
        
            
                
            
        

    
[image: Image 1]

[image: Image 2]

[image: Image 3]

[image: Image 4]

[image: Image 5]

[image: Image 6]

[image: Image 7]

[image: Image 8]

[image: Image 9]

Space Technology Library

James Miller

Connie Weeks

Planetary 

Spacecraft 

Navigation

General Relativity for Planetary 

Navigation

 Second Edition

Space  Technology  Library 

Volume 45 

Editor-in-Chief 

James R. Wertz, Microcosm, Inc., El Segundo, USA

The  Space  Technology  Library   is a series of high-level research books treating a variety of important issues related to space missions. A wide range of space-related topics is covered starting from mission analysis and design, through a description of spacecraft structure to spacecraft attitude determination and control. A number of excellent volumes in the  Space  Technology  Library   were provided through the US Air Force Academy’s Space Technology Series. The quality of the book series is guaranteed through the efforts of its managing editor and well-respected editorial board. Books in the  Space  Technology  Library   are sponsored by ESA, NASA and the United States Department of Defense. 

James Miller • Connie Weeks 

Planetary Spacecraft 

Navigation 

General Relativity for Planetary Navigation 

Second Edition

James Miller 

Connie Weeks 

Porter Ranch, CA, USA 

Porter Ranch, CA, USA 

ISSN 0924-4263

ISSN 2542-8896  (electronic) 

Space Technology Library 

ISBN 978-3-031-71981-3

ISBN 978-3-031-71982-0  (eBook) 

https://doi.org/10.1007/978-3-031-71982-0 

1st edition:© Springer International Publishing AG, part of Springer Nature 2019 

2nd edition:© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the  whole  or  part  of  the  material  is  concerned,  specifically  the  rights  of  translation,  reprinting,  reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. 

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. 

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. 

This Springer imprint is published by the registered company Springer Nature Switzerland AG 

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland If disposing of this product, please recycle the paper. 

Preface 

This  book  is  based  on  our  50  years  of  experience  in  navigation  of  Earth  entry vehicles, Minuteman ballistic missiles, and planetary spacecraft. At the Jet Propulsion Laboratory we worked on the Mariner 6, Viking, Pioneer, Galileo, and Near Earth  Asteroid  Rendezvous  missions  and  at  KinetX  Inc  MESSENGER  and  New Horizons missions. In writing this book we have drawn on engineering memoranda, conference  papers  and  publications.  Our  purpose  is  to  present  a  book  that  will describe how navigation is done. The emphasis is on mathematics that have been coded in computer programs that have been written for actual mission operations. 

Therefore, the derivations are given in detail since very little mathematics actually makes it into operational software. The mathematics that does is generally relatively straightforward,  but  the  programs  are  large  and  complex  and  must  not  have  any mistakes. 

The first edition of this book attempted to provide a derivation of all the equations that are programmed into software required for the navigation of spacecraft within the  solar  system.  This  second  edition  provides  more  detail  that  should  help  the reader understand derivations that omit some important details. It is not practical to provide all the details that can be obtained in a calculus text book. The order of the chapters are in the order navigation operations are performed for real missions that  have  been  flown.  First  we  design  a  trajectory  that  gets  to  a  target  body  and satisfies science objectives. Next we determine what data and how much data needs to be acquired. A model of the solar system and data is then processed to optimize the science and fuel needed and determine the accuracy and probability of mission success.  The  tasks  needed  to  be  performed  are  assigned  to  different  groups  of engineers and scientists. Each group generally has its own definitions of physical parameters and symbols used in equations. The resulting chaos is difficult to bring to order. The purpose of this book is to unify the science and mathematics to enable meaningful communication between the various groups. 

Chapter  1  contains  the  equations  of  motion  exclusive  of  the  force  models. 

Since navigation is concerned with everything that moves, the equations of motion include  kinetic  theory  of  gasses  and  propagation  of  electromagnetic  waves.  The force models are given in Chap. 2. Since motion is in a straight line without force v

vi

Preface

being  applied,  the  force  models  enable  spacecraft  to  go  somewhere.  Chapter  3 

describes  the  procedure  for  designing  the  trajectory  a  spacecraft  will  follow.  A detailed  derivation  of  Kepler’s  equation  and  Lambert’s  theorem  is  given.  Just about  all  trajectory  design  is  based  on  these  two  individuals  work  aside  from Newton of course. Trajectory optimization is described in Chap. 4. Most trajectory optimization  is  performed  by  developing  an  intuitive  feel  for  the  problem  being solved.  Sometimes  it  is  necessary  to  perform  a  detailed  constrained  parameter optimization when there are many more control parameters than constraints. The first constrained parameter optimization using a computer program was the Viking orbit insertion maneuver. Previously, the trajectory designs were mostly Hohmann transfers. Chapter 5 describes the probability and statistics needed for navigation analysis.  This  is  probably  the  most  important  navigation  design  function  since it  relates  directly  to  the  probability  of  meeting  science  objectives  or  running out  of  fuel.  Orbit  determination  is  described  in  Chap. 6. At  the  beginning  of planetary  spacecraft  navigation,  orbit  determination  was  a  major  problem.  The Mariner class spacecraft had to contend with orbit determination errors of several thousand  kilometers.  Missions  were  flown  so  we  could  do  orbit  determination, not  science.  Today,  the  orbit  determination  error  at  Mars  is  on  the  order  of  tens of  kilometers.  This  progress  may  be  attributed  to  the  introduction  of  Very  Long Baseline Interferometry (VLBI). There is still the problem of orbit convergence and this problem is addressed in some detail. The measurements and calibrations are described in Chap. 7. Navigation is primarily concerned with the physical quantity being measured and not the hardware required to perform the measurement. There are  few  if  any  electrical  engineers  on  navigation  teams.  However,  some  detailed knowledge  of  the  measurement  implementation  is  necessary  to  write  navigation software.  The  navigation  system  is  described  in  Chap. 8.  The  navigation  system and the conduction of navigation operations are constantly evolving. An overview is  given  that  applies  to all  navigation  systems. It  is conservatively  estimated  that there is at least one navigation system for each person doing navigation operations. 

The theory of general relativity finds its way into many navigation computer programs even though the physical perturbations are small enough to be ignored. The radiometric data (Doppler, range, and VLBI) is so accurate that the perturbations can be easily seen in the data. Time keeping, Mercury precession, light bending, and  delay  are  examples.  The  policy  that  has  been  adopted  is  that  if  you  can  see the perturbation in the data, the equations are included in the solar system model. 

Chapter 9 provides a derivation of the Einstein tensor which is solved for the metric tensor. The Riemann tensor is derived which defines the second partial derivative of scalar curvature with respect to coordinates. This is called a curvature tensor. It is shown that curvature tensors show up in much of the navigation software. The square  root  information  matrix,  trajectory  optimization,  rotational  dynamics,  and gravity  harmonics  all  use  curvature  tensors.  A  student  who  does  not  understand Chap. 9 can go on to Chap. 10 and little is lost. A student who understands Chap. 9 

can skip the rest of the book. Chapter 10 takes the Einstein tensor and solves for the  field  equations  for  the  case  of  spherical  symmetry.  The  field  equations  are then  solved  for  the  Schwarzschild  metric  tensor  both  inside  and  outside  the  sun. 
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Chapter  11  takes  the  equations  of  motion  and  solves  for  some  analytic  formulas including Mercury precession, radar delay, light deflection, and planetary and stellar aberration. Chapter 12 describes an experiment to measure the relativistic time delay of light bending caused by the sun’s gravity. Chapter 13 describes some navigation analyses performed over the years. The purpose is to describe the type of analyses the reader would be expected to perform if he or she pursued a career in navigation. 

Chapter 14 is a summary of some of the material that may be unique to this book. 

Planetary  spacecraft  navigation  is  the  result  of  the  work  of  many  individuals including the authors of this book. The person who had the original idea is often not  known.  Some  individuals  have  been  mentioned  in  the  text  who  have  made significant contributions. Some are contemporary and known personally but often these  individuals  are  from  the  past  before  computers  and  have  not  contributed directly to navigation software. 

Porter Ranch, CA, USA

James Miller 
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Chapter  1 

Equations  of  Motion 

1.1  Introduction 

In this chapter, Newton’s equations of motion are applied to molecules in a container to  obtain  the  kinetic  theory  of  gasses  and  a  rigid  body  to  obtain  the  rotational equations  of  motion.  Equations  for  the  motion  of  a  spacecraft  and  photon  are developed from the equation of geodesics, which describes motion in the vicinity of a massive body obtained from the general theory of relativity. Finally, numerical integration of the equations of motion is described. 

1.2  Particle  Dynamics 

Conservation  of  energy  and  momentum  can  be  derived  by  applying  Newton’s laws of motion to particle collisions where the velocity change is assumed to be impulsive. A body in space will continue to move in a straight line at a constant velocity unless acted on by some external force. The same body in the atmosphere or on the surface of the Earth will move in a given direction at constant speed provided there  are  no  forces  acting  on  the  body.  Since  the  Earth’s  gravity  combined  with atmospheric drag will result in force components along the direction of motion and normal to the direction of motion, the case of straight line or rectilinear motion can only be approximated. Newton’s equation of motion describes the departure from rectilinear motion of a body when acted on by external forces and is given by F =  m a

(1.1) 

where m is the mass of the body, F is the applied force vector, and a is the resultant acceleration  vector.  Once  the  applied  forces  have  been  characterized,  Newton’s 
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1 Equations of Motion

Fig.  1.1  Particle dynamics
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equation is the only equation that one needs to solve to determine the motion of a body provided the effects of general relativity and quantum mechanics are small enough to be ignored. 

When one body exerts a force on another body, there is an equal and opposite reaction of the second body exerting the same force on the first body. This property of  force  results  in  the  conservation  of  certain  mathematical  properties  called energy and momentum when Newton’s equation of motion is applied. Consider the collision of two elastic spheres. As the spheres collide, they are compressed by a force that acts along the line joining their centers. As the spheres separate, this same force acts like a spring and the spheres are returned to their previous spherical shape. 

The geometry of the collision is shown in Fig. 1.1. 

The spheres have velocities V1 and U1 before the collision and velocities V2 and U2 after the collision and receive incremental changes in velocity of  V1 and  U1, respectively. The masses of the two bodies are  mv  and  mu. The   x  coordinate axis is along the line joining the centers at impact and V1 is in the  x −  y  plane. During the time interval of contact, the motion is given by Eq. (1.1): Fu dt =  mudU

(1.2) 

Fv dt =  mvdV

(1.3) 

Since the forces are equal and opposite and Fu is the negative of Fv, the following result is obtained by integrating Eqs. (1.2) and (1.3) and adding the results: mu(U2 − U1 ) +  mv(V2 − V1 ) = 0

(1.4) 

If momentum is defined as the product of mass and velocity, Eq. (1.4) reveals that momentum  is  conserved  during  impact.  The  momentum  increase  of  one  body  is equal  to  the  momentum  decrease  of  the  other  body.  An  equally  important  result
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may be obtained if the components of the vectors are examined. Before the impact, the velocities are given by 

V1 = [ Vx 1 , Vy 1 ,  0]

U1 = [ Ux 1 , Uy 1 , Uz 1]

and after the impact the velocities are 

V2 = [ Vx 1 +  Vx 1 , Vy 1 ,  0]

U2 = [ Ux 1 +  Ux 1 , Uy 1 , Uz 1]

Taking  the  square  of  the  velocity  magnitudes  before  and  after  impact  and differencing, 

 V  2

2 −  V  2

1 = 2 Vx 1 Vx 1 +  V  2

 x 1

 U  2

2 −  U  2

1 = 2 Ux 1 Ux 1 +  U  2

 x 1

Multiplying the  x  component of Eqs. (1.2) and (1.3) by  Ux  and  Vx, respectively, the following equations are obtained: 

 Fu dx =  mu Ux dUx

(1.5) 

 Fv dx =  mv Vx dVx

(1.6) 

Integrating the force over the distance traveled during the interval of contact and adding the results from Eqs. (1.5) and (1.6), 









 (Ux 1 +  Ux 1 ) 2

 U  2

 (Vx 1 +  Vx 1 ) 2
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−
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 v
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2 Ux 1 Ux 1 +  U 2

2 Vx 1 Vx 1 +  V  2

 m

 x 1

 x 1

 u

+  m

= 0

2
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2

and 









 U  2

 V  2

 m

2 −  U  2

1

2 −  V  2

1

 u

+  m

= 0

(1.7) 

2

 v

2

which may also be written as 

1

1

1

1

 m

 m

 m

 m

2

 u U  2

2 + 2  v V  22 = 2  u U 21 + 2  v V  21

(1.8)
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Energy  is  defined  as  the  force  acting  over  a  distance,  and  Eqs. (1.7)  and  (1.8) show  that  the  energy  of  a  particle  is  one  half  of  the  product  of  mass  and  the magnitude  of  velocity  squared  and  reveals  that  energy  is  also  conserved  during impact. 

Particle impacts have been assumed to be impulsive. The force is assumed to be constant over a small interval of time or distance. The integral is defined as the sum of an infinite number of impacts as the time interval approaches zero and is referred to as a Riemann sum. Consider the sum 

 Un+1 , Vn+1 =  U 1 , V 1 +  U 1 , V 1 +  U 2 , V 2 +  U 3 , V 3 + · · ·  Un, Vn If  Ui+1,  Vi+1 is  the  result  of  the  velocity  change  from   Ui,  Vi,  then  Ui+1,  Vi+1

will have the same energy and momentum as  Ui,  Vi  and by extension  Un+1,  Vn+1

will have the same energy and momentum as  U 1,  V 1 even if the force vectors are different for each interval. Thus, the conservation of momentum and energy may be extended to all collisions, electrostatic interactions, gravitational interactions, and electromagnetic emanations. They all obey Newton’s action equals reaction. When we fire a rocket engine or hit a baseball with a bat or fall out of a tree, the energy is conserved by the molecules colliding with one another, the gravitational force on the molecules, or the electrostatic repulsion and attraction of the protons and electrons comprising the molecule. This may be an oversimplified view of the universe, but will enable us to navigate anywhere in the solar system. 

1.3  n-Body  Equations  of  Motion 

For a system of n-bodies, the resultant gravitational force on the  i’th body is the sum of the individual contributions from the other j-bodies and 

 n



r

F

j − ri

i =  G

 mimj

+  mimj ∇ Oi(rj − ri ) +  mimj ∇ Oj (ri − rj ) + O (r 3 ) r 3

 j =1

 ij

where  G  is the gravitational constant, r, and  m  are the position and mass of a body, and ∇ O  refers to gravity harmonics. When  i =  j, the terms vanish and may be omitted. The acceleration of body  i  is obtained by simply dividing through by  mi: n

r

a

j − ri

i =  Gmj

+ ∇ Oi(rj − ri ) + ∇ Oj (ri − rj ) (1.9) 

 r 3

 j =1

 ij

The  center  of  the  coordinate  system  is  at  rest  and  may  be  determined  from  the following equation:
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1  n



r0 =

 miri

 mt i=1

Taking the derivative with respect to time, 

1  n



˙r0 =

 mi ˙ri

 mt i=1

Since the exchange of momentum of body  i  with body  j  results in no change in the sum, the total momentum exchange of all the bodies must be zero and the summation terms remain constant as a function of time.  mt  is taken to be the total system mass and  r 0 is the center of mass and may move at a constant velocity with respect to inertial space. The n-body equation of motion given by Eq. (1.9) is referred to as the  barycentric  formulation.  The  barycenter  is  the  center  of  mass  of  the  system containing n-bodies. These equations are integrated numerically to obtain planetary and  satellite  ephemerides.  Since  the  mass  of  one  or  more  of  the  bodies  may  be assumed to be zero, a spacecraft or other point mass object may be included in the system of equations to be integrated. For high-precision ephemerides, other force models and additional terms from the general theory of relativity may be included in the integration. 

For  a  spacecraft  that  is  orbiting  or  flying  close  to  a  gravitating  body,  an alternative form of the n-body equations is often used. An increase in the accuracy of  integration  may  be  obtained  if  the  coordinate  system  is  located  at  the  center of  mass  of  the  nearby  dominant  body.  For  this  configuration,  bodies  that  are  far away from the spacecraft enter as a tidal acceleration that is differenced before the integration,  thus  potentially  improving  the  numerical  accuracy.  This  formulation is  referred  to  as  planetocentric  and  may  be  obtained  by  simply  subtracting  the barycentric acceleration of the body that is close to the spacecraft from all the other bodies including the spacecraft. For convenience, assume that the spacecraft is body number 1 and the central body is body number 2: 

a2 = 0 r2 = 0





 n

r

a

j − r1

1 =  (Gmj +  Gm 1 )

+ ∇ O 1 (rj − r1 ) + ∇ Oj (r1 − rj ) r 3

 j =2

1 j





 n

r

−

j

 (Gmj +  Gm 1 )

+ ∇ O 1 (rj ) + ∇ Oj (−rj ) r 3

 j =2

 j

If  body  1  is  a  spacecraft,  Gm 1 equals  zero.  For  navigation,  planetocentric  coordinates  are  preferred  since  we  are  generally  interested  in  numerical  integration accuracy near the target body or the body being orbited. The barycentric formulation
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has a potential problem. If we discovered a planet the same mass as the Sun and one light year away and wish to include it in the solar system, the barycenter would no longer be about 500 km from the Sun but one half light year away. 

1.4  Translational  Variational  Equations 

Orbit  determination,  trajectory  optimization,  trajectory  design,  and  propulsive maneuver design require partial derivatives of spacecraft state, planet ephemerides, and  planet  attitude  with  respect  to  constant  dynamic  parameters.  The  constant parameters ( q) include initial conditions, gravity harmonics, solar pressure model parameters, propulsive maneuver model parameters, and other force model parameters.  For  orbit  determination,  the  partial  derivatives  of  measurements  ( Z)  with respect to  q  may be obtained by application of the chain r ule:

 ∂Z =  ∂Z ∂(r , v )

 ∂q

 ∂(r , v )

 ∂q

where r and v are the spacecraft position and velocity at some time  t  referred to as the spacecraft state. The partial derivative of  Z  with respect to the spacecraft state is called the data partial. The measurement and data partials are a function of the spacecraft state and constant parameters ( q). The partial derivatives of the spacecraft state with respect to  q  are called the variational partials. If  Z  is replaced by target parameters,  the  partial  derivatives  needed  for  trajectory  design  or  optimization are  obtained.  If  the  spacecraft  state  is  replaced  by  the  planet  state,  the  planetary variational partials are obtained. If the spacecraft state is replaced by planet attitude, the rotational va riational partials are obtained. 

The  translational  variational  partial  derivatives  are  obtained  by  integrating  the partial  derivatives  of  acceleration  with  respect  to  the  dynamic  parameters.  The spacecraft acceleration is a function of the spacecraft state and  q: A =  f (r , v , q)

Differentiating with respect to  q, we obtain 

 ∂A =  ∂A  ∂r +  ∂A  ∂v +  ∂A|r , v constant (1.10) 

 ∂q

 ∂r  ∂q

 ∂v  ∂q

 ∂q

The acceleration ( A) and the partial derivatives of A with respect to  r,  v, and  q  are described below in the chapter on Force Models. The equations are given for A, but are actually the force on the body when the acceleration is multiplied by the mass of the body. Since, in the limit as the mass of the body goes to zero, the force also goes to zero and the ratio is the acceleration, it is convenient to compute the acceleration
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directly for a spacecraft. The mass of the spacecraft is small relative to a planet and can be ignored. 

The  partial  derivatives  of  the  spacecraft  state  with  respect  to  the  dynamic parameters are obtained by numerical integration: 



 ∂r

 t

=

 ∂v  dt

 ∂q

0  ∂q



 ∂v

 t

=

 ∂A  dt

 ∂q

0  ∂q

Recall that r0 and v0, the initial state, are the first six elements of q. Determination of the variational partial derivatives by numerical integration requires derivation of partial derivatives for many force models. The gravitational partial derivatives are particularly difficult to derive and program. However, orbit determination requires precise  partial  derivatives  to  assure  convergence.  Trajectory  optimization  can usually be performed with less accurate partial derivatives. Finite difference partial derivatives may be obtained with a simple algorithm that only requires propagation of the initial state. For example, consider the case of a spacecraft launched from Earth with an initial condition r0 , v0. The spacecraft state at some later time may be obtained by numerical integration or conic orbit element propagation of the initial state: 

r , v =  f (t, r0 , v0 , q) The variational partial derivatives of the spacecraft state at some later time with respect to the state at the initial time or epoch may be computed by finite difference: 

⎡

⎤

 f (t, r

 T

0 +  rx , v0 , q) −  f (t, r0 , v0 , q)

⎢

⎢

 r

⎥

 x

⎢

⎥

⎢

⎥

⎢

⎥

 f (t, r0+ ry , v0 , q)− f (t, r0 , v0 ,q)

⎢

⎥

⎢

 ry

⎥

⎢

⎥

⎢

⎥

⎢

⎥

 f (t, r0+ rz, v0 , q)− f (t, r0 , v0 ,q)

⎥

 ∂r , v = ⎢⎢

 rz

⎥

⎥

 ∂r0 , v0

⎢

⎢

⎥

⎢

 f (t, r0 , v0+ v

⎥

 x , q)− f (t , r0 , v0 ,q)

⎢

⎥

 v

⎢

 x

⎥

⎢

⎥

⎢

⎥

⎢

 f (t, r0 , v0+ vy , q)− f (t, r0 , v0 ,q)

⎥

⎢

 v

⎥

 y

⎣

⎥

⎦

 f (t, r0 , v0+ vz, q)− f (t, r0 , v0 ,q) vz

The 6 by 6 matrix in the brackets is called the state transition matrix. 
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1.5  Navigation  Mathematics 

The mathematics required for navigation of spacecraft in the solar system may be separated into foundational mathematics and advanced mathematics. Foundational mathematics  are  arbitrarily  defined  as  mathematics  that  were  known  before  200 

BC. Archimedes, who some regard as the greatest mathematician, was responsible for  some  important  foundational  mathematics.  Advanced  mathematics  is  defined as mathematics discovered after 200 BC. There was a period of about 1700 years before  mathematicians  caught  up  with  the  work  of  Archimedes.  Foundational mathematics, as defined here, includes understanding zero, infinity, irrational numbers,  limits,  numerical  integration,  differentiation,  Pythagoras  theorem,  binomial expansion, and differential geometry. Most of navigation mathematics used to write computer programs requires a knowledge of only foundational mathematics. That includes the theory of general relativity. 

Some of the mathematics described below bridges the gap between foundational mathematics and advanced mathematics. We really do not know where to put them. 

Trigonometric functions are hard to categorize since they follow directly from the theorem  of  Pythagoras.  Consider  the  following  identity  that  defines  the  sine  and cosine functions: 

 c 2 =  a 2 +  b 2

Divide by  c 2. 

1 =  a 2 +  b 2 = sin2  θ + cos2  θ

 c 2

 c 2

The trigonometric functions that are needed for navigation computer programs are the sine and four quadrant arc tangent. All the other trigonometric functions may be computed from these two functions, which are a simple statement of Pythagoras’s theorem. 

The  formulas  for  the  sum  and  difference  of  two  angles  may  be  obtained  by solving the triangles formed by dropping a perpendicular line from the indicated points shown in Fig. 1.2 to the  x  axis. The dashed lines are equal in length because their associated triangles are congruent:





 ( cos (A −  B) − 1 ) 2 + sin (A −  B) 2 =

 ( cos  A − cos  B) 2 +  ( sin  A − sin  B) 2

cos2 (A −  B) − 2 cos (A −  B) + 1 + sin2 (A −  B)

= cos2  A − 2 cos  A  cos  B + cos2  B + sin2  A − 2 sin  A  sin  B + sin2  B

cos (A −  B) = sin  A  sin  B + cos  A  cos  B

cos (A +  B) = sin  A  sin  B − cos  A  cos  B
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(cos( A– B), sin( A– B)) 

 A– B  (cos  B, sin  B) 

(cos  A, sin  A) 

 B 
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(1, 0) 

Fig.  1.2  Sum of angle geometry 

The formula for the sine of the sum of two angles is 





 π

sin  θ = cos

−  θ

2





 π

sin (A +  B) = cos

−  (A +  B)

2









 π

 π

sin (A +  B) = cos

−  A  cos  B + sin

−  A  sin  B

2

2

sin (A +  B) = sin  A  cos  B + cos  A  sin  B

sin (A −  B) = sin  A  cos  B − cos  A  sin  B

The geometry for the law of cosines is shown in Fig. 1.3. Applying the theorem of Pythagoras to the right triangles shown in Fig. 1.3, we get a 2 =  h 2 +  x 2

 c 2 =  h 2 +  (b −  x) 2

Subtracting 

 c 2 −  a 2 =  b 2 − 2 bx +  x 2 −  x 2

 c 2 =  a 2 +  b 2 − 2 ab  cos  C

10

1 Equations of Motion

 a 
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 b –  x 

 b 

Fig.  1.3  Law of cosine geometry 

The vector dot product and cross product are used extensively in deriving the equations used for navigation. The dot product defines the projection of one vector onto  another  and  the  cross  product  defines  rotational  momentum.  Both  of  these vector  operations  are  used  to  define  coordinate  transformations.  The  scalar  dot product is defined by 

R · V =  rxvx +  ryvy +  rzvz

From the law of cosines, we have 

|R − V|2 = |R|2 + |V|2 − 2|R||V| cos  θ

|R − V|2 =  (rx −  vx) 2 +  (ry −  vy) 2 +  (rz −  vz) 2











=  r 2 +

+

+

+

+

−2

 x

 r 2

 y

 r 2

 z

 v 2 x

 v 2 y

 v 2 z

 rxvx +  ryvy +  rzvz

|R|2 + |V|2 − 2|R||V| cos  θ = |R|2 + |V|2 − 2R · V

R · V = |R| |V| cos  θ

The vector cross product is defined by 

|R × V| = |R| |V| sin  θ

and  is  equal  to  the  angular  momentum  divided  by  mass  if  (R)  and  (V )  are  the position and velocity of a spacecraft. From the definition of the dot product, 

|R × V|2 = |R|2|V|2 ( 1 − cos2  θ)
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From the law of cosines, 





|R × V|2 = |R|2|V|2 1 −  (R · V ) 2

|R|2|V|2

Replacing the vector magnitudes with components, 









|R × V|2 =

2

 r 2 +

+

+

+

−

(1.11) 

 x

 r 2

 y

 r 2

 z

 v 2 x

 v 2 y

 v 2 z

 rxvx +  ryvy +  rzvz

Expanding, canceling  r 2 v 2 terms, and rearranging, 

|R × V|2 =  r 2 − 2

 y v 2

 z

 rzryvyvz +  r 2 zv 2 y

+  r 2 − 2

 z v 2

 x

 rzrxvxvz +  r 2 xv 2 z

+  r 2 − 2

 x v 2

 y

 rxryvxvy +  r 2 yv 2 x

which is the magnitude of the vector: 

R × V =  (ryvz −  rzvy, rzvx −  rxvz, rxvy −  ryvx) In matrix notation, 

⎡

⎤ ⎡ ⎤

⎡

⎤ ⎡ ⎤

0 − rz ry

 vx

0 − vz vy

 rx

R × V = ⎣  r

⎦ ⎣ ⎦

⎣

⎦ ⎣ ⎦

(1.12) 

 z

0 − rx

 vy

= −

 vz

0 − vx

 ry

− ry rx

0

 vz

− vy vx

0

 rz

The vector cross product can also be obtained from the determinant: 





i j k 

R × V =   r



 x ry rz 

 vx vy vz

The dot product of R×V with R and V is zero, indicating that R×V is perpendicular to the plane containing R and V. 

With summation notation, we have 

[R × V] i =  ijk R j V k The term  ijk  has 27 elements comprising zeros, ones, and minus ones from matrix notation.  Summation  notation  is  compact  but  it  is  hard  to  recognize  the  cross product. 

12

1 Equations of Motion

The computer programs used for navigation may be separated into those used for  navigation  analysis  and  those  used  for  navigation  operations.  The  navigation operation programs are dominated by foundational mathematics as defined above, and the navigation analysis software contains both foundational mathematics and what has been defined as “advanced mathematics.” Examples of advanced mathematics, which are developed in more detail in the chapters that follow, are Legendre polynomials  and  associated  functions,  Fourier  and  Laplace  transforms,  Lagrange multipliers,  Jacobi  integral,  normal  curve  from  binomial  expansion,  exponential functions,  Taylor  series  expansions,  and  some  of  the  mathematics  discovered  by Gauss.  It  is  the  opinion  of  the  author  that  we  would  have  a  lot  less  advanced mathematics  if  Archimedes  had  access  to  modern  high-speed  computers.  Most engineering problems can be solved with mathematics discovered prior to 200 BC. 

When Greeks and Romans gambled, the winners knew how to compute the odds just like the casinos in Las Vegas today. 

1.6  Rotational  Equations  of  Motion 

A rigid body may be regarded as a collection of point masses that are constrained to  not  move  with  respect  to  one  another.  Newton’s  equation  may  be  applied  to each point mass with the appropriate constraints and summed or integrated over the body to obtain the rotational equations of motion. Consider the rigid body shown in Fig. 1.4. The body is constrained to rotate about the  z  axis or axle, and a force ( F 0) is applied in a direction tangential or perpendicular to the radius vector (  R 0) drawn to the point of application. The force may be the result of a small thruster or  a  hand  crank  as  long  as  it  continues  to  act  tangentially.  The  applied  force  is Fig.  1.4  Rotating body

 y 

R0 

F0

 dF0 

 dm 

 r 

 x 

 wz 
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distributed among all the point masses that make up the rigid body. Since the axle constrains the particles in the body to move only in the tangential or (  Fθ ) direction, we may disregard forces in the  z  and  r  directions since they result in no motion or energy transfer. A typical point mass element is shown in Fig. 1.4, with mass  dm, and it is accelerated by a force  dFθ . The motion of this mass element is governed by Newton’s equation of motion: 

 dFθ =  dm aθ

Multiplying  by  the  local  tangential  velocity  ( ωzr)  and  substituting  ( ˙ ωzr) for the tangential acceleration, 

 ωzr dFθ =  ωzr ˙

 ωzr dm

The term on the left is the rate of accumulation of energy or power being applied to the mass element. Integrating over the entire body gives the total power being applied to the rigid body which must equal the externally applied power: ωzr dFθ =  ωz F 0 R 0

Dividing out the  ωz  term and integrating, 





 r dFθ =  F 0  R 0 =

 r 2  dm ˙

 ωz

The applied moment is defined by 



 Mz =

 r dFθ =  F 0  R 0

and the moment of inertia about the  z  axis is defined by





 Izz =

 r 2  dm =

 ρ (x 2 +  y 2 ) dV

where   ρ  is  the  density.  The  rotational  equation  of  motion,  where  the  motion  is constrained to a single axis, is thus 

 Mz =  Izz ˙

 ωz

When the constraint on the axis of rotation is removed, the torque about the  z  axis will cross couple into angular accelerations about axes normal to the  z  axis. These angular accelerations about the  x  and  y  axes are obtained by integrating along the  z axis, and the components of the force are resolved in the  x  and  y  directions:
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 ωzx dFθ =  ωzx (− ˙

 ωxz) dm

 ωz(− y dFθ ) =  ωzy ˙

 ωyz dm

Proceeding as above, 

 Mz =  Izx ˙

 ωx +  Izy ˙

 ωy +  Izz ˙

 ωz

M =  I ˙ 

where 





 Izx = −

 xz dm = −

 ρ xz dV





 Izy = −

 yz dm = −

 ρ yz dV

If  an  infinitesimal  rotation  is  allowed  over  an  interval  of  time   dt,  angular momentum  is  accumulated,  which  is  analogous  to  linear  momentum  and  is  also conserved: 



 dHz =

 Mz dt =  Izx dωz +  Izy dωz +  Izz dωz

After  an  interval  of  time,  angular  momentum  is  accumulated  and  the  one-dimensional result may be extended to three dimensions: 

H =  I 

  = [ ωx, ωy, ωz] T

H = [ hx, hy, hz] T

⎡

⎤

 Ixx Ixy Ixz

 I = ⎣  I

⎦

 yx Iyy Iyz

 Izx Izy Izz

and the complete inertia tensor is defined by 



 Ixx =

 ρ (y 2 +  z 2 ) dV



 Iyy =

 ρ (x 2 +  z 2 ) dV
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 Izz =

 ρ (x 2 +  y 2 ) dV



 Ixy =  Iyx = −

 ρ xy dV



 Ixz =  Izx = −

 ρ xz dV



 Iyz =  Izy = −

 ρ yz dV

and 

˙H = M =  I ˙ 

The coordinate axes are fixed on the body and the accelerations are given in inertial space.  When  the  body  fixed  axes  rotate,  the  inertia  tensor  or  the  accelerations computed with respect to the body fixed axes must be allowed to vary. The standard convention is to integrate in body fixed coordinates. Keeping the axes fixed on the body  makes  the  inertia  tensor  constant  but  requires  the  introduction  of  angles  to describe the orientation of the body fixed axes in inertial space. The time derivative of angular momentum is the sum of two parts. The body fixed angular momentum and the time derivative of the coordinate axes given by 

˙H = ˙ h

˙

˙

˙

 x  ˆ

x + ˙ hy  ˆy + ˙ hz  ˆz +  hx  ˆx +  hy  ˆy +  hz  ˆz An elementary property of vectors may be used for a more compact form of the equations: 

˙ˆx =   × ˆx

˙ˆy =   × ˆy

˙ˆz =   × ˆz

Since 

 hx  × ˆx +  hy  × ˆy +  hz  × ˆz =   ×  (hx  ˆx +  hy  ˆy +  hz  ˆz ) =   × H , the final form of Euler’s equation is given by 

M =  I ˙  +   × H

(1.13) 

The selection of body fixed axes can result in a considerable simplification of Euler’s  equation.  The  initial  selection  of  body  fixed  axes  is  arbitrary  and  often
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governed by other considerations such as the location of landmarks. Once the body axes have been defined and the inertia tensor has been obtained by integration or solution of the gravity potential, it may be convenient to redefine the direction of the  body  fixed  axes.  Consider  a  new  body  fixed  coordinate  system  defined  by  a simple orthogonal rotation  (R). The new moment and angular momentum vectors are primed: 

M =  R M

˙ 

  =  R ˙

 

  × H =  R ( × H )

Making the above substitutions into Eq. (1.13) gives  



 RT M =  I RT ˙

  +  RT ( × H )

and 

M = [



 R I RT ] ˙

  +   × H

The matrix  I  is positive definite and so is the matrix in brackets. The inertia tensor may be diagonalized by solving for its eigenvalues and the matrix of eigenv ectors: I = [ T λ T T ]

and  λ  is a diagonal matrix of eigenvalues. If the rotation matrix  R  is selected to be the transpose or inverse of T , 

M =



 I  ˙

  +   × H

(1.14) 

The  new  primed  coordinates  define  principal  axes  and  the  inertia  tensor  is diagonal.  The  principal  axes  are  often  used  for  body  fixed  axes  and  every  rigid body has at least one set of principal axes. For a sphere or a cube, every axis set is principal. 

The  choice  to  integrate  the  rotational  equations  of  motion  in  body  fixed  axes requires the introduction of angles to describe the orientation of the body fixed axes in inertial space. The conventional method for describing the attitude of a rotating body is a set of Euler angles. The Euler angles define consecutive rotations about the body fixed axes that transform a vector from a reference frame to body fixed axes. For a body in space, it is convenient to select the same Euler angle set as is used to define the pole and prime meridian of a planet. The Euler angles are right ascension (  α) and declination (  δ) of the pole and the angle  W  from the intersection

1.6 Rotational Equations of Motion
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Fig.  1.5  Transformation to 

 z 

planetary body fixed 

coordinates 

Prime 

Pole 

meridian

( a,   d) 

Planet 

equator 
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 a + 90  

Earth 

equator 

90 –  d 

 x 

of the body equator with the Earth’s equator at epoch January 1, 2000 (J2000) to the prime meridian as shown in Fig. 1.5. The first rotation is a right-hand rotation about the  z  axis through the angle right ascension  (α). The second rotation is a right-hand rotation  about  the   y  axis  through  the angle 90◦ −  δ  that places the  z  axis in the direction of the pole. The third rotation is another right-hand rotation about the  z axis through the angle 90◦ +  W  to place the  x  axis on the prime meridian of the body . 

The rotations from inertial space to body fixed axes are 

⎡

⎤ ⎡

⎤ ⎡

⎤

− sin  W  cos  W  0

sin  δ  0 − cos  δ

cos  α  sin  α  0

T = ⎣ − cos  W − sin  W  0 ⎦ ⎣ 0 1

0

⎦ ⎣ − sin  α  cos  α  0⎦

0

0

1

cos  δ  0 sin  δ

0

0 1

and may be combined to obtain 

⎡

⎤

− sin  W  sin  δ  cos  α − sin  W  sin  δ  sin  α  sin  W  cos  δ

⎢

⎢ − cos  W  sin  α

+ cos  W  cos  α

⎥

⎢

⎥

⎢

⎥

⎥

T = ⎢

⎢

⎥

⎢ − cos  W  sin  δ  cos  α − cos  W  sin  δ  sin  α  cos  W  cos  δ ⎥

⎢

⎥

⎢

+ sin  W  sin  α

− sin  W  cos  α

⎥

⎣

⎥

⎦

cos  δ  cos  α

cos  δ  sin  α

sin  δ
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The body fixed spin rates are related to the Euler angle rates by 

⎡

⎤

⎡

⎤ ⎡ ⎤

 ω

sin W cos  δ − cos W 0

˙ α

⎢  x

⎢

⎥

⎢

⎥ ⎢ ⎥

⎢

⎥

⎢

⎥ ⎢ ⎥

⎢

⎥

⎢

⎥ ⎢ ˙ ⎥

⎢  ωy ⎥ = ⎢ cos W cos  δ  sin W 0 ⎥ ⎢  δ ⎥

⎣

⎥

⎦

⎢

⎣

⎥

⎦ ⎢

⎣ ⎥

⎦

 ω

˙

 z

sin  δ

0

1

 W

A unit vector in the direction of each Euler angle rate is transformed to body fixed axes, and the resultant vectors are assembled into the above transformation matrix. 

This transformation is not orthogonal. The inverse transformation that relates the Euler angle rates to the body fixed spin rates is obtained by matrix inversion and is given by 

⎡ ⎤

⎡

⎤ ⎡

⎤

˙ α

sin W sec  δ

cos Wsec δ  0

 ω

⎢

 x

⎢ ⎥

⎢

⎥ ⎢

⎥

⎢ ⎥

⎢

⎥ ⎢

⎥

⎢ ˙ ⎥

⎢

⎥ ⎢

⎥

⎢  δ ⎥ = ⎢ − cos W

sin W

0 ⎥ ⎢  ωy ⎥

⎣ ⎥

⎦

⎢

⎣

⎥

⎦ ⎢

⎣

⎥

⎦

˙

 W

− sin W tan  δ − cos W tan  δ  1

 ωz

The body fixed spin vector may be obtained by integration of Euler’s equation. 

First, Euler’s equation must be solved for the angular acceleration. Thus, we have for Euler’s equation 

˙  =  I−1 {M −   × H}

(1.15) 

H =  I 

and the angular rates are obtained by integrating 



 (t) =

˙  dt

The attitude may be obtained as a function of time by integrating the Euler angle rates computed from the spin vector: 



 (t) =

˙  dt

The attitude, shown here as the data vector  , is defined by the Euler angles: 

⎡ ⎤

 α

  = ⎣  δ ⎦

 W

1.7 Rotational Variational Equations
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and the rates are 

⎡

⎤

sin  W  sec  δ

cos  W  sec  δ  0

⎢

⎢

⎥

⎥

˙

⎢

⎥

  = ⎢

⎢ − cos  W

sin  W

0 ⎥  

⎣

⎥

⎦

− sin  W  tan  δ − cos  W  tan  δ  1

1.7  Rotational  Variational  Equations 

From  the  equations  of  motion,  the  angular  acceleration  may  be  obtained  as  an explicit function of the attitude, spin rate, and dynamic parameters  (q): 

˙  =  f ˙  (φ, , q)

(1.16) 

 

where  the  dynamic  parameters  (q)  consist  of  the  initial  attitude  and  spin  rate, moments of inertia, and the applied moment: 

 q =  (φo, o , Ie, M ) (1.17) 

where  Ie  denotes a column matrix containing the six unique inertia tensor elements. 

The Euler angle attitude rates may be related to the attitude and body fixed spin rate and are given by 

˙ φ =  f ˙ (φ, )

(1.18) 

 φ

The variational equations are obtained by differentiating the above functions with respect to the dynamic parameters: 

 ∂ ˙

  =  ∂f˙  ∂φ

 ∂

 

+  ∂f ˙ 

+  ∂f ˙ 

(1.19) 

 ∂q

 ∂φ ∂q

 ∂ ∂q

 ∂q

 ∂ ˙

 φ

 ∂f

 ∂f

=

˙ φ ∂φ + ˙ φ ∂

(1.20) 

 ∂q

 ∂φ ∂q

 ∂ ∂q

Thus, we have, for the case of free-body rotation or a constant applied moment in body fixed coordinates, 

 ∂f ˙  = 0

(1.21) 

 ∂φ

⎧⎡

⎤ ⎡

⎤ ⎫

⎨

0

 h

0

 ω

⎬

 ∂f

 z

− hy

 z

− ωy

˙  = − I−1 ⎣− h

⎦ ⎣

⎦

(1.22)

 z

0

 hx

− − ωz  0

 ωx

 I

 ∂

⎩

⎭

 hy − hx

0

 ωy − ωx

0
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The  above  matrices  in  brackets  are  obtained  by  differentiating  the  cross  product defined by (Eq. (1.15)) and using (Eq. (1.12)): 

⎡

⎤

sin W sec  δ

cos W sec  δ  0

⎢

⎥

 ∂f

⎢

⎥

˙ φ = ⎢⎢ −cosW

sin W

0 ⎥

⎥

(1.23) 

 ∂

⎢

⎣

⎥

⎦

− sin W tan  δ − cos W tan  δ  1

⎡

⎤

 (ωx  sin  W +  ωy  cos  W )  tan  δ

 ωx  cos  W −  ωy  sin  W

⎢ 0

⎢

cos  δ

cos  δ

⎥

⎥

 ∂f

⎢

⎥

˙ φ = ⎢⎢0

0

⎥

 ωx  sin  W +  ωy  cos  W

⎥

 ∂φ

⎢

⎢

⎥

⎣

⎥

−

⎦

 ω

0

 x  sin  W −  ωy  cos  W

 (− ω

cos2

 x  cos  W +  ωy  sin  W )  tan  δ

 δ

(1.24) 

 With  respect  to  attitude  at  epoch (q =  φo, o ) The variational equations that relate the current attitude to the attitude at epoch are given by 

 ∂ ˙

 φ

 ∂f

=

˙ φ ∂φ

(1.25) 

 ∂φo

 ∂φ ∂φo

 ∂ ˙

 φ

 ∂f

 ∂f

=

˙ φ ∂φ + ˙ φ ∂

(1.26) 

 ∂o

 ∂φ ∂o

 ∂ ∂o

 ∂ ˙

  = 0

 ∂φ 0

 ∂ ˙

 

 ∂f

=

˙  ∂

(1.27) 

 ∂o

 ∂ ∂o

We obtain these partial derivatives as a function of time by integrating as in 



 ∂φ =

 ∂ ˙

 φ dt

(1.28) 

 ∂φo

 ∂φo



 ∂φ =

 ∂ ˙

 φ dt

(1.29) 

 ∂o

 ∂o

 ∂ = 0

(1.30)

 ∂φo

1.7 Rotational Variational Equations
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 ∂ =

 ∂ ˙

  dt

(1.31) 

 ∂o

 ∂o

 With  respect  to  elements  of  inertia  tensor (q =  Ie) The variational equations for the elements of the inertia tensor are given by 

 ∂ ˙

 

 ∂f

 ∂f

=

˙  ∂ + ˙ 

(1.32) 

 ∂Ie

 ∂ ∂Ie

 ∂Ie

 ∂ ˙

 φ

 ∂f

=  ∂fφ ∂φ +

˙ φ ∂

(1.33) 

 ∂Ie

 ∂φ ∂Ie

 ∂ ∂Ie

where  Ie  is a column matrix, containing the independent elements of I: T

 Ie =  Ixx Iyy Izz Ixy Ixz Iyz

(1.34) 

The matrix that defines the partial derivative of angular acceleration with respect to the elements of the moment of inertia tensor may be obtained by differentiating the equations of motion (Eq. (1.13)): 

 ∂ ˙

 

 ∂H

 I

+  ∂I ˙  +  ∂( × H )

= 0

(1.35) 

 ∂Ie

 ∂Ie

 ∂H

 ∂Ie

The terms in the above matrix equation are given by 

⎡

⎤

˙ ω

 ∂I

 x

0 0 ˙ ωy ˙ ωz  0

˙  = ⎣ 0 ˙ ω

⎦

 y  0

˙ ωx  0 ˙ ωz

 ∂Ie

0 0 ˙ ωz  0 ˙ ωx ˙ ωy

⎡

⎤

0 − ω

 ∂( × H )

 z

 ωy

= ⎣  ω

⎦

(1.36) 

 z

0 − ωx

 ∂H

− ωy ωx

0

⎡

⎤

 ω

 ∂H

 x

0 0  ωy ωz  0

= ⎣ 0  ω

⎦

 y  0  ωx

0  ωz

 ∂Ie

0 0  ωz  0  ωx ωy

The  above  partial  derivatives  are  obtained  by  performing  the  indicated  matrix multiplication to obtain the individual equations, differentiating, and then reassembling  the  result  in  matrix  form.  Solving  for  the  partial  derivative  of  angular acceleration with respect to the elements of the inertia tensor, we obtain
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⎡

⎤ ⎡

⎤

0 − ω

 ω

 ∂f

 z

 ωy

 x

0 0  ωy ωz  0

˙  = − I−1 ⎣  ω

⎦ ⎣

⎦

 z

0 − ωx

0  ωy  0  ωx  0  ωz

 ∂Ie

− ωy ωx

0

0 0  ωz  0  ωx ωy

⎡

⎤

˙ ωx  0 0 ˙ ωy ˙ ωz  0

−  I−1 ⎣ 0 ˙ ω

⎦

(1.37) 

 y  0

˙ ωx  0 ˙ ωz

0 0 ˙ ωz  0 ˙ ωx ˙ ωy

The inertia tensor partial derivatives as a function of time are obtained by integrating the rates and 



 ∂ =  ∂ ˙  dt

(1.38) 

 ∂Ie

 ∂Ie



 ∂φ =  ∂ ˙ φ dt

(1.39) 

 ∂Ie

 ∂Ie

 With  respect  to  applied  moment (q = M )

The variational equations for a constant body fixed applied moment are given by 

 ∂ ˙

  =  ∂f˙  ∂

 

+  ∂f ˙ 

(1.40) 

 ∂M

 ∂ ∂M

 ∂M

 ∂ ˙

 φ

 ∂f

 ∂f

=

˙ φ ∂φ + ˙ φ ∂

(1.41) 

 ∂M

 ∂φ ∂M

 ∂ ∂M

The final matrix that is needed in the above variational equations defines the direct effect of the applied moment on the angular acceleration and is given by 

 ∂f ˙  =  I−1

(1.42) 

 ∂M

We obtain the applied moment partial derivatives as a function of time by integrating the rates and 



 ∂ =  ∂ ˙  dt

(1.43) 

 ∂M

 ∂M



 ∂φ =  ∂ ˙ φ dt

(1.44) 

 ∂M

 ∂M

The above rotational variational equations may be integrated with the equations of motion to describe the comet nucleus attitude state (attitude and spin vector) and partial derivatives of state with respect to initial attitude, moments of inertia, and applied moments as a function of time. 

The  above  rotational  variational  equations  have  been  derived  using  matrix notation. Since these equations involve a curvature tensor, the reader may wonder if

1.8 Kinetic Theory of Gases
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a more elegant and compact derivation can be obtained using summation notation. 

Consider the vector cross product in Eq. (1.36): 

⎡

⎤

 ωyhz −  ωzhy

  × H = ⎣  ω

⎦

 zhx −  ωx hz

 ωxhy −  ωyhx

We can expand this column matrix into a product of two matrices as shown in Eq. (1.12): 

⎡

⎤ ⎡

⎤

0 − ωz ωy

 hx

  × H = ⎣  ω

⎦ ⎣

⎦

(1.45) 

 z

0 − ωx

 hy

− ωy ωx

0

 hz

Consider the matrix product: 

⎡

⎤

 Ixx ˙

 ωx +  Ixy ˙

 ωy +  Ixz ˙

 ωz

 I ˙

  = ⎣  I

⎦

 yx ˙

 ωx +  Iyy ˙

 ωy +  Iyz ˙

 ωz

 Izx ˙

 ωx +  Izy ˙

 ωy +  Izz ˙

 ωz

Differentiating with respect to the elements of the inertia tensor, we obtain the first two terms of Eq. (1.36): 

⎡

⎤

˙ ω

 ∂I ˙

 

 x

0 0 ˙ ωy ˙ ωz  0

=  ∂ ˙ 

 I

+ ⎣ 0 ˙ ω

⎦

 y  0

˙ ωx  0 ˙ ωz

 ∂Ie

 ∂Ie

0 0 ˙ ωz  0 ˙ ωx ˙ ωy

The  first  term  on  the  right  side  is  obtained  by  factoring  out  ˙ .  The  matrix,  ∂ ˙  , 

 ∂Ie

is of dimension 3 × 6.The second term is obtained by differentiating with respect to the inertia tensor elements holding  ˙   constant. We could convert this equation to summation notation, which would look mathematically elegant. This would be a waste of time for a navigator because he/she would convert it back to matrix notation in order to program it on a computer. 

1.8  Kinetic  Theory  of  Gases 

An interesting application of Newton’s equation of motion to a system of particles is  the  kinetic  theory  of  gasses  that  results  in  the  ideal  gas  law  and  several  other laws that govern the behavior of gases. The motion of a gas molecule, neglecting rotations, may be described by assuming the molecules of gas to be rigid inelastic spheres. It was postulated by Maxwell, Boltzmann, and others that the simplicity of the experimental behavior of gases implied simplicity on the molecular scale. An extension of the principles governing particle dynamics may be applied to molecules bouncing around in a container to obtain the gas laws. The motion of gas molecules
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is of interest to spacecraft navigation for two reasons. The rapid expulsion of gas molecules from a rocket engine provides the thrust force that changes the velocity of  a  spacecraft,  and  the  incidental  expulsion  of  gas  molecules  from  a  spacecraft causes small accelerations that must be accounted for in solving for the trajectory of the spacecraft. The former is essential for the success of the mission and the latter is a nuisance to navigation. An example of the latter is the venting from a parachute that may be carried on the spacecraft or the expulsion of gas from propulsion system leaks. 

Consider a gas molecule of mass  μ  within a container that comes into contact with a wall. The mass of the molecule is approximately the product of the molecular weight  ( M)  times  the  mass  of  a  proton  or  neutron  (  μ 0).  The  exact  relationship involves the mass associated with the binding energy and as a standard  μ 0 is taken as  one  sixteenth  of  the  mass  of  the O16 molecule.  The  molecular  weight  ( M) is dimensionless  and  generally  nearly  an  integer  representing  the  total  number  of protons  and  neutrons  in  a  molecule.  For  a  molecule  moving  in  the   vx  direction, Newton’s  equation  may  be  used  to  describe  the  motion  during  the  time  that  the molecule interacts with the wall: 

 dvx

 Fi =  μi dt





 t+ t

− vx

 Fi dt =  μi

 dvx

 t

 vx

 Fiti = −2 μivx

A thin layer of gas of thickness  δx  and area  A  next to a wall will contain  δN

molecules  moving  at  an  average  speed   vx,  and  half  of  these  molecules  will  be moving  in  the  plus   vx  direction  and  half  will  be  moving  in  the −  vx  direction. 

Thus, 12 δN  molecules will strike the wall in the time interval  δt. Summing all the impacts over the time interval  δt  and volume  Aδx  gives 1

1





 δN δx F

 δN

−2 μ

 δt

2

 i ti = 2

 i v 2

 x

 vx =  δx

 δt

Over  the  time  interval   δt,  the  total  force  exerted  by  the  gas  on  the  wall  must  be opposite and equal to the total force exerted by the wall on the gas. This is a direct consequence of the requirement that the momentum exchange at the surface of the wall  must  be  zero.  Consider  a  thin  massless  rigid  coating  that  is  applied  to  the wall at the interface. The momentum of this coating, which is the sum of the gas molecules pushing outward and the container wall pushing inward, must be zero. 

This momentum balance is given by
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1  δN F

2

 i ti = − F δt

which simplifies to 

 F δx =  δN μi v 2 x

The number density ( N) is the number of molecules per unit volume and is given by 

 N =  δN

 Aδx

and 

 P =  N μi v 2 x

 F =  P A

The square of the magnitude of the velocity is simply the sum of the squares of the components: 

 v 2 =  v 2 +

+

 x

 v 2 y

 v 2 z

Due to symmetry, the average magnitudes of the velocity components must be equal and  vx =  vy =  vz. The gas law derived from kinetic theory is now 1

 P =  N μ

3

 i v 2

(1.46) 

The  agreement  with  the  ideal  gas  law  derived  from  experimentation  would  be complete  if  the  temperature  of  the  gas  is  related  to  the  kinetic  energy  of  the  gas molecules. It may be argued from first principles that temperature is a measure of the kinetic energy of the gas molecule. The liquid in a thermometer rises in response to the expansion of the liquid, and this is directly proportional to the kinetic energy of the liquid molecules. It may be concluded that temperature is proportional to the energy of a gas molecule, and the constant of proportionality is assumed to be  32 k where  k  is Boltzmann’s constant. The scaling of  k  by three halves is arbitrary and designed to yield a familiar form for the end result:

 Eμ

3

=  k

 T

2

1

 Eμ =  μ

2  i v 2

Making these substitutions, the kinetic theory description of an ideal gas becomes P =  NkT
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The  number  density  N  is simply  the  total  number  of  gas molecules  Nt  enclosed within the volume ( V ) divided by the v olume:

 N =  Nt

 V

The total number of molecules is equal to the total mass ( m) divided by the mass of one molecule: 

 Nt =

 m

 Mμ 0

Making these substitutions, the gas law becomes 

 k

 P V =  m

 T

(1.47) 

 M μ 0

The conventional experimental form of the ideal gas law is 

 P V =  m RT

(1.48) 

 M

or 

 P =  ρ RT

(1.49) 

 M

where the density is given by 

 ρ =  m

 V

The kinetic theory gas constant and experimental gas constant are related by R =  k

 μ 0

The number of molecules contained in a sample of gas of mass  m  equal to the molecular weight ( M) is a constant ( N 0) called Avogadro’s number. The reciprocal of  Avogadro’s  number  is  numerically  equal  to  μ 0,  one  sixteenth  of  the  mass  of O16, or approximately the mass of atomic hydrogen. The ratio of the mass to the molecular weight is called the mole fraction ( n), and Avogadro’s number is simply the number of molecules in one mole. The relationship of Boltzmann’s constant to the universal gas constant is also given by 

 R =  N 0  k

(1.50) 

A mixture of gases with different molecular weights will reach an equilibrium, and all molecules will have the same energy and consequently the same temperature. 

Molecules of higher than average energy transfer energy to the walls of the container when they collide with the walls and conversely molecules of lower than average energy will receive energy from the wall. As the gases mix, they will converge to the
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same average energy. Since the two groups of molecules with different masses have the same temperature and move independently, the total pressure may be obtained by summing the pressures that each group of molecules would exert if it occupied the container alone. This observation of the behavior of gas mixtures is called Dalton’s law of partial pressures. 

If  a  container  of  gas  is  vented  to  space,  the  momentum  of  the  gas  molecules will exert a force on the container, which is transmitted to the spacecraft, resulting in an acceleration of the spacecraft. From Newton’s equation, we have for a small quantity of gas that is vented 

 dv

 δF =  δm dt

The velocity of the gas molecules is constant and 

3 kT

3 Rμ 0

 v 2 =

=

 μi

 μi

and since  μi =  Mμ 0, 

3 RT

 v =

(1.51) 

 M

Since  v  may be assumed to be constant, Newton’s equation of motion may be put in the f orm

3 RT dm

 F =

(1.52) 

 M

 dt

Analysis  of  the  propulsion  system  gas  leaks  for  the  1975  Viking  mission  to Mars provides a typical example of the application of the kinetic theory of gases to navigation of a spacecraft. The gas leak rate is specified to be less than 100 standard cubic  centimeters  of  helium  per  hour.  The  problem  for  navigation  is  to  place  an upper bound on the acceleration of the Viking spacecraft that may be expected. The density of helium at standard temperature and pressure is  ρ = 0 .  166 kg / m3, where P = 1 .  013×105 nt / m2 (1 atmosphere), M = 4, R = 8317 m2 / s2K and T = 293 deg K. 

The velocity of the vented helium molecules, assuming all molecules are vented in the same direction, is v = 1351 m/s. The mass flow rate is simply the density times the volumetric flow rate: 

 dV = 100 cm3 / hr = 2 .  78 × 10−8 m3 / s dt

 dm =  dV

 ρ

= 4 .  62 × 10−9 kg / s

 dt

 dt
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The  net  force  on  the  spacecraft  is 6 .  25 × 10−6 nt.  The  acceleration  of  the spacecraft of mass  msc = 3 ,  468 kg is given by 

 asc =  F = 1 .  8 × 10−9 m / s2

 msc

The acceleration computed in this manner from the kinetic theory of gases will yield a result that is a little high. The vented molecules do not all vent in the same direction and there is some loss of energy as the molecules leave the container. These inefficiencies reduce the total acceleration. 

1.9  General  Relativity  Equations  of  Motion 

The general theory of relativity, which includes special relativity, replaces classical Newtonian theory. For spacecraft navigation, general relativity enters into the equations of motion and computation of measurements. The effect is small and generally could be ignored for trajectory design but can be observed when performing orbit determination. For this reason, generally relativity is formulated as a perturbation to  Newtonian  theory.  The  effect  of  general  relativity  on  orbit  determination  is ubiquitous.  The  orbit  of  Mercury  is  perturbed,  radio  signals  from  the  spacecraft are bent and delayed if they pass near the Sun, and clocks slow down if they are near a massive body or have significant velocity with respect to the solar system barycenter. These perturbations may be determined by integrating the equation of geodesics or computed from simple formulas. 

The  details  of  the  solution  of  the  Einstein  field  equations  are  omitted  here, and the solution for the equations of motion are initiated from the metric tensor. 

The metric tensor is the solution to the field equations. The equation of geodesics operates on the metric tensor to generate the equations of motion. The application of Einstein’s summation notation is fairly straightforward. The resultant equations of motion require no further understanding of relativity theory except for some simple applications of special relativity. A detailed understanding of general relativity is not needed to navigate spacecraft. 

 1.9.1  Einstein  Field  Equation 

The Einstein field equation relates the curvature of space to the distribution of mass, energy, and stress. The mathematical statement of general relativity is simply G = 8 π T
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This  equation  replaces  Newton’s  law  of  gravitation. G is  the  Einstein  tensor that  describes  the  geometry,  and  T is  the  stress  energy  tensor  that  describes  the distribution  of  mass,  energy,  and  stress  in  the  same  coordinate  system  as  the geometry.  The  Einstein  tensor  is  a  specific  description  of  curved  space  that  is extracted from the general Riemann tensor in a way to satisfy the basic postulates of general relativity. The Einstein field equation has been solved exactly for the case of a particle moving in the spherically symmetric gravitational field of a body. For this distribution of matter, the stress energy tensor inside the body is given by 

⎡

⎤

 p  0 0 0

⎢ 0

⎥

T = ⎢  p  0 0

⎣

⎥

0 0  p  0 ⎦

0 0 0  ρ

Outside the body, T is equal to zero. The variable  ρ  is the scalar invariant density of matter, and the variable  p  is the pressure that is obtained in hydrostatic equilibrium. 

The solution was obtained by Schwarzschild about a month after Einstein published the theory of general relativity and is given by the following metric tensor:

⎡

⎤

 g 11  g 12  g 13  g 14

⎢  g

⎥

21  g 22  g 23  g 24

 g

⎢

⎥

 ij = ⎣  g

⎦

31  g 32  g 33  g 34

 g 41  g 42  g 43  g 44

where 





1

2 m −1

 g 11 = grr = −

1 −

 c 2

 r

1

 g 22 = gθθ = −  c 2  r 2

1

 g 33 = gφφ = −  c 2  r 2 sin2  θ





2 m

 g 44 = gtt = 1 −  r

 m =  μ

 c 2

and all the off diagonal elements are zero. The metric tensor takes the place of the potential in classical theory. 
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 1.9.2  Schwarzschild  Equations  of  Motion 

The  geodesic  equation  describes  the  acceleration  of  a  particle  in  space-time coordinates: 

 d 2 xα + {

 dxv

 uv, α}  dxu

= 0

(1.53) 

 ds 2

 ds ds

and the Christoffel symbols are defined by 





1

{

 ∂guσ

 uv, α} =  gσα

+  ∂gvσ −  ∂guv

(1.54) 

2

 δxv

 δxu

 δxσ

The Christoffel symbols for the Schwarzschild solution are given by 





− m

2 m −1

 r =

1 −

 rr

  111 =  r 2

 r





2 m

 r =

1 −

 θ θ

  122 = − r

 r





2 m

 r

=

1 −

sin2

 φφ

  133 = − r

 θ

 r





2 m

 r =

1 −

 t t

  144 =  m

 r 2

 r





2 m −1

 t =

1 −

 rt

  414 =  m

 r 2

 r

 φ

1

 

=  3

 rφ

13 =  r

 φ

 

=  3

 θ φ

23 = cot  θ

1

 θ =

 rθ

  212 =  r

 θ

=

 φφ

  233 = − sin  θ  cos  θ

To  be  consistent  with  the  literature,  the  symbol  for  the  Christoffel  symbols 

{ uv, α} has been changed to  α . It is no longer necessary to recognize that the uv

Christoffel  symbols  are  not  a  tensor.  The  equations  of  motion  are  obtained  by substituting the Christoffel symbols into the geodesic equation. Since the motion is planar, we may rotate to a coordinate system such that the motion is in the x-y plane. The  θ  dependency is thus removed, and for  θ =  π , we obtain from the 2

geodesic equation
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2





2

 d 2 r

2

−1 

2

=  m

 m

 dr

 m

 dφ

1 −

+  r  1 −

 ds 2

 r 2

 r

 ds

 r

 ds







2

2

−  m

 m

 dct

1 −

 r 2

 r

 ds

The acceleration of the  φ  coordinate is 

 d 2 φ =  φ dr dφ

 φ

 φ dr

 

+  

 ds 2

 rφ ds ds

 φr ds ds

 d 2 φ

1

1

=  dr dφ +  dφ dr

 ds 2

 r ds ds

 r ds ds

 d 2 φ

2

=  dr dφ

 ds 2

 r ds ds

If the mass of the Sun is zero, we should have rectilinear motion. The spacecraft moves in a straight line at constant velocity. There is no acceleration. Thus, we have for the equations of motion 



2

 d 2 r =  dφ

 r

 dt 2

 dt

 d 2 φ

2

=  dr dφ

 dt 2

 r dt dt

The apparent acceleration is not a change in the spacecraft velocity vector but an artifact  of  spherical  coordinates.  In  Cartesian  coordinates,  the  second  derivatives of the coordinates with respect to time are zero. This can be shown by defining a Cartesian coordinate system with the  x  axis in the direction of the velocity vector and the  z  axis normal to the plane of motion. The angle  φ  is the complement of the flight path angle and 

˙ r =  V 0 cos  φ

 r ˙

 φ = − V 0 sin  φ

The apparent acceleration of  r  is then

¨ r = − V 0 sin  φ ˙ φ

¨

 r ˙

 φ

 r =  V 0

˙ φ

 V 0

¨ r =  r ˙ φ 2
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or 



2

 d 2 r =  dφ

 r

 dt 2

 dt

The apparent acceleration of  φ  is a little tricky to obtain. 



2  2

 r ˙

 φ

˙ r

sin  φ 2 + cos  φ 2 =

+

= 1

 V 0

 V 0

Multiplying by  V  2

0 and taking the derivative with respect to time, 





 r ˙

 φ r ¨

 φ + ˙ r ˙

 φ + ˙ r ¨ r = 0

˙ r

 r 2 ¨

 φ +  r ˙

 φ ˙ r + ˙ ¨ r = 0

 φ

¨

1

1

 φ +

˙ φ ˙ r + ˙ r ˙ φ = 0

 r

 r

or 

 d 2 φ

2

= −  dr dφ

 dt 2

 r dt dt

The  acceleration  defined  by  Eq. (1.53)  is  in  curved  space  coordinates.  The contravariant metric tensor (  guv) that multiplies the Christoffel symbols transforms to curved space coordinates as shown in Eq. (1.54). The associated line element is Euclidean. In a curved space, the length of a second on the spacecraft is variable. We can define a time parameter (  τ ) where the second is constant in length as measured by  a  clock  that  is  stationary  and  at  infinity.  If  we  assume  a  Sun  with  a  hollow core several thousand kilometers in diameter, we can place this clock at the Sun’s barycenter since the hollow sphere has no gravity and is a flat Euclidean space. We can establish a relationship between coordinate time ( t) and what is called affine parameter time (  τ ) from the line element defined by 









2 m −1

2 m

 ds 2 = −

1 −

 dr 2 +  r 2  dθ 2 +  r 2 sin2  θ dφ 2 + 1 −

 c 2 dt 2

 r

 r

(1.55) 

If we force the line element variation to be constant ( ds 2 =  c 2  dτ 2), the following equation relates a variation in  t  to a variation i n  τ . 



2









2





2

 dt

2

−1

1

2

−2 

2

−1 

=

 m

 m

 dr

 m

 dφ

1 −

+

1 −

+  r 2 1 −

 dτ

 r

 c 2

 r

 dτ

 c 2

 r

 dτ

(1.56)
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Substituting Eq. (1.56) into Eq. (1.55) gives the following equation of motion for a spacecraft: 



2

 d 2 r = − mc 2 +

 dφ

 (r − 3 m)

(1.57) 

 dτ  2

 r 2

 dτ

Replacing  m  by   μ  as obtained from the solution of Einstein’s tensor gives the c 2

following equations of motion: 





2

 d 2 r

3

= −  μ +

 μ

 dφ

 r −

(1.58) 

 dτ  2

 r 2

 c 2

 dτ

 d 2 φ

2

= −  dr dφ

(1.59) 

 dτ  2

 r dτ dτ



2









2





2

 dt

2

−1

1

2

−2 

2

−1 

=

 μ

 μ

 dr

 μ

 dφ

1 −

+

1 −

+  r 2 1 −

 dτ

 c 2 r

 c 2

 c 2 r

 dτ

 c 2

 c 2 r

 dτ

(1.60) 

The trajectory of a photon differs from that of a particle or spacecraft moving at the speed of light even in the limit of very small mass for the spacecraft. The difference arises because a photon has zero rest mass and thus there is no force of gravity acting on the photon that gives rise to Newtonian acceleration. The photon follows the contour of curved space. The resulting path is called the null geodesic. 

We know from special relativity that an observer’s clock on the photon will not register any passage of time. The proper time associated with a photon is simply the  time  that  a  stationary  observer  would  measure.  The  difference  of  the  affine parameter (  τ ) between two points times the speed of light is the distance that one would measure with a meter stick along the path of the photon. For a photon, the measured length in a curved space is zero. Since  ds  is zero, the geodesic equation degenerates to indeterminate forms that must be evaluated in the limit as  ds  goes to zero. The indeterminate form  ds 2 /c 2 dτ  2, which has the value of 1 for a spacecraft, has the value 0 for a photon in the limit as  ds  approaches zero: ds 2

1

2

−1

=

 μ

0 = −

1 −

 dr 2 +  r 2  dθ 2 +  r 2 sin2  θ dφ 2

 dτ  2

 c 2 dτ  2

 c 2 r





2

+

 μ

 dt  2

1 −  c 2 r dτ 2

The equations of motion for a photon are thus given by 





2

 d 2 r

3

=

 μ

 dφ

 r −

(1.61)

 dτ  2

 c 2

 dτ
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 d 2 φ

2

= −  dr dφ

(1.62) 

 dτ  2

 r dτ dτ



2





2





2

 dt

1

2

−2 

2

−1 

=

 μ

 dr

 μ

 dφ

1 −

+  r 2 1 −

(1.63) 

 dτ

 c 2

 c 2 r

 dτ

 c 2

 c 2 r

 dτ

 1.9.3  Isotropic  Schwarzschild  Coordinates 

In the Newtonian world, before general relativity, the trajectories of the planets were observed through telescopes and the data fit to a model of the solar system based on Newton’s equations of motion. From this model, the gravitational constant of the Sun and the planetary ephemerides were estimated to an accuracy consistent with the  measurement  and  model  errors.  With  the  introduction  of  general  relativity  to the model, the data was refit and a new set of constants and planetary ephemerides determined. However, since the relativistic effects are small, the differences between the numerical values associated with the curved space coordinates and the classical coordinates are also small. This small difference often results in confusion of the two coordinate systems. 

In order to make the relativistic system more nearly coincide with the classical system, a coordinate transformation or change of variable was devised to make the local  curved  space  coordinates  come  into  alignment  with  Euclidean  coordinates. 

The  volume  element,  which  is  a  parallelepiped  in  curved  space  coordinates,  is stretched  and  compressed  to  make  it  a  cube.  This  transformation  makes  the relativistic  coordinates  look  more  classical,  but  does  not  really  change  anything. 

The transformed coordinate system is called isotropic Schwarzschild coordinates. 

The transformation is given by 



2

 r = 1 +  μ

¯ r

(1.64) 

2 c 2 ¯ r

 φ = ¯

 φ

(1.65) 

where ¯ r  and  ¯ φ  are the isotropic coordinates. In order to obtain the isotropic form of the equations of motion, we simply substitute the above equation for  r  into the exact Schwarzschild equations. The exact isotropic Schwarzschild line element is given by



2

1 −  μ

2







 c 2 ¯ r

1

4 

 d ¯ s 2 = 



1 +  μ

2  dt  2 −

 d ¯ r 2 +  r 2 d ¯

 φ 2

 c 2

2 c 2 ¯ r

1 +  μ

2 c 2 ¯ r
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and this is approximated by 









2





 μ

1

2 μ

 d ¯ s 2 = 1 −

 dt  2 −

1 +

 d ¯ r 2 +  r 2 d ¯

 φ 2

 c 2 ¯ r

 c 2

 c 2 ¯ r

The exact isotropic Schwarzschild equations of motion for a spacecraft become 







−1

 d 2 ¯ r

−4

= −  μ  1 +  μ

+ 1 −  μ 2

 dτ  2

¯ r 2

2 c 2 ¯ r

4 c 4 ¯ r 2















−4

2



2

3

2

×

 μ 3

 d ¯ r

 μ

 dφ

1 +  μ

+

1 +  μ

¯ r −

2 c 4 ¯ r 5

2 c 2 ¯ r

 dτ

2 c 2 ¯ r

 c 2

 dτ





1 −  μ 2

 d 2 ¯

 φ

4

2

= −

 c 4 ¯ r 2

 d ¯ r d ¯

 φ





 dτ  2

2 ¯ r dτ dτ

1 +  μ

2 c 2 ¯ r



2



6









2

1 +  μ

1 +  μ



2



2

 d ¯ t

2

1

2

=

 c 2 ¯ r

 c 2 ¯ r

 d ¯ r

 d ¯

 φ



+





+ ¯ r 2

 dτ

2

 c 2

2

 dτ

 dτ

1 −  μ

1 −  μ

2 c 2 ¯ r

2 c 2 ¯ r

and these may be approximated by 







2

 d 2 ¯ r

2

2

= −  μ

 μ

 μ

 dφ

1 −

+ ¯ r −

(1.66) 

 dτ  2

¯ r 2

 c 2 ¯ r

 c 2

 dτ





 d 2 ¯

 φ

2

= −

 d ¯ r d ¯

 φ

1 −  μ


(1.67) 

 dτ  2

 c 2 ¯ r

¯ r dτ dτ







2





2



2

 d ¯ t

2

1

4

=

 μ

 μ

 d ¯ r

 d ¯

 φ

1 +

+

1 +

+ ¯ r 2

(1.68) 

 dτ

 c 2 ¯ r

 c 2

 c 2 ¯ r

 dτ

 dτ

The exact isotropic Schwarzschild equations of motion for a photon become 



− 



1



2 





2

 d 2 ¯ r

−

2

3

=

 μ 2

 d ¯ r

 μ

 dφ

1 −  μ 2

+

1 +  μ

¯ r −

 dτ  2

4 c 4 ¯ r 2

2 c 4 ¯ r 3  dτ

2 c 2 ¯ r

 c 2

 dτ
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1 −  μ 2

 d 2 ¯

 φ

4

2

= −

 c 4 ¯ r 2

 d ¯ r d ¯

 φ





 dτ  2

2 ¯ r dτ dτ

1 +  μ

2 c 2 ¯ r
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2

1 +  μ



2



2

 d ¯ t

1

2

=

 c 2 ¯ r

 d ¯ r

 d ¯

 φ





+ ¯ r 2

 dτ

 c 2

2

 dτ

 dτ

1 −  μ

2 c 2 ¯ r

and these may be approximated by 





2

 d 2 ¯ r

2

= ¯

 μ

 dφ

 r −

(1.69) 

 dτ  2

 c 2

 dτ





 d 2 ¯

 φ

2

= −

 d ¯ r d ¯

 φ

1 −  μ

 dτ  2

 c 2 ¯ r

¯ r dτ dτ







2





2



2

 d ¯ t

1

4

=

 μ

 d ¯ r

 d ¯

 φ

1 +

+ ¯ r 2

 dτ

 c 2

 c 2 ¯ r

 dτ

 dτ

1.10  Numerical  Integration 

Integration of a function on a computer makes use of the definition of a derivative and  some  results  that  are  associated  with  proof  of  the  fundamental  theorem  of calculus. The definition of an integral is a Riemann sum in the limit as the number of sums approaches infinity and the width of the interval approaches zero. A computer cannot deal with infinity so the Riemann sums must be finite. This does not impose a limit on accuracy since given a required accuracy (  ), the width of the Riemann sum intervals may be made small enough (  δ) to achieve this accuracy. Given an epsilon, there is a delta, which is a refrain used by mathematicians in proving theorems. The real limitation of accuracy on a computer is machine precision, which may be overcome by computing in extended precision. Orbit determination software is written in double precision, which was a problem when computers were expensive. Computation of the Doppler observable strains the limit of double precision (64 bits). 

 1.10.1  Fundamental  Theorem  of  Calculus 

The  fundamental  theorem  of  calculus  involves  performing  two  operations  on  an arbitrary function ( f ) and then showing that the resultant function is also  f . The
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Fig.  1.6  Plot of function 

 y 

 f ( x) 

 m  =  dy 

 dx 

 f ( a) 

 f ( a*) 

Δ x 

 a*

 a 

 x 

two operations are integration over an interval and differentiation. The integral is defined as the area under the curve defined by  f (s)  and the  s  axis and the derivative is defined as the slope of  f (s). The function (f(s)) is continuous and has continuous first and second derivatives. A continuous function is defined here as one that can be drawn on graph paper without lifting the pencil and is the only kind of function needed for navigation of spacecraft: 



 d

 x

 f (s) ds =  f (x)

 dx α∗

Figure 1.6 shows a plot of the geometry. An intermediate evaluation value  α  is defined that is within an infinitesimal interval of the value  x. The reason for doing this is that the integral from  α∗ to  α  will be a constant (not a function of  x) and have a derivative of zero. 

In the limit as  x  approaches zero, 

 f (s) =  f (α) +  m (s −  α)

where 

 m =  df (s) ≈  f (x) −  f (α)

 ds

 x −  α

The integral from  α  to  x  is thus the area under that part of the curve, which is the slim addition of width  x. The big area from  α∗ to  α  can be ignored because this area is not a function of  x  and will have a derivative of zero with respect to  x: x

1

 f (s) ds =  f (α) (x −  α) +

 m (x −  α) 2

2

 α
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From the definition of the derivative, we have in the limit as  δx  goes to zero d

 x

 f (s) ds =

 dx

 α

 f (α)(x −  α) + 1

lim

2  m(x −  α) 2 −  f (α)(x −  α −  δx) − 12  m(x −  α −  δx) 2

 δx→0

 δx





 d

 x

 f (s) ds =  f (α) +  m(x −  α) =  f (x) dx

 α

The proof would be complete if the slope or straight line in Fig. 1.7 was the same as the curve. The problem is the small area between the curve and the slope. In the limit as  x  approaches zero, this small area vanishes. However, the triangle that defines the change in the function also vanishes. We have to show that the small area vanishes faster than the triangle or the ratio of the small area to the triangle approaches  zero. The integral is the infinite sum of the infinitely small triangles. 

This is called a squeeze by mathematicians. If we assume that 

 f (s) =  f (α) +  m (s −  α) +  c 2 (s −  α) 2 + · · ·  cn(s −  α)n and process this function as described above, we obtain 

 f (x) =  f (α) +  m (x −  α) +  c 2 (x −  α) 2 + · · ·  cn(x −  α)n The change in  f (x)  over the interval from  α  to  x  is f (x) =  m (x −  α) +  c 2 (x −  α) 2 +  cn · · ·  (x −  α)n Dividing by  (x −  α), 

 f (x) =  m +  c 2 (x −  α) + ··· cn(x −  α)n−1

 (x −  α)

In the limit as  (x −  α)  approaches zero, 

 f (x) =  f (α) +  m(x −  α)

This proof is a bit circular in that the fundamental theorem of calculus is probably needed to prove that the function can be represented by a Taylor series over a small interval. Tom Apostle provides two proofs of this theorem in his book on calculus. 

A third proof is given in  Mathematical  Analysis   and this is probably the best proof. 

All  of  his  proofs  involve  elegant  squeezes.  Newton’s  proof  is  similar  to  the  one given here but would probably not be accepted today by mathematicians. Newton and Leibnitz stated the theorem and thus get all the credit. The proof is secondary. 
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 1.10.2  Runge-Kutta  Numerical  Integration 

Numerical integration uses many of the ideas associated with proving the fundamental theorem of calculus. The difference is that the fundamental theorem of calculus is  an  exact  result  and  numerical  integration  is  an  approximation  that  is  exact  in the limit as the integration interval goes to zero which can never be achieved on a computer. Numerical integration is in a sense more difficult because the result is unknown and the integration uses the result. Therefore, numerical integration is a boot strapping process. Given 

 dx =  f(x,t), 

 dt

numerical integration involves finding  f (x, t)  knowing only the derivative. We first obtain the following derivatives over the interval from  t 0 to  t 0 +  h. The geometry is illustrated in Fig. 1.7: 

 k 1 =  f (x(t 0 ), t 0 )





 h

 k 2 =  f x(t 0 ) +  k 1  , t

2

0 +  h

2

average slope 

 f (x) 

k3

k4 

k2 

k1 

h 

t0 

x 

Fig.  1.7  Fourth-order Runge-Kutta
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 h

 k 3 =  f x(t 0 ) +  k 2  , t

2

0 +  h

2

 k 4 =  f (x(t 0 ) +  k 3  h, t 0 +  h) The average slope over the interval is a weighted average and  x(t 0 +  h)  is thus x(t 0 +  h) =  x(t 0 ) +  k 1 + 2 k 2 + 2 k 3 +  k 4  h 6

Euler integration involves only one derivative evaluation. The derivative evaluated at the left side of the integration interval and extended across the interval is given by 

 x(t 0 +  h) =  x(t 0 ) +  f (x(t 0 ), t 0 ) h An  orbit  was  integrated  around  one  full  revolution  of  the  Sun  to  test  various numerical integrator accuracies. The orbit had a semimajor axis of 149 .  4 × 106 km, an  eccentricity  of  0.8,  and  orientation  angles  in  the  plane  of  the  ecliptic.  The gravitational constant for the Sun was 0 .  132712440017987 × 1012 km3 / s2, which is far more digits than required for the test. The orbit period is about 1 year and periapsis is inside the Earth’s orbit. The integration was started 11,805,133.8 s from periapsis  to avoid  the  symmetry associated  with starting at periapsis. The  results are tabulated below for the Euler integration error. The number of steps is tabulated along with the position error, energy error, and momentum error. The integration step size is the period of the orbit divided by the number of steps. Thus, 365 steps would be about 1 day. The dimensionless errors are obtained by dividing the actual error by the parameter nominal value. Thus, 10−2 would be a one percent error. The exponents indicate the number of decimal places of accuracy. 

The Euler integration does not do very well. It takes a 1 s step size to get four decimal place accuracy. However, a 100 second step size (step = 365,000) may be accurate enough for some applications and only requires a few lines of computer code to implement. 

Euler integration error 

Steps

   x

   y

Energy

Momentum 

36,500

10−1

10−1

10−1

10−1

365,000

10−2

10−1

10−2

10−1

3,650,000

10−3

10−2

10−3

10−2

36,500,000

10−4

10−3

10−4

10−3

The classical fourth-order Runge-Kutta algorithm results are shown below. An 864  second  step  size  yields  11  decimal  place  accuracy,  which  is  sufficient  for
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planetary spacecraft navigation. This algorithm was used for about 10 years by the author without any need for more accuracy. It was used in the Mars Orbit Insertion software for the Viking mission to Mars in 1976. The original coding was to replace an analog computer integrator with digital computer code. 

Fourth-order Runge-Kutta integration error 

Steps

   x

   y

Energy

Momentum 

365

10−3

10−2

10−3

10−3

3650

10−9

10−6

10−8

10−8

36,500

10−11

10−11

10−13

10−12

365,000

10−10

10−9

10−12

10−12

The integrator used today is the fifth-order Runge-Kutta-Fehlberg integrator with sixth degree error control. This integrator achieves 13 decimal place accuracy for an 865 s step size and this integrator was used for the Near Earth Asteroid Rendezvous software. It was necessary to tailor the error control for integrating spacecraft by planets. The variable step size had a tendency to miss planets or asteroids and flyby without reducing the step size enough. 

Fifth-order Runge-Kutta-Fehlberg integration error 

Steps

   x

   y

Energy

Momentum 

365

10−2

10−1

10−4

10−3

3650

10−9

10−7

10−8

10−8

36,500

10−13

10−11

10−15

10−15

365,000

10−13

10−11

10−13

10−13

The Fehlberg integrator is accurate enough to predict solar eclipses at the time of Alexander the Great. 

1.11  Circumference  and  Area  of  Circle  and  Volume 

of  Cylinder  and  Sphere 

The circumference of a circle may be determined by inscribing and circumscribing polynomials  inside  and  outside  the  circle.  Let   N  be  the  number  of  sides  of  the polynomials and  S  the length of a side. We start with a hexagon since the inscribed chord or length of the side is equal to the radius. We next bisect the central angle and inscribe a 12-sided polygon inside the circle. Let  x  be the distance along the bisector from the center of the circle to the chord and  y  the distance from the center of the chord to the circle. We have
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! 

2

 S

 x =

1 − 2

 y = 1 −  x

where  the  radius  of  the  circle  is  taken  to  be  one.  The  length  of  the  side  of  the inscribed 12-sided polynomial is 

! 

2

 S

 Si =

 y 2 +

2

and  the  side  of  the  circumscribed  polynomial  is  obtained  by  assuming  similar triangles: 

 Sc =  Si/x

An  approximate  value  for   π  may  be  obtained  from  the  sum  of  the  sides  of  the polynomials: 

 πi ≈ 2 NSi

 πc ≈ 2 NSc

The next step is to double the number of sides ( N = 2 N), setting  S =  Si  and repeating the above computations until the desired accuracy is obtained. Eventually, πi  and  πc  will converge to  π. The results are tabulated in the top of Table 1.1. The circumference of the circle is obtained by multiplying by the number of sides and this is equal to 2 πr. If we double the number of sides four times, we get 96 sides and this was enough to get about four decimal places of accuracy for  π. Round off error would prevent going any further since Archimedes did the computations to about four place accuracy. If Archimedes had a modern computer computing in double precision, he could keep going until he got 16 decimal place accuracy for  π. The polynomial would have about six million sides. 

Another  approximation  of   π  may  be  obtained  by  numerical  integration.  The circumference of a circle can be obtained from the line integral around the circle. 

We cannot assume knowledge of trigonometric functions since the proof would be circular. The line integral is defined by 

 ds 2 =  dx 2 +  dy 2

A change of variable to  dx  giv es

 y 2 = 1 −  x 2

2 ydy = −2 xdx
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 ds 2 =  dx 2 +  x 2

 y 2  dx 2



1

1

 π = 2 0 1 −  x 2 dx

where the integral is taken over the first quadrant. This integral becomes difficult to evaluate by numerical integration because of the singularity at  x = 1. We can avoid this singularity by integrating from 0 to 30◦. The circumference of a circle is thus 0 .  5

1

 π = 6 0

1 −  x 2  dx

 C = 2 πr

In order to compare numerical integration with Archimedes integration, we must multiply the integration step size by 12 since the arc length is 30◦ and another factor of two for the fourth-order Runge-Kutta integration. The results are shown in the bottom of Table 1.1. Five integration steps correspond to about a polynomial with about 120 sides, which compares favorably with Archimedes result. 

The area of a circle follows directly from the circumference. Inscribe a polygon with N sides in a circle. The triangle associated with each side has a base  x  equal to C over N. The area of the triangle i s

1

1  C

 At =  xR =

 R

2

2  N

The area of the circle is  

 Ac =  At N

1

 Ac =  CR

2

Since  C = 2 πR, 

 Ac =  πR 2

The volume of a cylinder is 

 h

 Vcyl =  πR 2

 dy

0

 Vcyl =  πR 2 h
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Fifth-order 
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0.3141592653587038D+01
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0.3141592653055037D+01

0.3141592653556372D+01

0.3141592653587705D+01

0.3141592653589663D+01

0.3141592653589786D+01
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Fourth-order 

0.3141594815778137D+01

0.3141592783720991D+01

0.3141592662032954D+01

0.3141592654121407D+01

0.3141592653623243D+01

0.3141592653591909D+01

0.3141592653589916D+01

0.3141592653589784D+01
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of  π

of  π

by numerical inte

of  π

determination 

Computation 

sidesof 

1.1 

gration steps

Table 

Archimedes 

Number 

0.6000000000000000D+01

0.2400000000000000D+02

0.9600000000000000D+02

0.3840000000000000D+03

0.1536000000000000D+04

0.6144000000000000D+04

0.2457600000000000D+05

0.9830400000000000D+05

0.3932160000000000D+06

0.1572864000000000D+07

0.6291456000000000D+07

0.2516582400000000D+08

0.1006632960000000D+09

Determination 

Inte

0.5000000000000000D+01

0.1000000000000000D+02

0.2000000000000000D+02

0.4000000000000000D+02

0.8000000000000000D+02

0.1600000000000000D+03

0.3200000000000000D+03

0.6400000000000000D+03
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A stack of quarters has the shape of a right circular cylinder. If  h  is the height of the stack and  dy  is the thickness of each quarter, then the volume is the sum of the volume of each quarter. Consider a stack of coins consisting of a quarter, nickel, penny, and dime. If we had enough coins of the right size, this stack would resemble a hemisphere. The volume of a hemisphere is thus given by the integral: V

 R

 R

 s = 2 π

 x 2 dy = 2 π

 (R 2 −  y 2 )dy = 2 π R 3 −  R 3

2

0

0

3

where   x  is  the  radius  of  each  coin  and   dy  is  the  thickness.  Performing  the integration, we get

4

 Vs =  πR 3

3

Since Archimedes was not aware of the fundamental theorem of calculus, he would have to perform the following integral by numerical integration: 

 R

 y 2 dy

0

Or  he  could  drop  an  orange  into  a  pot  of  water  and  measure  the  overflow  and conclude  that  the  integral  is  about   y 3 over  3.  Either  way,  he  would  have  an approximation  for  the  integral.  Is  the  correct  result   y 3 over  3  or  y 3 over  some other number? If the correct number is 3, then the ratio of the volume of a sphere to  a  circumscribed  cylinder  would  be  exactly  two  thirds.  Archimedes  knew  the difference  between  a  rational  and  irrational  number.  A  way  to  prove  the  number is 3 is to make use of a special case of the fundamental theorem of calculus. The area under the  y 2 function for the interval between  y  and  y +  y  is given by 1





 A =  yy 2 +  y (y +  y) 2 −  y 2

2

as shown in Fig. 1.6: 

 A =  yy 2 +  y 2 y +  y 3

2

In the limit as  y  approaches zero, the proportional error (  ), contributed by the y 3 term of the integrand, becomes 

  =

 y 3

=

 y 2

2 (yy 2 +  y 2 y) +  y 3

2 (y 2 +  yy) +  y 2

In the limit as  y  approaches zero,    approaches zero and A =  yy 2 +  y 2 y
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When we sum an infinite number of the elemental areas ( A), the proportional error that applies to the  A  applies to the sum. Archimedes also knew the slope of a curve or the derivative: 

 dy 3 =

 (y +  y) 3 −  y 3

lim

 dy

 y→0

 y

 (y +  y) 3 −  y 3 =  y 3 + 3 yy 2 + 3 y 2 y +  y 3 −  y 3

 dy 3

3

=  yy 2 + 3 y 2 y +  y 3

 dy

 y

" 

1  dy 3

 y 2 dy

=  yy 2 +  y 2 y =

3  dy

 y

 y



1  dy 3 =  yy 2 +  y 2 y =  y 2 dy 3





 y 3  y

1

=  y 3 =

 y 2 dy

3 0

3





 R

 R

 Vs = 4 π

 x 2 dy = 4 π

 (R 2 −  y 2 )dy

0

0





4

 Vs = 4 π R 3 −  R 3

=  πR 3

3

3

The 3 in the above equation is an integer and not an irrational number like  π. 

Archimedes probably considered this result his greatest accomplishment because he had it engraved on his tombstone. It does not appear that this result could be obtained without  understanding  the  fundamental  theorem  of  calculus.  His  knowledge  of zero,  limits,  differentials,  and  99%  of  the  mathematics  used  for  navigation  of spacecraft would have equipped him to obtain this result. Seventeen centuries later, mathematicians finally caught up with him. 

1.12  Summary 

The  equations  of  motion  have  been  developed  for  motion  that  is  relative  to navigation.  Flight  operations  software  is  dominated  by  numerical  integration  of Newton’s  equations  of  motion.  Energy  and  momentum  are  useful  concepts  for understanding  motion,  but  there  are  very  few  equations  in  operational  software that explicitly acknowledge their existence. One notable example is the momentum
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and  energy  supplied  by  springs  as  a  probe  separates  from  a  spacecraft.  Energy and  momentum  are  more  an  artifact  of  Newton’s  second  law.  The  equations  of motion describing particle collisions and the kinetic theory of gases acknowledge energy and momentum, but operational software does not explicitly integrate these equations. Therefore, a knowledge of Newton’s equations of motion is just about all one needs to navigate spacecraft. 

One  minor  exception  is  the  theory  of  general  relativity.  Clocks,  the  path  of photons near the Sun, and the precession of Mercury’s orbit are affected by general relativity and enter as corrections or calibrations of the data or equations of motion. 

Since  these  corrections  can  be  seen  in  the  data,  they  are  included  in  the  flight operations software. However, sufficiently accurate navigation could be performed ignoring general relativity. Navigators, who conduct mission operations, generally regard general relativity as a curiosity. 

Since the computer is used in the conduct of flight operations, understanding of the mathematics of algorithms contained in computer software is needed. Numerical integration algorithms and finite difference partial derivatives  or difference equations are examples. Analytic partial derivatives, which are in the province of calculus textbooks, are also needed for understanding navigation mathematics. 

Exercises 

1.1  A basketball is dropped on the floor from a height of 1.5 m and rebounds to a height of 1.5 m neglecting energy loss. A golf ball also rebounds to the same height. 

The golf ball is now held above the basketball and they are both dropped together. 

The basketball rebounds and hits the golf ball. How high will the golf ball go? The basketball weighs 560 grams and the golf ball weighs 45 grams. The acceleration is assumed to be uniform at 9.82 m / s2. 

1.2  The partial derivatives of the gravitational acceleration with respect to position is needed for the variational equations. If the gravitational acceleration is given by 

− μ

a =

r , 

 r 3

determine  ∂a

 ∂r , which is a 3 × 3 matrix. 

1.3  The spin vector of the Earth precesses around the Ecliptic pole with a period of  about  26,000  years.  The  applied  moment  is  from  the  Sun  and  Moon  gravity gradients. The applied moment is given by applying the result from Exercise 1.9: 

⎡

⎤

sin (α)

 ∂a

M =  m

⎣

⎦

 e

 rrl

cos (α)

 ∂r

0
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where  me  is the mass of the Earth,  r  is the separation of the dipole associated with  oblateness,  and  rl  is  the  effective  moment  arm.  Assume  that  the  product me r rl  is given by 

 mer rl =  Izz −  (Ixx +  Iyy)/ 2 . 

Determine an equation for the applied moment. 

1.4  For  the  purpose  of  computing  gravity  gradient  torques,  a  body  may  be represented by dipole point masses distributed on the body fixed coordinate axes. 

Since  Izz =  m k 2, two point masses may be located on the z

 z  axis at plus and minus

 kz. The torque may be calculated from the  Ixx  and  Izz  point masses by projecting the positions of the point masses onto the moment arm and Sun vector directions. 

Show that 

sin    cos   rrl = sin    cos   (Izz −  Ixx) where    is the complement of the angle between the Sun vector and body fixed  z axis. 

1.5  The precession contributed by the Sun is given by 

˙ α =  M

2 ωeIzz

The factor of 2 is needed to attenuate the vector magnitude by the average of sine function  squared  associated  with  the  orbital  motion  and  separation  of  precession from  nutation.  Determine  the  precession  rate  for  the  Sun  contribution  where (Ixx −  Iyy)/Izz = 3 .  27376 × 10−3,  ωe = 7 .  292 × 10−5 s−1,  GM = 0 .  132712 ×

1012 km3 s−2, r=0 .  149577 × 109 km,   = 23 .  439◦. 

1.6  Show  that  the  partial  derivative  of  angular  acceleration  with  respect  to  the inertia tensor is given by 

⎡

⎤ ⎡

⎤

0 − ω

 ω

 ∂f

 z

 ωy

 x

0 0  ωy ωz  0

˙  = − I−1 ⎣  ω

⎦ ⎣

⎦

 z

0 − ωx

0  ωy  0  ωx  0  ωz

 ∂Ie

− ωy ωx

0

0 0  ωz  0  ωx ωy

⎡

⎤

˙ ωx  0 0 ˙ ωy ˙ ωz  0

−  I−1 ⎣ 0 ˙ ω

⎦

(1.70) 

 y  0

˙ ωx  0 ˙ ωz

0 0 ˙ ωz  0 ˙ ωx ˙ ωy

The elements of the inertia tensor are contained in a column matrix of dimension six. Unless highly skilled in tensor algebra, this problem can be solved by expanding the vectors and matrices as equations in terms of their elements, differentiating and then  reassembling  into  the  above  matrices.  The  result  in  this  form  can  be  easily programmed on a computer. 
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1.7  Determine the root mean square velocity of a nitrogen gas molecule (M = 14) at room temperature ( 72◦ F). 

1.8  A sample of air at standard temperature and pressure ( 0◦ C, 1.01325 nt/ m2) occupies a volume of 22,421 cm3. A mole of any gas at standard temperature and pressure will occupy a volume of 22,421 cm3 and contain Avogadro’s number of molecules (6 .  022 × 1023). Assume the air is an ideal gas with molecular weight of 29 and the diameter of an air molecule is 3 angstroms. Determine the mean free path length of a molecule between collisions and the number of collisions per second. 

1.9  On  January  1,  65,000,000  12:00:00  BC,  a tyrannosaurus  rex  sets his atomic watch at high noon. At the same time, a photon is emitted from a distant galaxy and sets his identical watch to the same time. On January 1, 2017 12:00:00, the photon hits t rex. Both watches gain 3 × 10−16 seconds per second, the same accuracy as the atomic clocks used by the DSN. What time will both watches read? 

1.10  Perform  Euler  integration  of  the  sine  function  from  0  to 90◦ assuming  an integration  step  size  of 30◦ and  evaluating  the  function  at  the  right  side  of  the interval. Repeat evaluating the function in the middle of the interval. Repeat again only assuming an integration step size of 10◦. 
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Chapter  2 

Force  Models 

2.1  Introduction 

Force models are generally independent of motion. Even though solar pressure and rocket thrust involve motion of molecules and photons, the force on the spacecraft depends only on the transfer of momentum. A notable exception is atmospheric drag forces that are dependent on the velocity of the spacecraft relative to an atmosphere. 

2.2  Rocket  Equation 

The acceleration of a spacecraft from a rocket engine is accomplished by ejecting gas molecules at high velocity. The energy source can be gas stored in a container under pressure. Cold gas rocket thrusters were used by early spacecraft for attitude control. In order to attain the high thrust and high efficiency of modern rocket engines, the gas molecules are heated to a very high temperature by burning rocket fuel in a thrust chamber that directs the gas in a steady stream opposite to the direction of acceleration. The acceleration of a spacecraft subject to the thrust  T

is  given  b y

 dv =  T

 dt

 msc

If the rocket exhaust is throttled to flow at a constant velocity  (u), the thrust is given by the rate of change of momentum as described above for particle impacts: dm

 T =  u dt
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The propellant is assumed to be an integral part of the spacecraft and the equation for the velocity change of the total mass including the spacecraft and propellant is dm

 dv =  u m

Integrating gives what is known as the rocket equation: 

 m 0

 v =  u  ln

(2.1) 

 m

where   v  is the change in velocity of the spacecraft and  m 0 is the initial mass. The propellant burned is the difference between  m  and   m 0. The simplicity of the rocket equation belies its usefulness. Interpretation of the parameters of the rocket equation provide considerable insight into the design of rocket engines. The key parameter is the rocket exhaust velocity. Historically, the designers of rocket engines have attempted to maximize the exhaust velocity and have devised a parameter called the specific impulse (  Isp) to provide a measure of efficiency. The specific impulse is defined by 

 Isp =  u

 g 0

The constant  g 0 is the acceleration of Earth’s gravity and appears to be a relic from the time when pound mass was used instead of the slug, which is the current unit of mass in the English system. The units of specific impulse are seconds and provide a measure of the time a particle would fall near the surface of the Earth to attain the speed of the rocket exhaust, which is a fairly meaningless concept. In the modern era, the  Isp  is a measure of the overall efficiency of the rocket engine and has been incorporated into the rocket equation: 

 m 0

 v =  g 0 Isp  ln

(2.2) 

 m

The specific impulse that is quoted for rocket engines is not directly proportional to the exhaust velocity. It factors in inefficiencies associated with the flow of the exhaust gas and is adjusted to give the right performance when used in the rocket equation. The specific impulse associated with a cold gas rocket engine or with discreet venting from a spacecraft may be computed from the ideal gas law (Eq. (1.46)): 

3 RT

 Isp = 1

(2.3) 

 g 0

 M

Observe that the specific impulse and hence the overall efficiency of this type of rocket engine are only functions of the temperature and molecular weight of the
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gas that is expelled. For this reason, rocket engine designers tend to favor hydrogen as a fuel because of its low molecular weight. Solid rocket motors use propellant with a relatively high molecular weight and attain specific impulses in the range of 200 s. Liquid propellant rocket motors that use hydrogen as a fuel attain specific impulses in the high 300’s. The temperature of the fuel is also a major factor. Cold gas systems attain specific impulses in the 50-s range. In order to attain really high temperatures for the gas molecules, the gas may be ionized and accelerated with an electric field. Ion drive engines can obtain specific impulses of several thousand. 

2.3  Aerodynamic  Forces 

A spacecraft moving through a planetary atmosphere or through the tail of a comet experiences aerodynamic forces opposite to the direction of motion called drag and normal to the direction of motion called lift or side slip. The drag force is generally beneficial to spacecraft since it may be used to remove kinetic energy from the spacecraft. During descent to the planets’ surface, the drag force acts in a direction to aid thrusters used for braking and in orbit the drag force may be used to circularize the orbit. Consider a spacecraft that may be approximated by a flat plate oriented perpendicular to the velocity vector relative to an atmosphere. Since the moving spacecraft encounters atmospheric molecules at rest, a force must be applied by the spacecraft to accelerate the atmosphere molecules from rest to the velocity of the spacecraft. This force is given by 

 dv

 F =  m dt

The rate of change of energy or power that must be supplied by the spacecraft to accelerate the gas molecules of mass  m  is  given  b y

 dv

 F v =  mv dt

Over an incremental distance ( dx), the work ( dE) done on the atmosphere is x+ δx

 v

 v 2

 dE =

 F dx =  F δx =  m

 v dv =  m

 x

0

2

The mass of the atmosphere swept out is  ρAδx  where   A  is the cross-sectional area of the spacecraft and  ρ  is the atmospheric density. Thus, we have v 2

 F =  Aρ  2
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for the force on the spacecraft. The force distributed over the spacecraft is the pressure (q) times the area ( F =  qA). The pressure exerted on the spacecraft is called dynamic pressure and is given by 

 q = 1  ρv 2

2

The drag force is given by 

 Fd =  Cd qA

(2.4) 

where the drag coefficient  Cd  is a parameter computed by aerodynamicists to account for the flow of the atmosphere around the spacecraft and has a maximum value of one. As the spacecraft moves through the atmosphere, the gas molecules that are accelerated to the velocity of the spacecraft build up in front of the spacecraft and form a wedge that deflects some of the molecules encountered to flow around the spacecraft. As a result, not all of the molecules are accelerated to the velocity of the spacecraft and the drag coefficient is less than one. If the spacecraft is tilted by some angle, aerodynamic forces are generated that are normal to the velocity vector called lift. For spacecraft navigation in an atmosphere, an aerodynamic model is required to enable the computation of all the force components as a function of   q  for all the permissible attitudes that the spacecraft may be maneuvered. The aerodynamic coefficients are computed by an aerodynamicist or reduced from wind tunnel data and supplied to navigation enabling the trajectory of the spacecraft to be computed. 

