Corner  method,  the  unit  costs  are  placed  at  the  top  left  to  avoid  using multiple matrices (see Figure 7.50). Occupied cells are highlighted in gray. In this case,  𝑚 + 𝑛 − 1 = 3 + 4 − 1 = 6,  and  𝑛𝑜 = 6.  Therefore,  the  solution  is non-degenerate. 



Figure 7.50.   Northwest Corner solution 

To improve the initial solution, it is necessary to fill the empty cells. However, such filling requires a reduction in the quantities of the occupied cells in the same row and column. To maintain equilibrium, a circuit must be found that includes both an empty cell and already occupied cells. 

Consider Figure 7.51 as an example. 

For  cell  (I,4),  the  circuit  (I,4)⟶(I,3) ⟶  (II,3) ⟶  (II,4)  adds  1  to  cell  (I,4), subtracts 1 from cell (I,3), adds 1 to cell (II,3) and subtracts 1 from cell (II,4). This operation  modifies  the  cost  of  the  quantity  ∆𝑧 = 1 × (61 – 35 + 42 – 78) = −10, improving the initial solution. 
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Figure 7.51.   Proposed circuit. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

Now consider the unoccupied cell (II,2) (see Figure 7.52). 



Figure 7.52.   Alternative circuit. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

With the circuit shown in Figure 7.52, 4 can be added to cell (II,2), 4 subtracted from cell (II,3), 4 added to cell (I,3) and 4 subtracted from cell (I,2). The change in cost is then ∆𝑧 = 4 × (39 – 42 + 35 – 27) = 20, which does not improve the total cost. 

This  is  where  the  potential  method  (or  UV  method),  which  systematically explores all empty cells to find the best improvement. This method will be explained in the following, using the same example. 

EXAMPLE 7.8.– Starting from the initial solution obtained by the Northwest Corner method (𝑧 = 4,098). 

To apply the potentials method, a column 𝑈 and a row 𝑉 are added to the initial solution  table  (see  Figure  7.53).  A  potential  𝑈 = 0  is  arbitrarily  set  at  source  I. 

Then,  for  each  affected  cell  (marked  in  dark  gray),  the  potentials  𝑈   and  𝑉   are calculated using the following relationship [P1]: 

U + V = c                                                                                                       P1  
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Figure 7.53.  U and V potentials 

So: 

𝑈 + 𝑉 = 83, from which  𝑉 = 83  

𝑈 + 𝑉 = 27, from which  𝑉 = 27  

𝑈 + 𝑉 = 35, from which  𝑉 = 35  

𝑈 + 𝑉 = 42, from which  𝑈 = 7  

𝑈 + 𝑉 = 78, from which  𝑉 = 71  

𝑈 + 𝑉 = 92, from which  𝑈 = 21  

Next, the reduced costs of the empty cells are calculated using the formula: 

∆ = U + V − c                                                                                                              P2   

This gives: 

∆ , = 0 + 71 − 61 = 10  

∆ , = 83 + 7 − 65 = 25  

∆ , = 27 + 7– 39 = −5  

∆ , = 83 + 21– 53 = 51  

∆ , = 27 + 21– 56 = −8  

∆ , = 35 + 21 – 54 = 2  
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The positive ∆  values correspond to cell (III,1). For this cell, a circuit is drawn as shown in Figure 7.54. This circuit is more complex than the previous ones, as it must pass through occupied cells. 



Figure 7.54.  Improvement circuit. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

It is possible to add 4 units to cell (III,1), resulting in the removal of 4 units from cell (III,4), the addition of 4 units to cell (II,4), the removal of 4 units from cell (II,3), the addition of 4 units to cell (I,3) and the removal of 4 units from cell (I,1). 

This operation leads to a variation in cost: 

∆𝑧 = 4 × (53– 92 + 78 – 42 + 35 – 83) = −204. 

Thus, the initial solution improves, and the cost is reduced to: 𝑧 = 4 098 – 204 = 3,894. 

The table on the right of Figure 7.54 shows the new solution. It is now necessary to recalculate the potentials, always taking 𝑈 = 0, as follows (see Figure 7.55): 𝑈 + 𝑉 = 83,   therefore  𝑉 = 83  

𝑈 + 𝑉 = 27,   therefore  𝑉 = 27  

𝑈 + 𝑉 = 35,   therefore   𝑉 = 35  

𝑈 + 𝑉 = 53,   therefore   𝑈 = −30  

𝑈 + 𝑉 = 92,   therefore  𝑉 = 122  

𝑈 + 𝑉 = 78,   therefore   𝑈 = −44  
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Figure 7.55.  Calculation of potentials 

Next, the  ∆  values for unoccupied cells are calculated: 

∆ , = 122 – 61 = 61  

∆ , = 83 – 44 – 65 = −26  

∆ , = 27 – 44 – 39 = −56  

∆ , = 35 – 44 – 42 = −51  

∆ , = 27 – 30 – 56 = −59  

∆ , = 35 – 30 – 54 = −49  

The largest positive value corresponds to cell (I,4). Starting from this cell, a cycle is performed to fill it, as shown in Figure 7.56. 



Figure 7.56.  Enhancement circuit 

A gain of ∆𝑧 = 10 × (61 − 83 + 53 − 92) = −610 is obtained, which results in a new solution with a total cost of  𝑧 = 3,284c. 
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Now,  the  same  steps  are  repeated  on  the  new  solution  obtained:  calculating  the potentials and the ∆  values (see Figure 7.57): 

𝑈 + 𝑉 = 27, therefore  𝑉 = 27  

𝑈 + 𝑉 = 35, therefore  𝑉 = 35  

𝑈 + 𝑉 = 61, therefore  𝑉 = 61  

𝑈 + 𝑉 = 78, therefore  𝑈 = 17  

𝑈 + 𝑉 = 92, therefore  𝑈 = 31  

𝑈 + 𝑉 = 53, therefore  𝑉 = 22  



Figure 7.57.  Calculation of potentials 

Let us calculate the ∆  values for the unoccupied cells: 

∆ , = 22 – 83 = −61  

∆ , = 22 + 17 – 65 = −26  

∆ , = 27 + 17 – 39 = 5  

∆ , = 35 + 17 – 42 = 10  

∆ , = 27 + 31 – 56 = 2  

∆ , = 35 + 31 – 54 = 12  

The largest positive value corresponds to cell (III,3). The circuit established (see Figure 7.58) from this cell gives it 4 units. 
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Figure 7.58.  Improvement circuit. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

A gain of ∆𝑧 = 4 × (54 − 92 + 61 − 35) = −48 is obtained, which leads to the new solution with a total cost of 𝑧 = 3,236. 

Next, the potentials and ∆  are recalculated according to the same operations (see Figure 7.59): 

𝑈 + 𝑉 = 27, therefore  𝑉 = 27   

𝑈 + 𝑉 = 35, therefore  𝑉 = 35  

𝑈 + 𝑉 = 61, therefore  𝑉 = 61  

𝑈 + 𝑉 = 78, therefore  𝑈 = 17  

𝑈 + 𝑉 = 54, therefore  𝑈 = 19  

𝑈 + 𝑉 = 53, therefore  𝑉 = 34  



Figure 7.59.  Calculation of potentials 

The calculations for the unoccupied cells are as follows: 

∆ , = 34 – 83 = −49  
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∆ , = 34 + 17 – 65 = −14  

∆ , = 27 + 17 – 39 = 5  

∆ , = 35 + 17 – 42 = 10  

∆ , = 27 + 19 – 56 = −10  

∆ , = 61 + 19 –  92 = −12  

The largest positive value corresponds to cell (II,3). For this cell, a circuit is drawn as shown in Figure 7.60. This circuit adds 1 unit to cell (II,3). 



Figure 7.60.  Enhancement circuit. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

The  gain  obtained  is  ∆𝑧 = 1 × (42 − 78 + 61 − 35) = −10.  This  result corresponds to a new solution with cost of 𝑧 = 3,226. 

Continuing with the same operations on this solution, the new potentials and the 

∆  values are calculated (see Figure 7.61): 

𝑈 + 𝑉 = 27, therefore  𝑉 = 27  

𝑈 + 𝑉 = 61, therefore  𝑉 = 61  

𝑈 + 𝑉 = 78, therefore  𝑈 = 17  

𝑈 + 𝑉 = 42, therefore  𝑉 = 25  

𝑈 + 𝑉 = 54, therefore  𝑈 = 29  

𝑈 + 𝑉 = 53, therefore  𝑉 = 24  

[image: Image 308]

[image: Image 309]

Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science University , Wiley Online Library on [01/07/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License 254     Mathematics for Digital Science 3 



Figure 7.61.  Calculation of potentials 

For unoccupied cells, the ∆ ,  are calculated as follows: 

∆ , = 24 – 83 = −59  

∆ , = 25 – 35 = −10  

∆ , = 24 + 17 – 65 = −24  

∆ , = 27 + 17 – 39 = 5  

∆ , = 27 + 29 − 56 = 0  

∆ ,  61 + 29 – 92 = −2  

The largest (and only) positive value is 5, which corresponds to cell (II,2). From this cell, the circuit shown in Figure 7.62 is drawn, filling the cell with 11 units. 



Figure 7.62.  Improvement circuit. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

This operation leads to a gain of ∆𝑧 = 11 × (39 – 27 + 61 – 78) = −55, resulting in a new solution with a cost of 𝑧 = 3,171. 
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Next,  the  new  potentials  and  ∆   are  calculated  for  this  updated  solution  (see Figure 7.63). 



