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Preface

Greetings. This book is our attempt at gaining membership to the Bayesian Conspiracy.
You may ask, “What is the Bayesian Conspiracy?” The answer is provided by Eliezer
Yudkowsky (http://yudkowsky.net/rational/bayes): “The Bayesian Conspiracy is a multi
national, interdisciplinary, and shadowy group of scientists that controls publication,
grants, tenure, and the illicit traffic in grad students. The best way to be accepted into the
Bayesian Conspiracy is to join the Campus Crusade for Bayes in high school or college, and
gradually work your way up to the inner circles. It is rumored that at the upper levels of the
Bayesian Conspiracy exist nine silent figures known only as the Bayes Council.”
Ha ha! Bayes’ Theorem, also called Bayes’ Rule, was published posthumously in 1763 in

the Philosophical Transactions of the Royal Society. In The Theory That Would Not Die,
author Sharon BertschMcGrayne aptly describes how “Bayes’ rule cracked the enigma code,
hunted down Russian submarines, and emerged triumphant from two centuries of contro-
versy.” In short, Bayes’ Rule has vast application, and the number of papers and books that
employ it is growing exponentially.
Inspired by the knowledge that a Bayes Council actually exists, we began our journey by

enrolling in a 5-day ‘introductory’ workshop on Bayesian statistics a few years ago. On Day
1, we were introduced to a variety of Bayesian models, and, on Day 2, we sheepishly had to
inquire what Bayes’ Theorem was and what it had to do with MCMC. In other words, the
material was way over our heads. With tails between our legs, we slunk back home and
began trying to sort out the many different uses of Bayes’ Theorem.
As we readmore andmore about Bayes’ Theorem, we started noting our own questions as

they arose and began narrating the answers as they became more clear. The result is this
strange book, cast as a series of questions and answers between reader and author. In this
prose, we make heavy use of online resources such as the Oxford Dictionary of Statistics
(Upton and Cook, 2014), Wolfram Mathematics, and the Online Statistics Education: An
Interactive Multimedia Course for Study (Rice University, University of Houston Clear
Lake, and Tufts University). We also provide friendly links to online encyclopedias such
as Wikipedia and Encyclopedia Britannica. Although these should not be considered
definitive, original works, we have included the links to provide readers with a readily
accessible source of information and are grateful to the many authors who have contrib-
uted entries.
We are not experts in Bayesian statistics andmake no claim as such. Therese Donovan is a

biologist for the U. S. Geological Survey Vermont Cooperative Fish and Wildlife Research
Unit, and Ruth Mickey is a statistician in the Department of Mathematics and Statistics at
the University of Vermont. We were raised on a healthy dose of “frequentist” and max-
imum likelihood methods but have begun only recently to explore Bayesian methods. We
have intentionally avoided controversial topics and comparisons between Bayesian and
frequentist approaches and encourage the reader to dig deeper—much deeper—than we
have here. Fortunately, a great number of experts have paved the way, andwe relied heavily
on the following books while writing our own:

• N. T. Hobbs and M. B. Hooten. Bayesian Models: A Statistical Primer for Ecologists.
Princeton University Press, 2015.

http://yudkowsky.net/rational/bayes


• J. Kruschke. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan.
Elsevier, 2015.

• A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis. Chapman &
Hall, 2004.

• J. V. Stone. Bayes’ Rule: a Tutorial Introduction to Bayesian Analysis. Sebtel Press, 2014.
• H. Raiffa and R. Schlaifer. Applied Statistical Decision Theory. Division of Research,

Graduate School of Business Administration, Harvard University, 1961.
• P. Goodwin and G. Wright. Decision Analysis for Management Judgment. JohnWiley &

Sons, 2014.

Although we relied on these sources, any mistakes of interpretation are our own.
Our hope is that Bayesian Statistics for Beginners is a “quick read” for the uninitiated and

that, in one week or less, we could find a reader happily ensconced in a book written by one
of the experts. Our goal in writing the book was to keep Bayes’ Theorem front and center in
each chapter for a beginning audience. As a result, Bayes’ Theoremmakes an appearance in
every chapter. We frequently bring back past examples and explain what we did “back
then,” allowing the reader to slowly broaden their understanding and sort out what has
been learned in order to relate it to newmaterial. For the most part, our reviewers liked this
approach. However, if this is annoying to you, you can skim over the repeated portions.

If this book is useful to you, it is due in no small part to a team of stellar reviewers.We owe
a great deal of gratitude to George Allez, Cathleen Balantic, Barry Hall, Mevin Hooten, Peter
Jones, Clint Moore, Ben Staton, Sheila Weaver, and Robin White. Their enthusiasm,
questions, and comments have improved the narrative immensely. We offer a heartfelt
thank you to Gary Bishop, Renee Westland, Melissa Murphy, Kevin Roark, John Bell, and
Stuart Geman for providing pictures for this book.

Therese Donovan
Ruth Mickey

October 2018
Burlington, VT
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SECTION 1

Basics of Probability

Overview

And so we begin. This first section deals with basic concepts in probability theory, and
consists of two chapters.

• In Chapter 1, the concept of probability is introduced. Using an example, the chapter
focuses on a single characteristic and introduces basic vocabulary associated with
probability.

• Chapter 2 introduces additional terms and concepts used in the study of probability. The
chapter focuses on two characteristics observed at the same time, and introduces the
important concepts of joint probability, marginal probability, and conditional
probability.

After covering these basics, your Bayesian journey will begin.





CHAPTER 1

Introduction to Probability

In this chapter, we’ll introduce some basic terms used in the study of probability. By the end
of this chapter, you will be able to define the following:

• Sample space
• Outcome
• Discrete outcome
• Event
• Probability
• Probability distribution
• Uniform distribution
• Trial
• Empirical distribution
• Law of Large Numbers

To begin, let’s answer a few questions . . .

What is probability?

Answer: The best way to introduce probability is to discuss an example. Imagine you’re a
gambler, and you can win $1,000,000 if a single roll of a die turns up four. You get only one
roll, and the entry fee to play this game is $10,000. If you win, you’re a millionaire. If you
lose, you’re out ten grand.

Should you play?

Answer: It’s up to you!
If the roll always comes up a four, you should play! If it never comes up four, you’d be

foolish to play! Thus, it’s helpful to know something about the die. Is it fair? That is, is each
face equally likely to turn up? How likely are you to roll a four?
This type of question was considered by premier mathematicians Gerolamo Cardano

(1501–1576), Pierre de Fermat (1601–1665), Blaise Pascal (1623–1662), and others. These
brilliant minds created a branch of mathematics known as probability theory.
The rolling of a die is an example of a randomprocess: the face that comes up is subject

to chance. In probability, our goal is to quantify a random process, such as rolling a die.
That is, we want to assign a number to it. If we roll a die, there are 6 possible outcomes
(possible results), namely, one, two, three, four, five, or six. The set of all possible outcomes
is called the sample space.

Bayesian Statistics for Beginners: A Step-by-Step Approach. Therese M. Donovan and Ruth M. Mickey,
Oxford University Press (2019). © Ruth M. Mickey 2019.
DOI: 10.1093/oso/9780198841296.001.0001



Let’s call the number of possible outcomes N, so N ¼ 6. These outcomes are discrete,
because each result can take on only one of these values. Formally, the word “discrete” is
defined as “individually separate and distinct.” In addition, in this example, there is a
finite number of possible outcomes, which means “there are limits or bounds.” In other
words, the number of possible outcomes is not infinite.

If we believe that each and every outcome is just as likely to result as every other outcome
(i.e., the die is fair), then the probability of rolling a four is 1/N or 1/6. We can then say, “In
6 rolls of the die, we would expect 1 roll to result in a four,” and write that as Pr(four)¼ 1/6.

How can we get a good estimate of Pr(four) for this particular die?

Answer: You collect some data.
Before you hand over the $10,000 entry, you ask the gamemaster if you could run an

“experiment” and roll the die a few times before you make the decision to play. In this
experiment, which consists of tossing a die many times, your goal is to get a rough estimate
of the probability of rolling a four compared to what you expect. To your amazement, the
gamemaster complies.

You start with one roll, which represents a single “trial” of an experiment. Suppose you roll
a three and give the gamemaster a sneer. Table 1.1 shows you rolled 1 three, and 0 for the rest.

In this table, the column called Frequency gives the number of times each outcome was
observed. The column called Probability is the frequency divided by the sum of the
frequencies over all possible outcomes, a proportion. The probability of an event of four is
the frequency of the observed number of occurrences of four (which is 0) divided by the
total throws (which is 1). We can write this as:

PrðfourÞ ¼ jnumber of foursj
jtotal trialsj ¼ 0

1
¼ 0: ð1:1Þ

This can be read as, “The probability of a four is the number of “four” events divided by the
number of total trials.” Here, the vertical bars indicate a number rather than an absolute
value. This is a frequentist notion of probability, because we estimate Pr(four) by asking
“How frequently did we observe the outcome that interests us out of the total?”

Table 1.1

Outcome Frequency Probability

One 0 0

Two 0 0

Three 1 1

Four 0 0

Five 0 0

Six 0 0

Sum 1 1

Here, the notation Pr means “Probability,” and we will use this notation throughout
this book.

4 BAYESIAN STATISTICS FOR BEGINNERS



A probability distribution that is based on rawdata is called an empirical probability
distribution. Our empirical probability distribution so far looks like the one in Figure 1.1:

Is one roll good enough?

Answer: No.
By now, you should realize that one roll will never give us a good estimate of Pr(four).

(Sometimes, though, that’s all we have . . . we have only one Planet Earth, for example).
Next, you roll the die 9more times, and summarize the results of the 10 total rolls (i.e., 10

trials or 10 experiments) in Table 1.2. The number of fours is 2, which allows us to estimate
Pr(four) as 2/10, or 0.20 (see Figure 1.2).
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Two Three
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Four Five Six

Figure 1.1 Empirical probability distribution for
die outcomes, given 1 roll.

Table 1.2

Outcome Frequency Probability

One 0 0.0

Two 2 0.2

Three 5 0.5

Four 2 0.2

Five 0 0.0

Six 1 0.1

Sum 10 1.0
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Two Three
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Four Five Six

Figure 1.2 Empirical probability distribution for
die outcomes, given 10 rolls.
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What can you conclude from these results? The estimate of Pr(four) ¼ 0.2 seems to
indicate that the die may be in your favor! (Remember, you expect Pr(four) ¼ 0.1667 if
the die was fair). But $10,000 is a lot of money, and you decide that you should keep test
rolling until the gamemaster shouts “Enough!” Amazingly, you are able to squeeze in 500
rolls, and you obtain the results shown in Table 1.3.

The plot of the frequency results in Figure 1.3 is called a frequency histogram. Notice
that frequency, not probability, is on the y-axis. We see that a four was rolled 41 times.
Notice also that the sum of the frequencies is 500. The frequency distribution is an example
of an empirical distribution: It is constructed from raw data.

We can now estimate Pr(four) as 41/500¼ 0.082.We can calculate the probability estimates
for the other outcomes as well and then plot them as the probability distribution in Figure 1.4.