2.4  Solar  Pressure 

Photons emanating from the Sun impinge on the spacecraft resulting in a force that accelerates the spacecraft. The force results from the change in momentum as the photon decelerates from the speed of light  (c)  to rest with respect to the spacecraft and is converted to heat assuming the spacecraft is a blackbody. The force is related to the change in linear momentum given by 

 F =  d(mc)

(2.5) 

 dt

The incremental energy required to decelerate the photon is 

 dE =  F dx

and the power supplied to the spacecraft is obtained by dividing by dt:
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55

 dE =  Fc

(2.6) 

 dt

Over the time interval  dt, the photon moves an infinitesimal amount  dx.  The mathematics are a bit oversimplified, but if Eq. (2.5) is substituted into Eq. (2.6), 

we get  E =  mc 2, and this result is consistent with special relativity. The force of the photons on the spacecraft creates a pressure over the exposed surface area ( A), and the net force is obtained by integrating all the photons over the area  (A)  of the spacecraft: 

 dE

 F = 1 c dt

 dE =  I A

 dt

The power supplied to the spacecraft per unit area  (I )  may be computed from the solar intensity measured at the Earth  (Ie)  and scaled by the inverse square of the distance from the Sun: 





 R

2

 e

 I =

 Ie

(2.7) 

 Rs

Collecting terms and solving for the force on the spacecraft gives 

 F =  K A

(2.8) 

 R 2 s

 K = 1  R 2

 c e Ie

where 

 Ie = 1 ,  353 w / m2 ,  c = 2 ,  999 ,  793 .  458 m / s2 and Re = 149 .  4 × 109 m and 

 K = 1 .  01 × 1017 kg m / s2 = 1 .  01 × 108 kg km3 / m2s2

K is given in both MKS units and mixed units since area is generally given in   m 2 and distance in  km. The solar pressure model used for navigation is more complicated than the simple flat plate blackbody model described above suggests. 

The above result for the force assumes that all the photons are absorbed by the spacecraft and are directed radially away from the Sun. Some of the photons will be reflected from the spacecraft, which will increase the solar pressure. If the
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Table  2.1  Solar pressure 

Front side  Cylindrical side  Back side  Antenna 

model parameters 

Area

8.92 m 2

2.22 m 2

11.25 m 2

2.33 m 2

 γ

0.165

0.039

0.750

0.750 

 β

0.742

0.101

0.100

0.107 

 

−0.112

0.400

0.400

0.398 

spacecraft were a perfect mirror, the force would be doubled. The incident and reflected momentum exchange would be in the same direction. The reflected solar energy is composed of specular and diffuse radiation. For specular reflection, the angle of incidence is equal to the angle of reflection and for diffuse radiation the energy is scattered by the cosine of the Sun angle. The solar pressure model used for the Near Earth Asteroid Rendezvous (NEAR) mission had three components. 

The specular radiation component is  γ , the diffuse radiation component is  β, and the third component    accounts for thermal reradiation. Table 2.1  gives the values of these coefficients for each part of the spacecraft. A separate set of coefficients was specified for the front side, cylindrical side, back side, and antenna. 

2.5  Gravity  Models 

The gravitational acceleration (A) of a point mass by a body may be obtained by integrating Newton’s inverse square law of gravity a (x, y, z)  over the body and is given by 



∞

r

A =

a

i − r

 (x, y, z) dx dy dz =  Gρi

 r 2

 i  cos  φi dri dφi dλi

(2.9) 

 V

|ri − r|3

 i=0

where   G  is the gravitational constant and  ρ  is the density. Equation (2.9)   is   a mathematical statement of Newton’s law of gravity and requires no proof. The acceleration may be replaced by force per unit mass. Thus, a problem in dynamics is replaced by a problem in statics, which greatly simplifies the physics. We no longer need to be concerned with the concept of energy and momentum. The vector r is from the center of the coordinate system to the mass element and the vector r is to the spacecraft. The geometry is illustrated in Fig. 2.1. The right side of the above equation is simply the definition of a volume integral transformed to spherical coordinates. In the limit as the index ( i) goes to infinity, the size of the volume elements goes to zero. The volume elements may be replaced by mass elements defined by 

 dmi =  ρ r 2 i  cos  φi dri dφi dλi
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Fig.  2.1  Planet or asteroid 
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The sum of the mass elements is the total mass of the body. If  ρ  equals one, the sum is the volume of the body. The density on the surface (  ρ) may be defined by an expansion of Legendre polynomials and associated functions as 

∞

 n



 ρ =

 P m

 n ( sin  φ)[ Anm  cos  mλ +  Bnm  sin  mλ]

(2.10) 

 n=0  m=0

Alternatively, the density could be given in a table as a function of latitude and longitude. 

 2.5.1  Harmonic  Expansion  Model 

The gravitational acceleration given by Eq. (2.9) may be recast as the sum of inverse square relationships for each mass element: 

∞

− μ

A =

 i (r − r i )

(2.11) 

|r − r i|3

 i=0

where  μi =  Gmi. Integrating the total acceleration term by term, we obtain the following: 

∞



 μi

 U =

(2.12)

|r − r i|

 i=0
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If we take the derivatives of A term by term with respect to  x,  y, and  z and sum them, we obtain after a little algebra 

∞







∇ ·

3 μ

A =

 i

−

3 μi

 (x −  x

= 0

|r − r

 i ) 2 +  (y −  yi ) 2 +  (z −  zi ) 2

 i |3

|r − r i|5

 i=0

(2.13) 

Since the right side of Eq. (2.11) is the gradient of the right side of Eq. (2.12) and the right side of Eq. (2.13) is the derivatives of the right side of Eq. (2.11) summed, the same relationships hold for the left sides and 

A = ∇ U

(2.14) 

∇2 U =  ∂ 2 U +  ∂ 2 U +  ∂ 2 U = 0

(2.15) 

 ∂x 2

 ∂y 2

 ∂z 2

Equation (2.15) for the divergence of  U  may be solved for  U .   For    U  to be unique, the boundary condition must be satisfied. The fundamental theorem of calculus will then guarantee that the gradient of  U  will be the acceleration. For heat flow, the above differential equation for  U  is the flow of energy across the faces of the volume elements. For electric charge, Michael Faraday, the father of electrical engineering, postulated a flux. The real mathematical basis for the divergence theorem is the inverse square relationship. Heat, gravity, and electric charge are all inverse square and obey Newton’s action equals reaction and acceleration equals f orce divided by mass. 

Since Eq. (2.15) for the divergence is linear and homogeneous, it may be solved by separation of variables. It is interesting to note that Legendre’s equation is obtained from the offset point mass given in Eq. (2.11). The solution for the potential is given by 





∞

 n

 r



 o

 n

 U =  μ C 00 +

 P m

 r

 r

 n ( sin  φ)[ Cnm  cos  mλ +  Snm  sin  mλ]

 n=1

 m=0

(2.16) 

The acceleration is obtained by taking the gradient of U, which involves the first derivatives of Legendre polynomials that are generally obtained by recursion relationships. An explicit formula for the Legendre polynomials and associated functions that does not involve recursion relationships is given by Heiskanen and Moritz. For orbit determination, the partial derivatives of acceleration with respect to state and gravity coefficients are needed for the variational equations. These partials are difficult to derive because they involve the second derivatives of Legendre polynomials and transformations back and forth between spherical and Cartesian coordinates. 
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 2.5.2  Point  Mass  Model 

The next gravity model to be considered is the point mass model. In Europe, this model is called the punctual model. In German, punc means point as we know from the radios in Mercedes Benz manufactured by Blau Punc (blue dot). Equation (2.9) may be modified by replacing the spherical volume element with the Cartesian volume element: 

∞



r

A =

 i − r

 G

 ρi

 dxdydz

(2.17) 

|r i − r|3

 i=0

On a computer, the body is divided into a large number of cubes or parallelepipeds that define each volume element of size dx by dy by dz. The volume elements do not have to be of the same size, but they must sum to the correct volume. No overlapping is allowed. An easy way to do this summing on a computer is to circumscribe the body with a parallelepiped and then use a triple do loop to access all the volume elements of the parallelepiped. Volume elements outside the body are discarded or assigned a density of zero. This is the same technique used by Michelangelo. He simply procured a large block of marble and chipped away the part that wasn’t David. Each volume element is assigned a density. One way of determining  ρ  is to compute the density as a function of latitude and longitude from the above harmonic expansion. The density would thus be constant along any radius vector. This is the density distribution that will be exploited by a later gravity model. 

The point mass model is singular when r − r i  is equal to zero. This singularity can only occur when the point where the gravitational acceleration is being computed ( r) is below the surface of the body. Of course, the actual acceleration cannot reach infinity, because there is no such thing as infinite density. When r is inside a mass element, the mass element can be replaced with a sphere of equal volume and density. The geometry is illustrated in Fig. 2.2. The radius of the sphere is given by 



1

3  dx dy dz  3

 Ro =

4 π

The acceleration inside a sphere is zero at the center of gravity, and the magnitude is linear from the center to the surface where the acceleration is  Gm  over  R 2 o.  The acceleration inside a little cave inside the mass element is simply

4 π

a i =  G

 ρi(r i − r )

3
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Fig.  2.2  Internal mass 

element model 

r′ – ri 

Ro 

dx 

 2.5.3  Pyramid  Model 

The pyramid model was designed by the author to overcome the deficiencies of the point mass model and the harmonic expansion model when the spacecraft is near the surface of a body. The name of this model has evolved over the years and the most recent name describes the shape of the volume elements. The accuracy of a gravity model is dependent on the number of volume surface elements. As the number of elements approach infinity, all the gravity models described here are exact. In general, gravity models that involve surface integration are more accurate than those that require volume integration. The interior volume elements are far from the region of space where the spacecraft is located. The harmonic expansion model involves a surface integral over the unit sphere and diverges when the radius vector of the spacecraft is inside the sphere that contains all the mass of the central body. The pyramid model performs an exact integration for each volume element over the surface of the body. The integration error may be separated into two components associated with the shape of the body and the variation in density. Since the shape component of the error generally dominates, the harmonic expansion model must resolve the shape and separate this error from variations in density. The pyramid model solves for shape gravity directly, and the only error is associated with variations in density, which may be accommodated by solving for a separate density for each volume element. It will be shown below that the internal mass distribution for the pyramid model is unrelated to the actual mass distribution. Some of the volume elements may have negative mass. This is not a problem because we are only interested in the external gravitational acceleration. The internal mass distribution cannot be determined by external measurement except for a few limiting cases such near constant density. 

The volume element consists of a pyramidal shape with the base defined by a curvilinear rectangle on the surface of a body, and the apex of the pyramid is at the
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center of the body. All three of these models are exact in the limit as the number of parameters that describe the model goes to infinity. The computer time or the number of computations for each point is roughly the same for all three models with the same resolution. The resolution is related to the number of parameters. The point mass model is compromised by the number of volume elements near the center of the body that contribute little to the acceleration. The harmonic expansion model is compromised by the need to determine the shape dependence in three dimensions. 

The pyramid model explicitly acknowledges the shape as does the point mass model, but only solves for the density of each pyramid. The density is thus modeled in two dimensions over the surface of the body. By removing the shape dependence, the pyramid model only has to model the density variation over the body, which is assumed to have much less variability than the shape. For a given resolution, it is expected that the pyramid model will be most accurate compared to the point mass or harmonic expansion models. 

The acceleration of a point mass or spacecraft is determined by summing or integrating the acceleration contribution of each mass element ( dm) in a gravitationally attractive body. The mass of the spacecraft is assumed to be too small to affect the gravity field of the attractive body. The geometry is illustrated in Fig. 2.1.  The acceleration  i s



r − r

A =  G

 dm

(2.18) 

 V |r − r|3

 dm =  ρ r 2 cos  φ dr dφ dλ

where   V  denotes the irregularly shaped body. The vector r is from the center of the coordinate system to the mass element and the vector r is to the spacecraft. 

The density  ρ  is defined by an expansion of Legendre polynomials and associated functions as defined by Eq. (2.10). The components of the vectors r and  r in Cartesian coordinates are 

r =  (r  cos  λ  cos  φ, r  sin  λ  cos  φ, r  sin  φ) r =  (x , y , z )

Substituting the vector components into Eq. (2.18)   give  s (r  cos  λ  cos  φ −  x , r  sin  λ  cos  φ −  y , r  sin  φ −  z ) A =  G



 dm

3

 V

 (r  cos  λ  cos  φ −  x ) 2 +  (r  sin  λ  cos  φ −  y ) 2 +  (r  sin  φ −  z ) 2 2

(2.19) 

Before integrating with respect to  r, a rotation of coordinates is defined that will simplify the integrand. The  y 2 axis is in the direction of the spacecraft. The  z 2 axis is perpendicular to the plane containing the spacecraft and mass element. The  x 2

axis is in the plane defined by the spacecraft and mass element. See Fig. 2.1:
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The transformation matrix (T) rows contain unit vectors in the direction of the  x 2 , y 2 and   z 2 coordinates. The cross products make the coordinate axes perpendicular to each other: 
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The coordinates of the spacecraft r and a mass element r

2

2 in the rotated 

coordinate system are 

r =

2

 ( 0 , r ,  0 )

r2 =  (r  cos  θ, r  sin  θ,  0 )





r · r

 θ = 90 − cos−1

 rr

and 



[ r  cos  θ, r  sin  θ −  r ,  0] T

A =  G

 T T 

 dm

3

 V

 (r 2 cos2  θ +  (r  sin  θ −  r ) 2 2

Replacing the mass element ( dm) with  ρ r 2 cos  φdrdφdλ  gives R [cos  θ,  sin  θ −  r  ,  0] T

A =  G

 ρ T T

 r



 dr  cos  φ dφ dλ

3

 S

0

2

 ( cos2  θ +  ( sin  θ −  r  ) 2

 r

where   R  is the radius of the body as a function o f  λ  and   φ. The density (  ρ) and coordinate transformation ( T ) factor out of the  r  integration since they are only a function of latitude and longitude. Performing the  r  integration gives
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⎡

⎤

 a 2 x(R) −  a 2 x( 0 )

A =  G

 ρ T T ⎣  a

⎦

2 y (R) −  a 2 y ( 0 )

cos  φ dφ dλ

(2.20) 

 S

0

 a 2 x(r) =  r 2 cos2  θ +  r sin2  θ(r  sin  θ −  r ) + cos2  θ( 2 r 2 − 5 rr sin  θ) cos  θ

 r 2 +  r 2 − 2 rr sin  θ







+ 3 cos  θ  sin  θr ln 2 r − 2 r sin  θ + 2  r 2 +  r 2 − 2 rr sin  θ

 a 2 y(r) =  rr cos2  θ +  r 2 sin  θ − 5 rr sin  θ 2 + 3 r 2 sin  θ

 r 2 + r 2 −2 rr sin θ







−  r ( 1 − 3 sin2  θ)  ln 2 r − 2 r sin  θ + 2  r 2 +  r 2 − 2 rr sin  θ

 a 2 z = 0

The gravitational acceleration computed assuming constant density will generally not yield sufficient accuracy for navigation of a spacecraft. Therefore, the density is varied as a function of latitude and longitude. The density is assumed to be uniform from the surface to the center of mass of the body. This assumption enables the density to be factored out of the r integration, simplifying the mathematics. The resultant mass distribution does not model reality inside the body, but provides an exact model of the external gravity field. The integral given in Eq. (2.20) may be evaluated by tiling the unit sphere with area patches that are nearly square and sum to exactly 4  π  over the unit sphere. The total acceleration is obtained by evaluating the integrand of Eq. (2.20) at the center of each area patch, multiplying by the area and summing over all the area patches. Observe that the shape of the body ( R) enters explicitly through the limit of integration with respect to  r. The shape of the object may be obtained from a shape model or input directly from a table of radii as a function of latitude and longitude. The surface integral is not over the surface of the body, but rather over the unit sphere. The integration is performed by an algorithm developed for integration over the actual surface of a body, and this algorithm is described below under Shape Model Gravity. 

 2.5.4  Polyhedral  Model 

The concept behind a polyhedral model is to pack polyhedrons inside a body and sum the gravitational acceleration from each polyhedron. An easy way to do this is to fill the body with cubes or parallelepipeds. This approach works fine for uniform density, provided the cubes are small enough such that the error resulting from the
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cubes overlapping the surface of the body is small. Another approach that may be tried is to partition the equatorial plane into small squares and stack long thin parallelepipeds on the equatorial plane that reach the surface. A variable density may be accommodated by assigning a different density to each column or parallelepiped. 

This approach will not work because a sphere with a density gradient along the column length will always have the center of gravity on the equatorial plane because each column has uniform density and the columns are parallel to each other. 

Another approach that does work is to pack tetrahedrons into the body. If the surface is defined by a triangular plate model, the base of the tetrahedron is on the surface and the apex is at the center of the reference coordinate system, which is usually the center of mass. For a parallelepiped shape of the body, the body can be filled with 12 tetrahedrons by passing a diagonal through each of the six faces. 

This polyhedron model was implemented by Werner, and numerical comparisons with other models indicate that this model is exact for constant density. If the triangles are made small enough and the apex of all the polyhedra are at the center, this model would look like the pyramid model described above. Variable density could probably be accommodated by assigning density as a function of latitude and longitude as was done for the pyramid model. Since Werner’s polyhedral model is exact for large tetrahedra, the final triangularly shaped model is exact. The pyramid model requires thousands of area patches to achieve the same accuracy, but has other advantages when applied to the problem of orbit determination. The problem of variable density requires a large number of tetrahedrons and the pyramid model probably requires less computation per tetrahedron. 

 2.5.5  Mass  Distribution  of  an  Irregularly  Shaped  Body 

A cross section of the pyramid gravity model is shown in Fig. 2.3. The cross section of Eros is used as an example viewed looking down on the North Pole with longitude measured counterclockwise, or East, from the  x  axis. The cross-hatched segments have uniform density from the surface defined by latitude and longitude to the center of mass. Each cross-hatched segment may have a different density. In three dimensions, the cross-hatched segments are actually pyramids with the apex at the center of figure and the base defined by rectangular patches whose sides are delimited by latitude and longitude. In the limit as the size of the area patches approaches zero, the gravity potential on the surface is exact. If the surface gravity potential is exact, the resulting external gravity field in vacuum is exact. The internal mass distribution is of little interest for navigation since there is an infinity of mass distributions that will yield the same external field. The mass distribution of the pyramid model is selected because it is mathematically conv enient. 

Since any object may be replaced by an infinite cluster of point masses, verifying the pyramid model for a single point mass verifies the model for the object. The acceleration of a spacecraft that is outside the body is simply the sum of the accelerations from all the point masses. The geometry is illustrated in Fig. 2.4.  The
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Fig.  2.3  Irregular body cross section 
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Fig.  2.4  Surface density of point mass
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mass distribution is computed for two bodies. One has the shape of the asteroid Eros and the other is a sphere. Imagine the two bodies are composed of a massless surface shell filled with cotton candy and a small lump of uranium hidden inside. The object is to compute a density distribution for the interior of the body that will have the same external gravity field as the lump of uranium. Another sphere is defined that circumscribes the bodies, and the acceleration of the point mass is computed at sample points that cover the larger sphere. A typical sample point is shown in the figure. The pyramid model acceleration is also computed for each sample point. As a first guess, the bodies are assumed to have uniform density and the mass is the same as the point mass. The magnitude of the acceleration is computed for the point mass and the body of interest. Using a square root information filter, a least squares solution is obtained for the density harmonic coefficients that give the magnitude of the acceleration of a spacecraft at the sample point. If the acceleration magnitudes of the point mass and gravity model are equal on the sampled sphere, the gradient of the potential is equal and a solution is obtained for the density harmonic coefficients. 

The observable used for obtaining a solution for the density harmonic coefficients is defined by 

 a 2 =  a 2 +

+

 x

 a 2 y

 a 2 z

and the required partial derivatives are 
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The above partial derivatives and the difference between the observed acceleration and computed acceleration are packed into a square root information matrix, which is inverted after all the sample points have been processed to obtain the solution for the density harmonic coefficients. 

[image: Image 12]
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Fig.  2.5  Surface density on sphere from point mass 

A simple test to verify the pyramid theory involves computing the pyramid distribution for a point mass offset from the center of the coordinate system on the surface of a sphere. The point mass is located at 10 ◦ longitude, 10 ◦ latitude, and 6 km from the center of the sphere. The radius of the sphere is 8.43259 km, which is sized to equal the volume of Eros. The geometry is illustrated in Fig. 2.4. Accelerations 

of a spacecraft from the point mass and the pyramid model are computed at various sample points that cover a sphere of radius 18 km. A plot of the surface density is shown in Fig. 2.5  for the sphere. Since the gravity field is spherically symmetrical about the point mass, one would expect the contours of constant density on the sphere to be circles centered at the point on the surface of the sphere closest to the point mass. Figure 2.5  shows the maximum density at 10 ◦ latitude and 10 ◦

longitude, and the contours of constant density are circles with a minimum density of 180 ◦ from the maximum density. The spacecraft acceleration from the pyramid model and point mass are equal to very high precision. 

 2.5.6  Pyramid  Gravity  Model  Comparison  with  Eros  Harmonic 

 Model 

A comparison of the pyramid model with the gravity of Eros may be obtained by processing real data from an orbiting spacecraft in an orbit determination program. 

A high-quality set of data is available for the NEAR spacecraft orbiting the asteroid Eros. For 1 month, the spacecraft was in a 25 km polar orbit and nearly continuous Doppler data was obtained. Processing this data with the pyramid gravity model would require some modification of existing orbit determination software. However, we have a harmonic expansion of the gravity field obtained during Eros flight operations. This harmonic expansion closely replicated an independent gravity model obtained by integrating a laser altimetry-derived shape model over the surface

[image: Image 13]
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Fig.  2.6  Surface density of Eros from harmonic expansion 

assuming constant density. This verification of the pyramid gravity model for constant density provided confidence in its use for Eros landing. 

As a substitute for real data, the Eros harmonic expansion was used to compute acceleration at sample points on the 18 km sphere defined above. These acceleration data points were processed in a square root information filter to obtain surface density harmonic coefficients. Figure 2.6  shows the result of this simulation and provides insight into the possible nonuniformity of the Eros mass distribution. 

Inspection of Fig. 2.6  indicates that a large object may be buried at 260 ◦ longitude and 0 ◦ latitude. This conclusion is a bit premature since further analysis indicated that the Eros shape model is shifted about 100 m along the  y  axis. This apparent discrepancy was also observed when comparing the LIDAR shape model with the optical shape model derived independently by Peter Thomas. It should also be noted that this discrepancy is small compared to the mean density of Eros and did not affect the Eros landing trajectory . 

 2.5.7  Comparison  of  Gravity  Model  Mass  Distributions 

A mass distribution is defined for a parallelepiped or brick that encloses the asteroid Eros. Recall that the Eros mass model is defined by discarding mass elements from the parallelepiped that are outside the surface of Eros. The density is scaled such that the mass of the brick is equal to the mass of Eros. As a result, the mean density of the brick is less than the mean density of Eros. The brick is 32 km long, 18.48 km wide, and 11.28 km high. The density varies from 10% below the mean density at the bottom or South Pole to 10% above the mean density at the top or North Pole. 

The brick and Eros are thus layered with layers of constant density parallel to the equatorial plane. 
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Layered Parallelepiped Cross Section

Pyramid Model Cross Section 

Fig.  2.7  Parallelepiped and pyramid gravity model mass distributions A gravity field is computed for the brick, the cross section shown on the left side of Fig. 2.7, using the point mass model. The gravitational acceleration is computed from the point mass model as a function of latitude and longitude distributed over a sphere of radius 18 km. At each latitude and longitude, the acceleration is also computed on the surface. These accelerations are treated as measurements and packed into a Square Root Information Filter (SRIF) modified to provide a simple least squares solution. The SRIF matrix is inverted to determine the coefficients of Legendre polynomials and associated functions that define the density of the pyramid gravity model as a function of latitude and longitude. A cross section of the pyramid model through the center of the coordinate system is shown on the right side of Fig. 2.7. Because of symmetry, all cross sections through the center will look the same. 

The equal sign between the layered parallelepiped on the left and the radially distributed density on the right indicates that the external gravity fields of these two parallelepipeds are the same. This counterintuitive result suggests that attempts to determine the internal structure of planets or asteroids or the Moon by gravity measurements are highly suspicious. The first-degree coefficients of a harmonic expansion provide the location of the center of mass, which gives some insight into mass distribution. The second-degree coefficients give the ratios of inertia tensor elements and provides additional insight into mass distribution. However, a key piece of information, namely, the trace of the inertia tensor, is missing from gravity measurements. The trace can be determined by observation of non-principal axis rotation as was attempted on the NEAR mission. Unfortunately, Eros and most other bodies are nearly in principal axis rotation. Direct comparison of the gravity coefficients determined by orbit determination tracking measurements and computed from a shape model from laser altimetry measurements revealed that the harmonic coefficients through degree six were very nearly the same. This result indicated that Eros was very nearly constant density and provided a valuable set of coefficients that were used as a priori for subsequent orbit solutions. 
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In the above discussion, the gravity fields of two bodies were computed using different gravity models. The pyramid model uses a universal mass distribution that will produce the same gravity field as for any actual mass distribution. This property of the pyramid model enables the production of two bodies with radically different internal mass distributions that have the same gravity field outside the bodies. With a 3D printer, one can actually go down into his or her basement and manufacture these bodies. However, it is easier to do this on a computer. We select the parallelepiped shape for a numerical demonstration. Eros shape models may not be readily available for those who may want to repeat this demonstration. The shape has a Cartesian coordinate system centered at the geometric center with the  x axis along the length from − 16 km to + 16 km, the  y  axis along the width from

−9 .  24 km to +9 .  24 km, and the   z  axis along the height from −5 .  64 km to +5 .  64 km. 

The total acceleration is obtained by summing the acceleration associated with each mass element given by 



r

A

 i − r

 i =  Gρavg vi

1 +  riz δρ

 rmaxz

|r i − r|3

The average density times  G  is  Gρavg = 6 .  5826 × 10−8, the volume of the mass element is  vi,  the   z  component of the mass element is  riz, the maximum z  component is  rmaxz = 5 .  64 km, and the density variation is  δρ = 0 .  1.  The volume of the parallelepiped is 6670.54 km3 and thus the GM of the body is GM =  Gρavg × 6 ,  670 .  54 = 4 .  3909 × 10−4 km3 / s2, which is the GM of Eros. 

For a parallelepiped divided into 200 × 100 × 75 = 1 ,  500 ,  000 mass elements, the volume of each mass element is  vi = 4 .  447 × 10−3 km3. 

For the second mass distribution, the same point mass model is used to compute the gravity, and the density distribution is computed from the expansion of Legendre polynomials and associated functions determined by the pyramid model. The acceleration is thus given by 
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The harmonic coefficients,  Anm  and  Bnm, are given in Table 2.2  through degree and order eight. Observe that the  A 00 term is  G  times the average density. When
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Table  2.2  Parallelepiped density harmonic coefficients 

(  A 00,  A 10,  A 11,  B 11,  A 20,  A 21,  B 21,  A 22,  B 22,  A 30,  A 31,  B 31,  A 32,  B 32,  A 33,  B 33 . . . etc.) 0.658265973900E −07

0.660720233674E −08

−0.779867085511E −10 

0.212388242741E −22

−0.151579376268E −08

−0.450982091412E −12 

0.555639014698E −23

−0.411934242871E −10

0.129182618080E −21 

−0.364695372383E −08

−0.203512661705E −10

0.135078016923E −21 

0.321466291566E −10

0.312979239778E −23

−0.116230925885E −11 

0.157561296958E −22

−0.110879480257E −08

0.129465197091E −10 

0.472975961526E −23

−0.294043480993E −11

−0.196546663309E −22 

0.235272811137E −12

0.145599936330E −24

−0.496066386625E −12 

−0.902867414825E −24

0.187235254050E −08

0.147796807825E −09 

−0.748099227192E −22

−0.423378561105E −10

0.419822755398E −23 

0.193361024420E −11

−0.470897875576E −23

−0.516303300732E −12 

−0.698072254907E −25

0.745249490765E −13

−0.225316550913E −24 

−0.504789625229E −09

0.172303293625E −10

0.297868751580E −23 

0.195809393852E −11

−0.251065455280E −24

0.844796754753E −13 

0.382935536118E −24

0.112830176929E −12

−0.256321277641E −24 

0.137770067101E −14

−0.335817455339E −26

−0.377210797641E −14 

−0.465770042459E −25

−0.268693316937E −09

0.786244282014E −10 

0.190764832302E −22

0.438489664560E −10

0.201032828152E −23 

−0.472226576246E −12

0.259427484565E −23

0.145826475100E −12 

−0.309818128674E −25

−0.137045977460E −14

−0.606074934602E −26 

−0.574898109647E −14

−0.778573660526E −27

0.118687218488E −14 

−0.284595338760E −26

0.197674010708E −09

0.843894925391E −11 

0.198244020084E −22

−0.101091521006E −11

−0.535960543951E −23 

0.396992597132E −13

0.284556241654E −24

0.427821465123E −13 

0.124788700925E −24

0.126538426055E −15

−0.173945340793E −26 

0.345446641488E −15

0.334583981692E −26

0.750967584162E −17 

−0.112491457849E −27

0.457906376166E −16

−0.776957252054E −28 

multiplied by the volume of the parallelepiped, the GM of the parallelepiped is obtained, 4 .  3909×10−4km3 / s2, which is the same as for Eros. The assumed density of the parallelepiped was scaled to give this result. For any position vector (  r), the computed accelerations from the two mass distributions are equal. 

 2.5.8  Comparison  of  Density  Distributions  for  Eros-Shaped 

 Gravity  Models 

The density of the asteroid Eros is assumed to be uniform as a comparison of shape-derived gravity harmonic coefficients with tracking data gravity harmonic coefficients indicate. They are essentially the same. If a layered mass distribution

[image: Image 14]
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Fig.  2.8  Assumed Eros surface density 

is imposed on Eros where the density uniformly varies from 10% below the mean at the South Pole to 10% above the mean at the North Pole, the resultant surface density is shown in Fig. 2.8. The contour plot makes it difficult to discern the geometry. A cross section parallel to the x-z plane or y-z plane would show horizontal lines, and a cross section parallel to the x-y plane would show constant density. The density harmonic coefficients for the pyramid model are computed as described above for the parallelepiped. 

Figure  2.9  shows the density distribution of the modified Eros for the pyramid gravity model. Recall that for the pyramid model, the density is uniform from the surface to the center of Eros. The apparent mass concentrations do not exist. 

They are artifacts of the gravity modeling. Figure 2.8  is the assumed actual mass distribution. For extreme mass distributions, the modeled density may be negative. 

This is not a problem. If we constructed an Eros with a mass distribution indicated by the pyramid model, the external gravity field would be the same as for the real Eros. If the density is negative, we simply fill those places with some antimatter. 

The pyramid model makes no assumption about the actual mass distribution. 

 2.5.9  Comparison  of  Gravity  Model  Accelerations 

The output from the various gravity models of real interest is the acceleration of a point mass above the surface of the body. Contours of constant acceleration or potential are often plotted as a function of latitude and longitude. For this

[image: Image 15]
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Fig.  2.9  Eros surface density-pyramid gravity model 

comparison, the models are high precision and contour plot comparisons would not be meaningful. The acceleration of most interest is at the NEAR landing site since a spacecraft was actually there and a great deal of high-quality data was obtained. In Fig. 2.10, the magnitude of the acceleration is displayed as a function of radial distance from the center of Eros. The model of Eros includes the 20% 

variation in density from the South Pole to the North Pole. The radial line segment passes through the NEAR landing site and extends to 30 km. The total acceleration is computed from the pyramid gravity model, which was selected as an arbitrary reference. The landing site radius and sphere of maximum radius are also shown in the figure. An interesting result is that the peak acceleration occurs about a kilometer above the landing site. At the landing site, the gravitational acceleration from the ends of Eros tend to cancel each other. Inside Eros, the acceleration magnitude is nearly linear. It is linear for a sphere. Inside Eros, the acceleration is really the acceleration of an object in a small cave or mine and is not related to the pressure of the compressed body. The differences between other model accelerations and the pyramid model are shown in Fig. 2.10  and the differences are small and can be easily explained. 

Figure  2.11  shows the bottom part of Fig. 2.10  with the scale expanded by a factor of 10. Plotted is the difference between the pyramid model and other models as labeled. The curve labeled harmonic expansion represents the error in the harmonic expansion model obtained on the NEAR mission. The error increases dramatically as the spacecraft moves inside the sphere of maximum radius. During the NEAR mission, the spacecraft entered this region only once on landing. For orbit determination, the harmonic expansion error is significant out to 30 km, which is not

[image: Image 16]
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Fig.  2.10  Eros acceleration magnitude as a function of radial distance 6 x 10–7 
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Fig.  2.11  Eros acceleration magnitude model errors 

obvious from the figure. Orbit determination is sensitive to acceleration errors down to 10−12 km/s2. The curve labeled constant density was obtained from Werner’s polyhedral model. This difference may be completely attributed to the assumption of constant density and vanishes if the density of Eros is assumed to be uniform. 

The point mass curve matches the pyramid model down to a kilometer above the surface. Here the resolution of the pyramid model or the number of mass elements

2.5 Gravity Models

75

in the point mass model introduces error. If the resolution of the pyramid model and point mass model is increased, this difference vanishes. Inside Eros, the problem is magnified. A random error associated with the mass element that contains the point where the acceleration is being determined is introduced, depending on how far the evaluation point is from the center of the mass element. If we are unlucky and we hit the exact center, the error can go to infinity. This error source may be ameliorated by assuming a spherical mass distribution for this mass element. 

 2.5.10  Comparison  of  Gravity  Model  Accuracy  and 

 Computational  Speed 

The harmonic expansion model used for NEAR navigation operations about the asteroid Eros was sufficiently accurate for orbital operations down to 25 km radial distance from Eros. The time to make an orbit determination run, map the solution to 10 days in the future, and compute maneuvers could be about 20 min if time critical. 

Since the round-trip light time was about 40 min and several days were allocated for navigation operations, computer run time was not a major consideration. For time critical missions, ground-based navigation operations cannot be performed faster than the round-trip light time, so 20 min for an orbit determination run is a good target for program design. During NEAR operations, a 12 ◦ and order harmonic expansion was used. This involved solving for 169 harmonic coefficients every 10 days and provided about 20 

◦ resolution. The pyramid model and Werner’s 

polyhedral model were used for computing the landing trajectory. The shape model had 7700 triangular plates, which provided about 5 ◦ resolution. This was more than adequate for propagating trajectories, but would not have sufficed for orbit determination if the spacecraft were tracked inside the sphere of maximum radius. 

There was no orbit determination below 25 km radius. Future missions could require orbit determination at altitudes around 5 km, which would require about 1 ◦ resolution for the gravity model. 

The harmonic expansion model clearly would not be satisfactory for close orbital operations around a small body. One-degree resolution would require a 200 ◦

and order harmonic expansion involving about 40,000 coefficients. A 40,000 by 40,000 matrix would have to be inverted. The computer run time would also be prohibitive. The point mass model would require about eight million mass elements and eight million acceleration computations for each total acceleration to achieve 1 ◦

resolution. The computer run time would be prohibitive. However, the point mass model is useful as a research tool because it is simple to implement and is exact both inside and outside the body. Polyhedral models are exact for any polyhedron shape that assumes constant density such as the triangular plate model used for NEAR 

operations. However, for variable density and 1 ◦ resolution, about 40,000 polyhedra would be required. A seamless transition in resolution would require changing the number of polyhedra and would be difficult to implement in computer code. 
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The pyramid model appears to be the best option for satisfying all accuracy and speed requirements. The resolution of the surface integration increases as the square of the number of function evaluations, while the resolution of the point mass model increases as the cube. The number of computations required for one area patch is probably considerably less than required for one polyhedron. The polyhedron model computes an exact acceleration for every polyhedron. The base and edges require considerable computation and thus limit the polyhedral model to about 10,000 polyhedra. The pyramid model uses an approximation for each area patch and is exact only in the limit as the number of area patches approaches infinity. The pyramid model can be thought of as a porcupine quill model. A quill pierces the center of each area patch and has a cross-sectional area proportional to the square of the radius. The mass per unit length of the quill increases as the square of the distance from the center. The mean value theorem gives a good approximation of the integrand over the integration interval, but is exact only in the limit. Recall that π  is also not exact on a computer and is only known to several hundred decimal places. Several hundred is a long way from infinity. Therefore, any mathematical equation becomes an approximation on a computer. 

Another consideration related to computational speed is the ability to vary the resolution or accuracy of the gravity model as a function of the accuracy needed. 

For example, numerical integrators used for trajectory propagation vary the step size depending on the acceleration. Near a gravitating body where the trajectory curvature is great, the integration step size is reduced to minutes or hours. Far from a gravitating body, where the spacecraft moves in nearly a straight line, the step size may be several days. The pyramid model permits a simple adjustment of accuracy and computational speed by changing the size of the surface integration area patches. A similar adjustment of speed and accuracy for the polyhedral model could be achieved by increasing the number of triangles that comprise the shape model. A simple way to do this is to add additional vertices at the centroid of each triangle and thus replace each triangle with three smaller triangles. 

A further consideration related to complexity and therefore computational speed is the need to compute variational partial derivatives for orbit determination. The partial derivatives of acceleration with respect to density harmonic coefficients and spacecraft position are needed. Consider that the exact solution for the potential of a parallelepiped requires about one page of Fortran code, and there probably is not a more efficient language than Fortran for this application. The acceleration requires an additional differentiation of this potential function with respect to each coordinate axis and results in several pages of Fortran code. The variational partial derivatives would require many more pages of Fortran code. The variational partial derivatives for the harmonic expansion model have been derived and are available in computer code, either Fortran or C. This code could be modified to provide variational partial derivatives for the pyramid model. This job is much easier because the pyramid model does not require a potential function to be determined. 
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 2.5.11  Gravitational  Variational  Equations 

For orbit determination, the partial derivatives of acceleration with respect to the dynamic parameters are required. Recall that the translational variational equations are obtained by integrating 

 ∂A =  ∂A  ∂r +  ∂A  ∂v +  ∂A|r , v constant

 ∂q

 ∂r  ∂q

 ∂v  ∂q

 ∂q

Consider the following subset of constant dynamic parameters that pertain to specific columns of the above matrix: 

 q =  (r0 , v0 , Cn,m, Sn,m)

The gravitational variational equations are 

 ∂A =  ∂A  ∂Ab (x,y,z) ∂A b(r,λ,φ) ∂r b(r,λ,φ) ∂r b

 ∂r

 ∂Ab  ∂A b(r, λ, φ) ∂r b(r, λ, φ) ∂r b(x, y, z) ∂r

 ∂A = 0

 ∂v

 ∂A

=  ∂A  ∂Ab (x, y, z) ∂A b(r, λ, φ)

 ∂(Cnm, Snm)

 ∂Ab  ∂A b(r, λ, φ) ∂(Cnm, Snm)

The  ∂r b

 ∂r

is simply the orthogonal transformation matrix from inertial EME 

J2000 coordinates to body fixed coordinates from the Rotational Equations of Motion described in Chap. 1.  The  ∂A is simply the inverse of this transformation 

 ∂Ab

and transforms acceleration from body fixed to inertial coordinates. Similarly, the matrices  ∂r b(r,λ,φ)  and  ∂Ab (x,y,z)  transform from Cartesian to spherical coordinates 

 ∂r b(x,y,z)

 ∂A b(r,λ,φ)

and back from spherical coordinates to Cartesian coordinates. 

The  ∂A b(r,λ,φ)  is dependent on the particular gravity model whose partial 

 ∂r b(r,λ,φ)

derivatives are being computed. For the harmonic expansion model, we have 

⎡

⎤

 ∂∇ U

⎢

 ∂r

⎢

⎥

⎥

 ∂A b(r, λ, φ) =  ∂∇ U

= ⎢

⎢

1

∇ U ⎥

⎥

 ∂r

 r  cos (φ) ∂λ

 b(r, λ, φ)

 ∂r b(r, λ, φ)

⎢

⎣

⎥

⎦

1 ∇ U

 r ∂φ

2.6  Shape  Model 

The shape of an asteroid or comet nucleus may be determined by optical observation of landmarks and laser altimetry measurements. Optical observations must be stereoscopic, which is achieved by imaging landmarks from different points in the

[image: Image 18]
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spacecraft orbit around the body. Laser altimetry determines the distance from the spacecraft to the surface by measuring the round-trip light time. From the attitude control system pointing angles, a vector may be determined that goes from the spacecraft to a point on the surface of the body. The vector from the center of the body to a point on the surface may be determined by simply adding the spacecraft position vector to the laser altimetry vector. 

 2.6.1  Triangular  Plate  Model 

The vectors from the center of mass of the body to the surface are called vertices. 

A shape model may be determined by fitting a surface to these vertices. A simple way to do this is to connect a mosaic of polygons to the vertices. This process is called tessellation. A convenient way to do this is with rectangles. The problem with rectangles, or any polygon with more than three sides, is that the vertices are not in the same plane and the volume, moments of inertia, and gravity model parameters computed from the shape model are not exact. For this reason, a triangular plate model is used for navigation. Figure 2.12  shows a triangular plate model in the shape of the asteroid Eros. 

This triangular plate model has 3872 vertices and 7740 plates. The vertices are numbered and written to a file. The plates are also written to the same file and are defined by three integer vertex numbers. An interesting relationship, determined by Euler and probably many mathematicians from antiquity, relates the number of plates ( p) and edges ( e) to the number of vertices ( v): Fig.  2.12  Eros shape model
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 p = 2 v − 4  (v >  3 )

 e = 3 v − 6  (v >  3 )

A triangular shape model can be designed to accurately represent any shape provided the triangles are small enough. Consider a cube or a parallelepiped. A triangular shape model can be obtained by passing a diagonal through each face. 

Since there are six faces, the triangular shape model has 12 plates. The number of vertices is eight, which is the same as for the cube. The number of edges is 18, 12 

for the cube plus 6 for the diagonals that were added. Thus, the formulas work for a cube or parallelepiped. The resolution of the triangular plate model is inversely proportional to the number of plates. One-degree resolution would require 41,253 

plates. Therefore, the resolution of the shape model shown in Fig. 2.12  is about 41253/ p  or 5.33◦. 

 2.6.2  Harmonic  Expansion  Shape  Model 

The triangular plate model is useful for creating images and precision analysis of inertial properties, but is not amenable to use for orbit determination. There are too many parameters for an orbit determination filter to assimilate. A more convenient surface can be defined by an expansion of Legendre polynomials and associated functions: 

∞

 n



 R =

 P m

 n ( sin  φ)[ Anm  cos  mλ +  Bnm  sin  mλ]

(2.22) 

 n=0  m=0

R is the radius of a point on the surface at longitude  λ  and latitude  φ. The harmonic coefficients are obtained by integrating over the unit sphere: 



 Anm =

 P m

 n ( sin  φ)  cos  (mλ) R d λ d φ

 S



 Bnm =

 P m

 n ( sin  φ)  sin  (mλ) R d λ d φ

 S

The integration is performed on a computer using an algorithm developed for determining the outgassing acceleration of a spacecraft near a comet. The surface integral is not over the surface of a body, but rather over the unit sphere. This algorithm is also used to determine gravity harmonic coefficients of an irregularly shaped body and other applications that require surface integration. The idea behind this surface integration algorithm is to first cover the surface of the unit sphere with area patches whose sides are great circle lines of constant longitude or small circle lines of constant latitude. An exact tiling of the unit sphere is given by a soccer

[image: Image 19]
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ball, which is a dodecahedron projected onto a sphere. It is not possible to tile a unit sphere with small spherical rectangles or other polygons with more sides than the dodecahedron. We only need the area patches to have nearly the same area and sum to exactly 4 π . In the limit as the area patches approach zero, it is not necessary for the area patches to have the exact size and shape. The procedure used here is to divide the northern and southern hemispheres into bands defined by small circles of constant latitude, which define latitude bands. The width of the latitude bands determines the resolution. The latitude bands are divided into equal area patches as close to being square as possible. When we get to the poles, the small circle around the pole is divided into four equally shaped spherical triangles. For 1 ◦ resolution, there will be 41,253 area patches and they will sum to exactly 4 π . In the limit as the resolution goes to zero and the number of patches goes to infinity, we get an exact surface integral. The reader may be troubled by summing a bunch of area patches of different sizes and shapes and getting a result that is exact. The fundamental theorem of calculus does not require that the width of all integration intervals be the same. 

The only requirement is that the width of all the intervals approaches zero as the number of intervals approaches infinity. 

A spherical harmonic shape model for the asteroid Eros was obtained by integrating over the surface of the triangular plate model shown in Fig. 2.12. 

The degree and order of the expansion was 34. The resultant surface is shown in Fig. 2.13. The low degree and order coefficients were determined with high precision. Since orbit determination is most sensitive to coefficients below degree and order six, this model provided valuable a priori gravity harmonic coefficients during the NEAR mission. The higher degree and order coefficients tend to average out and do not contribute much to orbit determination accuracy. 

Fig.  2.13  Eros shape model (34 × 34 harmonic expansion)
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 2.6.3  Gravity  Harmonic  Expansion  from  Shape  Model 

The gravity field and inertial properties that are needed for analysis may be determined from the shape model of an irregularly shaped body. The volume, moments of inertia, and gravity harmonic coefficients are obtained by integrating over the volume of the body assuming constant density. It will be convenient to first determine the volume and center of mass of the body and then shift coordinates to the center of mass before determining the inertia tensor and gravity harmonics by another integration. Since the center of mass and inertia tensor place constraints on the gravity harmonic coefficients, these relationships may be used as a check on the numerical integration. 

The mass is first determined by integration over the volume of the body and is given by 



 M =

 ρ(r, λ, φ) dV

(2.23) 

 V

where   ρ  is the density and the surface  R  is defined by the f unction R =  f (λ, φ)

The volume integral may be performed numerically on a computer by dividing the body into a finite number of concentric shells and then by partitioning the outer surface of each shell into a finite number of area patches. The volume within a given shell that is under a given area patch comprises an individual volume element. The volume integral is obtained by simply summing the value of the function evaluated at the center of each volume element over all the volume elements. 

In order to obtain a reasonable accuracy, the body must be partitioned into a very large number of volume elements. For 1 ◦ resolution, each shell contains about 40,000 volume elements. With the assumption of uniform density, the number of function evaluations can be greatly reduced by extracting a spherical core from the center of the body and performing the volume integral from the outer surface of this core of radius  rc  to the surface of the body ( R). Thus, we have for the mass of the body 

 R

 M = 4  π ¯

 ρr 3 +

 ρ(r, λ, φ) dV

3

 c

 rc

 dV =  r 2 cos  φ drdλdφ

The amount of computation may also be reduced by performing the integration with respect to  r  analytically and then integrating over the unit sphere. Thus, we also have for the mass of the body
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 R 3

 M = ¯

 ρ

 d

(2.24) 

 S

3

 d = cos  φ dλ dφ

The center of mass is defined by the following three integrals: 



¯ x = 1

 x ρ(r, λ, φ) dV

 M

 V



¯ y = 1

 y ρ(r, λ, φ) dV

 M

 V



¯ z = 1

 z ρ(r, λ, φ) dV

(2.25) 

 M

 V

where 

 x =  r  cos  λ  cos  φ

 y =  r  sin  λ  cos  φ

 z =  r  sin  φ

For the case of constant density, we may perform the integration with respect to r  analytically as described above for the mass and we hav e



¯

¯

 ρ

 R 4

 x =

cos  λ  cos  φ

 d

 M

 S

4



¯

¯

 ρ

 R 4

 y =

sin  λ  cos  φ

 d

 M

 S

4



¯

¯

 ρ

 R 4

 z =

sin  φ

 d

 M

 S

4

The inertia tensor and gravity harmonic coefficients may be defined with respect to any origin. However, the dynamics of the translational and rotational motion of the body are best described with the origin at the center of mass. The true center of mass is the assumed center of the planetocentric coordinate system as determined by observation of spacecraft motion and the body translational and rotational dynamics. 

Thus, the center of mass determined directly from the figure of the body assuming constant density provides some insight as to the internal mass distribution. This interpretation of the data may be facilitated by transforming to the center of mass
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determined from the figure. The primed coordinates are defined with respect to the center of figure, and we have for the translation from planetocentric coordinates to figure centered coordinates 

 x =  r  cos  λ  cos  φ − ¯ x

 y =  r  sin  λ  cos  φ − ¯ y

 z =  r  sin  φ − ¯ z



 r =

 x 2 +  y 2 +  z 2

 φ = sin−1  z

 r

 λ = tan−1  y

 x

The elements of the inertia tensor with respect to the center of figure are defined by the following integrals: 



 Ixx =

 (y 2 +  z 2 ) ρ(r , λ , φ ) dV 

 V



 Iyy =

 (z 2 +  x 2 ) ρ(r , λ , φ ) dV 

 V



 Izz =

 (x 2 +  y 2 ) ρ(r , λ , φ ) dV 

 V



 Ixy = −

 x y  ρ(r , λ , φ ) dV 

 V



 Iyz = −

 y z  ρ(r , λ , φ ) dV 

 V



 Ixz = −

 x z  ρ(r , λ , φ ) dV 

 V

Performing the integration with respect to  r  analytically, we obtain R 5

 Ixx = ¯

 ρ

 ( sin  λ 2cos  φ 2 + sin  φ 2 )

 d

 S

5



 R 5

 Iyy = ¯

 ρ

 ( cos  λ 2cos  φ 2 + sin  φ 2 )

 d

 S

5
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 Izz = ¯

 ρ

cos   φ 2   R 5   d

 S

5 



 Ixy = ¯

 ρ

cos   φ 2  sin   λ cos   λ  R 5   d

 S

5 



 Iyz = ¯

 ρ

sin  λ sin   φ cos   φ  R 5   d

 S

5 



 Ixz = ¯

 ρ

cos   λ sin  φ cos  φ  R 5  d

 S

5

The unnormalized gravity harmonic coefficients are computed in a similar manner. The coefficient generating functions are given by the following volume integrals: 



 r  n

 Cn 0 = 1

 Pn( sin  φ ) ρ(r , λ , φ ) dV 

 M

 V 

 ro



 (n −  m)! 

 r  n

 Cnm = 2

 P m

 M (n +  m)! 

 n ( sin  φ )  cos  mλ  ρ (r  , λ , φ ) dV 

 V 

 ro



 (n −  m)! 

 r  n

 Snm = 2

 P m

 M (n +  m)! 

 n ( sin  φ )  sin  mλ  ρ (r  , λ , φ ) dV 

 V 

 ro

These volume integrals may also be converted to integrations over the unit sphere for the case of constant density by performing the  r  integration analytically:







¯ ρ

1

 R n+3

 Cn 0 =

 Pn( sin  φ ) d

 M

 n

 S  n + 3

 ro







 (n −  m)! 

1

 R n+3

 Cnm = 2 ¯

 ρ

 P m

 M (n +  m)! 

 n

 n ( sin  φ )  cos  mλ  d

 S  n + 3

 ro







 (n −  m)! 

1

 R n+3

 Snm = 2 ¯

 ρ

 P m

 M (n +  m)! 

 n

 n ( sin  φ )  sin  mλ  d

 S  n + 3

 ro

The second-degree gravity harmonics and elements of the inertia tensor share the same integrals and are thus not independent. The differences in the inertia tensor elements may be determined as a function of the second-degree gravity harmonics. 

Since there are five differences and six parameters, a third equation is needed. 

This third equation could be the trace of the inertia tensor, which would enable determining the inertia tensor and gravity harmonics as functions of each other and
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thus save six parameters that need to be estimated. Twelve parameters that are well understood would be replaced by six parameters that are not so well understood. 

A better approach is to estimate all 12 parameters and place an a priori constraint on the relationship between the parameters. This is accomplished by processing five dummy measurements with zero measurement error. The equations of constraint are Ixx −  Iyy = −4 Ma 2 C 22

 Iyy −  Izz =  Ma 2 (C 20 + 2 C 22 ) Izz −  Ixx = − Ma 2 (C 20 − 2 C 22 ) Ixy = −2 Ma 2 S 22

 Iyz = − Ma 2 S 21

 Ixz = − Ma 2 C 21

2.7  Comet  Atmosphere 

The comet nucleus is a source of a stream of dust and gas molecules that accelerate the spacecraft away from the nucleus. Although the actual size and mass of comets are generally unknown, most short-period comets considered for missions have estimated radii between 1 and 5 km. The solar radiation input to the surface of a comet nucleus heats an outer mantle of dust and debris that is generally a few centimeters thick. Heat is conducted through the mantle and results in the sublimation of ice and other volatile compounds that are covered by the mantle. 

Gas produced by sublimation, which is composed mainly of water vapor, percolates through the mantle and escapes to the vacuum of space. The expanding gas molecules attain a velocity of several hundred meters per second immediately on leaving the surface and flow radially outward from the comet. A spacecraft orbiting the comet nucleus will experience dynamic pressure with a resultant force that is nearly radial. Since the spacecraft velocity is much smaller than the gas molecule velocity, the normal dynamic pressure attributable to the spacecraft motion may be neglected. The aerodynamics of a spacecraft orbiting a comet nucleus are more analogous to a sailboat than to an airplane. 

As the comet approaches the Sun and the mantle is heated to higher temperatures, the percolation of gas through the mantle becomes so intense that large pieces of the mantle are sloughed off exposing the bare ice to direct solar radiation and the vacuum of space. The local activity becomes very intense and huge jets appear where the surface activity is perhaps an order of magnitude greater than the surrounding surface covered by the mantle. The model of comet nucleus outgassing must accommodate several discrete jets in addition to the normal background outgassing of the comet. 
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A spacecraft orbiting a comet nucleus will experience a force from the pressure of expanding gas and dust that varies widely depending on the position of the spacecraft relative to the comet, the distance of the comet from the Sun, and the activity of the local comet surface in response to solar energy input. For navigation, a model must be developed that takes all of these factors into account but is simple enough to be incorporated into existing navigation software. 

A simplified two-part empirical model of accelerations on the spacecraft due to comet nucleus outgassing and dust emissions is defined. The first part describes the accelerations acting on the spacecraft from the comet outgassing that results from the solar radiation input. For this model, the spacecraft acceleration is assumed to be directed radially from the comet nucleus and varies with the cosine of the Sun angle and inversely with the square of the distance. The second part describes the behavior of a gas vent or jet, and the spacecraft acceleration is described in the same manner as for the outgassing, except that the acceleration is directed away from a specific region on the comet nucleus surface. Thus, the outgassing model could be interpreted as the integration of many gas and dust jets over the entire surface of the comet. 

 2.7.1  Outgassing  Model 

The outgassing model assumes the spacecraft acceleration is directed radially from the comet nucleus and varies with the cosine of the Sun angle and inversely with the square of the distance. It is defined by three variables A  D,   A   T , and A  N , which represent acceleration magnitudes acting on a spacecraft, each at the reference radius r ref = 10 km from the center of the comet. A  D  is the acceleration magnitude directly over the subsolar point (the position on the comet directly under the Sun). 

A  T , the acceleration magnitude over the terminator, which is the edge of the sunlit side of the comet, was assumed to be 0.5 A  D.   A   N  is the acceleration over the anti-subsolar point, the position on the night side of the comet directly opposite the subsolar point. A  N  was  assumed  to  be  0.1 A D. Intermediate accelerations are defined as follows, using the angle  θ  measured from the anti-subsolar direction: A =  (AT −  AD)  cos  θ +  AT  for 90  < θ <  180

 A =  (AN −  AT )  cos  θ +  AT  for 0  < θ <  90

r · r c

cos  θ =  r rc

The acceleration vector of the spacecraft due to outgassing is thus given by r

A =  A r 2 ref

 . 

 r 3

Figure  2.14  displays the comet outgassing geometry. 
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Fig.  2.14  Empirical 
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 2.7.2  Jet  Model 

The vent or gas jet model follows the steady gas pressure model with some minor revisions. Here the acceleration of the jet Aj is described as a function of the angle   φ  and represents the acceleration from a region surrounding the body fixed coordinates of the jet. The activity of the jet is thus determined by its exposure to the Sun attaining a maximum when the Sun is directly overhead and decreasing to a minimum on the dark side of the comet. The geometry is illustrated in Fig. 2.15. 

The body fixed position of the jet is first converted to inertial coordinates: r j =  T  T r jb

where   T  is the transformation matrix describing the attitude of the comet in inertial space. The angle  φ  describes the location of the jet and is given by r j · r c

cos  φ =

 . 

 rj rc

Intermediate acceleration magnitudes due to the jet are defined as follows, using the angle  φ: 

 Aj =  (AT −  A )  cos  φ +  A

for 90  < φ <  180

 j

 Dj

 Tj

 Aj =  (AN −  A )  cos  φ +  A

for 0  < φ <  90

 j

 Tj

 Tj
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Fig.  2.15  Internal mass element model 

where the parameters A  T ,   A  

, and A 

are defined in a similar manner to the 

 j

 Dj

 Nj

corresponding definitions of the parameters A  T ,   A   D, and A  N  for the outgassing model. The position of the spacecraft relative to the gas jet is described by the angle α  given by 

 (r − r j ) · r j

cos  α =

 , 

 rj |r − r j |

and the acceleration of the spacecraft is directed away from the jet and given by r − r

A

 j

j =  Aj r 2

 ref  cos  α

 . 

|r − r j |3

 2.7.3  Thermodynamic  Model 

The thermodynamic model of the nucleus of a comet relates the surface temperature and gas production rate to the solar energy input. The heat equation describes the flow of heat within the core and mantle where the heat transfer is dominated by conduction. Heat transfer into the nucleus can be modeled by partitioning the nucleus into a set of concentric shells surrounding a central core and then partitioning each shell into individual volume elements so that a heat equation can be
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written for each element. The thickness of these shells depends on the conductivity and heat capacity. 

The governing equation of the heating rate per unit area of the dust that comprises the mantle is given by 

2 kd (tsurf −  T sub)

 c

˙

 mρmrmTsurf =  ( 1 −  A)In −  ( 1 −  A)σbT  4

−

 surf

(2.26) 

 rm

where   cm,  ρm  and  rm  are the specific heat, density, and thickness of the mantle.  A is the albedo,  In  is the incident solar intensity,  σb  is the Stefan-Boltzmann constant, and   kd  is the constant of proportionality for heat conduction.  Tsub  is the temperature of the comet mantle below the top layer of ice. The first term on the right of Eq. 2.26 

is the input solar energy, the second term is the heat radiation to space, and the third term is the conduction into the mantle. The heating rate, ˙

 Tsurf , is given by 

˙

2 kd (tsurf −  T sub)

 Tsurf =  ( 1 −  A) In −  ( 1 −  A) σbT  4

−

 c

 surf

 mρmrm

 cmρmrm

 cmρmr 2 m





 r

2

 eart h

 In =  Is

ˆr comet · ˆr n

 rcomet

where   Is  is the solar energy flux at the Earth,  rearth  is the distance from the Earth to the Sun,  rcomet  is the distance from the comet to the Sun, and ˆr comet  and  ˆr n  are unit vectors from the comet to the Sun and normal to the surface of the nucleus. 

The heat equation must be integrated with respect to both space and time. In order to compute the variation of temperature as a function of space and time, we need to compute the Laplacian ∇2 T . The Laplacian is an operator that appears in many engineering applications and states that the volumetric accumulation of some physical quantity is equal to the flow across the boundary of an elementary volume element. This physical quantity is conserved in this process and the flow is proportional to the gradient of a scalar potential function. In our case, the physical quantity is heat and the scalar potential function is temperature. In Cartesian coordinates, the Laplacian is given by 

∇2 T =  ∂ 2 T +  ∂ 2 T +  ∂ 2 T = 0

(2.27) 

 ∂x 2

 ∂y 2

 ∂z 2

A computer solution of this equation can be achieved by breaking the comet nucleus into many cubical volume elements and developing the required second partial derivatives by finite differences. When using this approach, the volume elements must be very small or varied in size to accommodate variations in the gradient of temperature. For a comet nucleus, ideally, we could use small volume elements near the surface, where the thermal gradients are relatively large, and large volume elements near the center, where the thermal gradients are not as large. A

[image: Image 20]
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Fig.  2.16  Volume elements 

Fig.  2.17  Volume element 
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simple algorithm for defining these volume elements is to enclose the comet in a parallelepiped as illustrated in Fig. 2.16. 

The coordinates of the volume elements x, y, and z may be related to the indices i, j, and k. In computer terms, a triple indexed do loop may be programmed to access each of the volume elements individually. Those volume elements outside of the comet surface are discarded. The required partial derivatives are computed by finite difference. Figure 2.17  shows a typical cross section of volume elements. 

The thermal gradient with respect to the  x  coordinate  i s

 ∂T

 T

=  i,j,k −  T i − 1 , j, k

 ∂x(i − 1  , j, k)

 x

2

 ∂T

 T

=  i+1 ,j,k −  T i, j, k

 ∂x(i + 1  , j, k)

 x

2

[image: Image 21]
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and 

 ∂ 2 T

 T

=  i+1 ,j,k − 2 Ti,j,k +  Ti−1 ,j,k

 ∂x 2

 x 2

 ∂ 2 T

 T

=  i,j+1 ,k − 2 Ti,j,k +  Ti,j−1 ,k

 ∂y 2

 y 2

 ∂ 2 T

 T

=  i,j,k+1 − 2 Ti,j,k +  Ti,j,k=1

 ∂z 2

 z 2

The heating rate of the comet nucleus is then given by 





˙

 ∂ 2 T

 T =

 kd

+  ∂ 2 T +  ∂ 2 T

 cmρm

 ∂x 2

 ∂y 2

 ∂z 2

subject to the boundary condition that  T =  Tsub  on the surface of the nucleus. 

For navigation, the temperature variation of the nucleus is of interest over a time interval of several weeks to several years. The temperature of the surface, which controls the amount of outgassing, varies periodically with respect to a baseline, which evolves over hundreds of years. In order to establish this baseline, the thermodynamic model must be integrated over hundreds of years. This integration was performed for the asteroid Eros and the results are illustrated in Fig. 2.18. 

For this integration, the temperature was integrated using the known shape, orbit, and attitude of Eros. The diurnal temperature variation was averaged over a single revolution of Eros as a function of the Sun’s latitude. Given the direction of Eros’s spin axis, the poles are warmer than the equatorial regions as shown in Fig. 2.18. 

Fig.  2.18  Eros surface temperature distribution

[image: Image 22]
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Fig.  2.19  Eros surface temperature distribution 

During the NEAR mission, Eros was extensively mapped in the infrared. 

Figure  2.19  shows a map of Eros infrared spectral parameters for the northern hemisphere. The southern hemisphere was dark during the time that the data was acquired. In Fig. 2.19, longitude is defined as positive West. Navigation coordinate systems are right-handed and longitude is defined positive East. The warm region located at 80 ◦ North and 60 ◦ East in Fig. 2.18  corresponds to the high spectral intensity located at 80 ◦ North and 300 ◦ West in Fig. 2.19. The cooler regions of Psyche and Himeros located at 30 ◦ North also correspond. 

In order to compute the acceleration of the spacecraft, the thermodynamic model can be interfaced with the empirical jet model. It is envisioned that in navigation operations, a number of models would be available that vary in accuracy and number of parameters that need to be estimated. These would range from simple empirical models that would suffice during approach to a comet to high precision physical models that may be needed for low altitude orbits. Integration of the thermodynamic model with the jet model involves integration over the surface of the comet. Since the albedo varies as a function of location on the surface, an expansion of Legendre polynomials and associated functions may be employed. 

The coefficients of this expansion would be parameters to be determined by the orbit determination software. 

2.8 Summary
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2.8  Summary 

Force models are accessed by the numerical integrator in order to compute the acceleration of the spacecraft required by the equations of motion. Since the equations of motion use the vector sum of all the force models, each force model may be packaged in a separate subroutine. For convenience, the force is divided by the mass of the spacecraft and acceleration vectors are computed. In addition, the partial derivatives of acceleration with respect to spacecraft position, velocity, and constant parameters are included in the subroutine. If there are a large number of force models, the number of constant parameters may be too many for the orbit determination filter to process. The NEAR mission had over 600 parameters. 

Therefore, the force models must be designed to provide only the number of parameters to accurately model the acceleration. The accuracy of the required force model will depend on the mission phase. For example, the gravity model requires one coefficient when the spacecraft is far from the central body, but may require several hundred coefficients when in a close orbit. 

The solar pressure model is needed for long-term orbit prediction during cruise. 

In orbit, the solar pressure is overwhelmed by gravity harmonic uncertainties and does not have much effect on short-term predictions. Atmospheric drag models are only needed when the spacecraft is in an atmosphere. Propulsion system models generally use the rocket equation and assume constant thrust. Another consideration in designing force models is computation of the partial derivatives. These partial derivatives are needed for integration of the variational equations and can impose a significant burden on computer time. 

Exercises 

2.1  A small unguided rocket weighs 26 pounds of which 4.86 pounds is fuel. The Isp  of the fuel is 120 s. Determine the range and maximum altitude if it is launched at an angle  θ = 25◦ with respect to the local horizontal plane. Assume the velocity is applied as an impulse and the trajectory is a parabola. The range (R) and maximum altitude (H) are given by 

 v 2 sin ( 2 θ )

 v 2 sin2 (θ )

 R =

0

 H =

0

 g 0

2 g 0

2.2  The rocket in Exercise 2.1  is 2.75 in. in diameter and the burn time was 5 s. 

Determine the thrust and drag force at burnout. The density of air is 2 .  508 × 10−3

slugs/ ft3 and the drag coefficient is 0.6. Navigation receives input from many sources that work in different systems of units. Engineers working in wind tunnels measuring drag like to work in English units. Making conversions is an important part of navigation operations. 
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2.3  Derive the equations of motion of the rocket in Exercise 2.1, determine the range and maximum altitude, and show that the trajectory is a parabola. 

2.4  A spent rocket is found that weighs 30 pounds and is 6 ft long and 3 in. in diameter. It is estimated that the fuel would weigh 5 pounds and probably have an Isp of 200 s. Determine the maximum range for this rocket assuming a launch angle of 45 ◦. This was a real problem. 

2.5  The rocket in Exercise 2.1  was planned to be fired at a hillside that is 1042 ft downrange and 275 ft high. The target is at an elevation of 250 ft above the launch site. Determine the launch angle. Just before the launch, the launcher was moved 225 ft back, so the range was now 1267 ft. Determine the new launch angle. Where does the rocket go if the correction to the launch angle is not made and the rocket is launched with the original launch angle for the 1042 ft range? This was also a real problem and the actual rocket went as predicted. Hint, the hill was only 275 ft high and there was ocean behind it but no fisherman. 

2.6  A spacecraft is in a circular orbit about the Sun with a radius of 1 AU ( 149 ×

106 km). A solar sail is unfurled with an area of 800m2 and oriented facing the Sun. The spacecraft weighs 500 kg and the solar sail is a perfect specular reflector. 

Determine the orbit of the spacecraft, which is a conic section. 

2.7  Determine the size of a solar sail in Exercise 2.6  that would enable the spacecraft to escape from the Sun. Assume the total mass remains at 500 kg. 

Neglecting general relativity, determine the size of a sail that would leave the solar system at one tenth the speed of light. 

2.8  A spacecraft is maneuvered into a circular orbit about an asteroid. The plane of the spacecraft orbit faces the Sun and the spacecraft is 10 km from the asteroid center. The asteroid is 1 AU from the Sun and has a radius of 5 km and specific gravity of 3. The universal gravitational constant is 6 .  674 × 10−20 km3 kg−1 s−2. 

The spacecraft is a blackbody with an area of 10 m2 and mass of 500 kg. Determine the orbit of the spacecraft and the period of the orbit. 

2.9  The integrand of the volume integral for the second-degree gravity harmonic coefficients may be expressed as Cartesian components of the volume elements. 

Show that  Iyy −  Izz =  Ma 2 (C 20 + 2 C 22 ). 
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Chapter  3 

Trajectory  Design 

3.1  Introduction 

Analytic solutions of the equations of motion are of intrinsic interest because of their mathematical elegance. However, when applied to trajectory design, solutions are sought that enable the full Cartesian state to be determined with high precision and these solutions are numerical. 

3.2  Restricted  Two-Body  Trajectories 

The solution of the equations of motion for a point mass that is accelerated by a spherical central body was first obtained by Kepler. The trajectory is an ellipse, hyperbola, circle, or parabola depending on the initial conditions. Kepler’s solution reveals that the trajectory shape is dependent on the energy and angular momentum of the spacecraft. Since the circle and parabola are limiting cases of the ellipse or hyperbola, only the solution for the ellipse and hyperbola are needed. Circular orbits are generally avoided because of singularities in determining the orbit, and parabolic orbits are generally encountered only during the transition between elliptical and hyperbolic motions when the spacecraft is being accelerated by propulsive thrust or atmospheric drag. The solution of the equations of motion could be obtained by numerical integration from an initial state vector. Since there are six degrees of freedom associated with the initial conditions, six orbit parameters are required to describe the trajectory in addition to the central body gravity constant. Since there are many parameters that describe an ellipse or hyperbola and its orientation in space, a set of parameters is desired that will permit determination of the Cartesian state at various points along the trajectory and thus obtain the same result as could be obtained by numerical integration. Two of these parameters must be shape 
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parameters, three are needed to orient the orbit in space, and an additional parameter is needed to specify the position of the point mass or body in the orbit at a particular time. 

 3.2.1  Elliptical Orbit 

The equations of motion are first developed for an ellipse. The geometry is shown in Fig. 3.1. The state vector (X), or state column matrix to be more precise, is composed of the elements or components of the position and velocity vectors: 

 X = [ x, y, z, ˙ x, ˙ y, ˙ z] T

r =  (x, y, z)

v =  ( ˙ x, ˙ y, ˙ z)

The magnitudes of the position and velocity vectors are 



 r =

 x 2 +  y 2 +  z 2



 v =

˙ x 2 + ˙ y 2 + ˙ z 2

The angular momentum vector, which is also the pole of the orbit plane, is given by h = r × v

Fig.  3.1  Elliptical orbit 
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The magnitude of the angular momentum vector ( h) is the angular momentum orbit parameter. The energy parameter is obtained by summing the kinetic and potential energy: 

 C 3 =  v 2 − 2 GM

(3.1) 

 r

The actual energy is obtained by multiplying  C 3 by one half of the mass of the body. Since the body is assumed to be a point mass, the body mass is assumed to be zero or small compared to the central body mass. Since the acceleration is the ratio of force to body mass, in the limit as the body mass approaches zero, it cancels from the acceleration. The force equation contains the product of the central body mass and body mass leaving GM instead of GMm for the gravity parameter. 

The factor of one half, which accounts for acceleration from rest to  v, is omitted from the energy parameter. The spacecraft mass is also removed from the angular momentum parameter: 

 h =  r 2 ˙ η

(3.2) 

where   η  is the true anomaly or polar angle that specifies the angular position of the body in the plane of the orbit. The angle  η  is measured counterclockwise from periapsis in the plane of the orbit. The velocity magnitude ( v) may be computed from the radial and azimuthal components of velocity and is given by v 2 = ˙ r 2 +  r 2 ˙ η 2

(3.3) 

Substituting Eq. (3.3) into Eq. (3.1), the vis viva equation is obtained: 

˙ r 2 +  r 2 ˙ η 2 =  C 3 + 2 GM

(3.4) 

 r

The vis viva equation is called the Langrangian by orbit dynamicists and is related to the Hamiltonian. Einstein uses the Hamiltonian to derive the Einstein tensor. 

He probably does this to avoid some difficult mathematics associated with the divergence, which is obtained by permuting indices in the Riemann tensor. The Bianchi identities do this. Solving the Lagrangian involves the Euler-Lagrange equations, which are derived by a difficult integration by parts. This integration by parts will be used to derive the equation of geodesics, which is needed by the Riemann tensor. We will solve the vis viva equation by a simple change of variable. 

Note that the vis viva equation recognizes conservation of momentum by equal areas and conservation of energy by the ratio of orbit periods. This contribution by Kepler paved the way for Newton. 

100

3

Trajectory Design

The time parameter may be eliminated from the vis viva equation by substituting 

˙ η  from Eq. (3.2) and making use of 

˙ r =  dr ˙ η

 dη

yielding 





 h 2

 dr

2

+  h 2 =  C 3 + 2 GM

(3.5) 

 r 4

 dη

 r 2

 r



 h dr =  C 3 + 2 GM −  h 2

(3.6) 

 r 2  dη

 r

 r 2

The vis viva equation may be put into an integrable form by substituting 1

 dr

 d( )

= − r 2  r

 dη

 dη

and 



−

 h

 d

 r

 dη = 

(3.7) 

 C 3 + 2  GM −  h 2

 r

 r 2

Completing the square in the denominator, 



−

 h

 d

 r

 dη = 





 h

2

 C 3 +  GM 2

−

−  GM

 h 2

 r

 h

A change of variable to  φ  defined by 

 φ =  h −  GM

 r

 h



 h

 dφ =  d

 r

gives
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− dφ

 dη = 



(3.8) 

 C 3 +  GM 2

−  φ 2

 h 2

The solution is the vis viva integral: 

cos  η =

 φ



(3.9) 

 GM 2 +  C 3

 h 2

This solution can be verified by substituting Eq. (3.9) into Eq. (3.8): sin  η dη C 3 +  GM 2

 h 2

 dη = 

 C 3 +  GM 2 − cos2  η (C

 )

 h 2

3 +  GM 2

 h 2

 dη =

sin  η dη



=  dη

1 − cos2  η

Replacing the dummy variable  φ  and solving for  r, the equation of an ellipse in polar coordinates is obtained: 

 h 2

 r =

 GM



(3.10) 

1 +

1 +  h 2 C 3 cos  η

 GM 2

The equation for an ellipse in polar coordinates is given by 

 r =

 p

(3.11) 

1 +  e  cos  η

Comparing Eqs. (3.10) and (3.11), the parameter of orbit ( p) and eccentricity ( e) may be written from inspection: 

 p =  h 2

(3.12) 

 GM



 e =

1 +  h 2 C 3

(3.13)

 GM 2
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From the geometry shown in Fig. 3.1, the following geometric parameters may be computed: 



 e =

1 −  b 2

 a 2

 rp =

 p

1 +  e

 ra =

 p

1 −  e

 c =  ae

 p =  a( 1 −  e 2 )

These geometric parameters have names that describe the geometry of an ellipse. 

These names can be found in the geometry literature and can be derived by inspection of Fig. 3.1. Since the same names are applied to different geometrical parameters for a hyperbola that share the same equations for a two-body orbit, it is left as an exercise for the reader to sort out all the possible orbit elements. 

Introducing the results obtained by integration of the vis viva integral, some additional parameters that are of interest may be determined: 

 C 3 = −  GM

 a

cos  η =  p −  r

(3.14) 

 re



˙

 GM

 r =  e

sin  η

 p

The radial component of velocity may be obtained from the dot product of the position and velocity vectors yielding an equation for sin  η: r · v

 p

sin  η =

(3.15) 

 re

 GM

The true anomaly (  η) is obtained from a four-quadrant arctangent evaluation of sin  η  and cos  η. The quadrants are selected from the signs of the sine and cosine functions: 

 η = tan−1 ( sin  η,  cos  η)

(3.16)
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The two shape parameters,  p  and   e, are selected for inclusion in the set of six parameters that are used to describe the orbit. The third parameter that is needed to define the orbit solution is the time elapsed from the last periapsis passage to the epoch of the point in the orbit defined by the Cartesian state vector. The equation for true anomaly as a function of time is not integrable with simple functions. A change of variable to the angle  E, referred to as the eccentric anomaly, yields an equation that can be integrated and the resulting equation is called Kepler’s equation. From the geometry shown in F ig. 3.1, the following equation relates  r  and cos  η  to cos  E: r  cos  η =  a  cos  E −  ae

(3.17) 

Substituting Eq. (3.14) into Eq. (3.17), another equation for  r  as a function of  E  is obtained:

 r =  a −  ae  cos  E

(3.18) 

Squaring Eqs. (3.17) and (3.18) and subtracting gives an equation that relates  r  sin  η

to sin  E: 

 r  sin  η =  b  sin  E

An equation that may be integrated for time as a function of  E  may be obtained by eliminating   r  from the vis viva integral. The vis viva integral may be put into a form that involves only  r, ˙ r, and constant parameters: 

 r 2 ˙ r 2 = −  r 2 GM + 2 GM r −  GM a( 1 −  e 2 ) (3.19) 

 a

Differentiating Eq. (3.18) with respect to time gives 

˙ r =  ae  sin  E ˙ E

(3.20) 

Substituting Eqs. (3.20) and (3.18) into Eq. (3.19) gives, after many cancelations, a 3  ( 1 −  e  cos E) 2 ˙ E 2 = 1

(3.21) 

 GM

and 



 a 3

 dt =

 ( 1 −  e  cos  E) dE

(3.22) 

 GM

The integral from periapsis,  E = 0, to the point in the orbit of interest is Kepler’s equation:
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Fig.  3.2  Orbit orientation in 
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 a 3

 t −  tp =

 (E −  e  sin  E)

(3.23) 

 GM

The period of the orbit may be obtained by integrating over one complete revolution and 



 a 3

 P = 2 π

(3.24) 

 GM

The parameter  tp  is the epoch of periapsis passage and is selected as the third parameter to characterize the orbit solution. The final set of parameters are the longitude of the ascending node (  ), inclination ( i), and argument of periapsis (  ω). The geometry is shown in Fig. 3.2. The longitude of the ascending node and inclination may be determined from the components of the pole or angular momentum vector: 





 hx

  = tan−1

(3.25) 

− hy

⎛

⎞

 h 2 +

 x

 h 2 y

 i = tan−1 ⎝

⎠

(3.26) 

 hz

The argument of periapsis is obtained by first computing the argument of latitude (  ωn), the angle from the nodal crossing to the orbit point, and subtracting the true anomaly. A coordinate system is defined with ˆx1 in the direction of the ascending node and ˆz1 in the direction of the orbit pole:
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ˆz × h

ˆx1 =  h

h × ˆx

ˆy

1

1 =

 h

The angle  ωn  is defined by the components of the position vector ( r) and sin  ωn

 ωn = tan−1

=  ω +  η

cos  ωn

where 

sin  ωn = ˆy1 · ˆr

cos  ωn = ˆx1 · ˆr

and 

 ω =  ωn −  η

(3.27) 

The orbit element set that has been derived to describe two-body motion is Oc = [ p, e, tp, , i, ω]

(3.28) 

and these elements may be obtained as a function of the state at some point in the orbit. The orbit element set  (Oc)  will be referred to here as classical orbit elements. 

In the literature, the semimajor axis ( a) is often specified in place of the parameter of orbit ( p): 

 Oc(t) =  fc(X, GM, t)

(3.29) 

 X =  (r , v )

The inverse function may be obtained by solving the above equations for the state as a function of the orbit elements. Starting with Kepler’s equation, the eccentric anomaly  (E)  may be obtained from the time of periapsis  (tp)  and the time ( t). A closed-form solution for Kepler’s equation in terms of elementary functions cannot be obtained. Therefore, it is necessary to iterate using Newton’s method to obtain E  as a function of  t  and  tp. The true anomaly (  η) and radius ( r) are then computed from the eccentric anomaly and orbit elements  p  and   e. The position and velocity are determined in the orbit plane coordinate system with x2 in the direction of periapsis and  z2 in the direction of the orbit pole (see Fig. 3.2). The position of the body in the plane of the orbit coordinate system is 

r2 =  (r  cos  η, r  sin  η,  0 )
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and the velocity may be obtained by differentiating r2. 





 GM

 GM

v2 =  (−

sin  η, 

 (e + cos  η),  0 )

 p

 p

The position and velocity in the reference coordinate system are obtained by rotating through the angles defined in Fig. 3.2: 

r = R T r

 c

2

v = R T v

 c

2

⎡

⎤ ⎡

⎤ ⎡

⎤

cos  ω  sin  ω  0

1

0

0

cos    sin    0

R

⎣

⎦ ⎣

⎦ ⎣

⎦

c =

− sin  ω  cos  ω  0

0 cos  i  sin  i

− sin    cos    0

0

0

1

0 − sin  i  cos  i

0

0

1

The inverse function permits transformation of the classical orbit element set into the state ( X)   at    t:

 X(t ) =  f −1

 c

 (Oc, GM, t)

The function  fc  and its inverse permit a one-to-one mapping from state vector to classical orbit elements and back to state vector. These functions may be coded into subroutines on a computer and used to propagate a spacecraft trajectory from some time   t 1 to a later time  t 2. For example, the orbit elements may be computed from the state vector at  t 1

 Oc(t 1 ) =  fc(X(t 1 ), GM, t 1 )

The time is advanced to  t 2 and  X(t 2 )  is computed from the inverse function: X(t 2 ) =  f −1

 c

 (Oc, GM, t 2 )

Trajectory propagation is thus accomplished with two calls to subroutines, which can be accomplished with three lines of Fortran code or several lines of C code. 

 3.2.2  Hyperbolic Orbit 

The transformation of a state vector to classical orbit elements for an ellipse may be modified to transform to a hyperbola. We first define a new set of six orbit elements that define a hyperbola and its orientation in space. These orbit elements are Ohi = [ b, θ, tp, V∞ , α∞ , δ∞]
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Fig.  3.3  Hyperbolic orbit geometry 

The elements  b  and   v∞ define the size and shape of the orbit in the plane of the orbit, and the elements  θ ,  α∞, and  δ∞ describe the orientation of the orbit in space as shown in Fig. 3.3. Because of conservation of energy and momentum, many of the hyperbolic orbit elements share the same equations as elliptical orbit elements but define different lengths. We will use the convention embraced by Krafft Ehricke that all these lengths are positive. We do have to pay attention to signs when these distances define coordinates. From the equations for an ellipse, the orbit elements  b and  Vinf ty

√

 b =

 ap



 V∞ =  C 3

The third element  (tp)  is the time of the last periapsis passage. This element is hard to get because Kepler’s equation for the ellipse must be modified for a hyperbola. This modification requires some mathematics and geometry that can be found in the literature. The eccentric anomaly is replaced by the hyperbolic eccentric
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anomaly ( F ) defined by  x = − a  cosh  F  and  y =  b  sinh  F  Since   y  is the distance from the  x  axis,  we  ha ve

 y =  r  sin  η =  b  sinh  F

sinh  F =  r  sin  η

 b

The cosh is tricky to get. The  x  coordinate is dependent on where the centers are located and they are different for the  η  and sinh. With the origin at the focus on the x  axis, 

 p =  ( 1 +  e  cos  η)

 x =  r  cos  η

 x

 p =  r( 1 +  e ) =  r +  ex

 r

 r =  p −  ex

The origin of the hyperbolic eccentric anomaly is at the point where the asymptotes cross, so we have to shift the center by  c =  ae  to get the center at the asymptote crossing 

 r =  p −  e(x +  ae)

 r =  a(e 2 − 1 ) −  ex −  ae 2

 r = − a −  ex

 x = − a  cosh  F =  r +  a

− e

cosh  F =  r +  a

 ae

and 

 F = ln ( sinh  F + cosh  F )

If sinh  F  is negative, it is necessary to compute  F  by F = − ln ( cosh  F − sinh  F )

Otherwise, a large round-off error is incurred when F is large. Kepler’s equation for the hyperbola becomes
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 a 3

 t −  tp =

 (e  sinh  F −  F )

(3.30) 

 GM

The orientation of the hyperbola in space is defined with respect to the approach asymptote (S) and pole of the orbit plane. In the plane of the orbit, the limiting true anomaly as the body goes to infinity is 



1

 ηl = cos−1  e

The direction of the approach asymptote (see Fig. 3.3) is given by the following vector sum: 

ˆS =  ( ˆh × ˆr )  sin (η −  ηl) − ˆr cos (η −  ηl) The  T coordinate axis is perpendicular to S and in the  x −  y  plane of the reference coordinate system. The unit vector in the direction of T is given by ˆ

ˆ

S × ˆz

T = |ˆS × ˆz|

and the unit vector in the direction of the R coordinate axis, which completes the right hand system, is given by 

ˆR = ˆS × ˆT

The orientation of the hyperbola in space is shown in Fig. 3.4. The B-plane is defined perpendicular to the approach asymptote and passes through the center of the central body. The orientation of the plane of the orbit is defined by the angle  θ  between the  T coordinate axis and the B vector that is in the plane of the orbit. The angle θ  is determined from a four-quadrant arctangent function where the signs of the numerator and denominator are used to place the angle in the proper quadrant: ˆT · ˆh

 θ = tan−1 − ˆR · ˆh

The direction of the approach asymptote is defined by the right ascension (  α∞) and declination (  δ∞). The four-quadrant arctangent is used to place  α∞ in the proper quadrant: 



ˆ Sy

 α∞ = tan−1

ˆ Sx

 δ∞ = sin−1 ˆ Sz
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Fig.  3.4  B-plane definition 

A modified orbit element set has been derived to describe two-body hyperbolic motion: 

 Oh = [ b, θ, tp, V∞ , α∞ , δ∞]

 Oh  may also be obtained as a function of the state at some point in the orbit as was done for the classical orbit element set: 

 Oh(t) =  fh(X, GM, t)

The inverse function for the hyperbola is obtained by solving the above equations for the state as a function of the orbit elements as was done for the ellipse. Kepler’s equation is solved by iteration to obtain  F  as a function of  t  and  tp. The true anomaly (  η) and radius ( r) are then computed from  F  and the orbit elements  p and   e. The elements  p  and   e  may be computed from  b  and  V∞. The position and velocity in the plane of the orbit are computed as for the classical elements. The final transformation from orbit plane coordinates to the reference coordinate system is given by, 
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r = R T r

 h

2

v = R T v

 h

2

and 

⎡

⎤ ⎡

⎤

sin  ηl  0 cos  ηl

cos  θ  sin  θ  0

R

⎣

⎦ ⎣

⎦

h =

− cos  ηl  0 sin  ηl

− sin  θ  cos  θ  0

0

1

0

0

0

1

⎡

⎤ ⎡

⎤

1

0

0

sin  α∞ − cos  α∞ 0

⎣ 0 sin  δ∞ − cos  δ∞ ⎦ ⎣cos  α∞ sin  α∞ 0⎦

0 cos  δ∞ sin  δ∞

0

0

1

From the inverse function, the state may be computed as a function of the hyperbolic orbit elements and  GM. 

 X(t ) =  f −1 (O

 h

 h, GM, t )

For interplanetary trajectory design, the outgoing hyperbolic asymptote is often needed. A modified set of hyperbolic orbit elements may be defined that has the outgoing departure asymptote direction as part of the set of orbit elements replacing the incoming approach asymptote direction. For the conversion of a state vector to the modified hyperbolic elements, the following procedure may be used. First, change the direction of the velocity vector and compute the incoming hyperbolic elements: 

 Ohi =  fh(Xi, GM, t)

 Xi = [ x, y, z, − ˙ x, − ˙ y, −˙ z]

 Ohi = [ bi, θi, tp , V

 i

∞ i, α∞ i, δ∞ i]

The outgoing elements may then be computed from the incoming elements: Oho = [ bo, θo, tp , V

 o

∞ o, α∞ o, δ∞ o]

where the direction of the outgoing asymptote is 

 α∞ o = 180 −  α∞ i

 δ∞ o = − δ∞ i
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The remaining outgoing parameters are the same as the incoming parameters. The inverse function may be obtained by simply reversing the procedure defined above. 

In summary, the hyperbolic elements with respect to the outgoing asymptote as a function of the state and the inverse function are given by 

 Oho(t) =  fho(X, GM, t)

 X(t ) =  f −1 (O

 ho

 ho, GM.t )

 3.2.3  Injection Flight Plane Hyperbolic Trajectory 

The design of the Earth departure hyperbola must be interfaced with the launch vehicle ascent trajectory design. The interface point is generally defined shortly after final stage burnout, and the spacecraft position and velocity at this point are referred to as injection conditions. The injection conditions are described by a convenient set of parameters called injection flight plane coordinates. The departure hyperbolic orbit elements are also used to design Earth departure trajectories. 

However, hyperbolic orbit elements do not relate very well to the launch vehicle ascent trajectory and are generally not used for describing the trajectory when the position of the spacecraft near the Earth is of interest. The injection flight plane coordinates are shown schematically in Fig. 3.5. The departure hyperbola is shown propagated back from the injection point defined by the vector r to the Earth’s equator. This two-body conic trajectory does not pass through the launch site but flies over the latitude of the launch site (  φl) as shown in the figure. At the launch site latitude overfly point, the azimuth angle (  Az) is defined, measured clockwise from north in the local tangent plane. In Fig. 3.5,  Az  is shown with respect to the local East vector. The hyperbolic trajectory continues from launch latitude overfly to the injection point. The central angle (  ωx) from the launch site latitude overfly to injection is the third injection flight plane coordinate. The remaining parameters are the velocity magnitude (  Vi), the flight path angle (  γi), and the inertial longitude (  λi). 

The flight path angle is the angle between the velocity vector and local horizontal plane. The inertial longitude is measured from the vernal equinox to the projection of the injection vector on the Earth’s equator. This unusual set of coordinates was devised by general dynamics to interface Atlas launch vehicle trajectories with injected payloads and has continued in use to the present time. 

The rationale behind the selection of injection flight plane parameters is related to launch vehicle constraints. The individual parameters are a function of both position and velocity at injection. In the design of interplanetary trajectories, it is necessary to separate position from velocity. The spacecraft velocity is sought that results in a trajectory between two positions determined by the location of the planets. 
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Fig.  3.5  Orbit injection geometry 

Thus, the injection flight plane parameters must be separable into parameters that are related to position and are fixed and parameters that are related to velocity and are permitted to vary. For design of interplanetary trajectories, the fixed parameters are   r,  γi  and either  ωx  or   Az, and the variable parameters are  V ,  λi  and either  ωx or   Az. The choice of fixing either  ωx  or   Az  depends on the type of launch vehicle ascent trajectory that is used. The launch vehicle ascent trajectory may be direct or into a parking orbit. For a direct ascent, the launch vehicle rises vertically until it clears the gantry and is then tipped a fixed angle to start a gravity turn. For a gravity turn, the launch vehicle is accelerated in the direction of the velocity vector and is slowly turned by gravity. The initial horizontal direction is roughly in the direction of the launch azimuth (  Az). The detailed launch vehicle trajectory design must take into account the rotation of the Earth, and the actual Earth fixed azimuth differs some from the inertial azimuth. During the launch vehicle ascent, the trajectory traverses a central angle of  ωx, which is a characteristic of the launch vehicle and corresponds to about 3000 km downrange from the launch site, which is assumed to be the Kennedy space center. For a direct ascent,  ωx  is fixed. For some launch vehicles, the ability exists to shut down the rocket engine at the instant a circular orbit is achieved. The spacecraft and upper stage may coast in a parking orbit for some fraction of an orbit and restarted. For a parking orbit ascent,  Az  is fixed and  ωx is permitted to vary. The injection flight path angle (  γi) is determined by the launch vehicle performance and is generally small to take advantage of the Earth’s rotation. 
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The parameter  λi  is used to control the direction of departure from the Earth in the ecliptic plane. The direction of departure is controlled by simply selecting the time of day to launch or the launch window. The launch azimuth and coast time are used to control the velocity component out of the Ecliptic plane. 

The injection flight plane coordinates may be computed as a function of the Cartesian state at injection. The classical elements  Oc  and hyperbolic elements Oh  and their inverses may be used to propagate the spacecraft along the ascent hyperbola and determine state vectors at launch site overfly and injection. From these state vectors, the injection flight plane parameters may be computed: Oi(ri) =  fi(X, GM)

(3.31) 

where 

 Oi = [ φl, ri, ωx, Az, V , γi, λi]

Also, the state at injection may be computed from the inverse relationships as a function of the injection flight plane parameters: 

 X(ri) =  f −1 (O

 i

 i , GM )

(3.32) 

 3.2.4  Lambert’s Problem 

An important problem relating to the determination of orbits and design of interplanetary trajectories was defined by Lambert and Euler. Given the flight time between two position vectors, Lambert’s problem is to determine the orbit that transfers from the first position vector to the second in the given flight time. 

Lambert’s problem is fundamental to interplanetary trajectory design since the position vectors of interest are generally the ephemerides of two planets and the problem is to design a trajectory that will go from one planet to another in a specified interval of time. Problems of this type are referred to as two-point boundary value problems. In the current age of computers, Lambert’s problem may be easily solved by targeting the second position vector. The velocity at the first position vector is varied iteratively using Newton’s method until the propagated trajectory intersects the second position vector at the time specified. The partial derivatives required by the three-parameter search can be computed by finite difference and the trajectory propagation performed by solution of the two-body equations of motion as described in subsections 3.2.1  and  3.2.2. 

An analytic solution of Lambert’s problem was provided by Lagrange, who was proud of this accomplishment as well he should be, and showed his solution to Lambert about a year before he died. Since that time, a considerable amount of research has been expended identifying singularities and developing efficient
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Fig.  3.6  Orbit transfer geometry 

algorithms for digital computers. Even in the modern era of high-speed computers, where analytic methods have generally given way to much simpler numerical methods, analytic solutions of Lambert’s problem are often preferred for designing large numbers of trajectories that are required for surveying possible missions to the planets and other celestial bodies. 

Figure  3.6  shows the geometry of Lambert’s problem. A trajectory is sought that transfers a spacecraft from position r1 at time  t 1 to position r2 at time  t 2. The transfer time is given by solution of Kepler’s equation at the two end points: a 3

 t 2 −  t 1 =

[ (E 2 −  E 1 ) −  e( sin  E 2 − sin  E 1 )]

 GM

Making use of the identity, 









 E 1 +  E 2

 E 2 −  E 1

cos

sin

= 1 ( sin  E 2 − sin  E 1 )

2

2

2













 a 3

 E 1 +  E 2

 E 2 −  E 1

 t 2 −  t 1 =

 (E 2 −  E 1 ) − 2 e  cos

sin

 GM

2

2

Lagrange defined two angles,  α  and   β, for his solution, and these are related to the eccentric anomaly at the end points by 









 α −  β =  E 2 −  E 1

 α +  β

 E 2 +  E 1

and cos

=  e  cos

2

2

2

2
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Kepler’s equation becomes 













 a 3

 α +  β

 α −  β

 t 2 −  t 1 =

 α −  β − 2 cos

sin

 GM

2

2



 a 3

 t 2 −  t 1 =

[ (α − sin  α) −  (β − sin  β)]

(3.33) 

 GM

The solution involves developing equations for  α  and   β  as a function of known parameters and  a, the semimajor axis, and iterating on  a  using Newton’s method until the desired transfer time ( t 2 −  t 1) is achieved. From the geometry shown in Fig. 3.6, the law of cosines may be applied to the triangle and c 2 =  r 2 +

−

1

 r 2

2

2 r 1 r 2 cos  θt



 θt

 c 2 =  (r 1 +  r 2 ) 2 − 4 r 1 r 2 cos2

2

The chord may also be obtained by simply differencing the position vectors and computing the magnitude: 

 c = |r2 − r1|

(3.34) 

It can be shown from the geometry that 

 r 1 +  r 2 +  c = 2 a( 1 − cos  α)

 r 1 +  r 2 −  c = 2 a( 1 − cos  β)

and 



 α

sin2

=  r 1 +  r 2 +  c

(3.35) 

2

4 a



 β

sin2

=  r 1 +  r 2 −  c

(3.36) 

2

4 a

Before Eq. (3.33) can be solved iteratively for the semimajor axis ( a)  of  the transfer orbit, the quadrant of the angles  α  and   β  must be determined. The pole of the orbit is computed by taking the cross product of the two position vectors. 

In order to resolve the transfer angle, it is assumed that the orbit is direct and the spacecraft goes from r1 to  r2. If a retrograde orbit is desired, the solution is obtained for the direct orbit in the opposite direction, and the resulting inclination and node are adjusted to give the desired retrograde orbit. With this assumption, the pole
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vector ( P ) is opposite the cross product of the position vectors if this cross product is in the southern hemisphere and the transfer angle (  θt ) is assumed to be greater than 180 ◦. For a direct orbit, the pole vector is always in the northern hemisphere. 

The pole vector and transfer angle for the cross product of the position vectors in the northern hemisphere are given by 

P = r1 × r2

(3.37) 





r1 · r2

 θt = cos−1

 r 1 r 2

and for the cross product of the position vectors in the southern hemisphere, P = −r1 × r2

(3.38) 





r1 · r2

 θt = 360 − cos−1

 r 1 r 2

The quadrant of the angle  β  is assigned following the convention determined by Battin: 

0 ≤  β ≤  π

for  θt ≤  π

−  π ≤  β ≤ 0 for  θt ≥  π

The inclination and longitude of the ascending node are computed in the usual manner from the pole vector, which is in the same direction as the angular momentum vector: 





 Px

  = tan−1

(3.39) 

− Py

⎛

⎞

 P  2 +

 x

 P  2

 y )

 i = tan−1 ⎝

⎠

(3.40) 

 Pz

Equation (3.33) is solved iteratively for  a. Some experimentation may be required to determine the quadrant of  α  and select either the hyperbolic or elliptical version of Kepler’s equation. Once a solution is found, the energy may be determined from  a. This effectively proves Lambert’s theorem but the solution is in terms of parameters that are not convenient. The angular momentum, or parameter of orbit ( p), requires some further solution of the orbit. The following identities may be determined from the geometry. One could draw an ellipse and spot the positions   r 1 and   r 2 on the ellipse and verify these identities by direct measurement. 

For example, one could measure  a  and   b  and compute  e  from its definition:
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 r 1 +  r 2

 η 2 +  η 1

 η 2 −  η 1

 p

= 2 + 2 e  cos

cos

(3.41) 

 r 1 r 2

2

2



√

 θt

 α

 β

 r 1 r 2 cos

= 2 a  sin sin

(3.42) 

2

2

2













√

 η 2 +  η 1

 α +  β

 α −  β

 r 1 r 2 cos

=  a  cos

−  ae  cos

(3.43) 

2

 e

2

2

Multiplying Eq. (3.43)   by    e, adding Eq. (3.42), and replacing  a( 1 −  e 2 )  by   p  giv es











√

 η 2 +  η 1

 α −  β

√

 θt

 e r 1 r 2 cos

=  p  cos

−  r 1 r 2 cos

(3.44) 

2

2

2

Substituting Eq. (3.44) into Eq. (3.41) and solving for  p, θt

2 r 1 r 2 sin2

2

 p =







√

(3.45) 

 θt

 α −  β

 r 1 +  r 2 − 2  r 1 r 2 cos

cos

2

2

and the eccentricity is given by 



 e =

1 −  p

 a

From the geometry, a compact formula for  p  can be deriv ed: α +  β

 θt

 p = 4 ar 1 r 2 sin2

sin2

(3.46) 

 c 2

2

2

The true anomaly may then be computed using the four-quadrant arctangent η 1 = tan−1  ( sin  η 1 ,  cos  η 1 ) (3.47) 

where 

cos  η 1 =  p −  r 1

 r 1 e

cos  η 2 =  p −  r 2

 r 2 e

sin  η 1 =  cosη 1 cos  θt − cos  η 2

sin  θt
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The argument of periapsis  ω  is the angle from the ascending node  ()  to periapsis. 

The true anomaly  (η 1 )  is the angle from periapsis to the position vector  (r1 ).   We need the angle from the ascending node to r1. The ascending node vector is given by the cross product of the  z  axis with the pole v ector:

  = ˆz × P

The angle from the ascending node to r1 is 

 ωn = tan−1  ( sin  ωn, cosωn)

sin  ωn = − PxPzr 1 x +  PyPzr 1 y +  (P  2 +

 x

 P  2

 y )r 1 z

cos  ωn = − r 1 xPy +  r 1 yPx

The argument of periapsis is then 

 ω =  ωn −  η 1

(3.48) 

The final parameter needed to describe the transfer orbit is the time of periapsis passage: 



 a 3

 tp =  t 1 −

 (E 1 −  e  sin  E 1 )

(3.49) 

 GM

The solution of Lambert’s problem yields a classical set of orbit elements (  Ol) defined as a function of the time and position vectors of two points relative to a central body with gravitational parameter  GM. 

 Ol(t 1 ) =  fl(t 1 , r1 , t 2 , r2 , GM) (3.50) 

 Ol = [ p, e, tp, , i, ω]

(3.51) 

The solution of Lambert’s theorem was coded into a subroutine by the author in 1966. This subroutine, along with subroutines previously described for transforming orbit elements into state vectors and state vectors into orbit elements, was coded in Fortran 2. At that time, the aerospace industry operated with closed shops for computer programming, so the work was done under the table. These subroutines have been incorporated into many programs for analysis and flight operations and are in their original form except for some minor corrections. The archaic “if” 

statements are still in the code. An important principle of computer programming is not to tamper with a program that works. 

An alternative to the above mathematical solution is to solve Lambert’s problem by targeting. Lambert’s problem reduces to finding the velocity at  t 1 that results in the desired position at  t 2 when the trajectory is propagated from  t 1 to   t 2.  The
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complete state  (r1 , v1 )  can then be converted to the required orbit elements (  Ol) using the subroutine described earlier. The targeting procedure involves first making an initial guess for  v 1. The velocity vector in a circular orbit passing through r1

provides an initial guess, but zero velocity also works. The state at  t 1 is converted to the orbit elements  Oc(t 1 )  as described is Sect. 3.2.1. The trajectory is propagated to t 2 by computing the inverse at  t 2: 

 X(t 2 ) =  O−1

 c

 (t 2 )

The position at  t 2 is compared with the desired position. If they do not agree, a Newton-Raphson iteration is performed. The state transition matrix is obtained as described in Sect. 1.4  only conic propagation of the trajectory is used. The upper right 3x3 partition of the state transition matrix is inverted and multiplied by the position miss at  t 2 to obtain a correction to the velocity at  t 1. After several iterations, the miss goes to zero. When compared with the mathematical solution, the targeted solution agreed within ten decimal places. The advantage of the targeted solution is the avoidance of complexity associated with resolving issues associated with transfer angles, energy, and direction that plagues the mathematical solution. 

A solution to Lambert’s problem may be obtained by using the orbit element transformation subroutines exclusively. 

3.3  Analytic  Two-Body  Orbit 

The orbits of two mutually attractive bodies were solved by Kepler and is described by the geometrical parameters of an ellipse and Kepler’s equation for the position in the orbit as a function of time. For navigation, the equations of motion determined by Newton and Einstein are integrated on a digital computer to obtain the trajectory of a spacecraft and planet ephemerides. The computer programs that perform numerical integration are simple to write but are not easy to verify. The easiest way to verify a computer code is to find a program written by someone else and compare the results. This method does not preclude the possibility that both programs are in error. 