Figure 7.63.  Calculation of potentials 

𝑈 + 𝑉 = 61, therefore  𝑉 = 61   

𝑈 + 𝑉 = 78, therefore  𝑈 = 17   

𝑈 + 𝑉 = 42, therefore  𝑉 = 25   

𝑈 + 𝑉 = 39, therefore  𝑉 = 22   

𝑈 + 𝑉 = 54, therefore  𝑈 = 29   

𝑈 + 𝑉 = 53, therefore  𝑉 = 24   

For unoccupied cells, the ∆ ,  are calculated as follows: 

∆ , = 24 – 83 = −59  

∆ , = 22 – 27 = −5  

∆ , = 25 – 35 = −10  

∆ , = 24 + 17 – 65 = −24  

∆ , = 22 + 29 – 56 = −5  

∆ , = 61 + 29 – 92 = −2  

All ∆  are negative, satisfying the optimality criterion of the method of potentials. 

Therefore, the final solution obtained is optimal. 
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It is observed that the initial solution derived using the Balas-Hammer method is close to the optimal solution. 

However,  a  few  important  points  still  need  to  be  addressed:  the  inequality between supply and demand, and the case of an unconnected graph. 

7.2.6.   Inequality of supply and demand 

Where  total  demand  differs  from  total  supply,  steps  must  be  taken  to  balance them.  This  can  be  achieved  by  introducing  fictitious  sources  or  destinations  with zero-unit transport costs: 

– If  total  demand  (𝐷)  exceeds  total  supply  (𝑆),  there  is  insufficient  supply  to fully meet demand. To address this, a fictitious source is created with an availability equal  to  the  difference  (𝐷 − 𝑆).  This  fictitious  source  represents  the  additional quantity required to balance supply and demand. 

– Conversely, if total demand (𝐷) is less than total supply (𝑆), there is a surplus of  supply  over  demand.  To  resolve  this  imbalance,  a  fictitious  destination  is introduced  with  a  demand  equal  to  the  difference  between  (𝑆 − 𝐷).  This  fictitious destination absorbs the excess quantity, ensuring supply and demand are balanced. 

EXAMPLE 7.9.– Consider the following situation, as shown by the cost and quantity tables in Figure 7.64. 



Figure 7.64.  Unit cost table and quantity table The total of supply is 60, while the total of demands is 45. To close this gap of 15 

(60  −  45), a fictitious requester 4 is added with a demand of 15. 

By assigning a zero cost to all routes leading to requester 4, the following situation is obtained after applying the Northwest Corner method (see Figure 7.65). 
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Figure 7.65 . Application of the Northwest Corner method The stepping stone   algorithm is now applied. Following its steps, a solution with a total cost of z = 370 is obtained. 

7.2.7.   Unconnected graph and degeneration 

The  relationships  between  sources  and  recipients  can  be  represented  as  a bipartite  graph.  In  Example  7.4,  the  graphs  corresponding  to  the  quantities transported, both for the initial Northwest Corner solution and the optimal solution obtained using the stepping stone   algorithm, are shown in Figure 7.66. 



Figure 7.66.   Solution graphs 

These  graphs  are  both  connected  and  acyclic.  The  potential  method  described earlier applies only to connected and acyclic graphs for calculating potentials. 

It  is  important  to  note  that,  in  the  graph  shown  in  Figure  7.66,  the  edges represent the occupied cells from the previous tables. The equation 𝑚 + 𝑛 – 1 = 𝑛𝑜 

(here, 6) holds, indicating that there is no degeneration in this case. 

[image: Image 314]

[image: Image 315]

Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science University , Wiley Online Library on [01/07/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License 258     Mathematics for Digital Science 3 

However, if the quantity graph is not connected, it must be artificially connected by adding a link with a small quantity 𝜀 > 0. 

EXAMPLE 7.10.– Consider the following problem, for which an initial solution is provided,  as  shown  in  Figure  7.67.  This  solution  corresponds  to  the  total  cost of 𝑧 = 3,053. 



Figure 7.67.  Initial solution 

Looking at the table, it can be observed that there are five occupied cells, whereas the equation 𝑚 + 𝑛 – 1 = 6 indicates that there should be six occupied cells. This suggests  a  situation  of  degeneration.  Furthermore,  the  corresponding  graph  has two distinct connected components: {III,1} and {I, II, 2, 3, 4}. 

To  replace  an  occupied  cell,  the  one  with  the  lowest  cost  is  chosen.  This  is  cell (I,1),  which  has  a  cost  of  27.  Starting  from  this  cell,  it  is  impossible  to  draw  a circuit  passing  through  occupied  cells.  To  resolve  this,  a  value  of  𝜀 > 0  units  is assigned to cell (I,1), resulting in the situation shown in Figure 7.68. 



Figure 7.68.  Using the  ε  value 
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Figure 7.69.  Calculation of potentials 

Now,  with  𝑚 + 𝑛 − 1 = 𝑛𝑜 = 6,  and  after  the  addition  of  the  edge  𝐼 − 1,  the corresponding graph has become connected. The method of potentials can now be used to improve upon the previous solution (see Figure 7.69). 

For occupied cells: 

𝑈 + 𝑉 = 27, therefore  𝑉 = 27  

𝑈 + 𝑉 = 61, therefore  𝑉 = 61  

𝑈 + 𝑉 = 78, therefore  𝑈 = 17  

𝑈 + 𝑉 = 42, therefore  𝑉 = 25  

𝑈 + 𝑉 = 39, therefore  𝑉 = 22  

𝑈 + 𝑉 = 48, therefore  𝑈 = 21  

For unoccupied cells: 

∆ , = 22 – 53 = −31  

∆ , = 25 – 35 = −10  

∆ , = 27 + 17 – 65 = −21  

∆ , = 22 + 21 – 56 = −13  

∆ , = 25 + 21 – 32 = 14  

∆ , = 61 + 21 – 92 = −10  
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Figure 7.70.  Improvement circuit. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 



Figure 7.71.  Calculation of potentials 

The only positive value, 14, corresponds to cell (III,3), from which an improving circuit is drawn (see Figure 7.70). 

The cost improvement is ∆𝑧 = −70; hence, 𝑧 = 2,983. In this new configuration (see  Figure  7.71),  the  potentials  are  recalculated,  followed  by  the  calculation  of the ∆ : 

∆ , = 22 – 53 = −31  

∆ , = 11 – 35 = −24  

∆ , = 27 + 17 – 65 = −21  

∆ , = 11 + 17 – 42 = −14  

∆ , = 22 + 21 – 56 = −13  

∆ , = 61 + 21 – 92 = −10  
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All values are negative, indicating that the optimal solution has been reached. The final step is to make 𝜀 tend towards 0 (see Figure 7.72). 



Figure 7.72.  Optimum solution 

7.2.8.   Potentials and dual program 

In  the  method  of  potentials,  a  legitimate  question  is  what  the  potentials correspond  to  and  why  they  are  used.  To  answer  this,  the  concept  of  linear programming is revisited. 

The linear program is formulated as follows: 

Minimize: 

𝑧 =

𝑐 𝑥  

Subject to the constraints: 

𝑥 = 𝑎         𝑖 = 1, … , 𝑚 

∑

𝑥 = 𝑏         𝑗 = 1, … , 𝑛, 

where the variables 𝑥  are non-negative. 
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The dual program of this linear program can be written as: Maximize: 

𝑤 =

𝑎 𝑈 +

𝑏 𝑉  

Subject to the constraints: 

𝑈 + 𝑉 ≤ 𝑐 ,  𝑖 = 1, … , 𝑚,  𝑗 = 1, … , 𝑛 

where 𝑈  and 𝑉  can take any sign. 

To  explain  the  transition  from  the  linear  program  to  its  dual,  consider  the following example. 

EXAMPLE 7.11.– Consider the transportation problem shown in Figure 7.73. 



Figure 7.73.  Transportation problem 

The linear program is: 

minimize 𝑧 = 𝑐 𝑥 + 𝑐 𝑥 + 𝑐 𝑥 + 𝑐 𝑥 + 𝑐 𝑥 + 𝑐 𝑥  

s.t . 

𝑐 𝑥 + 𝑐 𝑥 + 𝑐 𝑥 = 𝑎    

𝑐 𝑥 + 𝑐 𝑥 + 𝑐 𝑥 = 𝑎    

𝑐 𝑥 + 𝑐 𝑥 = 𝑏    

𝑐 𝑥 + 𝑐 𝑥 = 𝑏    

𝑐 𝑥 + 𝑐 𝑥 = 𝑏    
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𝑥 ≥ 0,    𝑖 = 1, 2   𝑗 = 1, 2, 3   

There are five constraints, so for the dual program, five variables are introduced: 𝑈 , 𝑈 ,  𝑉 ,  𝑉 ,  𝑉 , in the order corresponding to the constraints. 

The dual program is then written as follows: 

maximize 𝑤 = 𝑎 𝑈 + 𝑎 𝑈 + 𝑏 𝑉 + 𝑏 𝑉 + 𝑏 𝑉   

s.t. 

𝑈 + 𝑉 ≤ 𝑐   

𝑈 + 𝑉 ≤ 𝑐   

𝑈 + 𝑉 ≤ 𝑐   

𝑈 + 𝑉 ≤ 𝑐   

𝑈 + 𝑉 ≤ 𝑐   

𝑈 + 𝑉 ≤ 𝑐   

This  results  in  the  optimality  condition  𝑈 + 𝑉 – 𝑐 ≤ 0,  which  enables  our interpretation of the variables 𝑈  and 𝑉  as the potentials used in the enhancement algorithm. 