Table 1.3

Outcome Frequency Probability

One 88 0.176

Two 91 0.182

Three 94 0.188

Four 41 0.082

Five 99 0.198

Six 87 0.174

Sum 500 1.000
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Figure 1.3 Frequency distribution of 500 rolls.
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Figure 1.4 Empirical probability distribution for
500 rolls.
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According to the Law of Large Numbers in probability theory, the formula:

probability ¼ jnumber of observed outcomes of interestj
jtotal trialsj ð1:2Þ

yields an estimate that is closer and closer to the true probability as the number of trials
increases. In other words, your estimate of Pr(four) gets closer and closer to or approaches
the true probability when you use more trials (rolls) in your calculations.

What would we expect if the die were fair?

Table 1.4 lists the six possible outcomes, and the probability of each event (1/6 ¼ 0.167).
Notice that the sum of the probabilities across the events is 1.0.

Figure 1.5 shows exactly the same information as Table 1.4; both are examples of a
probability distribution. On the horizontal axis, we list each of the possible outcomes. On
the vertical axis is the probability. The height of each bar provides the probability of
observing each outcome. Since each outcome has an equal chance of being rolled, the
heights of the bars are all the same and show as 0.167, which is 1/N. Note that this is not an
empirical distribution, because we did not generate it from an experiment. Rather, it was
based on the assumption that all outcomes are equally likely.

Again, this is an example of a discrete uniform probability distribution: discrete
because there are a discrete number of separate and distinct outcomes; uniform because
each and every event has the same probability.

Table 1.4

Outcome Probability

One 0.167

Two 0.167

Three 0.167

Four 0.167

Five 0.167

Six 0.167

Sum 1
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Figure 1.5 Probability distribution for rolling a fair die.
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How would you change the table and probability distribution if the
die were loaded in favor of a four?

Answer: Your answer here!
There are many ways to do this. Suppose the probability of rolling a four is 0.4. Since all

the probabilities have to add up to 1.0, this leaves 0.6 to distribute among the remaining
five outcomes, or 0.12 for each (assuming these five are equally likely to turn up). If you roll
this die, it’s not a sure thing that you’ll end up with a four, but getting an outcome of four is
more likely than, say, getting a three (see Table 1.5).

The probabilities listed in the table sum to 1.0 just as before, as do the heights of the
corresponding blue bars in Figure 1.6.

What would the probability distribution be for the bet?

Answer: The bet is that if you roll a four, you win $1,000,000, and if you don’t roll a
four, you lose $10,000. It would be useful to group our 6 possible outcomes into one of
two events. As the Oxford Dictionary of Statistics explains, “An event is a particular
collection of outcomes, and is a subset of the sample space.” Probabilities are assigned
to events.

Our two events are E1 ¼ {four} and E2 ¼ {one, two, three, five, six}. The brackets { }
indicate the set of outcomes that belong in each event. The first event contains one

Table 1.5

Outcome Probability

One 0.12

Two 0.12

Three 0.12

Four 0.4

Five 0.12

Six 0.12

Sum 1

One
0.0

0.2

0.4

0.6

Pr
ob

ab
ili

ty

0.8

1.0

Two Three
Outcome

Four Five Six

Figure 1.6 Probability distribution for rolling a
loaded die.
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outcome, while the second event consists of five possible outcomes. Thus, in probability
theory, outcomes can be grouped into new events at will. We started out by considering six
outcomes, and now we have collapsed those into two events.
Now we assign a probability to each event. We know that Pr(four) ¼ 0.4. What is the

probability of NOT rolling a four? That is the probability of rolling one OR two OR three OR
five OR six. Note that these events cannot occur simultaneously. Thus, we can write
Pr(�four) as the SUM of the probabilities of events one, two, three, five, and six (which is
0.12þ 0.12þ 0.12þ 0.12þ 0.12¼ 0.6). Incidentally, the� signmeans “complement of.” If
A is an event, �A is its complement (i.e., everything but A). This is sometimes written as Ac.
The wordOR is a tip that youADD the individual probabilities together to get your answer
as long as the events are mutually exclusive (i.e., cannot occur at the same time).
This is an example of a fundamental rule in probability theory: if two or more events are

mutually exclusive, then the probability of any occurring is the sum of the probabilities of
each occurring. Because the different outcomes of each roll (i.e., rolling a one, two, three,
five, or six) aremutually exclusive, the probability of getting any outcome other than four is
the sum of the probability of each one occurring (see Table 1.6).

Note that the probabilities of these two possible events sum to 1.0. Because of that, if we
know that Pr(four) is 0.4, we can quickly compute the Pr(�four) as 1 � 0.4 ¼ 0.6 and save a
few mental calculations.
The probability distribution looks like the one shown in Figure 1.7:

Table 1.6

Event Probability

Four 0.4

Not Four 0.6

Sum 1

Four Not Four
Event

0.0

0.2

0.4

0.6

0.8

1.0
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ob

ab
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ty

Figure 1.7 Probability distribution for rolling a four
or not.

Remember: The SUM of the probabilities across all the different outcomesMUST EQUAL
1! In the discrete probability distributions above, this means that the heights of the bars
summed across all discrete outcomes (i.e., all bars) totals 1.
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Do you still want to play? At the end of the book, we will introduce decision trees, an
analytical framework that employs Bayes’ Theorem to aid in decision-making. But that
chapter is a long way away.

Do Bayesians think of probability as long-run averages?

Answer: We’re a few chapters away from hitting on this very important topic. You’ll see
that Bayesians think of probability in a way that allows the testing of theories and hypoth-
eses. But you have to walk before you run. What you need now is to continue learning the
basic vocabulary associated with probability theory.

What’s next?

Answer: In Chapter 2, we’ll expand our discussion of probability. See you there.

10 BAYESIAN STATISTICS FOR BEGINNERS



CHAPTER 2

Joint, Marginal, and Conditional
Probability

Now that you’ve had a short introduction to probability, it’s time to build on our
probability vocabulary. By the end of this chapter, you will understand the
following terms:

• Venn diagram
• Marginal probability
• Joint probability
• Independent events
• Dependent events
• Conditional probability

Let’s start with a few questions.

What is an eyeball event?

A gala that celebrates the sense of vision? Nope. The eyeball event in this chapter
refers to whether a person is right-eyed dominant or left-eyed dominant. You already
know if you are left- or right-handed, but did you know that you are also left- or right-
eyed? Here’s how to tell (http://www.wikihow.com/Determine-Your-Dominant-Eye; see
Figure 2.1):

Figure 2.1 Determining your dominant eye.

Bayesian Statistics for Beginners: A Step-by-Step Approach. Therese M. Donovan and Ruth M. Mickey,
Oxford University Press (2019). © Ruth M. Mickey 2019.
DOI: 10.1093/oso/9780198841296.001.0001
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1. Stretch your arms out in front of you and create a hole with your hands by joining your
finger tips to make a triangular opening, as shown.

2. Find a small object nearby and align your hands with it so that you can see it in the
triangular hole. Make sure you are looking straight at the object through your hands—
cocking your head to either side, even slightly, can affect your results. Be sure to keep
both eyes open!

3. Slowly move your hands toward your face to draw your viewing window toward you. As
you do so, keep your head perfectly still, but keep the object lined up in the hole between
your hands. Don’t lose sight of it.

4. Draw your hands in until they touch your face—your hands should end up in front of
your dominant eye. For example, if you find that your hands end up so you are looking
through with your right eye, that eye is dominant.

The eyeball characteristic has two discrete outcomes: lefty (for left-eyed dominant people)
or righty (for right-eyed dominant people). Because there are only two outcomes, we can
call them events if we want.

Let us suppose that you ask 100 people if they are “lefties” or “righties.” In this case,
the 100 people represent our “universe” of interest, which we designate with the letter
U. The total number of elements (individuals) in U is written |U |. (Once again, the
vertical bars here simply indicate that U is a number; it doesn’t mean the absolute value
of U.)

Here, there are only two possible events: “lefty” and “righty.” Together, they make up a
set of possible outcomes. Let A be the event “left-eye dominant,” and �A be the event
“right-eye dominant.” Here, the tilde means “complement of,” and here it can be inter-
preted as “everything but A.” Notice that these two events are mutually exclusive: you
cannot be both a “lefty” and a “righty.” The events are also “exhaustive” because you must
be either a lefty or righty.

Suppose that 70 of 100 people are lefties. These people are a subset of the
larger population. The number of people in event A can be written |A |, and in this
example |A | ¼ 70. Note that |A | must be less than or equal to |A |, which is 100.
Remember that we use the vertical bars here to highlight that we are talking about a
number.

Since there areonly twopossibilities for eyedominance type, thismeans that 100� 70¼ 30
people are righties. The number of people in event �A can be written |�A|, and in this
example |�A | ¼ 30. Note that |�A | must be less than or equal to |U |.

Our universe can be summarized as shown in Table 2.1.

We can illustrate this example in a diagrammatic form, as shown in Figure 2.2. Here, our
universe of 100 people is captured inside a box.

Table 2.1

Event Frequency

Lefty (A) | A | ¼ 70
Righty (�A) | �A | ¼ 30

Universe (U) | U | ¼ 100

12 BAYESIAN STATISTICS FOR BEGINNERS



This is a Venn diagram, which shows A and �A. The universe U is 100 people and is
representedby the entire box.We then allocate those100 individuals intoA and�A. Theblue
circle represents A; lefties stand inside this circle; righties stand outside the circle, but inside
the box. You can see that A consists of 70 elements, and�A consists of 30 elements.

Why is it called a Venn diagram?

Answer: Venn diagrams are named for John Venn (see Figure 2.3), who wrote his seminal
article in 1880.

Lefty (A)

70

Righty (∼A) 30

Figure 2.2

Figure 2.3 John Venn.
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According to the MacTutor History of Mathematics Archive, Venn’s son described him as
“of spare build, he was throughout his life a fine walker and mountain climber, a keen
botanist, and an excellent talker and linguist.”

What is the probability that a person in universe U is in group A?

Answer:Wewrite this as Pr(A). Remember thatPr stands forprobability, so Pr(A) means
the probability that a person is in group A and therefore is a lefty. We can determine the
probability that a person is in group A as:

PrðAÞ ¼ jA j
jU j ¼

70
100

¼ 0:7: ð2:1Þ

Probability is determined as the number of persons in group A out of the total. The
probability that the randomly selected person is in group A is 0.7.

What about people who are not in group A?

Answer: There are 30 of them (100 � 70 ¼ 30), and they are righties.

Prð� AÞ ¼ j�Aj
jU j ¼ 30

100
¼ 0:3: ð2:2Þ

With only two outcomes for the eyeball event, our notation focuses on the probability
of being in a given group (A ¼ lefties) and the probability of not being in the given group
(�A ¼ righties).

I’m sick of eyeballs. Can we consider another characteristic?