The best way to verify a computer code is to obtain an exact analytic solution and compare directly. Unfortunately, the only exact analytic solution involving simple functions is Kepler’s solution for two bodies. The problem of verification becomes tedious when there is no analytic solution and no other program exists. 

The restricted two-body solution obtained by Kepler is utilized to define orbits for two mutually attractive bodies. Since the orbits are the same shape but differ in size, the problem is to find a gravitational parameter that will properly scale the orbit size while at the same time keep the shape and period of the orbits the same. 

The literature does not do a very good job of providing solutions that are useful for verifying navigation software. The Internet is a good source of information but always seems to lack a definition of some parameter that is needed to compute the orbit. 
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Fig.  3.7  Two-body geometry 

 3.3.1  Restricted Two-Body Orbit 

The two-body orbit geometry is shown in Fig. 3.7. The force of body 1, a planet, on body 2, a satellite, is given by 

F12 =  Gm 1 m 2

 r 2

From Newton’s second law, the force of the satellite on the planet is F21 = −F12. 

The kinetic energy is 

 Ek = 1  m 1 v 2 + 1  m 2 v 2

2

1

2

2

The potential energy is the work that needs to be done to separate or raise the satellite to infinity: 

∞

 Ep =

 F dr = −  Gm 1 m 2

 r

 r
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If we make the assumption that the planet is at rest and the mass of the satellite is small compared to the planet, we obtain for the total energy 

 E = 1  m 2 v 2 −  Gm 1 m 2

2

2

 r

The angular momentum of the satellite is 

h2 = r2 × v2

For the case of restricted two-body motion, the parameters  m 2,  v 1, and  r 1 are zero and  r 2 =  r. When defining orbit elements, the equation for energy is modified for mathematical convenience. The energy parameter  C 3 is defined by C 3 = 2 E =  v 2 − 2 Gm 1

(3.52) 

 m

2

2

 r 2

h = r2 × v2

(3.53) 

 h = |h|

(3.54) 

 C 3 is twice the energy per unit mass. The factor of 2 is needed because the kinetic energy is one half the product of mass times velocity squared. When an asteroid hits the Earth, its kinetic energy is converted to heat. The resultant heat energy is one half the product of mass times velocity squared. With energy and momentum thus defined, the classical orbit elements may be computed from the position and velocity vectors and  Gm 1. 

Kepler’s equation is a mathematical solution of Eq. (3.52) through Eq. (3.54). 

The terms in these equations involve parameters and constants that are well defined in terms of physical parameters. However, a solution to these equations does not require a physical understanding of these terms. We can imagine that the mathematical solution was very difficult to obtain. First, the equation for an ellipse is extracted. Then a new parameter is defined, eccentric anomaly, which leads to the time equation. Both steps required considerable mathematical insight and Kepler was a true genius. However, obtaining Eq. (3.52) through Eq. (3.54) probably required even more insight since they involve the physical world. Both the energy and momentum parameters are extracted from vectors. In order to write these equations, Kepler would have to understand the subtle relationships between the physical real world and the parameters of his equation. This is the hard part. 

The easy part is turning the mathematical crank and deriving his equation. The mathematical derivation of Kepler’s equation is given in Sect. 3.2.1. 
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 3.3.2  Planet- or Satellite-Centered Unrestricted Two-Body 

 Orbit 

If the two bodies have nearly the same mass, within a factor of several thousand, then the assumption that the satellite mass can be ignored is no longer valid and we have unrestricted two-body motion. A simple case of unrestricted two-body motion is the trajectory of a basketball player when he executes a slam dunk. His feet push on the floor and his body acquires vertical velocity. The trajectory is a highly eccentric ellipse. One end of the ellipse is near the basketball player and the other end is near the Earth’s center. The ends of a highly eccentric ellipse ( e ≈ 1) can be approximated by a parabola. Conservation of momentum results in a rigid Earth acquiring some velocity in the opposite direction. Gravitational attraction slows the basketball player’s ascent and the Earth’s descent. He makes the shot and falls back to the floor. The Earth also moves back to its original position. The basketball player’s feet hit the floor and stop him and the Earth. Everybody is happy to be back where they started. The fans cheer and the inhabitants of the Earth cheer because their planet is back on course. The energy is distributed between the two bodies and the problem is much more complicated. Fortunately, Kepler’s equation and the resulting classical orbit elements, which result in elliptical motion, can be adapted to provide an exact solution to the problem of unrestricted two-body motion. First, we define a Cartesian coordinate system that is at rest. Since our universe has only two bodies and they are both moving, we have nothing to define a point that is at rest. It can be shown that the center of gravity or barycenter is not accelerated by the two bodies, so we define the barycenter as being at rest. Thus, we have for the position of the planet and satellite with respect to the barycenter 

r = r2 − r1

r1 = −

 m 2

r

 m 1 +  m 2

r2 =

 m 1

r

 m 1 +  m 2

where  r is the separation between the bodies. Since the barycenter is on the line connecting the two bodies, we also have 

 r =  r 2 +  r 1

 r 1 =

 m 2

 r

 m 1 +  m 2

 r 2 =

 m 1

 r

 m 1 +  m 2

124

3

Trajectory Design

The total energy for the two bodies is 

 E = 1  m 1 v 2 + 1  m 2 v 2 −  Gm 1 m 2

2

1

2

2

 r

The potential energy is divided between the two bodies. There is not a separate potential for each body. A potential is a scalar function that has only one value for each point in space. The kinetic energy gained or lost by the two bodies is given by Ep =

 F 1 dr 1 −

 F 2 dr 2

Since  F 1 = − F 2, 

 dEp =  F 1 (dr 1 +  dr 2 ) =  F 1 dr =  dEk The magnitudes of the velocities of the planet and satellite squared are obtained from the Pythagorean theorem as 

 v 2 =

1

 (˙ r 1 ) 2 +  (r 1 ˙ η) 2

 v 2 =

2

 (˙ r 2 ) 2 +  (r 2 ˙ η) 2

where   η  denotes the true anomaly or polar angle that specifies the angular position of the body in the plane of the orbit. The kinetic energy is thus 

 Ek = 1  m 1 ˙ r 2 + 1  m 1 (r 1 ˙ η) 2 + 1  m 2 ˙ r 2 + 1  m 2 (r 2 ˙ η) 2

2

1

2

2

2

2

Replacing   r 1 and   r 2 by   r, the total energy is then given by m 1 m 2

 E = 1

˙ r 2 +  (r ˙ η) 2 −  Gm 1 m 2

2  m 1 +  m 2

 r

If we define a new energy parameter 

2 (m 1 +  m 2 )

 C 3 =  E

 m 1 m 2

 C 3 m 1 m 2

= 1  m 1 m 2  v 2 −  Gm 1 m 2

2 (m 1 +  m 2 )

2  m 1 +  m 2

 r

 C 3 =  v 2 − 2 (Gm 1 +  Gm 2 ) , 

 r

the resultant energy equation is in a form that enables the use of Kepler’s restricted two-body solution and the associated classical orbit elements. The gravity parameter used in Kepler’s equation is now
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 μ =  Gm 1 +  Gm 2

 C 3 =  v 2 − 2 μ

 r

h = r × v

We do not have to invent a new angular momentum parameter because angular momentum is only a function of the state and mass of the bodies and does not depend explicitly on gravity. We can use Kepler’s restricted two-body solution with the constants and variables redefined. 

 3.3.3  Barycentric Two-Body Motion 

If we want to know the barycentric coordinates, we can compute the location of the barycenter in the planetocentric frame from the location of the bodies and transform to the barycenter. The planet and satellite move in ellipses about the barycenter that are smaller than the ellipse that the bodies move about one another. The barycentric ellipses are a little tricky to obtain. As described above, the total energy is given by m 1 m 2

 E = 1

 v 2 −  Gm 1 m 2

2  m 1 +  m 2

 r

Since 

 v 2 = ˙ r 2 +  (r ˙ η) 2

and 

 r = −  m 1 +  m 2  r 1 , 

 m 2

we have 





 m

2

1 +  m 2

 v 2 =

 v 2

 m

1

2

and 





 m 1 m 2

 m 2 (m 1 +  m 2 ) 2

 m 2

 E = 1

1

 v 2 −  Gm 1 m 2

2  m

1

1 +  m 2

 (m 1 m 2 ) 2

 r 1

 (m 1 +  m 2 )

 m 2 (m 1 +  m 2 )

 m 2

 E = 1 1

 v 2 −  Gm 1 m 2

2

 m

1

1 m 2

 r 1

 (m 1 +  m 2 )
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Again we define a new energy parameter: 

 C 3 =

2 m 1 m 2

 E

 m 2 (m

1

1 +  m 2 )

and 





 (m 1 m 2 ) 2

 C 3 =  v 2 − 2 Gm 2

1

 r 1

 m 2 (m

1

1 +  m 2 ) 2

When combined with the angular momentum, the ellipse is given by Kepler’s solution where the gravity parameter is given by 

 m 2

 μ

2

1 =  Gm 2  (m 1 +  m 2 ) 2

 C 3 =  v 2 − 2 μ 1

1

 r 1

h1 = r1 × v1

The solution for the satellite is obtained by swapping  r 1 and   r 2 and Gm 1

 (m 1 m 2 ) 2

 C 3 =  v 2 −

2

2  r 2

 m 2 (m

2

1 +  m 2 ) 2

 m 2

 μ

1

2 =  Gm 1  (m 1 +  m 2 ) 2

 C 3 =  v 2 − 2 μ 2

2

 r 2

h2 = r2 × v2

An example of two-body motion is the Earth-Moon system. Assume the Moon is in a circular orbit about the Earth or that the Earth is in a circular orbit about the Moon and the radius of the orbit is  a = 385 ,  000 km. The gravitational constant for the Moon is  μm = 4 ,  903 km3 / s2 and for the Earth  μe = 398 ,  600 km3 / s2.  The period of the orbit is t hen



 a 3

 P = 2 π

= 2 ,  362 ,  912 s = 27 .  34 days

 μsys

 μsys =  μe +  μm
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The radii of the orbits about the barycenter are  re = 4678 .  168 km for the Earth and  rm = 380 ,  321 .  8 km for the Moon. The gravitational parameter for the orbit of the Earth about the barycenter is 





 μ

2

 m

 μe =  μm

= 0 .  7239226 km3 / s2

 μe +  μm

Here the Earth’s gravity is over a thousand times smaller than the Moon’s gravity. 

Recall that this gravity parameter is really a constant needed to make use of Kepler’s solution. It is hard to imagine the Earth orbiting a point in space, the barycenter, with no mass. The same orbit is obtained if we let the barycenter orbit the Earth. The period of the orbit must be 27.34 days. Thus, we have to reduce the Earth’s mass by an appropriate amount to obtain the correct period. The gravitational parameter of the Earth, to obtain a period of 27.34 days, is given by 

 μe =

 r 3

 e

= 0 .  7239226 km3 / s2

 P

2

2 π

 3.3.4  Example of Planet-Centered and Barycentered Two-Body 

 Motion 

The trajectories of a planet and satellite may be determined by numerical integration of the equations of motion. Let 

 X =  (x, y, z, vx, vy, vz)

and for the planet assume for the barycentric formulation 

 X 1 =  (−4104 .  181 ,  0 .,  0 .,  0 ., −0 .  6264434 ,  0 .) and for the satellite 

 X 2 =  ( 12312 .  54 ,  0 .,  0 .,  0 .,  1 .  879330 ,  0 .) For the planetocentric formulation, 

 X 2 −  X 1 =  ( 16416 .  721 ,  0 .  0 .  0 .  2 .  505773 ,  0 .) The gravitational constants for the planet and satellite are 

 Gm 1 = 42828 .  44

 Gm 2 = 14276 .  15

[image: Image 24]
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Fig.  3.8  Planet- or satellite-centered two-body orbit 

The position and velocity in the above state vectors were adjusted such that the center of the coordinate system is the barycenter and the barycenter is stationary. 

The result of numerical integration for the planetocentric formulation is shown in Fig. 3.8. 

The classical orbit elements may be computed directly from the initial state vector and the gravitational constant. The orbit element set that describes two-body motion is 

 Oc = [ p, e, tp, , i, ω]

(3.55) 

where   p  is the parameter of orbit,  e  is the eccentricity,  tp  is the epoch of periapsis, 

   is the ascending node on the  x −  y  plane,  i  is the orbit inclination, and  ω  is the argument of periapsis. In the literature, the semimajor axis ( a) is often specified in place of the parameter of orbit ( p). The planetocentric classical elements are given by 

 Oc(t) =  fc(X 2 −  X 1 , μ, t)

(3.56) 

where   fc  denotes the conversion from Cartesian state vector to orbit elements: Oc =  ( 29633 .  69 ,  0 .  80509155 ,  0 .,  0 .,  0 .,  0 .) The gravitational parameter is 

 μ =  Gm 1 +  Gm 2 = 57 ,  104 .  58 km3 / s2

[image: Image 25]
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Fig.  3.9  Barycentered two-body orbit 

The time of periapsis is taken to be zero and the orientation angles place the ellipse in the  x −  y  plane. The semimajor axis  (a =  p/( 1 −  e 2 ))  is 84,227.88 km. The period of the orbit is 



 a 3

 P = 2 π

= 642 ,  729 .  5 seconds

 μ

If we interchange the planet and the satellite, we get the same orbit elements because the initial state is the same, only reversed, and the gravity parameter is the same. The initial states,  X 1 and   X 2, given above are at periapsis. 

The results for the barycentric integration are shown in Fig. 3.9 for both the planet and satellite. Given the planet masses, the initial positions and velocities have been adjusted to make the origin of the coordinate system the barycenter. If the initial state is arbitrary, the barycenter would move at a constant velocity since there are no other bodies in our universe and we would just subtract this initial position and velocity from the state for display. 

The classical orbit elements for the satellite are computed from the initial state and the gravity parameter: 

 Oc(t) =  fc(X 2 , μ 2 , t)

(3.57) 

 Oc =  ( 22225 .  27 ,  0 .  80509155 ,  0 .,  0 .,  0 .,  0 .) The gravitational parameter is
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 m 2

 μ

1

2 =  Gm 1  (m 1 +  m 2 ) 2

 μ 2 = 24091 .  00 km3 / s2

The classical orbit elements for the planet are 

 Oc(t) =  fc(X 1 , μ 1 , t)

(3.58) 

 Oc =  ( 7408 .  4237 ,  0 .  80509155 ,  0 .,  0 .,  0 .,  3 .  1415927 ) The gravitational parameter is 

 m 2

 μ

2

1 =  Gm 2  (m 1 +  m 2 ) 2

 μ 1 = 892 .  259 km3 / s2

The orbit elements are summarized in Table 3.1  for all three ellipses. 

Observe that the period of the orbit and the eccentricity are the same for all three ellipses, the planetocentric and both barycentric orbits. The orbit shape is defined by the angular momentum, which is a function of the initial state and the masses of the bodies. The energy parameter defines the size of the orbit or semimajor axis. 

A geometrical proof that the three ellipses have the same eccentricity follows from the scaling of all lengths by ratios of the masses. This proof requires a mathematical definition of shape, which is difficult to define. Topological proofs rely on observing the shape. Two objects have the same shape if they look like they have the same shape. A mathematical proof is clumsy as Arthur Eddington would say about general relativity. He claimed that he did not understand the geometry. Eddington had a sense of humor, whereas Einstein was totally serious about his work. The problem stems from the inclusion of time in the physical constants. An ellipse is static and the gravitational field of the Sun is static. Einstein derived the Einstein tensor by assuming that the divergence of motion was equal to the divergence of space. 

We start with the definition of  e  from the restricted two-body problem: h 2 C 3

 e =

+ 1

 μ 2

Table  3.1  Ellipse orbit elements 

Ellipse

 C 3

h

 μ

a

Period

e 

Planetocentric

−0.67798 

41,136 

57,109 

84,227 

642,730

−0.805091 

Satellite barycentric

−0.38136 

23,139 

24,091 

63,170 

642,730

−0.805091 

Planet barycentric

−0.04237

2,571 

892.3

21,056 

642,730

−0.805091
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If we insert the equations for  h,  C 3 and   μ  from the solutions for the planet centered and barycentered coordinates, it is shown that the eccentricities are the same. The eccentricities are the same if 

 h 2 C 3

 r 2 v 2 cos2  γ (v 2 − 2 μ )

=

 r

 μ 2

 μ 2

cos2  γ =  μp

 v 2 r 2

is the same for both the planetocentric orbit and the barycentric orbit: h 2 C 3

 p(v 2 − 2 μ )

=

 r

 μ 2

 μ

For the planetocentric orbit, 

 h 2 C 3

 p(v 2 − 2 (Gm 1 +  Gm 2 )

=

 r

 )

(3.59) 

 μ 2

 (Gm 1 +  Gm 2 )

For the planet barycentric orbit, define 

 M =

 m 2

 (m 1 +  m 2 )

 h 2 C

 p

− 2 Gm 2 M 2  )

3 = 1 (v 21

 r 1

 μ 2

 Gm 2 M 2

Since 

 r 1 =  Mr v 1 =  Mv p 1 =  Mp, 

we have 





 m 2

 p v 2 − 2 Gm 2

 m

 h 2 C

 Mp(M 2 v 2 − 2 Gm 2 M 2  )

 (m

2

3

1+ m 2 )

 r

=

 Mr

=

 (m 1+ m 2 )

 μ 2

 Gm 2 M 2

 Gm 2

and 

 h 2 C 3

 p(v 2 − 2 G(m 1 +  m 2 )

=

 r

 )

(3.60) 

 μ 2

 G(m 1 +  m 2 )

which is the same as for the planetocentric orbit (Eq. (3.59)). 

In the literature, a parameter called reduced mass is often defined. Reduced mass is not a physical parameter but a term in an equation. It is true that one can obtain the
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barycentric orbits by reducing the mass of the central body and ignoring the mass of the orbiting body. Here, we have manipulated the energy equation to obtain v 2 = constant 1 + constant 2

 r

This equation is in the same form for which Kepler’s restricted two-body equation is a solution. Kepler’s solution does not depend on the meaning or values of the constants. The solution of a mathematical equation is up to a physicist to determine the physical meaning. Mathematicians just don’t care. We only have one gravity parameter (constant 2) instead of two. The parameter constant 1 is not the total energy, but is related to energy. 

The trajectory or ephemeris can be obtained by numerical integration of the equations of motion or computed directly from the six orbit elements. The results are exactly the same. The literature makes a big deal out of the fact that the two-body problem is the only trajectory that has been solved in terms of simple functions. 

Simple functions are infinite series, numerical integration is an infinite series, and pi is an infinite series. All trajectory solutions are infinite series. A solution obtained by numerical integration on a computer is just as valid as one obtained by computation from simple functions like sines and cosines. The advantage of computer solutions is that after the computer is programmed and a run made, the analyst really understands the problem, provided he programmed it correctly. 

3.4  Interplanetary  Transfer 

The problem of interplanetary trajectory design is initially concerned with finding a trajectory that will transfer a spacecraft from one planet to another where the calendar date is specified at the beginning and end. This problem is a two-point boundary value problem where the two points are the positions of the first planet at the start time and the second planet at the end time. 

 3.4.1  Hohmann Transfer 

The existence of two-body transfer orbits solves only part of the interplanetary trajectory design problem. The transfer trajectory is generally initiated by a large rocket motor burn at the first planet, the Earth, and terminated by a large rocket motor burn at the target planet that inserts the spacecraft into orbit. For a planetary flyby, the second motor burn is omitted. For preliminary trajectory design, the two rocket motor burns are generally computed as impulsive burns, and a trajectory is desired that minimizes the magnitudes of the velocity changes at the end points to achieve transfer. The velocity change is from the orbital velocity of the planets
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Fig.  3.10  Earth-Mars Hohmann transfer 

to the velocity of the spacecraft and is generally specified in terms of the energy parameter (  C 3) associated with the hyperbolic departure and approach conic orbits. 

This interplanetary orbit transfer problem is referred to as the optimum two-impulse transfer problem, and a solution was first obtained by the German rocket engineer Walter Hohmann in 1925. 

The geometry of the Hohmann transfer orbit is shown in Fig. 3.10  for a transfer orbit from Earth to Mars. The Hohmann transfer orbit is tangential to the Earth’s orbit at launch and tangential to Mars orbit at encounter. The transfer angle is 180 ◦. The optimality appears obvious from Fig. 3.10  since energy is added in the direction of the Earth’s orbital velocity and subtracted in the direction of Mars orbital velocity. The proof of optimality is a bit mathematically tedious and is best demonstrated numerically by obtaining the Hohmann transfer orbit as a solution to the problem of constrained trajectory optimization, which is described in a later chapter. The opportunity for a Hohmann transfer from Earth to Mars occurs when the planets have the alignment shown in Fig. 3.10. This alignment occurs at a frequency determined by the difference of Earth and Mars angular orbital rates or about every 1.64 years. The launch opportunity occurs on the day when
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Mars is at a particular angle with respect to the Earth. The spacecraft must be launched at the time that the transfer orbit will encounter Mars at the encounter time. Thus, Mars must lag the encounter point by an angle of about 136◦ at the time of launch. The lag angle may be computed from the periods of the spacecraft and Mars orbits. 

A problem with the Hohmann transfer orbit is that the solution is at a singular point associated with elliptic transfer orbits. A 180◦ orbit transfer trajectory must be in the plane of the Earth, Mars, and Sun. If Mars is slightly out of the ecliptic plane, as it generally is except at the nodal crossings, the transfer orbit must also be out of the ecliptic plane. For Mars, near the 180◦ transfer point, the transfer orbit plane may be far out of the ecliptic plane requiring an enormous expenditure of rocket fuel to make the plane change. For some cases, the Hohmann transfer trajectory is over the Sun’s ecliptic pole. One simple remedy is to introduce a small midcourse plane change maneuver and another remedy is to simply avoid the singularity. For most interplanetary trajectory designs, the latter remedy is used and the launch and encounter dates are biased a few days. Fortunately, since the optimum solution is obtained for launch and encounter dates where the derivative of the cost function is zero with respect to these times, substantial deviations from optimality may be made with a small performance penalty. 

Once the launch date and encounter date are determined, a preliminary trajectory design may be implemented using the tools described in Sects. 3.2.1  through  3.2.4. 

The design process involves interfacing the interplanetary transfer trajectory with departure and approach hyperbolic trajectories that satisfy design constraints at the Earth and the target planet. The Earth injection hyperbola must be achievable by the launch vehicle and the encounter hyperbola must result in the desired geometry at the target. A simple method to design an interplanetary trajectory is by patched conics. The principal behind patched conics is that the motion of the spacecraft may be computed by including the acceleration of only the dominant central body and ignoring the tidal accelerations associated with all other bodies. The error introduced by ignoring tidal acceleration is generally small enough that the resulting trajectory may be used to evaluate other mission constraints and to provide an initial guess for precision targeting programs that are employed for the final design. 

Figure  3.11  illustrates schematically the patched conic design process for an Earth to Mars trajectory. In order to initialize the process, the Earth position vector at the Earth injection time (  ti) and the Mars position vector at the Mars encounter time are obtained from a planetary ephemeris file. The conic Earth ephemeris and Mars ephemeris orbit elements are computed as described is Sect. 3.1: 

 Oce(ti) =  fc(Xe(ti), GMs, ti)

 Ocm(tm) =  fc(Xm(tm), GMs, tm)

From Lambert’s orbit transfer solution, a two-body sun-centered conic is computed from the center of the Earth to the center of Mars:
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Fig.  3.11  Earth-Mars trajectory design schematic diagram 

 Ol =  fl(te, r e, tmr m, GMs) The position vectors r e  and  r m  are obtained from the inverse conic element transformations  O−1

 ce

and  O−1

 cm . Two patch points are defined at  t 1 and   t 2 about 2.5 days from Earth injection and 2 days from Mars encounter. At these times, the spacecraft is about two million km from the planets where the tidal acceleration of the Sun is about equal to the central body acceleration of the planets. The tidal acceleration of the Sun is simply the difference between the Sun’s acceleration of the spacecraft and the Sun’s acceleration of the planet. The state vectors of the spacecraft and planets are computed at the patch points: 

 X(t  1 ) =  f −1

 c

 (Ol, GMs, t 1 )

 Xe(t 1 ) =  f −1

 c

 (Oce, GMs, t 1 )

 X(t  2 ) =  f −1

 c

 (Ol, GMs, t 2 )

 Xm(t 2 ) =  f −1

 c

 (Ocm, GMs, t 2 )
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The hyperbolic orbit elements of the spacecraft are computed with respect to the Earth and Mars at the patch points from the planet relative state vectors. The incoming asymptote is computed for Mars and the outgoing asymptote for the Earth: Ohi =  fhi(X(t 2 ) −  Xm(t 2 ), GMm, t 2 ) Oho =  fho(X(t 1 ) −  Xe(t 1 ), GMe, t 1 ) The encounter conditions at Mars ( bi, θi) are set equal to the target encounter conditions ( b∗ , θ ∗), and the outgoing encounter conditions at the Earth ( b i

 i

 o, θo)  are  

set equal to the injection conditions ( b∗ o, θ∗ o). For the initial iterations, the injection conditions at the Earth are  b∗ =

=

 o

20 ,  000 km and  θ ∗

 o

180◦. Planet relative state 

vectors are then computed at the patch points, and another Lambert transfer orbit is computed connecting the new patch points: 

 X 1 (t 1 ) =  fho(Oho, GMe, t 1 )

 X 2 (t 2 ) =  fhi(Ohi, GMm, t 2 )

 Ol =  fl(t 1 , r (t 1 ) + r e(t 1 ), t 2 , r (t 2 ) + r m(t 2 ), GMs) New Sun-centered state vectors are computed, and the above process is repeated several times until the solution converges to the target encounter conditions. The Earth departure hyperbola target conditions are then modified to bring the injection position into alignment with the launch vehicle ascent trajectory as specified by injection flight plane coordinates. The true anomaly of the injection point is computed from the defined injection radius (  ri). From the true anomaly and the departure hyperbolic orbit elements, the eccentric anomaly is computed and the time of injection is determined from Kepler’s equation. The injection state vector is then computed from 

 Xi =  fho(Oho, GMe, ti)

The injection flight plane coordinates are then computed from the injection state vector: 

 Oi =  fi(X, GM)

The injection flight plane coordinates are then replaced with the target values. 

For example, the injection flight path angle may be set equal to the target value ( γi =  γ ∗), and the central angle from the launch site to injection is set equal to its i

target value ( ωx =  ω∗ x) to define  O∗. The injection state vector and new outgoing i

hyperbolic encounter target parameters are then computed: 

 Xi 2 =  f −1 (O∗

 i

 i , GMe)

3.4 Interplanetary Transfer

137

Table  3.2  Earth-Mars trajectory design iterations 

Earth injection flight plane

Mars encounter hyperbola 

 ω∗ x

 γ ∗

 V

 i

 i

 Az

 λi

 b a

 θ  a

 V∞

 α∞

 δ∞

 i

(deg) 

(deg) 

(km/s) 

(deg) 

(deg) 

(km)

(deg) 

(km/s) 

(deg) 

(deg) 

1 

32.68 

28.74 

10.94 

127.97 

113.54 

2219.34 

43.72 

3.00

253.96

− 14 .  64

2 

21.10 

23.26 

10.99 

133.79 

119.00 

28887.02 

257.29 

3.44

254.24

− 12 .  19

3 

19.53 

22.44 

10.99 

134.43 

119.37 

10633.94 

253.18 

3.45

254.17

− 11 .  72

4 

19.32 

22.33 

10.99 

134.50 

119.40 

6965.54 

235.98 

3.45

254.18

− 11 .  66

5 

19.29 

22.31 

10.99 

134.51 

119.41 

6489.04 

233.95 

3.45

254.18

− 11 .  66

6 

19.29 

22.31 

10.99 

134.51 

119.41 

6429.07 

233.65 

3.45

254.18

− 11 .  65

7 

19.29 

22.31 

10.99 

134.52 

119.41 

6421.31 

233.62 

3.45

254.18

− 11 .  65

8 

19.29 

22.31 

10.99 

134.52 

119.41 

6420.32 

233.61 

3.45

254.18

− 11 .  65

9 

19.29 

22.31 

10.99 

134.52 

119.41 

6420.20 

233.61 

3.45

254.18

− 11 .  65

10 

15.92 

18.00 

10.99 

134.75 

112.99 

6420.18 

233.61 

3.45

254.18

− 11 .  65

11 

16.01 

17.98 

10.99 

134.77 

112.78 

6479.39 

233.95 

3.46

254.18

− 11 .  65

12 

16.06 

18.00 

10.99 

134.77 

112.77 

6428.60 

233.65 

3.46

254.18

− 11 .  65

13 

16.06 

18.00 

10.99 

134.77 

112.77 

6421.32 

233.62 

3.46

254.18

− 11 .  65

14 

16.06 

18.00 

10.99 

134.77 

112.77 

6420.34 

233.61 

3.46

254.18

− 11 .  65

a  Target parameters 

 O∗ =

 ho

 fho(Xi 2 , GMe, ti)

The outgoing hyperbola target parameters are reset to correspond to the desired injection flight plane coordinates. After several iterations, the solution converges to the target injection coordinates at the Earth and the encounter parameters at the target planet. 

An example of the design of an interplanetary trajectory is the Mars Odyssey spacecraft launched on April 7, 2001, and arrived at Mars on October 24, 2001. 

The flight time of 199.4 days is considerably less than the nominal Hohmann transfer time of about 258 days. The transfer angle of 140.2 ◦ is also considerably less than the 180 ◦ Hohmann transfer angle. The Odyssey spacecraft was launched about 3 months later than the Hohmann optimum transfer time. Launches late in the launch period, surrounding the optimum transfer time of January 11, 2001, require additional launch energy to achieve the required injection conditions. However, the cost savings associated with shortening the flight time and consequently mission operations time may well offset the additional launch energy cost provided the launch vehicle has the additional capability. Table 3.2  shows the result of implementing the interplanetary trajectory design procedure described above. Tabulated are the injection conditions at the Earth and encounter conditions at Mars following each iteration cycle. The converged solution agrees reasonably well with the trajectory that was actually designed. The velocities at injection and at encounter agree within about 50 m/s. 
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3.5  Three-Body  Trajectory 

Gravity assist trajectories are an important class of trajectories that have been used by Voyager, Galileo, Cassini, and other missions to tour the solar system. The accessibility of a target planet, particularly those beyond the orbit of Jupiter, depends on finding a transfer orbit with energy relative to the Earth, within the capability of the launch vehicle. The use of gravity assist to increase the transfer orbit energy has opened up the exploration of planets that otherwise would not be accessible with current launch vehicle capability. 

Most interplanetary and planetary orbiter mission trajectories, since the beginning of the space age, have used Keplerian two-body motion in their design. 

Missions requiring three-body transfers are generally limited to those involving the satellites of the major planets, for example, missions to Lagrange points in the Earth-Moon system. Even though gravity assist trajectories can be designed by repeated application of two-body theory, they are included in the three-body classification because the gravity assist requires a simultaneous exchange of energy among three bodies. The three-body theory employed for the design of gravity assist trajectories involves the use either of vectors defining the approach and departure hyperbolic asymptotes with respect to the gravity assist planet or of Tisserand’s criterion, which pertains to the interplanetary Keplerian orbits connecting the launch, gravity assist, and target planets. It will be shown that while both design techniques follow from the Jacobi integral, they yield significantly different results, since they represent different approximations of the true equations of motion. 

 3.5.1  Jacobi Integral 

An important integral describing constraints on energy transfer for the restricted three-body problem was discovered by Carl Gustav Jacob Jacobi in the nineteenth century. A point mass moving in the vicinity of two massive bodies in circular orbits about their barycenter will conserve a certain function of the state and gravitational parameters of the massive bodies referred to as Jacobi’s integral. The constant of integration is called Jacobi’s constant. The equations of motion for a spacecraft near two massive bodies are given by 

¨

 x 1 −  x

 x 2 −  x

 x =  GM 1

+  GM 2

 r 3

 r 3

1

2

¨

 y 1 −  y

 y 2 −  y

 y =  GM 1

+  GM 2

 r 3

 r 3

1

2

¨

 z 1 −  z

 z 2 −  z

 z =  GM 1

+  GM 2

(3.61)

 r 3

 r 3

1

2
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Fig.  3.12  Restricted 
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The two massive bodies rotate around the barycenter and the rotation rate is simply 2 π  divided by the period of the orbit: 



 GM 1 +  GM 2

 ω =

(3.62) 

 ρ 3

where   ρ  is the distance separating the two massive bodies. The geometry is illustrated in Fig. 3.12. The primed coordinate system ( x  , y  , z ) represents a rotating coordinate system in which the two massive bodies lie on the  x  axis, with x =  x  cos  ωt −  y  sin  ωt

 y =  x  sin  ωt +  y  cos  ωt

 z =  z 

(3.63) 

After differentiating Eq. (3.63) twice, substituting into Eq. (3.61), and eliminating the sine and cosine terms, the following result is obtained: 

 x  −  x 

 x  −  x 

¨ x  − 2 ω ˙ y  −  ω 2 x  = − GM  1

2

1

−  GM 2

 r 3

 r 3

1

2





¨

 GM 1

 y  + 2 ω ˙ x  −  ω 2 y  = −

+  GM 2  y 

 r 3

 r 3

1

2





¨

 GM 1

 z  = −

+  GM 2  z 

(3.64)

 r 3

 r 3

1

2
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Equation (3.64) may be put into a form that can be integrated by defining the function 

 U = 1  ω 2 (x 2 +  y 2 ) +  GM 1 +  GM 2

(3.65) 

2

 r 1

 r 2

and substituting into Eq. (3.64): 

˙ x  ¨ x  − 2 ω ˙ x  ˙ y  = ˙ x   ∂U

 ∂x 

˙ y  ¨ y  + 2 ω ˙ x  ˙ y  = ˙ y   ∂U

 ∂y 

˙ z ¨ z  = ˙ z   ∂U

 ∂z 

(3.66) 

Adding Eq. (3.66), 

˙ x  ¨ x  + ˙ y  ¨ y  + ˙ z ¨ z  = ˙ x   ∂U

(3.67) 

 ∂x  + ˙

 y   ∂U

 ∂y  + ˙ z   ∂U

 ∂z  =  dU

 dt

The integral of Eq. (3.67), called the Jacobi integral, is 

˙ x 2 + ˙ y 2 + ˙ z 2 = 2 U −  C

or 

˙

 GM 1

 GM 2

 x 2 + ˙

 y 2 + ˙

 z 2 =  ω 2 x 2 +  ω 2 y 2 + 2

+ 2

−  C

(3.68) 

 r 1

 r 2

where   C  is the constant of inte gration. 

 3.5.2  Tisserand’s Criterion 

Francois Felix Tisserand was a nineteenth-century astronomer who discovered a unique application of Jacobi’s integral to identify comets. In the restricted three-body problem, a certain function of the orbit elements before and after a planetary encounter is conserved. If this function is computed for two comet observations on different orbits and the results are the same, one may conclude that the observations are of the same comet and the comet has encountered a planet between the observations. This may be confirmed by propagating the orbits forward or backward in time to see if they encountered a planet. 
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In the application of Tisserand’s criterion to gravity assist trajectory design, the procedure is reversed. Transfer trajectories from the launch planet to the intermediate planet and from the intermediate planet to the target planet are computed using Lambert’s theorem. These trajectories are matched based on Tisserand’s criterion to identify viable launch and encounter opportunities. Tisserand’s criterion follows directly from Jacobi’s integral. The Jacobi integral is transformed back to inertial coordinates (the unprimed coordinates in Fig. 3.12): 

˙ x 2 + ˙ y 2 + ˙ z 2 = 2 ω(x ˙ y −  y ˙ x)+

 GM 1

 GM 2

2

+ 2

−  C

(3.69) 

 r 1

 r 2

For  GM 1 much greater than  GM 2,  the   z  component of the angular momentum vector is given by

 x ˙ y −  y ˙ x =  hz =  h  cos  i (3.70) 



 h =

 GM 1  a( 1 −  e 2 ), 

and from the vis viva integral, the energy is given by 

˙

2

 x 2 + ˙ y 2 + ˙ z 2 =  GM 1 (

− 1  )

(3.71) 

 r 1

 a

Substituting Eqs. (3.70) and (3.71) into Eq. (3.69)   give  s 2



 GM 1 (

− 1  ) − 2 ω GM 1  a( 1 −  e 2 )  cos  i =

 r 1

 a

 GM 1

 GM 2

2

+ 2

−  C

 r 1

 r 2

Substituting Eq. (3.62)   fo  r  ω  and for small  GM 2 compared with  GM 1, a( 1 −  e 2 )

 C ≈  GM 1 + 2 GM 1

cos  i

(3.72) 

 a

 ρ 3

In the literature, Tisserand’s criterion is often developed in dimensionless coordinates and the Jacobi constant modified to remove constant parameters. If  a  is divided by  ρ  to define  ¯ a  and Eq. (3.72) is multiplied through by  ρ  and divided by  GM 1, Tisserand’s criterion in dimensionless coordinates becomes 

 Cρ



≈ 1 + 2 ¯ a( 1 −  e 2 )  cos  i

 GM 1

¯ a

If the first observation of a spacecraft or comet has orbit elements  a 1,  e 1, and  i 1 and the second observation after a planetary encounter has orbit elements  a 2,  e 2, and  i 2, then
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1


 a

 )

+

1 ( 1 −  e 2

2

1

cos  i 1 ≈

 a 1

 ρ 3



1

 a

 )

+

2 ( 1 −  e 2

2

2

cos  i 2

 a 2

 ρ 3

 3.5.3  Gravity Assist Vector Diagram 

Figure  3.13  shows the encounter geometry in the vicinity of the intermediate planet that supplies the gravity assist energy boost to the spacecraft. The incoming velocity of the spacecraft ( V1) is subtracted from the planet velocity ( V p) to obtain the planet relative approach velocity ( v i) as shown in the upper vector diagram in Fig. 3.13. 

The lower vector diagram shows the same relationship for the outgoing velocity vectors. If the incoming and outgoing velocities are computed far from the planet yet close enough to the planet that the heliocentric energy may be assumed constant, the velocities  v i  and  v o  are approximately the v∞ vectors associated with the two-body hyperbola about the planet. In the limit of two-body motion assumed for patched conic trajectories, v i  and  v o  are equal in magnitude. Since the planet velocity is Sun 
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Fig.  3.13  Gravity assist vector diagram
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also assumed to be constant during the relatively short time interval of the planet encounter, the outgoing vector diagram may be superimposed on the incoming vector diagram as shown in Fig. 3.13. The outgoing heliocentric spacecraft velocity magnitude is greater than the incoming velocity magnitude, and the spacecraft has acquired additional orbit energy relative to the Sun. The energy acquired by the spacecraft comes from the Sun and the planet. 

Consider the triangle formed by the spacecraft and planet heliocentric velocity vectors and the incoming velocity vector. From the law of cosines, 

 v 2 =

+

−

 i

 V  2

 p

 V  2

1

2 VpV 1 cos  A

(3.73) 

The orbit of the planet about the Sun may be approximated by a circle with velocity magnitude given by 



 GMs

 Vp =

 ρ

The heliocentric orbit of the spacecraft may be regarded as a two-body conic. The velocity magnitude is given by 



2 GMs

 V 1 =

−  GMs

 ρ

 a 1

In the plane of the orbit, the angle  A  is simply the flight path angle ( γ ). For the general case, the angle  A  is a function o f  γ  and the inclination of the spacecraft orbit plane with respect to the planet orbit plane  i 1 and 

cos  A = cos  γ  cos  i 1



 GMsa 1 ( 1 −  e 2 )

1

cos  γ =

 V 1 r 1

Making these substitutions into Eq. (3.73)   give  s

 v 2 = 2 GMs −  GMs +  GMs −

 i

 ρ

 a 1

 ρ





 GMs

 GMsa 1 ( 1 −  e 2 )

2 V

1

1

cos  i 1

 ρ

 ρ 2 V  2

1

The energy of the spacecraft relative to the planet, the potential energy of the spacecraft relative to the Sun, and the velocity of the planet relative to the sun may be regarded as constant. Collecting these “constant” terms on the left side gives

[image: Image 26]
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 C ≈ 3 GMs −  v 2

 ρ

 i



 a

 )

≈  GMs +

1 ( 1 −  e 2

2 GM

1

 s

cos  i 1

 a 1

 ρ 3

=

 GM 1

 GM 2

2 ω(x ˙ y −  y ˙ x) + 2

+ 2

− ˙ x 2 − ˙ y 2 − ˙ z 2

 r 1

 r 2

Comparison  of  Jacobi  Constant  Approximations 

An interesting insight into the geometrical meaning of Jacobi’s constant may be obtained by comparing the approximations with the actual Jacobi constant as a spacecraft flies by Jupiter. For the restricted three-body problem, the bodies are the Sun, Jupiter, and the spacecraft. The spacecraft has zero mass. Figure 3.14  shows a plot of the Jacobi constant and the two approximations as a spacecraft flies by Jupiter. The closest approach to Jupiter is about two million kilometers or about the same distance as the orbit of Europa. Since the solar tide is significant, we must integrate the equations of motion and compute osculating orbit elements along the trajectory. The abscissa is days from Jupiter encounter and the ordinate is Jacobi’s constant. The upper blue curve is the actual Jacobi constant, which is 505 km 2/s 2. 

The Jacobi constant has the units of energy and there is a small perturbation near periapsis that is unexplained. The lower red curve is Tisserand’s criterion, which Fig.  3.14  Jacobi constant approximations
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does not do very well near Jupiter encounter. This is to be expected because the term related to Jupiter’s gravity has been removed. The further the spacecraft moves from Jupiter, the more accurate the approximation becomes. The Jacobi constant derived from the gravity assist geometry, the green curve, does very well near Jupiter but deteriorates at about 100 days from Jupiter. Here, the tidal acceleration of the Sun deflects the approach asymptote of the hyperbola that is used to compute Jacobi’s constant. This deflection suggests that we may have been better off matching the hyperbolic excess velocity at Jupiter computed from the incoming and outgoing legs of the interplanetary trajectory. The best approach requires further study. 

Normalization  of  Tisserand’s  Criterion 

In the literature, Tisserand’s criterion is often simplified by factoring out the gravity of the Sun and the distance between the two massive bodies. Thus, we have for Tisserand’s criterion 



 a 1 ( 1 −  e 2 )

 C ≈  GMs + 2 GM

1

 s

cos  i 1

 a 1

 ρ 3

and 



 Cρ ≈ 1 + 2 ¯ a 1 ( 1 −  e 2 )  cos i 1

 GM

1

 s

¯ a 1

where ¯ a 1 =  a 1

 ρ . This normalization was probably done for two reasons. First, it simplifies computation and second, distances of the planets from the Sun were not known very well. However, the distances of the planets in multiples of the astronomical unit could be determined accurately by measuring the period of the orbits. In the age of computers, this normalization introduces more confusion than simplification. It suggests that a comet can be identified by computing the Jacobi constants for two separate observations of the comet ephemeris. This is true, but a separate computation must be made for each planet since  ρ  is in the equation for the Jacobi constant and the normalized Jacobi constant. 

 3.5.4  Cassini Trajectory Design 

The Cassini mission to Saturn provides an example of the application of Tisserand’s criterion to the design of a gravity assist trajectory. The segments of the Cassini trajectory that are of interest are from Earth to Jupiter and from Jupiter to Saturn. 

The first step is to determine the encounter times at Jupiter and Saturn. An initial guess of the encounter times of Jupiter and Saturn is made based on the approximate
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Fig.  3.15 
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flight times associated with a Hohmann transfer. Point-to-point conic solutions for the trajectory segments from Earth to Jupiter and from Jupiter to Saturn are computed using the solution of Lambert’s theorem. A point-to-point conic solution assumes zero mass for the planets and only the gravity of the Sun is included. The solution of Lambert’s theorem gives the two-body conic connecting two position vectors where the flight time is known. The two position vectors are obtained from the planetary ephemerides, and the conic trajectory is computed from planet center to planet center as shown in Fig. 3.15. 

The next step is to compute the velocity vectors relative to Jupiter, one for the incoming trajectory segment ( v i) and one for the outgoing trajectory ( v o). If the Jacobi constants for the trajectory segments do not match, then the following procedure can be used to find potentially viable encounter time solutions. The encounter time of Jupiter is fixed and the encounter times of Earth and Saturn are permitted to vary over a suitable range of times. For each pair of Earth-Jupiter encounter times and Jupiter-Saturn encounter times, a Lambert solution is computed and the Jacobi constant is computed from the orbit elements. The Jacobi constants for the two interplanetary trajectory legs are matched and the results cross plotted in Fig. 3.16. Several approximations may be used for computing the Jacobi
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Fig.  3.16  Earth-Jupiter-Saturn loci 

constant. Results for Tisserand’s criterion and the Jupiter energy criterion are shown in Fig. 3.16  as dashed lines. The Jupiter energy criterion, given in Sect. 3.3.3,   is equivalent to matching the incoming and outgoing velocity magnitudes relative to Jupiter. A criterion is used that matches the average of Tisserand’s criterion and the Jupiter energy criterion and is shown in F ig. 3.16  as the solid line. The equation for this criterion, after simplification to remove constant parameters, is given by 1
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(3.74) 
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 ρ 3

 GMs

For a given pair of Earth launch and Saturn encounter times indicated in Fig. 3.17, the approach and departure velocity vectors at Jupiter are obtained and the hyperbolic conic relative to Jupiter is computed. A preliminary assessment of the viability of the Jupiter-centered hyperbola is performed. A trajectory that intersected the surface of Jupiter, for example, or hits one of Jupiter’s satellites would not be viable. Next, the encounter conditions at the Earth and Saturn are examined for viability. If the energy at the Earth or Saturn is unacceptable, the trajectory is not viable. If a viable trajectory is not found for all the launch date encounter date pairs indicated in Fig. 3.17, the above procedure is repeated for another Jupiter encounter time. 
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Fig.  3.17  Earth-Jupiter-Saturn encounter 

Once a viable set of encounter times has been determined, a patched conic trajectory is designed that connects the Earth, Jupiter, and Saturn. The procedure involves computing the approach and departure velocity vectors at the patch points shown in Fig. 3.17  from the point-to-point conic solution. The two-body hyperbolic trajectory is then computed with respect to each of the participating planets. For the Earth and Saturn, the departure and approach target plane positions are given. A new set of patch point positions relative to the Sun are computed. The states relative to the Earth, 

Jupiter, and Saturn are added to the respective planetary ephemerides at the appropriate times. The patch point times are selected such that the spacecraft position is near the sphere of influence of the planets. The planetary ephemerides may be computed from two-body orbit elements with respect to the Sun. This procedure is repeated several times for the new patch points until a ballistic trajectory is obtained from the Earth to Saturn. It will be necessary to allow the Saturn encounter time to vary a small amount from the point-to-point solution. The results, shown in Fig. 3.16  for three launch dates, compare favorably with the point-to-point solutions. Also, the Cassini design point, obtained by numerical integration, is shown in Fig. 3.12  for comparison. 

The patched conic solution is used as a starting point for targeting an integrated trajectory. A comparison of the Cassini integrated trajectory and the patched conic solution is shown in Fig. 3.18. State vectors are computed from the patched conic
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Fig.  3.18  Cassini conic design error 

trajectory and differenced with state vectors obtained from the integrated Cassini ephemeris. The magnitude of the position difference is plotted as a function of time and the heliocentric range of the spacecraft is also plotted for comparison. 

The maximum error is less than one percent of the heliocentric range. Since the period of the Saturn orbit is 29 years, an error of several months in the predicted encounter time at Saturn from the point-to-point conic solutions should be expected. 

This error in computing the encounter times is exacerbated by accelerations from the third body that has been ignored for the two-body computations. However, a design error of only one percent enables a fairly accurate assessment of mission design constraints from the conic solution. 

3.6  Four-Body  Trajectory 

An early investigation of flight to the Moon by V. A. Egorov in 1958 identified several problems relating to the design and navigation of translunar trajectories. 

These included hitting the Moon, circumnavigation of the Moon with a return to the Earth at a flat entry angle, using the Moon’s gravity for assist in reaching the planets, and the possibility of the Moon capturing a projectile launched from the Earth. Based on consideration of the three-body problem and its associated Jacobi integral, solutions can be demonstrated for these problems with the exception of the Moon capturing a projectile launched from the Earth. For the problem of lunar capture, Egorov concluded that the Moon could not possibly capture a projectile launched from the Earth on the first circuit of the trajectory no matter what initial
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conditions are specified. This conclusion was based on analysis of the three-body problem and did not consider the Sun’s gravity. 

The first example of a ballistic trajectory of a spacecraft launched from the Earth into orbit about the Moon was discovered in 1990 while analyzing a plan to salvage the Muses A (Hiten) spacecraft in a highly eccentric orbit about the Earth. The key to the discovery was the utilization of the Sun’s gravity to affect the transfer to a lunar capture orbit. The result was a numerical solution to the restricted four-body problem of the Earth, Moon, Sun and a point mass spacecraft. Lunar transfer trajectories that require analysis that goes beyond that provided by three-body theory and the Jacobi integral are referred to as four-body trajectories. Examples are Hiten, Lunar A, and the Genesis return trajectory from the vicinity of the Moon to Earth. 

These trajectory designs cannot be fully explained or analyzed using three-body theory and the Jacobi integral. As is the case for the three-body problem, a complete analytic solution of the four-body problem has not been obtained. Furthermore, an integral relationship similar to the Jacobi integral has not been found for the four-body problem and the prospects for finding such an integral are dim. Current theories, such as weak stability theory, are explanatory and not predictive and thus cannot be used for design of trajectories that require a simultaneous four-body solution without some intervention by the trajectory designer. 

In the absence of a predictive four-body theory, the trajectory designer may use the existing solution of the two-body problem and the Jacobi integral to piece together trajectory segments and achieve the desired result. Indeed, most lunar transfer trajectory designs are obtained by patching together conic orbits where the Earth’s gravity dominates to conic orbits where the Moon’s gravity dominates. By extension, the trajectory segment dominated by the Earth, Moon, and spacecraft Jacobi integral may be pieced together with the trajectory segment dominated by the Sun, Earth, and spacecraft Jacobi integral to obtain continuous ballistic trajectories that connect Earth departure or arrival with capture orbits about the Moon and the nearby Lagrange points. 

 3.6.1  Moon Capture of Projectile Launched from Earth 

A spacecraft in a lunar capture orbit will approach the Moon in a nearly circular orbit about the Earth that is just inside the Moon’s orbit or just outside the Moon’s orbit. 

As the spacecraft approaches the Moon, the Moon’s gravity provides the necessary acceleration to slow down or speed up the spacecraft depending on whether the approach orbit is inside or outside the Moon’s orbit. If the spacecraft has just the right approach velocity, it is drawn into orbit about the Moon. The orbital mechanics of capture orbits are well documented in the literature. A spacecraft is placed in an orbit that is loosely bound to the Moon and whose semimajor axis is just inside the Moon’s sphere of influence. The lunar periapsis is directed toward the Earth and apoapsis is therefore directed away from the Earth. The orbit is integrated for several revolutions about the Moon and if it remains captured, the apoapsis altitude is raised

3.6 Four-Body Trajectory

151

Fig.  3.19  Examples of lunar 

Y 

capture orbits

e = 0.94151 

1.5 

e = 0.94171 

1.0 

e = 0.943 

SPACECRAFT 

0.5 

CAPTURE 

EARTH 

X 

-1.25

-1.0 

-0.75

-0.5

-0.25

0.25

MOON 

-0.5 

SCALE = 1:1,000,000 km 

slightly. A convenient orbit parameter for raising apoapsis is the eccentricity, which will tend to keep the energy of the orbit about the Moon constant. After several tries, the spacecraft will escape from the Moon and enter into an orbit about the Earth. 

Since the equations of motion are reversible, a capture trajectory can be obtained by repeating the above procedure only integrating the equations of motion backward. 

The resulting capture orbits are generally nearly circular about the Earth and either inside or outside the Moon’s orbit. For a critical value of the starting eccentricity of the orbit about the Moon, the spacecraft will just escape the Earth-Moon system and go into orbit about the Sun. Raising the eccentricity slightly will result in an eccentric orbit with a periapsis radius relative to the Earth that is inside the Moon’s orbit. The results of generating several capture orbits are shown in Fig. 3.19. For a range of starting eccentricities from 0.94151 to 0.943, most of the capture orbits either escape from the Earth-Moon system or fall into an uninteresting eccentric orbit about the Earth with periapsis radius less than that of the Moon’s orbit. This behavior of capture orbits including the reduction in periapsis radius with respect to the Earth has been observed and is common knowledge. 

A remarkable result was obtained during the study of the Hiten trajectory during the Memorial Day weekend of 1990. If the starting eccentricity of the Moon’s orbit was adjusted to 0.94171, the spacecraft falls into a highly eccentric orbit that returns
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to the Earth as shown in Fig. 3.19. This was a surprising result, but Ed Belbruno was not surprised because of his work with weak stability theory. Previous studies of the possibility of the Moon capturing a projectile launched from the Earth indicated that this result was very improbable. Analysis by Fesenkov based on the Jacobi integral concluded that this result was impossible. Egorov introduced a term not considered by Fesenkov that opened the possibility of capture after more than one circuit. He acknowledged that the Sun may provide a perturbation that could enable capture. 

The discovery of a capture orbit was not made by systematically perturbing eccentricity, as suggested in Fig. 3.19, until the result was observed. The approach used in finding this orbit was from a different direction. In attempting to design a trajectory for the Hiten spacecraft to get to the Moon, a bielliptic transfer was attempted. The idea was to design a capture orbit that escapes from the Earth-Moon system and intersects a direct trajectory from the Earth’s orbit. The capture trajectory was integrated backward and the trajectory from the Earth’s orbit was integrated forward. At the intersection, a maneuver was performed to join the two trajectory segments. It was soon discovered that an escape trajectory would not work. The velocity correction required at the intersection was too big. It was also observed that the minimum velocity at the intersection point near the boundary of escape to orbit about the Sun was about 250 m/s. While fine-tuning the eccentricity of the capture orbit, it was observed that the velocity change began to drop. It became apparent that the minimum velocity change was zero and the result was an orbit similar to the orbit shown in Fig. 3.19. 

Attempts to extend the result shown in Fig. 3.19  to other initial orbit conditions revealed a strong dependence on the location of the Sun relative to the Earth and Moon. Clearly, the tidal acceleration of the Sun was the vehicle for transforming a nearly circular orbit coincident with the Moon’s orbit into a highly eccentric orbit that intersects the Earth. The effect of the Sun on the transfer trajectory can be seen from inspection of Fig. 3.20. Shown is an Earth to Moon ballistic transfer trajectory with the orbit of the Sun in Earth-centered inertial coordinates superimposed. The Sun’s orbit has been reduced by a scale factor of 100. As the backward integrated trajectory spirals outward from the Moon, the Sun is on the opposite side of the Earth from the spacecraft. The spacecraft is in the second quadrant near apoapsis, while the Sun is in the fourth quadrant. The net effect of the solar tide is to reduce the angular momentum sufficiently to lower periapsis radius to the radius of the Earth. 

Reversing the direction of integration gives the desired lunar capture trajectory. 

The lunar transfer trajectory from the Earth’s surface to capture by the Moon may be modified slightly to enable transfer from a variety of the Earth’s orbits to lunar capture. Also, Fig. 3.20  suggests that capture orbits may be designed to escape from the Earth to the Sun-Earth Lagrange points. With a little imagination, these capture orbits may be pieced together with the Earth transfer trajectory to design orbits that go from near the Earth’s orbit to the Lagrange points briefly capturing the Moon along the way. An example of a lunar capture transfer trajectory with modified initial conditions near the Earth’s orbit is shown in Fig. 3.21. The spacecraft is launched into an elliptic staging orbit about the Earth with apoapsis radius that reaches the
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Fig.  3.20  Earth-Moon ballistic transfer 

orbit of the Moon. The spacecraft remains in the staging orbit until the Sun is in the right position for a lunar capture orbit. The spacecraft is timed to arrive at the Moon for a gravity assists that places the spacecraft on the capture orbit. Figure 3.21 

displays the characteristic kidney shape often associated with the 3-month variety of the capture orbit. 

 3.6.2  Angular Momentum and Energy Management 

An important tool for design of lunar capture orbits is the management of angular momentum. Raising of the periapsis radius of the Earth-centered orbit from near the surface of the Earth to the radius of the Moon’s orbit requires the addition of angular momentum to the orbit. This requires placing the spacecraft in a region of space where the angular momentum rate of increase from the solar tide can raise the angular momentum to that required for capture. The energy and angular momentum management is accomplished by starting from a lunar capture orbit with the correct angular momentum and energy (approximately the same as the Moon) and integrating backward to a region of space where the angular momentum
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Fig.  3.21  Lunar A Earth-Moon transfer trajectory 

is reduced to a small enough value to intersect the Earth’s surface. The spacecraft then falls back to the Earth, and the energy required is supplied by the launch vehicle when the direction of integration is reversed. 

The angular momentum of the orbit relative to the Earth is given by 



 h =

 p GMe

(3.75) 

where   p  is the parameter of orbit and  GMe  is the Earth’s gravitational constant. 

For a spacecraft launched from the Earth that nearly escapes the Earth-Sun system, the orbit is nearly parabolic and  p  is approximately twice the radius of the Earth (12,000 km). At lunar capture,  p  is approximately the radius of the Moon’s orbit (384,000 km). Equation (3.75) requires raising the angular momentum (h) from 69,000 km2 / s to 390,000 km2 / s, a net increase of 321,000 km2 / s. 

The angular momentum orbit parameter ( h) is the magnitude of the angular momentum vector given by 

h = r × v

Consider an Earth-centered rotating coordinate system with the  x  axis pointing at the Sun and the  z  axis in the direction of the orbit angular momentum vector. The geometry is shown in Fig. 3.22. Neglecting the rotation about the Sun and the tidal acceleration of the Moon, the rate of change of angular momentum is given by 

˙h = ˙r × v + r × ˙v

(3.76)
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Fig.  3.22  Sun-Earth angular momentum transfer contours 

where 

r =  (x, y,  0 )

˙r = v =  ( ˙ x, ˙ y, ˙ z)

˙v =  (ax,  0 ,  0 )

Carrying out the indicated substitutions, the angular momentum rate is approximately 

˙ h = − y ax

(3.77) 

The tidal acceleration  (ax)  is approximately in the  x  direction since the Sun is far from the Earth at the scale shown in Fig. 3.22. The tidal acceleration of the Sun is simply the difference between the acceleration of the spacecraft and the acceleration of the Earth caused by the Sun’s gravity and 

 ax =

 GMs

−  GMs

 (rs +  x) 2

 r 2

 s

which may be approximated by 

 ax =  ax(x = 0 ) +  dax δx

 drs

 ax = 2 GMs x

 r 3

 s
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Substituting into the equation for angular momentum rate, Eq. (3.77) yields 

˙ h = −2 GMs x y

(3.78) 

 r 3

 s

Equation (3.78) is the equation for a hyperbola as a function of  x  and   y. A family of hyperbolas are plotted in F ig. 3.22  for various values of the angular momentum rate in the units of km2 / s2. As an example of the application of the angular momentum contours, consider a spacecraft launched from the Earth into the second or fourth quadrant of Fig. 3.22  where the angular momentum rate attributable to the solar tide is positive. At coordinate  x = 1 ,  400 ,  000 km and  y = −750 ,  000 km,  the angular momentum rate of increase is 0.084 km2 / s2. In order to raise the periapsis radius from the Earth’s surface to the radius of the Moon’s orbit, an increase in angular momentum of 321,000 km2 / s is required. Thus, the spacecraft would need to dwell near the indicated coordinates for 3,821,000 s or about 44 days. The actual time required to achieve the required angular momentum increase can be obtained by performing a line integral along the actual flight path and include the tidal acceleration of the Moon. For an actual trajectory integration, the average value of the angular momentum rate would be about half the value used in this example, and the Moon’s tidal acceleration contribution would be small. The total flight time is therefore approximately 90 days. 

 3.6.3  Genesis Earth Return Trajectory 

The Genesis return trajectory starts from a Lagrange point and flies by the orbit of the Moon on a trajectory that is nearly captured and proceeds on a transfer orbit to the Earth. The portion of the orbit from near the Moon’s orbit to the Earth is an example of a four-body transfer. The Genesis return trajectory is plotted in Fig. 3.23 

along with the ballistic capture trajectory. The coordinate frame is the same as shown in Fig. 3.22  with the Earth at the center and the Sun in the +  x  direction. 

Both trajectories go from the vicinity of the Moon’s orbit to the Earth. In the rotating coordinate system, both trajectories execute a slow loop in the first quadrant where the maximum rate of angular momentum removal is about 0.1 km2 / s2 as indicated by the hyperbolic contours shown in Fig. 3.22. The Genesis trajectory experiences a higher rate of angular momentum removal in the first quadrant, which is partially restored in the fourth quadrant where the sign changes to positive. The total angular momentum removal is about the same for both trajectories, which is a characteristic of the four-body transfer. 

Since the trajectories shown in Fig. 3.23  are initiated at different times, the position of the Moon in its orbit relative to the Genesis trajectory is not clear. The ballistic capture orbit originates at the Moon. The Genesis trajectory in the vicinity of the Moon’s orbit comes under significant influence of the Moon’s gravity. The
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Fig.  3.23  Ballistic capture and angular momentum contours 
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Fig.  3.24  Comparison of Genesis orbit with ballistic capture boundary between domination by Earth-Sun gravity and domination by Earth-Moon gravity is a region of space that has been referred to as the weak stability boundary. 

In order to gain some insight into the behavior of the trajectory dynamics near the Moon’s orbit, a coordinate transformation is performed to a rotating coordinate system centered at the Moon with the +  x  axis in the direction of the Earth-Moon vector and the  z  axis in the direction of the angular momentum vector. The Genesis return trajectory and the ballistic capture orbit4 are plotted in this coordinate system as shown in Fig. 3.24. The departure from the vicinity of the Moon of
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the two trajectories is essentially the same. The motion near the Moon requires further investigation. The ballistic capture orbit enters into a close capture orbit of the Moon, and the Genesis trajectory comes within 300,000 km of the Moon and executes a strange loop. 

 3.6.4  Jacobi Integral and Capture 

When the spacecraft comes close to the Moon, the tidal perturbation from the Sun is small compared to the perturbations from the Moon and Earth. In this region of space, the trajectory may be analyzed using the restricted three-body theory. In the rotating primed coordinates, a certain integral relating to the energy of the point mass, referred to as the Jacobi integral, is constant. The Jacobi integral in the rotating coordinate frame is given by 

˙

 GM 1

 GM 2

 x 2 + ˙

 y 2 + ˙

 z 2 =  ω 2 x 2 +  ω 2 y 2 + 2

+ 2

−  C

(3.79) 

 r 1

 r 2

Consider a point mass or spacecraft moving with zero velocity relative to the massive bodies. In inertial space, the rotation of both massive bodies about each other is  ω. For zero velocity relative to the massive bodies, the Jacobi integral reduces to 

 GM 1

 GM 2

 ω 2 x 2 +  ω 2 y 2 + 2

+ 2

=  C

(3.80) 

 r 1

 r 2

A spacecraft moving with velocity or kinetic energy that is small compared to the gravitational potential energy will tend to move in a direction that keeps  C  constant. 

Thus, contours of constant  C  will describe the motion in the rotating coordinate frame. Contours of constant  C, referred to as Jacobi zero velocity contours or Hill’s surfaces, may be plotted in rotating coordinates as shown in Fig. 3.25. The familiar zero velocity contours are for two massive bodies that are of the same order of magnitude in mass. The five stable Lagrange points are labeled as L1 through L5. 

A spacecraft placed at one of the stable Lagrange points will stay there unless perturbed by some external force. The zero velocity contours suggest other stable trajectories such as circular orbits about the massive bodies, a circular orbit about the center of mass and outside the orbits of the massive bodies, and circumnavigation of one massive body and return to the other on a free return trajectory. It also appeared to Fesenkov and Egorov that a direct trajectory from one body to a close orbit about the other would not be possible because of the stricture near L1. 

The zero velocity contours for the Earth-Moon system are highly distorted from the contours shown in Fig. 3.25. Since the Earth is about 80 times more massive than the Moon, the teardrop regions around L4 and L5 encircle the Earth and are joined through L3. A spacecraft in orbit near L4 or L5 can migrate back and forth between

[image: Image 27]
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Fig.  3.25  Jacobi zero velocity contours 

L4 and L5 through L3 without encountering the Moon. A trajectory of an asteroid in the Earth-Sun system has been recently discovered that exhibits this motion. 

The actual zero velocity contours for the Earth-Moon system in the vicinity of the Moon are shown in Fig. 3.26. Also plotted are the Genesis return trajectory and a ballistic capture orbit. As both orbits approach zero velocity relative to the Earth-Moon rotating frame, they fall onto the same Jacobi contour indicating that the orbits have essentially the same Jacobi constant or energy. The bifurcation that separates the two trajectories on departure from the Moon’s orbit is a property of chaotic trajectories. 

3.7  NEAR  Orbit  Phase  Trajectory  Design 

Trajectory design of the orbit phase of the Near Earth Asteroid Rendezvous (NEAR) mission involves procedures that depart significantly from those used for previous missions. On previous missions, the trajectory design involved finding a flight path that satisfied a rigid set of spacecraft and mission design constraints. A precise spacecraft trajectory was designed well in advance of arrival at the target body. 

For NEAR, the uncertainty in the dynamic environment did not permit a precise
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Fig.  3.26  Genesis and ballistic capture orbits with Jacobi contours spacecraft trajectory to be defined in advance of arrival at Eros. The principal cause of this uncertainty is limited knowledge of the gravity field and rotational state of Eros. As a result, the concept for NEAR trajectory design was to define a number of rules for satisfying spacecraft and mission constraints and to apply these rules to various assumptions for the model of Eros. 

 3.7.1  Spacecraft and Mission Constraints 

The spacecraft constraints that apply to Eros trajectory design include limits on fuel consumption, solar panel illumination, and momentum wheel management. Other constraints define the flexibility and speed with which mission operations may be conducted. Probably, the most important spacecraft constraint is to perform the prime mission within the allocated propellant budget. The propellant consumption constraint translates into about a 50 to 100 m/s delta velocity change during the orbit phase of the primary mission. This was a fairly generous allocation and was not difficult to satisfy. 

The most difficult spacecraft constraint to satisfy relates to solar panel illumination. Since the science instruments are fixed with respect to the spacecraft body, it is necessary to turn the spacecraft to point these instruments at Eros. In order to satisfy spacecraft power requirements, the solar panels cannot be turned more
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than about 30 ◦ off the Sun-line. If the angle between the line to nadir and the plane perpendicular to the Sun-line is greater than 30 ◦, the nadir point cannot be imaged without turning the spacecraft more than 30 ◦. A coordinate frame is defined with the z axis pointing away from the Sun and the equatorial or x-y plane perpendicular to the Sun-line and is referred to as the Sun plane-of-sky (POS) coordinate frame. In the Sun POS coordinate frame, orbits with inclination less than 30 ◦ direct or greater than 150 ◦ retrograde will not violate the solar panel constraint permitting imaging of nadir from any point in the orbit. 

Another important constraint relates to the time to conduct mission operations. 

In order to conduct the mission smoothly without resorting to round-the-clock operations, the minimum time between spacecraft propulsive maneuvers is limited to 1 week. The real limitation is the time to compute accurate orbit determination solutions in support of propulsive maneuvers that are required to keep the spacecraft on course. The differential velocity change resulting from maneuver execution errors corrupts the orbit solution. A rapid redetermination of the orbit places a large amount of pressure on the mission operations team to deliver accurate data and process this data into reliable solutions for the spacecraft orbit. By allowing a minimum of 1 week between maneuvers, this pressure is considerably reduced. A further benefit is that the amount of data available for the orbit solution is increased and the data quality is increased. The more maneuvers that are performed, the more the orbit is corrupted and the more the quality of science is compromised. 

In addition, more risk to the mission is incurred because of poor trajectory control. 

A trajectory design constraint related to orbit stability is that all low inclination orbits be retrograde with respect to the asteroid equator. Retrograde orbits are more stable because the faster relative motion of the spacecraft with respect to the asteroid tends to average out the effects of gravity harmonics. For this reason, synchronous direct orbits are particularly unstable since the spacecraft lingers over the same point on the asteroid’s surface and may exchange enough energy to escape from or collide with the asteroid. In low orbit, even retrograde synchronous orbits may be unstable. 

Science constraints on the trajectory design take the form of desires to obtain some particular orbital geometry and are generally not easily quantified. The requirement of the gamma ray spectrometer to obtain low altitude orbits drove the trajectory design to achieve these orbits in a timely manner. The plan to stage the trajectory through a series of successively smaller circular orbits seems to satisfy most science and navigation requirements and makes the trajectory relatively simple to design. The general plan is to spend a specified amount of time in a series of circular orbits of predetermined radius. This keeps the mission on schedule and enables a general imaging or mapping plan to apply for any Eros gravity field that may be encountered. Transfer orbits between the circular orbits may also provide a unique opportunity for science observations from a perspective different from the circular orbits. However, the need to get to desired circular orbits may also make the transfer orbits unattractive for science. In any event, the transfer orbits need to be designed to achieve circular orbits and only limited science constraints can be accommodated in these orbits. 
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 3.7.2  Targeting Strategy 

The general approach to the targeting strategy is to develop a broad set of objectives and compute a series of propulsive maneuvers that will steer the spacecraft in the direction of satisfying these objectives. This differs substantially from the traditional approach of defining a number of constraints and searching for the trajectory that globally maximizes some performance index. The NEAR approach is to compute a maneuver that satisfies a local set of constraints and then propagate the trajectory into the future. At the appropriate time, a minimum of 1 week in the future, the constraints are reevaluated and another maneuver is computed. This strategy is repeated until all the science objectives are achieved. 

The spacecraft is first placed in an orbit that is in the Sun POS. The solar panel illumination constraint dictates that the spacecraft remain close to this plane for most of the mission. Otherwise, the solar panels would have to be turned too far off the Sun-line in order to image nadir. Also, staying in this plane for the first few weeks of the mission will minimize the effect of solar pressure on the trajectory and on the attitude control momentum management. This is particularly important at high altitudes where the solar pressure acceleration is a large contributor to the total acceleration and is much easier to model when the spacecraft is pointed directly at the Sun. 

At the time of arrival at Eros, the spin axis of Eros is pointed away from the Sun. Since the Sun POS coordinate frame z axis also points away from the Sun, a retrograde orbit in the Sun POS will also be retrograde in the asteroid equator. This is the direction that is established for the initial orbits. As Eros moves in its orbit about the Sun, the Eros spin axis first points away from the Sun, then perpendicular to the Sun-line, and then toward the Sun. The spin axis, which remains essentially fixed in inertial space, appears to rotate in the Sun POS frame. During the time that the spin axis is pointed almost directly away from the Sun, a retrograde orbit in the asteroid equator will be close to being in the Sun POS and thus suitable for imaging Eros without turning far off the Sun-line. Retrograde equatorial orbits are generally very stable and thus the orbit altitude may be lowered to 35 km for gamma ray spectrometer observations. As the Eros spin axis aligns perpendicular to the Sun-line, the Sun POS orbit results in a polar orbit with respect to Eros. This is also a stable orbit. A problem occurs when the Eros spin axis is about 45 ◦ off the Sun-line. For these orbits, the node of the orbit plane with respect to the asteroid equator precesses at a fast rate sometimes approaching 5 ◦ per day. During this transition zone, the spacecraft orbit must be actively controlled with maneuvers to keep the spacecraft within 30 ◦ inclination of the Sun POS. As Eros spin axis rotates from perpendicular to the Sun POS to near alignment with the direction toward the Sun, it passes through another transition region and then is placed in a retrograde equatorial orbit for the second time. This orbit is direct with respect to the Sun POS. Therefore, at the time the spacecraft is in the polar orbit and the Eros spin axis crosses the Sun POS, it is necessary to execute a “plane flip” maneuver sequence to reverse the direction of the Sun POS orbit from retrograde to direct. When this sequence is completed, the Eros equator orbit remains polar. 
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 3.7.3  Targeting Algorithm 

The trajectory design is accomplished by transforming the targeting strategy into a specific step-by-step procedure referred to as the targeting algorithm. The general approach is first to translate spacecraft and science constraints to geometrical parameters that may be computed directly from the spacecraft trajectory about Eros. When necessary, propulsive maneuvers are targeted to these trajectory-related geometrical parameters and spacecraft and science constraints are implicitly satisfied. Therefore, the success of the targeting strategy depends on the ability to define geometrical parameters that relate directly to mission constraints. The geometric parameters of interest that may be closely related to mission constraints are distances from Eros and angular positions of various celestial bodies with respect to Eros. A problem with these angles and distances is that they vary rapidly as the spacecraft orbits Eros and are thus difficult to target. For the targeting to be successful, a set of parameters that vary slowly with time need to be defined. A convenient set of parameters are classical orbit elements. The classical elements describe the size, shape, and orientation of a spacecraft orbit about a central body that may be represented as a point mass. As long as the spacecraft acceleration is dominated by the central gravity, the classical orbit elements do not vary significantly. This was true during a large part of the NEAR mission. In high orbits, the solar pressure becomes a significant perturber relative to the central body gravity, and in low orbits, the gravity harmonics cause the classical orbit elements to osculate. However, we may use the osculating orbit elements as short-term predictors of spacecraft motion and thus control the trajectory and satisfy mission constraints by targeting to these parameters. 

The classical orbit parameters of interest for targeting the NEAR trajectory may be separated into several general categories. The first category describes the size and shape of the orbit, which relates directly to energy and angular momentum. 

The radius of periapsis and radius of apoapsis may be used to control the size and shape of the orbit. These parameters also implicitly control the period of the orbit. 

The second category describes the orientation of the orbit in inertial space. The longitude of the ascending node, argument of periapsis, and inclination orient the orbit in inertial space. These angles may be computed in either the Sun POS or asteroid equator coordinate frames. The solar panel illumination constraint may be satisfied by keeping the inclination in the Sun POS coordinate frame less than 30 ◦. 

The asteroid equator coordinate frame may be used to target polar or low inclination orbits. The final category of orbit parameters, obtained by solution of Kepler’s equation, is the times that the spacecraft arrives at various points in the orbit. The true anomaly of the spacecraft, which is the angle measured from periapsis, is also included in this category. These points are candidate maneuver placements. The times of periapsis, apoapsis, and crossings of the line of nodes or reference planes are of interest for maneuver placement. In addition to the classical elements, the Cartesian components of position and velocity in various coordinate frames may be used as target parameters. Also, the Cartesian components may be mixed with classical elements to define target parameter sets. 
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The first step of the targeting algorithm is to determine the time of the next propulsive maneuver. The spacecraft orbit is propagated into the future and the values of the target parameters are computed. If a constraint is violated or a point is reached in the mission where it is desirable to change the orbit size or orientation, a complete set of orbit elements is displayed, which describes the local region of the trajectory. We assume that the orbit elements are osculating slow enough that the conic trajectory propagation is sufficiently accurate. The conic orbit propagation is generally good for several orbits. A suitable maneuver placement point is selected, which is normally at periapsis, apoapsis, or the crossing of some reference plane. 

A precision trajectory is propagated to the nominal maneuver time obtained by solution of Kepler’s equation. The osculating orbit elements are reevaluated and a few iterations may be required to determine the precise time of maneuver placement. 

The next step is to select three target parameters that describe the post-maneuver orbit. These parameters must be independent and include the maneuver point on the post-maneuver orbit. The independence of the parameters may be verified by determining that the Jacobi matrix is nonsingular. For example, the parameters periapsis radius, apoapsis radius, and eccentricity would not be independent because eccentricity may be determined from the other two. However, the parameters periapsis radius, apoapsis radius, and inclination are independent and would be suitable for targeting. The inclusion of the maneuver point on the post-maneuver orbit is a subtle condition to satisfy. An example would be transfer to a 35 km circular orbit from a maneuver placement at 50 km. Clearly, this would not be possible because the 35 km orbit would not contain any point at 50 km. A more subtle example would be transfer to zero inclination. For this target parameter to converge, the maneuver placement point would have to be in the reference plane. 

The third step is to determine the time to evaluate the target parameter constraints. Most of the time, this is immediately after the maneuver. However, for some orbits that are osculating severely, the constraints may be evaluated sometime in the future where it is desired to control some parameter of particular interest. 

For example, if we are trying to control the precise periapsis radius, the constraint may be evaluated at the nominal time of periapsis passage several orbits after the maneuver, thus forcing the minimum radius to occur at this time. 

The final step is to determine the finite burn velocity correction that satisfies the constraint parameters. The matrix of partial derivatives that relate the target parameters to the maneuver velocity components is computed by finite difference from precision trajectory propagations. This 3 by 3 matrix is inverted and multiplied times the required target parameter correction to obtain the delta velocity correction. 

The Newton-Raphson iteration is repeated several times until the desired target parameters are achieved. 
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 3.7.4  NEAR Trajectory Design 

The design of the NEAR orbit phase trajectory involves repeated application of the above targeting algorithms. The orbit phase begins after a series of rendezvous burns that slow the spacecraft down from an approach speed of about 1 km/s to 5 m/s. The NEAR orbit phase trajectory is divided into 27 segments beginning with the Eros orbit insertion (EOI) maneuver (segment 0). Each segment begins with an OCM and the final segment ends on February 6, 2000, the nominal end of the mission. 

 3.7.5  Approach Through 100 km Orbit 

An orbit insertion maneuver is performed at closest approach to transfer the spacecraft from an approach hyperbola with a periapsis radius of 1000 km to a highly eccentric ellipse with a periapsis radius of 400 km as shown in Fig. 3.27. 

When the spacecraft arrives at 400 km radius, a maneuver is executed to transfer the spacecraft to an orbit with a periapsis radius of 200 km. At 200 km radius, the orbit is circularized and science observations are carried out for about 9 days. Two more maneuvers are executed to lower the spacecraft orbit to 100 km. The projection of the spacecraft orbit into the Sun POS coordinate frame is shown in Fig. 3.27 

for the initial orbits through 100 km radius. The view is from behind Eros looking toward the Sun. The spacecraft moves in a retrograde (clockwise) direction, while the Eros rotation is counterclockwise when viewed from this direction. The initial orbit following the orbit insertion burn is in the Sun POS with a radius of periapsis of 400 km. The approach trajectory is targeted to cross the Sun POS at a radius of 800 
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Fig.  3.27  Approach through 100 km orbit

166

3

Trajectory Design

1000 km periapsis on the side of Eros that results in a retrograde orbit. The orbit insertion burn is placed at the point where the approach hyperbola pierces the Sun POS, that is, the plane perpendicular to the Sun-line that passes through the center of Eros. The target parameters are radius of periapsis, true anomaly, and inclination in the Sun POS. 

The target parameter constraints are computed on January 20, 1999, 16:00:00. 

This targeting strategy provides a 10-day separation between maneuvers and results in the spacecraft arriving at a periapsis radius of 400 km on January 20 in an orbit with an inclination of 178 ◦ in the Sun POS. A 178 ◦ inclination orbit with respect to the Sun POS is 2 ◦ inclination retrograde or very nearly in the Sun POS. By targeting to orbit elements evaluated on January 20, 1999, the effect of solar pressure on the orbit elements was mitigated. 

The first orbit correction maneuver (OCM) is placed at periapsis of the initial transfer orbit. This maneuver is targeted to a periapsis radius of 200 km, apoapsis radius of 400 km, and inclination of 177 ◦ in the Sun POS. OCM 2 is also performed at periapsis using the same targeting strategy and circularizes the orbit at 200 km radius. 

After 9 days, which is about one revolution in the 200 km orbit, a transfer orbit is computed to lower the spacecraft orbit to 100 km. At this time, the Sun POS 

inclination is about 171 ◦. Recall that the Sun POS coordinate frame rotates as Eros orbits about the Sun and the orbit plane tends to remain fixed with respect to inertial space. In order to keep the spacecraft in the Sun POS, we must perform the orbit circularization maneuver at 100 km in the Sun POS. This may be accomplished by biasing the transfer orbit to a periapsis altitude of 84 km such that the spacecraft is at 100 km radius when the spacecraft crosses the Sun POS. This little trick saves a maneuver and the spacecraft orbit is circularized with another maneuver placed at the point where the spacecraft crosses the Sun POS at 100 km. In order to maintain a 1-week separation between maneuvers, the spacecraft remains in the 200 km by 84 km transfer orbit for 2 and one half revolutions about Eros. The period of this transfer orbit is 5 days. 

 3.7.6  Subsolar Overfly Through 50 km Orbit 

An important science objective is to obtain infrared images of Eros at low phase angle. In order to obtain these images, it is necessary to place the spacecraft in an orbit that overflies the subsolar point. This may be accomplished by raising the inclination in the Sun POS coordinate frame to 90 ◦. A convenient time to perform this overflight is early in the mission from the 100 km orbit. After the subsolar overfly, the spacecraft is parked in an elliptical transfer orbit for a week before the orbit is circularized at 50 km radius. Figure 3.28  shows the projection of the spacecraft trajectory in the Sun POS for the subsolar overfly through the initial 50 km circular orbit. 
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Fig.  3.28  Subsolar overfly through 50 km orbit 

OCM 5 is targeted for overfly of the subsolar point. An orbit that flies over the subsolar point will also fly over the point opposite from the subsolar point or the anti-subsolar point. Therefore, if left in this overfly orbit, the spacecraft will fly through the shadow of Eros and violate an important spacecraft constraint to keep the solar panels illuminated. In order to avoid flying through the shadow and maintain a 1-week separation between maneuvers, the spacecraft is placed in an orbit that flies over the subsolar point at a radius of about 150 km and continues out to an apoapsis altitude of about 500 km. The apoapsis radius is selected to give an orbit period of 2 weeks. After 1 week, at the point where the spacecraft crosses the Sun POS, OCM 6 is targeted for an elliptical return trajectory in the Sun POS 

and at a periapsis radius of 100 km. The periapsis radius of the return trajectory is selected to be 100 km in order to avoid being on an impact trajectory should the maneuver execution error associated with OCM 6 exceed the required accuracy. On return to periapsis, the spacecraft is parked in a 170 km by 50 km elliptical orbit for 1 week. This orbit is a compromise that enables the circular 50 km orbit to return to the Sun POS and avoids some of the rapid precession of the nodes associated with the 50 km orbit at this time. The spacecraft is then placed in a circular 50 km orbit where it remains until the Eros spin vector comes into favorable alignment for an equatorial orbit about Eros with a low inclination in the Sun POS. OCMs 6 through 9 are all targeted to radius of periapsis, radius of apoapsis, and inclination in the Sun POS. 

[image: Image 29]
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 3.7.7  Transfer to Southern Illuminated 35 km Orbit 

A major science objective of the NEAR mission is to obtain low altitude gamma ray and x-ray spectrometer measurements of Eros. From a 35 km orbit, Eros fills the field of view and long integration times are required to obtain the data needed to characterize the composition of Eros. Figure 3.29  shows the projection of the spacecraft orbit on the Sun POS for the transfer orbit from 50 km to 35 km and the 35 km orbit. 

OCM 9 is targeted for an elliptic transfer orbit from the 50 km circular orbit to a 35 km circular orbit. The actual dimension of the nominal transfer orbit is 54 km by 32 km. For these low orbits, the conic elements are osculating such that the actual dimensions of the orbit vary in a complicated way. The dimensions of the orbit are contained by targeting the energy and angular momentum. The orbit elements periapsis and apoapsis radius are used to control energy and angular momentum. 

The orbital distances and velocity are controlled implicitly by managing energy and angular momentum. Even the energy and angular momentum are not conserved with respect to the two-body motion of the spacecraft about Eros. The gravity harmonics act to exchange energy between the spacecraft orbit and Eros’s rotation. In some cases, the gravity harmonics may act to eject the spacecraft from Eros orbit. The spacecraft actually receives a gravity assist from the gravity harmonics and the rotation of Eros. The basket weave appearance of the orbit shown in Fig. 3.29  is caused by the rapid precession of the spacecraft orbit about Eros in inertial space and not by some artifact of a rotating coordinate system. After 1 month in the elliptic transfer orbit, the orbit is circularized at 35 km radius with OCM 10. For the transfer orbit and 35 km circular orbit, the target parameters are radius of periapsis, radius of apoapsis, and inclination in the Eros equatorial coordinate frame. 

Fig.  3.29  Transfer to southern illuminated 35 km orbit

[image: Image 30]
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 3.7.8  Active POS Control, Polar Orbits, and Plane Flip 

The projection of the spacecraft orbit on the Sun POS for the period of active POS 

control through the polar orbits and plane flip maneuver are shown in Fig. 3.30. 

As Eros moves in its orbit about the Sun, the Eros equatorial plane rotates from alignment with the Sun POS to being perpendicular to the Sun POS and back to alignment. This rotation of the planes with respect to one another occurs because the Eros spin axis remains fixed in inertial space while the Sun POS coordinate frame slowly rotates with Eros in its orbit around the Sun. During the time of the 35 km equatorial orbits, these planes are nearly aligned. As they change to an angle greater than about 30 ◦, it is no longer possible to stay in an Eros equatorial orbit and at the same time satisfy the Sun constraint defined in the Sun POS. During the time that the angle between these planes is about 30 to 60 ◦, the precession of the orbit about the Eros equator causes the Sun constraint to be violated if left unattended. Active POS control must be executed to prevent the Sun constraint from being violated. 

Eventually, the angle between the planes approaches 90 ◦, and the spacecraft orbit may be transferred to a polar orbit with respect to Eros and at the same time satisfy the Sun constraint. In the polar orbit, the mission is once again interrupted for another overfly of the subsolar point. During this overfly sequence of maneuvers, the direction of the orbit in the Sun POS is reversed from retrograde to direct. This sequence of maneuvers is referred to as the plane flip. 

OCM 11 transfers the spacecraft from the 35 km circular orbit to a 55 km by 35 km elliptical transfer orbit. The apoapsis radius of 55 km is set in anticipation of circularizing the orbit at 50 km and returning to the Sun POS. OCM 12 circularizes the orbit a week later at 50 km and the plane of the orbit remains in the Eros equatorial plane. A week later, the orbit plane is transferred to the Sun POS with 500 
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Fig.  3.30  Active POS control, polar orbits, and plane flip
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OEM 13 and the period of active plane of sky control begins. Precession of the line of nodes with respect to Eros equator causes a break in the longitude of ascending node and a gradual increase in inclination as observed in the Sun POS. One week later or at the time the inclination reaches 30 ◦, a maneuver is performed to flip the line of nodes in the Sun POS by 180 ◦. The target parameters for this maneuver are periapsis radius, apoapsis radius, and the z component of velocity in the Sun POS. 

Reversing the z component of velocity is a device to flip the line of nodes 180 ◦. 

This strategy will result in the inclination with respect to the Sun POS decreasing from 30 ◦ to 0 ◦ and then increasing again to 30 ◦ as the node precesses with respect to the Eros equatorial plane. This strategy is repeated several times through OCM 

17 where the plane flip maneuver sequence is executed. The strategy for the plane flip sequence is the same as executed previously for the subsolar point overfly only the spacecraft returns in a direct orbit. After the plane flip sequence is completed, the spacecraft returns to a polar orbit about Eros. 

 3.7.9  Northern Illuminated 50 km and 35 km Orbits 

Following the polar orbits, the spacecraft is placed in a 50 km by 45 km orbit for several weeks, and active POS control is performed to keep the spacecraft from violating the Sun constraint. The targeting strategy is the same as used previously. 

When the North Pole of Eros comes within 30 ◦ of alignment with the Sun direction, a transfer to a 35 km equatorial orbit is executed. The spacecraft remains in the 35 km circular orbit until the end of the mission. The projection of the spacecraft orbit into the Sun POS for these orbits is illustrated in Fig. 3.31. 
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3.8  Summary 

The objective of the design of a spacecraft trajectory is to determine the initial state that will result in satisfying navigation and mission design constraints when the trajectory is integrated to the end of the mission. With experience, the spacecraft initial state can sometimes be guessed and a search conducted to satisfy constraints. 

In space, the spacecraft motion is usually dominated by the acceleration from the most massive nearby body. This motion was determined by Kepler and is an ellipse hyperbola. Therefore, a very good approximation to the desired trajectory may generally be obtained by patching together the conic solutions with respect to the planet or satellite that is dominant. This is referred to as a two-body solution. 

When the spacecraft is in a region of space where the gravitational accelerations from two nearby bodies are nearly equal, such as the Earth and Moon, it is more difficult to patch together two-body conic trajectories. These trajectories are referred to as three-body or restricted three-body if one of the bodies has very little mass. 

Another example of three-body motion is gravity assist trajectories where the three bodies are the Sun, a planet, and the spacecraft. If the time the spacecraft is in limbo between two massive bodies is short, a reasonably accurate initial orbit may be obtained by patching two-body conics together. By extension, a four-body trajectory involves a spacecraft and three bodies with nearly equal gravitational accelerations. 

The best example is the Sun, Earth, Moon, and spacecraft orbit that was used to navigate the Hiten, Genesis, and other spacecraft from the Earth to Lunar orbit. 

Four-body trajectories can be obtained by patching together three-body orbits. 

Perhaps the easiest trajectories to design are orbits about planets, asteroids, or satellites of planets. The orbits are easy to design, but satisfying all the mission constraints can result in a lot of complicated maneuvering. The solution is to just stay in orbit a long time until everybody gets the data they want. The Viking and NEAR missions are good examples of this design process. 

Exercises 

3.1  For a hyperbolic orbit, the argument  F  in Kepler’s equation can be computed by  F = ln ( sinh (F ) + cosh (F ))  for positive F and  F = − ln ( cosh (F ) − sinh (F )) for negative F. Why are two formulas, which are mathematically the same, needed? 

3.2  The flight path angle (  γ ) is defined as the angle between the velocity vector and the local horizontal plane. Derive the flight path angle for a spacecraft in an elliptical orbit. 

3.3  When a spacecraft flies by a target body, errors in the trajectory are amplified by the target body and are corrected by a maneuver performed shortly after encounter. 

An error in energy after the encounter is particularly troublesome. The energy error
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is directly related to the error in the magnitude of the B vector (  b). Show that the V  correction is given by 

 V =

2 V  3

∞  GM

 b

 GM 2 +  b 2  V  4

∞

3.4  Show that the following identity (Eq. (3.38)) is true by making use of Eq. (3.8): r 1 +  r 2

 η 2 +  η 1

 η 2 −  η 1

 p

= 2 + 2 e  cos

cos

 r 1 r 2

2

2

3.5  Show that the following identity (Eq. (3.39)) is true: 



√

 θt

 α

 β

 r 1 r 2 cos

= 2 a  sin sin

2

2

2

3.6  Determine an equation for the lag angle required for a Homann transfer and then compute the time between launch opportunities for an Earth-Mars transfer. 

3.7  In Eqs. 3.69  and  3.70, show that ω 2 x 2 +  ω 2 y 2 = 2 ω(x ˙ y −  y ˙ x) References 
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Chapter  4 

Trajectory  Optimization 

4.1  Introduction 

Targeting algorithms may be separated into two classes: those that involve the solution of a two-point boundary value problem with no optimization and those that target a reduced set of parameters and optimize some performance criterion such as fuel expenditure. The former is sometimes called shooting and the solution is obtained by first computing the partial derivatives of the target parameters with respect to the initial condition or control parameters. These partial derivatives are used to compute a correction to the initial condition and control parameters iteratively using the Newton-Raphson technique. The latter type of algorithm is called an optimizer and performs a similar search for a solution that achieves the target and minimizes a performance criterion. 

4.2  Parameter  Optimization 

When properly formulated, an optimizer may be used to solve a wide variety of problems that extend far beyond navigation of spacecraft. For example, problems of the calculus of variations may be solved with an optimizer by parameterizing the solution and solving for the parameters. Consider the problem of finding the shape of a wire, strung between two points, that a bead will slide down in minimum time. This problem is called the brachistochrone problem and was first posed by John Bernoulli in 1697. The shape of the wire may be represented by a polynomial and the problem converted to a parameter optimization problem where the independent parameters are the coefficients of the polynomial. The problem in trajectory optimization of finding the optimum programmed thrust direction for a rocket may be solved in a similar fashion. 
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An optimization algorithm is described that solves the problem of constrained optimization by the method of explicit functions. This method was originally devised to minimize propellant expenditure for the Viking mission to Mars. Before delving into the mathematics it may be useful to describe the history of the development of this algorithm. In 1971 I was sitting at my desk pondering the problem of targeting the Viking Mars orbit insertion burn. I had a report written by Hoffman and Green (see the bibliography) that described a constrained optimization algorithm using Lagrange multipliers. I had the choice of programming this algorithm or going to Hoffman and Green and getting their program. At the time it was easier for me to write my own software than learn how to run someone else’s software. Even today I find it easier most of the time to write my own software for my personal use. 

Since the number of control parameters is greater than the number of constraint parameters, the matrix of partial derivatives that relate them is not square. If I made up some arbitrary constraint functions such that the number of constraint equations was equal to the number of control parameters, the matrix of partial derivatives would be square. There would exist a one-to-one mapping. Now I could search for values of these made-up constraint parameters that minimized or maximized some cost function like fuel expenditure. Mathematically, the partial derivative of the cost function with respect to the made up constraints would be zero. The numerical values of the made-up constraint variables are of no interest. I had just invented the method of explicit functions which was incorporated into the Viking navigation software and used to compute the Viking orbit insertion burn. The method of gradient projection which is in wide use today is a special case of the method of explicit functions as will be shown below. Since it is impossible to invent mathematics, I assumed that this result was common knowledge and did not publish a paper even though I was encouraged to do so by my navigation colleagues. 

The mathematics that follow are routine to anyone familiar with curvature tensors. Additional arbitrary constraint functions are adjoined to the given equations of constraint to completely span the space of the independent parameters. The search is performed on the arbitrary constraint parameters to obtain the values of these parameters that minimize the performance criterion. The first derivatives of the constraint functions with respect to the independent parameters are used to drive the dependent constraint variables or target variables to satisfy the desired constraints, and the second partial derivatives of the minimization criterion with respect to the same independent parameters are used to drive the optimization condition to zero. 

The search is referred to as a second-order gradient search. 

The partial derivatives that are required by the optimization algorithm may be obtained analytically or by finite difference. Analytic partial derivatives are often not pursued because of the difficulty in obtaining the partial derivatives, particularly the second derivatives. A problem with exact second derivative finite difference equations is the large number of function evaluations that are required to compute the derivatives for one iteration. These grow as the square of the number of parameters. Approximate techniques may be used to accelerate the computation of
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the second derivatives and a method along the lines suggested by Fletcher-Powell-Davidon was investigated. However, these acceleration techniques generally work well only for the problems they were designed to solve and require modification for specific problems making parameter optimization more of an art than a science. 

Because of nonlinearity and ill-conditioned problems, a second-order gradient search will often diverge. An algorithm is developed to enable inequality constraints to control the search for a solution. Constraining the dependent target variables to an interval permits the optimization algorithm to find a minimum solution within the interval and prevents the search from diverging to a local maximum or inflection point outside the interval. 

4.3  Statement  of  Problem 

A performance index  (J )  is defined that is a function of  N  independent  va riables (U ).  We  also  have   M  equations of constraint ( M < N ) that define the target variables  (Z C)  and the equations of constraint are also functions of U.  Thus,  we ha ve, 

 J =  f (U )

(4.1) 

Z C =  g(U )

(4.2) 

and 

 J =  f (U 1 , U 2 , U 3 , . . . UN ) ZC 1 =  g 1 (U 1 , U 2 , U 3 , . . . UN ) ZC 2 =  g 2 (U 1 , U 2 , U 3 , . . . UN )

·

·

·

 ZCM =  gM (U 1 , U 2 , U 3 , . . . UN ) The problem is to find a U∗ such that 

Z C(U∗ ) = C

(4.3) 

where  C are constant target parameters and  J  is a minimum for a ll U subject to the constraint  C. 
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4.4  Condition  for  Optimum  Solution 

A simple method, in principle, for solving the problem of constrained optimization is to solve the equations of constraint  (g)  for a selected subset of the independent parameters  (U C)  and substitute these expressions into the objective function  (f ), thus reducing the number of unknowns from  N  to  N −  M  where   M  is the number of constraint functions. The partial derivative of  J  with respect to the remaining independent parameters is obtained and set equal to zero. These equations are solved in conjunction with the equations of constraint. The selection of which independent control parameters to include in U C  is arbitrary. However, the choice may have some effect on performance when a numerical solution is sought. 

The method of explicit functions carries this concept a step further. In place of the arbitrary selection of control parameters, additional arbitrary constraint functions ( Z F ) are defined to bring the total number of Z parameters to N. The Z F  functions are not completely arbitrary in that a one-to-one mapping must exist between U and Z. At the solution point, any change in U holding  Z C  constant will increase  J . Since a one-to-one mapping must exist, any unique change in Z F  holding  Z C  constant will cause a unique change in U holding  Z C  constant and consequently increase  J . 

Mathematically, the partial derivative of  J  with respect to Z F  holding  Z C  constant being set equal to zero is a necessary and sufficient condition for a stationary point which is a minimum if  J  is properly defined and Z C  is properly constrained. 

The reader may question the validity of adding arbitrary functions Z F  to the system of equations. Since they are not constrained, the values of Z F  do not affect the equations of constraint and we are free to find values of Z F  that minimize the performance index  J . This result is not unique to optimization theory. In deriving the Riemann tensor of general relativity, Riemann introduced a vector that is observable at a point in space and is paired with the equation of geodesics and called the covariant derivative. He then proceeds to eliminate this arbitrary vector from the Riemann tensor since it does not affect the gravity or curvature of space. 

The performance criterion and augmented equations of constraint are given by, J =  f (U 1 , U 2 , U 3 , . . . UN ) ZC 1 =  g 1 (U 1 , U 2 , U 3 , . . . UN ) ZC 2 =  g 2 (U 1 , U 2 , U 3 , . . . UN )

·

·

·

 ZCM =  gM (U 1 , U 2 , U 3 , . . . UN )

·

·

·

 ZF N =  gN (U 1 , U 2 , U 3 , . . . UN )
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and the solution is obtained by solving 

Z C = C

(4.4) 

 ∂J = 0

(4.5) 

 ∂Z F

Observe that the above solution reduces to direct elimination if Z F  is taken to be identically equal to a subset of  U  of dimension N minus M. 

Because of the difficulty in obtaining the inverse functions analytically, direct solution of the above equations is only practical for relatively simple systems of equations. For complex systems, solutions may be obtained by searching using Newton’s method. The theory behind techniques currently in use such as Lagrange multipliers and gradient projection follows directly from the method of explicit functions. 

The method of explicit functions involves adjoining to the equations of constraint some additional equations that define the parameters  Z F . The  Z F  parameters replace the independent parameters selected by the method of direct elimination for the purpose of minimizing  J . An equation that relates the optimization condition to the independent control parameters, equations of constraint and performance criterion may be obtained by application of the chain rule. 

 ∂J =  ∂J ∂Z

(4.6) 

 ∂U

 ∂Z  ∂U

The partial derivatives of Z with respect to the independent parameters U  are contained in a square matrix of dimension N by N. The partial derivatives of  J  with respect to U and  Z are row matrices also of dimension N. Partitioning the above matrices separating the Z C  dependent elements from the Z F  dependent elements yields, 

⎡

⎤







 ∂Z C

 ∂J

⎢  ∂U ⎥

=  ∂J

 ∂J

⎢

⎥

 ∂U

 ∂Z

⎣

⎦

(4.7) 

 C ∂ Z F

 ∂Z F

 ∂U

The above partitioned matrices may be factored to further separate those submatri-ces dependent on Z C  from those dependent on Z F , and after rearranging terms the following equation is obtained: 

 ∂J −  ∂J ∂Z C =  ∂J ∂Z F

(4.8) 

 ∂U

 ∂Z C ∂U

 ∂Z F ∂U

Equation (4.8) provides a fundamental relationship that may be used to tie together various methods of constrained parameter optimization including the methods of
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Lagrange multipliers, gradient projection, and explicit functions. Comparison of these methods provides insight into which approach may work best depending on the problem. 

 4.4.1  Lagrange  Multipliers 

The classic solution of constrained parameter optimization was derived by the eighteenth-century mathematician Joseph-Louis Lagrange. This solution is particularly appealing since a choice of independent parameters is not necessary. Referring to Eq. (4.8), at the solution point the right side is zero because the partial derivative of   J  with respect to the Z F  must be zero as required by Eq. (4.5.) 

 ∂J −  ∂J ∂Z C = 0

(4.9) 

 ∂U

 ∂Z C ∂U

The terms of Eq. (4.9) may be readily obtained from the equations of constraint and the equation for the performance index with the exception of the partial derivative of J  with respect to the Z C. Lagrange’s insight was to make the elements of this term parameters to be solved for in conjunction with the equations of constraint. These parameters are called Lagrange multipliers and are defined by, 

 λ = −  ∂J

(4.10) 

 ∂Z C

The sign of the Lagrange multipliers is arbitrary and it may be conjectured that Lagrange selected the minus sign for convenience. He was certainly aware of Eq. (4.8) but apparently did not consider the right side important since the computer had not been invented in his time. The equations that must be solved to obtain an optimum are thus, 

Z C = C  ( M equations )

(4.11) 

 ∂J +  ∂Z C

 λ

= 0  ( N equations )

(4.12) 

 ∂U

 ∂U

The method of Lagrange multipliers requires the solution of M+N equations for N U parameters and M Lagrange multipliers. This method is well suited for obtaining analytic solutions since the equations of constraint need not be solved for the independent U parameters as a function of the Z parameters. However, the need to solve for the Lagrange multipliers makes numerical solutions more complicated than necessary. 
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 4.4.2  Explicit  Functions 

The methods of explicit functions and gradient projection use the right side of Eq. (4.8) to obtain a solution and thus avoid the need to solve for Lagrange multipliers. The method of explicit functions requires an equation for the partial derivative of  J  with respect to Z F . Application of the chain rule gives, 

 ∂J =  ∂J ∂U

(4.13) 

 ∂Z

 ∂U  ∂Z

The partial derivatives of U with respect to the dependent target parameters Z  are obtained by matrix inversion. 