7.3. Assignment problems 

7.3.1.   Issues 

 Objective: Determine the best bijective match between two sets, where “the best” 

may refer to the most profitable, least costly or otherwise most efficient match. 

EXAMPLE  7.12.–  Five  teachers  (a,  b,  c,  d,  e)  work  in  a  school  with  five  classes (1, 2, 3, 4, 5). At the beginning of the year, the school principal asks each teacher to rank the classes from 1 to 5, in descending order of preference (see Figure 7.89). 

The “cost” of each assignment can be evaluated by summing the ranking values. 

To best satisfy the teachers, the goal is to minimize the total cost. 

The graph in Figure 7.74 presents a possible solution with a cost of  𝑧 = 1 + 2 +

2 + 4 + 3 = 12. Is this the best solution? 
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Figure 7.74.  A possible solution 

An analogy can be made with the transportation problem, where both supply and demand  are  equal  to  1,  and  the  maximum  capacity  of  the  arcs  is  1.  In  fact,  this represents a class of  linear problems, known as the “allocation problem”, where 𝑛 

resources must be assigned to 𝑛 tasks. 

This problem can be formulated as a linear integer program, where the decision variables represent the assignments of teachers to classes, and the constraints ensure that each teacher is assigned to exactly one class and each class is assigned exactly one teacher.  

Minimize the objective function: 

𝑧 =

𝑐 𝑥  

Subject to the constraints: 

𝑥 = 1     𝑖 = 1, … , 𝑛 

𝑥 = 1     𝑗 = 1, … , 𝑛 

𝑥 =

1 if the link 𝑖𝑗 exists      



0 otherwise                           

EXAMPLE 7.13.– Consider the introductory Example 7.12. Starting from the initial solution  shown  in  Figure  7.74,  the  stepping  stone    algorithm  with  potentials  is applied. The problem is essentially a minimum-cost transportation problem. In this 
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case, the availabilities correspond to the number of teachers to be assigned, while the  demands  represent  the  number  of  teachers  needed  by  each  class,  as summarized in the table in Figure 7.75. 



Figure 7.75.  The problem to be solved 

The cost of the initial solution is 𝑧 = 12. As noted, there are five occupied cells, whereas  nine  are  needed  to  apply  the  method  of  potentials.  To  address  this,  an 

“emergency” solution is applied by adding a quantity 𝜀 to the cells where the cost is 1, increasing the number of occupied cells to nine. Then, the potential method is applied (see Figure 7.76). 



Figure 7.76.  Calculation of potentials 

For unoccupied cells: 

∆ = 1, ∆ = −1,  ∆ = 1, ∆ = −1, ∆ = −1, ∆ = 0, 

∆ = 1, ∆ = −3, ∆ = −1, ∆ = −1, ∆ = 1,   ∆ = −1, 

∆ = 0,   ∆ = −3, ∆ = −4   and    ∆ = −3  
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The  largest positive  value of ∆   is  1, which  corresponds  to several  cells. Let  us choose the cell (𝑎, 2) and draw an enhancement circuit (see Figure 7.77). 



Figure 7.77.  Enhancement circuit. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

The  cost  saving  is  ∆𝑧 = 2 – 1 + 1 – 2 + 1 − 2 = −1 ; hence,  𝑧 = 11.  However, the  resulting  solution  is  degenerate,  as  it  corresponds  to  seven  occupied  cells instead  of  nine.  Cell  (c,3)  is  alone  in  its  row  and  column.  We  add  a  fictitious quantity ε to cells (c,2) and (b,3) to arrive at a total of nine occupied cells. Then, we apply the potential method (see Figure 7.78). 

For unoccupied cells: 

∆ = −1, ∆ = −2,  ∆ = 0,  ∆ = −2, ∆ = −1, ∆ = 0, 

∆ = 1, ∆ = −3, ∆ = −1,  ∆ = −1, ∆ = 1, ∆ = −1, 

∆ = 0,  ∆ = −3, ∆ = −4 and ∆ = −3  



Figure 7.78.  Calculation of potentials 
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The  largest positive  value of ∆   is  1, which  corresponds  to several  cells. Let  us choose  (b,5)  and,  starting  from  this  cell,  draw  an  enhancement  circuit  (see Figure 7.79). 



Figure 7.79.  Enhancement circuit. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

The  cost  saving  is ∆𝑧 = 3 – 1 + 1 – 4 = −1,  resulting in 𝑧 = 10.  The  method  of potentials is then applied to the new solution obtained (see Figure 7.80). 

For unoccupied cells: 

∆ = −1,  ∆ = −2, ∆ = 0, ∆ = −3, ∆ =   −1, ∆ =  0, 

∆ = −3, ∆ = −1,  ∆ = −2, ∆ = 1,  ∆ = −1, ∆ = 0, 

∆ = −1, ∆ = −3, ∆ = −4 and ∆ = −4  

The only positive value corresponds to cell (d,2). Starting from this cell, we draw an enhancement circuit (see Figure 7.81). 



Figure 7.80.  Calculation of potentials 
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Figure 7.81.  Enhancement circuit. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

The  cost  saving  is  ∆𝑧 = 𝜀 × 2 – 1 + 1 – 2 + 1 – 2 = −𝜀,   resulting  in 𝑧 = 10 − 𝜀.  However,  the  resulting  solution  is  degenerate,  as  it  has  only  eight occupied  cells.  Cell  (c,3)  is  isolated  in  its  row  and  column.  To  resolve  this,  a quantity  𝜀  is  added  to  cell  (b,3),  bringing  the  total  number  of  occupied  cells  to nine. The potential method is then applied (see Figure 7.82). 



Figure 7.82.  Calculation of potentials 

For unoccupied cells: 

∆ = 0, ∆ = −1, ∆ = 0, ∆ = −2, ∆ = −2, ∆ = −1, 

∆ = −3, ∆ = −1, ∆ = −2, ∆ = −2, ∆ = −1, ∆ = −1, 

∆ = −1, ∆ = −2, ∆ = −3 and ∆ = −3  

All values are negative, indicating that optimality has been reached with a value of 𝑧 = 10 − 𝜀. Next, 𝜀 is cancelled. Figure 7.83 shows the graph corresponding to the solution obtained. 
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Figure 7.83.  Optimum solution 

Note  that  the  graph  is  not  connected  and  has  five  related  components 𝑎, 2 , 𝑏, 5 , 𝑐, 3 , 𝑑, 1   and  𝑒, 4 , which is normal for a bijection. 

In addition to linear programming and minimum-cost transport algorithms, other algorithms are also suitable for this type of problem. The best known of these is the Hungarian algorithm, which is described in section 7.3.2. 

7.3.2.  Hungarian algorithm 

In practice, this type of problem is usually solved using the Hungarian algorithm, named after its original authors: Egervary, König, Kuhn and Munkres. To illustrate the algorithm, it is applied to Example 7.13. 

 Phase 1: the problem is modified by transforming the cost matrix as follows: 

– Subtract the smallest element from each row of the matrix. 

– Subtract the smallest element from each column of the matrix. 

These adjustments are shown in Figure 7.84. 



Figure 7.84.   Phase 1 
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The  last  table  shows  that  a  bijective  match  is  not  achieved,  as  one  row  can correspond to multiple columns and vice versa. However, a choice can be made to solve this problem (see Figure 7.85). 



Figure 7.85.   Boxed zeros and crossed zeros. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

 Phase 2: crossed zeros and boxed zeros. 

– Mark all rows that do not contain a boxed zero. 

– Mark all columns that contain a crossed zero in a marked row. 

– Mark all rows that contain a boxed zero in a marked column. 

The steps are repeated, starting from the second, as long as marking is possible (see Figure 7.86). 



Figure 7.86.   Marking. For a color version of this figure, 

 see www.iste.co.uk/cochard/mathematics3.zip 

– Unmarked rows and marked columns are crossed out (see Figure 7.87). 

– The smallest element of the remaining array is identified (in this case, 1). 

– This  element  is  subtracted  from  all  not  striped  elements  and  added  to  the doubly striped elements (see Figure 7.88). 
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Figure 7.87.   Striped lines. For a color version of this figure, 

 see www.iste.co.uk/cochard/mathematics3.zip 



Figure 7.88.   Subtraction/addition operation 

By applying the method of crossed zeros and boxed zeros, it becomes possible to assign one  zero  per  row  and  column.  This  results  in  three  equivalent  solutions,  as shown in Figure 7.89. 



Figure 7.89.   Optimum solutions 

EXAMPLE 7.14.– Consider a scenario where five delivery personnel (𝐴, 𝐵, 𝐶, 𝐷, 𝐸) must  serve  five  customers  (𝑎, 𝑏, 𝑐, 𝑑, 𝑒).  The  objective  is  to  minimize  the  total distance  traveled  by  the  drivers.  The  table  of  distances  between  drivers  and customers is shown in Figure 7.90. 
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Figure 7.90.  Distance table 

Let  us  now  apply  the  algorithm  to  solve  the  problem.  Begin  by  subtracting  the smallest element from each row of the distance matrix, as shown in Figure 7.91. 



Figure 7.91.  Subtracting the smallest element from each line Then  proceed  by  subtracting  the  smallest  element  from  each  column  of  the distance matrix, column by column, as shown in Figure 7.92. 



Figure 7.92.  Subtraction of the smallest element in each column At this point, it can be observed that there is at least one null element (0) in each row and column of the matrix. 

An assignment choice will now be made (which is not necessarily the best one), as shown in Figure 7.93. 
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Now, mark the rows that do not have a framed zero (0), as shown in Figure 7.94. 