Answer: Yes, of course. Let’s probe these same 100 people and find out other details about
their anatomy. Suppose we are curious about the presence or absence of Morton’s toe.
People with “Morton’s toe” have a large second metatarsal, longer in fact than the first
metatarsal (which is also known the big toe or hallux toe). Wikipedia articles suggest that
this is a normal variation of foot shape in humans and that less than 20% of the human
population have this condition. Now we are considering a second characteristic for our
population, namely toe type.

Let’s let B designate the event “Morton’s toe.” Let the number of people with Morton’s
toe be written as |B |. Let �B designate the event “common toe.” Suppose 15 of the 100
people have Morton’s toe. This means |B | ¼ 15, and |�B | ¼ 85. The data are shown in
Table 2.2, and the Venn diagram is shown in Figure 2.4.

Table 2.2

Event Frequency

Morton’s toe (B) |B | ¼ 15
Common toe (�B) |�B | ¼ 85

Universe (U) |U | ¼ 100

14 BAYESIAN STATISTICS FOR BEGINNERS



These events can be represented in a Venn diagram, where a box holds our universe of
100 people.
Note the size of this red circle is smaller than the previous example because the number of

individuals with Morton’s toe is much smaller.

Can we look at both characteristics simultaneously?

Answer: You bet. With two characteristics, each with two outcomes, we have four possible
combinations:

1. Lefty AND Morton’s toe, which we write as A \ B.
2. Lefty AND common toe, which we write as A\�B.
3. Righty AND Morton’s toe, which we write as �A \ B.
4. Righty AND common toe, which we write as �A \�B.

The upside-down \ is the mathematical symbol for intersection. Here, you can read it as
“BOTH” or “AND.”

The number of individuals in A \ B can be written jA \ B j, where the bars indicate a
number (not absolute value). Let’s suppose we record the frequency of individuals in each
of the four combinations (see Table 2.3).

Let’s study this table carefully.
Notice that this table has four “quadrants,” so to speak. Our actual values are stored in the

upper left quadrant, shaded dark blue. The upper right quadrant (shaded light blue) sums
the number of people with and without Morton’s toe. The lower left quadrant (shaded light

Common toe (∼B) 85

Morton’s toe (B)
15

Figure 2.4

Table 2.3

Lefty (A) Righty (�A) Sum

Morton’s toe (B) 0 15 15
Common toe (�B) 70 15 85

Sum 70 30 100
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blue) sums the number of people that are lefties and righties. The lower right (white)
quadrant gives the grand total, or |U |.

Now let’s plot the results in the same Venn diagram (see Figure 2.5).

The updated Venn diagram shows the blue circle with 70 lefties, the red circle with
15 people with Morton’s toe, and no overlap between the two. This means jA \ B j ¼ 0,
jA j ¼ jA \ �B j ¼ 70, and jB j ¼ j � A \ B j ¼ 15. By subtraction, we know the number of
individuals that are not in A OR B j �A \ �B j is 15 because we need to account for all 100
individuals somewhere in the diagram.

Is it possible to have Morton’s toe AND be a lefty?

Answer: For our universe, no. If you are a person with Morton’s toe, you are standing in
the red circle and cannot also be standing in the blue circle. So these two events
(Morton’s toe and lefties) are mutually exclusive because they do not occur at the
same time.

Is it possible NOT to have Morton’s toe if you are a lefty?

Answer: You bet. All 70 lefties do not have Morton’s toe. These two events are non-
mutually exclusive.

What if five lefties also have Morton’s toe?

Answer: In this case, we need to adjust the Venn diagram to show that five of the people
that are lefties also have Morton’s toe. These individuals are represented as the intersection
between the two events (see Figure 2.6). Note that the total number of individuals is still
100; we need to account for everyone!

Morton’s toe (B)
15

Righty with common toe (∼A and ∼B): 15

70

Lefty (A)

Figure 2.5
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We’ll run with this example for the rest of the chapter.

This Venn diagram is pretty accurate (except for the size of the box overall). There are
70 people in A, 15 people in B, and 5 people in A \ B. The blue circle contains 70 elements
in total, and 5 of those elements also occur in B. The red circle contains 15 elements (so is a
lot smaller than the blue circle), and 5 of these are also in A. So 5/15 (33%) of the red circle
overlaps with the blue circle, and 5/70 (7%) of the blue circle overlaps with the red circle.

Of the four events (A, �A, B, and �B), which are not
mutually exclusive?

Answer:

• A and B are not mutually exclusive (a lefty can have Morton’s toe).
• A and �B are not mutually exclusive (a lefty can have a common toe).
• �A and B are not mutually exclusive (a righty can have Morton’s toe).
• �A and �B are not mutually exclusive (a righty can have a common toe).

In Venn diagrams, if two events overlap, they are not mutually exclusive.

Are any events mutually exclusive?

Answer: If we focus on each circle, A and �A are mutually exclusive (a person cannot be a
lefty and righty). B and�B are mutually exclusive (a person cannot haveMorton’s toe and a
common toe). Apologies for the trick question!

If you were one of the lucky 100 people included in the universe,
where would you fall in this diagram?

Answer: Your answer here!
It’s handy to look at the numbers in a table format too. Table 2.4 shows the same values as

Figure 2.6.

Morton’s toe (B)Morton’s toe (B)

Righty with common toe (∼A and ∼B): 20

5 1065

Lefty (A)

Figure 2.6
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This is an important table to study. Once again, notice that there are four quadrants or
sections in this table. In the upper left quadrant, the first two columns represent the two
possible events for eyeball dominance: lefty and righty. The first two rows represent the two
possible events for toe type: Morton’s toe and common toe.

The upper left entry indicates that 5 people are members of both A and B.

• Look for the entry that indicates that 20 people are�A \�B, that is, both notA and not B.
• Look for the entry that indicates that 65 people are A \�B.
• Look for the entry that indicates that 10 people are �A \ B.

The lower left and upper right quadrants of our table are called the margins of the table.
They are shaded light blue. Note that the total number of individuals in A (regardless of B)
is 70, and the total number of individuals in �A is 30. The total number of individuals in B
(regardless of A) is 15 and the total number of individuals�B is 85. Any way you slice it, the
grand total must equal 100 (the lower right quadrant).

What does this have to do with probability?

Answer: Well, if you are interested in determining the probability that an individual
belongs to any of these four groups, you could use your universe of 100 individuals to do
the calculation. Do you remember the frequentist way to calculate probability? We
learned about that in Chapter 1.

Pr ¼ jnumber of observed outcomes of interestj
jU j : ð2:3Þ

Our total universe in this case is the 100 individuals. To get the probability that a person
selected at random would belong to a particular event, we simply divide the entire table
above by our total, which is 100, and we get the results shown in Table 2.5.

We’ve just converted the raw numbers to probabilities by dividing the frequency table by
the grand total.

Table 2.5

Lefty (A) Righty (�A) Sum

Morton’s toe (B) 0.05 0.1 0.15
Common toe (�B) 0.65 0.2 0.85

Sum 0.7 0.3 1

Table 2.4

Lefty (A) Righty (�A) Sum

Morton’s toe (B) 5 10 15
Common toe (�B) 65 20 85

Sum 70 30 100
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Let’s walk through one calculation. Suppose we want to know the probability that an
individual is a lefty AND has Morton’s toe. The number of individuals in A and B is
written jA \ Bj and the probability that an individual is a lefty with Morton’s toe is
written:

PrðA \ BÞ ¼ jA \ Bj
jU j ¼ 5

100
¼ 0:05: ð2:4Þ

This is officially called the joint probability and is the upper left entry in our table. The
Oxford Dictionary of Statistics states that the “joint probability of a set of events is the
probability that all occur simultaneously.” Joint probabilities are also called conjoint
probabilities. Incidentally, a table that lists joint probabilities such as the one above is
sometimes referred to as a conjoint table.

When you hear the word joint, you should think of the word AND and realize that you
are considering (and quantifying) more than one characteristic of the population. In this
case, it indicates that someone is in A AND B. This is written as:

PrðA \ BÞ : : : or; equivalently; : : : PrðB \ AÞ: ð2:5Þ

What is the probability that a person selected at random is a righty
and has Morton’s toe?

Answer: This is equivalent to asking, what is the joint probability that a person is
right-eye dominant AND has Morton’s toe? See if you can find this entry in Table 2.5. The
answer is 0.1.
In addition to the joint probabilities, the table also provides themarginal probabilities,

which look at the probability of A or �A (regardless of B) and the probability of B or �B
(regardless of A).

What does the word “marginal” mean?

Answer: The wordmarginal in the dictionary is defined as “pertaining to themargins; or
situated on the border or edge.” In our table, the marginal probabilities are just the
probabilities for one characteristic of interest (e.g., A and �A) regardless of other character-
istics that might be listed in the table.
Let’s now label each cell in our conjoint table by its probability type (see Table 2.6).

Note that this differs from our die rolling exercise in Chapter 1, where you were unsure
what the probability was and had to repeatedly roll a die to estimate it. By the Law of Large
Numbers, the more trials you have, the more you zero in on the actual probability. In this
case, however, we are given the number of people in each category, so the calculation is
straightforward. These 100 people are the only people of interest. They represent our
universe of interest; we are not using them to sample a larger group. If you didn’t know the
make-up of the universe, you could randomly select one person out of the universe over
and over again to get the probabilities, where all persons are equally likely to be selected.
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Suppose you know only the following facts: the marginal probability of being a lefty is
0.7, the marginal probability of having Morton’s toe is 0.15, and the joint probability of
being a lefty with Morton’s toe is 0.05. Also suppose that you haven’t looked at
Table 2.6!

Can you fill in the empty cells in Table 2.7?

Take out some scratch paper and a pencil. You can do it! Here are some hints:

• the lower right hand quadrant must equal 1.00;
• for any given characteristic, the sum of the two marginal probabilities must equal 1.00.

Answer: Because the marginal probabilities for eyeballs must sum to 1.00, and the mar-
ginal probabilities for toes must sum to 1.00 (because they deal with mutually exclusive
events), we can fill in the missing marginal probabilities.

The marginal probability of a lefty, Pr(A), is 0.7, so the marginal of a righty, Pr(�A), must
be 1.00 � 0.7 ¼ 0.3.
The marginal probability of having Morton’s toe, Pr(B), is 0.15, so the marginal of Pr(�B)
must be 1.00 � 0.15 ¼ 0.85.

So far, so good. Once we know the marginals, we can calculate the joint probabilities in
the upper left quadrant (see Table 2.8). For example:

• if the marginal Pr(A) ¼ 0.7, then we know that PrðA \ �BÞ ¼ 0.7 � 0.05 ¼ 0.65;
• if the marginal Pr(B) ¼ 0.15, then we know that Prð�A \ BÞ ¼ 0.15 � 0.05 ¼ 0.1;
• if the marginal Pr(�B) ¼ 0.3, then we know that Prð�A \�BÞ ¼ 0.3 � 0.1 ¼ 0.2.

Table 2.6

Lefty (A) Righty (�A) Sum

Morton’s toe (B) Joint Joint Marginal
Common toe (�B) Joint Joint Marginal

Sum Marginal Marginal Total

Table 2.7

Lefty (A) Righty (�A) Sum

Morton’s toe (B) 0.05 ? 0.15
Common toe (�B) ? ? ?