⎡

⎤−1







 ∂Z C

 ∂J

 ∂J

⎢  ∂U ⎥

=  ∂J ⎢

⎥

(4.14) 

 ∂Z

⎣

⎦

 C ∂ Z F

 ∂U

 ∂Z F

 ∂U

where 

⎡

⎤−1





 ∂Z C

 ∂U

−1

⎢  ∂U ⎥

=  ∂Z

= ⎢

⎥

 ∂Z

 ∂U

⎣

⎦

 ∂Z F

 ∂U

The equations that must be solved to obtain an optimum are the equations of constraint and the last  N −  M  columns of Eq. (4.14). 

Z C = C  ( M equations )

(4.15) 

 ∂J = 0  ( N − M equations )

(4.16) 

 ∂Z F

The method of explicit functions requires the solution of N equations for N control parameters  U. This algorithm is well suited for obtaining numerical solutions on a computer but not for analytic solutions since it involves matrix inversion of a matrix with analytic functions for elements. Observe that the Lagrange multipliers are obtained as a byproduct of Eq. (4.14) (the first M columns). 

 4.4.3  Gradient  Projection 

The method of gradient projection is a special case of the method of explicit functions. The independent parameters are partitioned into what are referred to as
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state parameters ( U C) and decision parameters ( U F ). The choice between which independent parameters to designate as decision parameters is not unique. The distinction between state and decision parameters is generally only a matter of convenience. However, the decision parameters must determine the state parameters through the constraint relations. Expanding Eq. (4.14), separating the U C  dependent elements from the U F  dependent elements yields 

⎡

⎤−1





 ∂Z C ∂Z C





 ∂J

 ∂J

⎢ ∂U C ∂U F ⎥

=  ∂J

 ∂J

⎢

⎥

(4.17) 

 ∂Z

 ∂U

 ∂U

⎣

⎦

 C ∂ Z F

 C

 F

 ∂Z F ∂Z F

 ∂U C ∂U F

The  Z F  constraint relationships have yet to be specified. Depending on the choice of which  U are included in U F , some reordering of the rows and columns of Eq. (4.17) may be necessary. Since the selection of the Z F  equations of constraint is arbitrary, Z F  may be made identically equal to U F . Equation (4.17) then reduces to, 

⎡

⎤−1







 ∂Z C ∂Z C

 ∂J

 ∂J

 ∂U

 ∂U

=  ∂J

 ∂J

⎢

⎣

 C

 F ⎥

⎦

(4.18) 

 ∂Z

 ∂U

 ∂U

 C ∂ Z F

 C

 F

0

 I

Performing the indicated matrix inversion yields, 

⎡

⎤





−1

−1



 ∂Z C

−  ∂Z C

 ∂Z C

 ∂J

 ∂J

⎢

⎥

=  ∂J

 ∂J

⎢ ∂U C

 ∂U C

 ∂U F ⎥

 ∂Z

 ∂U

 ∂U

⎣

⎦

(4.19) 

 C ∂ Z F

 C

 F

0

 I

and 

 ∂J

−1

=  ∂J −  ∂J ∂Z C

 ∂Z C = 0

(4.20) 

 ∂Z F

 ∂U F

 ∂U C ∂U C

 ∂U F

Equation (4.20) is solved in conjunction with the equation of constraint to obtain an optimum as is done for the method of explicit functions. Observe that the Lagrange multipliers are obtained as a byproduct from both the method of explicit functions and gradient projection. 

 ∂Z −1

 C

 λ = −  ∂J = −  ∂J

(4.21) 

 ∂Z C

 ∂U C ∂U C

Even though the Lagrange multipliers do not enter into the optimal solution, they are useful for determining which bound is appropriate for inequality constraints. 

4.5 Sample Problem
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4.5  Sample  Problem 

A sample problem is solved to illustrate the various methods of constrained parameter optimization. Consider an ellipse with semi-major axis  a  and semi-minor axis  b  oriented along the coordinate axes. The problem is to find the greatest rectangle with sides parallel to the coordinate axes that will fit inside the ellipse. The geometry is illustrated in Fig. 4.1. The equation of constraint describes an ellipse and the performance criterion is the area of the rectangle. The area in the first quadrant is multiplied by four and assigned a minus sign since we are seeking a maximum. 

 U  2

 U  2

 Z

1

2

 c =

+

=  C = 1

(4.22) 

 a 2

 b 2

 J = −4 U 1 U 2

(4.23) 

 4.5.1  Solution  by  Method  of  Lagrange  Multipliers 

The method of Lagrange multipliers requires a solution of Eq. (4.12) in conjunction with the equation of constraint Eq. (4.22). For the sample problem 

 ∂J





= −4 U 2 −4 U 1

(4.24) 

 ∂U





 ∂Z C = 2 U 1 2 U 2

(4.25) 

 ∂U

 a 2

 b 2

 U 2 

 U 2



2



1 

 Zc =

 U 2 

 +

 = C =  1

a2 

b2 

( U U ) 

1 2 

b 

 J = – 4 U 1 U  2

b 2 

 U 1 

a 2 

a 

Fig.  4.1  Sample problem
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Substituting into Eq. (4.12) gives the following two equations: 

−

2 U 1

4 U 2 +  λ

= 0

(4.26) 

 a 2

−

2 U 2

4 U 1 +  λ

= 0

(4.27) 

 b 2

which may be solved in conjunction with the equation of constraint Eq. (4.22)   to obtain the solution, 

 U 1 =  a

√ ,  U 2 =  b

√ and  λ = 2 ab. 

2

2

 4.5.2  Solution  by  Method  of  Explicit  Functions 

The method of explicit functions requires a solution of Eq. (4.14) in conjunction with the equation of constraint Eq. (4.22). Since there are two independent parameters, an additional equation of constraint is needed to square up the system of equations. For numerical solutions, a good choice is a function that is nearly normal to the constraint function. A hyperbola is selected for  ZF . 

 U  2

 U  2

 Z

1

2

 F =

−

(4.28) 

 c 2

 d 2

For the sample problem, the terms of Eq. (4.14)  are  given  b  y, 

⎡

⎤

⎡

⎤

2 U

2 U

 ∂Z

1

2

 C

⎢

⎢

⎥

⎢  ∂U ⎥

⎢  a 2

 b 2

⎥

⎣

⎥

⎦ = ⎢

⎣

⎥

⎦

(4.29) 

 ∂Z F

2 U 1

 ∂U

−2 U 2

 c 2

 d 2

The required matrix inverse is 

⎡

⎤

⎡

⎤

2 U

2 U

 ∂Z

−1

2

2

 C

⎢



⎢

⎥

⎢  ∂U ⎥

 a 2 b 2 c 2 d 2

⎢  d 2

 b 2

⎥

⎣

⎥

⎦

=

1

⎢

⎣

⎥

⎦

(4.30) 

 ∂Z

4 U 1 U 2

 a 2 d 2 +  b 2 c 2

 F

2 U 1 −2 U 1

 ∂U

 c 2

 a 2

Substituting Eqs. (4.24)  and  (4.30)  into Eq. (4.14) yields, 











 ∂J

 ∂J

−

=

1

 a 2 b 2 c 2 d 2

8 d 2 U  2 + 8 c 2 U  2 8 a 2 U  2 − 8 b 2 U  2

1

2

2

1

 ∂Z C ∂Z F

4 U 1 U 2

 a 2 d 2 +  b 2 c 2

 c 2 d 2

 a 2 b 2

(4.31)

4.5 Sample Problem
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The equation 

8 U  2

2 − 8 U 21 = 0

(4.32) 

 b 2

 a 2

is solved in conjunction with Eq. (4.22) to obtain  U 1 =  a

√ and  U 2 =  b

√ .  The  

2

2

Lagrange multiplier, obtained from the first column of Eq. (4.31), is  λ = 2 ab. 

Observe that at the solution point, the constants  c  and   d  completely cancel from the solution, as expected, verifying that Eq. (4.28)  is  arbitrar  y. 

 4.5.3  Solution  by  Method  of  Gradient  Projection 

The method of gradient projection requires a solution of Eq. (4.21) in conjunction 

with Eq. (4.22). For the sample problem,  U 1 is selected for U C  and   U 2 for U F . 

Because of symmetry, the selection of which independent parameter is a “state” 

parameter and which is a “decision” parameter is arbitrary. 

 ∂J = −4 U 2

(4.33) 

 ∂U C

 ∂J = −4 U 1

(4.34) 

 ∂U F

 ∂Z C = 2 U 1

(4.35) 

 ∂U C

 a 2

 ∂Z C = 2 U 2

(4.36) 

 ∂U F

 b 2

Substituting the above equations into Eq. (4.21) yields 







[−

 a 2

2 U 2

4 U 1] − [−4 U 2]

= 0

2 U 1

 b 2

− 4 U 21 b 2 + 4 U 22 a 2 = 0

(4.37) 

which is solved in conjunction with Eq. (4.22) to obtain  U 1 =

 a

√ and   U 2 =

2

 b

√ . The Lagrange multiplier, which is also obtained as a byproduct, is given by 2

substituting into Eq. (4.21). 





2 U

−1

1

 λ = −[−4 U 2]

= 2 ab

(4.38)

 a 2
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4.6  Second-Order  Gradient  Search 

Parameter optimization problems with constraints, where the dependent parameters are obtained by numerical integration, are difficult if not impossible to solve analytically. Numerical solutions may be obtained by searching using an iterative technique like Newton’s method. For the explicit method, the equations that need to be solved are, 

Z C = C  ( M equations )

(4.39) 

and from the last  N −  M  columns of 

⎡

⎤−1







 ∂Z C

 ∂J

 ∂J

⎢  ∂U ⎥

=  ∂J ⎢

⎥

(4.40) 

 ∂Z

⎣

⎦

 C ∂ Z F

 ∂U

 ∂Z F

 ∂U

the following equation is extracted: 

 ∂J = 0  ( N − M equations )

(4.41) 


 ∂Z F

From the definition of the derivative, the following difference equations may be written: 

 Z C =  ∂Z C U

(4.42) 

 ∂U

 ∂J

 

=  ∂ 2 J U

(4.43) 

 ∂Z F

 ∂U ∂Z F

The search for a solution involves finding a change in the independent control parameters that will move the current values of the constraint parameters and optimization condition to their desired values. The desired changes in the constraint parameters and optimization condition are given by 

 Z i = C − Z i

(4.44) 

 C

 C

 ∂J i

 

= 0 −  ∂J i

(4.45) 

 ∂Z F

 ∂Z F

corresponding to a change in the control parameters from U i  to U i+1, 

 U = U i+1 − U i

(4.46)

4.6 Second-Order Gradient Search
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Solving for U i+1, an iterative equation is obtained for the  i-th iteration. 

⎡

⎤

 ∂Z

−1 ⎡

⎤

 C

Z i − C

⎢  ∂U ⎥

 C

U i+1 = U i − ⎢

⎢

⎥

⎣

⎥

⎦ ⎣

⎦

(4.47) 

 ∂ 2 J

 ∂J i

 ∂U ∂Z

 ∂Z

 F

 F

The partial derivatives required by the second-order gradient search are obtained by finite difference. Computation of these finite difference partial derivatives requires repeated evaluation of the functions  f  and   g  for the performance index and constraint parameters at each iteration. 

 ∂J =  f(U +  U i) −  f(U −  U i) (4.48) 

 ∂Ui

2 Ui

The  U i  vector is zero except for the  i-th element that contains the partial derivative step size.  Ui  is the  i-th element of  U i. The partial derivatives of the constraint parameters with respect to the independent control parameters are given by, 

 ∂Zj

 g

=  j (U +  U i) −  gj (U −  U i) (4.49) 

 ∂Ui

2 Ui

The matrix of second partial derivatives in Eq. (4.47) is a mixed tensor that is covariant in U and contravariant in Z. It serves the same purpose as the covariant Hessian in optimization theory and may be a Hessian depending on the definition. The Hessian matrix was developed by the nineteenth-century mathematician Ludwig Otto Hesse. The elements of the required matrix of second partial derivatives are given by, 

 ∂ 2 J

=

1

{ [ f (U +  U j +  U i) −  f (U +  U j −  U i)]

 ∂Uj ∂Zi

2 Uj

[ gi (U +  U j +  U i) −  gi (U +  U j −  U i)]−1

−[  f (U −  U j +  U i) −  f (U −  U j −  U i)]

[ gi (U −  U j +  U i) −  gi (U −  U j −  U i)]−1}

(4.50) 

The partial step size for the first partial derivatives should be as small as possible to achieve linearity but large enough, relative to the machine precision, to maintain accuracy. The partial step size for the second partial derivatives ( U j ) should be about 5–10 times larger than the corresponding ( U i). The computation of the second partial derivatives Eq. (4.50) will require 4 N  2 evaluations of the performance index and constraint functions. For six control parameters, 144 function evaluations
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are needed. Several methods have been explored to accelerate the computation of the second partial derivatives. Since the optimization conditions are not a function of the second partial derivatives, approximations may be used to speed up the search without compromising accuracy. An approximation that worked well for optimization of the Viking orbit insertion maneuver was to set all the terms of Eq. (4.50) where  i =  j  to zero. For this approximation, 2 N + 1 function evaluations are required. Another approach was suggested by Fletcher-Powell-Davidon. The matrix of second partial derivatives is primed with an approximate solution. Subsequent changes in the control parameters computed during the search are used to estimate and thus improve the second partial derivative matrix. This bootstrap approach can greatly speed up the search but may lead to instabilities if the search is not properly controlled. 

4.7  Inequality  Constraints 

Sometimes the constraint on a  Z  parameter is not a specific target value but a range of values. In other situations, the second-order gradient search described above may not converge to the desired minimum if the initial guess required to start the search is too far from the solution but wander off toward a local maximum or inflection point. 

For these reasons, it is often convenient to specify inequality constraints where t he Z are constrained to a specified range of values. 

 CLi ≤  Zi ≤  CU i

(4.51) 

An algorithm has been devised to transform the problem of optimization with inequality constraints into the problem of optimization with equality constraints described above. At any step in the iteration for a solution, the  Zi  parameters are tested and sorted into the Z C  category or Z F  category. The algorithm is diagramed in Fig. 4.2. 

The following conditions result in the  Zi  target variable being placed in the constrained  Z C  category: 

(a)  If  CLi =  CU i,  Ci  is set equal to  CLi  and   Zi  is a hard constraint. 

(b)  If  Zi > CU i,  Ci  is set equal to  CU i  and   Zi  is a soft constraint. 

(c)  If  Zi < CLi,  Ci  is set equal to  CLi  and   Zi  is a soft constraint. 

The following conditions result in the  Zi  target variable being placed in the unconstrained  Z F  category: 

(d)  If  CLi < Zi < CU i  and the constraint is released. 

(e)  If | Zi −  CLi|  < b  and  ∂J <  0 and the constraint is released. 

 ∂Zi

(f)  If | Zi −  CU i|  < b  and  ∂J >  0 and the constraint is released. 

 ∂Zi

4.7 Inequality Constraints
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Fig.  4.2  Inequality constraint status determination 

The following conditions result in convergence if true for all  Zi: (g)  If | Zi −  CLi|  < b  and  CLi =  CU i, hard constraint (h)  If | Zi −  CLi|  < b  and  ∂J >  0, soft constraint 

 ∂Zi

(i)  If | Zi −  CU i|  < b  and  ∂J <  0, soft constraint 

 ∂Zi

(j)  If  CLi < Zi < CU i  and  ∂J < 

 ∂Z

 p , a true minimum satisfying the constraints 

 i

A soft constraint applies to the current iteration and may be released as the search progresses. A hard constraint is an equality constraint and applies throughout the search. The tolerance  b  is on the value of the constrained variable and the tolerance p  is on the partial derivative of  J  with respect to  Zi. The conditions for control of the search and confirmation of a solution are lettered a–j and shown in Fig. 4.2. 

There are three possible cases that each constraint variable may describe provided the optimization problem has been properly defined and constrained. The constraint variable may either be an increasing monotone across the constraint interval, achieve a minimum within the constraint interval, or be a decreasing monotone across the constraint interval. If a maximum is sought, the sign of  J  is changed and the algorithm searches for a minimum. These three cases are illustrated in F ig. 4.2.   For the first case, condition (a) or (c) will select the lower bound and condition (f) will release the constraint from the upper bound. At the solution point (g,h), the partial derivative of  J  with respect to  Zi, the negative of the Lagrange multiplier, indicates that releasing the constraint will result in an increase in  J . The solution is thus held at the lower bound. For the second case, condition e or f will release the constraint from the lower and upper bounds, respectively, and a minimum is obtained (d,j) between the bounds. The third case is simply the mirror image of the first case. 
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4.8  Mission  to  Mercury 

The MESSENGER spacecraft was launched on August 3, 2004, on a mission to explore the planet Mercury. The trajectory reencountered Earth a year after launch, to obtain a gravity assist, and then proceeded on to several encounters with Venus and Mercury before being inserted into Mercury orbit in 2011. The initial injection error at Earth launch resulted in a 20 m/s under burn. Two trajectory correction maneuvers (TCMs) were scheduled to make up the energy deficit and place the spacecraft on the proper trajectory. Two TCMs are necessary to achieve the target; the first corrects the energy and the second corrects the orbit plane. Because of the near 360 degree transfer, the first maneuver, which is performed shortly after launch, is unable to correct the orbit plane. The second maneuver, which is performed about 3 months after launch is less efficient in correcting energy or flight time. Since there are only two constraints that need to be satisfied related to the position relative to Earth at the second encounter and there are six maneuver components available to control the trajectory, the remaining four degrees of freedom may be used to minimize propellant expenditure. 

The initial Earth launch injection conditions ( 

X0) on August 3, 2005, are 

propagated to the nominal time of Earth return on August 2, 2005. Two TCMs were initially planned for August 18, 2004, and November 19, 2004. The spacecraft state at Earth return is determined by numerical integration. 

X e =  g 1 (t 0 , X0 , t 1 , V1 , t 2 , V2 , te) The maneuver velocity components,  V1 and  V2, are applied as finite burns at the maneuver start times  t 1 and   t 2. At the end time (  te), the Cartesian state vector is transformed into hyperbolic orbit elements. 

H e =  g 2 (X e)

H e = [ B· R, B· T , tp, V∞ , α∞ , δ∞]

The hyperbolic elements  B · R  and  B · T (see Fig. 3.4) are the coordinates of the approach asymptote in the target B-plane,  tp  is the time of closest approach,  V∞ is the approach hyperbolic velocity magnitude, and  α∞ and   δ∞ are the right ascension and declination of the approach asymptote. The optimization problem is to find the velocity change components of the two TCMs that will acquire the target and eventually arrive at Mercury and minimize propellant consumption which is related to the sum of the magnitudes of the maneuver velocity change associated with each maneuver. 

The optimization problem described above must first be cast into the framework required by the optimization method being used. The following constraint variables, constraint parameters, performance index, and control variables are defined. 

4.8 Mission to Mercury

191

Z C = [ B· R, B· T ]

C C = [−14463 .  00 km , −17793 .  00 km]

 J = | V1| + | V2|

U = [ V1 x, V1 y, V1 z, V2 x, V2 y, V2 z]

The B-plane parameters are restored to their nominal pre-launch target values, and all the other hyperbolic parameters at the second Earth flyby including flight time are permitted to float. Experience has revealed that the flight time and approach velocity errors are small enough to be corrected by subsequent maneuvers. For the method of explicit functions, four additional equations of constraint ( Z F ) must be defined. 

A natural choice are the four hyperbolic parameters that are not constrained. 

Z F = [ tp, V∞ , α∞ , δ∞]

A problem with this choice for Z F  is the sensitivity of the first maneuver to parameters defined after the second maneuver. The first maneuver must be determined through the second maneuver. For this reason, a preliminary search is conducted with Z F  defined by  tp  and the three velocity components of the second maneuver rotated to along track, cross-track, and out-of-plane components. The inplane velocity components for the second maneuver are constrained to zero and a solution is obtained that is within 5 m/s of optimum. 

The initial guess is input to initialize the optimizer which uses the method of explicit functions. The results after each iteration are given in Table 4.1. 

The search algorithm attempts to drive the constraint variables to their desired values at the same time the performance index is being driven to a minimum value. At iteration 2, for example, a substantial reduction in  J  is achieved at the expense of driving the constraint variables away from their desired values. At iteration 4, a slight increase in performance index is obtained as the constraint variables nearly achieve their objective. From iteration 5 through 9, convergence is achieved as the optimization algorithm drives the optimization conditions to smaller values. The solution achieves an optimum within 0.1 mm/s before machine precision prohibits any further reduction. The velocity components of the two maneuvers in

 V1  = [12 .  186085 , −13 .  684292 , −8 .  4862428 ] m/s

 V2  = [3 .  6276212 , −3 .  4959270 ,  1 .  7057893] m/s The first maneuver was a bit large for the maneuver system that had not been tested in space and was delayed until August 24, 2004, and only about 80% of the required velocity change was executed at this time. A small makeup maneuver was executed on September 24, 2004. The maneuver scheduled for November 19, 2004, was executed as planned. 

The same problem may be solved by the method of gradient projection. This method requires an awkward choice of which independent parameters are “state” 

parameters and which are “decision” parameters. A choice of four U F  parameters
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∞

0.3651E+01 

0.1314E+01 

0.6061E+00 

0.8770E+00 

0.3040E+00 

0.1232E+00 

0.5284E+00 

0.4391E-01 

0.6976E-01

 ∂J

 ∂δ

−

−

−

∞

0.1107E+02

0.3855E+01

0.8356E+00

0.1230E+01

0.3625E+00

0.1789E+00

0.7454E+00

0.3485E-01

0.9681E-01

 ∂J

 ∂α

−

−

−

∞

0.3155E+00

0.1903E+00

0.8816E-02

0.2009E-01

0.1596E-02

0.3987E-02

0.1068E-01

0.1684E-02

0.1629E-02

 ∂J

 ∂V

−

−

−

−

 p

0.1240E-05

0.4375E-06

0.1150E-06

0.1677E-06

0.4402E-07
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0.1009E-06

0.2351E-08

0.1312E-07
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must be made from two sets of maneuver parameters each of dimension three. The following arbitrary partition of maneuver velocity components into the categories required by gradient projection was used for the search. 

U C = [ V1 x, V1 y]

(4.52) 

U F = [ V1 z, V2 x, V2 y, V2 z]

(4.53) 

The gradient projection search algorithm was implemented by making Z F  equal to U F  and using the same explicit function algorithm as above. The search was started with the maneuver velocity components set to zero and the results after each iteration are given in Table 4.2. The first iteration moved the target variables from about 2 million km to within 20,000 km of the desired target. By the third iteration the target variables were within 200 km of their desired value and the performance index was within one m/s of optimum. Iterations 4–8 were within the linear region of the second partial derivatives and quadratic convergence is observed. The indication of quadratic convergence is an order of magnitude reduction in the optimization condition after each iteration until the machine precision limit is reached. 

4.9  Multiple  Encounter  Optimization 

For the problem of multiple encounter trajectory design, the independent control parameters are the components of propulsive maneuvers strategically placed along the flight path to enable the spacecraft to attain the target body. The candidate constraint variables are simply the position or some simple function of the position of the spacecraft with respect to the various bodies that the spacecraft encounters or some simple function of the independent parameters such as the magnitude or direction of propulsive maneuvers. For a typical trajectory design problem, the constraint variables may be the two components of the position vector in the final target body B-plane, the time of closest approach to the final target body, and the altitude of closest approach at some of the intervening bodies. The performance criterion is the sum of the magnitudes of the propulsive maneuvers. At least two propulsive maneuvers are placed between each encounter en route to the target body. 

For example, a multiple encounter mission to Mercury that is launched from Earth and encounters the Earth 1 additional time, Venus 2 times, and Mercury 3 times before arriving at the fourth and final Mercury encounter would have 7 legs with 14 propulsive maneuvers for a minimum total of 42 independent parameters. The constraint variables are the target body B-plane parameters including time of closest approach at the fourth Mercury encounter. This strategy was implemented and a multiple encounter trajectory designed from Earth to Mercury. Since this trajectory design is similar to the actual design of the Mercury Surface Space Environment, Geochemistry, and Ranging (MESSENGER) mission to Mercury, the results will be compared. 
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 4.9.1  Multiple  Encounter  Strategy 

Application of parameter optimization algorithms to the problem of multiple planetary encounter trajectory optimization from Earth launch to the target planet encounter is impractical. The number of independent parameters is excessive. For a 7-encounter mission from Earth to Mercury with 18 propulsive maneuvers, 4 

more than the minimum required, the number of independent parameters is 54 

corresponding to 3 velocity components for each maneuver. The number of function evaluations per iteration required by the method of explicit functions is 4 times the square of the number of parameters or 11,664. Other methods, such as gradient projection, would probably not fare any better. Each function evaluation involves integrating the trajectory from each propulsive maneuver to the final planetary encounter. With current computer technology, the computer processing time would be excessive. Another problem is even more insidious. The sensitivity of a position perturbation at the target to a velocity perturbation near Earth is about 1032 seconds. 

In order to successfully target maneuvers, the trajectory calculations would need to be carried out in quadruple precision (116 bits). A velocity perturbation of one Angstrom per 20 billon years at Earth launch would result in a 15 km perturbation at the final planetary encounter. 

The strategy for reducing sensitivity to velocity perturbations is to divide the trajectory into several legs and then group the legs into segments for optimization. 

A trajectory leg starts shortly after a planetary encounter and ends shortly after the next planetary encounter. A trajectory segment consists of two successive trajectory legs. For a given trajectory, the trajectory segments overlap and this results in the number of trajectory segments being one less than the number of legs. This strategy is illustrated in Fig. 4.3. 

E0

E1 

V1

V2

M1 

Segment 1 

leg 1

leg 2 

Segment 2 

leg 2

leg 3 

E  Earth 

V  Venus 

Segment 3 

M  Mercury 

leg 3

leg 4 

Fig.  4.3  Definition of segments and legs
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∂V a 

∂V b 

∂V c 

Fig.  4.4  Trajectory leg schematic diagram 

The i-th leg is integrated from the initial time  (toi)  to the final time  (tfi)  and the integration is stopped at each propulsive maneuver  (tai, tbi, tci, · · ·  )  and at the nominal time of the planetary encounter  (tei). The spacecraft states and partial derivatives that are needed by the optimization algorithm are saved. This strategy is schematically represented in Fig. 4.4. The trajectory optimization algorithm is initialized with a preliminary design obtained by patching conic sections using Lambert’s theorem and other design techniques including shooting. This preliminary design fixes the time of the maneuvers and trajectory end points. The initial state is obtained for each leg along with nominal values for the deterministic propulsive maneuvers and planetary encounter aim points. At the conclusion of an optimization iteration, the propulsive maneuver velocity components are updated along with the time and aim points at each planetary encounter. Because of nonlinearity and machine precision, the initial state and propulsive maneuvers result in the trajectory missing the desired encounter conditions at the planetary encounter associated with each leg. The intermediate planetary encounter times and aim points are needed to shepherd the trajectory to the final planetary encounter. 

For the i-th trajectory leg, the initial state and propulsive maneuvers that occur during the i-th leg are input to a precision trajectory propagator and the trajectory is integrated from  toi  to   tfi. The spacecraft state at the planetary encounter of the i-th leg will differ from the desired B-plane encounter conditions. A correction is computed for one of the propulsive maneuvers in the i-th leg to force the trajectory through the desired position in the B-plane. The velocity error is left uncontrolled and is permitted to accumulate. Restoring the position error will tend to also restore the velocity error. Thus, if the first maneuver in the i-th leg is selected, 





 ∂B p

−1

 i

 V ai =

 (B ti − B pi)

(4.54) 

 ∂V ai

B is a column matrix containing B-plane parameters that are a simple transformation of the spacecraft state at encounter into a two-body conic. B pi  contains the first three elements of B corresponding to position and B ti  are the desired target values at the i-th encounter. 
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 B =  (B · T , B · R, tp, V∞ , α∞ , δ∞ ) B ·  T  and  B ·  R  are the coordinates of the approach asymptote in the target plane normal to the approach asymptote,  tp  is the time of periapsis passage,  V∞ is the magnitude of the approach velocity vector, and  α∞ and   δ∞ are the right ascension and declination of the approach asymptote, respectively. There is a one-to-one correspondence between the Cartesian state of the spacecraft and the  B  plane parameters. 

B i(t) =  f (X ei, μi, tei)

(4.55) 

where   μ  is the gravitational parameter of the i-th planet and  tei  is the time of the state vector X ei  at the i-th planetary encounter. The incremental velocity change ( V ai) is added to V ai  and the trajectory integrated again from  toi  to   tfi.  The targeting calculations are repeated iteratively until the B-plane error is nulled to an acceptable  t olerance. 

The 3x3 matrix of partial derivatives in Eq. (4.55) may be obtained from the first 3 rows of the full state maneuver matrix that may be computed from the matrices illustrated in Fig. 4.4. 















 ∂B

−1

 i

=  ∂B i

 ∂X ei

 ∂X fi

 ∂X fi

 ∂V ai

 ∂X ei

 ∂X oi

 ∂X oi

 ∂V ai

The state at the end of the i-th trajectory leg is used to initialize the state at the beginning of the i+1-th leg. Starting with the first leg and continuing to the final leg, adjustments are made to the propulsive maneuvers that result in a smooth trajectory from launch to the final encounter that passes through the desired aim point at each planetary encounter with no position or velocity discontinuities. Since the propulsive maneuvers are modeled as finite burns, there is no velocity discontinuity associated with propulsive maneuvers. 

 4.9.2  Trajectory  Segment  Optimization 

The trajectory optimization algorithm refines the constraint parameters and reduces the total  V  required for propulsive maneuvers. This algorithm is applied iteratively until no further decrease is obtained. Between each iteration, the trajectory must be retargeted to remove position discontinuities introduced by nonlinearity. Because of the sensitivity of state perturbations at the end of a trajectory leg to velocity perturbations in the previous leg, it will be convenient to break the trajectory into segments that span two successive trajectory legs as illustrated in Fig. 4.3.   For   a given trajectory segment, the initial state of the first leg and final state of the second leg are constrained to their current values and the only parameters that are permitted to vary are those associated with the propulsive maneuvers that occur during the
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segment and the planetary encounter of the first leg. Since the legs are defined such that there are no propulsive maneuvers after the planetary encounter, constraining the end state of the second leg is equivalent to constraining the planetary encounter on the second leg. 

The constrained parameter optimization algorithm requires as input target values for the constraint parameters, nominal values for the control parameters, and constraint parameters along with their partial derivatives obtained by precision numerical integration of the state and variational equations. In addition, tolerances on finite difference partial step sizes and convergence tolerances are needed. A linear correction to the control parameters is output that lowers the performance index and holds the constraint parameters at their target values. This processing is repeated for each trajectory segment starting with the first two legs and proceeding to the final leg. At the completion of each segment, the encounter time and aim point for the first leg in the segment must be updated. This update consists of mapping the velocity change associated with propulsive maneuvers that occur during the first leg of each segment to the first leg encounter. 

 B i =  ∂B i V ai +  ∂B i V bi +  ∂B i V ci + · · ·

(4.56) 

 ∂V ai

 ∂V bi

 ∂V ci

The encounter time and aim point for the second encounter need not be updated since they are constrained. The second encounter of a trajectory segment becomes the first encounter of the next segment and is updated as part of the processing of that segment. The updated control and encounter aim points are targeted as described above to remove position discontinuities between the segments caused by nonlinearity. The targeting and optimization processing is repeated until convergence is obtained. 

 4.9.3  Multiple  Encounter  Example 

As an example, a seven-encounter trajectory from Earth to Mercury is targeted to minimize propellant expenditure. This example is close to the MESSENGER 

Mission trajectory. The major differences are in the trajectory propagator and initial conditions assumed. The initial state after launch is determined by processing several weeks of Doppler and range tracking data and the resulting optimum trajectory includes removal of actual launch vehicle injection errors. The first leg is a return to Earth trajectory and the first segment includes the first encounter of Venus leg. Subsequent legs are a return to Venus and four Mercury encounters. In order to prevent the trajectory design from intersecting the surfaces of Venus and Mercury, the second Venus encounter altitude is constrained to be no less than 300 

km and the first three Mercury encounter altitudes are constrained to be no less than 200 km. 
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The velocity change associated with each maneuver is shown in Table 4.3. 

The initial solution was obtained from the MESSENGER pre-launch trajectory design modified to remove the launch vehicle injection error. Because of minor trajectory model errors, probably associated with solar pressure, the first iteration diverges from the pre-launch reference trajectory and the total propulsive  V  is about 1187 m/s. The next four iterations reduce the  V  by about 130 m/s resulting primarily from optimizing allocation between maneuvers on the same leg. Some V  is shifted from leg 2 to leg 4 by adjusting the encounter aim point and arrival time at leg 3. The last four iterations refine the propellant allocation among the maneuvers and achieve another 10 m/s reduction in  V . 

The MESSENGER post-launch trajectory design results are shown at the bottom of Table 4.3. The total  V  of 1042 m/s is 3 m/s less than obtained here. The  V

allocation to the individual legs may differ by 10 to 20 m/s. These differences may be attributed to modeling errors and curvature of the performance index function near the optimum solution. The performance index function is nearly flat at the solution point. Large changes in the control parameters that satisfy the constraints result in small changes in the performance index or  V . This behavior of the performance index function makes it difficult to find the true minimum. However, it does not cost much to be a little sub-optimum. 

4.10  Summary 

Trajectory optimization performed for navigation involves searching for the initial conditions and deterministic propulsive maneuvers that acquire the target, satisfy mission constraints, and minimize some performance criterion such as fuel expenditure. Analytic solutions are only approximate because there does not exist a closed form solution for the trajectory that is accurate enough. The method of Lagrange multipliers, which is useful for an analytic solution, does not perform well when incorporated into a numerical search algorithm. The methods of explicit functions or gradient projection provide accurate numerical solutions. Since the solution does not depend on programming exact partial derivatives, finite difference partial derivatives are computed for the search. This is fortunate because a new set of analytic partial derivatives would have to be derived for every new problem. Once a solution is obtained, the high-precision trajectory can verify optimality by systematically perturbing the constraints. 

A problem with trajectory optimization is the large number of function evaluations required when there are many constraint and control parameters. For the MESSENGER mission, it was necessary to segment the trajectory into overlapping segments and optimize each segment. The resulting segments had to be retargeted a small amount after each iteration to remove position discontinuities caused by nonlinearity. The segments also removed the extreme sensitivity of constraints to the propulsive maneuvers. 
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Table  4.3  Optimization of seven leg mission to Mercury 

LEG 1 

LEG 2  LEG 3 

LEG 4 

LEG 5

LEG 6

LEG 7 

(EO-El)  (E1-Vl)  (V1-V2)  (V3-M1)  (M1-M2)  (M2-M3)  (M3-M4) 

ITER

MVR1*  MVR1 

MVR1 

MVR1 

MVR1 

MVR1 

MVR1 

TOTAL 

MVR2 

MVR2 

MVR2 

MVR2 

MVR2 

MVR2 

MVR2 

MVR3 

MVR3

MVR3 

MVR3 

1

20 .  53

80 .  62 

3.02

7 .  46

33 .  58

3 .  49

13 .  97 

1187.16 

5 .  11 

304 .  33 

2.11

209 .  26

73 .  20 

240 .  86 

178 .  02 

2.34

4 .  57

2 .  76

1 .  96 

2

20 .  47

70 .  24 

2.98

1 .  21

34 .  17

1 .  80

4 .  10 

1153.51 

5 .  14 

303 .  49 

1.72

208 .  92

73 .  67 

241 .  33 

175 .  66 

3.29

4 .  11

0 .  99

0 .  20 

3

20 .  36

0 .  54 

6.25

11 .  33

30 .  75

2 .  30

2 .  71 

1096.36 

5 .  34 

301 .  65 

0.94

123 .  85

74 .  39 

242 .  74 

175 .  68 

4.88

92 .  20

0 .  26

0 .  22 

4

20 .  37

0 .  69 

2.45

11 .  91

0 .  29

0 .  41

2 .  49 

1062.79 

5 .  46 

304 .  19 

1.71

103 .  31

69 .  14 

243 .  13 

175 .  87 

1.82

119 .  17

0 .  26

0 .  13 

5

20 .  74

0 .  66 

2.40

20 .  74

0 .  63

0 .  53

0 .  27 

1055.45 

5 .  33 

306 .  92 

1.52

200 .  12

73 .  91 

243 .  03 

174 .  96 

1.37

0 .  00

1 .  19

1 .  13 

6

19 .  95

1 .  60 

4.85

0 .  37

3 .  65

0 .  60

4 .  19 

1053.49 

5 .  72 

303 .  04 

5.89

216 .  01

71 .  88 

239 .  91 

175 .  82 

0. 

0 . 

0 . 

0 . 

7

20 .  75

1 .  39 

1.58

13 .  43

1 .  08

0 .  79

0 .  31 

1051.14 

5 .  34 

307 .  15 

1.88

202 .  27

73 .  86 

242 .  26 

175 .  01 

0.58

2 .  24

0 .  22

1 .  00 

8

20 .  74

1 .  82 

1.58

9 .  89

1 .  52

0 .  00

0 .  86 

1049.97 

5 .  38 

306 .  67 

2.18

199 .  70

73 .  09

1 .  32

0 .  33 

1.20

5 .  78

242 .  98 

174 .  92 

9

20 .  74

0 .  69 

1.03

9 .  20

0 .  53

0 .  64

0 .  33 

1045.95 

5 .  37 

306 .  49 

1.62

199 .  90

71 .  86 

242 .  91 

174 .  91 

0.88

5 .  81

1 .  25

0 .  53

1 .  24 

MESSENGER 

 .  64

 .  02 

1.43

1 .  59

 .  08

 .  81

1 .  74 

1042.65 

25 .  82 

312 .  20 

3.006

204 .  82

73 .  77 

240 .  35 

176 .  35 

*  MVRi is the i-th propulsive maneuver of the indicated leg in meters/second Exercises 

4.1  A cylindrical oil can is being manufactured, and, for a given volume, the cost of the steel is proportional to the surface area of the can if it is assumed to have uniform thickness. The problem is to find the height and radius that minimizes the amount of steel. This problem can be formulated as a constrained parameter optimization problem where  U 1 =  r, the radius, and  U 2 =  h, the height. 
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 Zc =  πU  21 U 2

 J =  V = 2 πU  2 +

1

2 π U 1 U 2

Using one of the optimization methods described in Sect. 4.5, determine the optimum   U 1 and   U 2. If the method of explicit functions is selected and  Zf =

 π U 1 U  2, the matrix inversion is simple and the solution is straightforward. 

2

4.2  A sphere is inscribed inside the oil can of Exercise 4.1. Determine the ratio of the volume of this sphere to the volume of the oil can. This problem was solved by Archimedes and a cylinder and sphere were atop his tomb according to Cicero. 

4.3  The Hessian matrix (  ∂ 2 J ) which is used to obtain a minimum in a Newton-

 ∂U ∂Z F

Raphson search can be used to verify that a minimum has been obtained. For the sample problem in Sect. 4.6, determine the Hessian and verify that it is positive indicating a minimum. 

4.4  For interplanetary maneuvers the spacecraft is often targeted to  B · R  and  B· T

and the time of flight is not corrected and permitted to float. The optimum maneuver can be found by solving a constrained parameter optimization problem. 

 Zc =  (B · R, B · T )

 Zf =  tp

 J = | V|

This maneuver is called a critical plane maneuver and can be computed from the K matrix defined by 





 ∂B · R, B · T , tp

 ∂V

Determine the critical plane maneuver directly from the K matrix and the B-plane miss. 

4.5  A spacecraft that is approaching Mars is inserted directly into orbit with a periapsis altitude of 1500 km and orbit period of 24 h. The approach velocity (  V∞) is 2.54 km/s, GM is 42,828 km3 / s2, and the radius of Mars is 3310 km. A second spacecraft with the same approach velocity is inserted into an orbit with a periapsis altitude of 1000 km and the same apoapsis radius as the first spacecraft. A maneuver is executed at apoapsis to raise the periapsis altitude to 1500 km. Assuming the orbit insertion maneuvers are impulsive, determine the total   v  required for each strategy. 

Which strategy is most fuel efficient? 
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4.6  Show that a Hohmann transfer between two circular orbits minimizes the launch energy from the first orbit and the orbit insertion energy at the second orbit. 

The minimum energy transfer orbit will be tangential at the second orbit and  ra  will equal the radius of the second orbit. Crossing the second orbit requires more energy. 

The problem is thus reduced to minimizing  v  with respect to the flight path angle  γ

subject to the constraint that  ra  is the radius of the second orbit and  r  is the radius of the first orbit where

√ GM p

 v =  r  cos  γ

4.7  If   γ  happens to be zero in Exercise 4.6, minimizing v also minimizes the velocity change since  v  and the orbital velocity are in the same direction. Compute the launch energy from Earth for a mission to Mars and the orbit insertion energy at Mars where  re = 0 .  149×109 km,  rm = 0 .  227×109 km,  GM =  .  132×1012 km3s−2
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Chapter  5 

Probability  and  Statistics 

5.1  Introduction 

It is relatively easy to design a trajectory that satisfies all the physical laws but cannot be flown. For example, a trajectory describing the path of a coin that is tossed on the floor and rolls to a stop remaining on its edge is easy to design. However, the perturbations that the coin encounters as it rolls on the floor almost guarantees that it will not remain on its edge. Spacecraft trajectory design encounters this same problem in many forms. Statistical perturbations of the trajectory along the flight path may result in failure to meet mission objectives if not complete failure as in the case of the coin. 

5.2  Normal  Probability  Distribution  Function  (PDF) 

An arrow or unguided rocket would score a direct hit on the target provided they were launched with the proper initial conditions and there were no perturbing forces acting during transit. However, a body moving through the atmosphere will encounter dust particles or random hits from gas molecules that will deflect it from the target. If a large number of arrows or rockets are launched, a pattern emerges for the distribution of the impacts around the target. It is the characterization of this distribution that is of interest. Consider the case of a body that is launched and encounters dust particles on the way to the target. Assume that the dust particles deflect the body a fixed amount either to the right or to the left with equal probability. 

The geometry is illustrated in Fig. 5.1. The first impact is identified by  m = 0 and the body moves an equal amount to the right or to the left. Both paths are shown in Fig. 5.1. Each generation of impacts, corresponding to increasing values of  m, doubles the number of possible paths. At the end of  m  generations, there are 2 m possible paths. The number beside each of the nodes is the total number of paths 
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Fig.  5.1  Pascal’s triangle 

that pass through the node. Therefore, the probability that a path will pass through a given node is the number beside the node divided by the total number of possible paths since all paths are equally likely. The triangle illustrated in Fig. 5.1  is called Pascal’s triangle and the number of paths passing through each node is given by m

 p(m, k) =

 k



 m

=

 m! 

 k

 (m −  k)!  k! 

where   k  is the node numbered from the left starting at  k = 0. For any given node of the Pascal triangle, the number is the sum of the two numbers immediately above. 









 m + 1 =  m +  m

 k + 1

 k

 k + 1

The rows of Pascal’s triangle are the coefficients of the binomial expansion. It will be shown later that the  m th row of Pascal’s triangle may be approximated by the normal probability distribution function (PDF) given by 





 x 2

 dP (x)

−

=

1

√

 e

2 σ  2

(5.1) 

 dx

 σ

2 π

after   x  is properly scaled. In the limit as  m  goes to infinity, the approximation is exact. The probability that  x  is in the interval from  x 1 to   x 2 is given by

5.3 n-Dimensional Normal PDF
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 x 2

 x 2

1

−

 P (x

2 σ  2

1 , x 2 ) =

√

 e

 dx

 x

 σ

2 π

1

and 





∞

 x 2

1

−

√

 e

2 σ  2  dx = 1

−∞  σ  2 π

A convenient measure of the spread of a PDF is given by the second moment about the  y  axis, which is the moment of inertia, and when applied to a PDF is called the variance. The variance is simple to compute and has the property of giving increased weight to the tails of the distribution just as the moment of inertia gives more weight to mass that is further from the axis of rotation. The variance is given by

∞

 V =

 x 2  p(x)dx

−∞

Since the integral of the normal PDF from minus infinity to infinity is one, the following is obtained after differentiating with respect to  σ : 









∞

 x 2



 x 2

 x 2

−

∞

−

√

1

 e

2 σ  2  dx −

√

 e

2 σ  2  dx = 0

−∞  σ  4 2 π

−∞  σ  2 2 π

After multiplying by  σ  3, the variance is given by 









∞

 x 2



 x 2

 x 2

−

∞

1

−

 V =

√

 e

2 σ  2  dx =  σ 2

√

 e

2 σ  2  dx =  σ 2

(5.2) 

−∞  σ  2 π

−∞  σ  2 π

The variance  (σ  2 )  provides a measure of the error associated with a random variable and the reciprocal provides a measure of the accuracy. Since the application of variance is often in its minimization, the square or quadratic form is mathematically convenient since the minimum of a function of  σ  2 is also the minimum of a function of   σ . The simple result obtained for the variance was no accident, but followed directly from the scaling assumed in Eq. (5.1). 

5.3  n-Dimensional  Normal  PDF 

The joint PDF of n independent normally distributed random variables (  y 1 , y 2 , 

 . . . yn) is defined as the probability that  y  is in all of the intervals from  yi  to  yi + yi. 

The PDF is obtained by multiplying together  n  normal PDFs. 
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In matrix notation, the normal joint PDF becomes 





 p(Y ) =

1

exp − 1  Y T AY

(5.3) 

 n

 ( 2 π )
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2 | A|− 12
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⎡
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If a new random variable  X  is defined that is a transformation or mapping of  Y , then p(X) =

1

exp − 1  XT BX

(5.4) 

 n

 ( 2 π )

2

2 | B|− 12

where 

 X =  R Y

 B =  RAR−1

The matrix B is called the information matrix and the inverse of B is called the covariance matrix. Each diagonal element of  B−1 is the variance of the associated random variable. The covariance matrix of the new multidimensional normal PDF 

of the random variables  X  is given by

5.4 Bivariate Normal PDF
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Given  B−1, the mapping matrix  R  can be found by extracting the eigenvalues of B−1. The matrix  R  is the matrix of eigenvectors and the diagonal matrix  A−1 has the eigenvalues on the diagonal. 

5.4  Bivariate  Normal  PDF 

The multidimensional normal PDF for  n = 2 is called the bivariate normal PDF. The probability that  x  is in the interval from  x 1 to  x 1 +  x 1 and in the interval from  x 2

to  x 2 +  x 2 is the probability that x is in the region defined by these intervals. If we assume that  x 1 and   x 2 are the Cartesian coordinates  x  and   y, respectively, then the bivariate PDF gives the probability density associated with areas in the  x −  y  plane. 

Let   X  and   Y  be joint normal random variables. The covariance and determinate of B−1 are given by 
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 ρσxσy
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⎡
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The bivariate normal PDF is thus given by 







 x 2

 p(x, y) =

1

exp −

1

− 2 ρxy +  y 2

(5.5)
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Contours of constant  p(x, y)  plotted in the  x −  y  plane are ellipses given by x 2 − 2 ρxy +  y 2 = C

 σ  2

 x

 σxσy

 σ  2

 y

where  C is a constant. These ellipses have semi-major and semi-minor axes C λ 1 and C λ 2, respectively, given by 
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The major axis of  the error ellipse is inclined to the  x  axis at an angle  (θ )  given by 2 ρσxσy

 θ = 1 tan−1

2

 σ  2 −

 x

 σ  2

 y

It can be shown that the probability that the random variables  (x, y)  are inside the error ellipse is 





− C2

2

 p(x, y) = 1 −  e

(5.6) 

For integer values of C the corresponding error ellipses are often referred to as the C-sigma error ellipses. Thus, the probability of  X  being in the 1-sigma or 3-sigma error ellipse is 0.393 and 0.989, respectively . 

An example of the application of the bivariate PDF to navigation was provided by the Viking mission to Mars. The Viking lander was targeted to a landing site defined by target coordinates  xt  and   yt . Analysis of the accuracy of the orbit of the Viking orbiter and the lander descent trajectory revealed a footprint centered at the targeted landing site and oriented as shown schematically in Fig. 5.2. The footprint 

is jargon for a bivariate PDF. Orbiter reconnaissance images of the landing site region revealed a large crater just outside of the footprint. The crater is also shown in Fig. 5.2  overlaid with a grid of rectangles of width  x  and   y. The center of each rectangle within the crater has coordinates  (xi, yj ). The probability that the lander will land in the crater is obtained by integrating the associated bivariate PDF over the crater area. This integral, in the limit as  x  and   y  approach zero, is given by P =

 p(xi, yj )xy

5.5 Rayleigh PDF
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Fig.  5.2  Lander footprint 
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The numerical integration revealed a probability of less than 10−5 and this was judged to be small enough that the lander was not retargeted. 

5.5  Rayleigh  PDF 

A special case of the bivariate PDF occurs when  σx  and   σy  are equal and  x  and   y are independent ( ρ = 0). The resulting error ellipse is a circle and the PDF reduces to 





−  x 2 +  y 2

 p(x, y) =

1

 e

2 σ  2

2 π σ  2

The probability of the random variable X being in the circle is obtained by integrating the PDF over the circle. A change of variable to polar coordinates simplifies the integration and 
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2 π σ  2 0

0

Performing the  θ  integration first, 







 r 2

 r

−

 P (r) = 1

 e

2 σ  2  rdr

 σ  2 0
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and the PDF associated with  r  is  given  b y





−

 r 2

 p(r) =  r e

2 σ  2

 σ  2

and is called the Rayleigh PDF. The Rayleigh PDF has many applications in probability and statistics. One application is in setting accuracy requirements for armament such as artillery and rockets. Several rounds are fired and a circle is drawn around the target that encompasses the impacts of exactly half of the rounds. This circle and its associated probability is called the circular error probable in military jargon or simply CEP. The probability of impact within the circle may be obtained by carrying out the integration of the Rayleigh PDF with respect to  r. 





−

 r 2

 P (r) = 1 −  e

2 σ  2

(5.7) 

The probability of being in a circle of radius one sigma where the PDF is Rayleigh is the same as being in a one-sigma error ellipse where the PDF is bivariate. The equivalence of these probabilities can be shown by an appropriate scaling of the  x and   y  axes of the bivariate PDF. For the CEP, where the probability is one-half, the corresponding error ellipse of the bivariate is at 1.17741 sigma. 

5.6  Central  Limit  Theorem 

The artificially contrived problem of an arrow or unguided rocket being deflected to the left or to the right with equal probability is equivalent to the problem of flipping a coin to decide the path to follow. An interesting result has been obtained. The sum of many trials involving a probability distribution function that has only two states of equal probability results in the normal distribution function. The central limit theorem considers the problem of a sum drawn from a large number of probability distribution functions of arbitrary distribution. The central limit theorem states, in essence, that this sum also has a normal distribution. The proof is nontrivial and involves some complex issues. However, the central limit theorem is of such importance to probability and statistics that a simplified outline of this proof, provided by Lass and Battin, is given. 

Consider a mission that has  m  propulsive maneuvers and we are interested in the probability distribution function (PDF) of the  x  component of velocity change. Once we get this PDF, the result can be extended to three dimensions. The components are of interest since they have zero mean. The sum of all the  x  components of velocity for   n  identical missions is giv en by

 Vx( 1 ,  1 ) +  Vx( 1 ,  2 ) +  Vx( 1 ,  3 ) +  Vx( 1 ,  4 ) · · Vx( 1 , m)

5.6 Central Limit Theorem
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 Vx( 2 ,  1 ) +  Vx( 2 ,  2 ) +  Vx( 1 ,  3 ) +  Vx( 1 ,  4 ) · · Vx( 2 , m) Vx( 3 ,  1 ) +  Vx( 3 ,  2 ) +  Vx( 3 ,  3 ) +  Vx( 3 ,  4 ) · · Vx( 3 , m) Vx( 4 ,  1 ) +  Vx( 4 ,  2 ) +  Vx( 4 ,  3 ) +  Vx( 4 ,  4 ) · · Vx( 4 , m)

· ··

 Vx(n,  1 ) +  Vx(n,  2 ) +  Vx(n,  3 ) +  Vx(n,  4 ) · · Vx(n, m) The index  n  applies to each of the m issions. 

Consider an arbitrary probability density function of zero mean and variance  σ . 

The Fourier transform is obtained from the moment generating function and Fx(ω) = 1 −  σ  2 ω 2 +  K 3 ω 3 +  K 4 ω 4 +  . . . 

2

The PDF of the sum of two samples drawn from  Fx  is obtained by evaluation of the convolution integral associated with the probability distribution of each sample. 

The convolution of probability density functions involves a double integral that sums the probabilities associated with all the ways that two numbers can sum to a third number. The Fourier transform of the convolved functions is simply the product of the Fourier transform associated with each function. Therefore, the Fourier transform of the sum of n samples from  Fx  is obtained by raising  Fx  to the nth power. As the number of convolutions approaches infinity, the variance of the resulting probability distribution function will also approach infinity. In order to bound the resulting variance, the variance of  Fx  must be scaled down and this is accomplished by scaling the variable  ω  to   ω

√ . The scaling preserves the variance 

 n

without changing the shape of the probability distribution function. The Fourier transform of the resulting probability distribution becomes 



 n

 ω

 ω 3

 Fy(ω) = 1 −  σ  2 ω 2 +  K( √  )

=  f (n)n

2 n

 n

3

 n  2

Making use of the relationship 





ln  f (n)

 Fy = [ f (n)] n = exp[ n  ln  f (n)] = exp n−1

The limit of  Fy, as n approaches infinity, is obtained by applying L’Hospital’s rule. 
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The limit of  f (n)  is one as  n  approaches  infinity . 





− σ 2 ω 2

lim  Fy = exp

 n→∞

2

In the limit as n approaches infinity, the inverse Fourier transform of  Fy  is the normal PDF. 

Therefore, the PDF of the sum of each maneuver obtained by summing each column in the above array is a normal distribution function. The PDF for the sum of all the maneuvers, the grand total, is obtained by convolving the  m  normal PDFs which can be shown to be a normal PDF. The  x  component of velocity is not of much interest for navigation. Navigation is interested in the PDF of the magnitude of velocity since this relates directly to fuel expenditure. Once we obtain the  Vy  and Vz  PDFs, it can be shown that the |V| is Maxwellian for spherical symmetry. 

5.7  Monte  Carlo  Methods 

Navigation requirements are generally based on an analysis of various errors that affect the determination and control of a spacecraft trajectory. The errors in parameters that are of interest are generally expressed in the elements of the covariance matrix associated with these parameters. Instrumentation and spacecraft execution errors are evaluated to determine the covariance matrix that describes the errors in design parameters such as closeness of the spacecraft to the target or the amount of fuel that may be consumed in performing the mission. Conversely, the desired maximum value for the errors in mission design parameters drives the accuracy requirements on navigation instrumentation and spacecraft system design. 

For a spacecraft approaching a planet or in a well-determined orbit, the covariance matrix is often used to describe the errors of interest. Since the errors in trajectory parameters in deep space far from a planetary body are small compared to the magnitude of the parameters being determined, the statistics tend to be normally distributed owing to the central limit theorem. Also, for small perturbations from the nominal value of these parameters, the design parameters are linear and the linear theory that orbit determination is based on is validated and the normal PDF 

associated with the covariance matrix provides an excellent description of the error distribution. 

As a spacecraft approaches a planetary body and is inserted into orbit or descends from an orbit to land on a body, the errors in knowledge of trajectory grow and may exceed the region where linear theory may be applied. The resulting probability distribution is often distorted from the normal curve. Unfortunately, the probability distribution of the spacecraft state on achieving orbit or at touchdown of a lander is of considerable interest to trajectory design. The probability distribution may be determined by application of a simple but powerful technique called Monte Carlo mapping named after the gambling casinos of Monte Carlo. The Monte
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Carlo technique consists of defining a mathematical model of the system being investigated including all the error sources that affect the outcome and performing a statistical analysis of the outcome of many executions of the mathematical model. 

For application of the Monte Carlo method to navigation analysis, a precision model of the spacecraft trajectory must be defined. This model involves numerical integration of the equations of motion, including propulsive events, from initial conditions determined, for example, on approach to a planetary body to final conditions computed in orbit. The error sources include initial spacecraft state and propulsion system execution errors. Error sources are described by their associated PDF which is generally normal or uniform. A random number generator is used to generate samples of the PDF associated with each error source. A separate random number generator is required for each PDF and may not be readily available. Most computers have a random number generator that will generate random numbers between 0 and 1 that are uniformly distributed. One method for obtaining these numbers might be to take the first 10 digits of pi and put a decimal point in front of them. The next random number may be formed from the next 10 digits of pi. 

The uniform random number generators for most computers are more sophisticated than this simple example but using pi would suffice since the digits are random. The normal PDF can be formed from uniform random numbers by use of the central limit theorem. For example, 6 random numbers uniformly distributed between -1 and 1 

are obtained and added together. Since the variance of a single sample is one-third, the PDF obtained by adding 6 samples has a variance of 2 and standard deviation 

√2. The resultant PDF may be scaled to have unity variance by dividing each sum 

√

of 6 samples by the  2. The result is a PDF that approximates the normal PDF and 

√

is bounded by plus and minus 3  2-sigma. Figure 5.3  shows a histogram with a bin width of 0.05 generated from 2 million samples of this normal PDF approximation. 

The normal PDF (dashed line) is also shown for comparison. 
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Fig.  5.3  Histogram of normal approximation
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Random numbers generated with a variance of one are multiplied times the standard deviation of all the independent parameters that contribute to the final result. Included in this set of independent parameters are initial conditions and random parameters associated with propulsive events. The trajectory is propagated from the initial condition to the final condition n times and the parameters of interest are saved in n random vectors  Xi. For each of the  n  trajectory propagations, new random numbers are drawn for each of the independent parameters. The number of Monte Carlo samples  (n)  generated is limited by the computer time required to generate each sample. The more samples, the better, and the minimum required is generally around 500. Once the samples are generated, the results may be displayed in a form that is useful for navigation analysis. 

The sample mean is obtained by summing the samples and dividing by the total number of samples. 

 n



 Xμ = 1

 Xi

 n i=1

The sample variance is obtained by summing the squares of the difference between the samples and the true sample mean and dividing by the number of samples. The sample covariance is obtained by summing both the squares and cross products of the sample differences and dividing by the number of samples ( n). The square and cross product of a sample column vector are obtained by taking the outer product or post multiplying by its transpose. If the sample mean is used for the true mean, it can be shown that the best estimate of the covariance is obtained by dividing by n − 1 and the best estimate of the sample covariance is given by n



 Cov =

1

 (Xi −  Xμ)(Xi −  Xμ)T

 n − 1  i=1

The Monte Carlo method is generally used when the uncertainties of the parameters of interest are greater than can be determined using linear theory. As a result, the distribution is generally not normal and cannot be represented by simple functions. 

Therefore, it is necessary to display the results in a format that permits observation of the true distribution. A histogram is useful for this purpose. The maximum and minimum values of each parameter are determined and the range of each variable is divided into 10–25 intervals called bins. A bar graph is generated with the number of samples in each bin plotted as a function of the parameter of interest. The histogram gives some insight into the probability that certain critical design values may or may not be exceeded. 

As a rule of thumb, the one-sigma probability level is of interest for parameters that are loosely controlled. For example, a probability of obtaining some science observation of around 50% may be acceptable if the observation may be easily repeated. For parameters that are critical to mission success, a higher probability level is often required. A 99% probability of success is generally acceptable for

[image: Image 34]
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Fig.  5.4  NEAR landing Monte Carlo samples 

situations where the total mission objectives may not be met but most of the mission may be salvaged in the event of failure. An example of a parameter that is controlled to 99% probability is the amount of fuel required to do the mission. If the spacecraft runs out of fuel and most of the mission objectives are satisfied, a 99% success rate is generally acceptable. For design parameters that can result in catastrophic loss of the mission, a much higher probability of success is required. A failure rate less than 10−5 is often specified. Examples of requirements that must be met with very high probability of success are planetary quarantine and unintended planetary impact. 

The histogram is generally not a satisfactory tool for evaluating probability levels at the high or low end or tails of the PDF. One approach is to display the actual samples on a graph and inspect for samples that may exceed design limits. Figure 5.4 

shows a plot of 250 Monte Carlo samples obtained for analysis of the NEAR 

landing. Plotted is the sub-latitude point of the NEAR spacecraft as a function of time from the beginning of the descent to landing on the surface of Eros. The variations in latitude on the way down are caused by a series of braking maneuvers designed to slow the spacecraft’s descent and the initial orbit determination error. 

The lander footprint is two dimensional. The lattitude is a one dimensional slice of the foot print. Other parameters may be displayed on similar plots to gain insight into the landing site dispersions. The spread in latitude shown in Fig. 5.4  indicates a 1-sigma error of about 2 degrees. The actual landing was within about 1 degree of the intended target. 

Another approach is to order the Monte Carlo samples from low to high and estimate the probability level directly from the sample. For example, the cumulative 99% probability level may be estimated from a sample size of 500 by determining the 5th largest sample. On the average 1% or about 5 samples will be above the 99%
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cumulative probability level. A problem with estimating probability levels from the tails of a distribution is the uncertainty or confidence associated with these estimates. 

By application of order statistics using the binomial distribution, the confidence level associated with estimates of the cumulative probability may be determined. 

5.8  Binomial  Theorem 

It has been said that all problems in probability and statistics can be solved by flipping coins. This may not be true, but it seems to be true for problems associated with navigation of spacecraft. The binomial theorem is the basis for solving problems associated with flipping coins. The normal probability distribution function, the gamma function, and the mathematics associated with computing gambling odds and predicting elections are all based on the binomial expansion. 

For navigation, the prediction of where a spacecraft will be in the future and the amount of fuel that will be needed is an example of application of the binomial theorem. 

 5.8.1  Confidence Limits 

In determining estimates of cumulative probability levels, the mean and variance of the statistics do not provide a useful measure of the error in these estimates. The closeness of the estimate to the true value is less interesting than the probability that the estimate is bounded by some value. For the cumulative probability, a “best” 

estimate may be obtained by determining the value that bounds the probability for 50% of the sample sets obtained. The actual cumulative probability is above the estimate for 50% of the sample sets and below the estimate for the other 50%. Thus, the estimate of the 99% cumulative probability from a single sample set of 500 

samples would bound this probability for 50% of all of the sample sets obtained. 

The usefulness of the 99% cumulative probability level obtained in this manner may be called into question since the actual cumulative probability may exceed this value for half the sample sets. An estimate of the probability that the estimated cumulative probability may exceed some value may be obtained by examining the values of samples that are greater than the 5th highest sample for 500 samples. 

This probability, referred to as the confidence, may be determined by computing the probability that exactly 4, 3, 2, 1 or 0 samples will exceed the cumulative probability level for a particular sample set. 

The cumulative probability function for the PDF  p(x)  is defined by xq

 pc(xq ) =

 p(x)dx =  P rob(x < xq)

−∞
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The confidence probability function is defined by 

 w(q, xw) =  P rob(xq < xw)

For a Monte Carlo sample set of  n  samples, the above functions are only defined on integer values and may be made continuous by linear interpolation between these values. Consider a sample  Xk  from a set of n samples that are ordered in a decreasing monotone for increasing  k.  X 1 is the highest sample and  Xn  is the lowest. The problem of determining  w  may be cast as an application of Bernoulli trials using the binomial theorem. If the probability  wk,  for  the  k th sample, that  Xk  is greater than   xq  is defined as failure and  Xk  being less than  xq  is defined as success, then the probability of failure may be obtained from the binomial theorem and k



 n

 wk = 1 −

 qi ( 1 −  q)n− i

 i

 i=0

where  q = 1 −  pc  is the probability that a particular sample will exceed  xq. 

The quantities being summed are Bernoulli trials that give the probability that exactly  i  samples will exceed  xq . The summation is needed to compute the probability that exactly 0 or 1 or  . . . k  samples exceed  xq  and this result is subtracted from 1 to obtain the desired probability. The probability that  Xk  exceeds the  pc probability level is  wk. An interesting property of  wk  is that the probability is independent of the distribution. 

k 

Sample number

 wk

 Xk

0 

500

0.992 

3.39 

1 

499

0.966 

3.08 

2 

498

0.883 

2.69 

3 

497

0.742 

2.45 

4 

496

0.566 

2.35 

5 

495

0.391 

2.28 

An application of confidence limits to navigation was in the determination of the amount of fuel required for the Viking and Galileo missions. The amount of fuel loaded at launch is the amount required for deterministic maneuvers, an additional amount for statistical maneuvers and project reserve for contingencies. 

The statistical component was determined by Monte Carlo analysis and was sized to give 99% probability of not running out of fuel. In order to account for uncertainties in determining the statistical component associated with sample size, the statistical fuel budget for Viking was increased by 20%. 
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 5.8.2  Normal PDF from Binomial Coefficients 

For a given row  (m)  of Pascal’s triangle the probability ( P (k)) that the body will pass through a given node of number  k  is given by the number of paths that reach node  p(k)  divided by the total number of possible paths  ( 2 m). All paths are assumed to be equally likely. 

 m! 

 P (k) = 1  p(k) = 1

2 m

2 m (m −  k)!  k! 

Connecting the integer values of  p(k)  with straight lines, a continuous function may be defined. The derivative of  p(k)  with respect to  k  is  given  b y d p(k) =  p(k + 1 ) −  p(k)

 dk

 k + 1 −  k

The derivative with respect to  k  is discontinuous at integer values of  k  so the derivative is defined approaching  k  from the right. Extracting common f actors from p(k + 1 ), the following differential equation is obtained: d

 m − 2 k − 1

 p(k) =  p(k)

 dk

 k + 1

Since the function  p(k)  is symmetrical about the  y  axis, as shown in F ig. 5.1,  it  will be convenient to shift the  y  axis and define  k 2 such that it is zero in the middle of the distribution function. Also, for convenience, let  m  be  ev en. 

 k 2 =  k −  m

2

and 

 dp(k 2 )

−

= 4 k 2 + 1  p(k 2 )

 dk 2

2 k 2 +  m

In the limit as both  m  and   k 2 approach infinity and for  k 2  <<< m dp(k 2 )

−

= 4 k 2  p(k 2 )

 dk 2

 m

The differential equation for  p(k 2 )  has the solution 

−2 k 22

 p(k 2 ) =  p( 0 ) e m



 m

 p( 0 ) =

 m

2
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The above formula provides approximate values for the  m-th row of Pascal’s triangle. The approximation is good for small values of  k 2 near the middle and for large values of  m. Some typical values for the numbers in Pascal’s triangle are compared with the approximate formula in the table below: 



 m

−2 k 22

 k 2

 m

 k

 p( 0 )e m

 k

0 

20 

10 

184,756 

184756. 

1 

20 

11 

167,960 

167174. 

5 

20 

15 

15504

15,165. 

5 

40 

25 

4.02E10 

3.95E10 

9 

40 

29 

2.31E09 

2.40E09 

The probability that the body defined above will pass through a node at location k 2 is the value from Pascal’s triangle divided by 2 m. The probability of passing through an interval between two nodes is obtained by integrating or summing  p(k 2 ) from  k 2 ( 1 )  to  k 2 ( 2 )  and the integral of  p(k 2 )  from −  m  to +  m  is one. The probability 2

2

is given by 

 k 2 ( 2 )  1

 P =

 p(k 2 ) dk 2

 k

2 m

2 ( 1 )

A more convenient method of evaluating the same probability may be obtained by scaling  k 2 by an appropriate factor and normalizing the integral. A change of variable from  k 2 to   x, where  x  is defined by 4

 x =

 σ k 2

 m

yields 





−  x 2

 p(x) =  C

2 σ  2

1  e

Observe that for a given probability the ratio of  x  to   σ  is constant, x = 2 k 2

√ =  C 2

 σ

 m

In the limit as m approaches infinity the ratio of  k 2 to   m  is 

√

 k 2

 m C 2

lim

= lim

= 0

 m→∞  m

 m→∞

2 m

and the assumption that  k 2 is much smaller than  m  is valid. 
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Since the integral of p(x) from minus infinity to plus infinity must be one, the final form of p(x) is obtained after evaluating the constant  C 1. 





∞ −  x 2

 C

2 σ  2

1

 e

 dx = 1

(5.8) 

−∞

Evaluation of the integral in Eq. (5.7) is a bit tricky and was accomplished by Poisson. It is important because it establishes a relationship between  π  and   e.   A change of variable where





 x 2

 z 2 =

2 σ  2

√

 dx =

2 σ dz

yields 

√

∞

 C 1 2 σ

 e− z 2  dz = 1

−∞

Squaring and introducing the dummy variable  y

∞

∞

2 C 21 σ  2

 e− z 2  dz

 e− y 2  dy = 1

−∞

−∞

∞  ∞

2 C 21 σ  2

 e− (z 2+ y 2 )dzdy = 1

−∞

−∞

Changing to polar coordinates 





2 π

∞

2 C 21 σ  2

 e− r 2  rdrdθ = 1

0

0

−



1

∞

2 C 2

=

1  σ  2 2 π

 e− r 2

1

2

0

2 π σ  2 C 2 =

1

1





−  x 2

 p(x) =

1

√

 e

2 σ  2

(5.9) 

 σ

2 π

The function p(x) is called the normal probability distribution function (PDF) and has wide application in the field of probability and statistics. Many applications
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of the normal PDF involve solving for system parameters that minimize the error or spread of the PDF associated with random variables that are of interest. These random variables may describe the distance of a spacecraft from its intended target or the amount of fuel consumed during the mission. 

 5.8.3  Approximate Binomial Coefficients from Normal PDF 

Recall that the difference equation for the binomial coefficients is given by d

−4  k 2 − 2

 Bm(k 2 ) =

 Bm(k 2 )

 dk 2

2  k 2 +  m + 2

 k 2 =  k −  m

2

In the limit as  m  becomes much greater than  k 2, the central part of the distribution function corresponding to  k 2 much smaller than  m  is given by the following diff erential equation:

 dBm(k 2 )

−

= 4  k 2  Bm(k 2 )

 dk 2

 m

where  Bm  are the binomial coefficients for the  m th row of Pascal’s triangle. The differential equation for  Bm(k 2 )  has the solution 

−2  k 22

 Bm(k 2 ) =  Bm( 0 ) e

 m



 m

 Bm( 0 ) =

 m

2

The probability of being in the interval defined by  Bm( 0 )  of width one is obtained by integrating the PDF from  k 2 = − 1 to  k

. 

2

2 = + 1

2







 Bm( 0 ) =

1

√

1

4

 dx =

√

 σ dk 2

2 m

 σ

2 π

 σ

2 π

 m

The binomial coefficients are thus given by the following formula: 

2 2 m −2  k 22

 Bm(k 2 ) =

 m! 

≈

√  e m

 (m −  k)!  k! 

 π

 m
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 5.8.4  Stirling Approximation 

The binomial coefficients may also be obtained by direct application of Stirling’s approximation to the factorial functions defining the binomial coefficients. The Stirling approximation to the gamma function is given by 

√



 n n

ln (n!  ) ≈  n  ln (n) −  n + 1 ln ( 2 πn) = ln 2 π n

2

 e

√



 n n

 n! ≈

2 π n e

The results of approximating the binomial coefficients using the Stirling approximation and the normal approximation derived in Sect. 5.8.3  are shown in Fig. 5.5. 

The Stirling approximation for the binomial coefficients is exact for large values of   m, but does not do as well in the interior of the PDF. The normal distribution approximation is also exact as  m  approaches infinity. Observe that the normal and Stirling approximation are equal at the peak of the distribution corresponding to k = 50. This suggests that the Stirling approximation has the normal Gaussian distribution embedded. This is indeed the case as the following identity shows: 



√

 m

2 2 m

2 π m m

 B

 e

 m( 0 ) =

 m! 

≈

√ = 



 m ! 2

 π

 m

√

 m  2

 m

2

 π m

2

2 e

The above identity suggests that the Stirling approximation may be extracted directly from the binomial coefficients. In the following equation, all the numerators are canceled by the denominators in the preceding term except for the first numerator which is m!. 







 m ! 

2

 m ! 

4

2!  N
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· · ·

 m ! 2
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 m ! 2
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8
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−1

ln 2

where   N  is 2 raised to the number of terms in the approximation for  m! minus 1. N 

is also the power of two corresponding to the  m! that exceeds the desired  m!.  The desired  m! is obtained by interpolation. The terms in the above product given may be approximated by 
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Fig.  5.5  Binomial coefficient approximation. (a) Actual binomial coefficients. (b) Approximation error 

If  Bm( 0 )  is factored out of each of the terms,  m! is approximated by N



2 n 

 m

2 n

2 2 m

2 2 n − m

 m! ≈

√

 π

 m

− n

2 2

 n=0

The logarithm of  m! is approximated by 



 N

 N

2 2 m





ln  m! ≈  (m + 1 ) ≈ ln

√

2 n + ln ( 2 )

 (n 2 n−1 −  m 2 n +  m)

 π

 m

 n=0

 n=1

(5.10)

224

5

Probability and Statistics

The finite series can be replaced by closed form expressions and an approximation for   m! is obtained that is exact in the limit as m approaches infinity. The last term is needed to account for the error in the normal binomial coefficients for small m. 

Thus, we have a closed form expression for ln (m!  )  as a function of only  m. 











2 2 m

ln  m! ≈ ln

√

2 N+1 − 1 +ln ( 2 )  1−2 N +  N 2 N − m( 2 N+1 − 2 ) +  mN

 π

 m

− 0 .  08105638054266  m

(5.11) 

ln  m − ln 2

 N = 2

ln 2

The constant in the above equation was obtained by forcing the approximation to equal the actual value of  m! at  m = 128. Over the range of m from 1 to 158, the above approximation is twice as accurate as the Stirling approximation. 

If 5 .  0862526726 × 10−6 m is added to the Stirling approximation, both approximations agree to 14 decimal places over the same range. This agreement indicates that a simple correction term can be found to make both approximations exactly equal and the deep underlying mathematical basis for both approximations is the normal PDF or the binomial coefficients. 

5.9  Maxwell-Boltzmann  Probability  Distribution 

Significant trajectory perturbations have been observed on interplanetary missions that have been attributed to expulsion of gas from the spacecraft. In 1969, the Mariner 6 spacecraft experienced a large trajectory perturbation and loss of attitude control lock on the star Canopus because of hydrogen gas expelled during a scan platform unlatching event. The scan platform was held in the latched position by pressure from hydrogen gas. The hydrogen gas was expelled by firing a squib and venting to a tee. The tee was supposed to vent the gas in opposite directions, resulting in no net forces on the spacecraft and the observed trajectory and attitude perturbations were a mystery. A complete third spacecraft was built and was sitting on display in Von Karman Auditorium at the Jet Propulsion Laboratory. After some searching, the tee was located in a large cavity under the scan platform. 

The cavity served as a big rocket engine and the thrust, computed from kinetic theory, matched the velocity change observed in the orbit determination solution. 

The applied moment was also consistent with the attitude recovered from sun sensor telemetry. The result of this analysis was used to predict the velocity change that Mariner 7 experienced a few weeks later. On the Viking mission in 1975, venting of gas trapped in the parachute, at least this was the theory, resulted in a perturbation of the spacecraft for about a week after launch, making determination of the spacecraft
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orbit difficult. Kinetic theory was used to predict the velocity change associated with several gas venting events during cruise. Perhaps the most significant application of kinetic theory was in analyzing the acceleration of the MESSENGER spacecraft after launch in 2004. The orbit could not be accurately determined for a couple of weeks. This acceleration was attributed to liquid evaporating from various surfaces on the spacecraft with various time constants, depending on solar illumination. It would take about one cubic inch of water distributed over the spacecraft to produce enough water vapor to cause the observed acceleration. 

The reason for pursuing the probability distribution of gas molecules is to verify the equations of motion by comparing the statistics of computer simulations with the Maxwell-Boltzmann distribution which is an exact formula. If we place a container, like a gymnasium, in space and fill it with millions of tiny spacecraft, the velocity distribution after millions of collisions would be the same as an ideal gas. If the probability distribution is not the same, then there is something wrong with the computer program. It did not occur to me at this time that there may be something wrong with the theory. It turns out that Maxwell-Boltzmann theory only applies to a gas expanding into space like a comet atmosphere or an explosion and does not apply to gas in a container. The Earth’s atmosphere is in a container bounded by the surface and layers held in place by gravity. This discovery was a huge headache to my pursuit of navigation theory but had an unexpected advantage. Navigation software that is used for flight operations must program science that is settled. 

Navigation science and mathematics is settled when adequately peer-reviewed. Peer review consists of publication in an academic journal. For navigation, peer review often consists of launching a rocket and spacecraft and observing that it does not explode or crash into something. Since the software I was cognizant of was used for flight operations, the software should have been peer reviewed. Peer review would involve consisted of verification by independent computer simulations. 

Several models of particle collisions have been developed for the purpose of observing the kinetics. A simple model involving only particle velocity yields the Maxwell-Boltzmann PDF. This model assumes that the probability of impact of a molecule with another molecule is equally likely. A molecule is selected from a population at random and the molecule it collides with is also selected at random. 

This assumption leads to the velocity components being normally distributed and the velocity magnitude is Maxwellian. This assumption is not reasonable because the selected molecule is more likely to impact a molecule that is moving faster and thus has a longer track during the time between collisions. A second model weights the probability of impact by the velocity magnitude of the molecule being impacted. The resultant distribution of the velocity components is no longer normal. The peak velocity magnitude distribution is about 4 percent higher than the Maxwell distribution. This is a surprising result and requires verification. A third deterministic model was programmed to verify the second model. This model involved no statistics. A container is filled with molecules and initialized with energy and momentum consistent with the first two models. For each molecule the time is computed of an impact with a wall or another molecule. The resultant times are searched for the next impact. The velocity of the molecules involved
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in the impact is revised to reflect the energy, momentum, and direction of the line connecting the centers. If a wall is impacted, the molecule is reflected off the wall. A search of all the molecules is conducted to find the time of the next impact. This process is repeated until equilibrium is achieved which is after all the molecules have achieved at least 10 collisions. The third deterministic model verifies the second statistical model with high precision. The obvious conclusion is that the Maxwell-Boltzmann probability distribution does not apply to molecules in a container. The Earth’s atmosphere is in a container bounded by the surface and gravity. The Maxwell-Boltzmann distribution only applies to an explosion or molecules expanding into space. The faster molecules are further apart and thus the assumption that the probability of impact is equally likely is valid. 

The equations of motion in the position/velocity-dependent model are simply Newton’s laws of motion. These are the equations of motion for an ideal gas, the so-called “billiard ball” theory. The particles move in a straight line until they impact another particle or a wall of the container. Energy and momentum are conserved. When the particles collide, the velocity change of the two particles, which are assumed to be spheres, is along the line connecting the centers. The angle between the line connecting the spheres and the relative velocity vector is called the 

“scattering” angle or “Rutherford scattering” angle for molecules. The scattering angle for molecules is a bit more complicated than for billiard balls. It can be shown by arguments of symmetry that the scattering angle has no effect on the final PDF. 

If the scattering angle affected the PDF, then different gasses would have different PDFs and many of the laws of physics pertaining to gasses would be invalidated. 

The results of a computer simulation of 400,000 particles and 8,000,000 collisions are shown in Fig. 5.6. Figure 5.6a shows the component velocity distribution in some arbitrary direction. Because of symmetry, all directions have the same distribution. The velocity component is sorted into 50 bins. The abscissa is velocity and zero velocity is bin 25. The scale is not important, because only the shape of the curve is of interest. For simplicity, the root mean square velocity magnitude is initialized with an average value of one. The particles are also assigned a radii of one and all particles have the same mass, also one. The container is sized such that the space between particles averages 30 radii. After proper scaling it can be shown that the particles have the same temperature and pressure as an ideal gas. The ordinate is the number of molecules in each bin. The probability is obtained by dividing by the total number of molecules. 

Also  shown  by  the  fine  line  in  F  ig. 5.6a is the normal distribution predicted from Maxwell-Boltzmann theory. At zero component velocity, the velocity-dependent model is about 3.0 percent above the Maxwell-Boltzmann PDF. The difference between the velocity-dependent model and the Maxwell-Boltzmann PDF is plotted in Fig. 5.6b. The peak value of 800 above the 30,000 particles in the associated bin in Fig. 5.6a gives an overshoot of 800/30,000 or 2.67 percent. The difference may be attributed to the assumed probability of impact. The Maxwell-Boltzmann computer simulation, which assumes equal probability of impact, gives the same result as the theoretical Maxwell-Boltzmann PDF (a normal curve). The velocity-dependent model assumes the probability of impact is dependent on the particle velocity and
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Fig.  5.6  Velocity component distribution comparison. (a) Velocity component. (b)  Difference from normal

is confirmed by computer simulation that includes position. It appears that the only way to obtain a Maxwell-Boltzmann PDF by computer simulation is to randomly select the collision participants and ignore their position. 

Figure  5.7  shows the same computer simulation results for the velocity magnitude. The velocity magnitude distribution is obtained by mapping three orthogonal velocity component distributions into velocity magnitude and is the well-known Maxwell-Boltzmann PDF of Maxwell-Boltzmann theory. Also shown for com-

[image: Image 37]
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Fig.  5.7  Velocity-dependent model comparison. (a) Velocity magnitude. (b) Difference from Maxwell 

parison are the computer simulation velocity-dependent model results. Here, the velocity-dependent model is about 4 percent below the Maxwell-Boltzmann PDF 

(shown by a fine line) at the peak which occurs around bin 13. In Fig. 5.7a, the left side of bin 1 is zero velocity magnitude. Figure 5.7b shows the difference. 
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 5.9.1  Experimental Results 

An experimental verification of the Maxwell-Boltzmann theory was performed in 1955. The experiment consisted of heating potassium and thallium in an oven to 900 o  Celsius and venting the atoms through a velocity selector into a detector. The velocity selector was a cylinder with a slot on one side and a curved slot on the other that rotated at 4000 rpm such that atoms would cross the cylinder and enter the curved slot at various transit times depending on their velocity and the rotation rate of the cylinder. The detector would measure the intensity, or number of atoms, at the velocity corresponding to the angle that the cylinder rotates dependent on the rotation rate. The device was quite sophisticated, being cooled with liquid nitrogen and sealed to provide a high vacuum. 

The results of the potassium and thallium experiments are shown in Fig. 5.8a. 

Also plotted is the theoretical Maxwell-Boltzmann PDF. The agreement is very good and verifies the overall veracity of the Maxwell-Boltzmann theory. The agreement with the position/velocity-dependent model does not, at first, appear very good. Inspection of this comparison shown in Fig. 5.7a reveals a gap between Maxwell-Boltzmann theory and the computer model result at the peak intensity or most probable velocity. This gap, if it exists, would not show up in the experimental results because the scaling between intensity and actual number of molecules is not known precisely. Therefore, the experimental results were scaled to force them to equal the Maxwell-Boltzmann theory at the peak. Also, the temperature was adjusted so that the low-velocity experimental results matched Maxwell-Boltzmann theory. The problem with these adjustments, which do not affect the experiment since only the shape of the distribution is of interest, is that the PDF is a single parameter theory. Once the temperature is fixed, the probabilities and shape of the curve are also fixed. If the gap shown in Fig. 5.7a is real, the area between the curves at the peak will be distributed elsewhere. This redistribution is evident in Fig. 5.8a. Close inspection of the high-velocity side of the curve reveals that the experimental results are above the Maxwell-Boltzmann theory prediction. If these results are accurate, they present a problem, since the integral from zero to plus infinity is one and the experimental results are greater than one. R. C. Miller and P. Kusch acknowledged this problem. In their words, “It is seen that the largest discrepancies occur on the high velocity side of the maximum, where there is a small excess of atoms in the experimental distribution.” It should be noted that the experimental points could be plotted with the high velocity side matched to the theoretical curve. The intensities at the maximum velocity would no longer coincide and the experimental distribution would then appear to be deficient of atoms on the low velocity side. In other words, the theoretical curve could be shifted to the right by adjusting the temperature, but the area under the curve would still be greater than one. 

Another approach, which is relatively simple to implement, would be to scale the computer model results to force the peak to coincide with the Maxwell-Boltzmann PDF and adjust the temperature to match the curves on the low-velocity side. These
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Fig.  5.8  Miller and Kusch experiment and theory comparison. (a) Experimental results comparison. (b) Scaled velocity comparison
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Fig.  5.9  Wang and Wachman experiment and theory comparison 

results could then be compared directly with the experimental results. Figure 5.8 

shows the results of this procedure. The experimental results in Fig. 5.8a depart a small amount from the theoretical Maxwell-Boltzmann PDF at a reduced velocity of 1.4. The computer model results in Fig. 5.8b also depart a small amount. One may conclude that the experimental results confirm the velocity-dependent model. 

Another experiment performed by J. F. C. Wang and H. Y. Wachman in 1976 

involved venting molecules from an oven into a detector. The observed flight time is a measure of velocity magnitude. The results of this experiment are plotted in Fig. 5.9. The experimental results fall below the theory prediction by about the same amount and in the same place as the Miller/Kusch results are above the theoretical curve. Both experimenters forced the experimental results to agree at the peak of the PDF. Miller and Kusch scaled up the experimental results and Wang and Wachman scaled down the theoretical prediction. Since the theoretical prediction must integrate to one from minus infinity to plus infinity, the theory must be higher on the tails of the distribution function as can be seen in Fig. 5.9. Observe that the experimental results trend back to the best fit to the theory farther out on the tail of the PDF. The position/velocity computer model results shown in Fig. 5.8b also trend back on the tail only from the opposite side consistent with the assumptions on how the data was fit to the theory for the two experiments. An alternative explanation for the above observations is that the experimental apparatus used for the experiments had equal and opposite systematic errors. There appears to be no other alternative. 

5.10  Summary 

Statistical analysis of the outcome of a navigation strategy is performed to determine the probability that the spacecraft will safely arrive at the target or the end of the mission and satisfy mission design constraints. These constraints may be related to
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the probability of impacting the target body, running out of fuel or acquiring science data. For example, if it is desired to occult a planet, the occultation may be mapped to a region in the B-plane and the probability that the spacecraft will pass through this region would constrain the amount of data that would need to be acquired and maneuver placement. These simple constraints may be satisfied by linear mapping of the orbit determination error. Since the orbit determination error is a mapping of measurement errors that may be characterized with high precision, the confidence in the results of this analysis is high. 

Examination of data residuals confirms the accuracy of the measurements and that the probability distribution is normal or white noise. This result was not easy to obtain but resulted from years of analysis by the Jet Propulsion Laboratory to develop high-precision models and calibrations of the radio metric data and a similar analysis was performed to model and calibrate optical data. The normal distribution of the measurement errors and independence of measurements greatly simplifies the statistical analysis. We do not have to be concerned with colored noise or biases. The normal probability distribution function is derived from the binomial coefficients. The binomial theorem is thus the basis for the statistical analysis performed for spacecraft navigation. The binomial coefficients describe the results that are obtained from flipping many coins or rolling dice and thus have many applications beyond spacecraft navigation. 

A powerful method of statistical analysis is referred to as the Monte Carlo method named after the casinos in Monte Carlo. Weather forecasters refer to this method as ensemble statistical analysis. An astronaut sitting on top of a rocket or citizens in a hurricane shelter probably feel better if their life depends on ensemble statistical analysis rather than rolling dice. Monte Carlo analysis enables precision mapping of measurement and model errors when the system is nonlinear. Civil engineers use safety factors to design bridges and buildings. In the past, the safety factors were rather large. The Brooklyn Bridge and the Empire State Building have been around for a long time and it does not appear they will fall down soon. Rockets and spacecraft are built with much lower safety factors. Statistical analysis permits operations much closer to the edge. A critical statistical determination is the amount of extra fuel to put in the fuel tanks to complete the mission. When the Viking spacecraft arrived in orbit about Mars, there was twice as much fuel as was needed to complete the mission. Every extra pound of fuel reduced the science payload by the same amount. Because of problems in selecting launch vehicles and a rocket motor burn failure, the Galileo and NEAR spacecraft completed their missions with little fuel remaining in the tanks. 

Exercises 

5.1  Determine the probability of drawing a 5-card royal straight flush (ace, king, queen, jack, and ten of the same suit) from a 52-card deck. 
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5.2  Determine the probability that the first 5 samples of 500 Monte Carlo samples will be the largest. 

5.3  A cannon with a CEP of 50 yards is fired into the Collisiem aiming for the center. Caesar’s box is 9 feet by 9 feet and located 100 yards from the center of the Collisiem. Assuming that the PDF is constant within the box, determine the probability that the cannon ball will land in Caesar’s box. 

5.4  If the cannon in Exercise 5.3  was aimed at Caesar’s box, what is the probability of hitting Caesar’s box? 

5.5  Show that the sum of the binomial coefficients ( k) for a given row of Pascal’s triangle ( m) is equal to 2 m. 

5.6  Show that the binomial coefficients are given by 



 m

 B(m, k) =

=

 m! 

 k

 (m −  k)!  k! 

5.7  Show that the derivative of  p(k)  with respect to  k  holding   m  constant and assuming linear interpolation between values of  k  is  give n by d

 m − 2 k − 1

 p(k) =  p(k)

 dk

 k + 1

where 

 p(k) =

 m! 

 (m −  k)!  k! 
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Chapter  6 

Orbit  Determination 

6.1  Introduction 

A measure of orbit determination accuracy is the square of the difference between the computed measurement from the model and the actual measurement summed over all the measurements. An orbit determination filter processes the measurements and computes an update to the estimated parameters starting from an initial guess referred to as the a priori. An orbit determination filter does not actually determine an orbit but, takes an initial guess and finds another orbit that is closer to the actual orbit. The actual orbit is never known because we do not have perfect measurements. 

There are many orbit determination filter algorithms that are used for parameter estimation. The filters used for navigation are the covariance filter or Kalman-Bucy filter, information filter, square root covariance filter, and Square Root Information Filter (SRIF). The SRIF filter is used almost exclusively for deep space navigation. 

In searching for a solution, an orbit determination program will sometimes have problems converging. Before computers, astronomers determined orbits with a few measurements. This process is referred to as deterministic orbit determination and an algorithm is devised for determining an orbit about a body with six Doppler measurements strategically placed around the orbit. 

6.2  Kalman  Filter  Algorithm 

We start with a derivation of the Kalman filter algorithm. All least square filter algorithms get the same result and are thus mathematically related. We can start with the simplest derivation and then relate this derivation to other filters. The Kalman filter algorithm computes updates to the a priori estimated parameters one measurement at a time. The solution after the current update is used as a priori for the next update. This simple one-step algorithm, devised by R. E. Kalman in 
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Fig.  6.1  Relationship of measurements to estimated parameters the early 1960s, provides a simple method of computing parameter estimates on a digital computer and is well suited for many applications. 

Given an a priori estimate of a set of parameters ( 

 X 0) and the associated 

covariance   P 0, a measurement  Zm, and its covariance and a model of the dynamics, the relationships are illustrated in Fig. 6.1  in two dimensions. Selecting any two parameters, the values of the a priori estimated parameters are shown on the left along with the actual value and new estimate of  X. The coordinate system is centered at the actual value (  Xa) which is unknown. However, the mapping function to the measurement space on the right is known for all values of  X. A two-dimensional measurement is shown corresponding to, for example, lines and pixels of an optical measurement. For most measurement updates, the measurements are uncorrelated and   Z  is one dimensional. Indeed, lines and pixels are generally processed as two one-dimensional measurements since they are generally assumed to be independent. 

The actual measurement  Zm  is shown along with the measurement (Z 0 )  computed from the model based on the a priori estimate  (X 0 ). The measurement covariance Pm  is indicated by the ellipse drawn around the measurement. The estimated measurement (  Ze) is also shown along with the post-fit measurement error (  ). 

The computed measurement is obtained from the model and is given by 

 Z 0 =  f (X 0 )

The data residual (  Z) is the difference between the actual measurement and the computed measurement and the Kalman gain matrix ( K) multiplied times the data residual and combined with the a priori (  X 0) provides a new estimate (  Xe). 

 Z =  Zm −  Z 0 =  Zm −  Z 0
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 X =  KZ

 Xe =  X 0 +  X

The desired solution for  Xe  is   Xa. Since  Xa  is not known and can never be known exactly, a gain matrix  K  is desired that moves the solution as close to  Xa  as can be determined from the information available. Therefore, a solution is sought that minimizes the distance of  Xe, shown in Fig. 6.1, from the origin. Minimizing the square of the magnitude of a random column vector, or variance, also minimizes the magnitude, and since the column vectors shown in Fig. 6.1  are all examples drawn from a random probability distribution function, the solution that minimizes the variance of  Xe  is the desired solution. In the terminology used here, a matrix with one column is referred to as a column vector or data vector because of the similarity to real vectors. The random column vectors of interest are defined to have zero mean and are given by, 

 X 0 =  X 0 −  Xa

 Xe =  Xe −  Xa

 Zm =  Zm −  Za

 Z 0 =  Z 0 −  Za

From the model of the equations of motion and data, the partial derivatives of the measurement with respect to the estimated parameters may be computed and these are given by 

 A =  ∂Z

 ∂X

The partial derivatives may be used to map column vectors defined in the estimate space to data vectors in the measurement space. The column vector  X 0 thus maps to the data vector  Z 0 and 

 Z 0 =  A X 0

Some other relationships, shown in Fig. 6.1, are needed to tie  X  and   Z  together. 

 Xe =  X 0 +  X

 Zm =  Z 0 +  Z

The solution for  Xe  is then given by, 
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 Xe =  KZm +  (I −  KA)X 0

(6.1) 

and this result can be extended to higher dimension in  X  and   Z  even though the dimension of  Z  is usually taken to be one. Exact values for  X 0,  Xe,  Z 0, and  Zm  cannot be determined. However, we can obtain from prior experience estimates of their errors. The expected value of  Xe  is given by Pe =  E XeXTe

Assuming the measurement is independent of the estimated parameters, E XeXT

=

 e

 E K Z 0 ZT 0  KT +  (I −  KA) X 0 XT 0  (I −  KA)T

and 

 Pe =  KPmKT +  (I −  KA)P 0 (I −  KA)T

where 





 Pm =  E Z 0 ZT 0





 P 0 =  E X 0 XT 0

are the measurement and estimated parameters a priori covariances, respectively. 

Expanding   Pe

 Pe =  KPmKT +  (I −  KA)P 0 −  (I −  KA)P 0 AT KT

 Pe =  KPmKT +  P 0 −  KAP 0 −  P 0 AT KT +  KAP 0 AT KT

The minimum variance estimate is found by taking the variation of  Pe  with respect to the gain matrix  K  and setting this result to zero. 

 δPe =  δKPmKT+ KPmδKT− δKAP 0− P 0 AT δKT+ δKAP 0 AT KT + KAP 0 AT δKT

 δPe =  δKB +  BT δKT

 BT =  KPm −  P 0 AT +  KAP 0 AT

For a minimum,  B  is zero and the Kalman gain matrix ( K)  is  give  n by



−1

 K =  P 0 AT Pm +  AP 0 AT

(6.2)
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Factoring   BT  out of the formula for  Pe  gives 

 Pe = [ KPm −  P 0 AT +  KAP 0 AT ] KT +  (I −  KA)P 0

 Pe =  (I −  KA)P 0

(6.3) 

6.3  Weighted  Least  Squares 

The same result as obtained for the Kalman filter may be obtained by a different approach to parameter estimation. Since the classical approach grew out of attempts to fit data, the minimization of the measurement residual is the objective rather than the error in the estimated parameters. It will be shown that both approaches yield the same result. First, we cast the weighted least square algorithm to solve the same problem as for the Kalman filter. This involves a single data point updating an a priori estimate. This result may be readily extended to additional data points. 

Referring to Fig. 6.1, the error in the measurement (  m) is given by m =  Zm −  Ze =  Z −  AX

Since some measurements may be more accurate than others, the square of the residual error may be weighted by dividing by its variance. Thus, a minimum variance estimate may be obtained by dividing the measurement errors by their standard deviation. Dividing by the standard deviation is obtained by multiplying by the square root of the inverse of the measurement covariance. The weighting matrix is defined by 

 W =  P −1

 m

and the weighted measurement error is 

1

  =  W  2  (Z −  AX)

The sum of the squares of the weighted residuals ( J ) is the scalar parameter that is to be minimized. 

1

1

1

1

 J =  T  =  (W  2  Z −  W  2  AX)T (W  2  Z −  W  2  AX) J =  ZT W Z −  ZT W AX −  XT AT W Z +  XT AT W AX

The minimum  J  may be found by taking the variation with respect to  X  and setting this result equal to zero. 

 δJ =  (XT AT W A −  ZT W A)δX +  δXT (AT W AX −  AT W Z)
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For a minimum,  δJ  is set equal to zero and both terms in the brackets must be zero. 

The solution for  X  is 

 X =  (AT W A)−1 AT W Z

Assuming that the a priori error covariance is infinite, the estimated error covariance is given by 

 Pe =  E(XXT )


From the equation for the data update, 

 AT W AXXT (AT W A)T =  AT W ZZT W T A

 AT W APe(AT W A)T =  AT W PmW T A

and 

 Pe =  (AT W A)−1

The weighted least square solution, as derived here, assumes all the data is included in   A  and there is no a priori. The  A  matrix may be partitioned separating the a priori data from the new data and the filter equations put in the same form as for the Kalman filter. The data update for the weighted least squares sequential fi lter becomes

 K =  (AT W A +  P −1 )−1 AT W

(6.4) 

0

 Pe =  (AT W A +  P −1 )−1

(6.5) 

0

The two equations for the Kalman gain solve the same problem but do not appear to be equal. The equivalence of these two solutions may be shown by invoking Shur’s identity as was done by Anderson and others in the early 1960s. Shur’s identity gives the inverse of a partitioned matrix. 

⎡

⎤ ⎡

⎤

⎡

⎤

 A B

 (A −  BD−1 C)−1

− A−1 B(D −  CA−1 B)−1

 I 1 0

⎣

⎦ ⎣

⎦ = ⎣

⎦

 C D

− D−1 C(A −  BD−1 C)−1

 (D −  CA−1 B)−1

0  I 2

Consider the following matrix product obtained by application of Shur’s identity. 

⎡

⎤ ⎡

⎤ ⎡

⎤

 P −1  AT

 (AT W A +  P −1 )−1

 P 0 AT (W −1 +  AP 0 AT )−1

 I 1 0

⎣ 0

⎦ ⎣

0

⎦=⎣

⎦

 A − W −1

 W A(AT W A +  P −1 )−1

− (W−1 +  AP

0  I

0

0 AT )−1

2
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Since the inverse of a symmetric matrix must also be symmetric, 

⎡

⎤ ⎡

⎤ ⎡

⎤

 P −1  AT

 (AT W A +  P −1 )−1

 P 0 AT (W −1 +  AP 0 AT )−1

 I 1 0

⎣ 0

⎦ ⎣

0

⎦=⎣

⎦

 A − W −1

 (W −1 +  AP 0 AT )−1 AP 0

− (W−1 +  AP 0 AT )−1

0  I 2

The equation for the  I 1 identity submatrix is 

 I 1 =  P −1 (AT W A +  P −1 )−1 +  AT (W −1 +  AP

0

0

0 AT )−1 AP 0

and 

 P 0 −  P 0 AT (W −1 +  AP 0 AT )−1 AP 0 =  (AT W A +  P −1 )−1

(6.6) 

0

The equivalence of the estimated covariance solutions is simple to show. 

Substitute the Kalman gain from the Kalman filter solution into the left side of Eq. (6.6). 

 Pe =  (I −  KA)P 0

The covariance of the estimated parameters from the weighted least square solution is the right side of Eq. (6.6) 

 Pe =  (AT W A +  P −1 )−1

0

Since 

 X =  K Z

The expected value of  X  is 









 E XXT

=  E K ZZT KT

The change in the  Pe  from the current measurement is 

 Pe =  KPmKT

If  Pe  and   Pm  are the same for both the least square and Kalman filters,  K  must be the same. 
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6.4  Square  Root  Information  Filter  (SRIF) 

The SRIF discrete data update algorithm follows directly from the least square data update. The least square solution is given by 





ˆ

−1

 X =  A T

ˆ

 n Wn An

 A T

 n Wn Zn

The measurements can be normalized by factoring  Wn  into 



T 

 Wn =

 Wn

 Wn

and 







ˆ

T 

−1

T 

 X =  A T

ˆ

 n

 Wn

 WnAn

 A T

 n

 Wn

 Wn Zn

By inspection we can see that 



 Rn =

 Wn An

so after substitution we have 



ˆ X =  (R T

ˆ

 n Rn)−1 R T

 n

 WnZn

For the first  m  measurements, the number of estimated parameters  (m)  is equal to the number of measurements and  Rn  is square. 



ˆ X =  R−1

ˆ

 n

 WnZn

Multiplying through by  Rn  gives what is called the data equation. 



 R

ˆ

ˆ

 n X =

 WnZn = ˆ ηn

(6.7) 

where  ˆ ηn  is the normalized measurement. A new measurement can be appended to the data equation resulting in 

⎡

⎤

⎡

⎤

 Rn

ˆ ηn

⎣

⎦ ˆ

⎣

⎦

√

 X =

 Wn+1  An+1

ˆ ηn+1

Adding additional measurements results in the row dimension of  R  exceeding the column dimension. The information matrix would then be given b y m =  R T nm Rnm
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where the row dimension  n  exceeds the column dimension  m. Since  Rnm  is not unique, it can be replaced by an upper triangular  Rm  of dimension  m  by   m. 

 m =  R T m Rm

The Householder algorithm enables one to obtain the matrix  Rm  without explicitly computing  m.   If    T  is an orthogonal matrix which has the property T  T  T =  I

(6.8) 

then we have 

 m =  R T nm T  T  T Rnm

The Householder algorithm finds a  T  that gives  Rm  when multiplied times  Rnm. 

The right side of the data equation  (  ˆ η)  is also multiplied by  T  to obtain a new data equation in upper triangular form. The Householder algorithm thus serves the same purpose in updating the SRIF matrix and right side as the Kalman update algorithm serves to update the covariance and state estimate. An updated state estimate can be obtained from the data equation by simply inverting the SRIF matrix and multiplying times the right side. 