Figure 7.93.  Assignment choice. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 



Figure 7.94.  Line marking. For a color version of this figure, 

 see www.iste.co.uk/cochard/mathematics3.zip 

Next, mark the columns that have a crossed zero (0) on the only marked row, as shown in Figure 7.95. 



Figure 7.95.  Column marking. For a color version of this figure, 

 see www.iste.co.uk/cochard/mathematics3.zip 

Now, mark the rows that have a zero (0) boxed in a marked column, as shown in Figure 7.96. 
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Figure 7.96.  Continuation of the marking process. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

The  marking  process  can  be  repeated,  but  in  this  case,  no  new  marks  will  be obtained. Therefore, cross out the unmarked rows and marked columns, as shown in Figure 7.97. 



Figure 7.97.  Striped rows and columns. For a color version of  

 this figure, see www.iste.co.uk/cochard/mathematics3.zip 

The  smallest  remaining  element  in  the  array  is  1.  Therefore,  subtract 1  from  the elements  that  are  not  crossed  out  and  add 1  to  the  elements  that  are  crossed  out twice (the other elements remain unchanged), as shown in Figure 7.98. 



Figure 7.98.  Subtraction/addition operation 

Now, a solution with a zero in each row and column can be found. It can also be checked if there is another equivalent solution. This is shown in Figure 7.99. 
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Figure 7.99.  Solution obtained 

The total cost of this solution is 𝐶 = 5 + 13 + 21 + 9 + 17 = 65.   

The  Hungarian  algorithm  can  also  be  applied  to  assignment  problems  with maximum cost.  To  show  how  the  maximization  problem  can  be  converted  into  a minimization  problem,  let  us  return  to  the  linear  program.  Clearly,  the  following holds: 

max(𝑧) = − min(−𝑧), 

where 𝑧 is the objective function of the maximization problem and −𝑧 is the equivalent objective function of the minimization problem. By taking the opposite of the costs in the  distance  table,  the  maximization  problem  can  be  reformulated  as  an  equivalent minimization problem. The objective function can then be rewritten as follows: max 𝒛 =

𝑐 𝑥   ⟺   min 𝑧 = −𝑧 = −

𝑐 𝑥  

It  is  also  true  that  min 𝑧′  is  equivalent  to  min (𝑧′ + 𝐶),  where  𝐶  is  a  positive constant. 

Let 𝑀 be the largest element of 𝑐 . Then, 

𝑀𝑥 = 𝑀

(

𝑥 ) = 𝑀𝑛 and thus 

𝑥 = 1 

Choose 𝐶 = 𝑀𝑛. The problem now becomes minimizing: 

𝑧 + 𝐶 = −

𝑐 𝑥 + 𝑀𝑛 =

𝑀 − 𝑐 𝑥  

Simply apply the Hungarian algorithm to the table 𝑀 − 𝑐 . 
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EXAMPLE 7.15.– Take array 7.90 from Example 7.14, assuming the goal is finding a cost-maximizing assignment. The largest element in the initial array is 32. 

To  reformulate  the  problem  as  a  minimization  problem,  perform  the transformation 𝑀 − 𝑐  on each element of the table, as shown in Figure 7.100. 



Figure 7.100.  Transformation  𝑀 − 𝑐   

Continue by subtracting the smallest element in each row from all the elements in that row, as shown in Figure 7.101. 



Figure 7.101.  Subtracting the smallest element from each line Similarly, continue by subtracting the smallest element in each column from all the elements in that column, as shown in Figure 7.102. 



Figure 7.102.  Subtracting the smallest element in each column 
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Now, choose from the unmarked elements, as shown in Figure 7.103. 



Figure 7.103.  Choice of assignment. For a color version of  

 this figure, see www.iste.co.uk/cochard/mathematics3.zip 

This  time,  a  solution  with  a  zero  in  every  row  and  column  has  been  found. 

Therefore, there is no need to continue the algorithm (no row marking is possible), as  the  optimal  solution  has  been  found.  It  can  be  checked  that  there  is  another equivalent solution. 

Hence, the total cost of this solution is 𝐶 = 23 + 24 + 22 + 30 + 32 = 131. 
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Scheduling Problems 

 

  

CONCEPTS COVERED IN THIS CHAPTER.–  

Scheduling  problems  involve  finding  the  best  solution  for  organizing  different tasks  over  time,  considering constraints  between  tasks.  This  chapter  discusses  two types of problems: project planning and workshop scheduling. 

Section  8.1  covers  project  planning,  introducing  a  general  resolution  method called  the  earliest  and  latest  dates  method.  It  also  explains  the  concept  of  PERT 

graphs, MPM graphs and Gantt charts. 

For  workshop  scheduling,  two  standard  problems  are  addressed:  the  flow-shop and  the  job-shop.  For  the  flow-shop  problem,  where  the  tasks  of  different  jobs follow the same order on the shop floor machines, Johnson’s algorithm is detailed. 

In  the  job-shop  problem,  where  the  tasks  are  not  executed  in  the  same  order,  the solution  is  more  complex.  An  example  is  provided  to  illustrate  how  to  solve  the problem using the earliest and latest dates method. 

References: [BRO 82, DER 16, ESQ 99, FAU 14, HIL 17, PHE 75]. 

 Mathematics for Digital Science 3, 

by Gérard-Michel COCHARD and Mhand HIFI. © ISTE Ltd 2025. 
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8.1. Planning a project 

8.1.1.   Introduction 

A project is a collection of interdependent activities that lead to specific results. 

Project  planning  involves  organizing  operations  with  respect  to  deadlines  and resources. 

Initially, it is important to assess the scope of the project in terms of workload and  duration.  Next,  optimizing  the  sequence  of  tasks  allows  for  a  schedule  to  be established for executing operations. Throughout the project’s development, regular progress  checks  must  be  conducted,  with  adjustments  made  to  the  schedule  as needed. 

In the late 1950s, methods were developed to tackle task scheduling problems, aiming to reduce project duration and costs. Two main methods emerged: 

– The  American  CPM  method  (Critical  Path  Method),  along  with  its  better-known variant, PERT (Program Evaluation and Review Technique), which accounts for randomness in task durations. 

– The French MPM method ( Méthode des Potentiels Métra), also referred to as the potential method. 

The MPM method closely resembles to PERT, with the primary distinction being their graphical representations. In PERT, events, such as the completion of a task, are  represented  by  vertices,  while  tasks  themselves  are  represented  by  edges  (see Figure  8.1).  In  contrast,  the  MPM  method  constructs  the  graph  differently:  each vertex  represents  a  specific  task,  and  an  edge  signifies  a dependency or  constraint between tasks (see Figure 8.2). 



Figure 8.1.   PERT formalism 

 

Figure 8.2.   MPM formalism 
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The MPM representation is adopted in the remainder of this discussion. In this method, links between tasks can take various forms: 

–  End→  Start:  the  next  task  can  only  begin  once  the  previous  task  has  been completed. 

–  End→  End: the next task ends at the same time as the previous task. 

–  Start→  Start: the start of the previous task triggers the start of the next task. 

–  Start→  End: the start of the previous task marks the end of the next task. 

Links between tasks may also include numerical values, known as valuated links, to indicate specific deadlines or constraints (see Figure 8.3). 



Figure 8.3.   An example of a validated link 

Figure  8.3  shows  that  test  set  production  begins  10  days  before  programming. 

This  represents   Start  → Start constraint,  with  a  negative  value  on  the  link, indicating  that  test  sets  production  must  start  10  days  prior  to  the  start  of programming. 

In an MPM graph, of the  critical path  is the path that connects  critical tasks – 

those whose delay would directly affect the project’s overall duration. Critical tasks play an essential role in project management, as their timely completion is essential to maintaining the project schedule. 

The  constraints  in  scheduling  problems  can  generally  be  classified  into  three categories. 

–  Potential constraints:  these  constraints  relate  to  the  start  dates  of  tasks.  If  𝑡   

represents the start date of task 𝑖   of duration 𝑑 , then: 𝑡 ≥ 𝑑 , 
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assuming  0  is  the  universal  starting  point  (date).  In  addition,  if  task  𝑗    is  to  be performed after task 𝑖,    which has a duration of 𝑑 , then: 𝑡 ≥ 𝑡 + 𝑑 . 

This  type  of  constraint,  which  enforces  the  order  of  task  execution  (between tasks), is referred to as  succession constraint. 

–  Disjunctive (or non-overlapping) constraints:  these  constraints  concern  the execution periods of two tasks that must not overlap. For instance, this applies when a  machine  can  only  handle  one  task  at  a  time.  If  task 𝑖  occupies  the  time  interval 𝐼 = [𝑡 , 𝑡 + 𝑑 ],  and  task 𝑗  occupies  the  interval 𝐼 = [𝑡 , 𝑡 + 𝑑 ],  the  disjunctive constraint requires that: 

𝐼 ∩ 𝐼 = ∅ , 

which translates into two mutually exclusive inequalities: 

– 𝑡 ≥ 𝑡 + 𝑑  (task 𝑗 starts after task 𝑖) or 

– 𝑡 ≥ 𝑡 + 𝑑  (task 𝑖 starts after task 𝑗). 

This situation can be expressed more formally using the following relationships: (𝑊 + 𝑑 )𝑦 + 𝑡 − 𝑡 ≥ 𝑑  

𝑊 + 𝑑

1 − 𝑦

+ 𝑡 − 𝑡 ≥ 𝑑  

where 𝑦 = 1 if 𝑖   precedes 𝑗,    and 𝑦 = 0 if 𝑗   precedes 𝑖. 𝑊 is an arbitrarily large number. 