Sum 0.7 ? ?

Table 2.8

Lefty (A) Righty (�A) Sum

Morton’s toe (B) 0.05 0.1 0.15

Common toe (�B) 0.65 0.2 0.85

Sum 0.7 0.3 1
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Quickly: What is the marginal probability of having Morton’s
toe with this conjoint table?

Answer: The marginal probability of having Morton’s toe is written:

PrðBÞ ¼ 0:15 ð2:6Þ

Can you express the marginal probability of having Morton’s
toe as the sum of joint probabilities?

Answer: Don’t cheat now . . . try to express Pr(B) as the sum of joint probabilities before
reading on! This step is essential for understanding Bayesian inference in future chapters!
How did you do?
Hint 1: We can decompose the total, 0.15, into its two pieces: 0.05 þ 0.1.
The probability that a lefty has Morton’s toe can be written:

PrðA \ BÞ: ð2:7Þ
The probability that a righty has Morton’s toe can be written:

Prð�A \ BÞ: ð2:8Þ
If we put these two terms together, we can express the marginal probability of having
Morton’s toe as:

PrðBÞ ¼ PrðA \ BÞ þ Prð�A \ BÞ ð2:9Þ
PrðBÞ ¼ 0:05þ 0:1 ¼ 0:15: ð2:10Þ

Canwe look at this problem from the Venn diagramperspective again?

Of course! Here it is in Figure 2.7.

We are now poised to ask some very interesting questions.

Morton’s toeMorton’s toe

10565

Lefty

Righty with common toe (∼A and ∼B): 20

Figure 2.7
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If you have Morton’s toe, does that influence your probability of
being a lefty?

Answer: To answer this question, we must introduce the very important concept of
conditional probability.

What is conditional probability?

Answer: Conditional probability is the probability of an event given that another event
has occurred.
Conditional probability is written as:

• Pr(A |B), which is read “the probability of A, given that B occurs”; in our context, Pr(A |B)
is Pr(lefty | Morton’s toe);

• Pr(A |�B), which is read “the probability of A, given that �B occurs”; in our context,
Pr(A |�B) is Pr(lefty | common toe);

• Pr(B |�A), which is read “the probability of B, given that �A occurs”; in our context,
Pr(B |�A) is Pr(Morton’s toe | righty);

• etc.

The vertical bar means “given.”

How exactly do you calculate the probability that a person is a
lefty, given the person has Morton’s toe?

Answer: You use the following equation, which is a standard equation in probability
theory:

PrðAjBÞ ¼ PrðA \ BÞ
PrðBÞ : ð2:11Þ

It’s essential that you understand conditional probability, so let’s look at this equation from
a few different angles and, in the words of Kalid Azad, “let’s build some intuition” about
what it means.

Angle 1: The Venn diagram zoom
We already know that the numerator

PrðA \ BÞ ð2:12Þ
is the intersection in the Venn diagramwhere A and B overlap (the probability of a lefty and
Morton’s toe). This can be written as

PrðB \ AÞ ð2:13Þ
as well. The intersection of A and B is the intersection, no matter how you write it:

PrðA \ BÞ ¼ PrðB \ AÞ: ð2:14Þ
And we know that the denominator Pr(B) is the probability of Morton’s toe.
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In the Venn diagram, we can focus on the area of B and then look to see what fraction of
the total B is occupied by A. In this example, we restrict our attention to the 15 people with
Morton’s toe, and note that 5 of them are lefties. Therefore, about 5/15 or 1/3 of the red
circle is overlapped by the blue circle.

For the numbers given, we can see that Pr(A | B) ¼ 5/15 ¼ 1/3 ¼ 0.333 ¼ 33.3%. A general
rule can help with the visualization: zoom to the denominator space B, then determine
what fraction of this space is occupied by A. Similarly, Pr(�A | B) ¼ 10/15 ¼ 2/3 ¼ 0.667 ¼
66.7%. Note that these probabilities sum to 1.

Angle 2: The table approach
We can also tackle this problem using the raw data (see Table 2.9).

Here’s the key equation again:

PrðA jBÞ ¼ PrðA \ BÞ
PrðBÞ : ð2:15Þ

In words, this equation says, what fraction of B consists of A \ B?
From our table, we calculated PrðA \ BÞ as:

PrðA \ BÞ ¼ jA \ B j
jU j ¼ 5

100
: ð2:16Þ

And we know that Pr(B) is:

PrðBÞ ¼ jB j
jU j ¼

15
100

: ð2:17Þ

Now we can calculate the probability of A given B as:

PrðA jBÞ ¼
jA\B j
jU j
jB j
jU j

¼ jA \ Bj
jB j ¼ 5

15
¼ 0:333: ð2:18Þ

Morton’s toe (B)

∼A ∩ B: 10A ∩ B: 5

Figure 2.8

Table 2.9

Lefty (A) Righty (�A) Sum

Morton’s toe (B) 5 10 15
Common toe (�B) 65 20 85

Sum 70 30 100
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So if you have Morton’s toe, does that influence your probability
of being a lefty?

Answer: If you haveMorton’s toe, the probability of being a lefty is 0.33. If you don’t have
Morton’s toe, the probability of being a lefty is 65/85 ¼ 0.77 (you can confirm this too).

If Morton’s toe does not matter, these conditional probabilities should be equal to the
marginal probability, which is 0.7. This is clearly not the case here.

Does Pr(A | B) ¼ Pr(B | A)?

Answer: In other words, is the probability of a lefty, given Morton’s toe, the same thing as
the probability of Morton’s toe, given a lefty? Let’s try it!

PrðA jBÞ ¼
jA\B j
jU j
jB j
jU j

¼ jA \ Bj
jBj ¼ 5

15
¼ 0:333 ð2:19Þ

PrðB jAÞ ¼
jA\B j
jU j
jA j
jU j

¼ jA \ Bj
jA j ¼ 5

70
¼ 0:072: ð2:20Þ

So the answer is No! These two probabilities are very different things. The first asks what is
the probability of A given that event B happens (with a result of 0.333), while the second
asks what is the probability of B given that A happens (with a result of 0.072).

Can you calculate the conditional probability of being a lefty,
given you have Morton’s toe, from our conjoint table instead
of the raw numbers?

Answer: Yes . . . see if you can find it before looking at Table 2.10!

Remember, when dealing with conditional probabilities, the key word is “zoom.” Let’s
start with Pr(A | B):

PrðA jBÞ ¼ PrðA \ BÞ
PrðBÞ : ð2:21Þ

If B happens, we zoom to row 1 (Morton’s toe), and then ask what fraction of the people
with Morton’s toe are lefties:

PrðA jBÞ ¼ :05
0:15

¼ 0:333: ð2:22Þ

Table 2.10

Lefty (A) Righty (�A) Sum

Morton’s toe (B) 0.05 0.1 0.15
Common toe (�B) 0.65 0.2 0.85

Sum 0.7 0.3 1
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Can you calculate conditional probability of having Morton’s toe,
given you are a lefty, from our conjoint table?

Answer: If A happens, we zoom to the first column (lefties) and then ask what fraction of
the lefties have Morton’s toe:

PrðB jAÞ ¼ 0:05
0:7

¼ 0:072: ð2:23Þ

If we know the conditional and marginal probabilities, can we
calculate the joint probabilities?

Yes! Don’t forget this fundamental equation:

PrðA jBÞ ¼ PrðA \ BÞ
PrðBÞ : ð2:24Þ

You can rearrange this to your heart’s content. For this book, the most important
rearrangement is:

PrðA \ BÞ ¼ PrðA jBÞ ∗PrðBÞ: ð2:25Þ
This formula can be used to calculate joint probability, PrðA \ BÞ. Take some time to make
sure this equation sinks in and makes full sense to you.
As an aside, if the occurrence of one event does not change the probability of the

other occurring, the two events are said to be independent. This means that
PrðA jBÞ ¼ PrðAj �BÞ ¼ PrðAÞ.
So, when A and B are independent:

PrðA \ BÞ ¼ PrðAÞ ∗PrðBÞ: ð2:26Þ

Are Pr(A|B) and Pr(B|A) related in some way?

Answer: That, dear reader, is the subject of our next chapter, where we will derive Bayes’
Theorem. See you there!
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SECTION 2

Bayes’ Theorem and
Bayesian Inference

Overview

Welcome to Section 2! This section provides an introduction to Bayesian inference and
provides three (hopefully) fun examples to get your feet wet.
This section consists of 5 chapters.

• In Chapter 3, Bayes’ Theorem is introduced. The chapter shows its derivation and
describes two ways to think about it. First, Bayes’ Theorem describes the relationship
between two inverse conditional probabilities, P(A|B) and P(B|A). Second, Bayes’ The-
orem can be used to express how a degree of belief for a given hypothesis can be updated
in light of new evidence. This chapter focuses on the first interpretation.

• Chapter 4 introduces the concept of Bayesian inference. The chapter discusses the
scientificmethod, and illustrates how Bayes’ Theorem can be used for scientific inference.
Bayesian Inference is the use of Bayes’ Theorem to draw conclusions about a set of
mutually exclusive and exhaustive alternative hypotheses by linking prior knowledge
about each hypothesis with new data. The result is updated probabilities for each hy-
pothesis of interest. The ideas of prior probabilities, likelihood, and posterior probabilities
are introduced.

• Chapter 5, the “Author Problem,” provides a concrete example of Bayesian inference.
This chapter draws onwork by FrederickMosteller andDavidWallace, who used Bayesian
inference to assign authorship for unsigned Federalist Papers. The Federalist Papers were a
collection of papers known to be written during the American Revolution. However,
some papers were unsigned by the author, resulting in disputed authorship. The chapter
provides a very basic Bayesian analysis of the unsigned “Paper 54,” which was written by
Alexander Hamilton or JamesMadison. The example illustrates the principles of Bayesian
inference for two competing hypotheses.

• Chapter 6, the “Birthday Problem,” is intended to highlight the decisions the analyst
(you!) must make in setting the prior distribution. The “Birthday Problem” expands
consideration from two hypotheses to multiple, discrete hypotheses. In this chapter,
interest is in determining the posterior probability that a woman named Mary was born



in a given month; there are 12 alternative hypotheses. Furthermore, consideration is
given to assigning prior probabilities. The priors represent a priori probabilities that each
alternative hypothesis is correct, where a priori means “prior to data collection,” and can
be “informative” or “non-informative.” A Bayesian analysis cannot be conducted with-
out using a prior distribution. The concept of likelihood is explored more deeply.

• Chapter 7, the “Portrait Problem,” highlights the fact that multiple pieces of information
can be used in a Bayesian analysis. A key concept in this chapter is that multiple sources
of data can be combined in a Bayesian inference framework. Themain take home point is
that Bayesian analysis can be very, very flexible. A Bayesian analysis is possible as long as
the likelihood of observing the data under each hypothesis can be computed.