 6.4.1  Discrete  Process  Noise  Update 

For exponentially time correlated process noise, the differential equation may be solved by performing a discrete update over a fixed time interval referred to as a batch. 





 dp

−

=

1

 p +  ω(t)

(6.9) 

 dt

 τ

The  solution  i  s

−

 t



 (t −  t 0 )

− (t −  ζ)

 p(t ) =  e

 τ

 p(t 0 ) +

 e

 τ

 ω(ζ )dζ

(6.10) 

 to

The variance of  p(t)  is given by 

−

 t



2 (t −  t 0 )

−2 (t −  ζ)

 σ  2

 τ

 τ

 p (t ) =  e

 σ  2

 p (t 0 ) +

 e

 σ  2

 ω(ζ )d ζ

(6.11)

 to
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The above equations for the process noise  p(t)  are only a function time, the process noise, and correlation time. These equations are completely uncoupled from the spacecraft and other dynamic parameters. The variable  p  has no physical meaning other than that which is arbitrarily assigned. If we assume  p  to be the stochastic acceleration of a spacecraft, then we can solve for  p  as a function of time. If we assume the correlation time  τ  is zero we have white nose and it is not possible to solve for  p. If the correlation time is infinity,  p  does not vary as a function of time and appears as a bias that can be estimated by the data filter. If we have no a priori knowledge of  p, a solution for  p  as a function of time can only be obtained if  p  is time correlated. 

The process noise variance may be obtained by solution of the following differential equation, 





 dσ  2

 p (t )

−

=

2

 σ  2

 dt

 τ

 p (t ) + ˙

 q(t )

where 

˙ q = 2 σ 2 s

 τ

and   σ  2

 s  is the steady state noise variance. From Eq. (6.10), the difference equation is given by 

 pj+1 =  Mpj +  ωj

(6.12) 

− (t −  t 0 )

− t

 M =  e

 τ

=  e τ

 σ  2

=

+

 p

 M 2 σ  2

 q

 j +1

 p j

where 





2 t

 q =  ( 1 −  M 2 )σ  2 ≈ ˙

 s

 qt =

 σ  2

 τ

 s

 t =  tj+1 −  tj

The data equation obtained as a result of processing data from  tj  to  tj+1is given by 

⎡

⎤ ⎡

⎤

 Rp Rpx Rpy

 pj

⎣  R

⎦ ⎣

⎦

 xp Rx Rxy

 xj+1

= ˆ ηj

0

0

 Ry

 y
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For the discrete process noise data update, the value of the stochastic parameters (pj )  is held constant over the interval  tj  to  tj+1 while the SRIF matrix is mapped forward. At the time  tj+1, the process noise variance accumulated over this same time interval is introduced via the following data equation as a discrete impulse. 

 Rω  ˆ

 ωj = ˆ ηω

where 

 Rω = 1

 σω

Replacing  ˆ

 ωj  by Eq. (6.12) in terms of  pj  and  pj+1 we have Rω  ˆ

 pj+1 −  RωM  ˆ

 pj = ˆ ηω = 0

(6.13) 

The updated data equation is obtained by partitioning and combining with the above noise data equation. 

⎡

⎤ ⎡

⎤

⎡ ⎤

− RωM Rω  0

0

 pj

0

⎢

⎢  R

⎥ ⎢

⎥

⎢ ⎥

 p

0  Rpx Rpy

 pj+1

⎣

⎥ ⎢

⎥

⎢ ⎥

 R

⎦ ⎣

⎦ = ⎣ ⎦

(6.14) 

 xp

0

 Rx Rxy

 xj+1

ˆ ηj

0

0

0

 Ry

 y

Initially the a priori uncertainty of  p  and its correlation with the state and constant parameters  (RpandRpx)  is zero. If time correlation of stochastic parameters  Rω

is also zero, the stochastic parameters are uncoupled from the spacecraft state and constant parameters. In order to obtain a solution for  p  and the spacecraft state, the correlation matrix  M  must be nonzero.  M  is nonzero if we know t he correlation time. 

The data equation is partially triangularized over the first columns corresponding to the process noise terms to obtain 

⎡

⎤ ⎡

⎤

⎡

⎤

 R∗  R∗

 R∗

 R∗

 p

ˆ η∗

⎢  pj ppj pxj pyj

 j

 j

⎢

⎥ ⎢

⎥

⎢

⎥

⎢ 0  R+ p R+ px R+ py ⎥ ⎢  pj+1 ⎥

⎢

⎥

⎣

⎥

⎢

⎥

0

 R+

⎦ ⎣  x

⎦ = ⎣ ˆ ⎦

(6.15) 

 xp

 R+

 x

 R+

 xy

 j +1

 ηj+1

0

0

0

 R+

 y

 y

where the plus superscript is introduced to indicate a change in the numerical values after the process noise update. The nonzero value of  ˆ η∗ indicates we have a priori j

knowledge of the correlation time. The stochastic parameter update is completed by stripping off the top rows corresponding to  pj , those containing the asterisk, and these may be saved along with the right side  (  ˆ η∗ )  for smoothing. Discarding j

[image: Image 39]
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 (  ˆ η∗ )  and its correlation with  p, state and constant parameters result in  p j

 j +2 being 

uncorrelated with  pj . This makes the system of equations a Gauss-Markoff process. 

The updated data equation Eq. (6.14) has one stochastic parameter which correlates with time-varying parameters. Rarely, there is more than one stochastic acceleration with different correlation times. This occurred after the launch of the MESSENGER spacecraft and is described in Chap. 13  Sect. 13.6. We may also be interested in the components of acceleration. An augmented data equation, which has six stochastic parameters, three components of acceleration associated with two correlation times, is given by 

The MESSENGER example had 3 components of acceleration and five correlation times for a total of 15 stochastic parameters. Observe that if the correlation times given by  M 1 and   M 2 are zero, the data equation collapses to the lower right corner containing only  Rx,  Rxy, and  Ry. 

 6.4.2  Solution  Epoch 

The SRIF formulation computes an estimate of the spacecraft state, target body ephemeris, and target body attitude at the initial epoch. This is purely a matter of convenience since the state and covariance at any future epoch may be obtained by simply mapping the epoch state solution. An epoch state formulation enables the trajectory and variational partial derivatives to be computed before data is processed by the filter. When stochastic parameters are present, the current state cannot be determined by mapping the true epoch state solution. The true epoch state solution is obtained by smoothing. Since the final state solution is the solution of most interest and it is desirable to avoid smoothing, the contribution of stochastic parameters is mapped back to epoch, creating what is called a pseudo-epoch state solution. 

The pseudo-epoch state solution is an exact least squares fit to the data when it is mapped to the current or final state. The pseudo-epoch state filter adopted by the Jet Propulsion Laboratory is really a current state filter when mapped to epochs in the future and used for prediction. In the early 1970s orbit determination was a very challenging problem. The high-precision modeling of the solar system, media, and station locations made possible by VLBI has reduced the need for stochastic parameters to cover modeling errors. Indeed, most missions are now flown without the need for stochastic parameters and all the data could be processed in a single batch. 
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 6.4.3  Computed  and  Consider  Covariance 

After all the data has been processed and a solution obtained, the covariance matrix of the estimated parameters is computed and mapped to an epoch of interest. The SRIF matrix  R  is inverted to obtain the square root covariance matrix  (S)  and this matrix is multiplied by its transpose to obtain the covariance matrix  (P ). 





 R

 R =

 x Rxc

0  Rc

 S =  R−1

 P =  SST

The   R  matrix has been partitioned into  (Rx)  and   Rc.  The  Rx  SRIF matrix contains the state, stochastic parameters, and most of the constant parameters. The  Rc matrix contains parameters that are suspect because they represent models that are not as accurate as the data can measure. In the early days of the space program station location errors fell into this category. These are called consider parameters. 

The estimate of consider parameters obtained above can be too optimistic and the modeling errors associated with these parameters can infiltrate into the other estimated parameters which include spacecraft state. One strategy is to just ignore these parameters. This can easily be done by truncating columns pertaining to these parameters from  (R).  The  Rc  parameters have been conveniently placed at the end of   R  for this purpose. The result is called the computed covariance and is given b y Sx =  R−1

 x

 Px =  Sx STx

The reduced set of estimated parameters associated with the computed covariance can enable orbit determination operations to proceed smoothly, but the infiltration of model errors can result in overly optimistic error estimates. In order to determine the effect of consider parameters on other estimated parameters, the consider covariance is computed. The consider covariance reveals the sensitivity of orbit estimation to modeling errors, but has no effect on the orbit solution. The consider covariance is computed by discarding the rows of  R  corresponding to  Rc and replacing them with the a priori consider covariance. The correlation of the consider parameters with the other estimated parameters determined by processing data is preserved. We simply add some negative information to the SRIF matrix that gives us the desired square root covariance for the consider parameters. This can be done by employing some mathematical trickery. In computing the square root covariance, the inversion of  R  is stopped at the row corresponding to the first consider parameter and the square root consider a priori consider covariance
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is inserted. This process is mathematically equivalent to the following: R

 R

 x Rxc

 c =

0  R∗ c

where  R∗ =

 c

 S−1

 con  and for independent consider parameters the square root covariance  Scon  is a diagonal matrix of consider  a priori  sigmas. Making use of the Schur identity give in Sect. 6.3, the consider square root covariance is given by R−1 − R−1

 S

 x

 x

 Rxc S−1

 con

 c =  R−1 =

 c

0

 Scon

and the consider covariance is 

 Pc =  Sc STc

 6.4.4  Smoothing 

A current state orbit determination filter provides a best estimate of the spacecraft state at the end of the data arc. An estimate of the state at the beginning of the data arc or at some time in between may be obtained by mapping the final state back to the epoch of interest. This mapping may also be obtained by integrating the trajectory backward from the final state. If there are no stochastic parameters, these mappings will also provide a best estimate. When stochastic parameters are included, a best estimate may be obtained by processing the data backward and this is referred to as a smoothed best estimate. If only a few estimation epochs are of interest a smoothed best estimate may be obtained while processing the data forward. This processing is referred to as single point smoothing and was used by the Galileo project for obtaining an estimate of the probe state at separation. 

Data is processed from launch to the separation epoch. At the time of separation or the time that a smoothed best estimate is desired the data processing is halted. 

The covariance at this time is given by  P (ts)

⎡

⎤

 P (p)

 P (p, x 1 )

0

 P (p, y)

⎢

⎢

⎥

⎢

⎥

⎢

⎥

 P (x 1 , p) P (x 1 )

0

 P (x 1 , y)

⎢

⎥

⎥

 P (ts) = ⎢

⎢

⎥

⎢

⎥

⎢

0

0

 P (xs)

0

⎥

⎣

⎥

⎦

 P (y, p) P (y, x 1 )

0

 P (y)
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The smoothed  a  prior   covariance ( P (xs)) is a placeholder and has no effect on the computed covariance ( P (ts)). The data partials associated with  P (xs)  are all zero up to the time  ts. At the smoothing epoch, the computed covariance is updated with 

⎡

⎤

 P (p)

 P (p, x 1 ) P (p, x 1 ) P (p, y)

⎢

⎢

⎥

⎢

⎥

⎢

⎥

 P (x 1 , p) P (x 1 )

 P (x 1 ) P (x 1 , y)

⎢

⎥

⎥

 P (ts)+ = ⎢

⎢

⎥

⎢

⎥

⎢  P (x 1 , p) P (x 1 )

 P (x 1 ) P (x 1 , y) ⎥

⎣

⎥

⎦

 P (y, p) P (y, x 1 ) P (y, x 1 )

 P (y)

This update forces the smoothed spacecraft state to be equal to the computed spacecraft state and be perfectly correlated. The smoothed spacecraft state also assumes the same correlation with stochastic parameters ( P (p)) and constant parameters ( P (y)). The data filter continues to the end of the data arc. The data partials for  xs  remain at zero and the smoothed best estimate is updated through its correlation with the other estimated parameters. For the implementation of single point smoothing in the orbit determination program used for Galileo, the update at the smoothing epoch was performed by processing six artificial measurements that forced the spacecraft state to equal the smoothed state at the smoothing epoch. 

6.5  Continuous  Filter  Equations 

A data filter processes data in order to obtain an estimate of parameters that are related to the data by a mathematical model. Data filters exist in many forms and use the covariance of the state parameters, or some equivalent representation, along with the measurements and a simulation of the measurements including partial derivatives, to obtain the desired estimate. Data filters may be separated into two categories depending on how the state covariance is evolved as a function of time. Continuous data filters evolve the state covariance by integration of a matrix differential equation or Riccati equation, and discrete data filters evolve the state covariance by mapping over a finite time interval. Discrete filters are thus obtained by solving the continuous equations over some finite time interval. The covariance matrix of the state may be represented by its inverse or information matrix or square root factorizations of either of these matrices. 

The system dynamics may be described as a linear perturbation of a reference function of the state variables. Given the nominal values of the state variables described by the function ¯ x(t)  and a perturbation of the state  (δx)  at the initial epoch  (t 0 ), the perturbed state variables are described by x(t ) = ¯ x(t) +  (t, t 0 ) δx(t 0 )
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where the state transition matrix  ()  is given by 

  =  ∂x(t)

 ∂x(t 0 )

The state transition matrix may be obtained as a solution of the following differential equation or by numerical integration. 

 ∂ ˙ x(t) =  ∂ ˙ x(t) ∂x(t)

 ∂x(t 0 )

 ∂x(t ) ∂x(t 0 )

˙ (t, t 0 ) =  F (t, t 0 )

where 

 F =  ∂ ˙ x(t)

 ∂x(t )

The above differential equation, describing the evolution of the state variation, may be generalized to include other parameters and process noise. 

˙ X =  F X +  G

where   G  is the mapping of  , the process noise. Here, the  δ’s have been dropped and the variation   δx  is represented by  X. The state vector variation  X  may be generalized to include constant parameters  (y)  and stochastic parameters  (p)  as well as the dynamic state variables  (x). The process noise (  ) contains white noise  (ω)  on the stochastic parameters. Thus we have 

⎡ ⎤

⎡ ⎤

 p

 ω

 X = ⎣  x ⎦

  = ⎣ 0 ⎦

 y

0

The stochastic parameters  (p)  provide a means of introducing process noise into the state variables. These are defined by scalar differential equations of the form 

˙ pi = − 1  pi +  ωi

 τi

where   τi  is the correlation time and  ωi  is the white noise associated with the i-th stochastic parameter. Thus, white noise is introduced directly to the parameter  p and indirectly to the state via the mapping matrix  F . 

An estimate of the state is obtained from a mathematical model of the system dynamics that include measurements processed by a data filter. The “best” estimate of the variation of the state  (  ˆ

 X)  is described by the following equations:
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˙ˆ X =  F  ˆ X +  G  ˆ  +  K  ˆ Z

ˆ Z =  Z −  A  ˆ X

 A =  ∂Z

 ∂X

where   K  is the Kalman gain, ˆ

   represents an estimate of the process noise,  Z  are the actual measurements, and  A  is the matrix of data partials. The Kalman gain is computed as a function of the measurement error, the data partials, and the state error covariance ( P ). Thus, in order to obtain a complete set of equations that would enable the computation of the estimated state, we need an equation for the Kalman gain and an equation for evolving  P  as a function of time. 

The covariance of the state estimate is defined by the expected value represented by 





 P =  E XX T

As an alternative, we may compute the information matrix  (), the square root of the covariance  (S), or the square root of the information matrix  (R). The equations that define these matrices are given by 

 P =  −1

 P =  SS T

 P −1 =  R T R

Thus, we are interested in obtaining differential equations of the form 

˙

 P = ˙

 Pm + ˙

 Pq + ˙

 Pd

(6.16) 

˙  = ˙ m + ˙ q + ˙ d

(6.17) 

˙ S = ˙ Sm + ˙ Sq + ˙ Sd

(6.18) 

˙ R = ˙ Rm + ˙ Rq + ˙ Rd

(6.19) 

where subscript  m  refers to the mapping terms, subscript  q  refers to process noise terms, and subscript  d  refers to the data update terms. 

The evolution of the covariance as a function of time may be obtained by mapping the state covariance obtained at some epoch  (t 0 )  to some time in the future (t )  with the state transition matrix. 

 P (t ) =  (t, t 0 ) P (t 0 ) (t, t 0 ) T
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Taking the derivative with respect to time we obtain 

˙

 P (t ) = ˙

 (t, t 0 ) P (t 0 ) (t, t 0 ) T +  (t, t 0 ) P (t 0 ) ˙

 (t, t 0 ) T

Since the state transition matrix is obtained by integrating 

˙ (t, t 0 ) =  F(t) (t, t 0 )

we obtain after substitution 

˙

 Pm =  F P +  P F  T

(6.20) 

 6.5.1  Process  Noise  Term 

In the covariance matrix differential equation, process noise enters as an addition to the covariance. Thus, we have 

 P (t +  t) =  P (t) +  G Q G T

where  Q  is the covariance of the process noise admitted over the time interval  t and 

 Q =  Q t

where   Q  is the rate of accumulation of process noise. Thus, in the continuum we hav e





˙

 P (t +  t) −  P (t)

 Pq = lim

=  G Q G T

(6.21) 

 t →0

 t

 6.5.2  Data  Update  Term 

The discrete covariance update may be obtained assuming an additional measurement  An+1 is added to a previously determined estimate based on measurements  An with covariance  Pn. 



−1

 Pn+1 =  A T nWnAn +  A T n+1 Wn+1 An+1

In the notation used here,  An  is a matrix with  n  rows corresponding to the measurements and  m  columns corresponding to the state parameters.  An+1 is a row matrix of dimension  m. We also have for the covariance update, 
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 P −1 =  P −1 +  A T

 n+1

 n

 n+1  Wn+1  An+1

and since 

  =  P −1

 n+1 =  n +  A T n+1  Wn+1  An+1

Over the time interval  t  between measurements, information accumulates at a rate W  and 

 Wn+1 =  W t

 n+1 −  n =  A T n+1  W t An+1

Dividing by  t  and taking the limit as  t  approaches zero, 

˙ m =  A T  W A

(6.22) 

we obtain a differential equation for the evolution of the information matrix due to addition of data. 

 6.5.3  Continuous  Filter  Implementation 

Collecting the terms derived above, we have the following matrix differential equation or Riccati equation for the covariance filter: 

˙

 P =  F P +  P F  T +  G Q G T + ˙

 Pd

 K =  P A T  W

and for the information filter, 

˙  = ˙ m + ˙ q +  A T  W A

 K =  −1  A T  W

The data update term  ( ˙

 Pd )  is missing from the covariance equation and the mapping ( ˙

 m)  and process noise  ( ˙

 q )  terms are missing from the information filter equation 

and these may be obtained by transformation using matrix identities. For the covariance and information equations, we need the following matrix identities:
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 P  =  I

˙

 P  +  P ˙

  = 0

˙

 P = − P ˙

 −1 = − P ˙

  P

˙  = − P −1 ˙ P  = −  ˙ P 

Applying these identities to the above matrix differential equations, we have 

˙

 P =  F P +  P F  T +  G Q G T −  P A T  W AP

 K =  P A T  W

The covariance filter in this form is called the continuous form of the Kalman-Bucy filter. For the information filter, we have 

˙  = − F −  F T  −   GQG T   +  A T  W A K =  −1  A T  W

A similar set of matrix identities, provided by Scheeres, may be developed for the square root covariance filter (SRCF) and the square root information filter (SRIF) that may be used to transform the covariance time derivative. 

 P =  SS T

˙

 P = ˙ SS T +  S ˙ S T







 S ˙

 S T − 1 ˙

 P

+ ˙ SS T − 1 ˙

 P

= 0

2

2

Because of symmetry associated with the above terms in the brackets, both terms in the brackets must be zero and 

˙ S = 1 ˙ P S−T

2

A similar derivation for the SRIF matrix gives the identity 

˙ R = −1 R ˙ P R T R

2

Applying these identities to the covariance and information filter equations gives the following matrix differential equations for the SRCF and SRIF matrices:
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˙ S = 1  FS +  SS T F T S−T + 1 G Q G T S−T − 1 SS T A T WAS

2

2

2





˙ R = −1  RF +  R−1 F T R T R − 1 RGQG T R T R + 1 R−T A T  W A 2

2

2

The mapping terms for both the SRCF and SRIF contain matrix inverses. These may be eliminated by introducing a different factorization of the square roots. Consider the mapping of the square root covariance from an initial epoch  t 0 to the epoch  t. 

 P (t ) =  (t, t 0 ) S(t 0 )S(t 0 ) T  (t, t 0 ) T

The mapped square root is simply 

 S(t ) =  (t, t 0 ) S(t 0 )

Taking the derivative with respect to time, 

˙ S(t) = ˙ (t, t 0 ) S(t 0 )

˙ S(t) = ˙ (t, t 0 ) (t, t 0 )−1 S(t)

˙ S(t) =  F(t)S(t)

For the SRIF matrix the information matrix  ()  is defined by P  =  I

Taking the square root yields 

 SST RRT =  I

Since   P  is symmetric we hav e

 ST SRRT =  I

and 

 S(t )R(t ) =  I

˙ S(t)S(t)−1 +  R(t)−1 ˙ R(t) = 0

˙ S(t)R(t) +  S(t) ˙ R(t) = 0

˙ R(t) = − R(t) ˙ S(t)S(t)−1

˙ R(t) = − R(t) F(t)
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Making the above substitutions for the mapping terms, the matrix differential equations and Kalman gain for the covariance, information, square root covariance, and square root information filters are summarized below. 

 Covariance (Kalman-Bucy) Filter 

˙

 P =  F P +  P F  T +  G Q G T −  P A T  W AP

(6.23) 

 K =  P A T  W

(6.24) 

 Information Filter 

˙  = − F −  F T  −   GQG T   +  A T  W A (6.25) 

 K =  −1  A T  W

(6.26) 

 Square Root Covariance Filter (SRCF) 

˙ S =  FS + 1 G Q G T S−T − 1 SS T A T WAS

(6.27) 

2

2

 K =  SS T A T  W

(6.28) 

 Square Root Information Filter (SRIF) 

˙ R = − RF − 1 RGQG T R T R + 1 R−T A T  W A (6.29) 

2

2

 K =  R−1 R−T  A T  W

(6.30) 

The data update and process noise terms of the above filter equations exhibit a symmetry or duality when the information filters are compared with the covariance filters. For example, the data update term of the covariance filter may be obtained by replacing  Q  with   W  and  G  with  A T in the process noise term of the information filter. Also, the process noise update term of the information filter may be obtained by making similar replacements in the data update term of the covariance filter. 

These same dual relationships exist for the filters in their square root form. The existence of duality enables algorithms designed for data updating to be used for process noise updating and vice versa. For example, the Potter square root covariance data update algorithm may be used to update process noise in the SRIF. 

6.6 Continuous SRIF with Discrete Data Update

257

6.6  Continuous  SRIF  with  Discrete  Data  Update 

The selection of a filter algorithm depends on many competing criteria related to accuracy, computational efficiency, memory utilization, and simplicity of design. 

Consideration of accuracy seems to favor factorized or square root filters and computational efficiency seems to favor discrete filters. With the proliferation of personal computers, computational efficiency has become less important since computer processing time is now relatively cheap. Simplicity of design and memory utilization favor a continuous approach to filtering. The system dynamics and data partial derivatives enter directly into the filter and the need to compute a state transition matrix is completely eliminated. However, data is generally in the form of discrete data points and may not be easily transformed to the continuous form. This suggests a hybrid approach which allows system dynamics and process noise to be treated continuously and data to be treated as a discrete update. 

The continuous SRIF, with discrete data update, is selected for development of a filter algorithm. Information filters have the advantage that  apriori  on the constant parameters does not have to be placed on the filter until after all the data is processed. 

During filtering, the information arrays may be sparse resulting in less computation. 

 6.6.1  Process  Noise  Duality 

The continuous process noise update enables one to introduce process noise directly as a differential equation to the filter. This form is convenient for describing process noise and enables the investigation of a wide variety of process noise models without explicitly solving the differential equation. The continuous process noise update term in the information filter has the same form as the data update term in the covariance filter. The Potter square root covariance data update algorithm [6] 

provides a means of performing a scalar data update to the square root covariance filter. Because of duality, the discrete Potter data update algorithm can be adapted to the SRIF for a discrete scalar process noise update. Taking the limit as  t approaches zero enables one to convert the discrete process noise update to a continuous process noise update. 

Starting with the process noise update term in the information filter, we have 

˙

 n+1 −  n

 q = −  GQG T   = lim

 t →0

 t

and in the discrete form, 

  = ˜

  − ˜

  GQG T ˜
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where the notation for  n, the information matrix before the update or a priori, is replaced by  ˜

   and  n+1 is replaced by  . Since 

  =  R T R

we have 

 RT R = ˜

 RT [ I −  RGQGT ˜

 RT ] R

Let  v = ˜

 RG

 RT R = ˜

 RT [ I −  vQvT ] R

If  Q  and   G  are assumed to be diagonal (i.e., uncorrelated process noise parameters), then each diagonal element of  Q  is given by a scalar  qi. Dropping  i subscript, we have for the  i-th row of  R  and diagonal element of  Q, I −  qvv T =  (I −  αvv T ) 2

 I −  qvv T =  I − 2 α vv T +  α 2 vv T vv T

Since  v T v  is  a scalar, the solution of the above quadratic equation is given by 1 −  v T vq

 α = 1 −

=  α

 v T v

 vT v

and 

 R T R = ˜

 R T (I −  α vv T ) T  (I −  α vv T ) ˜

 R

 R =  (I −  α vv T ) ˜

 R

 R = ˜

 R −  α ˜

 R GG T ˜

 R T ˜

 R

In the continuum we have 

˙ R = − ˙ α ˜ R GG T ˜ R T ˜ R

and 

  ˙ α = 1  ( 1 −  v T vq)− 12   ˙ q 2

In the limit as  q  and   t  go to zero we have 

  ˙ α = 1   ˙ q

2
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and 

˙ R = −1  ˙ q R GG T  R T R

2

If we have more than one stochastic parameter, the   ˙ q  s  can be assembled into a diagonal matrix  Q  and  we  hav e



˙ R = −1

  ˙ qiR GG T  R T R = − 1  R GQG T  R T R

(6.31) 

2

2

This is the same equation as derived above for the continuous SRIF process noise update, only we have assumed diagonal  Q  and   G. 

 6.6.2  Numerical  Integration  of  SRIF  Matrix 

The continuous SRIF data processing algorithm involves mapping the SRIF matrix from the time of a discrete data or process noise update to the time of the next data point or process noise update. The mapping is accomplished by numerical integration of the SRIF matrix differential equation. The numerical integration is performed with a suitable algorithm. The fifth order Runge-Kutta-Fehlberg method with error control has been successfully employed. Recall the matrix differential equation derived above for the SRIF and discard the data update term. 

˙ R = − RF − 1 RGQG T R T R

2

Consider the following partition: 





⎡

⎤ ⎡

⎤

 R

1

 p Rpx Rpy

 GQG T R T

 p Rp

˙

 R

 F

2

 R = −

 d Rdy

 d

− ⎣ 0  R

⎦ ⎣

0

⎦

0  R

 x

 Ry

 y

0

0

0

 Ry

0

where   Rd  corresponds to the dynamic parameters and the matrix  Fd  contains only the rows of  F  corresponding to the dynamic parameters. This equation simplifies to

˙ R = − Rd Fd − 1 Rp GQG T  R T

2

 p Rp

We only have to integrate the top rows of the SRIF matrix corresponding to the dynamic parameters and the derivative is a function of only the  Rd  partition of the SRIF matrix. For the simple case of exponentially correlated process noise we have, 
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⎡

⎤

 ∂ ˙

 p  0 0

 F

⎣  ∂p

⎦

 d =

 ∂ ˙ x ∂ ˙ x ∂ ˙ x

 ∂p ∂x ∂y

⎡

⎤

 e− 1

⎢

 τ 1

⎥

 ∂ ˙

 p

⎢

⎥

= ⎢

 e− 1

 τ 2

⎥

 ∂p

⎢

⎣

⎥

 . . . 

⎦

 e− 1

 τi

⎡

⎤

 ωs 1

⎢

 ω

⎥

 Q = ⎢

 s 2

⎣

⎥

 . . . 

⎦

 ωsi

and   G  is the identity matrix. 

A continuous matrix differential equation for the SRIF has been derived and a computer algorithm developed to implement this filter. The filter algorithm performs the mapping of state and process noise by numerical integration of the SRIF matrix and admits data via a discrete least square update. 

Accuracy, computational efficiency, memory requirements, and simplicity of design are compared with other filter algorithms. This comparison consisted of comparing the filter algorithms at the equation level. A more rigorous comparison of filter algorithms is being pursued that involves parallel implementation. A preliminary evaluation of these competing criteria reveals no significant differences. 

However, the continuous SRIF is expected to outperform discrete filters with regard to accuracy and memory requirements because there is no need to compute a state transition matrix and error control may be placed directly on the elements of the SRIF matrix. Simplicity of design seems to favor the continuous SRIF particularly when the same numerical integration algorithm used for the state propagation is used to integrate the SRIF matrix. 

The integration of process noise makes the continuous SRIF somewhat computationally inefficient. However, an exact result is obtained and discrete filters only approximate the integration of process noise. When process noise is admitted to the continuous filter as discrete updates, the computational efficiency is comparable to the discrete filter implementation. 

6.7  Direct  Orbit  Determination 

Direct orbit determination is a method for determining a spacecraft orbit directly from measurements. For Doppler data, the measurement recorded on a tracking data file contains the motion of the Earth, the central body, media, and other orbit
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perturbations. After removing known components from the Doppler signature, the portion of the signature due only to the spacecraft motion relative to the central body can be parameterized. A Newton-Raphson method may be applied to obtain the solution. Parameters which yield a nearly diagonally dominant partials matrix are defined. This method is particularly important for orbits around asteroids and comets, where a velocity error of only a few meters per second can place the spacecraft in an entirely unknown orbit. 

Another example of direct orbit determination was devised by Hamilton and Melbourne for determining the position of a spacecraft far from the Earth. A single range measurement gives the distance to the spacecraft but provides no information of the position normal to the line of sight or the right ascension and declination of the spacecraft. By observing the rotation of a tracking station about the Earth’s spin axis, which appears in the Doppler data like a spacecraft orbiting a planet, the right ascension and declination may be determined. The accuracy of this measurement is about 0.25 microradians or less than one tenth of an arc second which is about the same accuracy as the Hubble space telescope. 

The determination of a spacecraft orbit can be hampered by the lack of convergence of an orbit determination program, in the case of poor  a priori  information or highly nonlinear measurements. The convergence problem is likely to occur following a large propulsive maneuver where execution errors may result in a poor prediction of the post maneuver orbit. However, the problem may also arise for a spacecraft that is left in orbit unattended for some time. The most common occurrences result from launch into Earth orbit and planetary orbit insertion. In either of these cases, a guidance or propulsion system failure can leave the spacecraft on a trajectory far from the nominal that is generally used as the a priori position estimate for the orbit determination solution. Due to nonlinearity, a perturbation of a few degrees in the orbit elements describing orientation or a few percent in period may result in the failure of an orbit determination program to converge. 

For a spacecraft orbiting a planet, the energy required to perturb the spacecraft orbit far enough away from its original path to cause an orbit convergence problem is considerable. A planetary orbit insertion maneuver does have the potential for large anomalous orbit perturbations. This subject received much attention on the Viking mission to Mars and the Magellan mission to Venus. If a motor burn anomaly large enough to cause an orbit convergence problem had occurred on either of these missions, it could have been very difficult to recover. 

For a spacecraft orbiting a comet or asteroid, a relatively small propulsive maneuver can radically alter the orbit. Only a few meters per second of velocity change are required to reverse the direction of the spacecraft velocity vector. If this were to happen due to an anomalous burn, the spacecraft might be left in a completely unknown orbit. The available data would be Earth-based Doppler tracking since the signal could be recovered by pointing the DSN antennas at the asteroid, and it is assumed that the spacecraft would be able to acquire celestial references and point its antenna at Earth even though the relative direction of the central body is not known. Conventional methods for redetermining the spacecraft orbit based solely on processing Doppler data in an orbit determination program may not be adequate. 
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The Doppler observable provides a direct measure of the spacecraft velocity projected onto the line of sight between the tracking station antenna and the spacecraft. The Doppler measurement is a measure of the difference in range over some time interval scaled by a constant determined by the transmitted frequency, the speed of light, and the length of the time interval or count time. The range from the tracking antenna to the spacecraft may be expressed as the sum of the directed distances of the spacecraft to the central body, the central body position relative to the Sun, the Earth position relative to the Sun, and the location of the tracking station relative to the center of the Earth, including a small correction for media. For the orbit determination problem, all of the distances referred to above are well known except for the spacecraft position relative to the central body. The contribution of this component may be isolated by subtracting the effect of the known distances and the media delay from the raw Doppler measurement. A multidimensional Newton-Raphson method is then applied for the solution of the spacecraft orbital elements. 

 6.7.1  Model  of  Doppler  Data  Signature 

The spacecraft orbit may be determined in terms of six orbit elements in the plane-of-sky coordinate system shown in Fig. 6.2. After deriving a mathematical model for the spacecraft-central body component of the Doppler signature, target positions on the signature are chosen that approximately define six target parameters, each of which is directly related to one of the orbital elements to be determined. 

Figure  6.2  displays the spacecraft orbital plane with respect to the plane-of-sky coordinate system (X,Y,Z). The plane of sky is the plane perpendicular to the line of sight between the Earth and the central body of the spacecraft orbit. The X and Y 

axes lie in the plane of sky, and the Z axis points from the central body to the Earth. 

The plane-of-sky coordinate system is particularly useful for Doppler data, because the line of sight is along the Z axis. 

The spacecraft orbit is oriented with respect to the plane of sky as follows: the node     is the smallest positive angle between the X axis and the line of nodes, which is the intersection of the plane of sky with the spacecraft orbital plane. The inclination i is the angle from the plane of sky to the spacecraft orbital plane, and the argument of periapsis  ω  is the angle from the line of nodes to the semi-major axis through periapsis. To convert plane-of-sky coordinates to coordinates in the orbital plane of the spacecraft, rotations through the three angles  ,  i ,  and  ω  must be performed. 

⎡
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 X 3

 X
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Fig.  6.2  The plane of sky 
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The object is to determine an approximate two-body elliptical spacecraft orbit in terms of six elements, the semi-major axis a, the eccentricity e, the time of periapsis tp, the node  , inclination i, and argument of periapsis  ω. This set of orbital elements may be readily converted to a Cartesian initial state vector that may be input to orbit determination software for further refinement. 

The signature of the spacecraft orbital velocity projected onto the Earth line of sight is simply the z component of the spacecraft velocity in the plane-of-sky coordinate system. In the spacecraft orbital plane, the spacecraft position is X 3 =  r cos η

 Y 3 =  r sin η

 Z 3 = 0 . 

where   η  is the true anomaly, or periapsis-central body-spacecraft angle, and r is the distance from the central body to the spacecraft. Thus, the velocity components are: 

˙ X 3 = ˙ r cos η −  r ˙ η sin η

˙ Y 3 = ˙ r sin η +  r ˙ η cos η

˙ Z 3 = 0 . 
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To get velocity coordinates in the plane of sky, we transpose the rotations through 

 , i, and  ω, respectively. 
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⎤

˙ X

˙ X
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3
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⎦
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The Doppler measurement  K ˙

 ρ  is  K ˙

 Z. After the application of some standard 

trigonometric identities and two-body orbit element formulas, 

r = a  ( 1 − e2 )

1 + e cos  η

GM a  ( 1 − e2 )

r ˙ η =

r

˙r = r ˙ η  e sin  η

1 + e cos  η. 

the following equation for the Doppler signature is obtained: 

√GM sin i

K ˙

 ρ =

√

√

[cos  (η +  ω) + e cos  ω] K

(6.32) 

a

1 − e2

GM is the gravitational constant of the central body of the spacecraft orbit, and K 

is a scaling constant which is related to the transmitted frequency. It converts the Doppler observable into Hertz: 

K = 2 C3 Ft

c

where  Ft is the transmitted frequency, C3 = 240/221 is the spacecraft turnaround ratio, and c is the speed of light. Ft = 2,112,200,640 Hertz for X-band Doppler. 

The representation of the Doppler signature is a function of the time-varying true anomaly   η  rather than an explicit function of time. The signature may be plotted as a function of time by performing the following computations: for a fixed time t, time of periapsis tp, and parameters a, e, i, and  ω, we may solve for the eccentric anomaly E from 

t = tp + 1 / 2 π ( E − e sin E )  P

(6.33)
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P is the period, which is related to the semi-major axis a by the standard formula from two-body elliptical motion, 



a3

P = 2  π

(6.34) 

GM

Newton’s method with an initial condition Eo

=  π/ 2 is effective for this 

computation. Given the eccentric anomaly E, the true anomaly  η  may be obtained from 





sin  η

 η = tan−1

(6.35) 

cos  η

where 

sin  η =  ( sin  E) (a/r) ( 1 −  e 2 ) 1 / 2

and

cos  η = cos  E −  e . 

1 −  e  cos  E

 6.7.2  Parameterization  of  Doppler  Signature 

Figure  6.3  displays the slowly increasing or decreasing amplitude of a simulated Doppler signature, on which six target positions are identified. In the case of an actual mission, the raw Doppler data may be processed by an orbit determination program to remove the known components of the signature due to the relative motions of the Sun, Earth, tracking stations, and central body of the spacecraft (t2,h2)
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Fig.  6.3  The Doppler signature with target positions
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orbit. The resulting quasi-periodic signature, corresponding to the spacecraft-central body component, may be similarly plotted and the six target positions identified. 

When the spacecraft passes through the plane of sky, the observed signature is at a maximum or minimum. A maximum is attained moving away from the Earth, and a minimum is attained moving toward the Earth. At the zero crossings, the spacecraft range to Earth is at a local minimum or maximum. If the slope is negative at the zero crossing, the spacecraft is on the far side of the central body away from the Earth; and if the slope is positive at the zero crossing, the spacecraft is on the near side of the central body toward the Earth. 

The six target positions defined on the signature yield the set of target parameters 

{zi} below: 

z1 = t5 − t1

a semi − major axis

z2 = t1

tp time of periapsis

z3 = h2 + h4

e eccentricity

z4 = h2 − h4

i inclination

z5 = t4 − t2

 ω  argument of periapsis

z6 = h6 − h2

   the node

The six parameters relate to the plane-of-sky orbit elements as indicated. The difference in time between  t 5 and   t 1 is approximately the orbit period, from which the semi-major axis is obtained from (13). The parameter z 2 is the time of the zero crossing with positive slope, which is related to the time of periapsis, and the third parameter z 3 is related to the eccentricity, because e cos  ω  determines the bias offset, or integrated average, of the graph. The amplitude 

√GM sin i

z4 =

√

√

a

1 − e2

is closely related to the inclination in the plane of sky. Also, the argument of periapsis affects the downward slope of the signature, which is related to z 5,   but the dependence is not apparent from Eq. (6.32), which is not time-dependent. The nonlinear relationship between  ω  and time can be observed in Eq. (6.33) through 

Eq. (6.35). Finally, the node in the plane of sky is related to a slow change in amplitude, measured by z 6, that may be attributed to the relative motion of the asteroid with respect to the Earth. The node    changes as the planet or asteroid rotates around the Sun and consequently around the Earth. A change in node indirectly changes the inclination i and argument of periapsis  ω, which causes an upward or downward shift in the Doppler signature, measured by the difference in two peaks. 

To the first order, the true anomaly is the only time-dependent parameter in the mathematical model of the spacecraft-central body component of the Doppler signature (11). The equation does not explicitly incorporate the node in the plane of sky. The relation to    may be obtained by solving Kepler’s equation. We may obtain a first-order equation that includes the node by introducing the rotation of the
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central body about the Earth as second-order inclination and argument of periapsis rates. We have for the rotation of the planet or asteroid about the Earth R z × V z

 e =

|R z|2

where  R z  and  V z  are the position and velocity of the central body with respect to the Earth. Transforming into the plane of sky we have 

 pos =  T e

The following Euler angle rates may be obtained from the rotation of the plane-of-sky coordinate system: 
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 6.7.3  Solution  by  Newton-Raphson 

The determination of the spacecraft orbit convergence problem thus reduces to finding the plane-of-sky orbit elements that generate the observed signature. We estimate the vector of orbital parameters O =  ( a ,  tp ,  e ,  i , ω, ) T by measuring the vector of target parameters Z =  ( z1 ,  z2 ,  z3 ,  z4 ,  z5 ,  z6 ) T .  Values computed for six points shown in Fig. 6.3  may be compared with the observed values in a Newton-Raphson algorithm to solve for the plane-of-sky orbit elements. 

The vector of target parameters Zo is computed from the spacecraft-central body component of the Doppler signal. An initial set of orbital elements Oo is processed by an orbit determination program, which includes a model of the irregular gravity field of the asteroid or any other central body. The computed signature is obtained by integrating the equations of motion of the spacecraft, projecting the spacecraft velocity vector into the line of sight relative to Earth, and scaling by the constant  K. 

The target parameters Z1 are computed from the simulated signal. 
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The Newton-Raphson method involves the recursive solution of the following equation: 





 ∂Z −1

 On+1 =  On +

 (Zn −  Z 0 )

 ∂O

where Z  n  is the vector of target parameters computed from the estimated vector of spacecraft orbital elements O  n. Partial derivatives of the target parameters with respect to the elements of O  j  are computed by perturbing each orbital element in O  j  from the nominal, generating a signal, measuring the perturbations in the target parameters, and computing 

   zi

   oj , 

1 ≤  ( i ,  j ) ≤ 6 . 

A new set of reference orbital elements On+1 and corresponding set of reference target parameters Zn+1 are then computed. The process is continued to convergence. 

Since the computed and measured  Z  may be obtained along with the partial derivatives with high precision, the major weakness is the initial guess of the orbit elements. Since a diagonally dominant system will converge from just about any initial guess, it is desirable to define a parameter set that has a matrix of partial derivatives that is as close to diagonal as practical. The above parameter set  (zi) was selected with this purpose in mind. The near diagonal dominance of the matrix of partial derivatives associated with this parameter set ensures convergence over a wide range of initial starting points. Also, the converged orbit elements may be transformed to a high-precision state vector that may be input directly to orbit determination software. The accuracy of the a Newton-Raphson solution depends only on the accuracy of the independent parameters (measurements) and their relation to the dependent parameters (the model). The accuracy does not depend on the initial guess or partial derivatives which control the convergence to a solution. 

 6.7.4  Magellan  Example 

As an example of the application of the above method, consider the determination of the Magellan spacecraft orbit about Venus. Two orbits of raw Doppler data from DSS 15 at Goldstone, California, and DSS 45 at Canberra, Australia, were acquired on February 7–8, 1991, and are shown in Fig. 6.4. 

The gaps in the data coverage were due to a loss of Doppler data while the spacecraft was being rotated for the purpose of science data acquisition. Similar gaps could be caused by the unavailability of tracking stations or the occultation of the spacecraft by the planet. The target parameters described above require complete data, in the absence of which, the parameter set must be modified to make best use of the data available. Because in general complete data is available, 
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Fig.  6.4  Magellan Doppler signature—raw data 
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Fig.  6.5  Simulated Magellan spacecraft-Venus Doppler signature the second approach was to generate simulated data to supplement the actual data. 

Figure  6.5  displays the Magellan spacecraft-Venus component of the Doppler signal with simulated data. From a cursory view of Fig. 6.5, some of the plane-of-sky orbit elements are apparent. The period is observed to be approximately 3 h, and the amplitude indicates a high inclination. The eccentricity is less obvious, but the
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Fig.  6.6  Convergence Region for Magellan with simulated data slight negative shift of the curve indicates a small eccentricity. The large difference between the upward and downward slopes indicates  ω  is near ±90◦. 

With complete data the ideal parameters were chosen as described in Fig. 6.3. 

The resulting convergence ranges for each orbital parameter are displayed in Fig. 6.6. The arrows indicate the true orbital parameters for the Magellan mission at that time. The intervals displayed represent convergence by introducing an erroneous initial condition for one orbital parameter at a time, and using the correct values for the other orbit elements. It was not possible, given time constraints, to completely characterize a six-dimensional convergence region. However, convergence was tested by varying all orbit elements from the true values at once, and results indicated a substantial region of convergence. 

A second approach was to use only the real data, choosing alternative target parameters. We select as parameters positions on the signal consisting of the times of two consecutive zero crossings which approximately defines the period and phasing of the spacecraft orbit and four other points at fixed epochs near the maxima and minima of the Doppler signature. The loss of near diagonal dominance resulted in a slower convergence rate than other cases, but even with the sparse data, convergence was observed over a wide range of initial values (Fig. 6.7). 

A comparison of the convergence obtained by processing a complete data set including simulated data (Fig. 6.7) with the convergence obtained by processing the actual sparse data set (Fig. 6.6) indicates a substantial range of convergence for both. 

However, node    was better determined by the ideal target parameters used with the simulated data. The node is the most difficult of all the orbital elements to determine, because its effect on the signature is indirect and because it changes so little over a few orbital periods. 
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Fig.  6.7  Convergence region for Magellan with real data 

6.8  Summary 

Orbit determination is performed by searching for a set of parameters that minimize the error in the measurements computed from a model or by direct solution of the orbit from a minimum set of observations ignoring the error in the measurements. 

Included in the parameters is the initial spacecraft state or orbit elements. The orbit determined during flight operations is almost exclusively obtained by fitting data to a model and direct orbit determination is seldom used. This is contrary to orbits determined before the invention of the computer when orbit determination was by direct observation. The computer algorithm for searching for a solution is called a data filter. A data filter filters out bad data points. There are many types of data filters that operate on the error of the measurements and the covariance of the estimated parameters, the inverse of the covariance, the square root of the covariance, and the square root of the covariance inverse. Covariance filters may be based on weighted least squares or the Kalman filter algorithm. It can be shown that all of the filter options solve the same problem and get the same result and the performance is more dependent on the implementation than the filter algorithm. 

Planetary spacecraft navigation uses weighted least squares implemented in a square root information filter. When large numbers of parameters are estimated, the data filter formulation requires the inversion of a large matrix. The Kalman filter algorithm is a clever algorithm for matrix inversion. An upper triangular square root covariance is easier to invert than a covariance matrix or at least this is the opinion of square root filter advocates. The SRIF algorithm follows directly from the work of Gauss and has survived to this day without any significant improvement. During the NEAR mission, 600 parameters were estimated every 3 days for over a year with only minor problems in obtaining solutions for the spacecraft orbit, the Eros
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ephemeris, the Eros attitude, gravity harmonics, landmark locations, solar pressure model parameters, and propulsive maneuvers. 

The discreet form of a data filter may be replaced by continuous differential equations for the elements of the covariance matrix. The advantage of the continuous formulation is the elimination of the need to compute a state transition matrix for data processing and mapping of stochastic parameters. Once the filter formulation has been obtained for the covariance filter, it can be readily adapted to information, square root covariance, and square root information filters. A continuous filter was implemented for the NEAR mission but was not used during navigation operations. 

Continuous filtering requires more study before committing to actual mission operations. 

An algorithm for performing direct orbit determination was derived for a spacecraft in orbit about a body. Six points were spotted on the Doppler signature and the orbit that passed through these points was determined by performing a Newton-Raphson search. Since there are six orbit elements, there is only one orbit solution and this orbit can be determined to a higher precision than one may suspect. 

Doppler data is very accurate. Direct orbit determination is an interesting backup procedure, but has yet to be implemented during flight operations. In practice, difficulties in determining orbit solutions have been solved by doing more searches. 

Exercises 

6.1  The Kalman filter algorithm is essentially matrix inversion. Show how a matrix can be inverted by formulating a parameter estimation problem and processing the 

“data” with the Kalman gain matrix and the weighted least square gain matrix. 

6.2  An orbit determination analyst notices a ramp of about 3.5 mHz over 20 min in the Doppler data. This corresponds to an unknown acceleration of 1 .  906 ×

10−10 km / s2. The spacecraft is near Earth and a planet is suspected. In the early days of the space program, planets were sometimes omitted from the equations of motion. What planet is the best guess? It wasn’t Jupiter. 

6.3  A single point smoothed estimate requires an update to the computed covariance at the smoothing epoch. Show how this update may be accomplished by processing six artificial measurements at the smoothing epoch. 

6.4  An orbit determination estimate  X 1 with covariance  P 1 is obtained by processing  data  up to  t 1. Some additional data ( Z 1 ,  2) is obtained from  t 1 to   t 2 and another estimate   X 2 is computed with covariance  P 2. If the new data is weak,  X 2 will be nearly the same as  X 1. In a Monte Carlo program, a sample drawn from  P 2 must nearly equal a sample drawn from  P 1. Thus, we must know the correlation between P 1 and   P 2 in order to draw the correct sample at  t 2. For an optimum filter without stochastic parameters, determine the cross-correlation matrix  P 1 ,  2 =  E(X 1 XT ). 
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6.5  The samples in Exercise 6.3  may be drawn by forming the matrix P

 P =

1  P 1 ,  2

 P 1 ,  2  P 2

and drawing a sample from  P . Drawing a sample from  P  involves computing the eigenvalues and eigenvectors of  P , generating independent normally distributed random variables with sigmas equal to the square root of the eigenvalues and multiplying these random variables by the matrix of eigenvectors. If there are more than two orbit determination estimates in the sequence, the dimension of the   P  matrix may become too large. Determine a sampling algorithm that involves drawing a sample  X 1 from   P 1 and computing a conditional sample  X 2. 

6.6  A spacecraft that is a great distance from Earth is being tracked by the DSN. 

The tracking station is 5000 km off the Earth’s spin axis. The tracking station longitude error is 1.5 m and the spin axis error is 1.0 m. The Earth’s radius and rotation rate are 6150 km and 7 .  26 × 10−5 rad/s, respectively. Three Doppler data points are obtained at station rise, zenith, and station set. Determine the contribution of the station location errors in determining the right ascension and declination of the spacecraft as a function of declination. 

6.7  Given the same data as in Exercise 6.6, determine the error in right ascension and declination of the spacecraft for perfect station location knowledge and a Doppler measurement error of 1.0 mm/s. 

6.8  Repeat Exercise 6.7  for a range measurement error of one meter. 
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Chapter  7 

Measurements  and  Calibrations 

7.1  Introduction 

Instruments include the Deep Space Network (DSN), a solid-state imaging (SSI) device, and a laser altimeter. The DSN tracking stations transmit radio frequency signals to the spacecraft and receive signals via the spacecraft transponder and antenna. The received signals constitute observations of range and Doppler data by conventional methods, and observations of angles by VLBI methods. A SSI allows optical observations of planets, satellites, comets, and asteroids to be made against the background of the fixed stars and direct observation of landmarks. A laser altimeter bounces laser beams off the surface of a body and measures the round-trip light time. 

7.2  Radiometric  Tracking  Data 

The major components of the radio tracking system include the telecommunication subsystem on board the spacecraft, the Deep Space Stations (DSSs) of the Deep Space Network (DSN), and the general-purpose computers of the Space Flight Operations Facility (SFOF) located at the Jet Propulsion Laboratory (JPL) in Pasadena or other control centers. 

The parts of the telecommunications subsystem used for orbit determination are S-band and X-band receivers and coherently driven S- and X-band transmitters. 

They provide a coherent two-way communications link for tracking observables, Doppler, and range. Also, the spacecraft carrier is modulated with special tones for wideband   VLBI. The DSN is a network of tracking stations located around the globe at Goldstone, California; Madrid, Spain; and Canberra, Australia. Each DSS is a complex of a 72-meter antenna and several 34-meter antennae and special-purpose hardware and computers for extracting Doppler, range, and VLBI observables from 
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received spacecraft signals and VLBI from extragalactic radio sources. This data is relayed via high-speed data lines to the control center where software on general-purpose computers process the data to obtain estimates of the spacecraft trajectory and compute propulsive maneuvers for trajectory control. 

 7.2.1  Doppler  Data 

Doppler data is the workhorse of the measurement system. Most missions can be navigated with Doppler data as the only data type input to orbit determination software. Doppler data provides a direct measure of line-of-sight velocity of a spacecraft relative to a tracking antenna. The accuracy of this measurement is about 1 mm/s when the two-way Doppler count is integrated for 1 min. A single Doppler measurement provides no information on position or velocity normal to the line of sight. For those phases of the mission where the spacecraft is being accelerated rapidly, such as near a planetary encounter, a series of Doppler measurements permit a quite accurate complete orbit determination by observing the orbit dynamics signature. When the spacecraft is far from a planet, comet, or asteroid, the gravitational accelerations are not sufficient to observe this signature. 

However, the “velocity parallax” due to the tracking stations rotation with Earth provides a measure of position normal to the line of sight. By measuring the amplitude and phase of the tracking stations signature, the right ascension and cosine of declination may be determined to about 0.25 microradians. Thus, at Jupiter distance, the Earth-relative orbit determination error is about 200 km. 

The functional definition of Doppler data as line-of-sight velocity is useful for analyzing the orbit determination errors that are spacecraft or trajectory dependent but is of little use for analyzing error sources close to the actual measurement such as media or hardware errors. The actual measurement is a count derived from the signal received from the spacecraft and a frequency standard maintained at the tracking station that controls the frequency of the transmitted signal. Thus, a precision model of the Doppler observable includes a model of the signal path as well as hardware elements. In practice, the hardware errors are small compared to media, station location, and spacecraft dynamics errors. 

 7.2.2  Doppler  Measurement  Model 

A model of the Doppler observable has been developed that idealizes some of the hardware error sources yet precisely models the external environment. This model is sufficiently precise for computation of the observable and is essentially the model contained in orbit determination software. Of particular interest are models that are external to the tracking station hardware yet pertain directly to the signal path. 

Media and the effect of general relativity on station clocks are examples. Other
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models, such as station locations and polar motion, though not directly part of the Doppler measurement system, may be treated as measurement calibrations. 

The Doppler measurement is simply an electronic count of the number of cycles from a frequency standard  (Nc)  minus the number of cycles of the spacecraft signal received by the tracking station  (Nr )  and scaled by the count time interval  (Tc). 

Thus, we have 

 Zm =  (Nc −  Nr ) +  n

 Tc

where   n  is the measurement noise which is about 1/10 of a cycle. The received frequency and standard frequency need not be counted individually and differenced but may be added together electronically and the beat frequency counted. This is a detail that is dependent on the hardware implementation. The numerical value of  Zm is the number that is recorded on a tracking data file and used for orbit determination. 

In the orbit determination software we need to obtain a computed value for  Zm as a function of parameters that are available. This function can be derived from the equations of motion and a physical model of the system. We start by developing a frequency standard that can be compared with the frequency of the transmitted and received signals. The frequency standard is obtained by scaling a reference oscillator frequency  fq , obtained from an atomic clock, to equal the transmitted frequency  (ft )  times the spacecraft turnaround ratio (  C 3) which would nominally be the received frequency if there were no spacecraft Doppler shift or additional delay. The turnaround ratio is necessary so that the downlink will not interfere with the uplink. 

 Nc =  C 3  ft Tc

where for S-band Doppler, 

 C 3 = 240

221

 ft = 96  fq

 Tc =  T 3 −  T

 e

3 s

The count time  (Tc)  is defined as the difference between the reception time at the start of the count time interval  (T 3  )  and the reception time at the end of the s

interval  (T 3  ). For a schematic representation of these times, see Fig. 7.1.  In  the e

above equation, all of the parameters are constant or arbitrarily specified including the reception times. The real information content of the measurement is contained within the count  Nr . Thus, in order to obtain a complete equation for the computed measurement, we need an equation for  Nr . It is tempting to differentiate and work in the frequency domain; however, the hardware works with phase which makes it convenient to formulate the measurement in terms of phase, thus bypassing an explicit equation for the received frequency. 
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Fig.  7.1  Doppler observable schematic diagram 

The equation that relates the measurement to the observable parameters is Nr = 240  Nt

221

where 

 Nt =  ft (T 1 −  T )

 e

1 s

 ft = 96  fq

The above equation for  Nr  states that the number of cycles counted at the receiver is equal to the number of cycles transmitted  Nt  times the spacecraft turn around ratio. This equation is true because they are effectively the same cycles. Thus, the information content of the measurement is now contained in the transmit times  T 1 e and   T 1 . Since both of these times are unknown, we need some additional equations s

to tie into the observable quantities. At this point in the development, we have the following equation for the computed measurement: 

 C 3 ft

 Zc =  (T 3 −  T −  T +  T )

 e

3 s

1 e

1 s

 Tc

We need equations for the times in the above equation and these will be developed as functions of ephemeris time  t. We have for the atomic clock at the station 

 T =  t +  F (t, x, y)

The station time  T  is equal to the ephemeris time  t  modified by a small correction due to general relativity and any other parameter that may affect the running of the
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clock. The calibration function  (F )  is a function of  t, the state of the solar system (x), and other constant parameters  (y). Here,  x  and   y  can be thought of as parameter vectors. The relevant times shown in Fig. 7.1  relating to the Doppler measurement are 

 T 1 =  t +  F (t , x, y)

 s

1 s

1 s

 T 1 =  t +  F (t , x, y)

 e

1 e

1 e

 T 3 =  t +  F (t , x, y)

 s

3 s

3 s

 T 3 =  t +  F (t , x, y)

 e

3 e

3 e

Making the above substitutions, the equation for the computed measurement becomes 

 C 3 ft

 Zc =  (t 3 −  t −  t +  t )

 e

3 s

1 e

1 s

 Tc





+

 C 3 ft

 F (t 3  , x, y) −  F (t , x, y) −  F (t , x, y) +  F (t , x, y) e

3 s

1 e

1 s

 Tc

(7.1) 

Since the speed of light is constant in any reference frame, we may obtain by integrating along the light path 

+  ρ 23

 t

 e

3 −  t

=  ρ 12 e

+  tm +  tm

 e

1 e

 c

1 e

3 e

+  ρ 23

 t

 s

3 −  t

=  ρ 12 s

+  tm +  tm

 s

1 s

 c

1 s

3 s

where the  ρ  terms represent the integrated distance along the light path and the  tm terms represent the additional delay caused by media. The distances along the light path are obtained by integrating the equations of motion. 

 t 2 s

 ρ 12 =

¨ ρ dtdt

 s

 t 1 s

 t 3 s

 ρ 23 =

¨ ρ dtdt
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 ρ 12 =

¨ ρ dtdt
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These equations are referred to as the light-time equations and are solved iteratively for the arguments of integration. The media delay is included in the measurement equation by evaluating the calibration function  (G)  at the appropriate times. 

 t m =  G(t, x, y)

 tm =  G(t , x, y)

1

1

 s

 s

 tm =  G(t , x, y)

1

1

 e

 e

 tm =  G(t , x, y)

3

3

 s

 s

 tm =  G(t , x, y)

3

3

 e

 e

The final equation for the computed measurement includes the observable equations as well as clock and media calibration functions. 

+  ρ 23 −  ρ 12 −  ρ 23  C 3 ft

 Z

 e

 s

 s

 c =  ρ 12 e

 c

 Tc





+

 C 3 ft

 F (t 3  , x, y) −  F (t , x, y) −  F (t , x, y) +  F (t , x, y) e

3 s

1 e

1 s

 Tc





+

 C 3 ft

 G(t 3  , x, y) −  G(t , x, y) +  G(t , x, y) −  G(t , x, y) e

3 s

1 e

1 s

 Tc

(7.2) 

 7.2.3  Data  Noise 

Recall that the measurement noise is scaled by the count time  (Tc). 

 Zm =  Nc −  Nr +  n

(7.3) 

 Tc

 Tc

The data noise is approximately 1/10 of the cycle count and is independent of frequency. For a 60 second count time, the data noise is 1.66 mHz. Doppler data is scaled by the count time to make the recorded measurement proportional to velocity. 

The Doppler measurement sensitivity to line-of-sight velocity is given by Z ˙ ρ ≈ 2  C 3 ft ˙ ρ

(7.4) 

 c

At S-band frequency, typical values for the constants in the above equation are
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 C 3 = 240

221

 ft = 96  fq

 fq = 22 × 106 Hz

 c = 299792 .  458 km / s

and for ˙

 ρ = 1 mm / s the measurement gives the well-known result  Z ˙ ρ = 15 .  3 mHz. 

In order to obtain this result, the above equation must be entered with a consistent set of units for each of the parameters. At X-band frequency, 1 mm/s velocity corresponds to about 56 mHz. 

 7.2.4  One-Way  Doppler  Data 

The one-way Doppler data type provides a measure of the change in the line-of-sight range between a DSN station and a spacecraft over some interval of time. The measurement makes use of the Doppler frequency shift of a source when the receiver is moving with respect to the source. When the change in range is divided by the time interval, a measure of the average range rate over the time interval is obtained. 

The source is a radio signal whose frequency is controlled by an oscillator or clock on the spacecraft. The transmitted radio wave is received by a DSN tracking station and the individual cycles are counted. If the spacecraft is stationary with respect to the DSN antenna or there is no net change in range over the count interval, the measured cycle count divided by the time interval will equal the frequency of the radio signal transmitted by the spacecraft. If the spacecraft is moving with respect to the antenna, the difference between the cycle count transmitted and the cycle count received times the wavelength of the transmitted radio signal is a measure of the range change over the count time interval and is the measurement that may be used to determine the orbit of the spacecraft. A problem with one-way Doppler is the frequency of the transmitted radio signal. The frequency control of a radio signal on a spacecraft is marginal at best. The spacecraft does not have access to high-precision atomic clocks to control the frequency and the measurement is accurate to about 1 cm/s even with ultra-stable oscillators on the spacecraft. An atomic clock on the spacecraft is needed and is under development. 

The first step in processing a one-way Doppler data point is to read the first data record from the tracking data file and obtain the time tag, frequency, and the measurement. For the first one-way Doppler point, the count time is subtracted from the recorded time tag to initialize the station time associated with receipt of the Doppler measurement at the start of the Doppler count. For subsequent one-way Doppler points, the start of the Doppler count is exactly the end time of the previous Doppler count. Thus, the first Doppler point requires two solutions of the light-time
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equation and subsequent points require only one. When the continuity is interrupted, the time tags are not separated by the exact count time and the one-way Doppler count is restarted. 

The computation of the observable involves integrating the transmitted and received frequencies over the appropriate time intervals. The transmitted frequency is controlled by the oscillator on the spacecraft which tends to drift. The frequency may be modeled as a polynomial function of time given by 

 ft =  F RQ 0 +  F RQ 1 (t −  tf ) +  F RQ 2 (t −  tf ) 2

where  F RQi  are the coefficients of the polynomial and  tf  is the ephemeris time associated with  F RQ 0.  The  F RQ 0 coefficient is set equal to the frequency obtained from the tracking data file data record and the linear and quadratic coefficients are generally initially set to zero. The time interval for the integration is from the ephemeris time at the spacecraft obtained from the light-time solution at the start of the count (  t 2 s) to the end of the count (  t 2 s). The required integral is given by t 2 e

 f qt =

 ft dt

 t 2 s





 f qt =  F RQ 0 (t 2 s −  t 2 e) +  F RQ 1  (t 2 s −  tf ) 2 −  (t 2 e −  tf ) 2

2





+  F RQ 2  (t 2 s −  tf ) 3 −  (t 2 e −  tf ) 3

3

The received frequency ( 

 fr ) may be modeled as a polynomial function of 

received station time by mapping the function for the transmit time to the Earth and converting to station time. 

 fr =  F RQ 0 +  F RQ 1 (t −  tf ) +  F RQ 2 (t −  tf ) 2

The received radio signal is integrated over the count time interval defined by the time tags. 

 t 3 e

 f qdn =

 fr dt

 t 3 s





 f qdn =  F RQ 0 (t 3 s −  t 3 e) +  F RQ 1  (t 3

2

 s −  tf ) 2 −  (t 3 e −  tf ) 2





+  F RQ 2  (t 3

3

 s −  tf ) 3 −  (t 3 e −  tf ) 3
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The one-way Doppler observable ( Zowd ) is given by 

 Zowd =  C 3 (f qdn −  f qt )

 COU N T

 7.2.5  Three-Way  Doppler  Data 

The three-way Doppler data type provides a measure of the change in the total line-of-sight range from a transmitting DSN station to a spacecraft and back to the transmitting station and a separate receiving station over some interval of time. The measurement makes use of the Doppler frequency shift of a radio signal source that is moving with respect to a receiver. When the change in range is divided by twice the time interval, an approximate measure of the average range rate over the time interval is obtained. If the transmitting station is widely separated from the receiving antenna, the interpretation of the measurement as range rate is ambiguous. The three-way Doppler measurement is essentially the same as the two-way Doppler measurement. The only significant difference is the inclusion of a second separate tracking station on the downlink. The three-way Doppler measurement has a geometrical advantage over conventional two-way single station Doppler which may be attributed to the baseline between the participating tracking stations. However, the frequency standard must be maintained at two stations resulting in some loss of coherence and accuracy. The data processing for three-way Doppler is the same as for two-way Doppler except that a second station is substituted in computing the downlink. 

 7.2.6  Range  Data 

The range data type provides a measure of the range between a DSN station and a spacecraft. The range is inferred from the time it takes a radio signal to travel from the DSN station to the spacecraft and back to the station. The radio signal is transmitted to the spacecraft where it is received and retransmitted back to the tracking station. The round-trip light-time is determined by impressing a pattern, referred to as a range code, on the transmitted carrier and detecting this pattern in the received radio signal. The range code provides time markers in the transmitted and received radio signal that may be measured with high precision by an atomic clock. For orbit determination, a computed value of the measurement is obtained from a mathematical model similar to the model used for Doppler data. 

Range data has essentially the same information content as Doppler data. Range data provides the integral of Doppler data over some time interval. This integrated Doppler can be determined by differencing two range measurements. The integrated Doppler is more accurate than differenced range. However, the range data provides
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the constant of integration. Doppler data alone determines range through the orbit dynamics. For this reason, an orbit determination strategy has evolved to process a single loosely weighted range point for each station pass to initialize the Doppler. 

Processing range and Doppler together at the same weight can result in aliasing. 

Both data types determine the right ascension and declination independently and they may disagree. 

The first step in computing the two-way range observable is to assemble all the input data required by the orbit determination software. These are essentially the same models as used for Doppler data with some minor exceptions. Models of the transmission media, station locations, and the effect of general relativity are virtually the same as used for computing the Doppler observable. One exception is the sign of delays associated with charged particles in the ionosphere and solar plasma. For Doppler data, the charged particles speed up the velocity of the carrier and the delay is subtracted. For range data, the velocity of the carrier is slowed down and the delay is added as for all the other media delays. The magnitude of the velocity increase associated with charged particles for Doppler data is equal to the velocity decrease or delay for range data. 

A range data point is read from the tracking data file to obtain the time tag ( T I MT AG), frequency ( F RQCY ), lowest ranging component ( N LOW ), and the measurement ( ROBS). The light-time equation is solved for the t ransmit and spacecraft times  t 1 and   t 2. The station receive time (  t 3) is equal to  T I MT AG. 

The next step is to integrate the ramp tables for the uplink and downlink. The ramp tables keep the received signals in the center of the carrier bandwidth. Since the range code is modulated on the carrier, the range traveled by the radio signal equals the sum of the wavelengths associated with all the cycles between the spacecraft and the DSN antenna and is equal to the cycle count times the speed of light after correcting for media. The cycle count (  fq ) is obtained by integrating the uplink ramp table from  t 1 to   t 3. The range observable (  Zr ) is computed from the output of the ramp table integration which is scaled by an integer ratio corresponding to the frequency dividers used in the actual hardware implementation to give the measurement in range units (  Ru). For S-band frequency, the conversion to range units is 

 Ru = 1  f q

2

For X-band frequency, the conversion for the 34-m Az-EL high-efficiency antenna (HEF) is 

 Ru = 11  f q

75

and for 34-m Block 5 Receivers (BVR) 

 Ru =

221

 f q

749 × 2
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The range code is a pattern consisting of square waves whose frequency decreases by powers of two. Thus, the range code is repeated at a rate determined by the lowest frequency square wave or range component. This results in an ambiguity in the determination of range that must be resolved by introducing information from other sources, most notably the Doppler measurement which has no ambiguity. The range ambiguity manifests itself as a rollover to zero in the range unit counter. Thus, if the computed number of range units is greater than the ambiguity, the ambiguity is repeatedly subtracted from the computed measurement until it is in the proper range. The range ambiguity is computed from  N LOW , which is obtained from the tracking data file, and is given by 

 AMBI G = 2 (NLOW+6 )

The number of rollovers of the range unit counter is the integer part of Ru

 Na =  I nteger AMBIG

The adjusted value for the range unit count is then 

 Rua =  Ru −  Na AMBI G

At the time the computed observable rolls over, it cannot be determined from the computed range alone whether the actual observable has just rolled over or is about to roll over. This ambiguity may be resolved by inspecting the measurement residual. The measurement residual is simply 

 RESI D =  ROBS −  Rua

where   ROBS  is obtained from the tracking data file. If the absolute value of  ROBS

is greater than 1 .  5 ×  AMBI G  the ambiguity resolution is skipped. Otherwise, the following adjustment is made to the computed observable. 

 If (RESI D >  0 .  5 ×  AMBI G) Zr =  Rua +  AMBI G

 If (RESI D <  0 .  5 ×  AMBI G) Zr =  Rua −  AMBI G

Otherwise,  Zr =  Rua. The residual (RESID) is then recomputed with the new value for   Zr . 

 RESI D =  ROBS −  Zr

This correction to the range measurement can be dangerous. If the ambiguity is set too low and the computed measurement is not known within the ambiguity, the

[image: Image 41]
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range measurement will be in error and the resultant orbit solution can be off by several hundred kilometers. The range and Doppler residuals could be flat making it difficult to detect this error. 

 7.2.7  Very  Long  Baseline  Interferometry 

Plane radio waves from the spacecraft or an extragalactic radio source (EGRS) are received at two tracking stations separated by an intercontinental baseline as shown in Fig. 7.2. As originally implemented, the received signals are clipped, digitized, and recorded on video recorders at each tracking station. Special tones are impressed on the spacecraft transmitted signal to obtain the required bandwidth. The EGRS 

signal is passed through filters to obtain the proper spectral bandwidth. Since the spacecraft signal is considerably stronger than that obtained from an EGRS, the tracking strategy consists of recording an EGRS for about 20 min, slewing the antennas to the spacecraft and recording for 5 min, and if necessary slewing back to the EGRS and recording for another 20 min. 

After recording the radio signals, it is necessary to bring the two recordings together at a central correlator. The tapes may be physically transported to the correlator or played back across high-speed data lines. The function of the correlator is to match the two recordings and determine the delay. Correlation involves shifting, multiplying, and integrating the bit streams together until a maximum is found. The delay is a measure of the angle (between the baseline and the Fig.  7.2  VLBI  Functional implementation
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direction of the plane radio wave). Differencing the spacecraft and EGRS delay effectively provides a measure of their angular separation. Combining observations on an East-West baseline (Goldstone/Madrid) with a North-South baseline (Goldstone/Canberra) gives a precise measure of spacecraft right ascension and declination accurate to about 5 nanoradians relative to the EGRS. As currently implemented, the configuration shown in Fig. 7.2  has been updated and replaced by more sophisticated software and hardware, but the function and accuracy remain about the same as originally implemented. 

 7.2.8  Differential  Wideband  VLBI 

Differential Very Long Baseline Interferometry (   VLBI) consists of near simultaneous interferometric tracking of a spacecraft and an angularly nearby EGRS. 

The accuracy of   VLBI is dependent on the angular separation of the spacecraft and EGRS. Separation angles less than about 10◦ are needed in order to achieve cancelation of errors due to media effects and station location uncertainties. An extensive survey of the sky has developed a radio source catalog. To be useful for VLBI observations, the source flux must be greater than 0.20 Jansky and the source structure should be smaller than about 5 nanoradians in diameter. Another consideration is the variability of source strength. Once identified, precise VLBI measurements of source position are made for inclusion in the source catalog. In the search for radio sources, emphasis is given to the portion of the sky near the ecliptic plane because missions to the planets place spacecraft on trajectories that are within a few degrees of the ecliptic plane. For orbit determination, the difference between the EGRS VLBI measurement and the spacecraft VLBI measurement is processed as a data type. 

 7.2.9  Differential  Narrow-Band  VLBI 

The narrow-band VLBI observable provides a measure of the change in the angle between the wave front of a radio signal from a radio source and the baseline between two tracking stations in the plane of the tracking stations and radio source over an interval of time. Narrow-band VLBI differs from wideband VLBI by the manner of detection of the received radio signals. For a spacecraft, narrow-band VLBI tracks the carrier and determines a count of the number of cycles received over an interval of time referred to as the count time. It is directly analogous to Doppler. A problem with narrow-band VLBI is the existence of a singularity in the measurement at zero declination relative to the Earth’s equator. Therefore, it is generally only used when wideband VLBI cannot be obtained. Low signal level or the absence of tones on the carrier would preclude wideband VLBI. 
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Fig.  7.3  VLBI quasar geometry 

For quasar VLBI, the same algorithm for the light-time solution is used as for Doppler and spacecraft VLBI. The same approach is used for the quasar as for the spacecraft only the equations for  ρ 12,  ρ 23 and their derivatives with respect to time must be modified. Since the quasar is effectively located at infinity, an invariant plane is defined as illustrated in Fig. 7.3  to provide a reference for defining t 2. The invariant plane is defined, for the purpose of illustration, to be 7000 km from the center of the Earth and perpendicular to the direction of the quasar being observed. The actual distance of the invariant plane from the center of the Earth is arbitrary. Plane radio waves from the quasar will cross this invariant plane at the same time which is taken to be the  t 2 time. The modifications necessary for the downlink portion of the light-time algorithm relate to the computation of  ρ 23

and its derivatives. First, the spin vector of the Earth in inertial space is computed. 

For a quasar, some additional signal processing is required. Since the quasar radiates essentially white noise, it is necessary to condition the signal to obtain the monochromatic tone required by narrow-band VLBI. This is accomplished by passing the quasar signal through a pass band filter before recording on the video recorder. The two recordings obtained from the participating stations are correlated which produces a difference in the cycle count over the count time interval. This cycle count provides a measure of the change in delay which is a measure of the change in the angle (  θ ) between the baseline ( B) and the direction of the plane radio wave front as illustrated in Fig. 7.2. For orbit determination, a computed value of the measurement is obtained from a mathematical model similar to the model used for Doppler data. 
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7.3  Radiometric  Data  Calibrations 

The radiometric data observables require high-precision models of the hardware and path length from the DSN tracking stations to the spacecraft as well as the location of the tracking stations relative to the center of Earth. Some of the contributors to the path length are small enough to be ignored or require only approximate models. 

The solar radiation pressure on the planets and the momentum transfer from charged particles impacting the spacecraft can be ignored. Other physical perturbations to the path length are included as calibrations but are not included in the equations of motion of the spacecraft. Examples of calibrations that are included are troposphere and ionosphere and the effect of general relativity on the curvature of space and time. The tectonic plate motion of the continents and solid Earth tides enter as calibrations. For very-high-precision VLBI, the Lorentz contraction of the of the Earth resulting from its velocity relative to the Sun’s barycenter contributes a few centimeters. 

 7.3.1  Clock  Calibration 

According to the special theory of relativity, a clock running in a frame of reference that is moving with respect to an observer’s frame of reference will appear to run slower by the observer. According to the general theory of relativity, a clock running in a gravitational potential field will run slower than a clock removed from the field. 

Therefore, an observer that is stationary with respect to the solar system will see the atomic clocks at the tracking stations running slower than his hypothetical clock. 

The observer is placed stationary with respect to the barycenter of the solar system because the equations of motion are written with respect to this center and placed far away to escape the effect of the gravitational acceleration of the Sun and planets. 

The coordinate time thus defined is called post-Newtonian time (PNT). 

The relationship between PNT and the proper time measured by an atomic clock is given by the metric. For a particle moving in an orbit around the Sun, the metric in isotopic Schwarzschild coordinates is given by, 



2

1 −  U



4  



2 c 2

 ds 2 = 

 c 2 dt 2 − 1 +  U

 dx 2 +  dy 2 +  dz 2

2

2 c 2

1 +  U

2 c 2

Retaining terms to order  c 2, the metric may be approximated by, ds 2 = 1 − 2 U

 c 2 dt 2 −  v 2  dt 2

 c 2
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where 











 dx  2

 dy  2

 dz  2

 v 2 =

+

+

 dt

 dt

 dt

Solving for proper time  (ds 2 =  c 2  dτ  2 )  we obtain dτ

2

=

 v

1 − 2 U −

 dt

 c 2

 c

which may be further approximated by 

 dτ =

 v 2

1 −  μs − 1

−  μe

 dt

 c 2 r

2  c 2

 c 2 re

where the Earth’s gravitational potential is separated from the Sun’s. The atomic clock time  (τ )  is obtained as a function of   t  by integrating the metric in conjunction with the equations of motion. 

 t

 τ =

 ( 1 −  L) dt

 t 0

where 

 v 2

 L =  μ + 1

+  μe

 c 2 r

2  c 2

 c 2  re

The function  L  can be separated into a constant term  (L 0 ), secular terms that grow with time  (Ls), and periodic terms  (Lp). Thus, we have, L =  L 0 +  Ls +  Lp

The constant term  (L 0 )  is obtained by averaging  L  over all time and can be represented  by , 





 μ

 L 0 = 1

+ 1  v 2 +  μe

 c 2

 r

0

0

2

 c 2  re

where   r 0 and   v 0 are constants that give the correct average value for  L 0.  For  the Earth’s orbit about the Sun,  r 0 is approximately the semi-major axis of the orbit and v 0 approximately the mean orbital velocity. Since the orbit is nearly an ellipse, μ = 2 μ −  v 2

 a

 r
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and for  r =  a, 

 L 0 ≈ 3 μ +  μe

2 c 2  a

 c 2  re

The secular terms  Ls  are assumed to be zero because of conservation of energy and momentum. This leaves the periodic terms and these are given by 





 μ

 Lp = 1

−  μ + 1  v 2 − 1  v 2

 c 2

 r

 r

0

0

2

2

and 

 t





 μ

 τ =  t +

− L 0 − 1

−  μ + 1  v 2 − 1  v 20  dt

(7.5) 
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An approximate analytic formula for the periodic terms, derived by Brooks Thomas, is given by 

 τ ≈  t −  L 0  (t −  t 0 ) − 2  (˙r s · r s ) − 1  (˙r c · r b (˙r c · r e ) − 1  (˙r c · r s ) c 2

 b

 b

 c 2

 b

 e ) − 1

 c 2

 e

 b

 c 2

 s

 b

 μ

−

 j

 (˙r s · r s ) −

 μsa

 (˙r s · r s

 c 2 (μ

 j

 j

 sa

 sa )

(7.6) 

 j +  μs )

 c 2 (μsa +  μs)

In the notation used above, the position of the body identified by the subscript is with respect to the body identified by the superscript, where  c = the solar system barycenter,  s = the Sun,  b = the Earth- Moon barycenter,  e = the Earth,  j = Jupiter, and  sa = Saturn. 

The constant term ( 

 L 0) is the major contributor to the difference between 

ephemeris time and solar system barycenter time. If all the planets were in circular orbits and the tracking station was located at the Earth barycenter, we would be done. The periodic terms account for the eccentricity of the planet orbits, the rotation of Earth on its axis, and station locations. The velocity of a tracking station relative to the Sun’s barycenter is obtained by projecting the orbits of the Sun, Earth barycenter, Earth, and the tracking station on to the line between Earth and Sun. The orbit of the tracking station about the Earth is the same as the orbit of the Earth’s center about the tracking station. Only Jupiter and Saturn contribute significantly to the clock rate or length of the second due to their perturbation of the sun. The effect of Jupiter and Saturn on the Earth’s orbit is a tidal acceleration and can be ignored. 

The factor of two in the third term of Eq. (11.7) is necessary because the solar gravity potential doubles the effect of velocity. There is no periodic term associated with the Earth’s gravitational potential because the tracking station is stationary relative to Earth. 
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 7.3.2  Troposphere  Calibration 

A radio signal passing through the Earth’s troposphere will be delayed depending on the dielectric constant of the media and path length. 

 t t =  Gt (t, x, y)

The troposphere delay has been conveniently separated into wet and dry components that are functions of delay at zenith  (z)  and elevation angle  (γ ). 

 Gt (t, x, y) =  Rd +  Rw

The first term in the above equation represents the nonlinearity of the dry troposphere mapping function and the second term represents the variation in the dry troposphere z height due to local weather. The next two terms are the same quantities for the wet troposphere. The troposphere wet and dry mapping functions are tabulated as delay as a function of spacecraft elevation angle. Empirical formulas for these mapping functions are given by, 

 Rd =

 zd

sin  γ +

 Ad

 Bd + tan  γ

 Rw =

 zw

sin  γ +

 Aw

 Bw + tan  γ

where 

sin  γ = cos  δ  cos  λ  cos  φ + sin  λ  cos  φ + sin  φ  sin  δ

 λ =  ωet +  λs −  α

The dry component of the troposphere  (Rd )  is a function of the delay at zenith  (zd ), the elevation angle  (γ ), and constants  Ad  and   Bd  that are provided to model the bending at low elevation angles. The wet component  (Rw)  is similarly defined. The elevation angle  (γ )  is computed as a function of the latitude of the tracking station (φ), the declination of the spacecraft  (δ), and the local hour angle with respect to the spacecraft  (λ). The local hour angle is zero when the spacecraft is at zenith and is a function of the Greenwich hour angle  (ωet), the station longitude  (λs), and the right ascension of the spacecraft  (α). 

The troposphere dry component is assumed to be stable and most of the variability is associated with the wet component. The variation in the wet component may be modeled as a periodic variation in the z height  (zw). The hourly variation in the wet component of the troposphere appears as a random walk that would require
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a high-order Fourier series to represent analytically. The variation may be modeled as a simple sinusoid with amplitude and frequency selected to be representative of the short-term variation. 

 zw =  zw +  z

sin (ω

 t )

0

 w 1

 w 1

 7.3.3  Ionosphere  Calibration 

A radio signal passing through the ionosphere experiences a reduction in group velocity and an equal increase in phase velocity that is a function of the frequency and the number of charged particles along the signal path. The Doppler measurement is dependent on the phase velocity and the advance of the signal is functionally defined by 

 t i =  Gi(t, x, y)

An empirical formula for the effect of the ionosphere on the Doppler measurement is given by, 

−

 n

1 

 Gi =

 k Cj Xj

 c

 j =0





 t −  ta

 X = 2

− 1

 tb −  ta

where   Cj  are the coefficients of a polonomial which is a function of time  (t)  from ta  to   tb  normalized over the interval of − 1 to + 1 and k is a proportionality factor. 

 7.3.4  Earth  Platform 

The accuracy of radio metric data is strongly dependent on the calibration of the Earth as an observational platform. It is essential to know the location of each tracking station on the Earth’s crust to within several centimeters and the location of the pole and prime meridian in inertial space to the same accuracy. The locations of the DSN stations are computed in a geocentric cylindrical coordinate system. 

Before VLBI data was available, solutions for the coordinates were obtained from two-way Doppler tracking of spacecraft encounters with the planets. Included were the Mariner and Viking class spacecraft encounters with the inner planets and Voyager and Pioneer class spacecraft encounters with Jupiter and Saturn. As each spacecraft encounters one of the planets, the Doppler tracking provides a means
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of precisely estimating the spacecraft orbit relative to the encountered planet and also the coordinates of the tracking stations. For each planetary encounter data arc, a strong solution for the tracking stations spin radii and longitudes are obtained. 

A station location data base was developed. Since there is no information content in the Doppler tracking on the height of the station above the Earth’s equator, the station location data base was augmented with survey data. At the current time, station locations are obtained from VLBI observations of quasars and the accuracy is less than a meter in all coordinates. 

 7.3.5  Polar  Motion 

The Earth is slowing down irregularly. In addition, the Earth’s principal axis wobbles about its spin axis with an amplitude slowly varying between zero and ten meters. Timing and polar motion corrections are determined astronomically and provided to the orbit determination software by the Earth Orientation Parameters file. 

 7.3.6  Continental  Drift 

The continents are slowly drifting on the Earth’s magma at a rate of about 3 cm per year. Over a period of 120 million years South America drifted away from Africa and formed the South Atlantic Ocean. The continents are still drifting at about the same rate and carrying along the tracking stations. The rates are tabulated below for each tracking station complex in Earth body fixed Cartesian coordinates from the initial epoch of January 1, 2003. These rates are used to adjust the tracking station coordinates. 

Continental drift 

DSN station  x-cm/yr 

y-cm/yr 

z-cm/yr 

Goldstone 

−1 .  80

0 .  65

−0 .  38 

Madrid

−3 .  35

−0 .  41

3 .  92 

Australia 

−1 .  00

2 .  42

1 .  56 

 7.3.7  Solid  Earth  Tide 

As the Earth rotates on its axis the tidal forces from the Sun and Moon raise and lower the oceans resulting in the tides everyone is familiar with. The Earth’s crust and magma are also subjected to the same tidal forces which may be computed by
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taking the gradient of Eq. (1.9). Every rock or mountain on the planet is stretched a small amount by these forces. The result is a raising and lowering of the tracking stations every 12 h. The amplitude of the displacement of tracking stations from their nominal locations can be as large as 30 cm. A model of solid Earth tides is used to adjust the station location coordinates. 

 7.3.8  Plane  Wave  Propagation  Through  Ionized  Gas 

The following analysis demonstrates that the phase velocity of the Doppler signal exceeds the speed of light by the same amount the range signal is delayed. We first consider the phase velocity associated with Doppler data. 

The propagation of a plane wave through an ionized gas such as the Sun’s corona is described by Maxwell’s equations, specifically the laws of Faraday and Ampere in vector form: 

∇×

 ∂H

E = − μ 0

(7.7) 

 ∂t

∇×

 ∂E

H =   0

+ J

(7.8) 

 ∂t

If we assume a plane transverse wave in the z direction with associated electrical field  E  = E(z,t)i, magnetic field H  = H(z,t)j, and current density J  = J(z,t)i, Eqs. (7.7)–(7.8) reduce to the one-dimensional wave equation in E. The constants μ 0 and    0 are respectively the permeability and permittivity of free space. 

 ∂ 2 E =

 ∂ 2 E

 ∂J

 μ 0  0

+  μ 0

(7.9) 

 ∂z 2

 ∂t  2

 ∂t

Equations describing the motion of free electrons in a time-varying electric field are also needed. The force ( F) on an electron in an electric field ( E) is proportional to the charge ( e) and equal to the mass of the electron times its acceleration in the direction of ( F): 

 d 2r

F =  eE =  m

(7.10) 

 dt 2

The current density is the electron charge ( e) times the electron flux, or the number of electrons that pass through a given area per unit time. The electron flux is the product of the electron density ( N ) and the velocity of the electrons. 

 dr

J =  Ne

(7.11)

 dt

296

7

Measurements and Calibrations

For a plane transverse wave these equations for the electron reduce to d 2 r

 m

=  eE

 dt 2

 dr

 J =  Ne dt

which when substituted into Eq. (7.9)  result in the following wave equation: 





 ∂ 2 E =

 ∂ 2 E

 μ 0  0

+  Ne 2  E

(7.12) 

 ∂z 2

 ∂t  2

 m 0

A solution to this one-dimensional wave equation for an ionized atmosphere is E =  E 0 sin [ ωt −  kz]

(7.13) 

from which we obtain 





− e

 r =

 E

 ω 2 m





− Ne 2  dE

 J =

 ω 2 m

 dt

where the frequency is  ω/ 2 π  and   k  is the so-called wave number which is obtained by substituting the solution into the one-dimensional wave equation given above. If we define  ω 2 =  Ne 2

 p

we have 

 m 0









 ω 2 p

 k 2 =  ω 2 μ 0  0 1 −  Ne 2

=  ω 2 μ 0  0 1 −

(7.14) 

 ω 2 m 0

 ω 2

The phase velocity of the wave is defined by the locus of points along  z  where   Ez  is constant. Thus, we have, 

 ωt −  kz = constant

which implies 

 v =  dz =  ω

 dt

 k

When  N = 0 we have the velocity of an electromagnetic wave in a vacuum and
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 v =  c =

1

√ μ 0  0

The wavelength  (λ)  is related to the wave number  (k), frequency  (f ), and phase velocity  (v)  by the following equations: 

 λ =  v = 2 πv = 2 π

 f

 ω

 k

The phase velocity of the wave is thus, 

 v =

 c





(7.15) 

1

 ω 2

2

1 −  p

 ω 2

The phase velocity in a dispersive medium is always greater than the speed of light. This apparent contradiction of special relativity is possible because the radio signal phase velocity does not describe the actual velocity of mass or energy, but rather the velocity of a pattern, or mathematical entity. 

Since it is critical to our analysis that  ωp/ω  be less than 1.0, it is helpful to estimate it at this time. For this it is necessary to estimate N, the electron density in the plasma, which depends on the distance of the signal path from the Sun. Because the NEAR spacecraft is eventually occulted by the Sun, the closest approach distances of the signal path go to 0, but at less than 18 solar radii, the signal was degraded beyond usability. At 18 solar radii, previous estimates have placed N on the order of 10 3 electrons per cubic centimeter, which yields an  ωp of less than 1.0 MH. For an X-band signal,  ω = 2 π f  where   f  is approximately 8.6 GHZ. Thus,  (ω 2 p/ω 2 )  is small, on the order of 10 −8. Since N decreases with increasing distance from the Sun, this is an upper bound. The data analyzed in this paper includes signal paths with closest approach distances from 40 to 18 solar radii, taken over approximately 1 week. 

We next consider the delay in the group velocity, which is associated with the range data. The concept of group velocity arises when we have electromagnetic waves that are nearly the same frequency traveling in the same direction through the same medium. Because linearity holds for electromagnetic waves, any electromagnetic wave may be regarded as the sum of its individual frequency components. 

Consider the case of two electromagnetic waves that differ in frequency and wave number by an infinitesimal amount  δω  and   δk, respectively. When added together we obtain the wave packets in Fig. 7.4. 

The resultant wave is the higher-frequency carrier that moves with phase velocity v  as described above and the wave packets formed by the beating of the two nearly equal in frequency waves that move at a different group velocity ( u). Doppler tracking data is associated with the phase velocity and range data is associated with the group velocity. In a vacuum, the phase and group velocities are equal to the
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Fig.  7.4  Wave front 
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speed of light. The two electromagnetic waves alluded to above are given by ψ 1 = sin (ωt −  kz)

 ψ 2 = sin [ (ω +  δω)t −  (k +  δk)z]

We must perturb both the frequency and wave number in order to get the correct velocity which is controlled by the medium. The resultant wave is obtained by adding. After some trigonometric substitutions we have 













 δωt −  δkz

 ψ =  ψ 1 +  ψ 2 = 2 cos

sin

 ω +  δω t −  k +  δk z

(7.16) 

2

2

2

The carrier is given by the sine term and the modulation of the carrier is given by the cosine term. In a dispersive medium, the carrier wave moves at a velocity greater than the speed of light as shown above and the wave packet described by the cosine term moves at a velocity slower than the speed of light. The velocity of the wave packet is obtained in the same manner as described above for the carrier. The locus of points along z where the amplitude of the wave packet is constant is given by, δωt −  δkz = constant

2

The group velocity is thus 

 u =  dz =  δω =  dω

 dt

 δk

 dk

Differentiating Eq. (7.12)  for the wave number we get the desired group velocity. 
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Because the group and phase velocities are close to the speed of light,  ωp  is small and we may make the following approximations: 





 ω 2 p

 v ≈  c

1 +

(7.17) 

2 ω 2





 ω 2 p

 u ≈  c

1 −

(7.18) 

2 ω 2

The first is accomplished by expanding v in a geometric series, completing the square of the first two terms, and neglecting terms of fourth order and higher. The second approximation is obtained by completing the square and neglecting higher-order terms. We obtain the result that the delay in the range measurement associated with charged particles is approximately equal to the advance in the Doppler measurement, and that these two measurements, when obtained simultaneously, may be used to calibrate the effect of charged particles on the total path length. 

 7.3.9  Solar  Plasma  Time  Delay 

The range delay associated with a plane wave passing through the Sun’s corona is obtained by integrating the group velocity of propagation along the path length. 
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The electron density varies approximately as the inverse square of the distance from the Sun. 

 N (z) =  N 0 r 2 s =  N 0 r 2 s r 2

 R 2 +  z 2

 R  is the perpendicular distance from the center of the Sun to the light path or the distance of closest approach to the Sun. The constant  N 0 is the effective electron density at the surface of the Sun and  rs  is the radius of the Sun. Carrying out the integration, we have for the delay, 
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The time advance of the Doppler signal, which is associated with the phase velocity, is the same equation as above except with a minus sign. 
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7.4  Optical  Data 

Optical imaging is a powerful data type for determining the position of a spacecraft relative to a nearby central body. This method involves imaging the target body on a star background. For this purpose, the solid-state imager (SSI) science instrument on board the spacecraft is well suited as a precision optical measurement instrument for navigation. The use of science imaging instruments for navigation was developed during the Mariner 6, 7, and 9 missions and provided prime navigation measurements for the Viking, Voyager, and many other missions. The SSI instrument was developed specifically for Galileo, replacing standard vidicon instruments used on previous missions. The principal attributes of the SSI instrument affecting navigation are its low image distortion and high sensitivity. The low distortion virtually eliminates the need for special calibration and the high sensitivity minimizes the exposure time required for imaging dim stars. For optical navigation, the imaged satellite lit limb may be fit and the center determined to better than one pixel. The star background may also be determined to less than one pixel even though the star images may spread over several pixels. From the focal length and pixel spacing, the angular accuracy may be computed and is about 10 microradians. For navigation analysis there are some systematic errors associated with SSI imaging that must be accounted for. These include shape and albedo variations that cause the center of brightness to not coincide with the center of mass. Image distortion also may impair satellite center determination. For conservatism, an optical center finding error of 1% of the satellite radius is assumed. 

Optical data provides a measure of the direction of a vector from a spacecraft to a point on a target body. The target body may be a planet, asteroid, comet, or satellite of one of these bodies. When combined with a data type that provides a measure of distance, such as range, a complete three-dimensional fix of the spacecraft may be inferred from the data providing a determination of the spacecraft orbit and physical parameters describing the central body gravity and inertial properties. 

There are many variations of optical measurement systems that are used for orbit determination. The most accurate optical measurement systems focus on a specific point on the target body. This point may be the center of mass or a point associated with a feature on the surface of the body. The feature may be a crater or the intersection of fracture lines. The point of interest for a crater is the geometric center of the rim and is referred to as a landmark. Tracking the center of mass of primary body satellites, as was done for the Mariner, Viking, Voyager, Galileo, and Cassini missions, provided sufficient accuracy for these missions, but the error associated with determining the center of mass from limb data limits the accuracy obtainable. Landmark tracking accuracy is limited only by the resolution of the camera. For this reason landmark tracking was used for the NEAR mission where high-accuracy optical and radio metric navigation was required. 

7.5 Altimetry
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 7.4.1  Optical  Data  Processing 

The raw data required for computing the optical observable consists of a sequence of images of the target body, the shutter time of each image, the spacecraft, and camera attitude at the shutter time and ancillary data such as camera parameters and a star catalog. The raw data is processed to extract certain geometric parameters that are written to a picture sequence file. The parameters on the picture sequence file define an interface between navigation and measurement data preparation. The detailed data processing required to produce the picture sequence file is analogous to the data processing required for Doppler calibration or VLBI correlation. 

The picture sequence file contains a header with the camera focal length, pixel and line spacing, the focal plane alignment matrix, camera distortion parameters, and the boresight offset from the camera axis. The header parameters are obtained from preflight and inflight test images. A sequence of optical image data records are written for each image. Each optical image data record contains the image number, the image shutter time or time tag, the spacecraft attitude, filter setting, exposure time, and a sequence of records for each landmark identified on the image. 

The landmark records contain a unique landmark number and the measurement which is the pixel and line location of the landmark in the image. The detection, identification, and numbering of landmarks may be performed visually by an optical navigation analyst or by a computer algorithm without human intervention. In addition to the picture sequence file, a separate landmark location file is generated containing a priori landmark locations for each landmark. The line and pixel coordinates of landmarks that appear near the limb in an image are not observed very well. The elevation angle of the spacecraft above the horizon when viewed from the landmark may be used as a test to reject data points. 

7.5  Altimetry 

Altimetry provides a measure of the magnitude of a vector from a spacecraft to a target body that may be a planet, asteroid, comet, or a satellite of one of these bodies. The altimetry measurement is the distance or slant range from the spacecraft to a point on the surface of the target body which is inferred from the time that it takes an electromagnetic wave to traverse the distance. The electromagnetic wave is transmitted and the reflected signal received by the altimeter instrument and the slant range is determined by multiplying the signal delay time by the speed of light. 

The altimeter may transmit and receive a radar signal or laser beam. Radar-based altimeters are limited by range and have only been used for landing spacecraft on a target body such as the Surveyor spacecraft on the Moon or the Viking spacecraft on Mars. Laser altimeters can operate out to several hundred kilometers and are thus useful for measurements in orbit about a target body. When combined with optical imaging of landmarks, altimetry provides a complete three-dimensional fix of the
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spacecraft orbit. However, since the accuracy is limited by the error in determining the surface of the target body, laser altimetry is only marginally useful for ground-based spacecraft orbit determination. In the future, laser altimetry may be used for medium accuracy autonomous navigation since the measurement may be readily obtained on board the spacecraft. An important application of laser altimetry is in determining the shape of a target body given the orbit of the spacecraft. This application was used on the NEAR mission to determine a high-precision shape model of Eros that was used to support landing operations. 

 7.5.1  Altimetry  Data  Measurement  Model 

The observed vector from the spacecraft to the target body surface is referenced to a coordinate system that is fixed to the instrument platform that is movable if the instruments are mounted on a scan platform or is fixed to the spacecraft body. The  z axis is in the direction of the nominal boresight of the instruments,  y  is to the right, and   x  is down. The definition of down is arbitrary, but is generally taken to be in the direction of decreasing declination on the star background. The transformation matrix ( T C) describes the pointing direction which is generally taken to b e the camera boresight. 

The altimeter may be mounted on the spacecraft at a location that may be as far away as a meter from the spacecraft center of gravity. The altimeter position must be corrected for this offset and 

 r cg = [ T C] T r cg

where  r cg  is the location of the altimeter focal plane relative to the spacecraft center of gravity in instrument platform coordinates. 

The altimeter boresight is offset slightly from the instrument axes as defined by two angles  ψa  and   χa. The vector that defines the altimeter boresight is given by, ˆB a = [cos  χa  sin  ψa,  sin  χa,  cos  χa  cos  ψa] T

The vector from the spacecraft to the surface is computed as illustrated in Fig. 7.5. 

The vector from the center of mass of the target body to the altimeter in target body fixed coordinates is given by, 

r b = [ T (α, δ, W)] (r +  r cg) where [ T (α, δ, W )] is the transformation matrix from J2000 coordinates to the pole and prime meridian of the target body as defined by Fig. 1.3. The unit vector  ˆ ρ  is the altimeter boresight direction in target body fixed coordinates given by, ˆ ρ = [ T (α, δ, W)][ T C] T  ˆB b
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Fig.  7.5  Altimetry observable iteration geometry 

An initial guess is needed for the magnitude of  ρ  and this is taken to be ρi =  r −  rao

where   rao  is the average radii of the target body. The first step of the iteration for the observation vector  ρ  is to compute the vector from the center of mass of the target body to the surface. 

r ai = r b +  ρi  ˆ ρ

A test is performed to determine if r ai  is on the surface of the target body. The surface of the target body is obtained from a harmonic expansion of Legendre polynomials and associated functions as a function of latitude and longitude. 

∞

 n



 ra =

 P m

 n ( sin  φa ){ Anm  cos  mλa +  Bnm  sin  mλa }

 n=0  m=0

where   λa  and   φa  are the longitude and latitude at the solution point and  Anm  and Bnm  are the harmonic coefficients. The longitude and latitude of the surface point are given by 
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respectively and the harmonic coefficients ( Anm  and  Bnm) are input constant parameters. The error in computing the surface radius vector is 

 ra =  rai −  ra

If | ra| is less than an input tolerance, nominally 10−7 km, convergence is obtained and the observable is computed from  ρi. If convergence is not obtained, then  ρ  is lengthened or shortened by  ρ  as shown in Fig. 7.5. In order to compute  ρ,   a model of the target body surface is needed. This model consists of a vector to a point on the surface and the local tangent plane and r a  is the vector to the point on the surface given by 

r a = [ ra  cos  φa  cos  λa, ra  cos  φa  sin  λa, ra  sin  φa] T

The surface normal vector may be computed by taking the gradient of the surface defined by, 
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where the surface of interest corresponds to  S = 0. The normal vector is then given by 
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The change in the slant range (  ρ) may be computed by application of the law of sines to the small triangle shown in Fig. 7.5  whose sides are the extension of the r a vector (  ra), the extension of the  ρ  vector (  ρ), and the intersection of the local tangent plane with the plane containing r a,  ρ, and r b. The intersection of the local tangent plane ( t i) with the plane of Fig. 7.5  is given by t i =  (r b × r a) ×S

The angle opposite the  ρ  side of the triangle is 





t i · r a

 αρ = arccos

 ti ra

and the angle opposite the  ra  side of the triangle is 





t i ·  ρ

 αr = arccos

 a

 ti ρ

The lengthening or shortening of the  ρ  vector is then obtained from the law of sines and 

 ρ = sin  αρ ra

sin  αra

 ρi+1 =  ρi +  ρ

Using   ρi,   a   new  ρi+1 is computed and repeated until convergence is obtained. If convergence is not obtained after several iterations, the data point is rejected. Since two solutions are possible, a check is made to determine if the surface intersection point is in view from the spacecraft. The elevation angle (  E) of the spacecraft above the horizon when viewed from the surface may be used as a test. 





 ρ ·S

 E = sin−1 −  ρ ∇ S

If  E <  0, the solution is rejected and the range is shortened by ρi+1 =  ρi − 2 ra  sin  E

After several more iterations, the data point is rejected if a valid solution has not been found. Once a valid solution has been found, the observable is computed. 
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 7.5.2  Altimetry  Variational  Partial  Derivatives 

The partial derivatives of the altimetry observable with respect to state and constant parameters are given by, 





 ∂Za

=  ∂Za ∂ρ ∂r b

 ∂r

+  ∂ρ

 ∂(r0 , ˙r0 , q)

 ∂ρ

 ∂r b ∂r  ∂(r0 , ˙r0 , q)

 ∂q

where 

 ∂Za = 1

 ∂ρ

 ∂r b = [ T (α,δ,W)]

 ∂r

and the partial derivative of  ρ  with respect to the target body fixed spacecraft state ( r b) may be determined by geometrical construction. The observational geometry is shown in Fig. 7.6  where the parallelogram formed by the vector  ρ  and the spacecraft position variation  δr b  and the vector constructions are all in the plane of Fig. 7.6. 