Indeed,  if  task 𝑖  precedes  task  𝑗,  then 𝑦 = 1,  and  the  second  relationship becomes: 

𝑡 ≥ 𝑡 + 𝑑  , 

expressing  that  task 𝑗  starts  after  task 𝑖.  In  this  case,  the  first  relationship  is  also verified: 

𝑊 + 𝑑 + 𝑡 ≥ 𝑡 + 𝑑 ≥ 𝑡 + 𝑑 + 𝑑 , 

which simplifies 𝑊 ≥ 𝑑 . This inequality is always valid for a sufficiently large 𝑊. 
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Conversely,  if  task 𝑗  precedes  task  𝑖,  then 𝑦 = 0,  and  the  first  relationship becomes: 

𝑡 ≥ 𝑡 + 𝑑 , 

indicating that task 𝑖 starts after task 𝑗 . The second relationship is verified as well: 𝑊 + 𝑑 + 𝑡 ≥ 𝑡 + 𝑑 ≥ 𝑡 + 𝑑 + 𝑑 , 

which simplifies to 𝑊 ≥ 𝑑 , a condition that is also valid for a sufficiently large 𝑊. 

–  Cumulative constraints:  these  constraints  relate  the  use  of  limited  resources such  as  human,  material  or  financial  resources.  They  are  particularly  complex  to model and account for, as they require simultaneous management of overall resource capacities and task durations. 

8.1.2.   Earliest and latest date method 

The following parameters are used to determine the critical path in a project: 

– Earliest possible dates:  start ( D+early) and  finish ( F+early). 

– Latest possible dates:  start ( D+late) and  end ( F+late). 

– Margin (slack): ( D+late) - ( D+early) = ( F+late) - ( F+early). 

 Basic assumption: It is assumed that all task dependencies are of the end⟶ start type.  Under  this  assumption,  the   critical path  is  the  longest  path  through  the  task graph, representing the minimum possible duration of the entire project. 

 Cases studied 

 First case (task T  at the start of the project): Let T  have a duration of d  and be the first task in the project (see Figure 8.4):  

–  Earliest start: D+early(Ti)= 𝑡    

 – Latest start: F+early(Ti) = 𝑡 + 𝑑   

 Second case (task Ti at the end of the project): Let task T  have a duration of d and be the last task in the project (see Figure 8.5): 

–  Latest finish: F+late(Ti) = 𝑡   

–  Latest start: D+late(Ti) = 𝑡 − 𝑑   
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 Third case (task  Ti  inside  the  project):  Let  task  T   have  a  duration d   and  be located between other tasks within the project (see Figure 8.6): 

–  Earliest start: D+early(Ti) =   sup{ F+early(predecessors)}  

–  Earliest scheduled finish: F+early(Ti )=  D+early(Ti) +𝑑   

–  Latest finish: F+late(Ti)=   inf{ D+late(successors)}  

–  Start no later than: D+late(Ti)=  F+late(Ti) −𝑑   

By  applying  the  three  sets  of  rules  corresponding  to  the  previously  described cases, the  critical path of a project can be determined. The procedure consists of the following steps: 

1) Determining earliest dates: starting from the initial tasks, the earliest start and finish dates are calculated for each task in the project. 

2) Determining  the  latest  dates:  starting  from  the  termina  tasks,  the  latest  start and finish dates are calculated for each task in the project. 

3) Margin  (slick)  calculation:  for  each  task,  the  margin  is  determined  by subtracting the earliest date from the latest date. 

4) Identifying  the  critical  path:  the  critical  path  consists  of  tasks  with  a   zero margin,  meaning  any  delay  in  these  tasks  would  result  in  a  delay  to  the  overall project. 

Following this method allows for the critical path to be identified, highlighting the most time-sensitive tasks. These tasks require particular attention to ensure the project stays on schedule. 



Figure 8.4.   Task at the start of the project. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 
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Figure 8.5.   Task at the end of the project. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 



Figure 8.6.   Internal task. For a color version of this figure, 

 see www.iste.co.uk/cochard/mathematics3.zip 

EXAMPLE 8.1.– Consider a project composed of the tasks presented in the table in Figure 8.7.  This  table  details  on  the  various  tasks,  their  respective durations  and the dependencies between them. 

The MPM graph representing this project is shown in Figure 8.8. 



Figure 8.7.  Task list and timeline 
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Figure 8.8.  MPM graph. For a color version of this figure, 

 see www.iste.co.uk/cochard/mathematics3.zip 

To complete the project representation, two fictitious tasks are added: a  start task and an  end task, both with a duration of 0 (see Figure 8.9). 



Figure 8.9.  Adding start and end tasks. For a color version  

 of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

The  earliest date method is now applied to the project, as shown in Figure 8.10. 

Note  that  when  a  task  has  multiple  predecessors,  its   earlier start date  is determined by the  largest finish date of its predecessors’ end dates. 
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Figure 8.10.  Earliest dates. For a color version of this figure, 

 see www.iste.co.uk/cochard/mathematics3.zip 

Let us move on to the application of the latest date method, by traversing the graph in the opposite direction from the end task (see Figure 8.11). 



Figure 8.11.  Latest dates. For a color version of this figure, 

 see www.iste.co.uk/cochard/mathematics3.zip 

Note that when a task has multiple successors, its latest finish date is determined by  the  earliest  (smallest)  start  date  among  its  successors.  Once  the  earliest  and latest dates have been calculated for each task, the margins can be determined by calculating  the  difference between  the  latest  and  earliest dates  for  each  task (see Figure 8.12). 

The  critical  path  of  the  project  is  defined  as  the  set  of  tasks  that  have  a  zero margin.  The  critical  path  is  highlighted  in  Figure  8.13,  showing  the  sequence  of tasks  that  must  be  completed  on  time  to  ensure  the  project  is  finished  by  its scheduled deadline. 
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By analyzing the  critical path (the tasks in red) and considering the durations of the various tasks, it can be concluded that the total duration of the project will be 27  days,  assuming  that  the  necessary  resources  are  available  and  the  tasks  are executed as scheduled without any delays. 



Figure 8.12.  Margin calculation. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 



Figure 8.13.  Critical path. For a color version of this figure, 

 see www.iste.co.uk/cochard/mathematics3.zip 

The  critical  path  represents  the  backbone  of  the  project,  while  the  non-critical tasks  provide  flexibility  for  adjusting  the  schedule.  This  sequence  of  tasks determines  the  minimum  time  required  to  complete  the  project.  Any  subsequent changes to the project schedule should focus primarily on tasks that are not part of the critical path. 
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8.1.3.   Gantt chart 

From the task graph, a  Gantt chart can be constructed to represent the project’s schedule of operations. In Example 8.1, assume two interchangeable resources, R1 

and  R2,  capable  of  performing  the  various  project  tasks.  Figure  8.14  shows  a proposed schedule, with the critical path highlighted in red. 



Figure 8.14.   Gantt chart. For a color version of this figure, 

 see www.iste.co.uk/cochard/mathematics3.zip 

In the schedule proposed in Figure 8.14, resource R1 is assigned to critical path tasks,  while  resource  R2  is  allocated  to  non-critical  tasks.  This  allocation  ensures that critical tasks are given priority and completed within the set deadlines. It should be  noted  that  the  use  of  two  resources  is  sufficient,  as  there  are  at  most  only  two tasks running in parallel at any given time, as long as the critical path is respected. 

Figure 8.15 shows a schedule based on “earliest possible” dates, where each task is started as soon as all its predecessor tasks have been completed. 



Figure 8.15.   Early planning. For a color version of this figure, 

 see www.iste.co.uk/cochard/mathematics3.zip 

Figure 8.16 shows “at the latest” planning, where each task is scheduled as late as possible without delaying the overall project. 
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Figure 8.16.   Latest planning. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

If only one resource is available, the total duration of the project will increase. 

This  is  because  a  single  resource  cannot  perform  multiple  tasks  simultaneously. 

Figure 8.17 presents an example of scheduling based on the use of a single resource. 

The  Gantt  chart  in  this  figure  shows  the  sequence  of  task  execution,  considering both dependency constraints and the limited availability of the single resource. 



Figure 8.17.   Case of a single resource. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

Two techniques commonly used to optimize the Gantt chart are resource leveling and workload smoothing: 

– Resource  leveling  aims  to  limit  the  number  of  resources  used  in  the  project, which  can  sometimes  result  in  an  increase  in  the  overall  project  duration.  This approach  is  often  used  when  resources  are  limited  or  when  reducing  costs  is  a priority (see Figure 8.17). 

– Workload  smoothing  focuses  on  balancing  the  workload  across  resources  to avoid peaks in activity or overloading a specific resource. This results in a smoother 
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workload and better utilization of available resources. For example, if resource R2 

works half-time and resource R1 works full-time, workload smoothing can distribute tasks more evenly between the two. This results in a smoother workload and better utilization  of  available  resources.  Figure  8.18  presents  a  Gantt  chart,  showing  this balanced workload distribution. 



Figure 8.18.   Workload smoothing. For a color version of this figure, see www.iste.co.uk/cochard/mathematics3.zip 

8.2. Flow-shop problem 

In this and the following sections, the focus is on the scheduling of a workshop equipped with machines used to manufacture products or objects. Generally, several types of objects are produced, denoted as 𝑛   different objects. Each object requires machines in a specific sequence, and not all objects necessarily pass through every machine. The use of a machine for processing an object represents the execution of a task. 