By the end of this section, you will have a good understanding of how Bayes’ Theorem is
related to the scientific method.
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CHAPTER 3

Bayes’ Theorem

In this chapter, we’re going to build on the content in Section 1 and derive Bayes’ Theorem.
This is what you’ve been waiting for!
By the end of this chapter, you will be able to derive Bayes’ Theorem and explain the

relationship between PrðA jBÞ and PrðB jAÞ.
Let’s begin with a few questions.

First, who is Bayes?

Answer: Thomas Bayes (1701–1761) was an English mathematician and Presbyterian
minister, known for having formulated a specific case of the theorem that bears his
name, Bayes’ Theorem.

Is that really a picture of Thomas Bayes in Figure 3.1?

Answer: It could be, but nobody is really sure!We’ll revisit this question in a future chapter.

Figure 3.1 “Thomas Bayes” (Photocopied
from Terrence O’Donnell)

Bayesian Statistics for Beginners: A Step-by-Step Approach. Therese M. Donovan and Ruth M. Mickey,
Oxford University Press (2019). © Ruth M. Mickey 2019.
DOI: 10.1093/oso/9780198841296.001.0001



Ok, what exactly is Bayes’ Theorem?

Answer : There are two ways to think about Bayes’ Theorem:

• It describes the relationship between PrðA jBÞ and PrðB jAÞ.
• It expresses how a subjective degree of belief should rationally change to account for

evidence.

The fact that there are two interpretations can be a source of confusion, but we hope youwill
fully appreciate the difference soon! In this chapter, we’ll derive Bayes’ Theorem and discuss
the first interpretation of the theorem: the relationship between PrðA jBÞ and PrðB jAÞ.

To help guide us, let’s return to our familiar Venn diagram and conjoint table of eye
dominance and toes. As before, our example will consider 100 total elements and four
events. Remember that our data consisted of 70 lefties and 15 Morties (people with
Morton’s toe). This time, however, we will simply refer to the eye dominance events (left-
eyed vs. right-eyed dominant) as A and �A, and the toe events (Morton’s toe vs. common
toe) as B and �B (see Figure 3.2). In this way, we can generalize the problem so that it
pertains to any two characteristics of interest.

These same numbers can be expressed in tabular form (Table 3.1), or as a conjoint table
(Table 3.2).

A

65 5 10
B

∼A and ∼B: 20

Figure 3.2

Table 3.1 Frequency table

A �A Sum

B 5 10 15
�B 65 20 85

Sum 70 30 100

Table 3.2 Conjoint probability table

A �A Sum

B 0.05 0.10 0.15
�B 0.65 0.20 0.85

Sum 0.70 0.30 1.00
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In Chapter 2, we learned that the conditional probability

PrðA jBÞ ¼ PrðA \ BÞ
PrðBÞ ð3:1Þ

can be expressed as:

PrðA \ BÞ ¼ PrðA jBÞ ∗PrðBÞ: ð3:2Þ

In words, the joint probability of A and B is the product of the conditional
probability of A, given B, and the marginal probability of B. For the conditional
probability equation (Equation 3.1), you visually ‘zoom’ to the denominator space, B, then
ask what fraction is also occupied by A.
And we also learned that this conditional probability equation:

PrðB jAÞ ¼ PrðB \ AÞ
PrðAÞ ð3:3Þ

can be expressed as:

PrðB \ AÞ ¼ PrðB jAÞ ∗PrðAÞ: ð3:4Þ

In words, the joint probability of B and A is the product of the conditional
probability of B, given A, and the marginal probability of A. Equation 3.3 indi-
cates that you “zoom” to the denominator space, A, and then ask what fraction is also
occupied by B to get the conditional probability of B, given A.
We additionally learned that PrðA jBÞ is not necessarily the same thing as PrðB jAÞ.
And yet, when you need to calculate the joint probability of B and A, we end up with the

same result, no matter which approach we use.
Let’s confirm this:

PrðA \ BÞ ¼ PrðA jBÞ ∗PrðBÞ ¼ :05
0:15

∗0:15 ¼ 0:05 ð3:5Þ

PrðB \ AÞ ¼ PrðB jAÞ ∗PrðAÞ ¼ :05
0:7

∗0:7 ¼ 0:05: ð3:6Þ

Equations 3.5 and 3.6 produce the same result. We should expect this, right? We are trying
to estimate the probability of A and B occurring together, which is where the blue and red
circles intersect. Although PrðA jBÞ is 0.05/0.15 ¼ 0.33, and PrðB jAÞ is 0.05/0.7 ¼ 0.071,
when we multiply each by their respective marginals, we end up with the same joint
probability estimate.

What does this have to do with Bayes’ Theorem?

We are just a couple of steps from Bayes’ Theorem. Are you ready?
We’ll start with a simple reminder that the joint probability of A and B can be viewed in

two ways:

PrðA \ BÞ ¼ PrðA jBÞ ∗PrðBÞ ð3:7Þ
PrðA \ BÞ ¼ PrðB jAÞ ∗PrðAÞ: ð3:8Þ
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Therefore:

PrðA jBÞ ∗PrðBÞ ¼ PrðB jAÞ ∗PrðAÞ: ð3:9Þ
And dividing both sides by PrðBÞ gives us Bayes’ Theorem!

PrðA jBÞ ¼ PrðB jAÞ ∗PrðAÞ
PrðBÞ : ð3:10Þ

As we’ll soon see, Bayes’ Theorem can be expressed in other ways as well, but in this
version it should be clear that Bayes’ Theorem is a way of calculating conditional
probability. Figure 3.3 provides a handy-dandy summary of the key concepts.

What is so remarkable about this?

Answer: Let’s review the definitions:

• Bayes’ Theorem describes the relationship between PrðA jBÞ and PrðB jAÞ, the focus of this
chapter.

• It expresses how a subjective degree of belief should rationally change to account for
evidence. We will discuss this in depth in Chapter 4.

In the first interpretation, Bayes’ Theorem is a fixed relationship between PrðAÞ, PrðBÞ,
PrðA jBÞ, and PrðB jAÞ. Suppose we give you a problem to solve, we provide you with one
type of conditional probability, PrðB jAÞ, and then we challenge you to find the reverse:
PrðA jBÞ. With Bayes’ Theorem, the calculations can be straightforward.

Let’s look at our conjoint table, Table 3.3, which gives the joint andmarginal probabilities.

–   Marginal probability of A: Pr(A)

–   Marginal probability of B: Pr(B)

–   Joint probability of A and B: Pr(A ∩ B)  = Pr(B ∩ A)

Pr(A ∩ B) = Pr(A | B) * Pr(B) Pr(A ∩ B) = Pr(B | A) * Pr(A)

Conditional probability of A, given B: Pr(A | B) =
Pr(A ∩ B)

Pr(B)

Pr(A | B) * Pr(B) = Pr (B | A) * Pr (A)

Pr(A | B) =
Pr(B | A) * Pr(A)

Pr(B)

Bayes' Theorem

A B

Conditional probability of B, given A: Pr(B | A) =
Pr(A∩B)

Pr(A)

Figure 3.3

Table 3.3

A �A Sum

B 0.05 0.10 0.15
�B 0.65 0.20 0.85

Sum 0.70 0.30 1.00
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If you have a member of B, what is the probability that he/she is also a
member of A?

Answer: This is a problem where Bayes’ Theorem could be used because you are asked to
find a conditional probability: what is the probability ofA given B. But we solved this easily
in Chapter 2 by just using the joint probability table: zoom to row B, and ask what
proportion of the total consists of A:

PrðA jBÞ ¼ 0:05
0:15

¼ 0:333: ð3:11Þ

This example demonstrates that even if you are given a Bayes’ type of problem, there are
still ways to solve the problem without really using the theorem. But, just to be complete,
let’s use Bayes’ Theorem to solve it:

PrðA jBÞ ¼ PrðB jAÞ ∗PrðAÞ
PrðBÞ ð3:12Þ

PrðA jBÞ ¼
0:05
0:7 ∗0:7
0:15

¼ 0:333: ð3:13Þ

It works!

So, when would we need to use Bayes’ Theorem?

Answer: You can use Bayes’ Theoremwhen you are provided with one kind of conditional
probability, like PrðA jBÞ, but are asked to find its inverse, PrðB jAÞ.
A notable example is posted at http://yudkowsky.net/rational/bayes. In that article,

Yudkowsky poses the following challenge:

We are given the probability that a woman with breast cancer will get a positive mammo-
gram. But we are asked for the reverse of this: what is the probability that a woman with a
positive mammogram has breast cancer?
Shall we give this a go? Let’s let A represent women with breast cancer, and �A represent

women without it. And let’s let B represent a positive test, and�B represent a negative test.
Bayes’ Theorem would allow us to estimate the probability of cancer, given a positive test
result, as:

PrðA jBÞ ¼ PrðB jAÞ ∗PrðAÞ
PrðBÞ : ð3:14Þ

So we know PrðAÞ ¼ 0.01, and we’re given PrðB jAÞ ¼ 0.8. To get our answer via Bayes’
Theorem, all we need is to determine the denominator, PrðBÞ.
Let’s set up a conjoint table to visualize the problem (see Table 3.4).

One percent of women at age forty who participate in routine screening have breast
cancer; 80% of women with breast cancer will have a positive mammogram (test), while
9.6% of women without breast cancer will also get a positive result. A woman in this age
group had a positive mammogram in a routine screening. What is the probability that
she actually has breast cancer?
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Our universe consists of women who participate in routine screenings for breast cancer.
From the problem, we know that PrðAÞ ¼ 0.01. This means that 1% of women have breast
cancer. It also means that Prð�AÞ ¼ 0.99, or 99% of women do not have breast cancer.
These are the marginal probabilities for the cancer characteristic (see Table 3.5).

We can make some headway with this knowledge of PrðAÞ. We’re also given the prob-
ability of a positive test result given cancer:

PrðB jAÞ ¼ 0:8: ð3:15Þ
We can use that information to compute the joint probability of A and B (cancer and
positive test). If the marginal probability of having cancer, PrðAÞ, is 0.01, then the prob-
ability of a positive test result and cancer is 0.008:

PrðB \ AÞ ¼ PrðB jAÞ ∗PrðAÞ ¼ 0:8 ∗0:01 ¼ 0:008: ð3:16Þ
Now, we can calculate the probability of a negative test result and cancer through simple
subtraction:

Prð�B \ AÞ ¼ 0:01−0:008 ¼ 0:002: ð3:17Þ
Let’s add these entries to our joint and marginal probability table as follows, filling in any
cells we can (as shown in Table 3.6).

Notice that PrðB jAÞ, which is 0.8, is nowhere in this table. But 0.008/0.01 ¼ 0.8.
So far, so good. Now we just need either the joint probability of �A \ B or the joint

probability of �A\ �B, and we can our find the last missing piece to solve the problem—

the marginal PrðBÞ.
In the problem statement, we’re given the probability of a positive test result given no

cancer:

PrðB j�AÞ ¼ 0:096: ð3:18Þ

Table 3.4 Breast Cancer Problem

A: Cancer �A: No Cancer Sum

B: Positive ? ? ?
�B: Negative ? ? ?

Sum ? ? ?