The normal vector S and target body center are not necessarily in the plane of the figure. The spacecraft position variation vector is projected on to the normal vector and 

S ·  δr b

 δ∇ S = ∇ S

The extension of the observation vector (  δρ), projected on to the normal vector, has the same magnitude as  δ∇ S. 

− ρ ·S

 δ∇ S =  δρ ρ ∇ S

Solving for  δρ  gives, 

S ·  δr b

 δρ = − ρ ρ ·S

The required partial derivative may be obtained by taking the limit as  δr b  approaches zero. In this rudimentary application of differential geometry, the parallelograms and triangles with sides defined by variational symbols shrink to a point at the end of the r a  vector and 

 ∂ρ

S

= − ρ

 ∂r b

 ρ ·S
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Fig.  7.6  Altimetry observable variation geometry 

7.6  Summary 

The measurements that are used for orbit determination may be separated into several broad categories. These include radiometric tracking data from the DSN 

and optical imaging and altimetry from the spacecraft. Radiometric measurements include Doppler, range, and VLBI. Orbit determination involves a three-dimensional determination of the spacecraft position and velocity. Radiometric data is one dimensional and the process of extracting a measurement from instrumentation is cleanly separated from navigation. Navigation instrumentation can be designed in a laboratory with little knowledge of its ultimate use. Therefore, navigators are primarily concerned with the physical quantity being measured and a model of the measurement that can be programmed into orbit determination software and need not be concerned with the details of instrument design. Electrical engineers design the instrumentation and navigators navigate. The external environment has an effect on measurements. If the motion of the spacecraft is not perturbed, these environmental disturbances are modeled and a correction to the measurement is computed by the orbit determination software. Examples are the troposphere, ionosphere, solar plasma, and polar motion for radiometric data, aberration for optical data, and a shape model of the target body for altimetry. 
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Chapter  8 

Navigation  Operations 

8.1  Introduction 

Navigation operations are synonymous with exploration and it is performed by engineers and explorers or ordinary people when they get in their car, turn on the GPS, and drive to the mall. The GPS navigation system requires a GPS receiver and a map. GPS alone does not navigate. Spacecraft navigation to the bodies in the solar system is a bit more complicated than driving to the mall. The closest analogy to planetary spacecraft navigation is the navigation performed on eighteenth-century and earlier sailing ships. The navigator knows his home port and has a vague idea of the location of his destination. Once the ship sails beyond the horizon, its location is not known very well. The major problem is determining time. In order to determine longitude, the navigator must know the time in his home port where 12:00 PM 

is high noon. If high noon occurs at 1:00 PM he knows he is about 700 miles West of his home port depending on his latitude that can be determined from the elevation of stars above the horizon. Magellan carried 18-h glasses for his voyage around the world. In determining a route, he must have some knowledge of wind and ocean currents. For planetary navigation, the navigator knows his home port, namely, the Earth. He has a vague idea of his destination. If his destination is a planet, he can go out at night and look up and see his destination. The problem of determining where the spacecraft is located and plotting a route is shared with sailors of antiquity. Determination of time with atomic clocks enables the navigator to determine range to the spacecraft and is the key to planetary orbit determination. 

The major advantage of planetary spacecraft navigators over sailors of antiquity is that they perform navigation in a comfortable flight operations facility and do not die  if  they  make  a  mis  take. 
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8.2  Navigation  System 

The navigation system is a collection of hardware, instrumentation, and computer software that enable navigation. For planetary spacecraft navigation, the navigation system is comprised of a spacecraft, the Deep Space Network (DSN), and procedures that are encoded in software that resides on the spacecraft or on the ground at a space flight operations facility. The spacecraft hardware includes transponders, imagers, an attitude control system, and a propulsion system. The DSN is comprised of tracking stations located at Goldstone, California; Madrid, Spain; and Canberra, Australia, and the Space Flight Operations Facility (SFOF) located at the Jet Propulsion Laboratory (JPL) and at other locations depending on the mission. The SFOF houses the software required to extract and format the data and the navigation team required to operate the navigation software. For some missions the navigation team and software may be located elsewhere. 

 8.2.1  Deep  Space  Network 

The tracking stations that comprise the DSN are in a complex containing a 72-meter antenna, several 34-meter antennae and special-purpose hardware end computers for extracting Doppler, range, and VLBI observables from received spacecraft signals and VLBI from extragalactic radio sources. This data is relayed via high-speed data lines to the SFOF. Propulsive maneuver commands are sent to a DSS via the same high-speed data lines and then transmitted to the spacecraft. 

 8.2.2  Spacecraft 

The spacecraft is designed to enable acquisition of data by the DSN and provide propulsive maneuvers to enable the spacecraft to arrive at the target body. The hardware systems on board the spacecraft include transmitters and receivers with a Doppler transponder, imaging and altimetry instruments, a telecommunications system for downloading images and receiving maneuver commands, an attitude control system for pointing cameras and propulsive motors in the desired direction, and a propulsion system for changing the flight path of the spacecraft. 

8.3  Orbit  Determination 

The launch vehicle injects the spacecraft on a trajectory that goes from the launch site to the target body. The initial problem for planetary spacecraft navigation is to find the spacecraft after launch. The DSN searches the sky in the direction

8.3 Orbit Determination
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Fig.  8.1  Navigation software 

of the predicted launch trajectory. This is a three-dimensional search in tracking station pointing angles and carrier frequency. Near the Earth the search is difficult; however, as the spacecraft departs the Earth’s gravity the search is easier. The spacecraft location in the sky and carrier frequency becomes well defined provided the spacecraft is headed toward the target planet. Once the spacecraft is located, orbit determination software determines the trajectory. A block diagram of the orbit determination software is shown in Fig. 8.1. In the example used here, the Near Earth Asteroid Rendezvous software configuration is described. The rectangular blocks are files that need to be created. The circles are the programs that create the files. Prior to launch, state vectors for the spacecraft and planets are obtained and included in a file called STATES. The file MODELS contains the Earth’s gravity model, propulsive maneuvers, station locations, Earth orientation, solid Earth tides, tectonic plate motion, and landmark locations. The troposphere, ionosphere, and solar plasma are contained in the MEDIA file. 

The first file to arrive at the SFOF after launch is the tracking data file (DATA) containing Doppler and range data. The orbit determination program outputs a SRIF 

matrix and files of spacecraft ephemeris, central body ephemeris, and central body attitude consisting of segments of Chebyshev polynomials. The program SOLVE 

inverts the SRIF along with the measurement residuals to obtain corrections for
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all the estimated parameters. The corrected estimated parameters are fed back to ODP and another solution is attempted. When convergence is achieved, the program UPDATE is executed to provide files that may be exported to the science team and others outside of navigation. 

 8.3.1  Orbit  Determination  Strategy 

Orbit determination strategy involves selecting the estimated parameters, acquiring the necessary data, and assigning error uncertainties to the measurements and a priori estimated parameters and analysis of the residual errors. The estimated parameters include spacecraft state, central body state, central body Euler angles and spin rates, gravity coefficients, propulsive maneuvers, landmark locations, solar pressure model parameters, and other parameters that are needed for trajectory propagation. 

The amount of data to be processed by the orbit determination filter, or the length of the data arc, must also be specified. A given orbit determination run presents the analyst with many options. One strategy is to start with a short data arc and obtain convergence. Then the data arc is lengthened, admitting more data, until a satisfactory solution is obtained. If the data arc is too long, the filter may choke on too much data. Unmodeled errors will eventually destroy the validity of the solution and computed statistics. Introduction of stochastic noise in the form of a random walk may help. The stochastic parameters cause the filter to deweight earlier data and thus the filter tends to forget and rely on more recent data. A problem with stochastic parameters is they tend to falsely smooth out the residual errors and introduce instability. 

 8.3.2  Multiple  Data  Types 

The problem of orbit determination is exacerbated when multiple data types are processed. For a single data type, which would generally be Doppler only data, the solution is not dependent on the data weight provided all the measurements are given equal weight and there are no stochastic parameters. When multiple data types are processed the solution becomes dependent on relative weight. For example, when range and optical data are processed with Doppler data, the solution will depend on how the optical data is weighted compared to the Doppler data. For planetary approach, the optical and Doppler determine components of the spacecraft state that are orthogonal and a natural separation is obtained. The optical data determines the coordinates in the B-plane and Doppler data determines flight time and the approach velocity vector. Range data is redundant to Doppler data but provides the constant of integration. In orbit the separation is less apparent. For the NEAR 

mission optical data provided the orientation of the orbit in space and Doppler data
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provided a measure of the distance traveled by the spacecraft. These measurements were complementary and provided about 1 m in orbit measurement accuracy. This was important for orbit prediction. It was necessary to predict the orbit 10 days into the future to an accuracy of about 100 m which required orbit determination accuracy of about 1 m. This accuracy could be achieved relative to the center of mass of Eros even though the location of landmarks on the surface was known only to about 50 m. In computing the optical observable, the offset of the camera from the center of mass of the spacecraft was included. 

 8.3.3  Simulated  Data 

Another technique for detecting problems with orbit convergence is analysis of the signatures in the data residuals. For example, a timing error during a planetary encounter has a distinct signature that looks like the tangent function near 90◦. 

Analysis of residual errors requires considerable experience. The first time a new error appears in the data, the signature is generally not recognized. Experience in recognizing these data signatures is best obtained by processing simulated data prior to conducting navigation operations. 

Simulated data is an important tool for analysis of orbit determination performance. It proved to be valuable during the NEAR mission which involved introduction of new data types. A simulated tracking data file was prepared that consisted essentially of time tags of the Doppler and range data points. The simulated tracking data file also included header data such as station number necessary for computing the observable. In assigning time tags, care had to be taken to assure that the spacecraft was above the horizon. Simulated images of the asteroid were prepared by ray tracing asteroid brightness on the surface of the asteroid to each pixel in the camera and a picture sequence file prepared with image time and camera pointing angles. A simulated LIDAR data file was generated that contained the time of each measurement and instrument pointing angles. Media and clock calibration files were prepared and were assumed to be the same for each station. 

The simulated data files were input to the orbit determination software. As each data point was processed, the computed measurement was modified by adding noise obtained from a random number generator to generate a measurement. New simulated data files were output by the orbit determination software with the simulated measurement. The spacecraft state, Eros ephemeris, Eros attitude, and all the input model parameters were modified and given to a second party along with the data files and simulated images. The modification of the input a priori data used the same process as adding noise to the measurement; however, for some inputs the error was considerably larger than the a priori error would indicate. The second party did not know the real assumed value of the estimated parameters or the assumed value of the measurements. The second party extracted line and pixel locations from the simulated images, created a landmark tracking file and ran the orbit determination software to determine the simulated orbit. If the second party
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failed to determine the orbit the process would be repeated until he was successful. 

There was more than 1 s party and they all got it right the first time, but, we repeated the exercise to be sure. On the Viking mission we repeated simulated navigation operations many times until we got it right. During mission operations, the NEAR 

navigation team determined many orbits and computed many maneuvers and made no significant mistakes which proves that practice makes perfect. 

8.4  Maneuver  Targeting 

Once the orbit has been determined it may be necessary to perform a propulsive maneuver to steer the spacecraft back on course. Since both the position and velocity are in error, requiring the correction of six components of position and velocity, two propulsive maneuvers may be required. A propulsive maneuver can correct only three components. 

 8.4.1  Interplanetary  Maneuvers 

When the spacecraft is far from the target body, the position and velocity errors are generally relatively small and can easily be corrected to put the spacecraft back on the nominal trajectory. However, this strategy is not optimum with regard to fuel usage. The fuel optimum strategy is to propagate the trajectory and determine the position error with respect to the target body. This position error is determined in B-plane coordinates of  B · R,  B · T  and time of arrival. A single maneuver is targeted to correct the position error at the target body. The arrival velocity is permitted to float. 

Correcting position at the target body will also tend to correct velocity. If this is not true, then two maneuvers will need to be performed. The magnitude of the velocity correction at the time of the planned maneuver may be very small. The magnitude of the velocity correction maneuver increases inversely proportional to time of flight to the target body. If encounter time is 2 years in the future, then delaying the propulsive maneuver by 1 year will double the required velocity change. This may be a small penalty to pay for minimizing the number of maneuvers. The propulsive trajectory correction maneuver may be delayed and combined with a deterministic maneuver. 

 8.4.2  In-Orbit  Maneuvers 

If the mission involves inserting the spacecraft into orbit about the target body, the maneuver strategy for interplanetary maneuvers must be modified a little. One exception is orbits about Jupiter where the approach to the Galilean satellites

8.4 Maneuver Targeting

315

behaves more like an interplanetary trajectory. The target parameter set becomes three orbit elements. The use of orbit elements in this context should not be confused with the use of orbit elements for patched conic trajectory propagation. 

The osculating orbit elements computed at a specific time in an orbit provide a measure of energy and angular momentum that is as accurate as the input state vector (see Sect. 3.2.1). Certain distances, angular orientation, and period are close to their actual values if computed at the right place in the orbit. The input state vector is obtained from a high-precision integrated trajectory. In orbit, the principle that a single maneuver can correct the orbit is tested. Two maneuvers are often required, but, since there are generally many more deterministic maneuvers, the second maneuver can be combined. 

 8.4.3  K  Matrix 

The K matrix relates propulsive maneuver velocity change to the change in position at the target body. When the spacecraft is far from the target body, correcting position errors at the target body also tends to correct velocity errors. As the spacecraft trajectory goes from the Earth to the target planet, conservation of energy will result in the spacecraft arriving with the designed velocity. Since velocity errors are small, analysis of interplanetary trajectory errors can be performed by mapping the K matrix to the target and the inverse of the K matrix back to the position of the spacecraft where a propulsive maneuver is executed. The K matrix is a covariant tensor and its inverse is contravariant. 

For the K matrix, the position at the target is defined by B-plane parameters ( B · R, B · T , tl). These parameters may be directly related to the hyperbolic orbit elements defined in Sect. 3.2.2. 

 B · R =  b  cos (θ)


 B · T =  b  sin (θ)



 a 3

 tl =  tp −

ln (e)

(8.1) 

 GM

The parameter  tl  is called Kizner’s linearized flight time. As a spacecraft approaches a planet it is accelerated by the gravity of the planet and the time of periapsis is a function of B, the magnitude of the B vector. In order to remove this dependency, tl  is defined as the time of arrival if the planet had no mass. The modified B-plane parameters are thus 

O h = [ B· R, B· T , tl, V∞ , α∞ , δ∞]
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The purpose of the linearized flight time is to make the K matrix more linear. 

A big source of nonlinearity is caused by the gravity of the target body. This nonlinearity of the mapping matrix or K matrix can be improved by targeting to a point several hours before the time of periapsis. Here the time of flight direction is orthogonal to the B-plane coordinates. Since we are interested in targeting to the state at closest approach, the actual time of flight error is used for targeting. Therefore, the linearized flight time has no effect on the state at closest approach when the iterated solution is obtained. The K matrix only affects the targeting iterations. The linearized flight time bias is intended to remove the target body gravity from the time of flight and thus break the correlation with B-plane coordinates. It is thus equal to the difference between the actual flight time and the time of flight with no gravity. The flight time with no gravity is given by a 3  r

 t −  tp =  r =

 V∞

 μ a

The flight time with gravity is 



 a 3

 t −  tp =

 (e  sinh  F −  F )

 μ

Differentiating with respect to  F  we get for no mass



 dt =  dt dr =  a 3 1  dr

 dF

 dr dF

 μ a dF

 r =  ae  cosh  F −  a

 dr =  ae  sinh F

 dF

and with mass 



 dt =  a 3  (− e  cosh F + 1 ) dF

 GM

Differencing the two trajectories we get for the differential linearized flight time dtl

 a 3

 

=

[ e  sinh  F −  e  cosh  F + 1]

 dF

 GM

integrating
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 a 3 



 tl =

 e  cosh  F | r −  e  sinh  F | r +  F | r GM

0

0

0



 a 3

 tl =

[ e  cosh  F −  e −  e  sinh  F +  F ]

(8.2) 

 GM

At  t = 0 the spacecraft has a velocity component normal to the asymptote that must be removed. If we set  tl  equal to zero which is accomplished by removing the  e term from the equation, the massless trajectory will have the same ending point as the integrated trajectory. The starting point far out on the asymptote at a maneuver time is at some range resulting in the need for a time correction. This time correction is the  e  term. 



 a 3

 tl =

[ e  cosh  F −  e  sinh  F +  F ]

(8.3) 

 GM

Another equation for  tl  follows directly from the definition rp

 t 1 =  t −  r −

(8.4) 

 V∞

 V∞

 rp =  (c −  a)  cos  ηl =  a(e − 1 ) e

where  rp  is the distance from the planet center to periapsis projected along the asymptote and  r  and   t  are obtained by numerical integration of the equations of motion. The ending point is thus changed from planet center to periapsis. 

An example of the computation of  tl  is a trajectory targeted to a planet about the size of Mars and close to the Viking trajectory. The Viking trajectory was challenging for problems of nonlinearity. The B-plane distance is 39,332 km,  V∞

is 2.921 km/s, and  μ  is 57,104 km3 / s2. A plot of linearized flight time for the three equations derived above is shown in Fig. 8.2. The mapping of a velocity change that increases  b  from the time of a maneuver to the time defined by the linearized flight time will result in an increase in the flight time attributable to the difference between  V∞ and the actual velocity. The mapping from the time defined by the linearized flight time to periapsis will decrease by the same amount attributable to the decrease in distance of the periapsis point to the B-plane. If the K matrix is computed at the linearized flight time, the time of flight should not change. This cancelation occurs if the partial derivative of linearized flight time with respect to  b is zero. 

If the flight time is not invariant with respect to changes in  b, there is another reason to target the arrival time to some time before periapsis. The time of periapsis is an orbit element and is a point in space. It could be replaced by the flight path angle. When the magnitude of B  is changed, the periapsis point moves in space. 

[image: Image 43]
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Fig.  8.2  Linearized flight time 

If we target to  tp, the point in inertial space, additional fuel must be expended to keep periapsis at this point. One solution to this problem is to allow  tp  to float by targeting a critical plane maneuver that minimizes propellant and corrects B-plane coordinates. Another solution is to target the time of arrival a few hours or days before periapsis. Kizner’s linearized flight time does this but Eq. (8.3) does it better. 

 8.4.4  Linearity 

The navigation system has computer programs that model the real world and computer programs that use linear theory to search for solutions to problems. 

Examples of the former are trajectory programs and the modeling of instrumentation and media. Examples of the latter are orbit determination programs and search and optimization programs. The primary function of navigation operations is to deal with nonlinearity. Linearized flight time is an attempt by orbit determination analysts to remove a source of nonlinearity. This responsibility is usually assumed by maneuver analysts. When two independent groups try to solve the same problem, the result is often more confusion than solution. On Viking, the orbit insertion burn was targeted without correction for linearized flight time. For an interplanetary maneuver 28 days from periapsis one should target about 4 h before periapsis as indicated by the curves labeled Analytic and Integrated in Fig. 8.2. The curve provided by Kisner, which is a straight line, targets to 4,000 s before periapsis. This places the target time in or near the B-plane. This raises the question as to which curve should be used for operations. Most of the nonlinearity is accumulated during the short flight time from the B-plane to periapsis. If I were starting from scratch, I
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would use the analytic formula. However, the Kisner formula is in many programs I have written and used for operations. Since the Kizner formula removes most of the nonlinearity and is in the B-plane, I would leave existing software alone. We get the correct trajectory independent of linearized flight time. I have never noticed any significant change in the number of iterations required to obtain a solution. 

The state transition matrix defines the mapping from a maneuver to the target body in Cartesian coordinates. The state transition matrix may be determined by finite difference of conic propagation of the trajectory or directly by integration of the translational variational equations. The Cartesian state at the target body is transformed to B-plane parameters by multiplying by the local Jacobian or partial derivative matrix of B-plane parameters with respect to Cartesian state. 

⎡

⎤

 ∂(B · R, B · T , tl) ∂(B · R, B · T , tl)

⎢

⎥

 ∂X (t)

⎢  ∂(x 0 , y 0 , z 0 )

 ∂( ˙ x 0 , ˙ y 0 , ˙ z 0 ) ⎥

 B =  ∂O h

= ⎢

⎥

 ∂X (t) ∂X (t

⎢

⎥

0 )

⎣  ∂(V∞ , α∞ , δ∞ ) ∂(V∞ , α∞ , δ∞ ) ⎦

 ∂(x 0 , y 0 , z 0 )

 ∂( ˙ x 0 , ˙ y 0 , ˙ z 0 ) The K matrix is the upper right 3 by 3 partition of the 6 by 6 transformed state transition matrix. 

 K =  ∂(B · R, B · T , tl)

 ∂( ˙ x 0 , ˙ y 0 , ˙ z 0 ) For the first 15 years of the space program, interplanetary maneuver analysis involved B-planes and K matrices almost exclusively. For example, to compute a maneuver we simply obtain the miss in the B-plane parameters and multiply times K inverse. 

 V =  K−1  O k

where  O k =  (B · R, B · T , tl) K matrices were also used to map orbit determination errors to the B-plane. 

Mission design and science objectives could also be mapped to the B-plane. The capture radius of a planet and the region in the B-plane where occultation occurs can be plotted along with the orbit determination error ellipse and the probability of impact or occultation can be computed. Another useful application of K matrices is analysis of singularities. The state transition matrix can never be singular, but K 

matrices are singular for 180- and 360◦ transfers. A Hohmann transfer, which is 180◦, will pass through the line of nodes connecting Earth and the target body. The mapping of orbit determination errors to the line of nodes on the far side of the body will be positive semi-definite. For 360◦ transfers, such as the MESSENGER mission returning to Earth, the spacecraft will return to the same point in its orbit about the Sun. 
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As the space program moved on to orbiting and landing on various bodies, interest in B-planes waned. Everyone grew tired of looking at B-planes. However, the concept was adapted for analysis of orbits about planets and asteroids. The local Jacobian of B-plane elements was replaced by a local Jacobian of elliptical orbit elements and the same methods that were useful for interplanetary maneuver analysis were adapted to in orbit and landing analysis. 

8.5  Summary 

Navigation operations are conducted by a navigation team in a spaceflight operations facility. Data is received from the spacecraft at a DSN tracking station, formatted into files, and transmitted to the navigation team. The navigation team receives the tracking data and telemetry from the DSN and also receives files containing calibration data from a variety of sources. These files are processed in navigation software to obtain solutions for the spacecraft trajectory and other model parameters. Examples of model parameters are gravity harmonic coefficients, propulsive maneuver thrust or velocity change, and solar pressure acceleration coefficients. The orbit determination solutions are written to files and distributed to the science team, spacecraft team, and DSN. The trajectory is propagated to the target and propulsive maneuver components are computed to correct the trajectory. 

The propulsive maneuvers are forwarded to the spacecraft team and maneuver commands are formatted and transmitted to the spacecraft via the DSN. 

During flight operations the DSN, spacecraft team, science team, and navigation team work independently and are not generally colocated. Prior to flight operations, the format and content of the files that are communicated are agreed upon. It is important to get the file interface correct because of the high degree of compartmentalization of the participants. During the navigation design, it is necessary for the participating teams to work together. However, the compartmentalization often carries over to the design of the navigation system and the resulting design is often compromised due to a lack of communication. 

[image: Image 44]

Chapter  9 

Einstein  Field  Equations 

9.1  Introduction 

The Einstein field equations have been solved exactly for the case of spherical symmetry by Schwarzschild. This solution and Einstein’s solution have spawned a number of formulae describing the precession of Mercury’s orbit, the bending of light, radar time delay, gravitational red shift, and several more that relate to special relativity. The Schwarzschild solution has been transformed to a form such that the equations of motion look like Newton’s equations of motion with a small relativistic perturbation. For orbit determination, these equations have been programmed into software used for navigation. One might question whether this is really necessary, since the perturbations due to general relativity are so small. The justification is that the orbit solution used for prediction of a spacecraft orbit is obtained after analysis of data residuals, the difference between the real world and the world computed by a mathematical model. Since the data are of very high precision, a very small modeling error will show up as a signature in the data residuals. 

Without relativity modeling, a serious modeling error in another variable could be masked. A navigation analyst might initially conclude that the signature is caused by relativity or some other error source such as a clock failing to keep the right time. Eventually, the signature will grow in magnitude, and the alarm bells will ring indicating a problem. The earlier the problem is detected, the more likely a solution can be found before the spacecraft crashes into something. The problem of an inaccurate gravity harmonic caused an exponential rise in the Doppler signature on the Near Earth Asteroid Rendezvous (NEAR) mission, which was detected early and corrected before anything catastrophic happened. For this reason, general and special relativities are programmed into the navigation operational software. 

In the 1960s, general relativity was programmed into the Orbit Determination Program (ODP) at the Jet Propulsion Laboratory (JPL). At the time, those outside of navigation thought this was not needed. Since that time, many orbits have been determined using the ODP, and little attention has been given to general 
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relativity. The ODP is treated as a black box. With the advent of comet and asteroid missions, a new orbit determination program was needed. This effort required implementing general relativity. Finding and understanding the equations presented a major difficulty. After consulting many sources including relativity experts at JPL, equations were programmed into the software used for the NEAR mission. We can assume that the equations are correct because the spacecraft completed its mission successfully. 

The derivation of the relativity equations of motion was initiated from the metric tensor, which was assumed to be correct. The goal of deriving the equations from Einstein’s original assumptions that the speed of light is constant and matter curves space has been difficult to achieve. The equations of motion were worked out long before Einstein’s death. His theory written in books published up to that time was close to his original 1916 paper [1]. After his death, cosmologists got hold of the theory, and engineers had difficulty understanding the mathematics. The main source of confusion was the normalization of coordinates removing  c, the speed of light, and  G  the gravitational constant from the equations. Einstein did this to make his theory look more profound and mathematical. In this chapter, the part of Einstein’s theory pertaining to navigation of spacecraft in the solar system has been extracted from Einstein’s original paper [1], Eddington’s book [2] written in 1923, Harry Lass’s book [3] on tensors written in 1950, and Sokolnikoff’s book [4] 

written in 1951. What goes on inside the sun, earth, or black holes is not relevant to navigation of spacecraft in the solar system. While Einstein’s paper is difficult to understand, all the essential equations are there. Einstein’s audience was other mathematicians and physicists. Eddington, who was a mathematician, explained some of the theory in a clear way that is comparatively easy to understand. His audience was much wider than Einstein’s. Sokolnikoff shows how the Riemann tensor is put together and Schwarzschild’s solution is obtained. Harry Lass described the properties of tensors. 

9.2  Summary  of  General  Relativity  Fundamental 

Assumptions 

The universe assumed for navigation consists of the solar system and massless stars that are infinitely far away and emit light. The center is the solar system barycenter or center of gravity. The goal is to define the equations of motion in curved space. A Euclidean coordinate system is defined far away from the sun but not as far as the stars. If we move this coordinate system so it is centered at the solar system barycenter, we can define a curved space coordinate system as a covariant mapping from Euclidean coordinates. Sometimes, we are interested in curved space coordinates, and other times, we are interested in Euclidean coordinates. For the equations of motion, we are interested in curved space coordinates. To define the Einstein tensor, we consider volume elements that have the same size, and we use
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Euclidean coordinates. In Euclidean coordinates, the volume elements are equal and cubical. For constant density, the mass of every volume element is the same. When we map to curved space, the volume elements vary in size and shape. Since a one-to-one mapping exists, the curved space volume elements would have to be assigned different densities to have the same mass. Einstein defines the density in Euclidean space as scalar-invariant density, and this is mapped to curved space to keep the total mass the same as defined in Euclidean space. 

The fundamental assumptions of General Relativity are stated in equations without proof. The first assumption is that the speed of light is constant defined by c, and the observed speed of light defined by the path length  ds  is also constant and equal to  c. It is also necessary to define a measurement ( Z), which is the projection of the observed acceleration of a point mass or any vector that can be observed in curved space on the trajectory of a curved line in the gravity field defined by the equation of geodesics. 

 dxu

 Z =  Au ds

This scalar measurement gives us one equation, but there are 10 independent elements in the metric tensor. To determine them, we need nine more equations. 

For an analytic solution, we can differentiate this measurement with respect to the assumed coordinate system to obtain four more equations that can be measured. 

Differentiating again gives four more equations that define the curvature and can also be observed. We need one more equation to solve for the metric tensor. It is obtained by assuming that the scale or curvature is proportional to mass. The assumption that the curvature of space is proportional to mass is satisfied by placing a boundary condition on the solution to the Einstein field equations or solving the Einstein tensor by equating it to the stress energy tensor. 

There are other assumptions associated with mathematics that are difficult to state in simple equations. These include symmetry, linearity, and continuity. Not only the trajectory of a particle but also all the higher-order derivatives must be continuous. 

They trace a smooth curve when drawn on graph paper, and they have slopes and areas under the curve. Once the aforementioned fundamental equations are defined, the work of the scientist is complete. For a solution, we turn the problem over to mathematicians. Einstein was the essential bridge between the two camps. His main contribution besides special relativity was the Einstein tensor, which is a purely mathematical result but required considerable physical insight to derive. 

9.3  Geodesic  Equation 

The shortest distance between two points on a curved surface is called a geodesic. 

When an airplane flies over the North Pole on its way to Europe, it is following a geodesic or great circle arc. The metric tensor (  guv) defines the arc length due
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to curvature of space where  u  and   v  are indices in four space corresponding to coordinates. For example, coordinates may be  x, y, z, ct  as   u  and   v  vary from integer values 1–4. The metric tensor defines a differential line element ( ds). The elements of  guv  are functions of space and time that define  guv  at some point in space. The integral of the line element ( ds) gives the distance between two points or the length of the curve connecting them. Consider two points A and B. 

A coordinate system can be used to locate the two points relative to one another. 

Since the reference coordinate system is arbitrary, the coordinates of the points are of little use. The only useful physical reality is the distance between the two points. 

The metric tensor can be integrated to determine the length of this line. Next, we consider a line between the two points that is the shortest distance. The variation of the path length with respect to the coordinates must be zero since only one path is the shortest. Thus, we have 

 ds 2 =  guvdxudxv

2 dsδ(ds) =  dxudxvδguv +  guvdxuδ(dxv) +  guvdxvδ(dxu) and 

 ∂guv

2 ds δ(ds) =  dxudxv

 δxσ +  guvdxu d(δxv) +  guvdxv d(δxu)

 ∂xσ

and the stationary condition is 



 δ(ds) = 0





1

 dxu dxv ∂guv

 dxu d

 dxv d

 δxσ +  guv

 δxv +  guv

 δxu ds = 0

2

 ds ds δxσ

 ds ds

 ds ds

The dummy indices on the last two terms can be changed to be in the same order as the first term. This trick is a property of summation notation and amounts to changing the order of the rows in matrices and a vector that is to be multiplied such that the vector can be factored out and the matrices summed before the multiplication. For more information on this property, consult Einstein’s 20 pages on tensor algebra in his 1916 paper or Harry Lass’s book on tensors. Here, we perform the operation and rely on the references by Einstein and Harry Lass to obtain 1

 dxu dxv ∂guv

 dxu

 dxv

 d

 δxσ +  guσ

+  gσv

 δxσ ds = 0

(9.1) 

2

 ds ds δxσ

 ds

 ds

 ds

The following property of differentials is provided by Einstein in his 1916 paper. 





 d

 dxσ

 (δxσ ) =  δ

 ds

 ds
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In his derivation, Eddington omitted this equation probably because he thought it was trivial. Einstein included this equation because it is important to the understanding even if it looks strange. The second derivative of  δxσ  with respect to   s  is defined by





 dxσ (s 2 )

 d

−  dxσ (s 1 )

 d 2

 ds

 ds

 (δxσ ) =

lim

 ds 2

 s 2− s 1→0

 s 2 −  s 1

and 





 d

 d(δxσ ) =  d

 dxσ

 δ

 ds

 ds

 ds

 ds

We get the desired result by multiplying both sides of the aforementioned equation by   ds  over   d. This only works if we force  ds  to equal  s 2 −  s 1 on both sides of the equation. Mathematicians may not like the mathematics, but we have Riemann, Christoffel, and Einstein on our side. 

Integration by parts is defined by the following equation. 







 x 2

 y 2

 x 2 y 2

 ydx +

 xdy =  xy

=  x 2 y 2 −  x 1 y 1

 x 1

 y 1

 x 1 y 1

The geometrical interpretation of this equation is that the area between the  x  axis and curve between the limits  x 1 and   x 2 (cross hatched area on Fig. 9.1) plus the area 

between the  y  axis and the curve (other cross hatched area on Fig. 9.1) is equal to the rectangular area  x 2 y 2 minus the rectangular area  x 1 y 1. 

Fig.  9.1  Integration by parts
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If we let 









 dxu

 dxv

 dxu

 dxv

 y =  guσ

+  gσv

 dy =  d guσ

+  gσv

 ds

 ds

 ds

 ds

 x =  dxσ

 dx =  d (δxσ )

 ds

 ds

Eq. (9.1)is then 







1

 dxu dxv ∂guv −  d

 dxu

 dxv

 guσ

+  gσv

 δxσ ds = 0

(9.2) 

2

 ds ds δxσ

 ds

 ds

 ds

This equation must hold for all arbitrary displacements of  δxσ .  If  we  make  δxσ

extremely small, the difference between the  xy  rectangles defined earlier becomes negligible and can be discarded. We then make  ds  infinitely smaller than  δxσ , and we are left with the term in the brackets. This term does not go to zero because we must add up the same infinity of  ds  intervals, a Riemann sum. The terms in the bracket must be zero. The line integral is an increasing monotone from point A to point B. Thus, every interval of the integrand must be zero, because if any interval is not zero, there can never be a negative interval to restore the total integration to the path length. Christoffel obtained the following result by defining an integral and then arguing that the integration must be zero, not by actually integrating. The secret to relativity theory is to define things that are zero and avoid doing any real mathematics. This approach makes the theory difficult to understand but is probably the only way the problem can be solved. Carrying out the differentiation indicated in Eq. (9.2)   give  s





 dxu dxv ∂guv −  dguσ dxu +  dgσv dxv +

 d 2 xu

 d 2 xv

 guσ

+  gσv

= 0

 ds ds δxσ

 ds

 ds

 ds

 ds

 ds 2

 ds 2

The chain rule applied to summation notation is 

 dguσ =  ∂guσ dxv

 dgσv =  ∂gσv dxu

 ds

 ∂xv ds

 ds

 ∂xu ds

and since the metric tensor is symmetric ( gvσ =  gσv) dxu dxv

 ∂guv −  ∂guσ −  ∂gvσ −

 d 2 xe

2 geσ

= 0

 ds ds

 δxσ

 δxv

 δxu

 ds 2

The next step is to multiply through by the contravariant metric tensor  gασ . 

 gασ geσ =  δα
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In matrix notation, this is the same as multiplying the metric tensor by its inverse. 

[ geσ ]−1 [ geσ ] =  I

In Einstein’s description of the contravariant fundamental tensor (the inverse of the covariant metric tensor), he describes the matrix inversion process, which involves cofactors and determinants, and the Kronecker delta, which is the identity matrix. 

Eddington had a similar description. One advantage of summation notation is that the order of multiplication is arbitrary, so 





 dxu dxv

 ∂guv

 d 2 xα

 gσ α

−  ∂guσ −  ∂gvσ − 2

= 0

 ds ds

 δxσ

 δxv

 δxu

 ds 2

The equation for a geodesic is thus 

 d 2 xα + {

 dxv

 uv, α}  dxu

= 0

(9.3) 

 ds 2

 ds ds

and the Christoffel symbols are defined by 





{

 ∂guσ

 uv, α} = 1  gσα

+  ∂gvσ −  ∂guv

(9.4) 

2

 δxv

 δxu

 δxσ

9.4  Computer  Solution  for  Metric  Tensor 

The metric tensor is symmetric and has 10 independent elements at each point in four space. If we knew the location of 10 points in the real world, we could use the definition of the metric to solve for  guv. We only know one, the vector from the sun to the spacecraft. We can get around this problem by assuming that both bodies in the real world have mass and the mass of the central body or sun is much greater than the mass of the spacecraft. Now there is a force at every point along the geodetic line that results in an acceleration of the spacecraft that can be observed. 

We can take the dot product of this force vector with the line element, which is in the direction of the velocity vector, and this gives us an observable measurement. 

We can use this measurement at various points along the path to solve for the metric tensor. We need at least 10 points, and by assuming a coordinate system, all the mathematics associated with Einstein’s solution are bypassed. 

Given the equation of geodesics, our objective is to determine the metric tensor in an assumed coordinate system. Once the metric tensor is known, we have equations of motion of the spacecraft that can be integrated twice to obtain the path, which navigators call the trajectory or ephemeris. A direct approach is to parameterize the metric tensor as a function of the coordinates and solve for the parameters with

328

9

Einstein Field Equations

an orbit determination filter. This approach is only practical if we have very high-precision measurements. 

Consider a spacecraft in orbit about the sun somewhere in the orbit of Mercury orbit but far from Mercury. The estimated parameters would be the initial spacecraft state and the parameters that characterize the metric tensor. In flat space, the parameters that characterize the gravity field such as gravity harmonic coefficients would replace the metric tensor. The measurements could be Doppler and range data from the Deep Space Network. Thus, we have for the metric tensor 

 g 11 =  eφ

 φ =  A 0 +  A 1 r +  A 2 r 2 +  A 3 r 3 + · · ·

 g 22 = − r 2

 g 33 = − r 2 sin  θ

 g 44 =  eλ

 λ =  B 0 +  B 1 r +  B 2 r 2 +  B 3 r 3 + · · ·

and all the other elements of the metric tensor are zero as a result of spherical symmetry. This is essentially the same metric that Schwarzschild assumed for his solution except that  g 11 and   g 44 are parameterized here as a function of  r. We know from symmetry that these terms must be a function of only  r. The curvature of space is static so there is no time dependence. Since we do not have a spacecraft in the desired orbit, we can use the exact Schwarzschild equations of motion to simulate the spacecraft trajectory. The computed equations of motion are obtained by substituting the Christoffel symbols computed from the parameterized metric into the equation of geodesics. We thus obtain for the computed equations of motion d 2 r

2

2

2

=

 dr

 dφ

 dct

  1

+   1

+   1

 ds 2

11

 ds

22

 ds

44

 ds

where 

1  ∂g 11

  1 = − 1

11

2  g 11  ∂r

1  ∂g 22

  1 = − 1

22

2  g 11  ∂r

1  ∂g 44

  1 = − 1

44

2  g 11  ∂r
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and 











 d 2 r

2

2

2

= − 1  ∂g 11  dr

−  r

 dφ

+ 1  ∂g 44  dct

 ds 2

2 g 11  ∂r

 ds

 g 11

 ds

2 g 11  ∂r

 ds

The line element is given by 

 ds 2 =  g 11 dr 2 +  g 22 dφ 2 +  g 44 c 2 dt 2

and, for  ds 2 =  c 2 dτ  2, where  τ  is the proper time, we obtain dt

2

2

2

= 1 −  g 11

 dr

−  g 22

 dφ

 dτ

 g 44

 c 2 g 44

 dτ

 c 2 g 44

 dτ

The equations of motion, after substituting the metric equation, become d 2 r

2

2

= 1 1  ∂g 44  dr

−  r

 dφ

− 1  ∂g 44  c 2

 dτ  2

2  g 44  ∂r

 dτ

 g 11

 dτ

2  ∂r









2

2

− 1  ∂g 44  dr

− 1  ∂g 44  g 22

 dφ

(9.5) 

2 g 44  ∂r

 dτ

2  ∂r g 11 g 44

 dτ

 d 2 φ = −2  dr dφ

 dτ  2

 r dτ dτ

where 

−1

 g 11 =  g 44

The first and fourth terms, which are functions of radial velocity, cancel when  g 11

is the negative reciprocal of  g 44. This is a result of the assumption that there is no gravity drag and acceleration does not depend on velocity. There is no ether to slow down the planets resulting in the planets falling into the sun. The third term has  c 2 in the numerator. The partial of  g 44 with respect to  r  must  hav e  c 2 in the denominator, or the equation for  r  acceleration will blow up or at least become very large. The third term is the Newtonian acceleration in flat space. Einstein commented on the unusual mathematical quirk that the Newtonian acceleration comes from the  g 44

term of the metric tensor. The final form of the equations of motion is d 2 r

2

= −  μ −

 r −  r 2  ∂g 44

 dφ

 dτ  2

 r 2

 g 11

2  ∂r

 dτ

 d 2 φ = −2  dr dφ

 dτ  2

 r dτ dτ
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If we borrow the exact solution for  g 44 from Schwarzschild, which is g 44 = 1 − 2 μ

 c 2 r

we get for the radial acceleration Eq. (1.58) 







 d 2 r

2

= −  μ +

 dφ

 r − 3 μ

(9.6) 

 dτ  2

 r 2

 c 2

 dτ

Next, we insert the parameterized metric into the modeled equation of geodesics and integrate the equations of motion for a few weeks. Additionally, we could integrate the variational equations to obtain the partial derivatives of Doppler and range measurements with respect to the estimated parameters, which are the metric polynomial coefficients and initial spacecraft state. To make this demonstration simple, it is assumed that we can measure ¨ r  directly and that the spacecraft trajectory is known with high precision. 

The solution for the polynomial coefficients is obtained by processing several hundred data points using a weighted least square data filter. The data points are obtained from the exact Schwarzschild solution. In theory, we do not need the covariant derivative, Riemann’s tensor, Ricci’s tensor and Einstein’s tensor to do navigation. In practice, the accuracy of the data would limit the accuracy of the parameterized metric. The result of processing an orbit of a spacecraft in Mercury’s orbit is shown in Fig. 9.2. The top curve is a plot of the base 10 logarithm of the natural logarithm of  g 44 as a function of distance from the sun. 

 λ = −0 .  287656389797 D − 06 + 0 .  112620203757 D

− 13 r − 0 .  2203417321282 D − 21 r 2

+ 0 .  2154331059460 D − 29 r 3 − 0 .  8420743154620 D − 38 r 4

 g 44 =  eλ

The bottom curve is the base 10 logarithm of the difference between ln(  g 44) and the orbit determination solution for the polynomial coefficients or metric tensor. 

Over the range from 47 × 106 km to 57 × 106 km, the fit is at the limit of computer precision. We see numerical noise at around 15 decimal places of accuracy. Over the range from 30 × 106 km to 70 × 106 km, which covers the entire orbit of the spacecraft, the error is less than 1%. The precession of the orbit was 496.62 

nanoradians per revolution about the sun, which compares favorably with the Einstein formula of 479.98 nanoradians. The precession is about 40 arc seconds per century. 

[image: Image 45]
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Fig.  9.2  Metric tensor estimation error 

9.5  Covariant  Derivative  of  a  Vector 

Since the metric tensor is only a function of the distribution of matter in space and is independent of the method used to determine the orbit, it should be possible to eliminate the measurement from the differential equations for the metric tensor. 

Einstein and a host of mathematicians came up with a solution for eliminating the observations from the orbit determination solution and thus obtained differential equations that can be solved directly for the metric tensor. The metric tensor is obtained by placing the appropriate boundary conditions on these differential equations. This is the same idea as is used to solve Laplace’s equation for gravity harmonics. 

Consider the following product of a covariant vector with a contravariant vector. 

 dxu

 δ(ds) =  Au ds

In matrix notation, this would be a row vector times a column vector or the dot product. This dot product is a scalar function of the coordinates and represents a measurement of the spacecraft motion or the line element that an observer would see. The vector  A  is arbitrary in that there are many different measurements, and there are potentially many different obervers. The reader may wonder why it is necessary to introduce this arbitrary vector. In order to locate the mass distribution and the direction of the acceleration vector or line element, a cordinate system needs to be difined. A coordinate system may be defined by two vectors. The cross product
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defines the  z  axis perpendicular to the plane of the two vectors. We select one of the vectors to be the  x  axis. The  y  axis is defined by  z  cross   x. The covariant derivative thus implicitly defines a system of coordinates. However, to make the problem simple, the vector  A  is projected onto the observed motion. This is equivalent to determining an orbit by observing the one-dimensional range or range rate between a spacecraft and a tracking station. For the aforementioned orbit determination solution, the orbit is sampled at points along the trajectory. This would make the analytic solution difficult because it would be necessary to map the measurement in space and time. Another approach is to define alternate measurements at a point in space-time. We could measure the first- and higher-order derivatives of  A  projected on to the velocity vector or local tangent vector. Whatever  A  is, it must be eliminated from the equations to obtain a solution for the metric tensor. The arbitrary vector has no physical meaning and is only a geometrical artifact. The introduction of the vector  Au  adds complication to the equation of motion without any obvious benefit. 

Adding arbitrary equations to a system of equations is not unique to relativity theory. 

In Chap. 4  Sect. 4.4, additional arbitrary equations of constraint ( Z f ) were adjoined to the actual equations of constraint to complete the system and permit a search to minimize the objective function  J . The vector  Au  serves the same purpose. The equations of constraint, Zf, are also eliminated from the solution and are therefore arbitrary. 

The vector  Au  and the velocity or direction of motion are dependent on the assumed coordinate system. The motion of a body is not dependent on the measurement of the motion. The dot product of the vector  Au  with the velocity vector is independent of the assumed coordinate system. The projection of acceleration on velocity is the same if viewed from any vantage point. Imagine a flag pole mounted on a spacecraft and pointed in the direction of  Au. If the sun is in a certain direction, the length of the shadow of the flagpole on the solar panels will be equal to the projection of  Au  on the velocity vector or the above dot product. The length of the shadow of the flag pole will be the same when viewed by any observer that is stationary with respect to the spacecraft. The dot product is invariant with respect to the observed coordinates (ds) at a point in space provided we have the correct metric tensor. Therefore, the derivative of the projection with respect to the coordinates is zero or in mathematical terminology is invariant and 





 dδ(ds) =  d

 dxu

 Au

= 0

 ds

 ds

 ds

The problem is to find a mathematical solution for the metric tensor either by processing observed motion in an orbit determination program or by solving the aforementioned equations. Which method of solution is best depends on the problem. The aforementioned computer approach requires immersion of a spacecraft in the gravity field, which can be accomplished by passing an electromagnetic wave between two spacecraft safely away from the distributed mass. The analytic approach requires observation of the mass distribution and solution of differential
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equations that are really difficult to solve. It may be difficult, if not impossible, to observe the distribution of mass in a black hole. Performing the differentiation, dδ(ds) =  ∂Au dxv dxu +  d 2 xu

 Au

= 0

(9.7) 

 ds

 ∂xv ds ds

 ds 2

This result is applied to a geodesic. From Eq. (9.3), we have d 2 xα

 dxv

 Aα

= − Aα { uv, α}  dxu

 ds 2

 ds ds

Applying this result to Eq. (9.7)   give  s





 dδ(ds) =  dxu dxv ∂Au −  Aα { uv,α} = 0

 ds

 ds ds

 ∂xv

The expression in the brackets is the covariant derivative of a vector and is given by Ai,j =  ∂Ai − { ij, α}  Aα = 0

(9.8) 

 ∂xj

The covariant derivative cannot be solved for the metric tensor because of the presence of the vector  A  so   A  must be eliminated. One more differentiation is needed. In the classical world, we differentiate position to get velocity and then differentiate velocity to get acceleration. We then write equations for acceleration and then integrate twice to get position. We do the same thing in the curved space world. The location of mass in the real world defines the curvature of space or the metric tensor. The metric tensor gives us the equations of motion through the equation  o f geodesics. 

9.6  Covariant  Derivative  of  a  Tensor 

Consider the following product of a covariant tensor with a contravariant vector. 

 dδ(ds) =

 dxu dxv

 Auv

 ds

 ds ds

 Auv  is the covariant derivative defined by Eq. (9.8). The first product of the  xu  term with the rows of  Au  defines a vector. The second product of the  xv  term results in a scalar dot product. Differentiating with respect to the coordinates as was done for the covariant vector, we obtain 

 d 2 δ(ds) =  ∂Auv dxσ dxu dxv +

 dxv d 2 xu

 dxu d 2 xv

 Auv

+  Auv

= 0

 ds 2

 ∂xσ ds ds ds

 ds ds 2

 ds ds 2
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Substituting Eq. (9.8), we obtain the covariant derivative of a tensor. 

 d 2 xu = −{

 dσ

 uσ, α}  dxu

 ds 2

 ds ds

 d 2 xv = −{

 dσ

 vσ, α}  dxv

 ds 2

 ds ds





 d 2 δ(ds) =  ∂Auv −

 dxσ dxu dxv

 Aσv { uσ, α} −  Auσ { vσ, α}

= 0

 ds 2

 ∂xσ

 ds ds ds

 Auvσ =  ∂Auv −  Aσv { uσ, α} −  Auσ { vσ, α}

 ∂xσ

or 





 d 2 δ(ds)

 ∂A

 dx

=

 ij −

 dxk dxi

 j

 Akj { ik, α} −  Aik { j k, α}

= 0

 ds 2

 ∂xk

 ds ds ds

 ∂Ai,j

 Ai,jk =

− { ik, α}  Aα,j − { jk, α}  Ai,α

(9.9) 

 ∂xk

9.7  Riemann–Christoffel  Tensor 

Substituting the covariant derivative of a vector into the covariant derivative of a tensor, we obtain 









 ∂Ai

 ∂Aα

 Ai,jk =  ∂

− { ij, α}  Aα − { ik, α}

− { αj, β}  Aβ

 ∂xk

 ∂xj

 ∂xj





− {

 ∂Ai

 j k, α}

− { iα, γ }  Aγ

(9.10) 

 ∂xα

The presence of the arbitrary vector  Au  obstructs a solution for the metric tensor and must be eliminated. If we perturb the coordinates, we can define two line elements. 

In the limit as the perturbation goes to zero, the two line elements share the same Ai,jk. If we reverse the order of differentiation, we can replace  Ai,jk  with  Ai,kj  for one of the line elements. Differencing, we define a differential line element, which also is invariant with respect to the coordinates. At the solution for the metric tensor, the difference between  Ai,jk  and  Ai,kj  and the differential line elements are zero. 
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 ∂Ai

 ∂Aα

 Ai,kj =  ∂

− { ik, α}  Aα − { ij, α}

− { αk, β}  Aβ

 ∂xj

 ∂xk

 ∂xk





− {

 ∂Ai

 kj, α}

− { iα, γ }  Aγ

(9.11) 

 ∂xα

Carrying out the differentiation 

 Ai,jk =  ∂ 2 Ai −  ∂ { ij, α}  Aα − { ij, α}  ∂Aα − { ik, α}  ∂Aα

 ∂xkxj

 ∂xk

 ∂xk

 xj

+ { ik, α} { αj, β}  Aβ − { jk, α}  ∂Ai − { jk, α} { iα, γ }  Aγ

 ∂xα

 Ai,kj =  ∂ 2 Ai −  ∂ { ik, α}  Aα − { ik, α}  ∂Aα − { ij, α}  ∂Aα

 ∂xj xk

 ∂xj

 ∂xj

 xk

+ { ij, α} { αk, β}  Aβ − { kj, α}  ∂Ai − { kj, α} { iα, γ }  Aγ

 ∂xα

The order of differentiation should not make any difference so, if we subtract, the result should be zero. We are looking for a metric tensor that gives this result. 

 Ai,jk −  Ai,kj = { ik, α} { αj, β}  Aβ −  ∂ { ij, α}  Aα − { ij, α} { αk, β}  Aβ

 ∂xk

+  ∂ { ik, α} Aα = 0

 ∂xj

Interchanging the  α  and   β  dummy indexes associated with the  Aβ  terms and factoring out  Aα





 Ai,jk −  Ai,kj = { ik, β} { βj, α} −  ∂ { ij, α} − { ij, β} { βk, α} +  ∂ { ik, α}  Aα = 0

 ∂xk

 ∂xj

Since the  α  index associated with the Christoffel symbols is contravariant, we obtain for the Riemann–Christoffel tensor 

 Rα = { ik, β} { βj, α} −  ∂ { ij, α} − { ij, β} { βk, α} +  ∂ { ik, α} = 0

(9.12) 

 ij k

 ∂xk

 ∂xj

This tensor has the property we need to solve for the metric tensor. The arbitrary measurement vector  Au  has been eliminated, and the Christoffel symbols are a function of only the metric tensor. 
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There appears to be a problem with the geometry. Einstein was primarily interested in convincing mathematicians he was right. The problem with the geometry is in equating curvature with mass. We can multiply a function by anything we want, and if the function is zero, the result is still zero. Empty space has no mass. 

Inside the sun the curvature must match the mass in the same coordinate system even if the coordinate system is arbitrary. Consider two scalars  ds 2 and  ds 2 obtained by 1

2

transformation of two coordinate systems. Here we assume that the metric tensor is arbitrary, and the line element is different for  x 1 and   x 2

 ds 2 =

1

 Aijk x 1

 ds 2 =

2

 Aijk x 2

Taking the difference 

 ds 2 −

=

1

 ds 22

 Aijk (x 1 −  x 2 )

 ds 2 −

=

1

 ds 22

 Rα A

 ij k

 u (x 1 −  x 2 )

 ds 2 =  Rα A

 ij k

 u x

Since   Au  is arbitrary, we can combine it with  x

 ds 2 =  Rα x

 ij k

 k

Since  x  is arbitrary, we can make it the coordinate system of interest where ds 2 is invariant. For the correct metric tensor, all coordinate systems give the same line element and higher-order derivatives of the line element. All covariant derivatives are the same because the observers are infinitely close to the line element, which becomes a point. The observers have to shrink the spacecraft to fit on the head of a pin and then stand around the edge of the pin head. Fortunately, mathematicians don’t care about physics, and the few physicists in 1916 probably would not understand Einstein’s mathematics. In today’s world, mathematicians have not changed, and many scientists think they are mathematicians. 

The Riemann–Christoffel tensor has 256 elements, and each element is a function of the metric tensor. We would have to solve 256 simultaneous differential equations to obtain a solution. Due to symmetry, most of the elements of the Riemann– 

Christoffel tensor are equal to or multiples of a subset of independent elements. 

All the elements of the Riemann–Christoffel tensor are zero if the independent elements are zero. In order to isolate a set of independent elements, a number of identities associated with the symmetry of the metric tensor and Christoffel symbols are defined. From Eq. (9.12), it is immediately obvious that the Riemann tensor is skew symmetric on the last two indices. 

 Ri

= − Ri

 j kl

 j lk
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We define the covariant form of the Riemann tensor by 

 Rijkl =  giα Rαjkl

Multiplying through by  giβ  we obtain 

 β

 R

=  giβR

 j kl

 ij kl

Substituting the Christoffel symbols 





 ∂ 2 gil

 ∂ 2 gjl

 ∂ 2 gjk

 Rijkl = 1

−

−  ∂ 2 gik +

2

 ∂xj xk

 ∂xi xk

 ∂xj xl

 ∂xi xl

+  gαβ ([ jk, β][ il, α] − [ jl, β][ ik, α] ) where 

{ ij, k} =  gkα [ ij, α]





 ∂gik

 ∂gjk

 ∂gij

[ ij, α] = 1

+

−

2

 ∂xj

 ∂xi

 ∂xk

and it is obvious that 

 Rji,kl = − Rijkl

 Rij,lk = − Rijkl

 Rji,kl =  Rklij

 Rijkl +  Riklj +  Riljk = 0

and after raising the index 

 Ri

+  Ri +  Ri = 0

 j kl

 klj

 lj k

9.8  Ricci  Tensor 

The Riemann tensor contains 256 elements defined by 256 functions. These elements may be factored into 16 4-by-4 matrices, and the sum of these matrices, the total derivative, is the second partial derivative of the scalar line element  ds with respect to the cordinates. This sum comprises the elements of the 4-by-4 Ricci
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tensor. The sorting of the Riemann tensor  (Ri,j )  elements into the Ricci tensor makes use of the quotient theorem. 

 Ri,j =  Rαijα

We simply make the first and fourth index of the Riemann tensor equal and Rij = { iα, β} { βj, α} −  ∂ { ij, α} − { ij, β} { βα, α} +  ∂ { iα, α}

(9.13) 

 ∂xα

 ∂xj

The simple operation of contraction of the Riemann tensor must have a simple explanation. The proof of the quotient theorem should be easy to understand. 

Mathematical proofs are anything but simple. Eddington observes that the Riemann tensor contravariant index cancels the covariant index leaving  Ruv. The second derivative of  ds  or curvature will be shown to be the inner product of the curved space coordinates









 Y =

 Ruv xv

We can transform  Y  to Euclidean coordinates by raising the index on  Ruv  and transform back to curved space by lowering the index on the  xv. 











−1

 Y =  guv

 Ruv

 guv

 xv

Since the matruces are symmetric, we can transpose the first two terms on the right side and 

















−



1

 Y =

 Ruv

 guv

 guv

 xv =

 Ruv xv



In summation notation, the inner product of  Y  is 

  2 ds 2 =  Rl

 x

 uvl

 uxv =  Ruv xuxv

If the reader is confused by this derivation, I suggest reading the proofs of the quotient theorem or law given by Eddington and Sokolnikov. I have followed Einstein’s example and have only learned the mathematics necessary to get the computer programs right. 

The simple operation of contraction, which results in the Ricci tensor, must have some mathematical properties that enable it to be solved for the metric tensor. The Ricci tensor must be symmetrical and equal to zero. We could guess a solution for the metric tensor and insert it into the Riemann tensor. If all 256 elements are zero, we have a solution. Since most of the elements of the Riemann tensor are equal to other elements, we can extract a subset of the Riemann tensor elements and solve
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these for the metric tensor. If one element of the Riemann tensor is non zero, then at least one element of the reduced subset is nonzero. Conversely, if all the elements of the reduced subset are zero, all the elements of the Riemann tensor are zero. It can be shown that the Ricci contraction has this property. 

The Ricci tensor has 16 elements. There are 10 unknown elements in the metric tensor. We need 10 independent equations to solve for the metric tensor. There are 10 independent equations in the Ricci tensor if it is symmetrical. The proof of symmetry is not trivial. We start with the determinant of the metric tensor g = | gij |

4



 g =

 gij Gij

 j =1

 g =  gij Gij ( sum on  j  only , i  fixed ) ggij =  Gij

(9.14) 

 Gij  are the minors of  gij . Differentiating the determinant  g  with respect to  gij  gives 

 ∂g =  ∂Giα

 ∂giα

 giα

+  Giα

 ∂gij

 ∂gij

 ∂gij

Since the minor of  gij  is not a function of  gij  we have 

 ∂g =

 ∂giα

 Giα

=  Giαδj =  Gij

 ∂g

 α

 ij

 ∂gij

The partial derivative of  giα  with respect to  gij  is one when  j =  α  and zero when j =  α. The partial derivative of something with respect to itself is 1 and the partial derivative of something with respect to something else is zero provided something else is independent. But 

 ∂g

 ∂g

 ∂g

=  ∂g

 αβ =

 αβ

 Gαβ

 ∂xi

 ∂gαβ ∂xi

 ∂xi

and since from Eq. (9.14)  Gαβ =  ggαβ, we get 

 ∂g

 ∂g

=

 αβ

 ggαβ

(9.15) 

 ∂xi

 ∂xi

From the definition of the Christoffel symbols, we get
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 ∂gαγ

 ∂giγ

[ αi, γ ] = 1

+

−  ∂gαi

2

 δxi

 δxα

 δxγ





 ∂gγ α

 ∂gγ i

[ γ i, α] = 1

+  ∂giα −

2

 δxi

 δxγ

 δxα

Adding we get 

 ∂gαγ = [ αi,γ] + [ γi,α]

 δxi

 ∂gαβ = [ αi,β] + [ βi,α]

 δxi

Inserting this result into Eq. (9.15), we get 

 ∂g





=  ggαβ gγβ { αi, γ } +  gγα { βi, γ }

 ∂xi

 ∂g =  g ({ αi,α} + { βi,β} )

 ∂xi

 ∂g = 2 g { αi,α}

 ∂xi

1  ∂g = { iα,α}

2 g ∂xi

 ∂

√

 log g = { iα, α}

(9.16) 

 ∂xi

√

√

 ∂ 2  log g

 ∂ log g

 Ri,j =

−  ∂ { ij, α} + { iα, β} { βj, α} − { ij, β}

 ∂xj ∂xi

 ∂xα

 ∂xβ

The first term of  Ri,j  is symmetrical because the order of differentiation is arbitrary. If we interchange the  i  and   j  indices, we get the same rank two tensor. 

The second term is symmetric because the Christoffel symbols are symmetric on the first two indices, and therefore, the rank two tensor formed by contraction on  α

is also symmetric. The Christoffel symbols from Eq. (9.4)  are  given  b  y





{

 ∂guσ

 uv, α} = 1  gσα

+  ∂gvσ −  ∂guv

(9.17) 

2

 δxv

 δxu

 δxσ

If we interchange the  u  and   v  indices, the first and second terms in the brackets interchange positions, and the sum is the same. The third term is symmetrical
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because the metric tensor is symmetrical. The fourth term is symmetrical when we contract on  β

The aforementioned contraction of the Riemann tensor and proof of symmetry is a bit tedious. In matrix notation, we have the covariant derivative of two vectors. 









 dδds

 T

 dx

=  dxi

 ∂Ai −

 j

 Aα { ij, α}

= 0

 ds

 ds

 ∂xj

 ds







 dδds

 T 

 dx

=  dxi

 j

 Aij

= 0

 ds

 ds

 ds













 dδds

 T

 ∂A

 ∂A

=  dxi

 ij

 dx 1 +

 ij

 dx 2

 ds

 ds

 ∂x 1

 ds

 ∂x 2

 ds











 ∂A

 ∂A

+

 ij
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 ∂x 3

 ds

 ∂x 4

 ds

If we make the perturbations defined by  x 1,  x 2,  x 3, and  x 4 equal, they can be factored out of the brackets, and the remaining four-by-four matrices given in Eq. (9.18)  may be summed to obtain





 ∂A



 iv

 δ(ds) = [ xi] T

 xj

(9.19) 

 ∂xv

The second partial of  δ(ds)  with respect to the coordinates is given by Eq. (9.9) d 2 δ(ds)

 dx

=

 dxk dxi

 j

 Ai,jk

= 0

 ds 2

 ds ds ds

In matrix notation, we have 



 d 2 δ(ds)







=

 dxk

[ xi] T Ai,jk

 xj = 0

(9.20) 

 ds 2

 ds

Each of the aforementioned 4 × 4 matrices are differentiated with respect to each coordinate to obtain 16 four-by-four matrices containing a total of 256 elements and comprise the Riemann tensor. These matrices may be summed to obtain the 4x4 

Ricci tensor and 





 d 2 δ(ds) = [ xi] T Rij

 xj = 0

(9.21) 

The second variation of the line element with respect to the coordinates is not of interest to navigation. What is of interest is that  d 2 δ(ds)  is equal to zero, and  Rij being equal to zero makes this true for any coordinate system. It is also necessary
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that  Rij  be symmetrical and can be described by 10 independent equations. The proof of symmetry is trivial.  Aij  is symmetrical by inspection of Eq. (9.18).  The 16 matrices defined by Eq. (9.21)  are obtained by differentiating  Aij  twice with respect to the coordinates and are thus also symmetric. The function that defines an off-diagonal element is the same function that defines the element on the other side of the diagonal, and thus, their derivatives are equal. The sum of 16 symmetrical matrices, which define the Ricci tensor, is also symmetric. The product of two square symmetrical matrices is also symmetric. 

Equations (9.20) and (9.21) look a bit odd, and comparison with orbit determination described in Chap. 6  reveals the relationship of general relativity to metric theory. The essence of square root information parameter estimation is the data equation Eq. (6.7). 

ˆ η

ˆ

 n =  Rnm Xm

The normalized measurement is  ˆ ηn. The column vector ˆ

 Xm  contains the estimated 

parameters. The matrix  Rnm  contains the partial derivatives of  ˆ ηn  with respect to ˆ Xm. The matrix  Rnm  contains   n  rows corresponding to  n  measurements and  m columns corresponding to the number of estimated parameters. For the NEAR 

mission, the number of estimated parameters was around 600, and the number of measurements is several thousand. In order to get a solution, we would need a minimum of 600 measurements.  Rnm  as defined would be a very big matrix. If the number of measurements  n  is greater than the number of estimated parameters, we can solve for a new set of measurements of dimension  m  that replaces ˆ ηn. This keeps the dimension of  Rmm  equal to 600 by 600. We can also make  Rmm  upper triangular. 

After all the measurements have been processed, the matrix  Rmm  is inverted and multiplied times  ˆ ηm  to obtain a solution for  ˆ

 Xm. 

If we take the square root of the Ricci tensor 





 ds =

 Ruv [ X]

(9.22) 

The scalar  ds  can be interpreted as a measurement, and  Ruv  is thus a metric tensor. 

√



For general relativity, the matrix

 Ruv  is the second partial derivative of  ds  with 

respect to  x. In the aforementioned example of square root information estimation, we are looking for a solution for ˆ

 Xm. We could obtain a solution for the metric tensor 

by allowing the spacecraft trajectory to vary with time as described in Sect. 9.5. 

For general relativity, we are not interested in  x  beccause the coordinate system is arbitrary. We are interested in  ds 2 being made equal to zero. This may be achieved 

√



by making

 Ruv  identically zero. This requires all 16 elements of the Ricci tensor and all 256 elements of the Riemann tensor to be made equal to zero. There is only one metric tensor at each point in space that satisfies this requirement. 

9.9 Einstein Tensor
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9.9  Einstein  Tensor 

The Ricci tensor is zero where there is no mass. We can neglect the acceleration inside the sun, or at black holes, which are not relevant to current spacecraft trajectories. Outside the sun, we can force the Ricci tensor to satisfy Newton’s law of gravity for the case of spherical symmetry. A problem with the Ricci tensor is that it models the curvature of space but does not account for the scale. This problem with formulating measurements is common when determining orbits. For example, when tracking landmarks to determine an orbit about an asteroid, the angle measurements cannot determine the scale. Angles cannot determine length. Doppler or range data must be introduced to determine length. Another example is determining the orbit of planets by measuring angles obtained from a photographic plate on a star background. The astronomical unit or distance of the Earth from the Sun must be obtained from other sources of data. The astronomical unit was originally determined by observing the orbit of Eros near the Earth. A more relevant example is determining the inertia tensor of a rotating body by observation of its rotation. The trace of the inertia tensor can only be determined if some known external torque is applied to the body. The Einstein tensor acknowledges this problem and adds a term to the Ricci tensor. 

The Einstein tensor applies both inside and outside the sun. Therefore, the challenge for Einstein was to find a term that when added to the Ricci tensor satisfies the boundary condition at the surface of the sun and scales the Ricci tensor. 

We could, as suggested by Eddington, just multiply the Ricci tensor by a constant proportional to density. Eddington points out that this approach does not work. Since the volume elements in curved space vary in size, constant density would imply variable mass. Since energy is mass and mass creates space, conservation of energy requires the divergence of space, or increase in energy, to be zero in free space and equal to mass where mass is present. For a volume integral to give the correct volume, all the volume elements must be independent. In curved space, the size and shape of all the volume elements change every time we add mass. Einstein invented a term called invariant density to get around this problem. His approach was to map the Riemann tensor to Euclidean coordinates and define regular volume elements of equal size and equal mass for constant density. He then contracts the Riemann tensor in Euclidean space to form the Einstein tensor and maps back to curved space, thus conserving mass. 

If we lower the index  i  on the contravariant Riemann tensor and differentiate with respect to  xm, we get 

 Rijkl,m =  giαRα

(9.23) 

 j kl,m

Lowering the index  i  on the Riemann tensor effectively maps the line element from curved space coordinates to Euclidean. Permuting the  k, l, m  indices and adding yields the Bianchi identities 

 Rijkl,m +  Rijlm,k +  Rijmk,l = 0
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Recall that the divergence is the second derivative of a potential function with respect to each of the coordinates summed. Permuting the indices and adding is equivalent to summing the flow of energy or space into and out of a volume element. 

If there is no mass present in the volume element, this result is zero. If there is mass present, the increase in the curvature of space is proportional to the mass. We then perform contraction by applying the appropriate skew-symmetric properties of the Riemann tensor and then multiplying by  gil gjk  to map back to curved space coordinates. An abbreviated derivation is given by Sokolnikoff in [4]. 

 gjk(gilRijkl,m) +  gjk(gilRijlm,k) +  gil(gjkRijmk,l) = 0

The order of multiplication by the  gil gjk  does not matter because they operate on different indices of the Riemann tensor. Next, we use the skew symmetric properties of the Riemann tensor to obtain 

 gjk(gilRijkl,m) −  gjk(gilRijml,k) −  gil(gjkRjimk,l) = 0

Contracting on the first and fourth index, we get 

 gjkRjk,m −  gjkRjm,k −  gilRim,l = 0

and 

 gij Rij,m − 2 Rk

= 0

 m,k

or 





 Rk − 1

=

 m

 δk

0

(9.24) 

2  mR ,k





 R =  gij Rij

Eq. (9.24) states that the divergence of space or the Einstein tensor is zero. The Einstein tensor is 

 Gi =  Ri − 1  δi R

 j

 j

2  j

or in the covariant form 

 Gij =  Rij − 1  gij R

(9.25)

2
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The Einstein tensor is equated to what is called the stress energy tensor Gij = 8 πG Tij

(9.26) 

 c 2

Outside the sun, T is equal to zero. Inside the sun 

⎡

⎤

 p  0 0 0

⎢0  p  0 0⎥

 T

⎢

⎥

 ij = ⎣0 0  p  0⎦

(9.27) 

0 0 0  ρ

The variable  ρ  is the density of matter, and the variable  p  is the pressure that is obtained in hydrostatic equilibrium. 

Equating   G  to   T  is not a mathematically derived result but a statement of physics that cannot be proven. The reader may wonder why Einstein did not just equate the Ricci tensor with  T . Both the Ricci tensor and Einstein tensor are curvature tensors. Take the shape of the sun or any body and move it to flat Euclidean space. Partition the body into a large number (infinity) of cubes. Assuming constant density, calculate the mass of each cube. Map the cubical volume elements to curved space and fill each curved space volume elements with the mass computed for each cubical volume element. This operation conserves the mass. We now have a problem because the curved space volume elements have different volumes and densities. For flat space, the volume and mass can be computed by adding the volume elements in any order. For curved space coordinates, the mass sum of all the volume elements will depend on the order if we assume constant density. If we build up the sun one volume element at a time, the mass will vary because each volume element changes the curved space coordinates. The Einstein tensor solves this problem by book keeping the mass in Euclidean space and mapping to curved space. 

9.10  Comparison  of  General  Relativity  and  Classical 

Potential  Theory 

Comparison of the general relativity approach with Newton’s classical theory reveals some striking similarities. Newton starts with his inverse square law, and the potential and divergence follow in a straight forward mathematical derivation. 

The divergence is solved for the potential, and the equations of motion follow from the gradient of the potential function. The inverse square law is given and is not proven. 

Einstein starts from a much simpler equation and after a much more difficult mathematical derivation obtains the Einstein tensor, which can be solved for the metric tensor. The simple equation he starts from is difficult to interpret in the physical world. Eddington has no problem in not understanding in that he argues

346

9

Einstein Field Equations

Table  9.1  Comparison of Newton’s theory with Einstein’s theory Newton’s theory

Einstein’s theory 

∞

− μi

 dxu

 i=0 |r − r

 ds

 i |

 U

 Au

∞ − μi(r − r i)

∇ U

 ∂Ai − { ij, α}  A

 i=0

|r − r

 ∂x

 α

 j

 i |3

∞

3 μi

− 3 μi |r − r

 g

 i=0 |r−r

 i |2 = 0

∇ · ∇ U = ∇2 U

 Ruv − 1  uv R

 i |3

|r−r i|5

2

that if the resulting equations of motion can be verified by experiment, the theory must be correct. Einstein offered a physical explanation of the simple starting point in terms of tensors. Eddington probably preferred the experimental approach since he conducted the light bending experiment that proved the theory. Einstein provides a verbal description of general relativity and then defines certain properties of tensors. Sometimes, the physics is difficult to discern, but Einstein was more interested in convincing mathematicians than physicists. It appears Einstein was trying to convince mathematicians that he was one of them, and Eddington, who was a mathematician, was trying to convince physicists that he was one of them. 

Einstein’s theory of general relativity must meet a stringent requirement. If one step in the derivation is in error, the whole theory is lost. 

Table  9.1  contains the key mile stones in the development of Newton’s classical theory of gravity and Einstein’s General Theory of Relativity. For the classical theory, the first row contains a scalar potential, the second row contains the first derivative or acceleration of the scalar potential, and the third row contains the second derivative or divergence of the scalar potential. For general relativity, the first row contains a scalar, which may be thought of as a measurement, the second row contains the first derivative or covariant derivative of the measurement, and the third row contains the second derivative or curvature of the measurement which is the Einstein tensor. For Newton’s theory, the inverse square law is given, and the potential function and divergence may be obtained by mathematical operations on the inverse square law. We simply integrate to obtain the potential and differentiate to obtain the divergence. It is not necessary to assign any physical meaning to potential or divergence. For general relativity, the term in the first row is an artificial measure of motion when applied to the equation of geodesics. The covariant derivative and Einstein tensor are obtained by mathematical operations and require no physical explanation. 

For general relativity, we define a measurement that consists of the product of two vectors. 

 dxu

 Z =  Au ds

 Au  can be thought of as acceleration and   dxu  is in the direction of the velocity vector ds

or tangent to the line element at some point. Both of these vectors are observable, but their components are dependent on the assumed coordinate system. The dot product
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( Z) is not dependent on the assumed coordinate system. The projection of  Au  on dxu  is the same in any coordinate system.  Z  is said to be invariant with respect ds

to the system of coordinates. The derivative of  Z  with respect to the coordinates (the covariant derivative) is also invariant as are higher-order derivatives. The solution of the resulting differential equations is obtained by applying insight into the constraints associated with symmetry. One can go through all the mathematics associated with this solution and have no understanding of general relativity. The understanding of General Relativity theory is associated with the aforementioned fundamental assumptions and the geometry, which is subsumed by the mathematics. 

The key to physically understanding theories involving the divergence theorem is to physically describe one of the terms given in Table 9.1. The other two terms become locked in once one is understood since they are mathematically related. For classical gravitational theory, the potential and divergence are tied to the inverse square law, and we can solve the equation for divergence and take the gradient to obtain the equations of motion. For heat, the divergence can be obtained directly from heat flow and solved for the scalar temperature distribution. 

9.11  Geometry  of  General  Relativity  Described  by  Matrix 

Notation 

The derivation and proof that the Einstein tensor is equal to curvature, which is equated to the stress energy tensor, are probably the most difficult part of General Relativity Theory to understand. Even Sir Arthur Eddington had trouble understanding Einstein’s tensor, and he was one of the three people in the world who understood general relativity. Remember the joke when Eddington replied “who was the third?”. Consider the following quote from page 115 of Eddington’s book [2]. 

 The divergence of Gi =  Ri − 1 δi R is identically zero ( 52 ) j

 j

2  j

“I think it should be possible to prove (52) by geometrical reasoning . . . But   I   have not been able to construct a geometrical proof and must content myself with a clumsy analytic verification.” What is needed is a clumsy geometrical verification. 

The following geometrical derivation lacks the rigor of the mathematical derivation. 

Because any error invalidates the entire theory, geometrical descriptions are often shunned in the literature. The reader should regard the following geometrical derivation as suspicious. 

Geometry is best described by vectors. Let the curved space coordinate ( xc)   be defined by the coordinate transformation  T  from Euclidean coordinates ( xe). 

xc =  T xe

(9.28)
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and 

xe =  T −1 xc

(9.29) 

The matrix  T  is said to be covariant and its inverse ( T −1) is contravariant. In flat space,  T  is an orthogonal transformation matrix, and in curved space,  T  can be anything depending on the universe. Our universe imposes some restrictions on T  associated with symmetry and the geometry, that is, there exists a one-to-one mapping from Euclidean space to curved space. In flat space, x e  and  x c  are the same. The mapping from curved space to Euclidean space is obtained by inverting T . The transformation from Euclidean space to curved space is not unique, and  T

may be complex depending on the definition of the coordinates. 

The line element is defined by 

 ds 2 = x T

 c

c xc =  (T xe )T (T xe ) = x Te  T T T xe The matrix defined by  T T T  is called the metric tensor  guv  and we have ds 2 = x T

 c

 e guv x e = x T

 c I x c

(9.30) 

and after multiplying by the inverse of  T  we  hav e

 ds 2 = x T

x

 e

 e I x e = x T

 c g−1

 uv

 c

(9.31) 

For an orthogonal transformation in flat space,  guv  is positive definite. A transformation matrix is effectively the square root of  guv. Because of the minus sign in the Minkowski metric,  T  is complex. Einstein got around complex transformation matrices by defining the time coordinate as a complex number ( ict). 

In curved space, the metric tensor is not constant but varies as we move away from a point of interest. The aforementioned equation for the line element is thus only valid for infinitely small x. The vectors xe and  xc from the origin to a point in space are therefore not useful. In flat space,  ds  can be of any length. Vectors are straight lines. In curved space, we must integrate to define a line. Therefore, the vectors are only useful as dif ferentials. 

In the derivation of the Einstein tensor, there are frequent multiplications by  guv or  guv. It may be useful to attempt to do these operations with matrices. The Ricci tensor may be diagonalized into a transformation matrix by taking the square root. 

Thus, we have 

√  T √

 R =

 R

 R

and we way transform a vector from Euclidean space to curved space by 



√

 Y =

 c

 RXe
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The second derivative of the curved space line element is thus 



 T



√  T √

 ds 2 =

=

 c

 Yc Yc

 XTe R

 RXe

or 



 T



 ds 2 =

=

 c

 Yc Yc

 XTe RuvXe

(9.32) 



The first derivative ( ds 2 c ) must also be zero. In general, if the second derivative is zero, the first derivative is a maximum, a minimum, or an inflection. An inflection is a constant, which may not be zero. Since the Riemann tensor, defined by the difference between Eqs. (9.10) and (9.11), is zero the first derivative or covariant derivative is also zero. The Christoffel symbols that multiply the covariant derivative are not zero. We can transform from curved space coordinates back to Euclidean coordinates by 





√

 Ye =

 g−1  RXe

The Euclidean line element is now 







 T



 ds 2 =

=

 e

 Ye Ye

 XTe ( g−1 R)T ( g−1 R)Xe

or 



 T



 ds 2 =

=

 e

 Ye Ye

 XTe (guvRuv)Xe

(9.33) 

Equation (9.32) is the transformation from Euclidean space to the line element in curved space. The Euclidean coordinates are needed to define the volume elements such that the density is constant and the divergence of space through the faces is accounted for correctly. Equation (9.33) is the transformation from curved space to Euclidean. The curved space coordinates are needed for the equations of motion and for equating curvature to mass. 

Transformations between Euclidean coordinates and curved space coordinates are achieved by multiplication by the covariant or contravariant metric tensor. 

Mathematicians and Einstein need not be concerned with the coordinates since they operate on tensors to define differential equations that can be solved for the metric tensor. Once the metric tensor is obtained, it is inserted into the equation of geodesics where the curved space coordinates are of interest. Summation notation defines the order of multiplication by the order of the indices. A subscripted index indicates a column, and a superscripted index indicates a row for the matrices defined earlier. An index can appear no more than two times in a term of an equation indicating how the rows and columns are multiplied. When the index of a tensor is raised by multiplying through by the inverse of the metric tensor or contravariant metric tensor (  guv), the mapping is to curved space coordinates. In summation
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notation, the indices only apply to an equation and are only used to indicate the order of multiplication. A given equation can be rewritten with completely different indices since they have no physical meaning. 

9.12  Bianchi  Identity  and  Divergence 

The Riemann tensor describes curvature at a point. It has no physical meaning because in the limit as  dx  approaches zero, it vanishes. The Einstein tensor gives the Riemann tensor physical meaning. The contraction that yields the Ricci tensor is good for empty space but breaks down when there is mass present. In the literature, the Einstein tensor is often referred to as an alternate contraction of the Riemann tensor. Here we think of it as a repair of the Ricci tensor. If the repair is not done correctly, the Einstein tensor will not equal the stress energy tensor. The first step in Sect. 9.9  was to lower the index on the Riemann tensor. This operation transformed to Euclidean coordinates Eq. (9.30). Next, we permute the indices and sum three Riemann tensors to define the Bianchi identities. This operation is essentially the same as performed by the   2 operator in classical theory. If we differentiate the Ricci tensor with respect to  Xk  and permute the indices, we get 

 ∂Rij

 ∂R

 ∂R

 ∂R

 ∂R

=

 ij

 ij

 ij

 ij
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 , 

 ∂X k

 ∂X1

 ∂X2

 ∂X3
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 ∂R
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 ∂R
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The Bianchi identity is defined by 

 ∂Rij

 ∂Rij

 ∂Rij

 Bij =

+

+

= 0

 ∂X k

 ∂X l

 ∂X m

The Bianchi identity is zero when there is no mass present because the divergence is zero. For a diagonal Ricci tensor, the diagonal elements of  Bij  are the divergence defined in the first column of Table 9.1. The permutation of the indices was performed to make the diagonal elements the divergence in much the same way as ijk  was defined to make the cross product equal Eq. (1.46). For spherical symmetry, Bij  is diagonal and the diagonal elements of  Bij  are given by B 11 =  B 22 =  B 33 =  ∂R 11 +  ∂R 22 +  ∂R 33

 ∂X1

 ∂X2

 ∂X3

 ∂R 44

 B 44 = 3  ∂X4
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The trace of  Bij  is 





 ∂R 11

 ∂R 44

 B 11 +  B 22 +  B 33 +  B 44 = 3

+  ∂R 22 +  ∂R 33 + 3

 ∂X1

 ∂X2

 ∂X3

 ∂X4

The scalar  R  is obtained by dividing by 3 since we added three Ricci tensors together to get the  B  matrix. 

 R =  ∂R 11 +  ∂R 22 +  ∂R 33 +  ∂R 44

(9.34) 

 ∂X1

 ∂X2

 ∂X3

 ∂X4

The   B  matrix is thus

 Bij =  ∂I R

 ∂X k

and   I  is the four-by-four identity matrix. We have assumed that the Ricci tensor  Ruv is a diagonal matrix which it is for spherical symmetry. Recall from Eq. (9.22)  that 

  2 ds 2 = [ xu] T [ Ruv] [ xv]

If  Ruv  is not diagonal, we can replace it with its matrices of eigenvectors and eigenvalues. Thus, 





  2 ds 2 = [ xu] T T T

 uv

[ λuv] [ Tuv] [ xv]

where  Tuv  is an orthogonal matrix of eigenvectors and  λuv  is a diagonal matrix of eigenvalues. Thus, we have transformed to a local coordinate system that defines principal axes and  λuv  is diagonal just like an inertia tensor is diagonal for principal axes. We could complete the derivation of the Einstein tensor and then transform back to the reference coordinate system. However, we know from matrix theory that the trace of a matrix is equal to the sum of the eigenvalues. The divergence, which is conservation of energy, is equal to the trace and sum of the eigenvalues of the Ricci tensor. 

9.13  Einstein  Tensor  From  Matrix  Notation 

Since   Bij  is effectively the local curvature of space, it can be equated with the stress energy tensor  Tij . First, we must transform to curved space coordinates by raising the  index  on  Tij . Mass equals curvature in curved space. 

 ∂I R

 ∂T i

=

 j

 k

 ∂X k

 ∂X k
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If we start from empty space,  Rij  is initially the Minkowski metric in the limit as   m  approaches zero. From the definition of the derivative, we have the following difference equation. 

 ∂Ri−

 j

 Ri+ =  Ri− +

 X

 j

 j

 k

 ∂Xk

where   Xk  are the coordinates of a volume element. The volume element is added on the surface of the body. The boundary condition requires that the Ricci tensor of the body at this point is equal to the Ricci tensor of free space. Equivalence of curvature and mass results in 

 Ri =  (I R)

 j

or 

 Ri =  (kT i)

 j

 j

Adding we get 

2 Ri =  I R +  kT i

 j

 j

 k

 (Ri − 1  I R) =   T i

 j

2

2  j

The Einstein tensor is thus 

 Gi =  Ri − 1  I R =  k T i

 j

 j

2

2  j

or in Euclidean coordinates 

 G

 Gij =  Rij − 1  gij R = 8 π

 Tij

2

 c 2

The constant  k  scales the stress energy tensor to equal mass. 

Let   P i  be the ratio of the measured circumference of a circle to the diameter. 

In the aforementioned equation,  π  is a constant defined by a series that happens to equal   P i  in Euclidean coordinates. In curved space,  P i  is NOT equal to  π . This will be verified by experiment later in Chap. 4. Einstein states in [1] that  P I  is greater than  π  in curved space coordinates.  P i  is actually a variable. Therefore,  Tij  must be in Euclidean coordinates. 

The pressure terms in the stress energy tensor suggest the energy involved in compressing the matter within a volume element. The energy of compression, like

9.14 Gravity Wave
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associated with a spring, is included in the mass. Imagine a neutrally buoyant object like a jelly fish floating in the ocean. It is buoyed up by a force equal to the weight of the water displaced, which is the weight of the jelly fish and is said to be in hydrostatic equilibrium. The integral of the pressure over the surface projected on to the gravity vector is equal to the weight or force of gravity. Now imagine a boulder buried deep in the Earth. It is also in hydrostatic equilibrium. We know this because the boulder is not moving. The excess pressure over the bottom of the boulder compared to the top times the projected area is equal to the weight of the boulder. The pressure differential is the pressure in the stress energy tensor. It can be shown that the sum of the pressures associated with each spatial coordinate times the projected area is equal to the density times the volume. Thus, for a spherical symmetrical body like the sun,  T 22 and  T 33 in spherical coordinates are equal to zero and  T 11 is in the radial direction. The pressure ( p) is numerically equal to T 44 the density (  ρ). Pressure and density have the same units (Newton’s per square meter) in curved space when the time coordinate is normalized to meters. For the Schwarzschild solution in Chap. 2, the mass is determined from the  G 44 term of the Einstein tensor. The same mass could have been determined from the  G 11 term. But only if  p =   ρ. 

9.14  Gravity  Wave 

An interesting aside may be deduced from Eq. (9.32). The elements of the Ricci tensor can be replaced by the gradient of a potential function. The scalar potential is curvature as defined by the line element  ds. If we define  Gw  as Gw =  ∂ ds 2

 ∂X

Then 

 Rij =  ∂ 2 ds 2 =  ∂Gw

 ∂X 2

 ∂X

Substituting into Eq. (9.34)   give  s

 ∂ 2 Gw +  ∂ 2 Gw +  ∂ 2 Gw −  ∂ 2 Gw = 0

 ∂X2

 ∂X2

 ∂X2

 ∂X2

1

2

3

4

If we replace  X 1 by   r  and   X 4 by   ct, we have a wave equation propagating in the  r direction. 

 ∂ 2 Gw − 1  ∂ 2 Gw = 0

(9.35)

 ∂r 2

 c 2

 ∂t  2
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Gravity waves are not of much interest to navigation. They are generally too small to be detected. However, if a substantial gravity wave propagated through the solar system, it would perturb a spacecraft and the Earth and shows up in the Doppler data residuals as two pulses. Two spacecraft along with the Earth would enable determination of the direction of the gravity wave. Unfortunately, a big gravity wave never came along. This may be fortunate because a really big gravity wave could shake the Earth’s citizens off the planet. Gravity waves and radio waves share the same equation. 

The author is well aware that the aforementioned derivation has some mathematical problems and obtaining the correct result does not justify the derivation. The intent here is to outline an approach that can eventually be turned into a proof by a mathematician. A problem with the aforementioned derivation is mixing Einstein summation notation with matrix notation. Introduction of matrix notation requires proof of some of the properties of matrices, which may not be familiar to those familiar with summation notation. For example, the metric tensor is symmetrical because the product of any matrix with its transpose is symmetrical as shown in Eq. (9.30). The symbols  ,  δ,  ∂  and   d  identify differentials that exist only in the limit as they approach zero. In the real world, the total derivative ( d) exists only if we include every grain of sand or atomic particle in the unive rse. 

9.15  Riemannian  Geometry 

The aforementioned derivation of the covariant derivative, Riemann tensor, Ricci tensor, and Einstein tensor as well as curvature tensors used to derive gravity models, translational acceleration, rotational acceleration, trajectory optimization algorithms, and orbit determination filter variational equations involve the geometric mapping of vectors from one coordinate system to another. An example of the geometry associated with general relativity theory is illustrated on Fig. 9.3.  The differentials shown are only valid in the limit as they approach zero. In the limit as the differentials approach zero, the geometry shrinks down to the points  Xe  for Euclidean space and  Xc  for curved space. The  Xe  and   Xc  coordinates are of an observer and a spacecraft, respectively. The  Xe  coordinate system can be defined for another observer. For example,  Xe  can be the Earth and  Xe  the Moon. Since the projected line element is the same for each coordinate system, the line element is said to be invariant and the derivative of the line element with respect to the coordinates is zero. For this assumed geometry, the mapping matrix shown on Fig. 9.3  must include the mapping from earth and the moon to the spacecraft. This involves integrating variational equations along the flight path, and the metric tensor varies as a function of the coordinates. In order to obtain a mathematical solution, Einstein defined a local Euclidean frame where  Xe,  Xe, and  Xc  are located at the same point in space. This effectively puts all the observers on the spacecraft or very close to the spacecraft, and thus, they share the same metric tensor. If the observers
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Fig.  9.3  Riemannian geometry 

complain because it is too crowded, we simply shrink them and put them on the head of a pin. Mathematicians have this power. 

In the limit, Fig. 9.3  is reduced to a point at  Xc.  If  Xe  and   Xc  are located at the same point, or close to the same point, the mapping matrix from  Xe  to   Xc  is the square root of the metric tensor. The square root of the metric tensor is not unique to accommodate many observers, but the metric tensor is unique at any point in space. The scalars  ds 2 and higher-order derivatives are defined by the projection of an arbitrary vector  Au  onto the local tangent vector  dXu  obtained from the equation ds

of geodesics. The projected line element is shown on Fig. 9.3  for two reference coordinate systems  Xe  and   Xe. The mapping from local Euclidean space to curved 

√

space is defined by

 g

and is said to be covariant. The mapping from curved 

 uv √

space to Euclidean space (  g−1 =  guv)  is contravariant. The matrix  g uv

 uv  is called 

the metric tensor. 

9.16  Summary 

The Einstein field equations have been derived from fundamental principles as set forth by Einstein. In the remaining chapters, only the equation of geodesics and the Ricci tensor are needed to derive the equations used for navigation. The derivations of these equations are straightforward and may be found in the literature. Some physics has been ignored because their effect has been deemed to be insignificant. 

The sun is modeled as a rigid nonrotating body in the shape of a sphere. The
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dragging of inertial frames from rotation of the sun is ignored for navigation. 

The perturbations of the planets are also ignored except for the determination of the planet ephemerides and the effect of Jupiter and Saturn gravity on clocks. 

The navigation software is initialized with a state vector obtained from a high-precision planetary ephemeris, which models the planets motion over many years. 

The integration of planet ephemerides for navigation is good for several months, which is enough time for spacecraft orbit determination. 

For the remaining chapters, the equations will be rigorously derived. Since these equations have been programmed into operational software, there is no room for error. The original implementation of these equations in the 1960s was by relativity experts at the California Institute of Technology and Jet Propulsion Laboratory, who deserve all the credit. 
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Chapter  10 

Schwarzschild  Solution  for  Spherical 

Symmetry 

10.1  Introduction 

An exact solution of the Einstein field equations for a spherically symmetrical sun was obtained by Schwarzschild about a month after Einstein published his theory. 

Apparently, Schwarzschild was aware of Einstein’s work long before he published. 

It is unreasonable to believe that Schwarzschild was able to obtain his solution in a month. We know Hilbert was aware of Einstein’s work because they were in communication with each other a few months before Einstein published his theory. 

According to Walter Isaacson in his book  Einstein, Hilbert published his own theory while Einstein was refining his theory. Einstein objected and Hilbert withdrew his paper. Hilbert recognized the theory was Einstein’s and deferred. This little episode probably accelerated Einstein’s publication. He probably would have preferred to wait a few more years, like Newton, because he knew that once the theory was published, he would have a lot of competition and distraction. He was right. 

10.2  Schwarzschild  Metric  Tensor 

A valid method for solving differential equations is to guess the solution, insert it into the equations, and hope it works. Schwarzschild started with a metric tensor that was obviously close to the actual metric but had a couple of undetermined functions. 
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⎡

⎤

− eλ  0

0

0

⎢

⎢

⎥

⎢

⎥

⎢

⎥

0 − r 2

0

0

⎢

⎥

⎥

 gij = ⎢

⎢

⎥

(10.1) 

⎢

⎥

⎢ 0

0 − r 2 sin2  θ  0 ⎥

⎣

⎥

⎦

0

0

0

 eφ

The zeros are due to symmetry. Since all the stars in the sky and the cosmic background are evenly distributed, it is reasonable to assume that there is no preferred direction for space. The only curvature is with respect to the  r  and time spherical coordinates. The functions  φ  and   λ  were made exponents of  e  since he knew the  g 11 and   g 44 terms of the metric tensor would approach minus one and one respectively (flat space) as  r  approached  infinity . 

10.3  Schwarzschild  Christoffel  Symbols 

Once the metric tensor is defined, the Christoffel symbols may be computed from 





[

 ∂guσ

 uv, α] = 1

+  ∂gvσ −  ∂guv

2

 δxv

 δxu

 δxσ

⎡

⎤

⎡

⎤

− eλ dλ  0

0

0

0 − r

0

0

⎢ 2  dr

⎢

⎥

⎢

⎥

⎢

⎥

⎢

⎥

⎢

⎥

⎢

⎥

0

 r

0

0

⎥

⎢− r  0

0

0⎥

[

⎢

⎥

⎢

⎥

 uv,  1] = ⎢

[

⎢

⎥  uv,  2] = ⎢

⎥

⎢

⎥

⎢

⎥

⎢ 0

0  r  sin2  θ

0

⎥

⎢ 0 0 2 r 2 sin  θ  cos  θ  0⎥

⎣

⎥

⎦

⎢

⎣

⎥

⎦

0

0

0

−1  eφ dφ

0

0

0

0

2

 dr

⎡

⎤

⎡

⎤

0

0

− r  sin2  θ

0

0

0 0  eφ dφ

⎢

2  dr

⎢

⎥

⎢

⎥

⎢

⎥

⎢

⎥

⎢

⎥

⎢

⎥

0

0

− r 2 sin  θ  cos  θ  0⎥

⎢ 0 0 0 0 ⎥

[

⎢

⎥

⎢

⎥

 uv,  3] = ⎢

[

⎢

⎥  uv,  4]=⎢

⎥

⎢

⎥

⎢

⎥

⎢− r  sin2  θ − r 2 sin  θ  cos  θ

0

0⎥

⎢ 0 0 0 0 ⎥

⎣

⎥

⎦

⎢

⎣

⎥

⎦

0

0

0

0

 eφ dφ  0 0 0

2  dr

Since
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{ uv, α} =  gσα[ uv, α]

⎡

⎤

− e− λ  0

0

0

⎢

⎢

⎥

0

− 1

0

0 ⎥

 guv = [ g

 r 2

 uv ]−1 = ⎢

⎣

⎥

0

0 −

1

0 ⎦

 r 2 sin2  θ

0

0

0

 e− φ

⎡

⎤

⎡

⎤

1  dλ

0

0

0

0 1

0

0

⎢2  dr

 r

⎢

⎥

⎢

⎥

⎢

⎥

⎢

⎥

⎢

⎥

⎢

⎥

0 − re− λ

0

0

⎥

⎢1 0

0

0⎥
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{

⎢

⎥

⎢

⎥

 uv,  1} = ⎢

{

⎢

⎥  uv,  2} = ⎢

⎥

⎢

⎥

⎢

⎥

⎢ 0

0

− re− λ  sin2  θ

0

⎥
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⎣

⎥

⎦

⎢
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⎥

⎦

0

0
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0 0

0

0

2

 dr

⎡

⎤

⎡

⎤

0

0

1

0

0

0 0 1  dφ

⎢
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2  dr

⎢

⎥

⎢

⎥

⎢

⎥

⎢

⎥

⎢

⎥

⎢

⎥

0

0

cot  θ  0⎥

⎢ 0 0 0 0 ⎥

{

⎢

⎥

⎢

⎥

 uv,  3} = ⎢

{

⎢

⎥  uv,  4} = ⎢

⎥

⎢

⎥

⎢

⎥

1

⎢ cot  θ  0 0⎥

⎢ 0 0 0 0 ⎥

 r

⎣

⎥

⎦

⎢

⎣

⎥

⎦

0

0

0

0

1  dφ  0 0 0

2  dr

and 

{

 dλ

11 ,  1} = { rr, r} = 12  dr

{22 ,  1} = { θθ, r} = − re− λ

{33 ,  1} = { φφ, r} = − re− λ  sin2  θ

{

 dφ

44 ,  1} = { tt, r} = 1  eφ− λ

2

 dr

{

 dφ

14 ,  4} = { rt, t} = 12  dr

{13 ,  3} = { rφ, φ} = 1 r

{23 ,  3} = { θφ, φ} = cot  θ

{12 ,  2} = { rθ, θ} = 1 r

{33 ,  2} = { φφ, θ} = − sin  θ  cos  θ

(10.2)
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10.4  Schwarzschild  Ricci  Tensor 

The Christoffel symbols are inserted into the Ricci tensor. This is a tedious process and will be done for  R 11. The other equations are easy to obtain once we have  R 11. 

 R 11 = {1 α, β} { β  1 , α} −  ∂ {11 , α} − {11 , β} { βα, α} +  ∂ {1 α, α}

 ∂xα

 ∂x 1

Term 1 

{1 α, β} { β  1 , α} = {11 ,  1} {11 ,  1} + {12 ,  2} {21 ,  2} + {13 ,  3} {31 ,  3} + {14 ,  4} {41 ,  4}

{



11 ,  1} {11 ,  1} = 1  (λ ) 2

4

{12 ,  2} {21 ,  2} = 1

 r 2

{13 ,  3} {31 ,  3} = 1

 r 2

{



14 ,  4} {41 ,  4} = 1  (φ ) 2

4

Term 2 

 ∂ {11 , α} =  ∂ {11 ,  1} = 1 λ

 ∂xα

 ∂x 1

2

Term 3 

{11 , β} { βα, α} = {11 ,  1}  ({11 ,  1} + {12 ,  2} + {13 ,  3} + {14 ,  4} )





{



1 



11 , β} { βα, α} = 1  λ

 λ + 1 + 1 + 1  φ

2

2

 r

 r

2





{

1





11 , β} { βα, α} =

 (λ ) 2 +  λ + 1  λ φ

4

 r

4

Term 4 

 ∂ {1 α, α} =  ∂ ({11 ,  1} + {12 ,  2} + {13 ,  3} + {14 ,  4} )

 ∂x 1

 ∂x 1



=  ∂

1 



 λ + 1 + 1 + 1  φ

 ∂r

2

 r

 r

2
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+  ∂ {1 α, α} = 1 



 λ − 2 + 1  φ

 ∂x 1

2

 r 2

2

The primes indicate differentiation with respect to  r. The complete Schwarzschild– 

Ricci tensor is then given by 









 R 11 = 1  φ − 1  λ φ + 1  (φ ) 2 −  λ = 0

(10.3) 

2

4

4

 r









 R 22 =  e− λ  1 + 1  r(φ −  λ ) − 1 = 0

(10.4) 

2













 R 33 = sin2  θ e− λ  1 + 1  r(φ −  λ ) − 1 = 0

(10.5) 

2













 R 44 =  eφ− λ − 1  φ + 1  λ φ − 1  (φ ) 2 −  φ

= 0

(10.6) 

2

4

4

 r

Equations  10.3–10.6  are given on page 303 of Sokolnikoff’s book [1] and on pages 330–331 of Lass’s book [2]. 

10.5  Solution  for  Metric  Tensor  Where  No  Mass  Is  Present We may conclude from Eqs. (10.3) and (10.6) that λ = − φ

and 

 λ = − φ +  constant

However, as r approaches infinity,  λ  and   φ  approach zero, and the constant is also zero. Therefore, 

 λ = − φ

Equation (10.4) becomes 



 eφ( 1 +  rφ ) = 1
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A change of variable from  eφ  to   γ , as described in Sokolnikoff’s book 4, yields γ +  rγ = 1

 d(rγ ) = 1

 dr

 rγ =  r +  constant

and 

 γ = 1 − 2 m =  eφ

 r

where 2 m  is a constant of integration. The metric tensor is thus

⎡ 

−

⎤

1

⎢− 1 − 2 m

0

0

0

⎢

 r

⎥

⎢

⎥

⎢

⎥

⎢

⎥

⎢

0

− r 2

0

0

⎥

⎥

 gij = ⎢

⎢

⎥

⎢

⎥

⎢

0

0 − r 2 sin2  θ

0

⎥

⎢

⎥

⎣

⎥



⎦

0

0

0

1 − 2 m

 r

The solution for the metric can be verified by substituting  gij  into the field equations. 

 eφ = 1 − 2 m

 r



 eφφ = 2 m

 r 2



−1



 φ = 2 m  1 − 2 m

= − λ

 r 2

 r



−





2

−1



 φ = − 4 m 2 1 − 2 m

− 4 m  1 − 2 m

 r 4

 r

 r 3

 r

Factoring out the common denominator  ( 1 − 2 m )−2,  the  terms  of  R

 r

11 are given by, 





1 

 φ = 1 − 2 m 2 − 2 m + 4 m 2  ( 1 − 2 m )−2

2

2

 r 4

 r 3

 r 4

 r
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− 1



 m 2

 λ φ =

 ( 1 − 2 m )−2

4

 r 4

 r





1



 m 2

 (φ ) 2 =

 ( 1 − 2 m )−2

4

 r 4

 r







−  λ = 2 m − 4 m 2  ( 1 − 2 m)−2

 r

 r 3

 r 4

 r

 R 11 from Eq. (10.3) is then 









 R 11 = 1  φ − 1  λ φ + 1  (φ ) 2 −  λ

2

4

4

 r







−2 m

−2

 R 11 = − 2 m 2 −

+ 4 m 2 +  m 2 +  m 2 + 2 m − 4 m 2

1 − 2 m

= 0

 r 4

 r 3

 r 4

 r 4

 r 4

 r 3

 r 4

 r

The solution is complete once the constant  m  is determined. There are two ways of determining  m. The first involves substituting the metric into the equation of geodesics and obtaining the equations of motion. The term for the weak gravity field containing  m  is equated with Newton’s gravitational acceleration at infinity. 