Flow-shop is a production system where the sequence of machines used for each object  is predefined.  That  is,  if  an  object  requires 𝑝    tasks (involving 𝑝    machines), these  tasks  must  be  executed  in  a  fixed  order.  The  primary  objective  in  the flow-shop    setting  is  to  determine  the  optimal  sequence  for  processing  the  objects, typically with the goal of minimizing the total production time. 

Consider  the  case  involving  two  machines,  M1  and  M2, used  to  manufacture 𝑛  

objects.  This  situation  represents  the  production  of   n   objects  requiring  successive processing on machines M1 and M2, always in the same order. The processing times for each object on both machines are predefined. The objective is to find the optimal sequence  for  executing  tasks  that  minimizes  the  total  processing  time.  In  other words,  the  goal  is  to  establish  a  schedule  that  optimizes  machine  utilization  and reduces idle and waiting times. 
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EXAMPLE  8.2.–  Consider  the  table  shown  in  Figure  8.19,  which  presents  the production times of six objects (P1 to P6) on two machines (M1 and M2). 

In  this  context,  each  object  must  first  be  processed  on  machine  M1  and  then  on machine M2. The order of processing on the machines follows an FIFO (first-in, first-out) principle,  meaning that  once  an object starts processing  on  M1, it  must later  be  processed  on  M2  in  the  same  sequence.  Doubling  up  is  not  allowed, meaning an object cannot return to the same machine or be processed on M1 or M2 

more than once. 



Figure 8.19.  Time taken for each object to pass through each machine Consider the following order of objects: P1, P2, P3, P4, P5 and P6. This particular arrangement  represents  one  out  of  720  possible  sequences,  as  there  are  6!  (the factorial of 6) possible permutations for the objects. Figure 8.20 shows the Gantt chart corresponding to this sequence of objects. 



Figure 8.20.  Gantt chart 

 Question: Is it possible to find a different permutation of objects that results in a total task execution time less than  T = 33? 

Johnson’s  algorithm  is  a  specialized  method  for  solving  the  two-machine flow-shop   scheduling   problem. It determines the optimal sequence of objects to be processed on machines M1 and M2, aiming to minimize the overall completion time of all tasks. 
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8.2.1.   Johnson’s algorithm for two machines 

Johnson’s  algorithm  for  the  two-machine  flow-shop  scheduling  problem involves the following steps: 

1) Create a list of all tasks, specifying the processing times for each task on the first machine (M1) and the second machine (M2). 

2) Identify the task with the shortest processing time (𝑡 ), considering the times spent on both M1 and M2. 

3) If 𝑡    corresponds to a time on M1, place the task P  as early as possible in the sequence. 

4) If 𝑡    corresponds to a time on M2, place the task 𝑃  as late as possible in the sequence. 

5) Repeat steps 2 to 4 until all tasks are scheduled. 

Once  all  tasks  are  arranged  according  to  Johnson’s  algorithm,  the  resulting sequence  represents  the  optimal  sequence  in  which  the  tasks  should  pass  through machines  M1  and  M2.  This  sequence  minimizes  the  total  task  execution  time, ensuring efficient utilization of both machines and reducing idle times. 

EXAMPLE 8.3.– Returning to Example 8.2 to illustrate the application of Johnson’s algorithm. Consider the task execution times presented in Figure 8.19. The goal is to identify the smallest processing time among the times spent on M1 and M2. 

The  smallest  time  is  2,  which  appears  four  times.  Selecting  P1  first,  as  its processing time of 2 corresponds to M1, P1 is placed at the head of the queue. The queue is now: 

(P1, x, x, x, x, x). 

Next,  P2  also has  a processing  time  of 2 on  M1,  so  it  is placed behind P1  in  the queue. The queue is now: 

(P1, P2, x, x, x, x). 

P3 has a processing time of 2 on M2, so it is placed at the end of the queue: (P1, P2, x, x, x, P3). 

P4 also has a processing time of 2 on M2, so it is placed before P3 in the queue: (P1, P2, x, x, P4, P3). 
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P6 has a processing time of 3 on M2, so it is placed before P4 in the queue: (P1, P2, x, P6, P4, P3). 

Finally, P5 is placed in the last remaining place in the queue: (P1, P2, P5, P6, P4, P3). 

The optimal sequence for objects to pass through the M1 and M2 machines is: P1, P2, P5, P6, P4, P3. 

This  order  corresponds  to  the  Gantt  chart  in  Figure  8.21,  which  represents  task scheduling in the two-machine flow-shop   problem. 

However,  due  to  the  redundancy  of  the  processing  time  value  2,  there  are  three other possible permutations that yield the same total duration: P1, P2, P5, P6, P3, P4 

P2, P1, P5, P6, P4, P3 

P2, P1, P5, P6, P3, P4 



Figure 8.21.  An optimal  

 solution 

All these permutations result in a total task execution time equal to 32. 

This is because P  and P  have identical processing times (2) on M1, allowing these two tasks to be swapped without impacting the overall duration. 

The proof of Johnson’s algorithm for two machines is as follows. 
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Returning to the example with the sequence P , P , P , P , P , P , a few notations are introduced: the idle times 𝑋 = 2, 𝑋 = 0, 𝑋 = 2, 𝑋 = 4, 𝑋 = 0, and 𝑋 = 0. 

The total execution time is the sum of the times spent on M2 and the idle times: 𝑇 =

𝑡 +

𝑋  

where the index 2 of 𝑡  indicates the time taken for the object P  to be processed on machine M2. 

To  minimize   T,  the  second  term  in  the  expression  must  be  minimized,  i.e.  the dead  times  X ,  given  that  𝑡   are  fixed.  For  example,  for  X = 0,  where generally, 𝑋 = 𝑡 + 𝑡 − 𝑡 − 𝑋 . Then, the following expression holds: 𝑋 = max(𝑡 + 𝑡 − 𝑡 − 𝑋 ; 0) 

This generalizes to: 

𝑋 = max

𝑡 −

𝑡 −

𝑋 ; 0  

Now, the sum 𝑋 + 𝑋  becomes: 

𝑋 + 𝑋 = max 

𝑡 −

𝑡 ; 𝑋  

Similarly, for 𝑋 + 𝑋 + 𝑋 , the expression is: 

𝑋 + 𝑋 + 𝑋 = max 

𝑡 −

𝑡  ; 

𝑡 − 𝑡 ; 𝑋  

Generalizing to the sum of all 𝑋 , for a permutation 𝑝   of P , the total is: Σ (𝑝) ≡

𝑋 = max (

𝑡 −

𝑡 ; 

𝑡 −

𝑡  ; … ; 𝑡 )

= max

𝑡 −

𝑡
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Define: 

𝐿 (𝑝) =

𝑡 −

𝑡  

Thus, the total becomes: 

𝛴 (𝑝) = max 𝐿 (𝑝) 

Now, consider two permutations 𝑝   and 𝑝′   that   differ only in the exchange of Pk and Pk+1: 

For permutation 𝑝: P1, P2, ..., Pk, Pk+1, ..., Pn 

For permutation 𝑝′: P1, P2, ..., Pk+1, Pk, ..., Pn 

If 

max (𝐿 (𝑝), 𝐿

(𝑝)) = max (𝐿 (𝑝 ), 𝐿

(𝑝 )) 

then 

(𝑝) =

(𝑝 ) 

Otherwise, one permutation is better than the other. Specifically, if: max 𝐿 (𝑝), 𝐿

(𝑝) < max 𝐿 (𝑝 ), 𝐿

(𝑝 )      [C] 

then permutation 𝑝   is better than permutation 𝑝′. 

Next, define max 𝐿 (𝑝); 𝐿

(𝑝) : 

max 𝐿 (𝑝); 𝐿

(𝑝) = max 

𝑡 −

𝑡  ; 

𝑡 −

𝑡

. 

For 𝑝′:  

max 𝐿 (𝑝 ); 𝐿

(𝑝 ) = max 



𝑡 + 𝑡 , 

−

𝑡  ; 

𝑡 −

𝑡 − 𝑡 , 
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These two expressions lead to: 

𝑡 −

𝑡 + max 𝐿 (𝑝); 𝐿

(𝑝) = max (−𝑡 , 

; −𝑡 )

= −min (𝑡 , 

; 𝑡 ) 

Similarly, 

𝑡 −

𝑡 + max 𝐿 (𝑝′); 𝐿

(p′) = max (−𝑡 , ; −𝑡 , 

)

= −min (𝑡 , ; 𝑡 , 

) 

Condition [C] becomes: 

min 𝑡 , ; 𝑡 , 

< 𝑚𝑖𝑛 (𝑡 , 

; 𝑡 , ) 

If a permutation 𝑝” is formed by successive swaps such that P P , the order P P  

does not need to change if: 

min 𝑡 , ; 𝑡 , ≤ min 𝑡 , ; 𝑡 ,        [C ] 

This condition [C ] holds if 𝑡 , ≤ 𝑡 , ,    𝑡 ,    𝑡 , , implying: min 𝑡 , ; 𝑡 , ≤ min (𝑡 , ; 𝑡 , ). 

This  means  that  if  𝑡 ,   is  less  than  or  equal  to  all  the  others  in  the  processing times, the order of the sought permutation  should end with  P . 

Condition [C′] also states that if 𝑡 ,    is less than or equal to 𝑡 ,  ,  𝑡 ,  ,  𝑡 , , then: min 𝑡 , ; 𝑡 , ≤ min(𝑡 , ; 𝑡 ). 

This means that if a time 𝑡 ,    is less than or equal to all the others is found in the processing times, the order of the sought permutation  must end with  P . 