Table 3.5 Breast cancer problem

A: Cancer �A: No Cancer Sum

B: Positive ? ? ?
�B: Negative ? ? ?

Sum 0.01 0.99 1.00

Table 3.6 Breast Cancer Problem

A: Cancer �A: No Cancer Sum

B: Positive 0.008 ? ?
�B: Negative 0.002 ? ?

Sum 0.01 0.99 1.00
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This allows us to compute the joint probability that a woman has a positive test AND does
not have breast cancer:

Prð�A \ BÞ ¼ PrðB j�AÞ ∗Prð�AÞ ¼ 0:096 ∗0:99 ¼ 0:095: ð3:19Þ
The marginal probability of testing positive is then:

PrðBÞ ¼ PrðA \ BÞ þ Prð�A \ BÞ ¼ 0:008þ 0:095 ¼ 0:103: ð3:20Þ
We can also compute the joint probability that a woman has a negative test AND does

not have breast cancer as:

Prð�A \ BÞ ¼ 0:99−0:095 ¼ 0:895: ð3:21Þ
This allows us to fill in the rest of our table (as shown in Table 3.7).

It may be helpful to think in terms of counts instead of probabilities. Suppose there are
1000 women. We would expect that these women would be partitioned into the four
events, as shown in Table 3.8.

Our Venn diagramwould look roughly like the one in Figure 3.4, with the following results
(noting that the size of the box would be much, much larger than shown):

Table 3.7 Breast Cancer Problem

A: Cancer �A: No Cancer Sum

B: Positive 0.008 0.095 0.103
�B: Negative 0.002 0.895 0.897

Sum 0.010 0.990 1.000

Table 3.8 Breast Cancer Problem

A: Cancer �A: No Cancer Sum

B: Positive 8 95 103
�B: Negative 2 895 897

Sum 10 990 1000

95 8

Cancer

2

Positive

∼Cancer and ∼Positive: 895

Figure 3.4
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• 10 of 1000 women have breast cancer (blue circle);
• 990 of 1000 women do not have breast cancer (and are any portion of the diagram that is

not blue);
• 103 of 1000 women will have a positive mammogram (red circle);
• 897 of 1000 women will have a negative mammogram (and are standing in any portion

of the diagram that is not red);
• 8 of the women with cancer will have a positive mammogram; 2 will have a negative

mammogram;
• 95 of the women without cancer will have a positive mammogram.

With the joint and marginal table filled in, we can now answer Yudkowsky’s challenge: a
woman in this age group had a positive mammogram in a routine screening. What is the
probability that she actually has breast cancer?

PrðA jBÞ ¼ PrðB jAÞ ∗PrðAÞ
PrðBÞ ¼

0:008
0:01 ∗0:01
0:103

¼ 0:0776: ð3:22Þ

She has a 7.76% chance of having cancer, given her positive test result. This probability
may be surprisingly small to you. You might have noticed that you didn’t need to fill out
the full conjoint table to get the answer. But this little exercise was a quick review of
Chapter 2.

Do you see how the Theorem allows you to switch the information around? We were
provided with information about the probability of a test result, given a cancer condition.
We used Bayes’ Theorem to determine the probability of cancer given the test result.

This use of Bayes’ Theorem relates inverse representations of the probabilities concerning
two events: PrðA jBÞ and PrðB jAÞ. Bayes noted that there is an intricate relationship be-
tween PrðA jBÞ and PrðB jAÞ. His theorem is useful because sometimes it is far easier to
estimate one of these conditional probabilities than the other.

Is that all there is to it?

Answer: In terms of what Bayes’ Theorem is and how you can use it to calculate condi-
tional probability, yes.

You’ll often see Bayes’ Theorem written in the following form:

PrðA jBÞ ¼ PrðB jAÞ ∗PrðAÞ
PrðBÞ : ð3:23Þ

There are other, equally valid ways to express Bayes’ Theorem. For example, the two
equations below are equivalent to the one given above:

PrðA jBÞ ¼ PrðB jAÞ ∗PrðAÞ
PrðA \ BÞ þ Prð�A \ BÞ ð3:24Þ

PrðA jBÞ ¼ PrðB jAÞ ∗PrðAÞ
PrðB jAÞ ∗PrðAÞ þ PrðB j�AÞ ∗Prð�AÞ : ð3:25Þ

The second definition of Bayes’ Theorem focuses on inference—a topic we’ll explore in
Chapter 4, which relies on this expanded version.
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CHAPTER 4

Bayesian Inference

Now that you’ve been introduced to Bayes’ Theorem, we’ll focus our attention onBayesian
inference. By the end of this chapter, you will understand the following concepts:

• Bayesian inference
• Induction
• Deduction
• Hypothesis
• Alternative hypotheses
• Prior probability of a hypothesis
• Likelihood of the observed data
• Posterior probability of a hypothesis, given the data

Before we get started, let’s quickly review Bayes’ Theorem, using a Venn diagram as a visual
aid (see Figure 4.1).

Here, A and B represent two events. Therefore, this diagram consists of four possible joint
events:

• A \ B
• A \ �B
• �A \ B
• �A \ �B

In Section 1, we learned that the joint probability of A and B occurring can be expressed as:

PrðA \ BÞ ¼ PrðA jBÞ ∗PrðBÞ ð4:1Þ

A

65 5 10
B

∼A and ∼B: 20

Figure 4.1

Bayesian Statistics for Beginners: A Step-by-Step Approach. Therese M. Donovan and Ruth M. Mickey,
Oxford University Press (2019). © Ruth M. Mickey 2019.
DOI: 10.1093/oso/9780198841296.001.0001



In words the joint probability of A and B is the product of the conditional
probability of A, given B, and the marginal probability of B.

Similarly, the joint probability of A and B occurring can be expressed as:

PrðB \ AÞ ¼ PrðB jAÞ ∗PrðAÞ: ð4:2Þ
Therefore:

PrðA jBÞ ∗PrðBÞ ¼ PrðB jAÞ ∗PrðAÞ: ð4:3Þ
And dividing both sides by Pr(B) gives us Bayes’ Theorem:

PrðA jBÞ ¼ PrðB jAÞ ∗PrðAÞ
PrðBÞ : ð4:4Þ

In Chapter 3, we provided the two definitions of Bayes’ Theorem and discussed definition 1:

• The Theorem relates inverse representations of the probabilities concerning two events,
that is, Pr(A |B) and Pr(B |A).

We walked through a few different examples to show how to use Bayes’ Theorem to
determine, for example, the probability that a woman has breast cancer if her mammogram
came back positive.

In this chapter, we turn our attention to the second definition of Bayes’ Theorem:

• The Theorem can express how a subjective degree of belief should rationally change to
account for evidence.

Here’s the theorem we’ll be using for definition 2:

PrðA jBÞ ¼ PrðB jAÞ ∗PrðAÞ
PrðBÞ : ð4:5Þ

Yes, the equation is the same, but in this second interpretation, Bayes’ Theorem opens up
entirely new possibilities for thinking about probabilities and the conduct of

What exactly is science?

Answer: There are many definitions, formal and informal. Generally speaking, science
refers to a system of acquiring knowledge.

Answer: (From NASA): Science is curiosity in thoughtful action about the world and how
it behaves.

Answer: (FromWikipedia): Science (fromLatin scientia, meaning “knowledge”) is a systematic
enterprise that builds and organizes knowledge in the form of testable explanations and
predictions about the universe.

How do we go about actually conducting science?

Answer: We normally use what is called the scientific method. The Oxford English Diction-
ary (Stevenson, 2010) says that the scientific method is “a method or procedure that has

Science
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characterized natural science since the 17th century, consisting in systematic observation,
measurement, and experiment, and the formulation, testing, andmodification of hypotheses.”
A key concept in scientific endeavors is formulating testable, alternative explanations

about how the universe works. The scientific method actually consists of two types of
inquiry: induction and deduction, which, when used in concert, produce knowledge.
The scientific process is nicely captured in the diagram in Figure 4.2 (adapted from Rao,

1997). Let’s walk through this diagram, noting that it is a (diamond-shaped) circle at heart
and has neither beginning nor end. It can be thought of as a race track, or a wheel.

We need to start somewhere in this diagram, which contains four boxes and four arrows.
Let’s start with the upper box:

1. Hypothesis or Theory Box. A hypothesis is a proposed explanation for a phenom-
enon. A scientific theory is a coherent group of propositions formulated to explain a
group of facts or phenomena in the natural world and repeatedly confirmed through
experiment or observation. We will also note that process-based models, such as models
of global climate circulation, are hypotheses at heart.
• A theory: Darwin’s Theory of Evolution
• A hypothesis: The earth is warming due to increased CO2 levels in the atmosphere.

2. Deductive ReasoningArrow. The Oxford Reference tells us that deductive reasoning
is reasoning from the general to the particular. Here, you start with a hypothesis or
theory and test it from an examination of facts.

3. Consequences or Predictions Box. Dr. Sylvia Wassertheil-Smoller, a research profes-
sor at Albert Einstein College of Medicine, explains, “In deductive inference, we hold a
theory and based on it wemake a prediction of its consequences. That is, we predict what
the observations should be if the theory were correct” (source: http://www.livescience.
com/21569-deduction-vs-induction.html; accessed August 17, 2017). A prediction is the
result of deduction.

4. Design of Experiments Arrow. In this step, you plan an experiment that will allow
you to collect data to test your hypothesis or hypotheses. A well-designed experiment
will ensure that the data you collect are valid.

Hypotheses or
Theory

Inference
(Verification
of Theory)

Data

Consequences
(Prediction)

Creation of New Ideas
(Enlightened Guess Work)

Inductive Reasoning Design of Experiments
(Ensuring Validity of Data)

Deductive Reasoning

Figure 4.2
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5. Data Box. After the experiment is designed, we then collect some data. We can also use
existing datasets if they are appropriate.

6. Inductive Reasoning Arrow. The Oxford Reference tells us that inductive reasoning
involves inferring general principles from specific examples.

7. Inference Box. Inductive reasoning makes broad generalizations from specific obser-
vations. Dr. SylviaWassertheil-Smoller explains, “In inductive inference, we go from the
specific to the general. We make many observations, discern a pattern, make a general-
ization, and infer an explanation or a theory” (source: http://www.livescience.com/
21569-deduction-vs-induction.html; accessed August 17, 2017). At this point, we may
verify the pattern, or falsify our hypothesis or theory.

8. Creativity Arrow. The final process involves creativity, in which we bring to bear
creative ideas that may explain a pattern or a phenomenon, which brings us full circle.

C. R. Rao (1997) notes that the inference-through-consequences portion of the diagram
comes under the subject of research and the creative role played by scientists, while the
design of experiments through inductive reasoning comes under the realm of statistics.

Note that you can go through a portion of the scientific race track or wheel (e.g., collect
data in the lower box, analyze the data to infer a generalized pattern, and then stop).
However, going around the race track once or multiple times builds knowledge about a
system. As Dr. Wassertheil-Smoller states, “In science there is a constant interplay between
inductive inference (based on observations) and deductive inference (based on theory),
until we get closer and closer to the ‘truth,’ which we can only approach but not ascertain
with complete certainty.”