This is a little tricky because the fourth coordinate of the geometry is  ct, and we need to factor out the  c  to get the equations of motion in terms of  t. The result for the acceleration of  r  is given in Eq. (10.7) and is d 2 r

2

= − mc 2 +

 dφ

 (r − 3 m)

(10.7) 

 dτ  2

 r 2

 dτ

For a spacecraft being radially accelerated from rest, the  φ  coordinate is constant and   dφ  is zero. Therefore, 

 d 2 r = − mc 2

(10.8) 

 dτ  2

 r 2

The weak field acceleration according to Newton is 

 d 2 r = − GM = −  μ

 dt 2

 r 2

 r 2

In the weak field,  dt ≈  dτ . Therefore,  mc 2 =  μ  and m =  μ

 c 2
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 d 2 r

2

= −  μ +

 dφ

 r − 3 μ

(10.9) 

 dτ  2

 r 2

 c 2

 dτ

10.6  Solution  of  Einstein  Tensor  for  Metric  Tensor 

The same result may be obtained by solution of the Einstein field equations inside the sun. This will be made a lot easier by making the following substitutions in the Ricci tensor to temporarily get rid of the exponentials. 

  =  eφ and  =  eλ

The Ricci tensor defined by Eq. (10.3) through Eq. (10.6) becomes 











 

 ) 2

 

 R 11 =   −  

−  (

− 1

2 

4 

4  2

 r 



 R 22 =  r + 1 −  r − 1

2 

 

2  2



 r

 R 33 = (

+ 1 −  r − 1 )  sin2  θ

2 

 

2  2











 

 ) 2

 

 R 44 = −   +  

+  (

− 1

2 

4  2

4 

 r 

The scalar curvature of space is given by 

 R =  Ru =

 u

 guvRuv =  g 11 R 11 +  g 22 R 22 +  g 33 R 33 +  g 44 R 44

 R = − 1  R 11 − 1  R 22 −

1

 R 33 + 1  R 44

 

 r 2

 r 2 sin2  θ

 

Since in the Schwarzschild geometry the trajectory is planar, we may set  θ =  π  and 2

 R 33 =  R 22. 

 R = − 1  R 11 − 2  R 22 + 1  R 44

 

 r 2

 













 

 ) 2

 

 

 R = −   +  

+  (

− 2

+ 2

+ 2  ( 1 − 1  )

 

2  2

2  2 

 r 

 r  2

 r 2

 

 G 44 =  R 44 − 1  g 44 R

(10.10)
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 G 44 = −   +  

+  (

− 1

+   −  

−  (

+ 1

2 

4  2
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 r 

2 

4  2

4 

 r 



+ 1   +   ( 1 − 1  )

(10.11) 

 r  2

 r 2

 





1

 dλ

 G

 G

 G 44 =

−  e− λ + 1 e− λ

 eφ = 8 π

 T 44 = 8 π

 ρ

(10.12) 

 r 2

 r 2

 r

 dr

 c 2

 c 2

Since 

 e− λ =  ( 1 − 2 m )

 r

 eφ =  ( 1 − 2 m )

 r

we get 

2 m =  r −  re− λ





 dm(r) = 1

 dλ

1 −  e− λ +  re− λ

 dr

2

 dr

After substituting into Eq. (10.12), 





2  dm

 G

1 − 2 dm

= 8 π ρ

 r 2  dr

 r

 c 2





 dm  1 − 2 dm

= 4 πr 2  G ρ dr

 r

 c 2

In the limit as  dr  and   dm  go to zero, the term in the bracket goes to 1 and can be factored out of the inte gral. 

 dm = 4 πr 2  G ρ dr

(10.13) 

 c 2

The solution of the Einstein field equations is obtained by integrating over the volume of the sphere. This integration is simplified by defining a spherically symmetric volume element. 

 dV = 4 πr 2 dr

The volume element is an infinitely thin spherical shell. It will be shown from the shell theorem, discovered by Newton and probably others, that the acceleration
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inside a spherical shell is zero. Therefore, we can ignore all the spherical shells greater than  r  and the acceleration is a function of only the mass inside the shell. 

For example, consider a person standing on the surface of the Earth who weighs 150 pounds. If we remove the Earth’s atmosphere, the person would still weigh 150 

pounds neglecting the buoyancy of the atmosphere. The gravitational attraction of the thin sliver of atmosphere above the person would exactly cancel the attraction of the rest of the atmosphere including the atmosphere above China. Starting at the center of the sun, we integrate over a thin spherical shell and

 m = 1  μ = 1  GMs

 c 2

 c 2

The  m  is added to the  m  in  G 44 and we continue adding spherical shells until we get to the surface (  rs). The differential line element associated with each spherical shell is given by 





 ds 2 = −  ( 1 − 2 dm )−1  dr 2 +  r 2  dθ 2 +  r 2 sin2  θ dφ 2 +  ( 1 − 2 dm ) c 2 dt 2

 r

 r

(10.14) 

When we get to the surface, the constant  m(rs)  is given by 

 m =  m(rs) =  GMs =  μ

(10.15) 

 c 2

 c 2

and can be inserted into the Schwarzschild–Ricci tensor. 

The same result can be obtained by equating  G 11 with pressure in hydrostatic equilibrium. 





1

 deφ

 G

 G

 G 11 =

−  eφ − 1

 eλ = 8 π

 T 11 = 8 π

 p

(10.16) 

 r 2

 r 2

 r dr

 c 2

 c 2





 dm(r) = 1

 deφ

1 −  eφ −  r

 dr

2

 dr





2  dm

1

=

 G

8 π

 p

 r 2  dr

1 − 2 dm

 c 2

 r

Integrating over the volume gives the same result for  m(rs)  provided   p  is numerically equal to  ρ. The Schwarzschild stress energy tensor for a symmetrical nonrotating rigid sun is thus 

⎡

⎤

 ρ  0 0 0

⎢0 0 0 0⎥

 T

⎢

⎥

 uv = ⎣0 0 0 0⎦

0 0 0  ρ
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The  T 11 term is equal to  ρ  because the sun is assumed to be rigid. The energy of compression and all other energy associated with motion are assumed to be included in   ρ.  The  T 22 and   T 33 terms are zero because their is no differential pressure normal to   r. If a person stands up in a cave anywhere in the earth, there is no sideways pressure causing him to fall over. The only pressure is in the  r  direction, and it is felt by his feet. This differential pressure is equal to his weight or  ρ volume.  At  the center of the Earth in a cave, a person experiences weightlessness provided the cave is strong enough to hold up the weight of the Earth. There is no singularity at the center of the Earth because the acceleration of gravity is zero. 

Inside the sun, the mass as a function of  r  is 

 r 3

 m(r) =  m(rs)

(10.17) 

 r 3

 s

The integration as a function of  r  stops at  r  and not at the surface. For spherical symmetry, the mass located above  r  does not contribute to the acceleration. 

Therefore, the space within a hollow spherical shell is Euclidean or flat space. 

Consider a hollow Earth or Sun where all the mass is concentrated in a thin shell. 

The geometry is illustrated in Fig. 10.1. In Newtonian mechanics, the acceleration of a mass element is given by 

 ay =  μ  sin  φ

 r 2

where   μ  is the line density of a ring centered at  y  and parallel to the  x −  z  plane. 

The acceleration of the ring is 

 ay =  μ  sin  φ  2 πrs  cos  θ

 r 2

The   x  component of acceleration for a ring is zero due to symmetry . 

Since 

 r 2 =  (rs  sin  θ −  ry) 2 +  (rs  cos  θ) 2

and 

 rs  sin  θ −  ry

sin  φ =

 r

we have for  ay

2 π rs  cos  θμ(rs  sin  θ −  ry)

 ay =

 r 3
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y 

ay 

mass element 

r 

rs 

 Φ 

spacecraft 

ry 

 θ 

x 

Fig.  10.1  Gravity of Spherical Shell 

The acceleration of the spacecraft due to the spherical shell is obtained by integrating   ay  from   θ  equals − 90 deg to 90 deg. 

+ π

 π

2 π μ(r

2

¯

2

 s −  ry  sin  θ )

 a



 y =

 ay dθ =

= 0

−

1 

 π

+

−

2

− π


2

 r 2

 y (r  2

 s

 r 2

 y

2 rsry  sin  θ)

2

This proves the shell theorem for  r < rs, which was first obtained by Newton. When r  is greater than  rs, the acceleration is mass divided by  r 2. The shell theorem is also true for general relativity. The proof is difficult because we cannot use the Euclidean model shown in Fig. 10.1. General relativity distorts the lengths of lines. However, we can adapt a geometrical proof given in the literature for Newtonian gravity. This is the projected cones proof that is relatively easy to understand. The geometry is shown in Fig. 10.2. The acceleration in classical mechanics is the mass of the shell enclosed within the base of the cone divided by the distance to a point  P  squared. 

The acceleration of the point is thus independent of  r  because the  r  squared in the numerator cancels the  r  squared in the denominator. Thus, the force of the cone
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Δr 

rs 

mass element 

r1

r2 

P 

Fig.  10.2  General Relativity Gravity of Spherical Shell 

defined by  r 1 on   P  is equal and opposite to the force of the cone defined by  r 2.  The acceleration of  P  is thus zero when we extend the cone angle to 180 degrees. 

For general relativity, we use the same idea. However, the  r  coordinate is in curved space and the spherical angles are Euclidean. The time coordinate is also in curved space, but the sphere is static and there is no time variation. If we define a typical mass element, the mass in the base of the cones varies as the square of  r. 

For this proof to work, the acceleration of the mass element must be inverse square. 

The acceleration of  P  caused by the mass element can be obtained from the exterior Schwarzschild  solution  E q. (1.58). 







 d 2 r

2

= −  μ +

 dφ

 r − 3 μ

(10.18) 

 dτ  2

 r 2

 c 2

 dτ

Since the angular velocity is zero, the radial acceleration is inverse square. The acceleration of the mass elements within each incremental shell in the base of the r 1 cone is equal and opposite to the acceleration of the elements in the base of the r 2 cone. The elements in the  r 1 cone are further away from a point  P  than the  r 2
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elements, but the  r 1 elements are bigger than the  r 2 elements. They cancel because of the inverse square relationship. The acceleration of  P  is zero for all points in the shell. Therefore, we can discard all the mass above  r  when integrating to define the metric tensor in a spherical body. The metric tensor inside the sun can be obtained by  inserting  E q. (10.17) for the mass distribution into Eq. (10.14) for the differential metric. 





 ds 2 = −  ( 1 − 2 m(rs)r 3  )−1  dr 2 +  r 2

+ ( 1−2 m(rs)r 3  ) c 2 dt 2

 rr 3

 s dθ  2 +  r  2

 s  sin2  θ dφ 2

 s

 rr 3

 s

(10.19) 

The radial acceleration inside the sun (Eq. 1.57) is given by d 2 r = − m(r)c 2 = − μ r

 dτ  2

 r 2

 r 3

 s

and varies linearly from the center of the sun to the surface. 
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Chapter 11 

Comparison of Numerical Integration 

and Analytic Solutions 

11.1 Introduction 

Formulas for Mercury precession, radar time delay, light deflection, planetary and stellar aberration, and the equivalence of mass and energy are derived. These formulae are compared with numerica integration of the equations of motion. 

11.2  Mercury Perihelion Shift 

Integration of the classical equations of motion for the orbit of Mercury reveals a shift in perihelion that cannot be accounted for with Newtonian theory. For navigation, it is necessary to modify the equations of motion to account for perihelion precession caused by the relativistic curvature of space near the sun. This is accomplished by use of a well-known formula or by numerical integration of the relativistic equations of motion. The results obtained by numerical integration can be compared with this formula. The well-known formula is found on the last page of Einstein’s paper 1. 

 δφ 0 = 24 π 3

 a 2

 T  2 c 2 ( 1 −  e 2 )

Since the orbital period is 



 a 3

 T = 2 π

 μs
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we get the modern form of this equation. 

 δφ 0 =

6 π μs

 c 2 a( 1 −  e 2 )

where   μs  is the gravitational constant of the sun,  a  is the semi-major axis of Mercury’s orbit,  e  is the orbital eccentricity, and  c  is  the  s peed of light. 

A simple derivation of the precession of Mercury’s periapsis may be obtained by assuming that all the additional potential energy from general relativity goes into increasing the period of the orbit. The addition of the general relativity acceleration does not change the mean motion. After one revolution of the classical orbit, the perturbed orbit and the classical orbit have the same angular orientation because the orbits have the same angular momentum. At periapsis on the classical orbit, the perturbed orbit is descending for an additional  δP  to its periapsis. The precession is thus given by 

 δP

 δφ 0 = 2 π P

 δP = 3 P δa

2 a

 δa =  a 2  δC 3

 μ

and 

3 P a 2

 δφ 0 = 2 π

 δC 3 = 3 πa δC 3

 P  2 a μ

 μ

From the Schwarzschild isotropic equations of motion Eq. (1.66), the radial acceleration is given by 





 d 2 ¯ r = −  μ  1 − 2 μ

 dτ  2

¯ r 2

 c 2 ¯ r

Integrating the acceleration from ¯ r  to infinity yields the potential energy, and the General Relativity contribution is 

 δEr =  μ 2

 c 2 ¯ r 2

If the average radius ( ¯ r 2) is approximated by  b 2 =  a 2 ( 1 −  e 2 ), the energy addition is δC 3 =

2 μ 2

= 2 δEr

 c 2 a 2 ( 1 −  e 2 )
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The factor of 2 is necessary because the energy orbit element (  C 3) is twice the actual energy. Collecting terms, the Mercury precession is approximated by 

2 μ 2

 δφ 0 = 3 πa

=

6 π μ

 μ

 c 2 a 2 ( 1 −  e 2 )

 c 2 a( 1 −  e 2 )

The equations of motion are integrated with the initial conditions computed from the state vector of Mercury at perihelion. After one complete revolution of Mercury about the sun, the integrated results are transformed to osculating orbit elements, and the argument of perihelion is computed. In order to remove the integration error, the Newtonian equations of motion are integrated by the same numerical integrator in parallel with the relativistic equations of motion. The arguments of perihelion are differenced and compared with the formula. The same integration is repeated, only this time the isotropic form of the Schwarzschild equations of motion may be compared with the approximate formula. The results are displayed as follows. 

Mercury Perihelion Shift 

Perihelion Shift Formula

502 .  527 × 10−9 radians 

Exact Schwarzschild Integration

502 .  559 × 10−9 radians 

Isotropic Schwarzschild Integration

502 .  267 × 10−9 radians 

The aforementioned results indicate that the formula for perihelion shift is quite accurate. The difference of 3 × 10−11 radians between the formula and the exact Schwarzschild integration may be attributed to the formula or perhaps integration error. The difference between the formula and the isotropic Schwarzschild integration is also small (26 × 10−11 radians). This difference may also be attributed to integration error but may be the truncation error associated with the isotropic metric. 

11.3  Radar Delay 

The transit time of a photon or electromagnetic wave between two points in space is a measurement used to determine the orbits of the planets and spacecraft for the purposes of navigation and science. Both the navigation of a spacecraft and science experiments, particularly associated with General Relativity, require precise measurements of the transit time. Since the Deep Space tracking stations can measure times to within 0.1 ns, or about 3 cm, it is necessary to model the transit time to this accuracy. 

The transit time of a photon or electromagnetic wave between two points in space is often referred to as the radar delay. This terminology originated with radar when a radio wave is transmitted and the delay in the reception of the reflected return is measured to determine the range. The time delay included that which is

374

11

Comparison of Numerical Integration and Analytic Solutions

associated with transmission media and the path length. Individual delay terms from the troposphere, ionosphere, and solar plasma are identified and used to calibrate the measured delay. For planetary spacecraft, the path length is computed from the theory of General Relativity. For a round trip travel time, the additional delay attributable to the curved space of General Relativity, over what would be computed assuming flat space, can amount to approximately 250 μs. 



2

1 −  μ







2 c 2 r

4

 ds 2 = 

 c 2 dt 2 − 1 +  μ

 dr 2 +  r 2 dφ 2 +  r 2 sin2  θdθ 2

2

2 c 2 r

1 +  μ

2 c 2 r

For a photon,  ds 2 = 0 and the equation to be integrated for the elapsed coordinate time ( t) is obtained by transforming to Cartesian coordinates and solving for  dt. 
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=
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Expanding and retaining terms of order  c−5 and greater the denominator is 1 and the numerator when inserted into the equation for  dt  giv es μ 2

1

2

 dt = 1 1 + 2 μ + 17

 dx 2 +  dy 2 +  dz 2

(11.1) 

 c

 c 2 r

8  c 4 r 2

For this geometry, the  x  coordinate is zero, and the  y  coordinate variation is much smaller than the  z  coordinate variation. Since for this problem  dy ∼ 10−4, the line dz

element differentials are expanded as a Taylor series, 







1

1

2

2

 dy 2

1

 dx 2 +  dy 2 +  dz 2

=  (

 dz 2 +  dz 2 )  2 = 1 +  dy 2

 dz

 dz 2

 dz 2

Expanding the square root about   dy 2

 dz 2
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2

 dy 2

 dy 4

1 +  dy 2

= 1 + 1

− 1

+ · · ·

(11.2) 

 dz 2

2

 dz 2

8

 dz 4

Changing the  y  variable of integration to  z  and  inserting  E q. (11.2) into Eq. (11.1), 









 μ 2

 dy 2

 dy 4

 dt = 1 1 + 2 μ + 17

 dz + 1

 dz − 1

 dz

(11.3) 

 c

 c 2 r

8  c 4 r 2

2  dz 2

8

 dz 4

Fully expanded, there are nine terms in Eq. (11.3), and five of them are of order greater than 1 /c 5. Consider a photon grazing the surface of the Sun. A maximum error of about 10 cm or 0.3 ns is desired. To achieve this accuracy, numerical integration of the equation of geodesics reveals that only four of the terms in Eq. (11.3) need be retained, and these are, 







 z 2

 dy 2

 μ 2

 t 2 −  t 1 = 1

1 + 2 μ + 1

+ 17

 dz

(11.4) 

 c z

 c 2 r

2  dz 2

8  c 4 r 2

1

The photon trajectory geometry is shown on Fig. 11.1. The motion is constrained to the  y −  z  plane and targeted from  y 1 , z 1 to  y 2 , z 2 such that the photon arrives at the same  y  coordinate, which is taken to be  R. 

Y 

Photon 

 d

Trajectory

f 

 d y 

(y1, z1)



(y2, z2) 

R 

r 

 f 

Z 

Fig. 11.1  Photon trajectory geometry
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In carrying out the integration, care should be taken in geometrically interpreting the results. A “straight line” in curved space geometry, the shortest measured distance between two points, is the photon trajectory and not the dashed line shown on Fig. 11.1. 

Consider the first term of Eq. (11.4), 

 z 2

 tf = 1

 dz = 1  (z 2 −  z 1 )

(11.5) 

 c z

 c

1

This is called the flat space term. If the end points were in flat space,  tf  would be the time a photon travels from point 1 on Fig. 11.1  to point 2. In curved space, there is no such thing as a straight line that connects these two points. The real interpretation of the term given by Eq. (11.5) is the mathematical result of performing the integration on the first term of Eq. (11.4). 

The second term of Eq. (11.4) is called the logarithmic term for a reason that will become obvious. 

 z 2  dz

 t 

= 2 μ

 log

 c 3

 z

 r

1

Integration requires an equation for  r  as a function of  z. An iterative solution may be obtained by assuming a solution for  r  and integrating to obtain a first approximation for   t  and   y  as a function of  z. This solution is inserted into the remainder term, the difference between the assumed and actual function, and a second iterated solution may be obtained for  t  and   y. This method of successive approximations can be continued until the required accuracy is achieved. As a starting function, “straight line” motion is assumed. Making use of the approximation that



 r ≈

 z 2 +  R 2





 z





2

1

1

 t 

= 2 μ



+

−

1

√

 log

 dz =  tlog +  trr

(11.6) 

 c 3

 z

 r

1

 z 2 +  R 2

 z 2 +  R 2

The first term of Eq. (11.6) integrates to the well-known equation for the time delay. 

⎡



⎤

 z 2 +

 z 2 +  R 2

2

 t

⎣

⎦

 log = 2 μ  ln



(11.7) 

 c 3

 z 1 +

 z 2 +  R 2

1

The second term of Eq. (11.6), which will be referred to as the radial remainder term ( trr ), requires a more accurate equation for the evaluation of  r. In order to evaluate the terms associated with bending of the trajectory, an equation for  y  as a function of  z  is needed. The  y  coordinate is associated with the bending of the photon trajectory. Consider two photons in the plane of motion separated by  R. 
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The plane containing these two photons and perpendicular to the velocity vector is the plane of the wave front. The bending is simply the distance one photon leads the other divided by their separation. 

 δ =  ctd

 R

In the limit as  R  approaches zero, the equation for bending is dtd

 δ =  c dR

The equation for the delay is taken to be the logarithmic term given by Eq. (11.7) and for simplicity, the bending is computed starting at closest approach ( z 2 = 0)   to the  o rigin. 



√



 z +

 z 2 +  R 2

 td = 2 μ  ln

 c 3

 R

Taking the derivative with respect to  R, 





 dtd ≈ −2 μ − 1 +

 R

√

√

 dR

 c 3

 R

 z 2 +  R 2 (z +

 z 2 +  R 2 )

Making use of the trigonometric approximations, 

cos  φ ≈

 R

√

 , 

sin  φ ≈

 z

√

 z 2 +  R 2

 z 2 +  R 2

the equation for the bending reduces to 

 dtd

 ( sin  φ + 1 ) − cos2  φ

 δ =  c

= − 2 μ

= − 2 μ  sin  φ

 dR

 c 2 R

 ( sin  φ + 1 )

 c 2 R

 z

 δ = 2 μ √

 c 2 R

 z 2 +  R 2

Therefore, the accumulated bending from  z 1 to   z, expressed as differentials, is given by 

 dy =

 z

 δf − 2 μ ( √

−

 z 1



 )

(11.8) 

 dz

 c 2 R

 z 2 +  R 2

 z 2 +  R 2

1

where   δf  is the initial angle between the photon velocity vector and the horizontal line shown on Fig. 11.1. Referring to Fig. 11.1,  the   y  component of the photon is
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 y =  R +  δy

 z 



 z

 δy(z) =

 δf − 2 μ ( √

−

 z 1



 ) dz

 z

 c 2 R

1

 z 2 +  R 2

 z 2 +  R 2

1

and 





 δy =  δf (z −  z 1 ) − 2 μ

 z 2 +  R 2 −  zz 1 +  R 2



(11.9) 

 c 2 R

 z 2 +  R 2

1

The angle  δf  may be determined by evaluating the bending over the interval from z 1 to   z 2. The coordinates are rotated to target the photon to the point  z =  z 2, where δy = 0 and the constant gravitational aberration angle  δf  was determined as 2 μ

 δf =

1

 z 2 +  R 2 −  z 2 z 1 +  R 2



(11.10) 

 z

2

2 −  z 1  c 2 R

 z 2 +  R 2

1

The angle  δf  simply rotates the coordinates of Fig. 11.1  such that  y 1 and   y 2 have the same value  R. 

The geometrical part of the radial remainder term, given in Eq. (11.6), may be approximated by making use of 

1

− Rδ

−

1

√

=

1



−

1

√

≈

 y

 r

3

 R 2 +  z 2

 (R +  δ

 R 2 +  z 2

 (R 2 +  z 2 )  2

 y ) 2 +  z 2

The complete radial remainder term ( trr ) is then given by 
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2
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 R 2 +  z 2 
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1  sin   φ 1 −  z 1
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 trr = 2 μ δf 

−  z 2 +  R 2

 c 3 R

1

 z 2 +  R 2

2









− 2 μ

 z 1

 z 2
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1

2

(11.11) 

The third term of Eq. (11.4) is the direct contribution of the trajectory bending to the time delay. This term is referred to as the bending term and is given by z 2

 dy  2

 tb = 1

 dz

2 c z

 dz

1

Substituting Eq. (11.8) for the slope into the aforementioned equation gives z 2

2

 tb = 1

 δf + 2 μ ( sin  φ − sin  φ 1 )

 dz

2 c z

 c 2 R

1
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1

Carrying out the integration 





4 μ 2

4 μδf R
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 R 2 (z

 z
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+ 4 μ 2 

1 +  z 2 ) + 2 z 2 

1 2  − 2 z
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1

 c 4 R 2

 R 2 +  z 2 

 z 2  +  R 2 
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 z 1 
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 R  arctan
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(11.12) 

 R

 R

The fourth and final term of Eq. (11.4)  is  the  c 5 approximation to the error in the metric. This is a small term and contributes less than a nanosecond to the delay. The equation is given by 





 μ 2

 z 2 1

 μ 2

 z 2

1

 tm = 17

 dz ≈ 17

 dz

8  c 5

 z

 r 2

8  c 5

 R 2 +  z 2

1

 z 1

Carrying out the integration 







 μ 2

 z 2

 z 1

 tm ≈ 17

arctan

− arctan

(11.13) 

8  c 5 R

 R

 R

The complete equation for the coordinate time delay of a photon moving from ( y 1 , z 1)   to ( y 2 , z 2) is obtained by summing all the individual terms and t 2 −  t 1 =  tf +  tlog +  trr +  tb +  tm (11.14) 

Before evaluating the individual terms of Eq. (11.14), the parameters used in the individual terms must be determined unambiguously from the end points of the photon trajectory. If two arbitrary end points in the  y− z  plane are defined by  (y  , z  ) 1

1

and  (y  , z  ), the vectors from the origin to these points are given by 2

2

r1 =  ( 0 , y 1 , z 1 )

and

r2 =  ( 0 , y 2 , z 2 )

and the vector from point 1 to point 2 is 

r12 =  ( 0 , y −

−

2

 y 1 , z 2

 z 1 )

The angles between the vectors r1 and  r2 and the vector r12 are computed from the dot products. 









r1 · r12

r2 · r12

 φ 1 = arccos

 , 

 φ 2 = arccos

 r 2 r 12

 r 2 r 12

The parameters needed in Eq. (11.14) with the coordinates rotated as shown in Fig. 11.1  are then given by 

 R =  r 1 sin  φ 1 =  r 2 sin  φ 2

 z 1 =  r 1 cos  φ 1 , 

 z 2 =  r 2 cos  φ 2
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and the angle  δf  is given by Eq. (11.6). The fully expanded equation for the transit time is given by, 
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⎤
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After simplification, this equation takes the following form: 
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Eq. (11.15) is the time delay associated with a photon or electromagnetic wave that passes through the gravitational field of a massive spherical body. The time delay is a function of only the gravitational constant of the massive body and the parameters z 1,  z 2 and   R, which may be computed directly from the isotropic Schwarzschild coordinates of the end points. 

In order to determine the veracity of Eq. (11.15), a comparison with the time delay computed from numerical integration of the geodesic equations of motion was made and the result plotted on Fig. 11.2. In carrying out the numerical integration, a photon was initialized with a  z  coordinate of − 149 ,  000 ,  000 km and y coordinate of 696,000 km. The y component of velocity was set to zero and the  z  component to c.  The   x  coordinates of position and velocity were set to zero. Thus, the photon is initialized with a velocity magnitude equal to the speed of light and parallel to the  z axis about 1 A.U. from the sun and on a flight path that would graze the surface of the sun if there were no bending due to General Relativity. The polar coordinates of the initial conditions were used to initialize the equations of motion, and these were integrated by a fourth-order Runge–Kutta integrator with fifth-order error control. 

The integration was stopped at various times along the flight path, and Eq. (11.15) was evaluated. The required parameters were computed from the initial coordinates and the integrated coordinates at the time of the evaluation. 

Also shown on Fig. 11.2  are some of the individual terms from Eq. (11.14). The linear term has been omitted since this term would require an additional six cycles of logarithmic scale. The dashed curve is the difference between the time delay computed by Eq. (11.15) and the results of numerical integration. This difference is attributed to error in the numerical integration algorithm. This was verified by setting the mass of the sun to zero and integrating straight line motion in the same coordinate system. Unfortunately, the integration error masked the error in Fig. 11.2  Time delay for solar graze
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the metric. Therefore, Eq. (11.15) could only be verified to about 0.05 ns, which is about the same level of error as the error in the metric. The integration error of about 10−14  t  is consistent with the error obtained integrating spacecraft orbits for navigation. Observe that the radial remainder term and bending term cause errors on the order of 10 ns or 37 cm. 

11.4  Light Deflection 

Light deflection is the bending of a photon or radio wave trajectory as it passes by a massive object. An experiment performed during a solar eclipse in 1919 measured the deflection of star light and was the first confirmation of General Relativity theory. 

For this comparison, we integrate the equations of motion for a photon and compare it with an analytic formula. The analytic formula is for a photon arriving at the Earth from infinity. This formula has been adapted to provide a continuous measure of the bending between any two points and is given by 

 δφ = 2 μ { ( cos ( 90 +  φ 1 ) − cos ( 90 +  φ 2 )}

 c 2 R

where   R  is the closest approach to the sun,  φ 1 is the angle from the  y  axis to the source and  φ 2 is the angle from the  y  axis to the receiver. The  y  axis is in the direction of closest approach as illustrated in Fig. 11.1. Einstein’s formula for the total bending is simply 

 δφ 12 = 4 μ

 c 2 R

where  φ 1 = −90◦ and  φ 2 = 90◦. 

Another formula for the bending is given by Eq. (11.10). 
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1

If we take the limit as  z 1 approaches minus infinity and  z 2 approaches plus infinity, δf  is one half of the Einstein bending formula. Since the total bending is the sum of the approach and departure bending, which are equal, the  δf  formula when multiplied by 2 is the Einstein formula. In order to get a formula for the total bending, we have to apply Eq. (11.10) twice, once for the bending from  z 1 to closest approach and once for the bending from closest approach to  z 2. The total bending is thus 

⎧
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2

1
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If   z 1 is positive and equal to  z 2, the bending is zero. If  z 1 is negative and both  z 1 and z 2 are much greater than  R, we get Einstein’s formula. 

Another interesting application of the bending formula is the case where light is in a circular orbit about a concentrated mass or black hole. For a circular orbit, the local tangent is perpendicular to the radius. At closest approach  z 1 is zero and 

⎡

⎤

 δ

⎣

 z 2

⎦

 f = 2 μ



 c 2 R

 z 2 +  R 2

2

For a small z2, the central angle  φ  shown on Fig. 11.1  is equal to  δf . Angles are equal if they are perpendicular right side to right and left side to left. 

⎡

⎤

 z

⎣

 z 2

⎦

2 =  Rδf = 2 μ



 c 2

 z 2 +  R 2

2

For a circular orbit, the radius is R. Thus, we have 

 z 2

 z 2 = 2 μ

 c 2

 R

 R = 2 μ

 c 2

which makes  R  the event horizon of a black hole. 

Comparison of the Einstein formula with numerical integration of the isotropic Schwarzschild equations of motion is a little tricky because it is necessary to define what is meant by bending in curved space. The generally accepted definition is the angle between the local tangent of the photon trajectory and the straight line path that the photon would follow if the sun was removed. Thus, in isotropic Schwarzschild coordinates, the deflection is given by 





 Vr  cos  φ −  Vn  sin  φ

 δφ = tan−1  Vr  cos φ +  Vn  sin φ

where 

 Vr =  dr

 dτ

 dφ

 Vn =  r dτ

and the undeflected photon is assumed to move parallel to the  z  axis. 
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The equations of motion are initialized with the position and velocity of the photon. We place the photon far from the sun on a trajectory that will graze the surface of the sun. The initial state vector is given by 

 r 1 =149 ,  001 ,  625 .  km

 φ 1 = −89 .  73236◦

 dr 1 = − 299 ,  789 .  729km / s

 dτ

 dφ 1 =9 .  3982872536 × 10−6 rad / s

 dτ

and the constants are 

 μ = 1 .  327124399 × 1011km3 / s2

 c = 299792 .  458 km / s

The equations of motion are integrated along a trajectory that grazes the sun and terminates at 

 τ 2 =954 .  901039554 s  ( affine parameter time ) t 2 =954 .  901158130 s  ( coordinate time ) r 2 =137 ,  274 ,  407 .  km

 φ 2 =89 .  70998749◦

 dr 2 =299 ,  789 .  146km / s

 dτ

 dφ 2 =11 .  072650234 × 10−6 rad / s

 dτ

A comparison of the total bending obtained by numerical integration with the theoretical formula derived by Einstein gives 

Total Light Deflection Angle 

Einstein’s Formula

8 .  48622 × 10−6 radians 

Exact Schwarzschild Integration

8 .  48642 × 10−6 radians
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The constant term ( 

 L 0) is the major contributor to the difference between 

ephemeris time and solar system barycenter time. If all the planets were in circular orbits and the tracking station was located at the Earth barycenter, we would be done. The periodic terms account for the eccentricity of the planet orbits, the rotation of Earth on its axis, and station locations. The velocity of a tracking station relative to the sun’s barycenter is obtained by projecting the orbits of the sun, earth barycenter, earth, and the tracking station on to the line between earth and sun. The orbit of the tracking station about the earth is the same as the orbit of the earth’s center about the tracking station. Only Jupiter and Saturn contribute significantly to the clock rate or length of the second due to their perturbation of the sun. The effect of Jupiter and Saturn on the earth’s orbit is a tidal acceleration and can be ignored. 

The factor of 2 in the third term of Eq. (11.7) is necessary because the solar gravity potential doubles the effect of velocity. There is no periodic term associated with the Earth’s gravitational potential because the tracking station is stationary relative to the earth. 

11.5  Equivalence of Mass and Energy 

The acceleration of a spacecraft due to solar pressure has been shown in Chap. 2 

to be consistent with general relativity and  E =  mc 2. This result has been verified by experiment since it is a major contributor to the accuracy of navigation. Since the force of a photon on the spacecraft and the interval of time and length traveled during contact are not needed for this derivation, we are left with an empty feeling that this result could have been predicted by some other theory. The difference is only a factor of 2. 

Since  E =  mc 2 is such an important equation, it may be interesting to derive this result from the relativistic force a photon exerts on a body. Since a spacecraft is accelerated, a photon must exert a force over some distance. In Reference 4, Sokolnikoff provided an excellent derivation of  E =  mc 2 on pages 292 through 297 

starting with the metric tensor. The mathematics can be found in many textbooks and are probably the property of Einstein. Most of the explanations are not as clear as Sokolnikoff’s. However, the mathematics are a bit tedious. 

The Minkowski metric can be obtained from Schwarzschild’s metric by transforming to Cartesian coordinates and assuming zero mass. 

 ds 2 =  c 2 dt 2 −  (dx 2 +  dy 2 +  dz 2 ) ds =

 c 2 −  v 2  dt

The observed velocity associated with  ds  is 

 dxα

 uα =  dxα =

1

√

 ds

 c 2 −  v 2  dt
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The relativistic force in curved space coordinates is defined by Newton’s second law. 

 F α =  δ (m 0 uα)

 δs

 δ

 dxα

 F α =

1

√

 (m 0

 )

 c 2 −  v 2  δt

 ds

 δ

 m 0

 dxα

 F α =

1

√

 ( √

 )

 c 2 −  v 2  δt

 c 2 −  v 2  dt

⎛

⎞

 δ

 dxα

 F α =

1



⎝  m 0



⎠

 δt

 dt

 c 2 1 −  v 2

1 −  v 2

 c 2

 c 2

In order to keep Newton’s second law valid, the mass of a spacecraft is defined by m =

 m 0



(11.16) 

1 −  v 2

 c 2

where   m 0 is the rest mass. The force may be applied to the spacecraft by a rocket engine or the integrated pressure of photons over the area of the spacecraft. We may assume that the force is constant. 







 dxα

F =  c 2 1 −  v 2  F α =  δ

 m

=  maα

 c 2

 δt

 dt

The kinetic energy, which is conserved, is obtained by integrating the force over the distance traveled by the spacecraft and photons during contact. Therefore, the energy transfer is the product of the force times the distance traveled during contact. 





⎛

⎞

 P

 P δ

 E

⎝  m 0 vi ⎠

 k =

Fi  dxi =



 dxi

 P

 δt

0

 P 0

1 −  v 2

 c 2

During contact, some time elapses. A change of variable from  P 0 to   t  yields 

⎡

⎛

⎞

⎛

⎞

⎤

 t

 dxi

 E

⎣  d ⎝

1

⎠

⎝

1

⎠  dxi ⎦

 k =  m 0



 vi

+  dvi



 dt

 t

 dt

 dt

 dt

 dt

0

1 −  v 2

1 −  v 2

 c 2

 c 2
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Momentum is also conserved. If we define 

 β 2 =  v 2  vi =  dxi

 c 2

 dt

 dxi

 dvi

 β 2 c 2 =  vi

 β ˙

 β =  vi

 dt

 c 2  dt

we get for the kinetic energy 











 t

 d

1

 c 2 β ˙

 β

 Ek =  m 0



 β 2 c 2 + 

 dt

 t

 dt

0

1 −  β 2

1 −  β 2









 t

 β ˙

 β

 c 2 β ˙

 β

 Ek =  m 0

 β 2 c 2 +

 dt

3

1

 t 0

 ( 1 −  β 2 )  2

 ( 1 −  β 2 )  2

 t

 β ˙

 β

 Ek =  m 0 c 2

 dt

3

 t 0  ( 1 −  β 2 )  2

Since ˙

 β =  dβ

 dt

 P

 βdβ

 Ek =  m 0 c 2

3

 P 0  ( 1 −  β 2 )  2







 P

1

 Ek =  m 0 c 2

 d

1

 P 0

 ( 1 −  β 2 )  2

and 

 Ek =

 m 0 c 2

+  constant

1

 ( 1 −  v 2  )  2

 c 2

The kinetic energy is thus 

 Ek =  mc 2 −  m 0 c 2

and the total energy is 

 E =  mc 2

(11.17) 

The kinetic energy acquired by the spacecraft is equal to the kinetic energy lost by all the photons. For a photon, the rest mass (  m 0) is zero because it does not exist at
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rest. For a particle with mass, the rest energy of the spacecraft is the intrinsic energy required to form the particle during the big bang or some time in the distant past. 

In a Great Courses lecture by Don Lincoln, the following equation is given for the Higgs boson. 

 E 2 =  (m 0 c 2 ) 2 +  (pc) 2

If we assume a coordinate system where  c  is one

 E 2 =  m 2 +

0

 p 2

Adding momentum  (p)  to mass violates equations written by engineers, but the units check if  c  is put back in the equation. If we square Eq. (11.18), we get m 2

 ( 1 +  v 2  )

 m 2 =  E 2 =

0

 c 2

 c 4

 ( 1 −  v 2  ) ( 1 +  v 2  )

 c 2

 c 2

which simplifies to 

 ( 1 −  v 4  )E 2 =  (m 0 c 2 ) 2 +  p 2 c 2

 c 4

In this equation,  m 0 is the rest mass of the Higgs boson,  p  is the momentum of the two photons that are ejected, and  E  is the energy of the Higgs boson before collision. The photon momentum can be measured by observing the frequency of the light and the energy of the Higgs boson is obtained by subtracting the energy of all the other particles ejected from the energy of the protons involved in the collision. 

The equation for the rest mass of the Higgs boson was originally obtained by Paul Dirac who made some significant contributions to quantum mechanics. He resolved the conflict between Schroedinger’s wave equation and Heisenberg’s matrix theory. 

He showed they were mathematically the same. Today, we have competing interpretations of quantum mechanics by Neils Bohr Copenhagen interpretation and Hugh Everett’s many worlds interpretation. Fortunately for navigation it doesn’t matter which interpretation is correct. I favor Hugh Everett’s interpretation since it does not require God to roll dice and is favored by K ip Thorne. 

11.6  Planetary and Stellar Aberration 

The observed direction of light from a distance source differs from the actual direction obtained by solution of the light time equation due to the velocity parallax of the observer with respect to the photons or incoming wave front. This velocity parallax is referred to as aberration by astronomers and is aptly named. The first
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Fig. 11.3  Observer and source relative motion 

definition of aberration in the Webster’s second edition dictionary is deviation from what is right, natural, or normal. Light is red-shifted or blue-shifted in frequency depending whether the source is moving away from or toward the observer. The Doppler frequency shift is determined by the relative velocity. The observed direction of the light wave front is also affected by the motion of the source with respect to the observer, but only the source velocity contributes to aberration. This apparent contradiction of Special Relativity may be resolved by examining the light time solution in conjunction with aberration in an inertial frame. Consider the case of an observer moving with respect to a stationary source as shown on the left side of Fig. 11.3. Assume that closest approach occurs at time  t. The observer at time t, identified by  O(t), will receive an incoming light wave from the direction  ρ, which is the solution of the light time equation. The observer was at  O(t −  τ )  when the photons were emitted by the source so aberration should not be confused with the solution of the light time equation. Because of aberration, due to the relative motion of the source with respect to the photons, the observer will see the source in the direction defined by the vector  ¯ ρ. The geometry is analogous to rain drops falling straight down. If the person starts to move, the rain drops appear slanted with respect to the local vertical. 

Now suppose the observer is stationary and the relative motion of the source with respect to the observer is the same. In this case, shown on the right side of Fig. 11.3, the source appears to be moving in the opposite direction with velocity  v. 

The observer at time  t  sees a plane wave emanating from the location of the source at  t −  τ . There is no aberration. This is consistent with Special Relativity because the observer sees the source in the same direction for both cases. Since the Doppler shift is dependent on the relative velocity, the observer sees the same Doppler shift for both sides of Fig. 11.3. Furthermore, the speed of light will be the same for both observations due to time dilation and Lorentz contraction. 
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Fig. 11.4  Observer velocity relative to source 

The geometry associated with an observer moving with respect to a source is illustrated on Fig. 11.4. In the stationary inertial frame, the source emits a photon at time  t = 0 from the origin, and this photon arrives at the observer at time  t =  τ  with coordinates (  x, y). The light time solution vector is R, and the travel time is given by 

 τ =  R

 c

If a coordinate system is defined that is moving with the observer  ( ¯ x, ¯ y)  in the 

+  x  direction with velocity  v  and the origins coincide at time  t = 0, the observed direction of the photon is given by  ¯

R. The angle between R and  ¯

R is the aberration 

angle   κ  and 

|R × ¯R|

sin (κ) =

(11.18) 

 R ¯

 R

The angle  θ  is between the velocity vector and the vector from the observer to the source (-R). 

If classical Galilean motion is assumed, where the speed of light is not constant, the observed vector is given by
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(11.19) 

0 0 0 1

0

where time is artifically carried along as the first component of P and  R is contained in the last three components of P. 
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The angle   κ  is obtained by substituting the position vectors obtained from the second through third components of P and  ¯

P into Eq. (11.18). 

⎧
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⎨
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⎪
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sin  κ =  v  sin  θ
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 c 2

 c

Making use of the approximation 

1

%

≈ 1 −  v  cos  θ −  v 2

 c

2 c 2

1 +  v 2 + 2 v  cos  θ

 c 2

 c

and 

sin  θ  cos  θ = 1 sin ( 2 θ)

2

the aberration angle may be approximated to second order by 

 v 2

sin  κ ≈  v  sin  θ − 1

sin ( 2 θ ) +  . . . 

 c

2  c 2

The classical result assumes that the speed of light in the moving frame is different from the speed of light in the inertial frame at rest. The Lorentz transformation from Special Relativity is used to get the correct result. 
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The Lorentz transformation is given in conventional engineering coordinates where time has the units of time and the existence of c is explicitly acknowledged. 

Since   c  is a constant, a system of space-time coordinates can be defined with c = 1 and time given the dimension of length. For these coordinates, favored by relativists, the Lorentz transformation matrix is symmetrical. The advantage of the conventional coordinates used here is that it is immediately obvious that the approximation to first order reduces to the Galilean transformation given in the limit as  c  approaches infinity. Since the “at rest” coordinate system is arbitrary, the inverse of the Lorentz transformation matrix can be obtained by changing the sign of  v. The Galilean transformation also has this property. Another property of the Lorentz transformation is that the Minkowski metric must be preserv ed. 

 ds 2 =  c 2 dt 2 −  dx 2 −  dy 2 −  dz 2

(11.20) 

Since  ds 2 is null for a photon ( ds 2 = 0) then  d ¯ s 2 must also be null. The observation vector in the moving frame is given by 
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When  ¯

 P  is substituted into the Minkowski metric, it is demonstrated that  d ¯ s 2 is null. 

Proceeding as for the classical solution, the angle  κ  corrected for Special Relativity is obtained. 
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the first two terms of the series expansion for sin  κ  are 
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The aberration-corrected vector is in the same plane as the source velocity vector and light time solution vector. The calculation of this vector from the aberration angle   κ  and the angle between the velocity vector and the vector from the observer to the source (  θ ) is illustrated in Fig. 11.5. The vector  ρin  is the light time solution from the observer to the source. The vector  ¯ ρ  is the direction that the source is observed and the direction that one would point a telescope. The angle  κ  between Fig. 11.5  Aberration 
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these vectors is the aberration angle as defined earlier. From the geometry, the vector formula for planetary aberration is simply 
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If the source is a star or remote object, the magnitude of the light time solution vector approaches infinity. The formula for stellar aberration ( ¯ ρs) may be obtained by taking the limit and 
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Chapter  12 

General  Relativity  Time  Delay 

Experiment 

12.1  Introduction 

Since the data from the February 1997 occultation were readily available, it presented the opportunity to repeat the experiment performed on the Viking spacecraft in 1976. The only modification to navigation software was the addition of the capability to estimate the constant parameter  γ  of general relativity. If  γ  is zero, there is no general relativity, but if  γ  is one, Einstein is correct. The experiment during the Viking mission used ranges as the primary data type. On NEAR, an experiment was proposed that would use Doppler as the primary data type. At the time, the Viking experiment was the most accurate verification of general relativity. 

The parameter  γ  was verified to an accuracy of about 0.1%. A justification for performing the NEAR experiment was to verify the navigation operational software to be used during the orbit phase of the mission. 

The spacecraft trajectory shown schematically on Fig. 12.1  is far from the sun where the spacecraft is essentially in flat space. The Earth is also approximately in flat space. If the sun were not present, the triangle ADF would be nearly a right triangle that obeys Pythagoras’s theorem. With the sun in place, the measured line segment from A to E, which passes the sun at 18 solar radii, would be about 14 

km longer due to the curvature of space. The point D would be about 49 km longer if the spacecraft was visible. This violates the Pythagorean theorem, which would predict the square root of AF squared minus DF squared. The spacecraft trajectory is approximately in a circle centered at the sun whose circumference is 2 P i r  where P i  is computed from the general theory of relativity . 
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Fig.  12.1  General relativity experiment geometry 

12.2  Observed  Path  Length 

The observed path length is the distance between the spacecraft and an antenna on Earth. For convenience, a planetocentric coordinate system is defined at the Earth center of mass. The Earth antenna location is defined as the point on the antenna at the focus of the parabolic antenna dish. This point is the vector sum of the station location, and an antenna correction that is computed from the direction that the antennae is pointed in a topocentric coordinate system. The station location is corrected for polar motion, solid Earth tides, and continental drift. The point on the antenna is corrected for cabling from the transmitter and receiver. The transmitted and received signals pass through the troposphere and ionosphere and are delayed by a few meters. The transmitted and received signals are also delayed by charged particles near the sun. At the spacecraft, the received signal is turned around in a phase coherent loop so that the Doppler and range cycle count is not lost. 

12.3  Computation  of  Observed  Path  Length 

The metric tensor of general relativity is obtained by solution of the Einstein field equations. The solution for a massless particle in the gravity field of a single body
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was obtained by Schwarzschild and is given further in isotropic coordinates. The line element from the Schwarzschild metric tensor is given by, 





 ds 2 = − 1 + 2 γ μ (dx 2 +  dy 2 +  dz 2 ) +  ( 1 − 2 γ μ + 2 γ μ 2  ) c 2 dt 2

 c 2 r

 c 2 r

 c 4 r 2

As shown in Eq. (3.15), the path length, neglecting terms greater than 1 nanosecond, is given by 
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(12.1) 
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 c 3
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Here,  γ  is a constant that is zero if there is no general relativity and 1 if there is general relativity. 

12.4  Experimental  Results 

X-band Doppler and range measurements from three Deep Space Network stations from October 1, 1996 to March 7, 1997 were obtained from the NEAR mission. The X-band signal frequencies were 8.9 GHz uplink and 7.8 GHz downlink. Although Doppler data were processed from all three stations, station 15 (Goldstone, California), station 45 (Canberra, Australia), and station 65 (Madrid, Spain), in order to ensure a precise trajectory estimate, only the range data from station 15 were used in order to eliminate station location bias. One sigma errors in the Doppler and range are known to be within 0.1mm and 0.7m, respectively. 

The range data became inaccessible at signal path distances from the Sun closer than 18 solar radii. The ranging signal consists of a sequence of square waves of varying frequencies, from 1.0 MHz to 1.0 Hz in the case of the NEAR mission. The highest frequency is the clock. Additional frequencies decrease by powers of 2. In a dispersive medium, higher frequencies are shifted more than lower frequencies, causing a blurring of the square wave, until the range signal can no longer be resolved. In hindsight, it would have been beneficial to send range signals at a lower clock frequency as the signal path passed close to the Sun, in order that the range signal be available at closer distances. 

The data were processed by a Square Root Information Filter (SRIF) to estimate the parameters that describe the spacecraft trajectory during the solar conjunction period. The estimated parameters were spacecraft state, a single propulsive maneuver, solar radiation pressure, three components of stochastic acceleration, solar
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NEAR SOLAR CONJUNCTION DOPPLER RESIDUALS - HERTZ 
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Fig.  12.2  NEAR solar conjunction doppler residuals 

plasma electron density, and  γ  of general relativity. The electron density parameter ( N ), the coefficient for the inverse square term of the solar plasma model, and  γ

were estimated as stochastic parameters. Even though these parameters are constant, they were allowed to vary as a function of time by the filter. For each data batch, solutions were obtained for electron density and  γ . It is possible to separate these parameters by using the group delay associated with range to calibrate the phase advance associated with Doppler caused by the solar plasma, while the general relativity delay is the same for both Doppler and range. 

Figure  12.2  shows the Doppler residuals associated with fitting data for the NEAR solar conjunction of February 1997. The data arc starts on October 1, 1996 

and extends through March 7, 1999. This long arc of data was necessary to enable solution for the spacecraft orbit as the spacecraft passes behind the Sun at a distance of about 3 AU from the Earth. The spacecraft, Sun, and Earth are close to being in alignment during this time interval. Since the range and Doppler measurement are close to this same direction, the problem of determining the delay associated with the radio signal as the ray path approaches the Sun is effectively reduced to one dimension. The other dimensions enter into the determination of the total path length in the second order. The usable data were restricted to the times when the NEAR spacecraft was held in an attitude that pointed the solar panels directly at the Sun. This attitude resulted in a steady solar pressure acceleration that could be modeled with high precision. Early in March 1997, normal spacecraft attitude resumed, and the data were no longer usable. During the approach, there was one spacecraft propulsive maneuver that also tended to corrupt the data arc. As the ray
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NEAR SOLAR CONJUNCTION RANGE RESIDUALS - METERS 

250. 

188. 

125. 

63. 

0. 

-63. 

-125. 

-188. 

STATION 45 

STATION 15 

STATION 65 

-250. 

1/15/97 

2/16/97 

3/20/97 

00:00:00 

00:00:00 

00:00:00 

Fig.  12.3  NEAR solar conjunction pre-fit range residuals 

path approached the Sun, the Doppler noise increased to the point where the data became marginally useful. These data were deleted from the solution. The absence of range data when the ray was within about 18 solar radii also rendered the Doppler data as marginally useful. 

Figure  12.3  shows pre-fit range residuals for the period of time of interest for orbit determination during the NEAR solar conjunction of February 1997. All of the data that were acquired are shown here. Each grouping of points represents a station pass. Because of range calibration errors caused by the noisy environment associated with solar plasma, many of the station passes were excluded from the final solution. The bad range passes are caused by dispersion associated with the solar plasma, which, when present in the data, produces jumps in the range measurement. The good range passes have noise at the 20 meter level, and the variation in range bias is only a few meters. This characteristic of the data makes it possible to identify the bad passes and eliminate them. 

Figure  12.4  shows the range residuals after the data have been fit and the bad data removed. The noise is only about 3 meters for nine passes, and for one pass, the noise is about 10 meters. Averaging the noise over the encounter time interval, the range measurement error should be below 1.0 m. Since the total delay associated with general relativity is on the order of 20 km, it may be possible to design an experiment to measure the parameter  γ  of general relativity to an accuracy of less than 0.01%. Achieving this level of accuracy would require reducing all the model errors to the same accuracy as the range measurement error. With current orbit determination techniques, the error in determining  γ  is about an order of magnitude above the theoretical limit. 
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Fig.  12.4  NEAR solar conjunction post-fit range residuals 

Fig.  12.5  NEAR solar conjunction range calibration delays 

Figure  12.5  shows the one-way delay in meters for various corrections that are applied to the computed range and Doppler measurements. The delay in meters is the time delay in seconds multiplied by the speed of light. Meters are preferred for quantifying these delays because they enter directly into the computation of the path length from the DSN antenna to the spacecraft antenna. The delays
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are those associated with the ionosphere, troposphere, solar plasma, and general relativity and are included in both the uplink and downlink signals. The total delay is approximately twice the one-way delay. They are not exactly the same, because of the motion of the antenna during the round trip signal time, which is about 50 min during the period of solar conjunction, and because of the different frequencies of the uplink and downlink carriers. Also, the effect of the charged particle environment is to actually advance the Doppler signal, so the distance associated with the delay is subtracted from the computed path length. 

The range delays shown in Fig. 12.5  are given as a function of the minimum distance R from the Sun to the ray path between the DSN station and the spacecraft. 

Negative values are associated with the time period before conjunction during which the minimum distance is decreasing. The absolute range measurement from the DSN antenna to the spacecraft is only marginally useful because of range biases. 

The ionosphere delays average about 10 cm, and the troposphere delays vary from about 3 to 10 meters. They are determined by measurements taken at each DSN 

station. The variation in the troposphere delay is caused by the elevation angle above the horizon. Its effect may be minimized by editing low elevation angle data out of the solution. Both the solar plasma and general relativity delays increase as the minimum distance of the ray path to the Sun decreases. The signal completely disappears at one solar radius. The two-way general relativity delay is about 250 ms at the point where the ray grazes the Sun, which corresponds to about 36 km in the one-way delay. At 18 solar radii, the minimum distance for which we have usable range data from the NEAR mission, the one-way delay is about 14 km (14,000 m on Fig. 12.5) and decreases to about 10 km at 40 solar radii. It is this variation in the distance, associated with the curvature of space, that enables us to determine  γ . 

It should be noted that the solar plasma delay increases dramatically as the ray path minimum decreases to a few solar radii, which makes this close in data less useful for spacecraft navigation, telemetry, and relativity experiments. 

The plot shown in Fig. 12.6  shows the electron density profile as a function of distance from the sun for the solar eclipse of 1963, Mariner 6, Viking, and NEAR. 

The a priori value for noise in the stochastic model was 1000 electrons per cubic centimeter. This is 100% of the value observed during the solar eclipse of 1963. 

This value is consistent with the uncertainties in the values computed for Mariner 6 

and Viking. The solar eclipse data were used as a priori because this determination is independent of any assumptions for  γ  of general relativity. The NEAR results are consistent with the previous determined values but are somewhat higher than those from the Viking mission. It is not known whether these differences are attributable to actual variations in the Sun’s corona electron density or experimental error. 

Figure  12.7  shows the variation in the estimated value of  γ  from general relativity theory as a function of time. We know from general relativity theory that  γ  is a constant parameter. By allowing the value of  γ  to vary as a function of time, we introduce conservatism into our estimation process and allow for the possibility that some other physical process is the source of the delay. If we get constant value for   γ  that is equal to 1, we have a very strong confirmation of general relativity theory. The formal error we get from the SRIF estimates is about 0.5%, which may
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be a bit pessimistic. Shown in Fig. 12.7  is the result of two filter runs. The one labeled “BEST” is from the run setup that is believed to most faithfully model the actual physical environment. Adjustments in the a priori assumptions will generate different solutions that are generally within 0.5% (  γ  between 0.995 and 1.005). Also shown in Fig. 12.7  is a typical solution that varied the a priori assumptions. Here, we read the Earth ephemeris from a file rather than integrating the Earth ephemeris from initial conditions. It is believed that the integrated Earth ephemeris should yield better results and that appears to be the case. 

The difference between the integrated Earth ephemeris and the Earth ephemeris obtained from a file is due to modeling errors. It is presumed that the file ephemeris, which yields the best solution, is more accurate. I believe the integrated ephemeris, which is accurate enough for NEAR navigation, probably omitted general relativity terms. This could be easily verified by looking at the computer code as programmed in 1997. That computer code is somewhere in a large stack of DVDs in my office. 

I am willing to concede that the file ephemeris is more accurate. Close inspection of the “best” solution in Fig. 12.7  indicates that the measured gamma at the end of the data arc is greater than the computed measurement by a factor of about 5 × 10−4. This would be relative to the equation used to compute the delay, which included only Eq. (11.7) the logarithmic term. The compete radar delay given by Eq. (11.15) was derived in 2003. If we include what I called the radial remainder term Eq. (11.11) and the bending term Eq. (11.12), the computed gamma would increase by a factor of about 5 × 10−4 relative to the logarithmic term. The accuracy of the measured gamma would be about one part in 10,000. To achieve this accuracy, the modeling of the path length from the tracking stations to the spacecraft must be on the order of 2 meters. A preliminary analysis of the modeling errors including station locations, media, solid Earth tides, and solar plasma indicates that this level of accuracy is achievable. 
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Chapter  13 

Navigation  Analysis 

13.1  Introduction 

Often the navigation analyses described further were performed before the spacecraft was launched, and the actual spacecraft and mission were not the same as analyzed pre-flight. These differences are usually minor when the analysis is for the original mission. All of the navigation analyses described further were for missions that were actually flown. In the sections that follow, problems that occurred during navigation design or navigation operations are defined and analyzed in detail. 

Some of these problems are of interest to navigators and some were useful for the design and implementation of the navigation system. Most of navigation analysis is concerned with problems associated with a potential failure of the navigation system. Since the probability of failure is small, most of the failure modes analyzed have never occurred. However, these low-probability failure modes are often the most interesting from an analysis point of view. The analyses described further are a small subset of all the analyses performed. The objective is to cover a wide range of the type of problems encountered with emphasis on the first time the problem was encountered. 

13.2  Viking 

Two Viking spacecraft were launched on separate Titan/Centaur rockets on August 20, 1975 and September 9, 1975 from Cape Canaveral on a mission to explore Mars and determine the possible existence of life on Mars. The spacecraft consisted of an orbiter and sterilized lander capsule. Viking 1 was inserted into Mar’s orbit on June 19, 1976, and the lander touched down on July 20, 1976 at the Chryse Planitia. 

Viking 2 followed and was inserted into Mars orbit on August 7, 1976, and the lander touched down on September 3, 1979 at the Utopia Planitia. For several years, 
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the Viking orbiters and landers mapped the Mars topography, searched for life, and analyzed the geology. 

 13.2.1  Planetary  Quarantine 

Since the primary purpose of the mission was to determine the existence of life on Mars, a major concern was the possible introduction of life from Earth and contamination of the planet. The purpose of planetary quarantine analysis was to guarantee that the probability of contamination was below an agreed-upon probability. The agreements were international and were taken very seriously. The lander was sterilized at considerable cost to the project. Navigation was concerned with the probability that large objects like the orbiter, Centaur and various space junks, like the shroud, would introduce microbes from Earth to the Mars surface. 

The probability analysis consisted of suballocating probabilities to the various sources of contamination. The probability equation is similar to Drake’s equation for determining the possible existence of life in the universe. Navigation was allocated a probability of 3 .  027 × 10−5. This navigation suballocation was further suballocated to the mission phases. In addition, a fuel allocation that was enough to change the velocity of the orbiter and lander by a total of 41 m/s was allocated. The suballocation of the probability and fuel navigation allocation to the various mission phases are given in Table 13.1. 

When the spacecraft is injected into its trans-Mars trajectory, the Centaur boost vehicle and associated hardware follow along and also make the trip to Mars. These objects must be aimed far away from the desired target in order to avoid impacting Mars. The injection aim point is about 400,000 km away from Mars or about as far away as the Moon is from Earth. Figure 13.1  shows the geometry drawn to scale for Viking 2. At this scale, Mars appears as a small circle as would the Earth and Moon drawn to the same scale. The ellipse, which is actually a cross section of a tri-axial ellipsoid, defines the region where 99% of Earth injections would arrive, or the probability is 99% that the spacecraft is inside the ellipse. Observe that the achieved injection is outside the 99% ellipse. This would imply that we had a bad injection. 

However, careful analysis revealed that, due to nonlinearity, the ellipse shown in the figure is actually bent like a banana. The achieved injection was actually inside the real 99% contour. 

Table  13.1  Planetary quarantine large impactables allocation Trajectory phase

Probability sub allocation

  V Suballocation 

Injection

0 .  227 × 10−5

7.5 m/s 

Midcourse

0 .  200 × 10−5

5.0 m/s 

MOI

2 .  500 × 10−5

28.5 m/s 

Orbit Trims

0 .  100 × 10−5

nill
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Fig.  13.1  Viking 2 injection dispersion 

The first midcourse maneuver, which is not performed midcourse but near the Earth, delivers the spacecraft to the point in the B-plane shown in Fig. 13.2. Modern 

terminology refers to maneuvers performed during the interplanetary phase of the mission as Trajectory Correction Maneuvers (TCMs). The achieved trajectory is statistically closer to the target than at injection, and this may be attributed to the luck of the draw. The first midcourse was also biased to satisfy planetary quarantine per the suballocations given in Table 13.1. It would appear from the figure that the probability of impacting Mars is greater than the planetary quarantine allocation. 

However, if the probability of the orbiter being able to perform a subsequent maneuver to move the spacecraft off the capture circle is included in the probability calculation, the probability is within the allocation. 

Near Mars, the mapping of maneuver execution errors is much smaller, and planetary quarantine constraints are easier to satisfy. Once in orbit, the orbit trim maneuvers are too small to result in impact. Orbit lifetime may result in eventual orbit decay and impact. This suballocation is considered separately and not included in the navigation suballocation. The strategy for the planetary quarantine bias required for MOI is included in the MOI maneuver design discussed further. 
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Fig.  13.2  Viking 2 first midcourse maneuver dispersion 

 13.2.2  Orbit  Insertion  Maneuver  Design 

During approach to Mars, the Viking orbiter and lander were maneuvered into a trajectory that provided the optimum initial condition for a large propulsion motor burn that inserted the orbiter and lander into an orbit about Mars. The design of the approach trajectory and orbit insertion burn involved finding the ignition time, magnitude, and direction of two propulsion maneuvers. The constraints on the trajectory design included the period of the inserted orbit, periapsis altitude, latitude of the landing site, and sun elevation angle at the landing site. Since the number of control parameters related to the propulsive motor burns exceeded the number of mission constraints, a solution could be found that satisfied the constraints and minimized a performance criterion. The performance criterion was the total amount of fuel consumed. A numerical solution to a classical constrained parameter optimization problem was needed. A constrained parameter optimization algorithm was devised by the author for this purpose and is referred to as the method of explicit functions described earlier in Chap. 4. 

The first problem was to optimize the final approach maneuver in conjunction with the orbit insertion burn. The control parameters are given by the propulsive maneuver components  V1,  V2 and the ignition time. The  V  maneuver components are the integral of the thrust over the finite burn time of about 40 min. 

The candidate constraint parameters are period of the post MOI orbit (  P 0), the
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periapsis altitude (  hp), the latitude of a point in the orbit, referred to as the PER 

point,  φP ER, the longitude of the sub PER point at the time of touchdown ( θP ER), and the sun elevation angle of the landing site at touchdown ( SEA). The PER point is at a fixed true anomaly on the separation orbit and is directly over the lander at touchdown. The performance criterion is 

 J = | V1| + | V2|

The constraint on periapsis altitude is necessary to prevent the optimization algorithm from collapsing onto the planet surface. The optimum solution involves targeting to as low a periapsis as possible and then raising periapsis altitude by doing a maneuver at apoapsis. The periapsis altitude was constrained to be 1500 

km to avoid hitting Mars. At that time, radiometric orbit determination was several hundred kilometers. During the actual approach to Mars, optical data were able to determine the orbit to within 25 km; however, optical data were not accepted as a primary data source and were regarded as a backup. 

After the final approach maneuver was executed, the spacecraft continued about 10 days to encounter with Mars. During this time, additional radiometric tracking revealed that the spacecraft was not on course. The orbit insertion burn was thus adjusted to satisfy the important mission constraints. For this optimization, the periapsis altitude was not a target constraint. The desired 1500 km altitude could not be achieved or would require too much fuel. The MOI control parameters, constraint parameters, and performance criterion were reduced to 

 U =  (t 2 , V2 )

 c =  (P 0 , φP ER)

 J = | V2|

and the other parameters were permitted to float. Of course, periapsis altitude could not be permitted to float too far from the nominal value of 1500 km. If the tracking data revealed that the spacecraft was getting too close to Mars or too far away, an emergency propulsive maneuver would be executed to restore the target periapsis altitude. 

Another approach to partially restore  hp  to its target is to adjust the performance criterion to enable some propellant to be expended to raise or lower  hp. Consider the following modification. 

 J = | V2| +  G | hp − 1500 . |

The gain  G  would achieve this purpose. A value for  G  may be obtained from the trajectory optimization performed for the last maneuver targeting. The Lagrange multiplier associated with  hp  may be obtained as a by-product of the optimization. 
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 λhp = −  ∂J

 ∂hp

The Lagrange multiplier provides a measure of the cost of maintaining  hp  at 1500 

km. Recall that the optimum solution would allow  hp  to be much lower. If we set G = − λhp, the optimization algorithm will partially restore  hp  to 1500 km at a cost that has already been committed. 

13.3  Galileo 

The Galileo spacecraft was launched to Jupiter on October 18, 1989. An atmospheric entry probe was released 150 days prior to Jupiter encounter. Following probe release, the orbiter portion of the spacecraft was deflected for a close flyby of the Galilean satellite Io. The orbiter was then configured for recording and relay to Earth of probe entry data. Immediately following relay of probe data, the orbiter was reconfigured for a Jupiter Orbit Insertion (JOI) motor burn. The orbiter was then inserted into a highly eccentric 200 day orbit about Jupiter. At apojove, a large motor burn raised the perijove radius to a less severe radiation region. The orbiter then began a series of close encounters of the Galilean satellites Europa, Ganymede, and Callisto. 

 13.3.1  Probe  Delivery  to  Jupiter 

The first major orbit determination activity during the Jupiter approach phase is determination of the spacecraft trajectory so that Trajectory Correction Maneuvers (TCMs) can place the probe on the proper Jupiter atmosphere entry trajectory. 

This process combines trajectory state estimates with the nominal probe–orbiter separation velocity to determine estimates of six Jupiter-relative entry parameters. 

The six entry parameters are latitude, longitude, speed, heading angle, time of entry, and entry flight path angle defined at entry. Entry is at a defined altitude of 450 km above the reference ellipsoid with an equatorial radius of 71,398 km and flattening of 0.065. This ellipsoidal surface is assumed to represent the l-bar pressure level in the Jovian atmosphere. The probe was not expected to encounter perceptible atmosphere until about 100 km below the reference 450 km point, but use of a fixed reference is convenient because of uncertainties in the actual entry point. 

During the 2-year interplanetary cruise from Earth to Jupiter, the spacecraft is tracked to monitor the effect of nongravitational accelerations such as solar pressure, gas leaks, and attitude control thruster imbalance. As the spacecraft approaches Jupiter’s sphere of influence, the orbit determination error was predicted to be about 500 km. This total error represents a statistical combination of the Jupiter ephemeris error and the 0.25 microradians tracking error characteristic of Doppler tracking. 
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The probe is released from the orbiter 150 days prior to entry. Control of the six entry parameters is dependent on the initial position error and the mapping of separation velocity errors to entry. Errors in solar pressure and probe outgassing modeling have little effect on the predicted probe trajectory. 

 13.3.2  Gravity  Focusing 

The mapping of probe position errors from probe separation to entry is best described in an orthogonal rotating frame with the X axis parallel to the velocity vector (the downtrack direction), the Z axis normal to the plane-of-motion (the out-of-plane direction), and the Y axis normal to the velocity vector and in the plane-of-motion (the crosstrack direction). The mapping of a spherical position error in downtrack and crosstrack from far out on the approach asymptote to entry is shown schematically on Fig. 13.3. Observe that the downtrack error increases as the probe approaches Jupiter (defocuses), whereas the crosstrack error decreases (focuses). 

The out-of-plane error focusing is similar to the crosstrack error focusing. 

The exact relationships describing gravity focusing of the orbiter state  (X, Y, Z) with respect to the initial state at minus infinity  (X∞ , Y∞ , Z∞ )  have been derived by Kent Russel and are given by 
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Table  13.2  Predicted probe 

Entry parameter 

Error (99%) 

delivery entry parameter 

Latitude

0.05 ◦

errors 

Longitude

2.7 ◦

Time-of-entry

256 s 

Speed

0.035 km/s 

Heading angle

0.16 ◦

Flight path angle  0.94 ◦
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 ∂Y∞
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 ∂Z = 1 − exp (F)

 ∂z∞

 e

where the hyperbolic eccentric anomaly (F) is defined by its relation to the mean anomaly (M) as 

 M =  V  3

∞  (t −  tca) =  e  sinh  F −  F

 GM

where  V∞ is the hyperbolic excess velocity,  e  is the orbiter eccentricity ,  tca  is the time of closest approach, and  GM  is Jupiter’s gravity. For the Galileo probe, the approach hyperbola has the orbit elements  V∞ =  5.86  km/s,  e = 1.0193, and entry occurs 276 s before periapsis. From Russel’s equations, the crosstrack focusing is 0.19, the out-of-plane focusing is 0.04, and the downtrack defocusing is 10.0. The coupling of crosstrack into downtrack is 1.91. For a 500 km spherical delivery error on the approach asymptote, the downtrack error at entry is 5,080 km, the crosstrack error is 98 km, and the out-of-plane error is 2 0 km. 

 13.3.3  Probe  Entry  Dispersions 

A detailed covariance analysis was performed to determine the dispersions of Jupiter relative atmosphere entry parameters. Computer simulations of data scheduling, trajectory propagation, data filtering, and mapping resulted in the probe delivery entry parameter errors given in Table 13.2. The effect of gravity focusing is somewhat obscured by Jupiter’s rotation rate. Since the probe enters near Jupiter’s equator at a heading angle that is about due East, the latitude dispersion is predominantly caused by the out-of-plane trajectory error. Similarly, the flight path angle error is related to the crosstrack error. The downtrack error maps into the time-or-entry error. The longitude error is related to the time-of-entry error by Jupiter’s rotation rate. 
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 13.3.4  Probe  Entry  Flight  Path  Angle 

Probe entry flight path angle, the angle between the relative velocity vector and local horizontal plane, is the most critical entry parameter. It was required to deliver the probe to an entry angle corridor with 99% probability between −7.2 ◦ and  −10.0 ◦. 

The upper limit is related to skip out of the Jovian atmosphere and the lower limit is related to structural limitations. For the purpose of analysis, it is convenient to relate entry parameters to orbit determination errors in the B-plane coordinate system shown in Fig. 13.4, which has its T-axis parallel to the Jupiter equatorial plane. 

Since the Jupiter equatorial plane, the ecliptic plane, and the trajectory plane are nearly coplanar, B · T is essentially in the trajectory plane and B · R is essentially perpendicular to the trajectory plane. On the approach asymptote, B · T is nearly in the crosstrack direction defined earlier and B · R is nearly in the out-of-plane direction. The magnitude of the B-vector is the hyperbolic impact parameter. The S-vector shown in Fig. 13.4  is the unit vector in the direction of the approach asymptote. It is in the direction of the hyperbolic excess velocity (  V∞) and is in the downtrack direction on the approach asymptote. 

The entry flight path angle is most strongly dependent on the encounter impact parameter (B), which is a measure of the “miss” of the approach hyperbola asymptote with respect to the center of the planet. The relationship between the impact parameter (B) and the inertial entry angle  γI  is given by cos  γI =

 B
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An approximate relationship for the relative flight path angle, which assumes 90 ◦

heading, is given by 

tan  γe =

sin  γI

cos  γI −  ωJ re

 VI

where   ωJ  is Jupiter’s rotation rate,  VI  is the inertial entry velocity, and  re  is the reference entry radius. 

In terms of B, expected delivery error to Jupiter was approximately 1300 km (99%). This delivery error is dominated by the Jupiter ephemeris error. The effect of this error on entry angle delivery is shown in Fig. 13.4. The relative entry angle is plotted as a function of the hyperbolic impact parameter. Superimposed on the abscissa is the targeted B and the 99% orbit determination delivery error. Projected onto the ordinate is the 99% relative entry angle dispersion. The entry angle delivery error is shown to be about 1.1 ◦. The margin indicated by these results is small but adequate. 

 13.3.5  Probe  Entry  Angle-of-Attack 

Another aspect of probe delivery is control of the entry angle-of- attack, which is the angle between the relative velocity vector at entry and the probe spin axis. Since the probe has no active attitude control, it is necessary to deploy the probe in an attitude such that it will enter the perceptible Jovian atmosphere at near zero angle-of- attack. 

The angle-of-attack is simply the difference between the relative entry velocity and the local horizontal plane. Since the plane of the orbit is near Jupiter’s equatorial plane, the angle-of-attack dispersion is the difference between the relative entry angle and true anomaly or inertial longitude dispersion at entry. The 99% angle-of-attack delivery caused by trajectory errors is about 0.6 ◦. This is well within the Galileo project requirement of 4.5 ◦. 

 13.3.6  Trajectory  Bending 

As the orbiter approaches Jupiter, the gravitational acceleration causes the orbiter to deviate from the approach asymptote. The resultant bending of the trajectory can be measured with  V LBI  and range data and the position of the orbiter relative to Jupiter may be inferred. The trajectory of the orbiter may be obtained from solution of 

 GM

r = r0 + V∞ (t −  t 0 ) +

r  dtdt

 r 3
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For orbit determination, the partial derivatives of the observable with respect to the estimated parameters are needed. In the simplified analysis presented here, the observable is orbiter position (X,Y,Z) and the Jupiter position  (Xp, Yp, Zp) is estimated. When the orbiter is far out on the approach asymptote, these partial derivatives may be approximated as follows: 
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where 

 r =  Xp −  X

In the limit, the aforementioned integrals may be evaluated by making the assumption that velocity  (V∞ )  remains constant on the approach asymptote and by performing a change of variable from time to r. 
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cosh (F ) = exp (− F )
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2

The aforementioned result may also be derived from Russel’s equations by taking the limit as F approaches minus infinity. Another interesting observation is that on the approach asymptote, the crosstrack and out-of-plane partial derivatives are equal and the downtrack partial derivative is greater by a factor of 2. Recall that
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the crosstrack, out-of-plane, and downtrack directions are nearly coincident with the B·T, B·R, and time-of-flight or S directions respectively. This implies that with DOR 

data and comparably accurate range data, the Jupiter approach orbit determination B · R and B · T errors are equal, and the S orbit determination error is one half of the B · R and B · T errors. The orbit determination error is proportional to the reciprocal of the measurement sensitivity. Of course, these idealized results provide only an approximate insight into the actual errors. 

 13.3.7  Jupiter  Approach  Orbit  Determination 

The Jupiter approach orbit determination error as a function of time from encounter is shown on Fig. 13.5. The orbit determination error is mapped to the Jupiter B-plane. Prior to Encounter (E) minus 40 days, the B-plane errors are dominated by Jupiter’s ephemeris error. Starting at about E-40 days, the   VLBI measurements begin to sense the gravitational acceleration of Jupiter. The B · R and B · T errors are approximately equal as predicted by the aforementioned analysis. The S error is predicted to be less than B · R and B · T errors by a factor of 2. The time-of-flight error (TL), which is equivalent to the S error divided by  V∞, is greater than predicted by the above simplified analysis until about E-5 days. However, the qualitative agreement with the results of detailed computer simulations that include optical and Doppler data is good. At about E-5 days, the B · R error levels off at a
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Fig.  13.5  Jupiter approach orbit determination errors
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around 25 km. This may be attributed to a systematic optical center finding error of 1% of Io’s radius. Near Jupiter periapsis, the orbit determination error decreases rapidly because of the strong orbit dynamics signature in the Doppler data. 

The same orbit determination error is shown on the right side of Fig. 13.5  mapped to Io closest approach. The in-plane B · T and TL components tend to follow the Jupiter relative TL component shown on Fig. 13.5. The ratios of Io relative B.T 

and TL errors to the Jupiter relative TL error may be computed from the orbiter and Io velocities. The orbiter trajectory crosses Io’s orbit at an angle of 36 ◦.  From the geometry, the ratios of Io-relative B · T and TL errors to the Jupiter relative TL 

error are 16 and 1.25, respectively. This result may also be obtained from the gravity focusing formulas. The Io-relative B.R component shown in Fig. 13.5  is much better determined because of the effect of Jupiter gravity focusing. The orbit estimate at E-5 days is used for the TCM at E-3 days that delivers the orbiter to Io. 

 13.3.8  Relay  Link 

The Galileo mission probe-to-orbiter communications relay link is illustrated schematically in Fig. 13.6. The link begins with transmission of coded science and engineering data from a transmitter within the probe descent module through a relatively broad-beam antenna fixed to the aft end of the probe so that normally its axis is oriented along the local vertical. The signal is received by the relatively EARTH 

EARTH 

EARTH 

HGA 

HGA 

RRA 

HGA 

RRA 

RRA 

NOTE: Probe falls 

vertically in Jupiter’s 

atmosphere after 0.1 bar 

TOP OF IONOSPHERE 

0.1 bar 

ENTRY ~ 1 bar + 450 km 

E+30 min 

JUPITER’s ROTATION 

~7 bar 

E+2 min, 

E+40 min 

E+8 min 

CHUTE DEPLOYMENT, 

~10 bar 

~1 bar 

E+60 min 

ACQUISITION

CLOUD 

(H = 0 km) 

~19 bar 

PROBE EOM 
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narrow-beam Relay Radio Antenna (RRA) on-board the orbiter and retransmitted in real time to the DSN through the orbiter high-gain antenna. A few days after probe separation, the RRA is deployed to a position such that the antenna axis will be pointing in the direction of the predicted probe location approximately 20 min after probe entry. This optimizes relay link performance during the first 30 min of the relay. During the latter half of the relay, the RRA is repointed several times so as to minimize the RRA aspect angle. Ten days before probe entry, the RRA pointing is updated in accordance with the improved orbit determination. 

The dynamic behavior of the link geometry as a function of time past entry is also illustrated in Fig. 13.6. Note that at signal acquisition, the signal enters the RRA to the left of the RRA axis, while 30 min later, it enters to the right of the axis. If the RRA remains inertially pointed, the signal arrives far off the RRA axis at the end of probe mission. The dashed line represents a repointing of the RRA to improve the relay link performance in the later portion of the mission. 

Four pertinent antenna angles are defined on Fig. 13.7. The reference direction for the probe aspect angle is the local vertical. The orbiter aspect angle is referenced to the +Z-axis of the orbiter. The direction of the axis of the RRA is also referenced to th orbiter Z-axis. Then, the operating point in the RRA pattern is defined by the difference between these two angles. 
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Table  13.3  Predicted probe delivery entry parameter errors 

Relay link delivery errors 

Parameter

Requirement error (99%)

Capability error (99%) 

Orbiter aspect angle

2.0 ◦

1.8 ◦

Probe aspect angle

3.0 ◦

2.4 ◦

Time-of-entry

480 s

256 s 

These angles may all be calculated at any time during the probe mission, based on reference trajectories for the orbiter and the probe, allowing the RRA and probe antenna gains to be calculated. However, the values for probe and orbiter antenna aspect angles at any given time will be perturbed by deviations in the trajectories of the two spacecraft and by errors and changes in the attitudes of the two spacecraft. 

It should be noted that for probe and orbiter trajectories, the relative motion of the probe in the orbiter frame of reference is almost exclusively in the cone-angle direction. The RRA may be articulated in this direction by rotation of the boom on which it is mounted. RRA pointing in the clock or cross-cone direction is controlled by orientation of the de-spun portion of the dual-spin orbiter spacecraft. 

Delivery orbit determination errors of the relay link parameters for a data arc ending at the time of probe separation and knowledge orbit determination errors at 10 days before encounter are given in Table 13.3. 

 13.3.9  Jupiter  Orbit  Insertion 

The final event of the Jupiter approach phase is insertion of the orbiter into orbit about Jupiter. Immediately following the relay of probe data, the orbiter is placed into a 200 day period orbit around Jupiter by the Jupiter Orbit Insertion (JOI) maneuver. The initiation of the JOI maneuver is time critical because the relay link ends after Jupiter periapsis and delay results in expenditure of additional propellant to get into orbit. The amount of propellant required for JOI and subsequent orbit trims is also dependent on how accurately the orbiter is delivered to Io and prior knowledge of Io delivery that would permit a late update of the JOI motor burn. A final Jupiter approach TCM is performed 3 days prior to Io encounter. This TCM 

is based on data taken up to 5 days prior to Io encounter. The Io relative orbit determination error is shown in Fig. 13.5  as a function of time from encounter. At E-5 days, the B · T orbit determination error is about 60 km. The post JOI orbit period is most sensitive to the in-plane B · T delivery to Io. The B · T orbit determination error decreases to around 25 km at E-1.5 days. A systematic optical center finding error of 1% of Io’s radius holds the B·T and B·R errors at this level. A late update of the JOI maneuver is planned based on data taken up to E-1.5 days. This late update results in a savings of several kilograms of propellant for the orbit trim subsequent to the JOI motor burn. 
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 13.3.10  Probe  Entry  Trajectory  Reconstruction 

The final orbit determination activity associated with the Jupiter approach phase is reconstruction of the probe entry trajectory. Of particular interest is the probe entry flight path angle. The determination of Jupiter atmosphere scale height is dependent on accurate knowledge of the entry angle. On-board probe measurement of deceleration cannot accurately determine whether the probe is descending rapidly through a relatively thin atmosphere or entering on a shallow angle through a dense atmosphere. 

The entry angle reconstruction procedure consists of tracking the orbiter during the entire Jupiter approach phase through Io closest approach. A smoothed best estimate of spacecraft trajectory state relative to Jupiter is determined at the time of separation. The separation spring impulse is added to the probe velocity, and the probe trajectory state is mapped ahead to the reference entry altitude. This state vector and its covariance are provided to the Jupiter atmosphere scientists. 

Data types that are used for reconstruction include Doppler, range,  V LBI , and optical imaging of Io. Orbiter accelerometer data of the separation impulse are also included. The major error sources that affect entry angle reconstruction are Jupiter’s ephemeris, execution errors associated with TCMs, and velocity perturbations of the probe and orbiter that occur during the separation sequence. Radio metric tracking data through Jupiter closest approach provide a powerful solution for Jupiter’s ephemeris. When  V LBI  data are included, the TCMs both before and after separation including the orbit deflection maneuver may be determined with precision. 

The major error sources that affect entry angle reconstruction are velocity perturbations of the probe and orbiter that occur during the separation sequence. 

During this sequence, the orbiter turns to the attitude required for zero angle-of-attack at entry. A spin-up maneuver is performed to give the probe the required angular momentum to maintain a stable attitude during the 150 day ballistic transit to the Jovian atmosphere. The probe is separated from the orbiter by springs, and the orbiter then performs a spin-down and return to normal cruise attitude. 

A feature of the separation sequence is that two-way lock is lost when the orbiter turns off Earth-line. An accurate measurement of separation velocity is obtained from Doppler data. The total orbiter velocity change associated with the turn, spin-up, separation springs, spindown, and return to cruise attitude may be determined to 1 mm/s when the orbiter returns to Earth-line, and two-way lock is reestablished. 

However, the velocity given to the probe cannot be completely separated from the orbiter velocity changes associated with the spin-up, spin-down, and turns. The probe velocity must be inferred from the observed orbiter velocity change. 

Analysis has shown that it is difficult to meet the entry angle reconstruction error requirement of 0.15 

◦ (99%) with the sequence defined earlier. There are 

several methods being studied to reduce the entry angle reconstruction error. They include use of orbiter accelerometer data, performing an Earth-line separation and entering the Jovian atmosphere at some small angle-of-attack, special calibrations
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of the attitude control system, and performing a more accurate calibration of the separation springs. Assuming perfect determination of the velocities associated with separation, the probe entry angle could be reconstructed to an accuracy of 0.05 ◦

(99%). With worst-case estimates of separation velocity errors and no calibrations, the reconstruction error could be as bad as 0.45 ◦ (99%). The current best estimate of entry flight path angle reconstruction error is 0.2 ◦ (99%). With implementation of some or all of the aforementioned methods, the goal is to meet the atmosphere science requirement on entry angle reconstruction. 

13.4  Pioneer 

In July of 1992, the Pioneer Venus Orbiter (PVO) spacecraft began a series of orbits that entered the Venus atmosphere. At first, the orbit periapsis just grazed the upper atmosphere but, because of the perturbing effect of the sun, the periapsis altitude was pushed deeper into the atmosphere. With the limited propellant available, a series of propulsive maneuvers were executed to raise the periapsis altitude and extend the life of the spacecraft. 

During the entry phase, navigation is required for support of propulsive maneuvers and entry science. Of particular interest to science is the determination of the velocity change imparted to the spacecraft while in the Venus atmosphere. The velocity change may be directly related to the drag experienced by the spacecraft and, hence, the atmospheric density. Determination of the spacecraft orbit was extremely hampered by the lack of tracking data. Continued deterioration of solar cells resulted in a critical power shortage that limited the time that the spacecraft transmitter was operated. As a result, tracking coverage was limited to a total of 2 h for each orbit. 

A strategy was planned for determining the orbit with the limited data available. 

The strategy involved determining the velocity change directly and then relating this quantity to the atmospheric drag. 

 13.4.1  Orbit  Determination  Strategy 

The orbit determination strategy defines the data types and data acquisition required for orbit determination. For PVO, the data type is two-way coherent Doppler obtained by tracking the spacecraft from the Deep Space Network. During times of high spacecraft activity, such as during maneuvers or when the spacecraft is perturbed by external forces, it is desired to have continuous tracking coverage. With the solar array degradation being experienced by PVO, the total tracking coverage during the atmospheric entry phase is about 2 hours per day. Science playback and commanding for maneuvers require about 30 min of coverage at periapsis and apoapsis. With this as a baseline tracking coverage, a study was undertaken to
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determine the minimum coverage needed to meet science and mission accuracy requirements. Tracking data were simulated, and the strategy for placement of tracking passes varied to determine the optimum tracking coverage. As a general rule, it was discovered that the length of individual tracking passes spaced around the orbit had little effect on orbit determination accuracy. Orbit determination accuracy is primarily determined by the number and geometric placement of the passes. For example, it was found that six tracking passes each 15 min in length and geometrically spaced evenly around the orbit would determine the orbit nearly as well as continuous tracking coverage. However, an hour of tracking at periapsis and another hour in the vicinity of apoapsis does not do nearly as well. 

Further investigation of the placement of tracking passes revealed that the number of passes required per revolution could be substantially reduced by processing several consecutive orbits of data. With this strategy, three consecutive orbits containing three periapsis passages would require four tracking passes per revolution to obtain orbit determination accuracy comparable to continuous coverage. The four tracking passes would be 15–30 min in length and placed at periapsis, apoapsis, and roughly geometrically in between at plus and minus 4 h from periapsis. 

 13.4.2  Orbit  Determination  Results  from  1980 

In order to quantify and verify these observations, a series of atmospheric entry passes from 1980 were selected and the data processed in a manner similar to that described earlier. First, a baseline case was run processing all the data available. 

These were orbits number 503 through 506 extending from April 20 to April 23, 1980. The estimated parameters were spacecraft state, the maneuver velocity components at apoapsis 505, and the magnitude of the velocity change that occurred during each periapsis passage. The atmospheric drag was modeled as a small retro propulsive maneuver in a direction opposite to the nominal direction of the velocity vector at periapsis. The length of the burn was taken to be about 300 s, which is approximately the length of time that the spacecraft was in the atmosphere. It will be shown later that the detailed modeling of the atmospheric drag is not critical since the orbit determination filter responds primarily to the total impulse. The filter model also included stochastic acceleration components around the entire orbit and solar radiation pressure. 

The results of processing the baseline case for orbit numbers 503 through 506 are shown on Fig. 13.8. The abscissa is time measured in days from periapsis passage 503, which is assigned the day number 503. The ordinate is milli Hertz (mHz) of Doppler residual. Except for the data near periapsis, the fit is good within 15 mHz, which corresponds to a velocity error of 1 mm/s. Analysis of these residuals indicate that the data near periapsis are corrupted by errors in modeling the Venus gravity field. A better fit may be obtained by estimating gravity harmonics or deleting the data near periapsis as has been demonstrated on previous missions. 

Here, we have elected to fit through the periapsis data, and the results are tabulated in Table 13.4. Shown is (  V ) that was estimated at each of the periapsis
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Fig.  13.8  Pioneer orbits 503–505 data residuals-continuous tracking Table  13.4  Pioneer 1980 

 V

 Pbase

 P 80

orbit determination baseline 

Revolution 

mm/s 

s

s 

503

1.863 

0.573 

0.574 

504

0.413 

0.128 

na 

505

60.07 

18.463 

18.522 

passages indicated under the heading “Revolution.” Atmospheric drag was modeled as a finite motor burn directed opposite to the nominal velocity vector and centered on periapsis with a nominal burn time of 300 s. 

The associated orbit period change ( Pbase) was computed from the partial derivative of period with respect to velocity and given by 

 Pbase =  ∂P V

 ∂vp

5

 ∂P

 v

2

=

 p a

6 π

 ∂v

3

 p

 GM  2

− GM

 a =

 h

 h =  v 2 − 2 GM

 p

 rp

where   vp  is the velocity at periapsis,  rp  is the radius of periapsis, and  GM  is the Venus gravitational constant. For comparison, the period change obtained in 1980, at the time of the actual atmospheric entry, is also shown  (P 80 ). The period
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Fig.  13.9  Pioneer orbits 503–505 data residuals—sparse tracking Table  13.5  Pioneer 1980 

 V

 Psparse

 Pbase

orbit determination sparse 

Revolution 

mm/s 

s

s 

data 

503

1 .  851 

0 .  569

0 .  573 

504

0 .  409 

0 .  126

0 .  128 

505

60 .  05 

18 .  487

18 .  463 

changes agree within 0.06 s even though obtained by somewhat different methods. 

Subsequent analysis of additional orbit cases has shown general agreement to within 10 ms. The differences may be attributed to small perturbations from the sun and nongravitational accelerations. During the 1992 atmospheric entry phase, much less tracking data were available as discussed earlier. As a test, the sparse data tracking strategy can be applied to the 1980 data. The tracking data residuals are shown in Fig. 13.9. 

Since the spacecraft is normally occulted by the planet near periapsis, these data are deleted. Included are two 30-minute tracking data arcs just before and after the simulated occultation and several 15 minute tracking data arcs spaced around the orbit. The resulting  V  s  and corresponding period changes are shown in Table 13.5. The sparse data solution compares quite favorably with the solution obtained by processing all the available data. 

 13.4.3  Estimation  of  Drag 

The estimation of drag from orbit tracking data involves separating the velocity imparted to the spacecraft associated with atmospheric drag from the velocity

[image: Image 55]
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imparted by all other sources including both gravitational and nongravitational accelerations. The significant other sources include the Venus gravity harmonics, solar tide, solar radiation pressure, and any spacecraft propulsive or attitude maneuvers. Over a relatively short data arc of a few hours, the solar tide and nongravitational accelerations are predictable and do not contribute significantly to the drag estimation error. The Venus gravity harmonics, on the other hand, result in a large perturbation of the orbit that reaches a maximum near periapsis just where the drag acceleration attains a maximum. Thus, the main orbit determination problem is separating the gravity harmonic perturbation from the drag perturbation. 

In order to gain some insight into the problem of drag estimation, it is useful to examine the response of the tracking data to errors in the values of key parameters involved in the estimation process. The tracking data response to estimated parameters is most useful when displayed as perturbations on the data residual, which is referred to as the parameter signature. Figure 13.10  shows data residual signatures of the two key parameter sets describing gravity harmonics and drag. The drag is described by the atmospheric density and is the curve consisting of the o’s, the lower curve. The gravity harmonic truncation error is approximated by the sum of the perturbations caused by the gravity harmonics of degree 21 and is the curve described by the x’s, the upper curve. The representation of the gravity field truncation error by the highest degree harmonics available is somewhat arbitrary. 

The actual error in the truncation of the gravity field is some weighted average of all the harmonics that have been omitted from the solution. 

The data residual signatures of atmospheric density and gravity harmonics shown in Fig. 13.10  were obtained by the following procedure. First, a single orbit of Doppler data was fit, and residuals similar to those shown in Fig. 13.8  were obtained. 

These residuals are simply a plot of the difference between the actual measurement Fig.  13.10  Pioneer drag and gravity harmonic signatures
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obtained at the tracking station and the measurement computed from a model of the system after the parameters of the model have been adjusted by least squares to minimize the residual error. At this point, we intervene and generate a simulated data set of measurements that are equal to the computed measurements. When we process this new dataset, the residuals are exactly zero for each data point. Next, we adjust some parameter in the model that we are interested in and process the simulated data, thus exposing the sensitivity of the adjusted parameter. Shown in Fig. 13.10  is the result of performing this procedure for atmospheric density and the degree 21 gravity harmonics. The orbit determination filter effectively looks at these two curves and separates one parameter from another based on the characteristic response or signature of the parameter. If we restrict the orbit determination solution to data near periapsis, say from 42,000 to 46,000 s on Fig. 13.10, the filter will not be able to determine the drag since the perturbation of the spacecraft is dominated by gravity harmonics in this region. However, the gravity harmonics tend to conserve energy around a closed orbit and their signature is periodic, whereas the atmospheric drag reduces the energy resulting in a signature that grows with time. An hour or so of tracking data after periapsis reveals a secular growth in the atmospheric drag signature that may be easily separated from the gravity harmonics signature by the filter. Comparison of the atmospheric density residual with the gravity harmonic residual indicates that the orbit period change associated with the drag may be estimated to an accuracy of about 15 ms. 

 13.4.4  Relating  Drag V to  Period  Change 

The orbit determination software provides an estimate of the  V  attributable to drag as the spacecraft flies through the Venus atmosphere. The problem faced by science is to relate this  V  to the parameters of a detailed spacecraft aerodynamic and planet atmosphere model. The procedure that has been used in the past is to map the spacecraft state to some reference epoch and compute the difference between the osculating orbit periods with and without the effect of atmospheric drag. The atmospheric scientists may then adjust the parameters of their model until they obtain the same period difference at the same reference epoch. The theory of small perturbations then applies provided the velocity change associated with the drag acceleration is small compared to the spacecraft velocity at periapsis. This is certainly the case since the spacecraft is moving at approximately 10 km/s relative to the planet, and the velocity change attributable to drag is on the order of 1 m/s. 

Consider a simplified model consisting of flat plate drag and a simple exponential atmosphere. We thus have for the force model, 

 Ad = −  Cd A q

 m

 q = 1  ρ v 2

2
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− (r −  ro)

 ρ =  ρ

 h

 o e

 o

where   ρo,  ro, and  ho  are the atmosphere base density, reference altitude, and scale height respectively and  Cd ,  A,  m, and  v  are the spacecraft drag coefficient, reference area, mass, and speed respectively. The atmospheric density  (ρ), drag acceleration (Ad ), and dynamic pressure  (q)  are functions of these quantities. 

The aforementioned drag equations in conjunction with the two body equations of motion are solved for  VR. 

 πGMho

 VR =  Cd A ρr

 ( 1 +  e)
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2 e
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 ρ
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=  ρ
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 p

 o e

The actual Venus atmosphere has considerable more structure than is represented by the simple exponential atmosphere, and furthermore, it is not convenient to solve for atmospheric model parameters in orbit determination software. Since the filter primarily responds to the total impulse and is insensitive to the time variation of the acceleration in the atmosphere, a much simpler model of the drag should suffice. 

After some experimentation, a model was selected where the drag is a constant acceleration over a fixed interval of time. The direction is opposite to the velocity vector, and therefore, the spacecraft executes a gravity turn trajectory during the time that the acceleration is active and is ballistic when the acceleration is inactive. 

The actual acceleration describes a bell-shaped curve as a function of time centered at periapsis, and this is replaced by a constant acceleration over a fixed time interval centered at periapsis. The width of the time interval is selected such that the modeled acceleration profile is close to the actual acceleration profile. The total integrated drag acceleration is thus given by 

 Vc =  Ac Tc

We desire a value for the time interval  (Tc)  such that the constant acceleration (Ac)  is close or a best fit to the actual acceleration. This will occur when the constant acceleration is some constant  K  times the actual peak acceleration experienced by the spacecraft at periapsis and is given b y

 Ac =  K Ap

 Ap = −  Cd A qp

 m

 qp = 1  ρp v 2

2

 p
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We may solve the aforementioned equations for  Tc  by equating  Vc  with the actual integrated velocity change, which is approximately  VR  and obtain πGMh 0

 Tc = 2 ( 1 +  e)

 v 2

 e

 p

where, from inspection, the value of  K  is seen to be a little less than one and has been arbitrarily assigned the v alue

 K = 1

√2

The atmosphere reconstruction procedure thus consists of estimating the total integrated velocity change or  V  experienced by the spacecraft during passage through the atmosphere and relating this quantity to the parameters of a detailed precise model of the spacecraft and atmosphere. 

Consider the following numerical experiment that may be performed on a computer. A trajectory program is initialized with the spacecraft state about 5 min prior to periapsis. The trajectory is integrated through the Venus atmosphere and terminated 5 min after periapsis. A precision integrator is employed, and all the significant force models are turned on that perturb the spacecraft. For the first integration, the atmospheric density is set equal to zero and the osculating period at the end of the trajectory is recorded as  Pnom. We repeat the integration, only this time we turn on the atmosphere and at the end of the trajectory, we compute the change in the osculating period, which is 

 Pint =  P −  Pnom

In order to test the linearity, we may compute the expected osculating period change from 

 P =  ∂P V

 ∂v

 PR =  ∂P VR

 ∂v

where  V  is obtained by direct integration of the drag acceleration. The partial derivative is also computed from osculating orbit elements obtained by transformation of the Cartesian state vector at periapsis. We next take the precision integrated  V  and divide by  Tc  of 100 s to obtain a constant acceleration  A 100 for comparison. A third precision integrated trajectory is computed using the constant acceleration model, and the osculating period  (P 100 )  is computed at the reference epoch 5 min after periapsis. A fourth precision integrated trajectory is computed only this time the entire  V  is applied as an impulse at periapsis resulting in  Pimp. 
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Table  13.6  Drag  V  and resulting period change 

 V

 V

 ∂P

 R

 Pint

 V

 ∂P V

 ∂v

 ∂v

 R

 Pimp

 P 100

m/s

m/s

s

s

s

s

s 

0 .  2016 × 10−3

0 .  2016 × 10−3

0 .  06295 

0 .  06220 

0 .  06221

0 .  06257 

0 .  06254 

0 .  2016 × 10−2

0 .  2016 × 10−2

0 .  6226

0 .  6220

0 .  6221

0 .  6224

0 .  6219 

0 .  2016 × 10−1

0 .  2016 × 10−1

6 .  2186

6 .  220


6 .  2205

6 .  220

6 .  2183 

0.201677

0.201690

62 .  1525 

62 .  201

62 .  205

62 .  166

62 .  150 

1.008444

1.008467

310 .  02

311 .  01

311 .  03

310 .  09

310 .  01 

Finally, this entire experiment is repeated at several atmospheric base densities resulting in  V ’s that range from a fraction of a millimeter per second to over a meter per second, and the results are displayed in Table 13.6. 

Shown in Table 13.6  is the velocity change  (V )  obtained by numerical integration and the velocity change  (VR)  obtained from the formula. We would expect close agreement since both of these results are based on the same equations of motion, and the difference represents only errors in the approximations. Also shown is the period change that would be predicted by the partial derivative assuming linearity of the equations of motion. When compared with the precision integrated period change, the error is about 1%. A more relevant comparison is between the period change obtained by integrating the drag assuming an exponential atmosphere and the period change obtained by integrating a constant acceleration. Here, the agreement is generally less than 0.1%. It is reasonable to assume that the actual modeling error attributable to orbit determination software based on a constant acceleration model will also be less than 0.1%. In order to obtain this accuracy, the actual integrated drag acceleration must be compared. If the osculating periods are compared, they must be corrected for nonlinearity, or the error will be about 1%. 

 13.4.5  Covariance  Analysis  Results 

In order to determine the orbit determination error, a covariance analysis of all the error sources that contribute must be performed. Since the actual orbit determination error is primarily a function of the mapping of the gravity field error, it is difficult to assign a numerical value. Analysis of residuals indicates that the gravity harmonics contribute about 15–20 ms one sigma to the period estimation error and about 200 m to the periapsis altitude estimation error. Another component of the orbit determination error is data noise, which is related to the orbit determination error by the measurement error, number of data points, and observability of the system. 

For PVO atmosphere entry, we are primarily interested in predicting the spacecraft state at periapsis and reconstructing the drag acceleration. Both of these navigation requirements are related to prediction and estimation of the period (P )  and periapsis altitude  (Hp). In order to gain some insight into the affect of
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Table  13.7  Pioneer orbit determination errors 

Sigma P

Sigma   Hp

Data Arc

s

km 

Continuous Tracking

5 .  74 × 10−3

 .  334 × 10−3

Apoapsis 503 to Apoapsis 506 

Sparse Tracking

20 .  9 × 10−3

1 .  20 × 10−3

Apoapsis 503 to Apoapsis 506 

Sparse Tracking

34 .  2 × 10−3

1 .  21 × 10−3

Apoapsis 503 to Periapsis 505 + 1 h 

data noise, a covariance analysis was performed where the amount and geometric placement of the data were varied. The results are shown in Table 13.7. 