8.2.2.  Case of three machines 

The case of two machines is easily solved with Johnson’s algorithm. Now, let us consider  the  case  of  three  machines,  M1,  M2  and  M3,  used  in  that  order.  It  can  
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be  shown  that  Johnson’s  algorithm  can  still  be  applied  in  a  specific  case,  namely when: 

min 𝑡 , ≥ max 𝑡 ,    or    min 𝑡 , ≥ max 𝑡 , . 

In  this  case,  two  fictitious  machines  M1+M2  and  M2+M3,  can  be defined.  This reduces  the  problem  to  a  two  machines  flow-shop  problem,  where  Johnson’s algorithm can then be applied. 

EXAMPLE  8.4.–  Consider  the  table  showing  the  processing  times  on  the  three machines  M1, M2 and M3 for five objects (P1, P2, P3, P4 and P5), as presented in Figure 8.22. 



Figure 8.22.  Manufacturing time 

Observe  that  min 𝑡 , = 3  and  max 𝑡 , = 4,  so  the  condition  min 𝑡 , ≥

max 𝑡 ,  is not satisfied. However, min 𝑡 , = 5, and the condition min 𝑡 , ≥

max 𝑡 ,  , is satisfied. 

Machines  can  therefore  be  grouped  into  two  fictitious  machines:  M1+M2  and M2+M3, as shown in Figure 8.23. 



Figure 8.23.  Grouping into two fictitious machines Looking at the table of running times on the three machines, the smallest value is 5. Therefore, P4 is chosen as the first task in the sequence, giving (P4 x x x x x). 

Next,  the  smallest  remaining  value  is  6,  which  appears  twice,  corresponding  to either P1 or P2. This results in two possible sequences: (P4 P1 x x x) or (P4 x x x P2). 

For  the  first  sequence,  the  smallest  remaining  value  is  6,  corresponding  to  P2, leading to (P4 P1 x x P2). For the second sequence, the smallest remaining value is 
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also  6,  but  this  time,  it  corresponds  to  P1,  resulting  in  (P4  P1  x  x  P2),  which  is identical  to  the  first  sequence.  Continuing,  the  next  smallest  value  is  10, corresponding to either P3 or P5. This leads to two further sequences: (P4 P1 x P3 P2) and (P4 P1 P5 x P2). 

Finally, placing the remaining object results in the final sequence: (P4 P1 P5 P3 P2). 

In this particular example, the solution is unique. However, in other cases, multiple sequences  may  result  in  the  same  total  execution  time.  The  Gantt  chart corresponding to this solution is shown in Figure 8.24. 



Figure 8.24.  An optimal solution 

For  the  three-machine  case,  apart  from  the  special  condition  discussed  earlier, Johnson’s  algorithm  is  no  longer  directly  applicable  or  becomes  increasingly complex to implement. In such situations, other approaches  must be used to solve the  flow-shop  scheduling  problem.  These  approaches  include  linear  programming techniques or specific heuristic algorithms such as the NEH algorithm (proposed by Nawaz, Enscore and Ham) and the CDS algorithm (developed by Campbell, Dudek and Smith). 

The flow-shop   scheduling   problem using linear programming can be formulated as follows: 

Let  𝐼  =   {1, 2, … , 𝑛}    represent  the  set  of  jobs,  and  𝐽  =   {1, 2, … , 𝑚}    represent   

the  set  of  machines.  Let  𝑑     represent  the  processing  time  required  for  job  𝑖    on machine 𝑗. Between machines, a job may experience waiting time. 

Jobs are scheduled in positions 𝑘  =  1 to 𝑛   according to the processing. 
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The decision variables are as follows: 

– 𝑥 = 1 if job 𝑖 is assigned to position 𝑘 in the sequence, 0 otherwise. 

– 𝜏 ≥ 0: idle time of machine j between the completion of the 𝑘th and ( k+ 1)th jobs. 

– 𝑤 ≥ 0:   waiting time of the 𝑘th job before machine 𝑗 + 1. 

The objective function is to minimize the time from the start of the first job on the first machine to the completion of the last job on the last machine: 𝑧 =

𝑑 𝑥 +

𝜏  



The constraints are as follows: 

1) Each job is assigned to exactly one position: 

𝑥 = 1      ∀𝑘 ∈ 𝐽      [𝐶1] 

∈

2) Each position is occupied by exactly one job: 

𝑥 = 1        ∀𝑖 ∈ 𝐼      [𝐶2] 

∈

3) Compatibility of waiting times, idle periods and processing times: 𝑤 +

𝑑 , 

𝑥 + 𝜏

, = 𝜏

+

𝑑 𝑥 , 

+ 𝑤

, 

∈

∈

∀𝑗 ∈ {1, … , 𝑚 − 1}   ∀𝑘 ∈ {1, … , 𝑛 − 1},            [𝐶3]         

4) The first job starts immediately on the first machine (no idle time): 𝜏 = 0        ∀𝑘 ∈  𝐽                                  [𝐶4] 

5) No waiting time before the first job on each machine: 

𝑤 = 0         ∀𝑗 ∈ 𝐽     [𝐶5] 
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The formulation is therefore as follows: 

Minimize  𝑧 =

𝑑 𝑥 +

𝜏  



Subject to [C1] to [C5]. 

This formulation of the flow-shop   problem requires some explanation, which is best understood through an example. Consider three jobs, J1, J2 and J3, and three machines, M1, M2 and M3. The processing times of the jobs on the machines are shown in the table in Figure 8.25. 



Figure 8.25.   Runtimes 

Figure  8.26  shows  an  example  of  a  schedule  to  support  the  reasoning  that follows. 

The objective function to be minimized is the  makespan, representing the time interval between the start of the first job on the first machine and the completion of the  last  job  on  the  last  machine.  For  the  first  job,  the  processing  steps  occur consecutively without idle time, but this is not the case for the subsequent jobs. In the solution depicted in Figure 8.26, the job sequence is 231, meaning that job J2 is processed  first,  followed  by  J3  and  finally  J1.  In  this  configuration,  𝑥

= 𝑥 =

𝑥 = 1, with all other values of 𝑥  equal to zero, as job J2 occupies in position 1, job J3 is in position 2 and job J1 in position 3. 



Figure 8.26.   Scheduling example 
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The  makespan  𝑧   is calculated as the sum of the three components: the execution times of the first job on the first two machines, the execution times of all jobs on the last  machine  and  the  idle  times  on  the  last  machine  after  the  jobs  have  been processed. 

For the example shown in Figure 8.26, the makespan can be expressed as: 𝑧 = (𝑑 + 𝑑 ) + (𝑑 + 𝑑 + 𝑑 ) + (𝜏 + 𝜏 ) 

In this expression, the terms can be broken down as follows: 

– The first term: (𝑑 + 𝑑 ) represents the execution times of the first job (J2) on machines M1 and M2. This also accounts for the idle time of machine M3 at the beginning of the scheduling process. 

– The second term: (𝑑 + 𝑑 + 𝑑 ) corresponds to the execution times of all jobs on machine M3. 

– The  last  term:  (𝜏 + 𝜏 )  represents  the  idle  times  of  machine  M3  after  the first job has been completed and before the next job begins on this machine. 

To  generalize  the  expression  of  the  makespan  𝑧,  the  following  variable  𝑋   is introduced: 

𝑋 =

𝑑 𝑥   

∈

representing the total time the 𝑘th job has been running on machine 𝑗. This variable sums the execution times for each job 𝑖 assigned to position 𝑘 in the permutation, on machine 𝑗. 

In  the  case  of  the  solution  shown  in  Figure  8.26,  for  example,  the  following holds: 

𝑋 = 𝑑 𝑥 + 𝑑 𝑥 + 𝑑 𝑥 = 𝑑        and      𝑋 = 𝑑 ,  𝑋 = 𝑑  

The  makespan  𝑧   is the sum of the three components: 

– Idle time before execution of the first job,  T 1, on machine 𝑚 (the last one). 

– Execution times of all jobs on the last machine 𝑚, represented by a constant  C. 

– Idle  time  (of  the  last  machine  𝑚)    after  execution  of  the  first  job  on  this machine, denoted as  T 2. 
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Thus, the makespan can be written as: 

𝑧 = 𝑧 + 𝐶 

where 𝑧 = 𝑇 + 𝑇 . 

To minimize 𝑧, the focus is on minimizing 𝑧′. The total idle time  T 1 of machine 𝑚   before execution of the first job on this machine is given by: 𝑇 =

𝑋 =

𝑑 𝑥  

This represents the total idle time on machine 𝑚   from the start until the first job begins  its  execution.  The  total  idle  time  𝑇   after  execution  of  the  first  job  on machine 𝑚 is: 

𝑇 =

𝜏  

This  term  accounts  for  the  idle  time  on  the  last  machine  after  the  first  job  has completed its execution. 



Figure 8.27.   Two ways of calculating L 

The  objective  function  to  be  minimized  is  therefore  the  one  proposed,  since  it corresponds to the sum  T 1 +  T2. Relations [C1] and [C2] are easy to understand. 

 Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science University , Wiley Online Library on [01/07/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License 304     Mathematics for Digital Science 3 

The relationship [C3] represents the time 𝐿   between the end of the execution of job in rank 𝑘   on machine 𝑗   and the start of the execution of job in rank (𝑘  +  1) on machine  (𝑗  +  1).  There  are  two  possible  ways  to  compute  𝐿,  as  shown  in Figure 8.27. 