There are reamsofwritings about the scientific process—muchof it is (thankfully) beyond the
scopeof this book. Thenice thing about Bayes’Theorem is that it canbeused to addressmany
kinds of scientific questions, but the underlying concept of Bayesian inference is the notion
of alternative hypotheses, which is why we started in the upper box.

How on earth did Thomas Bayes make a connection between
probability and scientific inference?

Answer: You’ll have to readmore about the story of Bayes’ Theorem to learn about how he
came to his great insight. It involves a thought experiment with balls rolling on a table.

Due credit should also be given to Pierre-Simon Laplace. A Wikipedia author notes
“Pierre-Simon Laplace was an influential French scholar whose work was important to
the development of mathematics, statistics, physics and astronomy. He summarized and
extended the work of his predecessors in his five-volume Mécanique Céleste (Celestial
Mechanics) (1799–1825). This work translated the geometric study of classical mechanics
to one based on calculus, opening up a broader range of problems. In statistics, the
Bayesian interpretation of probability was developedmainly by Laplace” (article accessed
August 15, 2017).

“Our search is only for working hypotheses which are supported by observational facts
and which, in course of time, may be replaced by better working hypotheses with more
supporting evidence from a wider set of data and provide wider applicability.” –

C.R. Rao.
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If you’d like to learn more, a terrific read is The Theory That Would Not Die: How Bayes’
Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumph-
ant from Two Centuries of Controversy, by Sharon Bertsch McGrayne (2011). If you can’t
buy the book, at the very least, watch a lecture.

What is Bayesian inference?

Answer: Bayesian inference is the process of confronting alternative hypotheses with new
data and using Bayes’ Theorem to update your beliefs in each hypothesis.
The Oxford Dictionary of Statistics (Upton and Cook 2014) describes Bayesian inference

as “an approach concerned with the consequences of modifying our previous beliefs as a
result of receiving new data.”
Wikipedia defines it this way: “Bayesian inference is a method of statistical inference in

which Bayes’ Theorem is used to update the probability for a hypothesis as more evidence
or information becomes available” (article accessed August 15, 2017).

How does Bayesian inference work?

Answer: That is the million dollar question. Here we go!
Here’s Bayes’ Theorem as we derived it at the beginning of this chapter:

PrðA jBÞ ¼ PrðB jAÞ ∗PrðAÞ
PrðBÞ : ð4:6Þ

To use Bayes’ Theorem for scientific inference, it’s useful (actually, essential) to replace the
marginal denominator Pr(B) as the sum of the joint probabilities that make it up:

PrðA jBÞ ¼ PrðB jAÞ ∗PrðAÞ
PrðA \ BÞ þ Prð�A \ BÞ : ð4:7Þ

It’s critical that you understand this: themarginal probability of B is the sum of the
joint probabilities that make it up. Perhaps the conjoint table will help jog your
memory (see Table 4.1).

Remember that the marginal probabilities are stored, well, in the margins, and that you
obtain them by adding the joint probabilities. So far, so good.
Now, let’s tackle a problem. Returning to the Yudkowsky example in Chapter 3, suppose

we were asked to find the probability that a woman has breast cancer (A), given that her
mammogram test came back positive (B). Here, the results of themammogram are the “data.”

Table 4.1 Conjoint table with joint and marginal probabilities.

A �A Marginal

B Pr(A \ B) Pr(�A \ B) Pr(B)
�B Pr(A \ �B) Pr(�A \ �B) Pr(�B)

Marginal Pr(A) Pr(�A) Total ¼ 1.00
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OK, we are asked to find Pr(A |B). Thus, Pr(B) is in the denominator in Bayes’ Theorem,
which is:

PrðA jBÞ ¼ PrðB jAÞ ∗PrðAÞ
PrðA \ BÞ þ Prð�A \ BÞ : ð4:8Þ

Let’s now identify the parts of this problem in terms of the scientific method:

• Wehave two competinghypotheses regarding cancer: the woman has cancer (A) vs. she
does not (�A).

• Wehavedata for this problem: the test came back positive. So, B represents our observed
data. Notice that �B does not appear in the problem because we did not observe a
negative test.

How can we turn this into a Bayesian inference problem?

Answer: We can make great headway if we now replace the joint probabilities with
their conditional probability equivalents:

PrðA \ BÞ ¼ PrðB jAÞ ∗PrðAÞ ð4:9Þ
Prð�A \ BÞ ¼ PrðB j �AÞ ∗Prð�AÞ: ð4:10Þ

Then, Bayes’ Theorem looks like this:

PrðA jBÞ ¼ PrðB jAÞ ∗PrðAÞ
PrðB jAÞ ∗PrðAÞ þ PrðB j �AÞ ∗Prð�AÞ : ð4:11Þ

The denominator is still just the sum of the two joint probabilities that make up the
marginal probability of B. Never, ever, lose sight of this! Let’s look at this form of
Bayes’ Theorem more deeply.

Is there a pattern in the denominator of this new version?

Answer: The denominator, which is the marginal probability of B, is the probability of
observing our data, B, given A multiplied by the probability of A, plus the probability
of observing our data, B, given �A multiplied by the probability of �A. This has a certain
ring to it, don’t you agree?

Does anything else about this equation strike you as notable?

Answer: You might have noticed that one term in the denominator is exactly the same
thing as the numerator!

PrðA jBÞ ¼ PrðB jAÞ ∗PrðAÞ
PrðB jAÞ ∗PrðAÞ þ PrðB j �AÞ ∗Prð�AÞ : ð4:12Þ

Now, it should be clear that Bayes’ Theorem returns a proportion, or probability. After all,
we need to find Pr(A |B), which is a probability that ranges between 0 and 1.
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So, why all the fuss?

Answer: Well, Bayes’ great insight was that when we use the Theorem in this way, the
equation itself can be used to draw inferences regarding competing hypotheses and thus is
directly tied to the scientific method. Cool!

Let’s revisit our scientific method diagram (see Figure 4.3).

Again, the scientific “race track” has no beginning or end. But Bayesian inference begins
with the notion of multiple hypotheses, so we’ll start with the upper box. Our problem is to
determine the probability that a woman has breast cancer, given the test result was positive.
Let’s focus on the four main boxes only:

1. Hypothesis or Theory box. Identify your hypotheses. Here, we are interested in
testing two alternative hypotheses: the woman has cancer (A) versus she does not (�A). These
hypotheses are mutually exclusive and exhaustive. We now assign the probability that each
hypothesis is true (prior to obtaining mammogram results). The probabilities associated with
each hypothesis must sum to 1.0. In Bayesian circles, these are called prior probabilities
because they represent our current belief in each hypothesis prior to data collection.
2. Consequences box. We know that the data we will be collecting are medical tests

(mammograms). So, now we need to write out equations for calculating the probability of
observing the test data under each hypothesis. This probability is called likelihood, and
figuring out how to calculate the likelihood of the data under each hypothesis is often the
most challenging part of Bayesian inference.
3. Data box. Next, we collect data. The test came back positive.
4. Inference Box. With data in hand, we can now plug our data into the likelihood

equations:
• likelihood of observing the data (a positive test result) under the cancer hypothesis
• likelihood of observing the data (a positive test result) under the no-cancer hypothesis.

Hypotheses or
Theory

Inference
(Verification
of Theory)

Data

Consequences
(Prediction)

Creation of New Ideas
(Enlightened Guess Work)

Inductive Reasoning Design of Experiments
(Ensuring Validity of Data)

Deductive Reasoning

Figure 4.3
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Finally, we use Bayes’ Theorem to determine a posterior probability for each hypoth-
esis. The posterior probability represents our updated belief in each hypothesis after new
data are collected:

• Probability of cancer, given the observed data
• Probability of no cancer, given the observed data.

Thus, in Bayesian inference, the posterior probability of a random event or an uncertain
proposition is the conditional probability that is assigned after the relevant evidence or
background is taken into account (Wikipedia; accessed August 15, 2017). Here’s what Bayes’
Theorem looks like for this problem:

PrðCancer jPositiveÞ

¼ PrðPositive jCancerÞ ∗PrðCancerÞ
PrðPositive jCancerÞ ∗PrðCancerÞ þ PrðPositive j �CancerÞ ∗Prð �CancerÞ :

ð4:13Þ

Now, let’s replace each term with its Bayesian inference definition (see Figure 4.4).

Look for the following terms in this diagram:

• Prior probability of each hypothesis, A and �A
• Likelihood of observing the data, B, under each hypothesis
• Posterior probability of hypothesis A, given B

Since there are only two hypotheses in this example, A and�A, if we use Bayes’ Theorem to
estimate the posterior probability of A, which is written Pr(A |data), then by subtraction we
also estimate Pr(�A |data) as 1 − Pr(A | data).

However, we could also solve it directly, as shown below:

Prð�Cancer jPositiveÞ

¼ PrðPositive j �CancerÞ ∗Prð�CancerÞ
PrðPositive jCancerÞ ∗PrðCancerÞ þ PrðPositive j �CancerÞ ∗Prð�CancerÞ :

ð4:14Þ

Pr(B | A) * Pr(A) + Pr(B | ∼A) * Pr(∼A)

Pr(B | A) * Pr(A)
Pr(A | B) =

Posterior probability
of hypothesis A,

given data B

Likelihood of the
data, B, given
hypothesis A

Prior probability of
hypothesis A

Likelihood of the
data, B, given

hypothesis ∼A
Prior probablity of

hypothesis ∼A

Figure 4.4
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How does this relate to science?

Answer: Your answer here!
Science refers to a system of acquiring knowledge. Bayes’ Theorem allows us to posit

specific hypotheses for some phenomena and express our current belief that each hypoth-
esis is true. Then, as new data become available, we update our belief in each hypothesis.

Ok, what exactly is the difference between the two interpretations of
Bayes’ Theorem?

Answer: Remember the alternative definitions:

• Bayes’ Theorem describes the relationship between Pr(A |B) and Pr(B |A).
• The Theorem expresses how a subjective degree of belief should rationally change to

account for evidence.

Let’s return to our example problem:

Here is our conjoint table once more:

In Chapter 3, we solved this problem using this version of Bayes’ Theorem:

PrðA jBÞ ¼ PrðB jAÞ ∗PrðAÞ
PrðBÞ ¼

0:008
0:01 ∗0:01
0:103

¼ 0:0776: ð4:15Þ

In this chapter, we are solving the problemwith the second interpretation of Bayes’ Theorem:

PrðA jBÞ ¼ PrðB jAÞ ∗PrðAÞ
PrðB jAÞ ∗PrðAÞ þ PrðB j � AÞ ∗Prð� AÞ : ð4:16Þ

Paul Samuelson, the Nobel laureate from the Massachusetts Institute of Technology,
recalled that John Maynard Keynes once was challenged for altering his position on
some economic issue. “When my information changes, I change my mind. What do
you do?”