The first case consisted of processing all the data available from orbits 503 

through 505. The period error attributable to data noise is about 6 ms in period and less than a meter in periapsis altitude. If the gravity field were perfectly known, these would have been the orbit determination errors when the experiment was performed back in 1980. However, when the effect of gravity harmonic errors is included, the actual orbit determination error is about 20 ms in period and 200 m in periapsis altitude. 

The second case shows the orbit determination error attributable to data noise for the sparse tracking expected in 1992 as shown in Fig. 13.9. The data noise period 

error of 21 ms is now comparable to the gravity harmonic period error. The periapsis altitude error remains relatively unaffected by the reduced data. Since the orbit determination error is now dominated by data noise, we are much more susceptible to degradation from loss of data quality or loss of tracking data. 

The third and final case is intended to show the accuracy of predicting the next periapsis based on data taken up to a few hours after the previous periapsis passage. 

These results indicate that the time of the next periapsis may be predicted to well within the required 1 s, and the periapsis altitude can be predicted to about 200 m when gravity harmonics are taken into account. These predictions assume a ballistic arc free of maneuvers and will deteriorate some when maneuvers are included. 

13.5  Near  Earth  Asteroid  Rendezvous 

Prior to the NEAR mission, little was known about Eros except for its orbit, spin rate, and pole orientation, which could be determined from ground-based telescope observations. Radar bounce data provided a rough estimate of the shape of Eros. On December 23, 1998, after an engine misfire, the NEAR spacecraft flew by Eros on a high-velocity trajectory that provided a brief glimpse of Eros and allowed for an estimate of the asteroid’s pole, prime meridian, and mass. This new information, when combined with the ground-based observations, provided good a priori estimates for processing data in the orbit phase. After a 1-year delay, NEAR
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orbit operations began when the spacecraft was successfully inserted into a 320 ×

360 km orbit about Eros on February 14, 2000. Since that time, the NEAR spacecraft was in many different types of orbits where radiometric tracking data, optical images, and NEAR Laser Rangefinder (NLR) data allowed a determination of the shape, gravity, and rotational state of Eros. The NLR data, collected predominantly from the 50-km orbit, together with landmark tracking from the optical data have been processed to determine a 24th degree and order shape model. Radiometric tracking data and optical landmark data were used in a separate orbit determination process. As part of this latter process, the spherical harmonic gravity field of Eros was primarily determined from the 10 days in the 35-km orbit . Although the gravity field of Eros has been determined to degree and order 10, differences between the measured gravity field and one determined from a constant density shape model are detected only to degree and order 6. The offset between the center-of-figure and the center-of-mass is only about 30 m indicating a very uniform density (1% variation) on a large scale (35 km). Variations to degree and order 6 (about 6 km) may be partly explained by the existence of a 100 m regolith or by small internal density variations. The best estimate for the J2000 right ascension and declination of the pole of Eros is  α = 11 .  3692 ± 0 .  003◦ and  δ = 17 .  2273 ± 0 .  006◦, respectively. The rotation rate of Eros is 1639 .  38922±0 .  00015 deg/day, which gives a rotation period of 5.27025547 h. No wobble for Eros has been detected that is greater than 0.02 ◦. 

Solar gravity gradient torques would introduce a wobble of at most 0.001 ◦. 

The original plan for Eros orbit insertion called for a series of rendezvous burns beginning on December 20, 1998, which would insert the NEAR spacecraft into Eros orbit in January 1999. As a result of an unplanned termination of the first rendezvous burn, NEAR continued on its high-velocity approach trajectory and passed within 3900 km of Eros on December 23, 1998. At this time, it was not possible to place the NEAR spacecraft in orbit about Eros. Instead, a modified rendezvous burn was executed on January 3, 1999, which resulted in the spacecraft being placed on a trajectory that slowly returned to Eros with a subsequent delay of the Eros orbit insertion maneuver until February 2000. The flyby of Eros provided a brief glimpse and allowed for a crude estimate of the pole and prime meridian with an error of two degrees along with a 10% mass solution. Orbital operations commenced on February 14, 2000, with an orbit insertion burn that placed the spacecraft into a nearly circular 350 km orbit. A series of propulsive burns lowered the spacecraft orbit to a 50 km and then a 35 km circular orbit where the data acquired allowed precise estimates of Eros’ physical parameters. Table 13.8  lists the orbit phases for the NEAR mission included in this study from the beginning on Feb.14, 2000 to the close flyby within 5 km of the surface of Eros on Oct. 25, 2000. 

Estimates of the initial attitude and spin rate of Eros, as well as of reference landmark locations used for optical navigation, were obtained from images of the asteroid. In the planned navigation strategy, these initial estimates were used as a priori values for a more precise refinement of these parameters by an orbit determination technique, which processes optical measurements combined with Doppler and range tracking. Although laser altimetry could be included in the
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Table  13.8  Eros orbit segments 

Start date

Length 

Orbit

Period 

Inc. (deg.) 

Inc. (deg.) 

Segment 

time (UTC)

(days)

(km  × km) 

(days)

ATE a

SPOS b

1

2/14/00 15:33

10 .  1

366  × 318

21 .  8

35

176 

2

2/24/00 17:00

8 .  1

365  × 204

16 .  5

33

172 

3

3/3/00 18:00

29 .  3

205  × 203

10 .  0

37

171 

4

4/2/00 02:03

9 .  8

210  × 100

6 .  6

55

178 

5

4/11/00 21:20

10 .  8

101  × 99

3 .  4

59

177 

6

4/22/00 17:50

8 .  0

100  × 50

2 .  2

64

179 

7

4/30/00 16:15

68 .  1

51  × 49

1 .  2

90

160 

8

7/7/00 18:00

6 .  3

50  × 35

1 .  0

90

165 

9

7/14/00 03:00

10 .  6

37  × 35

0 .  7

90

163 

10

7/24/00 17:00

7 .  1

50  × 37

1 .  0

90

161 

11

7/31/00 20:00

8 .  2

51  × 49

1 .  2

90

159 

12

8/8/00 23:25

18 .  0

52  × 50

1 .  2

105

178 

13

8/26/00 23:25

10 .  0

102  × 49

2 .  3

112

179 

14

9/5/00 23:00

37 .  3

102  × 100

3 .  5

115

150 

15

10/13/0005:45

7 .  6

100  × 50

2 .  2

130

179 

16

10/20/0021:40

5 .  0

52  × 50

1 .  2

133

178 

17

10/25/0022:10

0 .  8

50  × 20

0 .  7

133

168 

a  ATE—Asteroid True Equator 

b  SPOS—Sun Plane of Sky 

orbit determination process, these data were processed separately using the orbits determined from the optical and radiometric data. 

In addition to allowing accurately determined orbits about Eros, the gravity harmonics place constraints on the internal structure of Eros. The shape model was obtained by processing optical landmark and laser altimetry data. This shape model was then integrated over the entire volume, assuming constant density, to produce a predicted gravity field. A comparison of the true gravity field with this predicted gravity field from the shape model then provides insight into Eros’ 

internal structure. The location of the center of mass derived from the first-degree harmonic coefficients directly indicates the overall mass distribution. The second-degree harmonic coefficients provide insight into the orientation of Eros’ principal axes. Higher-degree harmonics may be compared with surface features to gain additional insight into mass distribution. 

 13.5.1  Orbit  Determination  Strategy 

Several strategies have been used to determine the NEAR orbits and the physical parameters of Eros. The data types used for determining NEAR’s orbit are radiometric X-band (8.4 GHz downlink) Doppler and range and optical imaging
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of landmarks. A SRIF filter is used to process the data, and this sequential filter is designed to handle up to 800 parameters including 18 stochastic parameters. The estimated parameter set includes initial spacecraft state, propulsive maneuvers, solar pressure parameters, stochastic accelerations, Eros’ ephemeris, Eros’ attitude and rotation state, and physical parameters that describe the size, shape, and gravity of Eros. Eros’ physical parameters include gravitational harmonics to degree and order 12, inertia tensor elements, and the location of over 100 landmarks. The solution for nongravitational accelerations presents a particular challenge to the orbit determination filter. These accelerations include attitude control gas leaks and solar pressure. The solar pressure is modeled as a collection of reflecting surfaces with 12 separate parameters. Solar pressure mismodeling and any residual accelerations associated with outgassing from the spacecraft are lumped together and treated both as a constant acceleration and as stochastic accelerations. The stochastic accelerations are modeled as three orthogonal independent exponentially correlated process noise components with an amplitude of 1 .  0 × 10−12 km / s2 and a correlation time of 1 day. The total number of estimated parameters for a typical orbit determination solution is about 600. 

The differences in the moments of inertia may be determined from the gravity harmonic coefficients, but a particular moment of inertia about any axis cannot be determined from this difference alone. In the orbit determination software, the joint solution for both the gravity and rotational motion of Eros permits a determination of the principal moments of inertia provided the angular acceleration (or wobble about the principal axes) can be detected by the orbit determination filter. The solution strategy involved processing several days of data at a time to converge slowly on the orbit solution. First, about 2 days of data are processed and the solution is fed back to the filter and the data are processed again. This process is repeated until convergence is achieved. At this point, several more days of data are introduced to the filter and processed iteratively until another solution is obtained. Additional data are introduced in batches of several days until all the data are processed. Otherwise, processing longer batches of data, especially at the beginning of the mission, resulted in divergence. Once the filtering is complete, the spacecraft trajectory, Eros ephemeris, and Eros attitude files are produced containing Chebyshev polynomials as a function of time. Gravity harmonic, landmark location, maneuver parameter, and shape harmonic coefficient files are also produced. 

Optical tracking of landmarks in the imaging data taken by NEAR’s Multispectral Imager (MSI) is a powerful data type for determining NEAR’s trajectory and the rotation of Eros. Tracking individual landmarks, which are small craters, enables orbit determination accuracies on the order of the camera resolution or several meters. This exceeds the accuracy that can be obtained from radio metric data alone, from fitting limb data, or from any measurement scheme that is dependent on developing a precise shape model. We need only develop a data base of landmarks and identify the landmarks on more than one image in order to obtain useful information about the spacecraft orbit or Eros’ rotation. The procedure of identifying and cataloging landmarks is aided by referring the landmarks to a model of the topographic surface or shape model. The actual identification of individual
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landmarks depends upon observing them in an image having many landmarks of various sizes to provide a context. 

In addition to the one data arc (July 3 to August 7) used to determine the gravity field and rotation of Eros, three other data arcs were used to process the NLR data (from April 30 to June 1, from June 1 to July 3, and from August 7 to September 12). For all the data arcs, the attitude of Eros is fixed to the solution obtained from the gravity solution data arc. This is to maintain consistency when comparing the estimated gravity solution with the shape model gravity solution. Once a good solution was obtained for both the spacecraft trajectory and Eros’ attitude as a function of time, some additional processing was required to transform the results to a more usable format and to solve for the shape. The solution for the shape of Eros is obtained by processing NLR data in a separate program that reads the spacecraft ephemeris and Eros attitude files. 

Although Eros is a very irregular body, the gravitational potential is modeled by a spherical harmonic expansion with normalized coefficients ( Cnm, Snm) given by 

∞

 n



 r 0  n

 U =  GM

 Pnm( sin (φ) [ Cnm  cos (mλ) +  Snm  sin (mλ)]

 r

 r

 n=0  m=0

where n is the degree and m is the order,  Pnm  are the Legendre polynomials and associated functions,  r 0 is the reference radius of Eros (16.0 km),  φ  is the latitude, and   λ  is the longitude. The harmonic coefficients of degree one are set to zero since the origin of the coordinate system is chosen to be the center of mass of the body. 

This expansion converges outside the smallest sphere enclosing Eros. All the NEAR 

data employed are outside this sphere, and so spherical harmonics is the simplest way to compare the gravity and shape models. All gravity and shape results are mapped onto a sphere of radius 16 km. For mapping the gravity field to the surface of Eros, one must use alternative methods such as direct integration over the volume of Eros defined by the shape model. 

 13.5.2  Eros  A  Priori  Physical  Model 

Determination of the spacecraft orbit about Eros is intimately associated with the development of an accurate physical model of Eros. Eros is the principal source of perturbations on the spacecraft’s trajectory and the principal source of data for determining the orbit. The model of Eros used for orbit determination is similar to the model used for science investigation. The major difference is in emphasis of detail. 

During a particularly close Earth approach (0.15 AU) in January 1975, there was a coordinated ground-based observation campaign to characterize the physical nature of Eros. Photometric, spectroscopic, and radar measurements provided a diverse dataset that allowed the asteroid’s size, shape, and spectral class to be
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determined. Eros is an S-class asteroid with a geometric albedo of about 0.27. The absolute magnitude of Eros (at zero phase angle and one AU from both the sun and Earth) is 11.16. From the light curve, which reaches 1.47 magnitudes in amplitude, the rotation period and pole direction were determined. 

During the December 1998 flyby, a crude estimate of Eros’ mass and pole location was obtained. The pole location confirmed ground-based measurements to an accuracy of about two degrees. Observation of the lit portions of Eros by the Multispectral Imager (MSI) permitted a rough shape determination. The gravity harmonic coefficients were computed from this shape determination, by numerical integration assuming constant density. Light curve data obtained during the flyby yielded a precise rotation rate for Eros and enabled location of the prime meridian with respect to a large crater discernible in the images. This information was used as a priori data for the orbit phase solution. 

 13.5.3  Orbit  Determination  Solution 

In addition to the models describing the estimated parameters, calibrations obtained from other models are applied to the Doppler, range, and optical data. The calibration data included seasonal and daily troposphere and ionosphere models based upon on-site GPS and weather measurements and a solar plasma model. DSN station locations are modeled to about 4 cm accuracy with Earth precession, nutation, polar motion, ocean tidal loading, solid Earth tide, and tectonic plate motion. A landmark file consisting of a priori landmark locations and unique identification numbers was assembled along with a picture sequence file that contained camera pointing and image coordinates for each landmark that was identified. Additional models that were needed for parameter estimation include the spacecraft clock model, a solar pressure model, propulsive maneuvers, and initial state vectors for the equations describing the motion of the spacecraft, planets, and Eros. 

The gravity and pole solution data arc, which included Doppler, range, and optical imaging of landmarks, extended from July 3, 2000 through August 7, 2000. 

Nearly continuous Doppler data were processed, and the post fit residuals for this solution are shown in Fig. 13.11. The ordinate is the measurement residual in hertz. 

A spacecraft radial velocity component of 1 mm/s measured along the line of sight from a particular DSN tracking station corresponds to approximately 0.054 Hz of Doppler phase shift over the count time interval, which is typically 60 s. The Doppler signature shown in Fig. 13.11  reveals noise with a periodic amplitude of 0.002 Hz (0.03 mm/s) rms. 

Optical data residuals are shown in Fig. 13.12. The ordinate of this figure is the measurement error in pixel(x) or line (y) direction in an image. One line subtends 165 microradians and one pixel 95 microradians. In a 50 km orbit, the line and pixel measurement errors translate to 5.6 m and 3.2 m, respectively when observing landmarks on the ends of Eros. The rms of the measurement error is about two lines and pixels and permits sub-meter accuracy when more than 3000 optical

[image: Image 56]
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Fig.  13.11  NEAR doppler residuals 
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Fig.  13.12  NEAR optical residuals 

observations are processed by the orbit determination filter. High-precision orbits are obtained by processing optical data since individual landmarks may be located with an accuracy of a few meters with respect to the center of mass. With the optical data giving highly accurate orbits with an accuracy of about 1.5 m, the range data are able to tie down the Eros ephemeris. 

[image: Image 58]
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Fig.  13.13  NLR residuals 

Including the NLR data in the orbit determination solution does not improve the spacecraft orbit. The shape model has errors on the order of a hundred meters, which is far greater than the orbit error. However, the NLR data were useful for determining a shape model that is accurate to about 100 m. This was accomplished by processing a high-precision spacecraft ephemeris file and Eros attitude file, obtained from the orbit determination solution, in a separate program that solves only for the shape model harmonic coefficients and NLR bias parameters. The postfix residuals are shown in Fig. 13.13. 

The rms error is 109 m, and measurement errors greater than 400 m were rejected by the filter. The large rms error of the NLR measurement belies the accuracy of the NLR since this residual error is dominated by modeling errors in determining the shape. The instrument error is only a few meters. Since the modeling error is unbiased, a considerable reduction in the determination of the mean radius of Eros may be expected when the 263,490 NLR observations are processed. Eros’ volume may be estimated to an accuracy of less than 1% using this solution strategy. 

 13.5.4  Eros  Results 

The solution for Eros’ physical parameters is summarized in Table 13.9. 

The mass and volume combine to give a bulk density of 2.67 g/cm3 with an accuracy of 1%. The errors for the pole and GM are at the formal statistical errors from the solution covariance but scaled higher by a factor of 3 to give a more realistic
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Table  13.9  Eros physical parameters 

Parameters

Values 

Size and density 

Volume

2503  ± 25 km 3

Bulk density

2.67  ± 0.03 g/cm 3

 Xcg  of figure

− 9 .  7m 

 Ycg  of figure

2.4 m 

 Zcg  of figure

32.6 m 

Mass properties 

Mass

(6.6904  ± 0.003)  × 10 15 kg 

 GM  (optical radiometric)

(4.4631  ± 0.0003)  × 10 −4 km 3/s 2

 GM  (radiometric)

(4.4584  ± 0.0030)  × 10 −4 km 3/s 2

 GM  (radiometric and optical pole)

(4.4621  ± 0.0015)  × 10 −4 km 3/s 2

 Ixx (normalized)

17.09 km 2

 Iyy (normalized)

71.79 km 2

 Izz (normalized)

74.49 km 2

 X  principal axis

9.29 ◦ East (definition) 

 Pole  (optical) 

Right ascension

11.369  ± 0.003 ◦

Declination

17.227  ± 0.006 ◦

Rotation rate

1639.38885  ± 0.0005 deg/day 

Prime meridian

326.06 ◦ (at epoch and equinox J2000) 

 Pole  (radiometric) 

Right ascension

11.363  ± 0.01 ◦

Declination

17.230  ± 0.02 ◦

Rotation rate

1639.38922  ± 0.0002 deg/day 

error. The GM solution based upon the radio metric data only is very sensitive to the initial pole value. The GM solution with the optical data is 10 times more accurate than the radio metric only solution. However, when the pole is fixed to the optically determined values, the radio metric GM solution agrees well with the optical solution and the uncertainty decreases. 

 13.5.5  Shape  Model 

The Eros shape model obtained from the NLR data is in the form of harmonic coefficients through degree and order 24. One may use the harmonic expansion to compute the radius of Eros as a function of latitude and longitude. The resulting topographic map, shown in Fig. 13.14, reveals two mountainous looking features about the size of Mount Everest. This is an illusion since these features are simply the elongated ends of Eros. The contour lines shown are accurate to about 100 m, and

[image: Image 59]
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Fig.  13.14  Eros shape model 

this can be verified by comparing the shape of Eros projected into two dimensions to actual images of Eros taken by the MSI. Where the curvature is high, the shape model error is as high as 200 m. 

The accuracy of the shape model may also be confirmed by computing the radius vectors for reference landmarks whose locations have been determined to about 5 m. The locations of about 43 landmarks were confirmed to be on the shape model surface with an rms error of about 50 m. A few of the landmarks were above or below the shape model surface by as much as 200 m in the regions of Eros where the nadir pointed NLR intersected the surface at a high incidence angle. 

Even though the local variation in the shape model error suggests an accuracy of about 100 m, the error in determining the average radius integrated over the entire surface is much smaller. The trajectory error and instrument measurement error combined are about 10 m. Since the shape model error associated with the harmonic coefficients is unbiased, the error in determining the average radius, which is directly related to the volume determination, may be reduced considerably by taking many measurements and statistically averaging. This averaging, which is implicitly performed by the orbit determination filter, is effective when a large number of measurements are processed, since the error in the average radius is reduced by the square root of the number of measurements. For 263,490 NLR 

measurements, the modeling error may be reduced by a factor of about 500, which is well below the level where systematic errors dominate. Thus, the volume of Eros and the low-order shape harmonic coefficients may be determined to an accuracy of 1% provided the surface is sampled randomly and systematic errors associated with the trajectory and instrument biases are about 10 m. The NLR data acquisition strategy for NEAR resulted in fairly uniform coverage of Eros, owing to the circular 50 km polar orbit and the relatively rapid rotation of Eros. The random character of the sampling is at very small scales. Statistically, NLR samples that measure the
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surface at the top of boulders are compensated by samples that fall in craters. This mathematical property of laser altimetry gives this method a distinct advantage over optical imaging where shadows tend to obscure the surface at small scales. 

 13.5.6  Gravity  Harmonics 

Determination of the gravity harmonic coefficients of Eros is a direct result of the spacecraft orbit determination process necessary to navigate the spacecraft. The harmonic coefficients are estimated by observing the acceleration of the spacecraft in orbit. As the spacecraft is maneuvered closer to Eros, the degree of the harmonic expansion must be increased in order to provide the required accuracy for orbit prediction. This results in determining Eros’ gravity field to fairly high precision. 

At degree 10, the uncertainty or noise in the gravity field is roughly equal to the signal as given by the rms of the coefficients. 

An a priori gravity model can be developed by integrating the potential function over the shape model determined by NLR or MSI observations assuming constant density. The results are shown in Table 13.10  for comparison. The close agreement of the gravity coefficients obtained from spacecraft dynamics and those obtained from the NLR-derived shape model provides a high degree of confidence in the results when used for NEAR spacecraft navigation. Since the shape-derived gravity coefficients assumed a constant density, the closeness of the agreement for the two sets of coefficient values (Table 13.17) indicates that the material within the interior of Eros is nearly of uniform density. 

Of particular interest are the first degree and order terms of the harmonic expansions. For the spacecraft orbit solution, these terms were explicitly set to zero forcing the center of the coordinate system to coincide with the center of mass of Eros. Thus, the values of these coefficients from the shape model provide a direct measure of the offset of the center of figure from Eros’ center of mass, since the vector from the origin to the center of mass may be determined by multiplying the first degree and order coefficients by the reference radius (16 km). The coefficients shown in Table 13.17  reveal that the center of figure offset vector for Eros, obtained independently from NLR measurements, is ( −9.7, 2.4, 32.6). This result indicates that the bulk density of the octants of Eros, defined arbitrarily by the planes of the reference coordinate axes, agrees within 1%. This is another strong indication of the uniformity of Eros’ internal structure. 

The gravity field of Eros as a function of latitude and longitude is shown in Fig. 13.15  for harmonics up to degree 8. The gravity field is displayed in milligals (1 gal = 1cm/s ) on a sphere with a radius of 16 km. The central body (GM) term of the harmonic expansion is not included in computing the acceleration, and this accounts for the negative values. Comparison of the gravity field map with the topographic map shown in Fig. 13.14  does not reveal a high degree of correlation. 

The ends of Eros stand out, but surface features on a smaller scale are not seen. 

This is because the surfaces of constant gravity potential do not conform well to

[image: Image 60]
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Table  13.10  Eros gravity harmonic coefficients 

Coefficient (R0 = 16 .  0 km) 

Solution spacecraft dynamics  Solution shape model integration 

C 10

0

0.001175 

C 11

0

−0.000348 

S 11

0

0.000088 

C 20

−0.052478 (0.000051)

−0.052851 

C 21

0

0.000102 

S 21

0

0.000012 

C 22

0.082483 (0.000061)

0.083148 

S 22

−0.027909 (0.000035)

−0.028197 

C 30

−0.001400 (0.000030)

−0.001747 

C 31

0.004059 (0.000006)

0.004086 

S 31

0.003375 (0.000006)

0.003401 

C 32

0.001791 (0.000016)

0.002127 

S 32

−0.000691 (0.000016)

−0.000840 

C 33

−0.010373 (0.000027)

−0.010492 

S 33

−0.012104 (0.000027)

−0.012216 

C 40

0.012900 (0.000070)

0.013077 

C 41

−0.000106 (0.000014)

−0.000145 

S 41

0.000136 (0.000015)

0.000165 

C 42

−0.017488 (0.000035)

−0.017647 

S 42

0.004577 (0.000030)

0.004624 

C 43

−0.000320 (0.000044)

−0.000313 

S 43

−0.000141 (0.000044)

−0.000194 

C 44

0.017552 (0.000062)

0.017694 

S 44

−0.009009 (0.000061)

−0.009118 

Fig.  13.15  Radial acceleration
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Fig.  13.16  Bougher map 

the shape of Eros, and when displayed on a sphere, the ends of Eros are given more weight than the central part. The advantage, however, for displaying the gravity field on a sphere is that the formal gravity uncertainty is very nearly uniform and is about 0.3 mgals for coefficients to degree 6 and 2.0 mgals to degree 8. Instead of using Fig. 13.14, a more meaningful comparison is to compare the Eros gravity map with the gravity map obtained from the Eros shape model assuming constant density. 

Since the gravity map from Eros’ shape would look very much like the actual Eros gravity map, the difference between the two maps is plotted as a function of latitude and longitude. This difference map (estimated gravity minus gravity from shape integration) is known as a Bouguer map and is shown in Fig. 13.16  for coefficients through degree 6. Differences in the gravity field reveal peaks and valleys uniformly distributed over Eros with maxima and minima of 3–4 mgal. The Bouguer variations are about 10 times the formal uncertainty derived from the gravity covariance, and these differences are about 1–2% of the maximum gravity amplitude. 

Given the Bouguer map, there is no unique solution for the mass distribution of Eros. Several possible explanations for the observed mass deficiency at the ends of Eros include a less dense regolith covering on the order of 100 m distributed perhaps uniformly over the surface of Eros or a denser concentration of material near the center of Eros. At degree 6, a 100 m uniform covering with a density contrast of 0.6 gm/cm3 produces a signature of −1.0 and −0.4 mgal at the asteroid ends. The observed signature therefore requires a higher-density contrast, thicker regolith, or a variable thickness regolith that may be correlated with greater thicknesses for the highest-potential areas. The Bouguer map also displays a shift of the negative anomaly to the Northern Hemisphere indicating less dense material. This may be related to higher-potential areas also being shifted to the north where less dense regolith may accumulate. An increase in density of 5% for the central part of Eros, 
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in the form of a sphere with 20% of the volume of Eros, results in a −3.0 mgal signature in the Bouguer map and very nearly matches the observed variation in Fig. 13.16. 

 13.5.7  Polar  Motion 

An important result that may be obtained from the NEAR data is an estimate of the moments of inertia about the principal axes. As described earlier, the moments of inertia provide insight into the radial distribution of mass. Estimates of the moments of inertia cannot be obtained if Eros is in principal axis rotation and there is no free precession. Therefore, one of the priorities of the NEAR mission is to measure the free precession of Eros. Precession results from disturbances of Eros’ 

rotational motion from quakes, impacts, or gravitational torques. The free precession resulting from distinct events will damp out depending on the rate of internal energy dissipation. The forced precession from external gravity sources persists, but is low in amplitude. The Sun’s gravity gradient produces a small forced precession and nutation. 

The response of Eros to the solar gravity gradient torque depends on the orbit of Eros, the attitude and body-fixed spin vector of Eros at some reference epoch, and the inertia tensor. All of these parameters may be solved for with high precision except the diagonal elements of the inertia tensor and the components of spin in body-fixed coordinates normal to the spin axis. The second-degree gravity harmonic coefficients provide the differences in the values of the diagonal elements of the inertia tensor, but the trace or any one diagonal element is needed to complete the inertia tensor. The complete inertia tensor may be obtained by numerical integration of the shape model. In order to minimize the error, only the smallest diagonal element is needed to complete the gravity harmonic-based inertia tensor. Thus, the Ixx term of the shape model inertia tensor is used to construct the gravity-based inertia tensor. 

The determination of the spin vector components normal to the spin vector is needed to completely determine the free precession of Eros. These spin vector components place the angular momentum vector in Eros body-fixed coordinates. 

The normal spin vector components are too small to be resolved; however, the magnitude of the spin vector can be determined with very high precision. This high precision measurement is obtained by observing for several weeks small craters near the ends of Eros whose motions can be observed at the 1 m level. The motion of the principal z axis projected onto the sky is shown in the top plot in Fig. 13.17  as a function of right ascension and declination. The amplitude of the free precession is about 36 milliarcseconds and the forced precession over 3 days moves the pole and angular momentum vector about 1 arcsecond. This motion is too small to detect by the orbit determination filter. The precession is about 0.01 ◦ over 9 years, which is well beyond the lifetime of the NEAR mission. However, the short-period
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Fig.  13.17  Eros polar motion 

nutation has an amplitude of 0.02 ◦ over 6 months, as shown on the bottom plot of Fig. 13.19, and this could be detected. The solution obtained by processing 6 weeks of navigation data does not indicate free precession above that induced by the Sun’s gravity. However, this does not rule out free precession from other sources with amplitudes up to as much as 0.02 ◦. 
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13.6  MESSENGER 

For a month after the launch of the MESSENGER mission to Mercury, the spacecraft trajectory was perturbed by nongravitational accelerations that resulted in a migration of several thousand kilometers in the target B-plane. It is speculated that the accelerations were due to outgassing of water trapped in the composite materials of the spacecraft. Nongravitational accelerations are difficult to model, leading to inconsistent solutions for the spacecraft state from Doppler and range data. These nongravitational accelerations may be modeled as a sum of exponentially decaying stochastic vectors with different correlation times. 

Immediately after a spacecraft is launched on an interplanetary trajectory, tracking data are acquired, and an orbit determination solution is computed for the outgoing trajectory and mapped to the target planet. The initial solution includes estimates of the spacecraft state and of small turbulent accelerations that act on the spacecraft during the first few weeks, referred to as nongravitational accelerations. These accelerations are usually attributed to errors in the solar pressure or propulsion models. Although nongravitational accelerations are very small, on the order of 10 

−11 km/s 2, the orbit determination process is very 

sensitive to them. When they are not estimated accurately, it is difficult to obtain convergence, and the Doppler and range solutions are inconsistent. After a few weeks, the nongravitational accelerations diminish, and good solutions are obtained. 

However, after the Viking spacecraft was launched, significant nongravitational accelerations attributed to air trapped in the lander parachute were observed for several weeks. 

For a month after the launch of the MESSENGER mission to Mercury, the spacecraft was perturbed by nongravitational accelerations that resulted in a migration of several thousand kilometers in the target B-plane. These accelerations were greater in magnitude and lasted longer than usual. It is conjectured that they may be attributed to outgassing of water vapor and other gases trapped in the newer composite materials of the spacecraft. 

It is difficult to model accelerations due to volatile elements escaping from the spacecraft, which are assumed to be comprising water vapor and radiate in all directions. Only the total acceleration of the spacecraft can be estimated from Doppler and range data. Most volatile elements evaporate after a few days. Isotropic radiation (in all radial directions equally) results in negligible net acceleration of the spacecraft and would not be observed. However, differences in the surface temperature of the spacecraft would result in anisotropic radiation. Initially, more gas would radiate toward the Sun, resulting in net accelerations away from the Sun. 

Later, because the same amount of gas is present on both sides, the net acceleration would be toward the Sun. The correlation time of surfaces exposed to the Sun would be greater than that of surfaces in shade. A stochastic model of gas radiated with several correlation times seems appropriate. 
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 13.6.1  Initial  Post-Launch  Orbit  Determination 

After launch, the data types were X-band Doppler and range, with one sigma errors of 0.1 mm/s and 0.7 m respectively. Figure 13.18  displays Doppler and range residuals from initial orbit determination results for the first month after launch of the MESSENGER mission. Only one stochastic vector is used to represent nongravitational accelerations. The data arc extends from shortly after launch on 8/3/04 07:13:35 GMT and extends to 9/4/2004. The estimated parameters are the initial state, Earth ephemeris, a propulsive maneuver on 8/24/2004, solar pressure model parameters, and one stochastic acceleration vector Ae− t/τ , where A is a stochastic three-dimensional vector with white noise components of one sigma 1 × 10−12 km/s 2 (one nanometer/s 2), and  τ  is a 2-day correlation time (172,800 s). 

One such vector has usually been adequate to model nongravitational accelerations after launch. The data consisted of radiometric Doppler weighted at 6 mHz and loosely weighted range. It shows an apparent range bias of 1000 range units (about Fig.  13.18  Doppler data only solution

[image: Image 64]
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Fig.  13.19  Range data only solution 

143 m) until the first maneuver and about 200 range units after the maneuver. The Doppler residuals show an rms error of about 10 mHz (0.175 mm/s) for the first 9 

days decreasing to about 6 mHz there after. The early sinusoidal signature in the Doppler data can be attributed to a slow spacecraft spin, which was not modeled. 

Figure  13.19  shows the same data arc and estimation strategy, but the Doppler data are loosely weighted and the range data are weighted at 500 range units. Now the range solution fits well, but the Doppler signature shows scalloping that might be attributed to a time error. It is unlikely that the discrepancy between Figs. 13.18 

and  13.19  can be explained by problems with the data. The observed error must be attributable to a common source, which could not be a tracking station, since tracking stations around the Earth all give consistent results. The likely cause of this discrepancy is unmodeled accelerations acting on the spacecraft. A more accurate model for the accelerations is required. 

One way to model a stochastic acceleration would be to represent each component as an orthogonal series, such as a Fourier sine series or a set of Tchebyshev polynomials. The coefficients would be estimated as stochastic parameters. The
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interval of the series expansion would move forward in time as batches of data are processed and as noise introduced to the filter modulates the coefficients. 

Here an alternate approach is applied. The orbit determination filter is already designed to process one exponentially correlated stochastic vector. Instead, a sum of several exponentially correlated stochastic acceleration vectors with generic integer correlation times is used. For five sets of stochastic acceleration vectors, a total of 15 components are estimated. To illustrate the method, MESSENGER Doppler and range tracking data are processed from launch through the first 4 months of the mission. The resulting time history of nongravitational accelerations is analyzed to verify the reasonableness of the results. The suspected outgassing could come from several sources. A single stochastic acceleration vector may not suffice because the time constant of the exponential decay is unknown and more than one source may be present. This suggests a stochastic model consisting of a sum of exponentially decaying stochastic acceleration vectors with varying time constants. While one might expect such a series to model effectively only processes that are exponentially decaying, it will be shown later that such a model can represent any function over a reasonable time interval much the same as a half range Fourier expansion can be used. Figure 13.20  shows the result for the same data arc where the number of stochastic acceleration vectors was increased from one to five with correlation times of 1, 2, 4, 8, and 16 days. A much better fit to the data is obtained. The position and velocity errors along the line-of-sight from the tracking stations are less than 20 m and 0.1 mm/s, respectively. 

In Fig. 13.21, the time history of stochastic nongravitational accelerations attributable to outgassing is broken down by components. Ax is the component of the acceleration along the spacecraft–Sun line. The Ay and Az acceleration components are normal to the Sun line with Ay in the orbit plane and Az normal to the orbit plane. Solar pressure acceleration is not included. It would contribute another 60 nm/s 2 in the Ax direction. The accelerations were obtained by summing the five stochastic acceleration vectors described earlier. The dominant component is along the Sun line away from the Sun as one might expect. The volatile elements on the Sun side of the spacecraft would be heated to a higher temperature and consequently apply more force in this direction. The reversal in direction of the normal components would be explained by the presence of different sources outgassing in a given direction. One source would expel gas with a short time constant and be overtaken by another source with a longer time constant. 

The individual components of the acceleration along the Sun line due to the exponential model with various correlation times are shown on Fig. 13.22. Initially, the acceleration is dominated by components with 1-day and 8-day correlation times. After several weeks, the 8-day and 16-day components dominate. The migration from high-frequency to low-frequency components is consistent with the initial outgassing of the more highly volatile elements with short time constants. 

After the supply of gas is largely exhausted, the longer time constant, less volatile elements then dominate, but at a diminished amplitude. 

The filter can go unstable if too much stochastic white noise is introduced. It is desirable to have a stochastic model with coefficients that vary slowly as the
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Fig.  13.20  Doppler and range data solution 

acceleration is changing. Since the correlation time of each component is fixed, the filter adjusts the amplitude of each component at the beginning of each batch of data that is processed. This adjustment must be small since the a priori white noise is only 1.0 nm/s 2 while the observed acceleration is as high as 40.0 nm/s 2.  The exponential character of each of the components confirms that small adjustments are taking place. 

Figure  13.23  shows Doppler and range residuals for a long arc solution from launch to December 9, 2004. The filter estimation strategy is the same, but two additional maneuvers on September 24, 2004 18:00:46 GMT and November 18, 2004 19:31:04 GMT are included. The rms range error is less than 70 range units or 10 m over the entire data arc. The solution mapped to the B-plane at Earth return in August of 2005 is within a few hundred km of short arc solutions with data through May of 2005. 
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Fig.  13.21  Outgassing acceleration time history 

Fig.  13.22  Stochastic acceleration components along the sun line
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Fig.  13.23  Filter performance over four months 

Figure  13.24  shows the outgassing acceleration history for the long arc solution. The solution is good through mid November where accelerations of about 5 .  0 × 10−12 nm/s 2 appear. These are probably associated with some unmodeled accelerations related to attitude and solar pressure mismodeling. Attempts to extend the long arc solution beyond December 9, 2004 into January of 2005 resulted in the solution migrating a few thousand km in the b-plane at Earth return on August 3, 2005. While this error is small for this time in the mission, orbit determination and long-term prediction require high-precision modeling of small accelerations on the order of 1 .  0 × 10−12 nm/s 2. 

 13.6.2  Estimated  Accelerations  from  Assumed  Water  Vapor 

Figure  13.24  indicated that the magnitude of the unmodeled accelerations was approximately 40.0 nm/s 

2. If water vapor is the dominant source, it would be
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Fig.  13.24  Outgassing solution over four months 

of interest to compute the amount of water necessary to cause the observed accelerations. The kinetic theory of gases will be used to determine the net thrust. 

Gas vented to space applies an acceleration to a spacecraft in a manner similar to that of a rocket engine. A small amount of gas released to space from a spacecraft will expand to the vacuum of space and exert a pressure against the spacecraft. 

Gas confined to a closed container would produce no net force. Gas evaporating from materials in the side of the spacecraft would expand against the side of the spacecraft, but be unobstructed in the direction away from the spacecraft, resulting in a net pressure transient and acceleration of the spacecraft. From Newton’s laws, the pressure of a gas on a spacecraft is equal to the rate of change of momentum associated with the gas molecules striking the spacecraft. 

The velocity of a gas molecule may be obtained from the kinetic theory of gasses Eq. (1.51) and is given by 

¯ v 2 = 3 RT

 M

If it is assumed that the gas is vented at a constant rate, then from Newton’s law, dm

 F = ¯ v

=  MscAsc

 dt

where   m  is the mass of gas vented,  Msc  is the spacecraft mass, and  Asc  is the spacecraft acceleration. Solving for the gas mass flow rate, 

13.6 MESSENGER

455

 dm =  Msc



 Asc

 dt

3 RT

 M

From Fig. 13.24, the spacecraft acceleration component attributable to outgassing is observed to decay exponentially after launch with a time constant (  τ ) of about 5 

days. 

− t

 Asc =  A 0 e τ

where  A 0 = 4 .  0 × 10−8 m/s and  τ = 432 ,  000 s. After substituting the spacecraft acceleration and integrating from 0 to ∞, the total mass of gas expended is m =  MscA 0 τ

3 RT

 M

If the gas expended is water vapor ( M = 0 .  018 kg/mol) at room temperature (293◦

K), the total amount of water vapor expended is approximately 0.014 kg. For this calculation, the gas constant ( R)  is  8,314 kg · m2 /( s2 · mol · K ), and the mass of the spacecraft (  Msc) is 512 kg. Using 61 cubic inches of water per kilogram, less than one strategically placed cubic inch of water can cause the observed acceleration. 

Somewhat more water would be needed if distributed over the spacecraft. 

 13.6.3  Curve  Fitting  with  Exponential  Functions 

The functions chosen for modeling are stochastic exponentials because one such function is built into the stochastic model and filter used for orbit determination. It might be expected that a series of exponentially decaying functions would only be effective when applied to the modeling of exponentially decaying processes. 

However, a truncated series of this type can be shown to represent any piecewise continuous function on an interval as effectively as that of other truncated series representations by common orthogonal functions that arise from Sturm–Liouville problems, such as half-range expansions or polynomial series. 

Figure  13.25  shows a comparison of a triangle function, over an interval normalized from 0 to 1, with several fifth degree representations. The coefficients of a sine series were computed from the half-range Fourier expansion and by least squares. Surprisingly, the least squares fit does much better than the Fourier expansion. A sum of five decaying exponentials with varying time constants was fit to the same triangle. It is even more surprising that the decaying exponentials did better than the Fourier series. The apparent explanation is that the least square fit is able to better alias the higher degree terms that are simply truncated by the Fourier
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Fig.  13.25  Comparison of triangle function with various representations series. One reason for the difference is the criterion for best estimate of f(t) on the interval [0,1]. The least squares best estimate  ˆ

 f  of the form 

 N



ˆ

 f (x) =

 Cnsin(nx)

 n=1

is to choose the constants C  i  to minimize 

 m



2

ˆ

 f (xi) −  f (xi)

 i=1

where x1 , . . .  xm are measurement points in the interval [0, 1]. The constants in the Fourier series estimate for f(x) are computed by integration on [0,1] 

1

 Cn =

 f (x) sin(nx)dx

0

and minimize 

In order to gain some insight into the nature of curve fitting versus expansions based on orthogonal functions, consider the ramp function shown on Fig. 13.26.  The first five terms of the convergent Fourier half-range expansion are compared with a least square fit to the same sine function series, a least square fit to a sum of decaying exponential functions, and power series obtained from both the sine function and
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Fig.  13.26  Comparison of Ramp function with various representations exponential function sum. The curve fitting and power series methods result in a high-precision fit over the interval [0,1], while the Fourier series, by comparison, does not perform very well. 

The reason is obvious from close examination of the power series method for the decaying exponentials. We approximate each exponential function by the first five terms of its power series expansion. 

 e− xn ≈ 1 −  nx +  n 2  x 2 −  n 3  x 3 +  n 4  x 4 −  n 5  x 5

2! 

3! 

4! 

5! 

Suppose an arbitrary function of  x  is represented as a sum of five exponentially decaying functions. 

5



 f (x) ≈

 Cn e− xn

 n=1

so that 

5



 f (x) =

 Cn( 1 −  nx +  n 2  x 2 −  n 3  x 3 +  n 4  x 4 −  n 5  x 5 ) 2! 

3! 

4! 

5! 

 n=1



To fit the ramp function, the

 n Cn  must be 1 and all the  Cn  associated with 

powers of  x  multiplied by the appropriate factors in the exponential series must sum
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to 0. The ramp function has only the linear term. All the other powers of  x  must be annihilated. In matrix notation
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Inverting the matrix and multiplying times the right side results in the following coefficients. 

{

17

1

1

 Cn} = {2

 , −5 ,  5 , −3  ,  1  , − 1 }

60

3

4

5

The error in the power series expansion is caused by the higher than 5 ◦ terms of the exponential series that have been truncated. If a least square fit of the data over the interval 0–1 is performed, the error will be less because the truncation error is aliased. The coefficients for the least square fit that are directly comparable to  Cn are 

{ Cn} = {2 .  78 , −8 .  15 ,  12 .  99 , −13 .  50 ,  7 .  73 , −1 .  85}

Observe that the least square coefficients { Cn} are greater than the power series coefficients { Cn}. Given any collection of functions with enough available powers of x, the least squares solution will effectively generate a power series representation of the function to be modeled. 

A least squares series solution using a small number of functions is clearly better able to alias the error from truncating higher order terms, but as more terms are added to a least squares solution, all lower-order constants  Ci  must be recomputed, and experimentation indicates that the constants  Ci  can grow without bound. This observation is more apparent for the triangle function. The properties of orthogonal series of eigenfunctions such a Fourier series are well known and may be found in any reference that discusses Sturm–Liouville theory and boundary value problems. 

13.7 New Horizons

459

13.7  New  Horizons 

Navigation of the New Horizons spacecraft during approach to Pluto and its satellite Charon presents several new challenges related to the distance from the Earth and Sun and the dynamics of two body motion where the mass ratio results in the barycenter being outside the radius of the primary body. Since the Earth is about 30 a.u. from the spacecraft during the approach to Pluto and Charon, the round trip light time is greater than 8 h making two-way Doppler tracking difficult. The great distance from the Sun also reduces the visibility of Pluto since Pluto receives about 1/900 of the solar radiation as the Earth. The two-body motion involves Pluto and Charon moving in elliptic orbits about each other, and the system mass is a simple function of the period and semi-major axis of the orbit. The period can be measured to high precision from Earth-based telescope observations, and the orbit diameter can be measured to a precision of perhaps 100 km enabling the system mass to be determined within 1%. 

The mass ratio or the allocation of mass between Pluto and Charon is more difficult to discern from Earth-based observations. Pluto and Charon orbit about their barycenter in elliptical orbits whose semi-major axes are inversely proportional to their mass. Therefore, the mass ratio can only be determined by observing the motion on a star background over some time and removing the heliocentric orbital motion. Since these measurements are difficult to make from Earth-based telescopes, it is expected that the mass ratio and corresponding orbit sizes about the barycenter will not be determined accurately until spacecraft-based optical measurements are obtained during approach. 

The New Horizons approach navigation strategy must be designed to enable precision determination of the Charon orbit about Pluto and the spacecraft orbit relative to Pluto and Charon as well as to control the spacecraft approach trajectory and deliver the spacecraft to a position for science observations. The initial navigation activity after detection of Pluto is to separate the orbit of Charon from the orbit of Pluto about their common barycenter. In order for these observations to be useful, Charon must be separated from Pluto by more than 100 pixels. As a by-product, a more precise estimate of the system mass and spacecraft trajectory is obtained. As the spacecraft approaches the planetary system, the aim point relative to Pluto and the timing of Charon in its orbit is determined to an accuracy that permits an orbit correction maneuver to be executed so that the spacecraft is placed on the correct trajectory for science observations. If a substantial time adjustment is necessary to intercept Charon in its orbit about Pluto, it is important that this maneuver be performed as early as possible. Time change maneuvers are expensive to perform when the spacecraft is close to the Pluto/Charon system. During the approach to Pluto and Charon, the time of closest approach is not well determined. 

The error in the time of closest approach is proportional to the error in the range from Earth, which is dominated by the Pluto and Charon ephemeris error. The distance of the spacecraft from Pluto and Charon cannot be determined with high precision until the spacecraft is close enough to observe the position parallax. This occurs during the final 1–2 days before encounter for Pluto only observations or during
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the final 2–4 days before encounter for observations of both Pluto and Charon. The timing of science observations during flyby is critically dependent on knowledge of the time of closest approach. A late update of the encounter sequence timing is planned based on optical navigation images acquired during approach. 

 13.7.1  Pluto  and  Charon  Approach 

The Pluto/Charon approach phase begins at about 120 days prior to Pluto encounter. 

Navigation activities that are performed during the approach phase include initial detection of Pluto, search for coorbitals, ephemeris refinement, and a sequence of approach maneuvers that are designed to place the spacecraft on a trajectory that is optimum for science observations. The detection of Pluto as early as possible is advantageous from the standpoint of ephemeris verification and improvement to assure early tracking in support of the initial approach TCM and subsequent maneuvers. The optical measurement is obtained from an image of either Pluto or Charon using the LORRI or MVIC camera. The accuracy of this data type is a function of the picture element (pixel) spacing and the focal length of the camera optics. For the LORRI camera, the resolution is about 5 μrad per pixel, and for the MVIC, the resolution is about 20 μrad per pixel. Detection depends on Pluto’s brightness as seen from the spacecraft and the imaging camera’s sensitivity. 

The sensitivity of the camera depends on its light gathering capability (i.e., its aperture), the lens/filter/sensor light transfer and conversion efficiency, and the various electronic processes that produce image noise. The MVIC and LORRI cameras are able to detect an object when the brightness is greater than magnitude 10. Figure 13.27  gives the apparent magnitude of Pluto and Charon as the spacecraft 15 
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Fig.  13.27  Pluto/Charon apparent magnitude
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Fig.  13.28  Camera resolution versus hubble space telescope 

approaches the system. The figure shows the point on approach at which the theoretical apparent magnitude is brighter than magnitude 10 for Pluto and Charon. 

Pluto reaches apparent magnitude 10 at about 510 days prior to closest approach and Charon at about 210 days prior to closest approach. 

As the spacecraft range closes, Pluto’s image will become brighter and expand, thus improving the optical navigation image location accuracy. Optical navigation begins to exceed the performance of Earth-based observations approximately when the spacecraft camera resolution exceeds that of Earth-based telescopes. 

Figure  13.28  shows the resolution of the two spacecraft cameras as a function of time from Pluto. A value of 0.043 arcsec/pixel is used as the reference Hubble resolution of the Wide Field Planetary Camera. The plot shows that resolution of the primary MVIC camera becomes better than that of Earth-based observations at 44 days before the encounter, whereas the LORRI camera resolution exceeds the Earth-based resolution at 170 days before the encounter. 

 13.7.2  Pluto  Approach  Time-of-Flight  Determination 

As the spacecraft approaches Pluto and Charon from a great distance, the orbit determination error relative to Pluto is a statistical combination of the independently determined spacecraft and Pluto ephemeris errors. The spacecraft is initially too far from Pluto to make use of direct observation of Pluto. As the spacecraft enters Pluto’s sphere of influence, the Doppler and range measurements are able to detect the gravitational acceleration of the Pluto/Charon system, and the onboard optical
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Fig.  13.29  Planetary 
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navigation camera is able to detect the Pluto and Charon angular position on the star background. These measurements, either processed separately or in combination, can determine the approach velocity and position in the B-plane with high precision. 

The velocity determination error is within 1 mm/s in all three Cartesian components, and the position error is about 5 μrad times the range from the spacecraft to Pluto for the two Cartesian components in the B-plane. The third component of position, along the down track or time-of-flight direction, is not very well determined. 

The time-of-flight error is determined by observation of the Pluto gravitational acceleration by the Doppler and range data or the position parallax associated with the angular motion of Pluto and Charon on the star background. 

For Doppler data, an approximate analytic formula for the time-of-flight error may be derived that provides insight into the problem of time-of-flight or range-to-go determination. The time-of-flight error is simply the range-to-go distance error times the approach velocity (  V∞). The geometry is illustrated in Fig. 13.29.   As the spacecraft approaches Pluto, it is accelerated by Pluto’s gravity. The approach velocity magnitude and direction are known to very high precision as a result of tracking the spacecraft and observing Pluto’s motion for years. The velocity along the line-of-sight from Earth ( ˙

 ρ) can also be measured with high precision by the 

DSN. The change in velocity magnitude is given by, 

 v = ˙ r −  V∞

The velocity change can be obtained by integrating the gravitational acceleration during approach to Pluto. 

 t GMp

 v =

 dt

−∞

 r 2

Since the integrated acceleration is small relative to  V∞, the range may be approximated by 

 r ≈  V∞  t
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and 

 t GMp

 v ≈

 dt

−∞  V  2

∞  t 2

resulting in 

− GMp

 v ≈  V  2∞  t

The sensitivity of the approach velocity with respect to time-of-fight variation is obtained by taking the partial derivative. 

 GMp

 δv ≈

 δt

 V  2

∞  t 2

The sensitivity of the Earth line-of-sight range rate to approach velocity is simply its projection onto the approach velocity vector and 

 GMp  cos  αdop

 δ ˙

 ρ ≈

 δt

 V  2

∞  t 2

A formula for the time-of-flight error ( σ (t)) as a function of time from Pluto and Doppler measurement error is then given by 

 σ (t ) ≈

 V  2

∞  t 2

 σ ( ˙

 ρ)

 GMp  cos  αdop

For optical data, another approximate formula may be derived for the time-of-flight error. The geometry is illustrated on Fig. 13.30. As the spacecraft approaches Pluto from a great distance, images of Pluto on a star background provide a strong determination of the direction of the approach asymptote. As the spacecraft approaches Pluto, the angular position of Pluto on the star background will begin to move away from the approach asymptote direction because of position parallax. 

Fig.  13.30  Planetary 
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The observation of Pluto’s motion on the star background may be used to determine the range-to-go and time-of-flight. 

From the geometry, the tangent of the angle between Pluto and the approach velocity vector is given by, 

tan  αopt =  B

 s

The distance ( s) from the spacecraft to the B-plane may be approximated by s ≈  V∞  t

Taking the partial derivative of  αopt  with respect to  t  give s. 

− B

sec2 αopt δαopt ≈

 δt

 V∞  t 2

The formula for the time-of-flight error as a function of time from Pluto closest approach and optical measurement error is then given by 

 σ (t ) ≈

 V∞  t 2

 σ (αopt )

 B  cos2  αopt

The error in the time-of-flight estimation as a function of time from Pluto closest approach is shown on Fig. 13.31  for Doppler data, Doppler and Pluto optical data, Fig.  13.31  Analytic Pluto approach time-of-flight error
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and Doppler, Pluto optical, and Charon optical data. For this analysis  V∞ is 13.7 

km/s,  B  is 13,000 km for the aim point and 19,000 km for the radius of Charon’s orbit, and  αdop  is 14 ◦. The Doppler and optical measurement errors are 1.1 mm/s and 5 μrad respectively assuming the LORRI camera. Pluto observation science requires knowledge of the time-of-flight to be less than 100 s, which corresponds to about 1300 km down track error. As shown in Fig. 13.31, the Doppler only orbit determination error does not decrease below 100 s until about 6 h before closest approach, too late to be of use for a science instrument pointing update. With optical data, the time-of-flight error is about 39 s one day before Pluto closest approach. The addition of Charon optical data decreases the error about 50% from that obtained with only Pluto optical data. The Charon orbit baseline is about 50% greater than the baseline provided by the approach asymptote aim point and Pluto. 

 13.7.3  Pluto  and  Charon  Approach  Covariance  Analysis 

A detailed covariance analysis was performed of navigation and orbit errors during approach to Pluto and Charon. This analysis included all the error sources that affect navigation accuracy and the data acquisition strategy that will be used. The orbit determination error is determined by filtering simulated data using the same square root information filter that will be used for flight operations. The filtered best estimate of the orbit is mapped to Pluto closest approach to provide a common basis for comparison. 

During approach to the Pluto/Charon system, the spacecraft orbit determination error relative to Pluto is a statistical combination of the spacecraft ephemeris error and the planet ephemeris error. Both of these ephemerides are determined by Earth-based observations. The spacecraft ephemeris error is determined by radio metric tracking data acquired by the DSN, and the planet ephemeris error is determined by telescope observations. Both of these determinations are accurate to about 1000 km. 

For the Pluto ephemeris error, it is assumed that an observation campaign will be conducted about 1 year before Pluto encounter to reduce the effect of long-term velocity mapping errors. An approach ephemeris error of several thousand kilometers is sufficient to ensure initial acquisition of Pluto and control the approach to Pluto/Charon until optical data are acquired by the imager onboard the spacecraft. 

The approach navigation strategy is to acquire radio metric and optical data during the distant approach and refine the spacecraft orbit relative to Pluto. A sequence of maneuvers is planned to maneuver the spacecraft to the desired aim point in the Pluto B-plane. These maneuvers are scheduled after performing a trade between the improved knowledge of the spacecraft orbit as more data are acquired and the cost in propellant of delaying the adjustment to the aim point. 

The estimated parameters during approach to Pluto and Charon include spacecraft state, propulsive maneuver components, solar pressure model parameters, stochastic accelerations and Pluto and Charon ephemerides, gravity, pole, prime meridian, and rotation rate. For navigation, the accuracy of spacecraft ephemeris
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Fig.  13.32  Pluto approach—doppler and range data only 

estimation is of prime interest. The sensitivity of the spacecraft ephemeris estimation error for various data acquisition strategies is shown in Figs. 13.32, 13.33, and 

13.34. In these figures, the spacecraft position error is shown as a function of time from Pluto closest approach mapped to the Pluto B-plane. Figure 13.32  shows the spacecraft orbit determination error for Doppler and range data starting at 20 days before Pluto encounter and continuing to encounter. Prior to encounter minus 20 

days, the Doppler and range data cannot measure the Pluto/Charon gravitational acceleration, and the orbit is determined from Earth-based observations. As can be seen on Fig. 13.32, the Doppler and range orbit determination error does not improve until a few hours before encounter, which is consistent with the analytic result shown in Fig. 13.31  for the time-of-flight error. Studies of planetary approach orbit determination show that the B-plane position errors are theoretically one half the down track position or time-of-flight error. Since the down track ( s) position error is equal to  V∞ times the time-of-flight error, the numerical values shown in Fig. 13.32  a few hours before encounter for the B-plane position are roughly a factor of 26 times the time-of-flight numerical values allowing for the mixed units. 

Figure  13.33  shows the spacecraft orbit determination error when optical observations of Pluto are included with the radio metric data. The components of the spacecraft position error in the B-plane, the plane normal to the approach velocity vector, are reduced proportional to the range from Pluto times the angular measurement error. The angular measurement error is 5 μrad associated with the LORRI camera. For the MVIC camera, these results should be inflated by about a factor of four (20 μrad). Several events occur during approach that temporarily
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Fig.  13.33  Pluto approach—doppler, range and optical imaging of Pluto Pluto  B-Plane Error Mapping 
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Fig.  13.34  Doppler, range and optical imaging of Pluto and Charon
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distort this simplified analysis. Most notably, a propulsive maneuver executed at encounter minus 7 days inflates the mapped orbit determination error until the Doppler and range data are able to resolve the spacecraft velocity a couple of days later. At about encounter minus 13 days, the B-plane errors are suddenly reduced by the introduction of new optical images. A uniform reduction in B-plane position error occurs when the images are acquired on a uniform time schedule as occurs from encounter minus 13 days through encounter. Throughout the approach to Pluto, until a few days before encounter, the time-of-flight error remains essentially the same as for the Doppler and range only case shown on Fig. 13.32. As discussed earlier, the time-of-flight error is reduced when the position parallax can be observed as shown in Fig. 13.31. This occurs about one day before Pluto closest approach. 

When observations of Charon are included during approach, the approach orbit determination errors are essentially the same as obtained with only Pluto observations until about 2 days before encounter as shown in Fig. 13.34. Since 

the baseline provided by the Pluto/Charon orbit is about 50% larger than the baseline provided by the Pluto/B-plane aim point, the time-of-flight error is about 50% smaller. This provides significantly more margin for a late science instrument pointing update. It should be noted that introduction of Charon data adds some complexity to the approach orbit estimation strategy. The orbit determination filter must be able to solve for the Charon orbit and gravity with considerably more accuracy than has been determined by Earth-based observations. However, even with Pluto only observations, the dynamics of Pluto and Charon’s orbit must be included in the solution. The barycenter of Pluto/Charon is outside the surface of Pluto, and uniform motion of Pluto on a star background during approach cannot be assumed. 

 13.7.4  Spacecraft  Orbit  Reconstruction 

As the spacecraft encounters the Pluto/Charon system, the gravitational perturbation of the spacecraft and observation of craters on both Pluto and Charon permit an accurate determination of the spacecraft trajectory and certain physical parameters that characterize both Pluto and Charon. The improvement in the spacecraft ephemeris during the encounter phase is useful for determining where the spacecraft is headed after encounter. An extended mission to the Kuiper belt is planned. The determination of Pluto and Charon physical parameters is useful for future missions to Pluto/Charon and is of interest for science investigations. 

During the encounter phase, radio metric data and many images of Pluto and Charon are obtained. Table 13.11  shows the results of processing these data from before encounter until several days after encounter. In addition to the parameters estimated for approach navigation, some additional parameters are estimated that describe Pluto and Charon. These include the pole and prime meridian angles, rotation rate, gravitational parameters, and the location of craters on the surface of Pluto and Charon. Optical imaging of Pluto and Charon when combined with
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Table  13.11  Pluto and Charon parameter estimation errors 

Pluto/Charon nominal

Error (1 sigma) 

Parameters

values

Pluto

Charon 

 Pole  and  prime  meridian 

 α (◦ )

313.02

0.05

0.075 

 δ (◦ )

9.09

0.05

0.075 

 W (◦ )

236.77

0.05

0.075 

˙

 W ( deg / day )

− 56 .  3623195

3 .  0×10−4

4 .  5×10−4

 Mass  properties 

GM  ( km3 / s2 )

874.05/73.16

0 .  41×10−3

0 .  33×10−2

 Gravity  harmonics 

C20

0/0

0 .  81×10−2

Not available 

Doppler tracking data should enable determination of the location of craters relative to the respective centers of mass to an accuracy of about 100 m. The observations that are most useful are obtained within several hours of encounter. During this time interval, the bodies rotate several degrees enabling a determination of the poles, prime meridians, and rotation rates. The accuracy is optimistically estimated to be about 0.05 ◦ as given in Table 13.11. The a priori values for the poles and rotation rates assume that both Pluto and Charon rotate at the orbital period of the Charon orbit about Pluto and are thus in gravity lock. This assumption is not necessary for determination of these parameters since the data obtained during encounter will be much more powerful than Earth-based observational data including the Hubble space telescope. The solution will not be a priori limited. If Pluto and Charon are in gravity lock and the orbit is not exactly circular, the pole and prime meridian angles will librate about their nominal values. Further study is needed to determine if the libration angles will be large enough to be detected. 

Pluto and Charon gravitational parameters are determined from the Doppler tracking data acquired during encounter. The values for the errors given in Table  13.11  were obtained by detailed covariance analysis of simulated data. 

When combined with the volume of the bodies obtained from optical imaging, a refined estimate of the bulk densities may be obtained that will be at least an order of magnitude better than obtained from Earth-based observations. Also, observation of the Charon orbit about Pluto will enable an even more precise determination of the system mass, an artifact of the equations of motion, that is of marginal interest to physical science but is essential for accurate ephemeris development. The normalized gravitational harmonic  C 20, which is related to the oblateness, can be resolved to an accuracy of about 0.008, which is at least an order of magnitude greater than the nominal value expected from analysis of the spin and hydrodynamics. The flyby distances will probably be too great for the Doppler data to detect gravity harmonics. 

In addition to the physical parameters of Pluto and Charon, the orbit of Charon about Pluto and the heliocentric orbit of the Pluto/Charon barycenter will be determined. This “normal point” will permit an improved ephemeris for these bodies. 
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13.8  Phobos 

The Phobos gravity field provides useful insight into the physical makeup of Phobos and is needed for determination of the orbit of a spacecraft in the vicinity of Phobos. 

When combined with a figure model and observations of the forced libration of Phobos in its orbit about Mars, certain physical parameters such as mean density and moments of inertia may be determined. 

Direct observation of the gravity field of Phobos is limited. The most accurate data that have been obtained are from tracking spacecraft that have flown by or orbited near Phobos. These observations have yielded an important determination of the mass. Indirect determination of the gravity field may be obtained from the figure model. An extensive map of the Phobos topography has been obtained from stereo imaging of the surface by the Mariner 9 and Viking missions. The resulting figure may be integrated to obtain gravity harmonic coefficients, the inertia tensor, and volume assuming constant density. The rotational motion of Phobos may then be integrated around one Martian orbit and the results compared with observation of the forced libration to obtain some insight into the internal structure of Phobos. 

 13.8.1  Phobos  Inertial  Properties 

The combination of a photographic determination of the figure of Phobos with observations of spacecraft and Phobos dynamics provides an estimate of some of the inertial properties of Phobos. With this limited knowledge, some insight of the internal structure of Phobos may be inferred. The most useful information is contained in the low-degree gravity harmonics and moments of inertia. 

The key mass properties that have been determined are given in Table 13.12. 

The gravitation constant  (GM)  has been determined by tracking spacecraft that have flown in the immediate vicinity of Phobos, most recently the Soviet Phobos Mission, and the mass is obtained by simply dividing by the universal gravitation constant. Integration over the observed surface of Phobos gives the volume  (V ), and the mean density is simply the mass divided by the volume. 

Integration of the first moment over the volume of Phobos gives the center of figure relative to the center of the planetocentric coordinate system. The center of the Table  13.12  Phobos mass 

Parameter 

Value

Units

Definition 

properties 

 GM

7 .  22 × 10−4

 km 3 /s 2

Gravitation parameter 

 M

1 .  082 × 1016

 kg

Mass 

 V

5 .  673 × 1012

 m 3

Volume 

 ρ

1 .  91

 g/cm 3

Mean density (cgs)
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Table  13.13 

⎡

⎤

Phobos inertia 

 Ixx Ixy Ixz

tensor

⎢

⎥

 I = ⎣  Ixy Iyy Iyz ⎦

 Ixz Iyz Izz

Phobos-centered body-fixed coordinates 

⎡

⎤

4 .  72

−0 .  0338 −0 .  0341

⎢

⎥

 I = ⎣ −0 .  0338

5 .  50

−0 .  0280 ⎦ × 1023 kg-m2

−0 .  0341 −0 .  0280 6 .  48

Phobos-centered principal axes 

⎡

⎤

4 .  72

0

0

⎢

⎥

 I = ⎣ 0 5 .  50 0 ⎦ × 1023 kg-m2

0

0

6 .  48

Table  13.14  Phobos 

Latitude a

Longitude a

principal axes of inertia 

Axis 

( ◦)

( ◦) 

directions 

 xp

1 .  14

2 .  53 

 yp

1 .  53

92 .  5 

 zp

88 .  1

235 .  8 

a  Phobos centered inertial 

planetocentric coordinate system is the center of mass as determined by observation of spacecraft and Phobos dynamics. If the density of Phobos is uniform, the center of figure as defined by the aforementioned integration is also the center of mass. 

Thus, the difference may be attributed to inhomogeneity of Phobos or the accuracy of the data. The observed offset from the Viking measurements was too small to be significant and was incorporated into the reduction of the images. This supports a fairly uniform mass distribution for Phobos as far as can be determined from the first moment. 

Another perspective of the mass distribution of Phobos may be obtained from the integration of the second moment over the volume of Phobos. The results of this integration for the inertia tensor are given in Table 13.13. The orientation of the Phobos-centered coordinate axes is also defined by observation of spacecraft and Phobos dynamics. The  x  axis of Phobos points toward the center of Mars on the average, and the  z  axis is normal to the Phobos orbit plane. Therefore, the Phobos-centered body-fixed axes should also be principal axes since this is the orientation that is attained in the steady state over many revolutions. From the cross products of inertia given in Table 13.13, we may compute the location of the principal axes of Phobos figure, and these are given in Table 13.14. The offset of the figure principal axes of inertia from the Planetocentric coordinate system may be attributed to asymmetric mass distribution or accuracy of the data. The small offset that is observed also supports a uniform distribution of Phobos density within the accuracy of the observations. 
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Table  13.15  Phobos gravity field 

 GMp = 7 .  22 × 10−4 km3 / s2 , r 0 = 11 .  1 km Coefficient 

m   =   0

m   =   1

m   =   2

m   =   3

m   =   4  

 C 2 m

−0.1035E+00

0.2556E–02

0.1457E–01 

 S 2 m

0.2098E–02

0.1269E–02 

 C 3 m

0.8243E–02

−0.4800E–02 −0.3091E–02

0.6721E–03 

 S 3 m

0.2093E–02

−0.3110E–03 −0.1323E–02 

 C 4 m

0.1892E–01

0.1949E–02

−0.4758E–03 −0.2116E–03

0.6139E–04 

 S 4 m

−0.9897E–03 −0.5637E–03

0.1983E–03

−0.3234E–04 

 13.8.2  Phobos  Gravity  Field 

The gravity harmonic coefficients may also be obtained by integration over the figure of Phobos assuming constant density. The results of this integration are given in Table 13.15. The harmonic coefficients through degree and order two may be directly related to the center of gravity and part of the inertia tensor and thus provide essentially the same insight into the mass distribution as has been discussed earlier. 

For the center of gravity, these relationships are 

 xcg =  C 11 r 0

 ycg =  S 11 r 0

 xcg =  C 10 r 0

and for the inertia tensor 

 Ixx −  Iyy = −4 Mr 2 oC 22

 Iyy −  Izz =  Mr 2 o(C 20 + 2 C 22 ) Izz −  Ixx = − Mr 2 o(C 20 − 2 C 22 ) Ixy = −2 Mr 2 oS 22

 Iyz = − Mr 2 oS 21

 Ixz = − Mr 2 oC 21

(13.1) 

The aforementioned six equations for the inertia tensor elements place constraints on the relationship between the inertia tensor and gravity harmonic coefficients. However, only five of these equations are independent. The third equation may be obtained by adding the first two equations. For this reason, it is not possible to completely describe the inertia tensor from gravity measurements alone. 
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The higher degree terms of the gravity field expansion are useful for predicting the acceleration of a spacecraft that orbits near Phobos. Thus, they are vital for precision navigation. In their own right, the higher-order gravity harmonics provide some insight into the homogeneity of Phobos when they are compared with those obtained from the figure assuming constant density (i.e., the coefficients in Table 13.15). At this time, a direct determination of the higher-order harmonic coefficients that would be obtained by tracking spacecraft is not available. 

 13.8.3  Phobos  Rotational  Dynamics 

Consider the rotational equations of motion that relate the observed angular acceleration  ˙

   and body-fixed spin rates to the applied moment  (M ). 

M =  I ˙  +   × H

H =  I 

As Phobos orbits Mars, Phobos is subjected to a torque from the gradient of the Mars gravity field. The total applied moment to Phobos is obtained by integrating this force times the moment arm over the density and volume of Phobos. 





M =

r ×  dF  ρ( r , λ, φ)  dV

(13.2) 

 V

dm

The gravitational force (F) is exerted on an elemental volume element of mass  dm. 

This force is obtained from the Mars gravity field and is given by 

 dF =  fg(r p,α,δ,W,GMm,rm,CMnm,SMnm) dm

where  r p  is the vector from the center of Mars to an elementary volume element of Phobos,  GMm  is the gravitational constant of Mars,  rm  is the reference radius of Mars and  CM nm  and  SM nm  are the Mars gravity coefficients as determined by Balmino and are given in Table 13.16. 

For the orbit of Phobos about Mars, a state vector was computed at Mars periapsis from the orbit elements given in Table 13.17. The aforementioned rotational equations of motion were integrated over one complete orbit of Mars in conjunction with the translational equations of motion and the moment obtained by simultaneous repeated integrations over Phobos’s volume. Of particular interest is the forced libration in longitude of Phobos. This is simply the inertial attitude rate about the   z  axis minus the mean rotation about the same axis. The amplitude of 1 .  14◦

obtained by numerical integration provides some insight into the radial distribution of density. 
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Table  13.16  Mars gravity field 

 GMm = 42828 .  44 km3 / s2 , rm = 3 ,  394 .  km Coefficient 

m   =   0

m   =   1

m   =   2

m   =   3

m   =   4  

 C 2 m

−0.1960E–02 

0

−.5473E–04 

 S 2 m

0

0.3140E–04 

 C 3 m

0.3145E–04 

0.4477E–05

−.5579E–05

0.4845E–05 

 S 3 m

0.2690E–04

0.2895E–05 

0.3607E–05 

 C 4 m

−0.1889E–04 

0.3494E–05

−0.2077E–06 

0.4175E–06

−0.3614E–08 

 S 4 m

0.3990E–05

−0.2199E–05 

0.1625E–07

−0.2765E–06 

Table  13.17  Initial conditions 

Parameters

Values 

Phobos ephemeris

Phobos-centered 

⎡

⎤

⎡

⎤

 ap

9378 .  5 km

⎢

 o

⎢

⎥

⎢

⎥

 ep

0 .  015364

 o ⎥

⎢

⎥

X

⎢

⎥

⎢

⎥

o = ⎢

X

⎢  p ⎥

o = ⎢ 242 .  703◦ ⎥

 o

⎣

⎥

⎢

⎥

 i

⎦

⎣

⎦

 p

1 .  0324◦

 o

 ωp

227 .  073◦

 o

Phobos attitude and rates

Rotations from Phobos centered frame 

⎡

⎤

⎡

⎤

 α

0◦

⎢  o

⎢

⎥

⎢

⎥

⎢  δo ⎥

⎢

90◦

⎥

⎢

⎥

⎢

⎥

 W ⎥

⎢

0◦

⎥

 

 o

o = ⎢

⎢

⎥

 o = ⎢

⎥

⎢

⎥

⎢

⎥

 ω

1 .  077×10−4 rad / s

⎢  xo⎥

⎢

⎥

⎣

⎥

⎢

⎥

 ωyo⎦

⎣1 .  077×10−4 rad / s⎦

 ωzo

8 .  725×10−3 rad / s

 13.8.4  Analytic  Approximation  of  Forced  Libration 

The moment about Phobos’s coordinate axes may be approximated by assuming that the Mars gravity gradient is constant over the entire volume of Phobos. With this assumption, the moment about Phobos is determined by the second-degree gravity harmonics of Phobos, which are related to a certain ratio of the moments of inertia. 

The gravitational force of Mars on an elementary mass element of Phobos may be approximated by 

 dF =

 GMm (r

|r

 p − r ) dm

 p − r|3

where  rp is the vector from the center of Mars to the center of Phobos. Substituting the gravity force into the moment equation we obtain 

r ×  (r

M =

 p − r )

 GMm

 ρ(r, λ, φ) dV

(13.3)

 V

|r p − r| 
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where the distance from Mars to the mass elements may be obtained by projecting the location of the mass elements onto the Mars–Phobos vector ignoring parallax, 

|r p − r| = r p − r p · r and the required inverse cube may be approximated by the first two terms of the Taylor series 5





1

1 + 3r

= 1

 p · r

|r p − r|3

 r 3

 p

 r

 p

Replacing the vectors by components we obtain 

⎡

⎤

 yzp −  zyp

M =  GM

⎣ zx

⎦

 p −  xzp

[ r +  (xxp +  yyp +  zzp)]  ρ(r, λ, φ)dV

 r 5

 p

 p

 V

 xyp −  yxp

(13.4) 

Since the origin of the coordinate system is the center of mass, the first-order terms in   x,  y, and  z  integrate to zero and the second-order terms integrate to moments and products  of  i nertia. 

⎡

⎤

 ypzp(Izz −  Iyy) +  (y 2 −

 p

 z 2 p)Iyz −  xpzpIxy +  xpypIxz

M = 3  GMm ⎢

⎣

⎥

 xpzp(Ixx −  Izz) +  (z 2 −  x 2

⎦

 r 5

 p

 p )Ixz −  xp yp Iyz +  yp zp Ixy

 p

 xpyp(Iyy −  Ixx) +  (x 2 −

 p

 y 2 p)Ixy −  ypzpIxz +  xpzpIyz

(13.5) 

As Phobos rotates about Mars, the  x  coordinate axis very nearly points toward Mars, and the moment about Phobos may be approximated b y

⎡

⎤

0

M ≈ 3  GMm ⎣

0

⎦

(13.6) 

 r 5

 p

 xpyp(Iyy −  Ixx)

For small angular deviations of the  x  coordinate axis in longitude, we hav e

⎡

⎤

0

M ≈ 3  GMm ⎣

0

⎦

(13.7) 

 r 3

 p

 θ (Iyy −  Ixx)

The rotational equations of motion may also be simplified for the special case of rotation and moments only about the  z  axis. Thus, Euler’s equations of motion may be approximated by
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⎡

⎤

0

M ≈ ⎣ 0 ⎦

(13.8) 

 I

¨

 zz θ

We thus obtain the following second-order differential equation for the rotation of Phobos. 

¨

 Iyy −  Ixx

 θ = 3  GMm

 θ

 r 3

 p

 Izz

The forcing function is simply the difference between Phobos’s  x  coordinate axis and the vector from Mars to Phobos, which is defined by

 θ =  η −  θ

where   η  is the true anomaly of Phobos orbital motion about Mars. 

The orbital motion of Phobos about Mars may be described by Kepler’s equation, and we have 

 M =  E −  e  sin  E

where   M  is now the mean anomaly,  E  is the eccentric anomaly, and  e  is the orbit eccentricity. We also have the relationships

cos  η = cos  E −  e

1 −  e  cos  E

 GMm

 M =

 (t −  tp) =  n(t −  tp)

 a 3 p

where   ap  is the semi-major axis of Phobos orbit,  tp  is the time of periapsis passage, and   n  is the mean motion. Expanding the true anomaly as a Fourier series and discarding all but the first two terms, we have for an orbit that is nearly circular η =  nt + 2 e  sin  M

The differential equation for the rotation of Phobos about the  z  axis thus becomes

¨ θ = 3 γ n 2 (nt + 2 e  sin  nt −  θ) where 

 Iyy −  Ixx

 γ =

 Izz
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Taking the Laplace transformation, we obtain 

 s 2 θ (s) −  sθ 0 − ˙ θ 0 = 3 γ n 2 + 6 γ en 2 − 3 γ n 2 θ

 s 2

 (s 2 +  n 2 )

Solving for  θ  as a function of  s, we obtain 

 θ (s) =

 s

 θ

˙

0 +

1

 θ 0 +

3 γ n 2

+

6 γ n 2 e

 s 2 + 3 γ n 2

 s 2 + 3 γ n 2

 s 2 (s 2 + 3 γ n 2 )

 (s 2 +  n 2 )(s 2 + 3 γ n 2 )

Transforming from the frequency domain back to the time domain, we obtain 1





 θ =  θ 0 cos (nt  3 γ ) + ˙ θ 0 √

sin (nt

3 γ ) −

1

√

sin (nt

3 γ )

 n  3 γ

3 γ



− 1

√

6 γ e

sin (nt

3 γ ) +  nt + 6 γ e  sin  nt

(13.9) 

3 γ  3 γ − 1

3 γ − 1

The aforementioned equation describes the rotation of Phobos as a function of the initial attitude 

 (θ 0 ), initial attitude rate  (˙ θ 0 ), gravity torque forcing function, and inertial properties of Phobos. Over many Phobos orbits, energy dissipation will result in the amplitude of the attitude oscillations attaining a minimum. This minimum energy condition imposes the following boundary condition on the initial attitude and attitude rates at periapsis. 

 θ 0 = 0 . 





˙ θ 0 = 1 − 6 γ e

 n

3 γ − 1

Substituting the boundary conditions into the equation of motion, we obtain for the attitude of Phobos 



 θ =  nt + 6 γ e  sin  nt +  Af  sin (nt  3 γ +  θf ) 3 γ − 1

Observe that this equation contains an additional term for the free libration of Phobos of amplitude  Af  and phase  θf . The minimum energy boundary condition results in this term vanishing except for a small residual that may be attributed to other external forcing functions and the initial attitude and rate that existed when Phobos became locked in rotation with Mars. The forced libration may be separated from the free libration through their respective frequency signatures. The amplitude of the forced libration computed from the aforementioned approximate formula is 0 .  978◦ where  γ = 0 .  12037 and e  = 0.0151. This compares very well with results obtained by numerical integration. 
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Exercises 

13.1  During approach to Jupiter, the original navigation design involved separating the probe from the orbiter at encounter minus 50 days at a cost of 50 m/s. The 50 

m/s was needed to deflect the orbiter from an entry trajectory to the orbit insertion aim point. In order to save   V, the separation was moved back to encounter minus 150 days. Determine the savings in   V. 

13.2  Show that for a heading angle due East in the same direction as Jupiter’s rotation, the relative entry angle is given by 

tan  γe =

sin  γI

cos  γI −  ωJ re

 VI

cos  γI =

 B





 r

2  GM

 e

+  r

 V  2

 e

∞

where   ωJ  is Jupiter’s rotation rate,  re  is the entry radius,  VI  is the inertial velocity at entry,  V∞ is the hyperbolic excess velocity,  GM  is Jupiter’s gravitational constant, and  γi  is the inertial entry angle. 

13.3  For the separation at minus 150 days in Exercise 13.1, the 99% impact parameter delivery error is ±1300 km. Determine the 99% relative entry angle delivery error for  V∞ = 5 .  86 km/s, B  = 724,300 km,  re = 71,398 km,  Vi = 59.9 

km/s,  ωj = 1 .  77 × 10−4 rad / s and GM=0 .  126 × 109 km3 / s2. 

13.4  For the estimation of atmospheric drag on a spacecraft in orbit about a planet with an atmosphere, the relationship between the velocity change at periapsis and the period of the orbit is needed. Show that 

5

 ∂P

 v

2

=

 p a

6 π

 ∂v

3

 p

 GM  2

13.5  A spacecraft is in a circular 30 km orbit about Eros. The plane of the orbit ( x− y) is perpendicular to the sun line. The sun is in the plus  z  direction. A maneuver is executed as the spacecraft crosses the  x  axis that places the spacecraft in a circular orbit that flies over the sub-solar point, which is on the  z  axis. The spacecraft mak es a 90◦ turn and flies over the subsolar point on the surface of Eros. Determine the maneuver components in the inertial  x, y, z  coordinate system. The gravitational parameter of Eros is 4 .  463 × 10−4 km3 / s2. 

13.6  In turning the spacecraft to the maneuver attitude in Exercise 9.4, an error results in the rocket motor being pointed in the direction of the spacecraft velocity vector. The thrust is in the opposite direction that the rocket motor is pointed. 

The magnitude of the burn or  V  remains the same as for subsolar over-flight. 

Determine the periapsis radius of the resulting trajectory. 
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Chapter  14 

Navigation  System  Summary 

14.1  Introduction 

The planetary navigation system consists of a collection of programs that are used to perform or support navigation operations. The inputs to this system are tracking data, science instrument data, spacecraft telemetry data, and an a prior description of the solar system in terms of constant parameters. Tracking data include Doppler, range, and very long baseline interferometric signals from spacecraft and quasars. 

The tracking data also include troposphere, ionosphere, and solar plasma data. 

Science instrument data include optical images and laser range finding. Spacecraft telemetry data include attitude control and propulsion system telemetry. Solar system a prior constant parameters include initial states of the spacecraft, planets, planet attitude and rotation, gravity harmonics, inertia tensors, shape models, location of landmarks, Earth plate tectonics, and solid earth tides. The outputs from the navigation software system include spacecraft and planetary ephemerides, planet attitude as a function of time, gravity harmonics, shape models, landmark locations, inertia tensors, mass, solar pressure parameters, and propulsion maneuver parameters. 

The software program structure is composed of subroutines and subprograms that are executed in a hierarchy. Programs call subprograms that call subroutines. Subroutines are mathematical functions that are included with the program language or supplied by libraries. The subprograms call other subprograms that may be several layers deep before the desired result is obtained. The subprograms communicate through common blocks that are partitions of memory dedicated to transferring data. These are all coded in Fortran. Programs communicate through files. In the early days of computing, the files were on magnetic tape. Back in 1958, they were on disk drives about 3 feet in diameter. Today, they are on a flash drive about the size of my little finger. The navigation system consists of about 100 programs and many subprograms. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
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Most of the subprograms perform trivial functions involved in moving data around. A few subprograms are at the heart of navigation. Some of the most important subprograms are tabulated further. The mathematical basis is in parenthesis. 

Many of the programs used for navigation are quite complex. 

Matrix inversion (linear algebra) 

Numerical integration (central limit theorem) 

Eigenvalue decomposition (square root of matrix) 

Orbit determination filter (Square Root Information Filter SRIF) 

Constrained parameter optimization (method of explicit functions) 

Monte Carlo statistics (binomial theorem) 

There is a matrix that appears in several of the navigation programs that ties these programs together and is also the basis of general relativity. This matrix is defined by 

 ∂nY

√

=  R

(14.1) 

 ∂Xn

where   X  are independent parameters and  Y  are parameters that are a function of 

√

 X.  The

 R  is a matrix that contains the nth partial derivative of  Y  with respect 

√

to   X. The row dimension of

 R  is the dimension of  Y  and the column dimension 

√

is the dimension of  X.  If

 R  is a square matrix, the dimension of  Y  is equal to the dimension of  X, and a one-to-one mapping exists between  X  and   Y .   For    Y  to be independent, the dimension of  Y  must be less than or equal to the dimension of  X.   If  

√

 X  contains the components of a vector, then

 R  is a tensor. However, the elements 

√

of   X  can be unrelated to each other and

 R  is just a matrix. For  n = 0,  Y  is simply a function of  X.  For  n = 1  Y  is the first derivative of  X. In theory, we can solve for X  as a function of  Y , and the first derivative of  X  with respect to  Y  is  the  i nverse of

√ R.  For  n = 2, the second derivative is 



√

 Y =

 R X

(14.2) 

Dropping the deltas, we can define a scalar as 



 T



√  T √

 S =  Y

 Y =  XT R

 RX =  XT RX

(14.3) 

where   S  is a scalar. For the case where  X  is a vector in Euclidean space and  Y  is a vector in curved space,  R  is the contracted Riemann tensor or Ricci tensor. 

14.2  Computer  Model  of Universe

For the purpose of navigation, we have assumed a computer model of the universe that excludes forces or geometry that are not significant. The sun is a rigid nonrotating body in the shape of a sphere. Planets have the same model except when

14.3 Trajectory Propagation and Targeting
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a spacecraft is near. Then, the gravity model is a function of shape and the planet rotates. Light is everywhere but is only modeled in a few situations. Light is reflected from a point in space and is observed at a defined point in space. Stars emit light and are assumed to have no mass. Black holes do not exist. The masses of stars and black holes are ignored. An exception is craters on asteroids or comet nuclei. For this case, we define a point at the center of a crater obtained by fitting an ellipse to the rim. To complete the model of the universe, we must determine what happens when light shines on a spacecraft. The photon momentum accelerates the spacecraft. 

Many other force models are excluded because they do not significantly affect motion over the time that navigation operations are performed. For example, the acceleration of an asteroid due to solar pressure is ignored. The main reason for excluding force models is the limitation of computer size and speed. Also, the number of parameters that need to be estimated limits the complexity of the model. 

For the NEAR mission, over 600 parameters were estimated for every solution. It was a major challenge to limit the number of estimated parameters to around 600. 

We had to invert a 600-by-600 matrix. 

There is another advantage to defining a bare universe. Verification of the veracity of the navigation system only involves finding an error in the basic model or proving that some physical model that has been ignored will make a significant difference. 

14.3  Trajectory  Propagation  and  Targeting 

Trajectory propagation is the computation of the position and velocity of a spacecraft or planet at some time in the future starting from an initial position and velocity. The constant parameters that define  X  in  Eq. (14.1) are the initial position and velocity coordinates and may also include gravitational constants, gravity harmonics, and any other constant parameters that are needed to compute the trajectory. The initial time and some time in the future are also needed. For targeting, the  Y  parameters are the position and velocity coordinates at some time 

√

in the future. If  X  and   Y  only contain position and velocity coordinates, then R

is square, and there is a one to one mapping from  X  to   Y . In computing  Y ,   we may introduce some intermediate coordinates. Thus, by virtue of the chain rule  Y  is gi ven by

 ∂Y ∂X

√ √ √ √

3  ∂X 2  ∂X 1

=  ∂Y =  R 3  R 2  R 1  R 0

 ∂X 3  ∂X 2  ∂X 1  ∂X 0

 ∂X

We retain the square root of  R  here since it will define the Riemann tensor when 

√

inserted in Eq. (14.3). Recall that given  R,  the R  is not unique but for trajectory 

√

propagation

 R  is unique. 

An example of a Riemann tensor used for trajectory propagation is given in Sect. 2.5.11
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 ∂A =  ∂A  ∂Ab (x,y,z) ∂A b(r,λ,φ) ∂r b(r,λ,φ) ∂r b

 ∂r

 ∂Ab  ∂A b(r, λ, φ) ∂r b(r, λ, φ) ∂r b(x, y, z) ∂r The partial derivative of the gravitational acceleration ( 

A) with respect to the 

position coordinates ( r) is obtained by use of the chain rule. There are five 3-by-3 matrices that relate the inertial position ( r) to inertial acceleration. From right to left in the aforementioned equation, the first transformation is from inertial coordinates ( r) to body fixed coordinates ( rb). The second matrix transforms to spherical coordinates. The third matrix transforms to body fixed acceleration ( Ab). 

The fourth matrix transforms acceleration back to Cartesian coordinates, and the fifth matrix transforms back to the reference coordinate system. All of these matrices are the square root of a Riemann tensor if the reader accepts the definition given by Eq. (14.1). The intension here is not to trivialize the Riemann tensor. These variational equations are integrated twice to relate spacecraft state at t0 to some time in the future ( t). The result is then packed into another bigger Riemann tensor, the third matrix defined earlier. 

The  ∂A b(r,λ,φ)  is dependent on the particular gravity model whose partial 

 ∂r b(r,λ,φ)

derivatives are being computed. For the harmonic expansion model, we have 

⎡

⎤

 ∂∇ U

⎢

 ∂r

⎢

⎥

⎥

 ∂A b(r, λ, φ) =  ∂∇ U

= ⎢

⎢

1

∇ U ⎥

⎥

 ∂r

 r  cos (φ) ∂λ

 b(r, λ, φ)

 ∂r b(r, λ, φ)

⎢

⎣

⎥

⎦

1 ∇ U

 r ∂φ

This 3-by-3 matrix was not easy to derive and program. It involved differentiating Legendre polynomials with respect to their arguments. Easy is a relative term. 

Another example of a Riemann tensor is given in Sect. 1.7  for the rotational variational equations and was even more difficult to derive and program. 

14.4  Orbit  Determination 

Another example of the appearance of a Riemann tensor as defined here is in an orbit determination data filter. In particular, the square root information filter defines a data equation (Eq. (6.7)). For the data equation, Eq. (14.1) becomes 

√ R X =  Y =  η

 X  is a column matrix containing difference between the estimated solution for X  and the nominal a prior  X  and   η  is a column matrix containing measurements. 

√

The matrix

 R  has as a column dimension equal to the number of estimated parameters and a row dimension equal to the number of measurements. Using the
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√

Householder transformation, the

 R  and   η  can be replaced by matrices with the 

√

column dimension equal to the row dimension. The

 R  matrix is thus square. 

√

For the NEAR mission, the

 R  matrix was about 600 by 600. There were many 

estimated parameters because of the need to estimate gravity harmonics, landmark 

√

locations, and propulsive maneuvers. A solution is obtained by inverting R  and 

multiplying by  η. 

√

 X = [  R]−1 η

The information matrix ( R) is obtained by computing the inner product or sum of the measurement residuals squared. 

√

√

 ηT η =  XT [  R] T [  R] X =  XT RX

The matrix  R  is a Riemann tensor. The covariance matrix is obtained by inverting  R. 

14.5  Trajectory  Optimization 

The Riemann tensor is also present in the equations that define parameter optimization. The second-order gradient search when applied to the method of explicit functions Eq. (4.50) defines the following mixed tensor 

 ∂ 2 J

 ∂U ∂Zf

where   J  is the scalar cost function being minimized,  U  are the independent parameters or  X  in Eq. (14.3), and  Zf  are equations of constraint. The  Zf  equations of constraint are arbitrary and are adjoined to the  Zc  equations of constrained to make the partial derivatives 0f  Z  with respect to  U  a square matrix E q. (4.14). When 

a solution is obtained, the  Zf  disappear from the solution as shown in Sect. 4.5.2. 

The   Zc  are constrained to constants, and the  Zf  are free to assume any value. 

In Sects. 9.6–9.7  an arbitrary vector  A  is adjoined to the covariant derivative that is differentiated to obtain the Riemann tensor of general relativity. This arbitrary vector is eliminated from the Riemann tensor in Sect. 9.7  resulting in Eq. (9.12). 

The general relativity Riemann tensor is also a mixed tensor. 

The methods of Lagrange multipliers and gradient projection follow directly from the method of explicit functions, which is the general case. The method of explicit functions was derived and programmed by the author in 1971 for the Viking orbit insertion propulsive maneuver optimization. It was derived without appealing to geometry and the derivation can fit on one page. In the literature, gradient projection is derived from geometry and requires many pages to get Eq. (4.20). Einstein avoided geometry as much as possible and derived the Einstein
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tensor by performing mathematical operations on tensors. As Eddington observed in Sect. 9.11, the clumsy mathematics makes the geometry difficult to understand. This attitude of Eddington probably explains why after supporting Einstein during World War I and performing the experiment that verified general relativity, he faded from prominence in the field of general relativity. I think Eddington was joking when he suggested that the mathematics was clumsy. He was a Quaker and had a good sense of humor. 

14.6  General  Relativity 

Implementation of general relativity in navigation software is accomplished by introducing a few equations. These equations are derived by making the assumption that the sun is essentially the only body that curves space and the sun is a perfect sphere of uniform density. For Jupiter and Saturn, a few terms from the complete n-body solution obtained by De Sitter and modified by Einstein are included. 

Programming navigation software requires an understanding of all the equations. 

A complete understanding of general relativity has consumed a relatively large portion of this text. The reason for including this derivation of general relativity was to show the relation of the mathematics to other subprograms that comprise the entire set of navigation software. A person who understands the mathematics of all the navigation software should easily understand general relativity. Conversely, a relativity expert should be able to easily understand navigation software. Because of the difficulty in relating matrix notation to Einstein summation notation, there are few who understand both. 

The Riemann tensor or the second derivative of a scalar with respect to coordinates appears in orbit determination and parameter optimization programs. 

The scalar may be curvature of space, the cost of performing navigation operations, or the sum of the squares of measurement or model errors. General relativity obtains differential equations for the elements of the Riemann tensor and then solves these equations for the metric tensor. The metric tensor is then inserted into the equation of geodesics to obtain acceleration. The acceleration is numerically integrated twice to obtain the result of interest, the trajectory of a spacecraft or planet. In navigation software, the general relativity equations are included in the model of the solar system and a data filter operated on this model to obtain a solution for spacecraft planet initial state and other model parameters. Parameter optimization programs operate on the same model to obtain an optimum solution for the same parameters. 

Trajectory optimization and general relativity use the same mathematical trick Riemann used for the Riemann tensor. Arbitrary functions are introduced and then eliminated from the solution. 

Another mathematical operation that is used by Riemann or Christoffel in deriving the equation of geodesics and Newton in proving the fundamental theory of calculus is referred to as a squeeze. A squeeze involves letting an interval become infinitely small, simplifying some equation, and then integrating across an infinitely

14.6 General Relativity
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small interval. We have an infinity inside an infinity. An example is Eq. (9.2) where the interval  δxα  is infinitely small and Fig. 1.6  where  x  also becomes infinitely small. Both  δxα  and  x  serve the same purpose. Another example is inscribing a polynomial with  n  sides inside a circle and superscribing a larger polynomial outside the circle. As  n  approaches infinity, the polynomials squeeze the circle and  π  falls out of the mathematics. We owe this squeeze to Archimedes. He used this result to prove that a sphere inscribed inside a cylinder is exactly two-thirds the volume of the cylinder. Archimedes had this result carved on his tomb stone if we can believe Cicero. The second derivative defined in Eq. (4.50) obtained by finite difference uses intervals that must be carefully selected. The intervals must be small enough to be in the linear range but large enough to avoid computer precision. This selection of interval size becomes critical when designing patch conic trajectories in Chap. 3. 

The normal PDF described in Sect. 5.8.2  is the result of a squeeze associated with the binomial theorem, The normal approximation is only accurate over a span of coefficients much smaller than the size of the binomial polynomial. 

Appendix  A 

Answers  to  Selected  Exercises 

A.1  Chapter  1 

1.1  For an ideal basketball and golf ball, the golf ball would rebound to a height of 10.9 m. For a real basketball and golf ball dropped on a driveway, the height was only about 4 m which resulted in the golf ball being lost on the garage roof. 

1.2  A 3  × 3 matrix containing the outer product of r





 ∂a

−

r ⊗ r

=  μ I − 3

 ∂r

 r 3

 r 2

1.3 

3  GM

 rxrz

3  GM

 My(α = 0 ) =

=

 r 3

 (Izz −  Ixx) r 2

 r 3

 (Izz −  Ixx)  sin    cos  

1.4 

 rl =  kz  cos   −  kx  sin   +  kz  cos   −  kx  sin  

 r =  kz  sin   −  kx  cos   −  kz  sin   +  kx  cos  

1.5 







3

cos

˙

 GM

 Izz −  Ixx

 

 α =

= 2 .  450 × 10−12 rad / s

2

 r 3

 Izz

 ωe

1.6  This problem makes use of the following 
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 ∂(I ) T =

 ∂I T

 T

 ∂Ie

 ∂Ie

⎡

⎤

1 0 0 1 1 0

 ∂I T = ⎣0 1 0 1 0 1⎦

 ∂Ie

0 0 1 0 1 1

1.7  ¯ v=725 m/s 

1.8  Assume  that  the  volume  swept  out  by  all  the  molecules  between  collisions is  equal  to  the  volume  of  the  container  and  the  frequency  of  collisions  is the  reciprocal  of  the  mean  time  between  collisions.  The  mean  free  path  is approximately 5 .  029 × 10−7m and the number of collisions per second for one molecule is 9 .  639 × 108. 

1.9  Tyrannosaurus rex’s watch will have gained 0.61 seconds and will read Jan 1 

2017 12:00:01 AD if we round up. Photon’s watch will read Jan 1, 65,000,000 

12:00:00 BC. Photon will have no memory of the trip and t rex was probably wiped out by an asteroid but, his watch survived. 

1.10  For 30◦ integration step size and evaluating function on right side of interval, 90

sin (x)dx ≈  π [sin ( 30 ) + sin ( 60 ) + sin ( 90 )] = 1 .  23

0

6

For evaluation in middle of interval, 

90

sin (x)dx ≈  π [sin ( 15 ) + sin ( 45 ) + sin ( 75 )] = 1 .  01

0

6

For 10◦ integration step size and evaluation on right side of interval the integral was 1.084 and for evaluation in middle of interval the integral was 1.0013 

A.2  Chapter  2 

2.1  R = 15,255 ft, H = 1800 ft 

2.2  R = 5.80 miles 

2.3  The thrust is 1,164 pounds and the drag force is 19.8 pounds. 

2.4  The equations of motion are 

 y =  v 0 sin (θ)t −  t 2

2 g 0

 x =  v 0 cos (θ) t
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and the trajectory is 

 y = tan (θ) x −

 g 0

 x 2

2 v 20 cos2  θ

2.9 



1

1

1

 C 20 =

 (−  x 2 −

 y 2 +  z 2 ) ρ(r, λ, φ) dV

 Ma 2

2

2

 V



1

 C 21 =

 xz ρ(r, λ, φ) dV

 Ma 2

 V



1

 S 21 =

 yz ρ(r, λ, φ) dV

(1.1) 

 Ma 2

 V



1

 C 22 =

 (x 2 −  y 2 ) ρ(r, λ, φ) dV

4 Ma 2

 V



1

 S 22 =

 xy ρ(r, λ, φ) dV

2 Ma 2

 V

A.3  Chapter  3 

3.1  For  F  negative, sinh (F ) + cosh (F ) =  eF  which  for  large  negative   F  is very  small. Since  eF  is  obtained  by  differencing  two  very  large  numbers ( sinh (F ),  cosh (F )) their is a loss of significance. 





 GM

3.2  sin  γ =

 e  sin  (η)

 vh

3.3  The first spacecraft had an orbit insertion maneuver of 1,021 m/s and the second spacecraft had an orbit insertion maneuver of 975 m/s followed by a maneuver at apoapsis of 30 m/s for at total of 1,005 m/s. The second strategy is more fuel efficient. 

3.7  1.638 years 

A.4  Chapter  4 



4.1  The radius of the can is  h =  V  and the height is twice the radius. 

2 π

4.2  1/3 

4.3  The relevant term that determines the sign of the Hessian is given by 16 a 2 U 2 −

16 b 2 U 1. Since  a  is greater than  b, the Hessian is positive and the solution is a minimum. 
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4.4  The critical plane is defined in the velocity space. A maneuver performed in this plane will acquire the target and minimize  V . 

4.6  In computing the partial derivitives of  v  with respect to  γ , the partial of  ra  with resect to  γ  is zero. The terms that multiply  ∂v/∂γ  are factored out and divided to form a fraction. The denominator may be discarded and the numerator is zero only if  γ  is zero. 

A.5  Chapter  5 



52 

5.1   p = 4

= 1 .  539 × 10−6

2
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5.2   p =

= 3 .  265 × 10 −14

5

5.3  Caesar’s box is in a narrow annulus of width 3 yards where the PDF is constant. 

⎡

⎤

50

⎢ −98 .  52

−101 .  52 ⎥

3

 σ =

 p = ⎢

⎥

= 4 .  96×10−5

1 .  17741

⎣  e  2 σ 2 −  e  2 σ 2

⎦ 200 π

5.4  The probability of hitting Caesar’s box, if that is the target, is approximately 

−32

 p = 1 −  e  2 σ  2 = 2 .  49 × 10−3

5.5  The binomial coefficients for  m = 2 are obtained from ( 1 +  x)m = 1 + 2 x +  x 2

Since each coefficient for the next row of Pascal’s triangle is the sum of the two coefficients in the row above,  B(m + 1 , k + 1 ) =  B(m, k) +  B(m, k + 1 )  and the solution is 

 B(m, k) =

 m! 

 (m −  k)!  k! 

where 





 m

 m + 1 =  m +  m m −  k

 k

 k + 1

 k

 k

 k + 1

after factoring out B(m,k). The demonstration is complete if  B( 2 , k) = 1 ,  2 ,  1

which it does. 
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A.6  Chapter  6 

6.1  The rows of the matrix are   A(i, j).  The  measurement  covariance  (Pm), the inverse of the a prior matrix  (P 0 )  and the estimated parameter a prior are set equal to zero. The number of measurements, which are assumed to be exact, is equal to the dimension of the matrix. Both the Kalman gain and the weighted least square gain give  A(i, j)−1. 

6.2  Venus  is  the  best  guess  since  the  maximum  acceleration  from  Mars  would be  too  small.  In  the  real  world,  it  was  Mars.  An  early  version  of  an  orbit determination program left Mars out of the Equations of motion because the acceleration was believed to be too small to be detected. The actual ramp in the Doppler data was smaller than postulated for this problem and Venus was included in the equations of motion. 

6.3   E(X 2 XT 1  ) =  K E(Z 1 ,  2 XT 1  ) +  (I −  KA) E(X 1 XT 1  ) Since the data taken after  t 1 is uncorrelated with  X 1,  E(Z 1 ,  2 XT 1  ) = 0 and P 1 ,  2 =  P 2

6.4  Draw a sample from  P 1 −  P 2 =  KAP 1 and add it to  X 1. 

A.7  Chapter  9 

9.1  33.3 m/s 

9.4   Vx  = −3 .  858 m / s ,  Vy  = 0 ,  Vz  = 3 .  858 m / s 9.5   rp = 3 .  04 km. The spacecraft crashes into Eros. 
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