The  job  of  rank  (𝑘  +  1)  can  be  tracked.  Before  the  job  of  rank  (𝑘  + 1)  is executed  on  machine  𝑗,  the  machine  has  an  inactivity  period  𝜏 . Then, the job of rank  (𝑘  +  1)  is  executed  on  machine  𝑗    for  𝑋

, .  This  job  waits  for  a  duration 

𝑤

,    before it can run on machine (𝑗  +  1). This leads to the following expression for 𝐿: 

𝐿 = 𝜏 + 𝑋

, + 𝑤

, = 𝜏

+

𝑑 𝑥 , 

+ 𝑤

, 

∈

Similarly,  the  job  of  rank  𝑘  can  be  tracked.  After  execution  on  machine  𝑗,  it waits for a duration 𝑤 ,    before it can execute on machine (𝑗  +  1). It then runs on this machine for 𝑋 , 

, followed by an idle time 𝜏

on machine (𝑗  +  1) before 

the job of rank (𝑘 + 1)   can be executed. The following expression for 𝐿 is obtained: 𝐿 = 𝑤 , + 𝑋 , 

+ 𝜏

, = 𝑤 , +

𝑑 , 

𝑥 + 𝜏

, 

∈

By equalizing these two expressions for 𝐿, constraint [C3] is derived. Constraint 

[C4] indicates that executions on machine M1 can be chained without waiting, and constraint  [C5]  indicates  that  the  first  job  can  pass  through  machines  M2  and  M3 

without waiting. 

EXAMPLE 8.5.– Let us take the case of the jobs in Figure 8.25 and apply the linear program defined above. The objective function to minimize is 𝑧′, which is given as follows: 

𝑧 = 𝑑 𝑥 + 𝑑 𝑥 + 𝑑 𝑥 + 𝑑 𝑥 + 𝑑 𝑥 + 𝑑 𝑥 + 𝜏 + 𝜏 . 

By grouping the terms associated with each job, this expression becomes: 𝑧 = (𝑑 + 𝑑 )𝑥 + (𝑑 + 𝑑 )𝑥 + (𝑑 + 𝑑 )𝑥 + 𝜏 + 𝜏 . 

The constraints of the linear program are as follows: 

𝑥 + 𝑥 + 𝑥 = 1  

𝑥 + 𝑥 + 𝑥 = 1  
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𝑥 + 𝑥 + 𝑥 = 1  

𝑥 + 𝑥 + 𝑥 = 1  

𝑥 + 𝑥 + 𝑥 = 1  

𝑥 + 𝑥 + 𝑥 = 1  

𝑤 + 𝑑 𝑥 + 𝑑 𝑥 + 𝑑 𝑥 + 𝜏   

= 𝜏 + 𝑑 𝑥 + 𝑑 𝑥 + 𝑑 𝑥 + 𝑤   

𝑤 + 𝑑 𝑥 + 𝑑 𝑥 + 𝑑 𝑥 + 𝜏   

= 𝜏 + 𝑑 𝑥 + 𝑑 𝑥 + 𝑑 𝑥 + 𝑤   

𝑤 + 𝑑 𝑥 + 𝑑 𝑥 + 𝑑 𝑥 + 𝜏   

= 𝜏 + 𝑑 𝑥 + 𝑑 𝑥 + 𝑑 𝑥 + 𝑤   

𝑤 + 𝑑 𝑥 + 𝑑 𝑥 + 𝑑 𝑥 + 𝜏   

= 𝜏 + 𝑑 𝑥 + 𝑑 𝑥 + 𝑑 𝑥 + 𝑤   

𝑤 = 𝑤 = 0  

𝜏 = 𝜏 = 0  

Solving the linear program (with either Cplex or Gurobi, for example) leads to the following solution: 

z’ = 10,  𝑥 = 𝑥

= 𝑥 = 1, the others 𝑥 = 0;    𝑤 = 1, 𝑤 = 2, the others 

𝑤 = 0; 𝜏 = 1,  𝜏 = 3, the others 𝜏 = 0. 

This results in the J1-J2-J3 schedule, as shown in Figure 8.28. 



Figure 8.28.  Optimum solution 
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8.3. The job-shop problem 

In  the  flow-shop  problem,  each  job,     or  manufacturing  object,  consists  of  tasks that always run in the same order. Specifically, given a set of jobs 𝐏𝟏, 𝐏𝟐, … , 𝐏𝐦 and a set of machines M1, M2, ..., Mp, each job 𝐏𝟏 must pass through the machines in this order: M1, M2, ..., Mp. In other words, 𝐏𝟏  runs on M1, then M2, and so on down to Mp. Similarly, 𝐏𝟐 follows the same sequence on machines M1, M2, ..., Mp, and this applies to all jobs 𝐏𝟏, 𝐏𝟐, … , 𝐏𝐦. Thus, the sequence of machines used is identical for all jobs. 



Figure 8.29.   Differences between  

 flow-shop and job-shop 

In  the  job-shop    problem,  each  job  follows  a  particular  route  over  a  set  of machines. Figure 8.29 shows the difference between flow-shop and job-shop. 

As  in  the  flow-shop  problem,  the  objective  in  the  job-shop    problem  is  to minimize the total task execution time. The constraints are as follows: 

– A machine can only execute one task at a time. 

– A task can only run on one machine at a time. 

– A task does not leave a machine until it has been fully executed. 
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– A machine has a job queue, which is assumed to be unlimited. 

– All jobs are available from time  t = 0. 

If a job is thought of as a part to be machined on machines in a given order, the problem can be modeled as follows. 

Let 𝑚   be the number of jobs (or parts) and 𝑝   be the number of machines. Each job consists of tasks denoted by 𝑂 , where 𝑖   is the job number (from 1 to 𝑚) and 𝑘  

is the sequence number of the task within the job (from 1 to 𝑛 ). An 𝑂    job uses a machine  Mik (with a value from 1 to 𝑝) for a duration 𝑑  .  

Let us define the following variables: xik and 𝑦

: 

– 𝑥 :   The start date of task 𝑂 ,    assumed to be an integer (time is discrete). Thus, 𝑥    is an integer. 

1 if 𝑂

is a predecessor of 𝑂

– 𝑦

=

𝑀

= 𝑀

. 

0 otherwise

The  objective  function  is  to  minimize  the  total  execution  time 𝑇  of  all  jobs, which  represents  the  end  date  of  the  last  job,  with  𝑡 = 0  as  the  start  date.  This involves minimizing the value of T, which is represented by the end date of the last task of a job. 

The constraints are as follows: 

– The last task of each job must finish before or on the date: 𝑥

+ 𝑑

≤ 𝑇   ∀𝑖 = 1, … , 𝑚   

[C’1] 

– The  order  of  tasks  within  each  job  must  be  respected.  This  means  that  each task 𝑂  must finish before the next task 𝑂

begins: 

𝑥 , 

≥ 𝑥 + 𝑑    ∀𝑖 = 1, … , 𝑚   ∀𝑘 = 1, … , 𝑛    

[C’2] 

– Tasks cannot overlap on the same machine. If 𝑂

and 𝑂

are executed on 

the same machine 𝑀

= 𝑀

, one of the following relationships must be true: 

𝑥

+ 𝑑

≤ 𝑥

or 𝑥

+ 𝑑

≤ 𝑥
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which means that, in the first case, the task O

can only be executed after 𝑂



has  been  completed  or  vice  versa.  These  relationships  can  be  expressed  by inequalities as follows: 

𝑊 + 𝑑

𝑦

+ 𝑥

− 𝑥

≥ 𝑑



[C’3] 

𝑊 + 𝑑

1 − 𝑦

+ 𝑥

− 𝑥

≥ 𝑑



[C’4] 

where 𝑀

= 𝑀

and 𝑊    is a  sufficiently  large  constant (greater  than   T,  which could be chosen, as the sum of all task durations). 

By  using  linear  programming  with  decision  variables  𝑥  and 𝑦

and 

respecting constraints [C’1] to [C’4], an optimal solution can be obtained. 

In simple cases, it is also possible to find an optimal solution using the method of earliest and latest dates, as shown in Example 8.6. 

EXAMPLE  8.6.–  Consider  three  jobs  P1,  P2  and  P3,  and  three  machines  M1,  M2  

and M3. 

– Job P1 consists of tasks A (on M1, duration 10-time units), B (on M2, duration 35-time units) and C (on M3, duration 25-time units). 

– Job P2 consists of tasks D (on M1, duration 15-time units), E (on M3, duration 16-time units) and F (on M2, duration 12-time units). 

– Job P3 consists of tasks G (on M3, duration 11-time units), H (on M1, duration 12-time units) and I (on M2, duration 21-time units). 

The jobs must be executed in the order specified. The execution of the three jobs can be represented by a graph (see Figure 8.30). 

 

Figure 8.30.  Execution graph for the three jobs 
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Figure 8.31.  Chronology and non-overlap constraints However, this graph is too simple, although it takes into account the chronology of tasks for each job, it does not consider the non-overlap constraint. 

To  obtain  a  more  complete  graph,  the  tasks  are  arranged  in  order  of  start  of execution,  assuming  they  could  be  executed  without  regard  to  the  non-overlap constraint.  If  the  start  dates are  identical,  the  tasks  are  then  arranged  in  order of increasing  duration.  The  result  is  the  list  shown  in  Figure  8.31,  in  which chronology  constraints  for  each  job  and  non-overlap  constraints  on  the  same machine have been added. 



Figure 8.32.  MPM graph 



Figure 8.33.  Gantt chart 
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This list, incorporating the constraints, is used to construct a more complete graph, to which the method of earliest and latest dates is applied (see Figure 8.32). This determines the critical path, which is A-B-I-F (shown in gray), with a duration of 78-time units. A corresponding Gantt chart is shown in Figure 8.33. 
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