One percent of women at age forty who participate in routine screening have breast
cancer. Eighty percent of women with breast cancer will get positive mammograms. In
addition, 9.6% of women without breast cancer will get positive mammograms.
A woman in this age group had a positive mammogram in a routine screening. What
is the probability that she actually has breast cancer?

Table 4.2 Breast Cancer Problem.

A: Cancer ~A: No Cancer Sum

B: Positive 0.008 0.095 0.103
~B: Negative 0.002 0.895 0.897

Sum 0.010 0.990 1.000
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PrðA jBÞ ¼
0:008
0:01 ∗0:01

0:008
0:01 ∗0:01þ 0:095

0:99 ∗0:99
¼ 0:0776: ð4:17Þ

Both return the same answer, and both are correct. The second interpretation, however,
places the problemwithin a scientific context, where you posit hypotheses and then update
your beliefs in each hypothesis after data are collected. In this particular example, our
hypotheses are that the woman has cancer and that she does not. Without a test, our initial
belief that a woman has breast cancer is 1% (because 1% of the population has breast
cancer), and our belief that she does not have breast cancer is 99%. With the test, however,
we can use Bayes’ Theorem to update our beliefs. In light of the new data, the probability
that a woman has breast cancer is 7.8%.

What if there are more than two hypotheses?

Now let’s generalize this problem evenmore. Suppose there are n hypotheses. Let’s number
our hypotheses from i ¼ 1 to n. Here, i is an index of hypotheses. In our example, n ¼ 2
since there are two hypotheses. We could let hypothesis i ¼ 1 be the “cancer hypothesis”,
and i ¼ 2 be the “no cancer hypothesis.” But we can generalize this as H1, H2,…, Hn

hypotheses. In other words, there can be any discrete number of hypotheses.
Let’s let data represent the data we collected, that is, our observed data. So now Bayes’

Theorem can be written:

PrðHi jdataÞ ¼ Prðdata jHiÞ ∗PrðHiÞ
Xn

j¼1

Prðdata jHjÞ ∗PrðHjÞ
: ð4:18Þ

• The left side of the equation, Pr(Hi |data), can be read: “The posterior probability of
hypothesis i, given the data.”

• The numerator requires the likelihood of observing the data under hypothesis i and is
written Pr(data |Hi). This is then multiplied by the prior probability for hypothesis i,
which is written Pr(Hi).

• In the denominator, the symbol Σmeans “sum.” The “j” associated with the sum symbol
is an index of summation. Thus, in the denominator, we are summing over all
hypotheses. So the index j goes from 1 to n. In our example, we had two hypotheses,
so there must be two terms in the denominator.

We use Bayes’ Theorem to compute the posterior probabilities for each and every
hypothesis under consideration.

Broadly speaking, you start with a scientific question and set forth two or more alterna-
tive hypotheses. You then assign a prior probability that each alternative hypothesis is
true. Next, you collect data. Finally, you use Bayes’ Theorem to update the probability
for each hypothesis considered.
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One more time…what is Bayesian inference again?

The Merriam–Webster dictionary defines “inferred” or “inferring” as “deriving conclusions
from facts or premises,” and “infer” as “to form an opinion or reach a conclusion through
reasoning and information.” The Merriam–Webster Thesaurus suggests the following syn-
onyms for the word “infer”: conclude, decide, deduce, derive, extrapolate, gather, judge,
make out, reason, and understand.
Bayesian inference, then, is the use of Bayes’ Theorem to draw conclusions about a set of

mutually exclusive, exhaustive, alternative hypotheses by linking prior knowledge about
each hypothesis with new data. The result is updated probabilities for each hypothesis of
interest:

What if I collect more data?

Each time you collect more data and apply Bayes’ Theorem, you’re updating your belief in
each alternative hypothesis. The new posterior probabilities then become priors for the
next analysis. By tracking our beliefs through time, we track our learning. The phrase
“Today’s posterior is tomorrow’s prior” captures the process nicely, as long as the same data
are not used to update the prior again the next time around.

What other sort of questions have been tackled using Bayesian
inference approaches?

Answer: Loads of them! And the use of Bayes’ Theorem is skyrocketing in many fields. In
Chapter 5, we’ll work on another problem to give you more practice.

Initial Belief in Hypothesis i + New Data ! Updated Belief in Hypothesis i.

BAYESIAN INFERENCE 47



CHAPTER 5

The Author Problem: Bayesian
Inference with Two Hypotheses

In this chapter, we provide a concrete example of Bayesian inference. By the end of this
chapter, you should have a renewed understanding of:

• Bayesian inference
• Hypothesis
• Alternative Hypothesis
• Prior probability of a hypothesis
• Prior probability distribution
• Likelihood of the observed data
• Posterior probability of a hypothesis
• Posterior probability distribution.

We’ll walk through a classic example of Bayesian Inference. In 1964, Frederick Mosteller
and David Wallace published an article in which they studied the disputed authorship of
some of the Federalist Papers. Mosteller and Wallace introduce their paper as follows:

In the 12 disputed papers, either Alexander Hamilton (see Figure 5.1, left) or James Madison
(see Figure 5.1, right) signed his name as “Publius” instead of using his given name.Mosteller
andWallace used a Bayesian analysis to rightfully attribute the authorship of each paper.

Let’s assume we are working with a specific paper of unknown authorship (No. 54), and
walk through a Bayesian inference analysis. This paper discusses the way in which the seats
in the United States House of Representatives are apportioned among the states. It is titled
“The Apportionment of Members Among the States.”
First, let’s recall Bayes’ Theorem:

PrðA jBÞ ¼ PrðB jAÞ ∗PrðAÞ
PrðB jAÞ ∗PrðAÞ þ PrðB j�AÞ ∗Prð�AÞ : ð5:1Þ

“The Federalist papers were published anonymously in 1787–8 by Alexander Hamilton,
John Jay, and James Madison to persuade the citizens of the State of New York to ratify
the Constitution. Of the 77 essays, each 900 to 2500 words in length, that appeared in
newspapers, it is generally agreed that Jay wrote five (Nos. 2, 3, 4, 5, and 64), leaving no
further question about Jay’s share. Hamilton is identified as the author of 43 papers, and
Madison of 14. The authorship of 12 papers (Nos. 49–58, 62, and 63) is in dispute
between Hamilton and Madison.”

Bayesian Statistics for Beginners: A Step-by-Step Approach. Therese M. Donovan and Ruth M. Mickey,
Oxford University Press (2019). © Ruth M. Mickey 2019.
DOI: 10.1093/oso/9780198841296.001.0001



We’ll use a series of steps to conduct our analysis, which follow the scientific race track
described in Chapter 4:

1. Identify your hypotheses.
2. Express your belief that each hypothesis is true in terms of prior probabilities.
3. Gather the data.
4. Determine the likelihood of the observed data under each hypothesis.
5. Use Bayes’ Theorem to compute the posterior probabilities for each hypothesis.

We’ll be using these steps throughout the book. Here we go!

What is step 1?

Answer: In step 1, we identify our hypotheses. Paper No. 54 is 2008 words in length, and
our goal is to determine its most likely author. For this paper, we have two hypotheses for
authors: Hamilton or Madison. Let’s nail down our nomenclature:

• Hamilton ¼ Hamilton hypothesis
• Madison ¼ Madison hypothesis

Note that the hypotheses are exhaustive and mutually exclusive. Since there are only two
hypotheses, it makes sense that:

PrðHamiltonÞ ¼ Prð�MadisonÞ ð5:2Þ
and

PrðMadisonÞ ¼ Prð�HamiltonÞ: ð5:3Þ
In terms of our notation for Bayes’ Theorem in Equation 5.1 above, A could correspond to
the hypothesis that the author is Alexander Hamilton, and �A could correspond to the

Figure 5.1 Alexander Hamilton (left) and James Madison (right).
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hypothesis that the author is JamesMadison. And B in Bayes’ Theorem above represents the
observed data.

The posterior probability that the author was Hamilton is then:

PrðHamilton jdataÞ ¼ Prðdata jHamiltonÞ ∗PrðHamiltonÞ
Prðdata jHamiltonÞ ∗PrðHamiltonÞ þ Prðdata jMadisonÞ ∗PrðMadisonÞ :

ð5:4Þ

What is step 2?

Answer: We express our belief that each hypothesis is true in terms of prior probabilities.
We do this because the paper is unsigned and we have some uncertainty about which
hypothesis is correct. If the author authentically signed the paper, the probability of their
authorship would be 1.0, and we wouldn’t have a problem to tackle!

• Pr(Hamilton) ¼ prior probability that the true author is Hamilton.
• Pr(Madison) ¼ prior probability that the true author is Madison.

Remember that the sum of the prior probabilities must add to 1.0. We have several options;
here are a few:

• Pr(Hamilton) ¼ 0.1 and Pr(Madison) ¼ 0.9
• Pr(Hamilton) ¼ 0.5 and Pr(Madison) ¼ 0.5
• Pr(Hamilton) ¼ 0.7 and Pr(Madison) ¼ 0.3
• Pr(Hamilton) ¼ 0.75 and Pr(Madison) ¼ 0.25

There are many possible combinations of prior probabilities to choose from. Knowing that
Hamilton penned 43 papers and that Madison penned 14, it may be reasonable to assign
Pr(Hamilton) a prior probability of 0.75 (the last option above) because Hamilton wrote
43 of the 57 papers that were signed by either man (43/(43+14) ¼ 0.75). That would mean
that Pr(Madison) ¼ 0.25.

However, Mosteller and Wallace set the odds at 50:50, which is Pr(Hamilton) ¼ 0.5 and
Pr(Madison) ¼ 0.5. This gives each hypothesis the same “weight” of belief as the other.

Let’s now represent our hypotheses and prior probabilities as a graph (see Figure 5.2).

A graph of the prior probabilities is called the prior probability distribution. This
distribution represents hypotheses on the x-axis and their probabilities on the y-axis.
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Figure 5.2 Prior probability distribution.
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Note that the sum of the probabilities across hypotheses must be 1.0; this means that the
list of alternative hypotheses is exhaustive. In addition, the hypotheses are mutually
exclusive: the paper can’t be written by both men. Figure 5.2 is an example of a discrete
prior probability distribution.

What is step 3?

Answer: Gather the data. The data for this problem are found in Paper No. 54, and
it is 2008 words long.
Ultimately, we are asking, which hypothesis (Hamilton or Madison) is most consistent

with the data we observe (the paper)?

• Pr(Hamilton | data) ¼ what is the probability the author is Hamilton, given the paper?
• Pr(Madison | data) ¼ what is the probability the author is Madison, given the paper?

This is the challenge that Mosteller and Wallace set out to tackle, and it is a very tough nut
to crack!
Mosteller and Wallace didn’t use ALL of the data at their disposal (i.e., every word in the

paper), but instead focused on some signature words and phrases as a key to identify each
author.
Madison tended to use the word by more frequently than Hamilton, whereas Hamilton

tended to use the word to more frequently than Madison. The best single discriminator,
however, was the use of the word upon.
Hamilton used upon with overwhelmingly greater frequency than Madison. To be sure,

other metrics could have been used, including the length of each man’s sentences. How-
ever, the twomen are nearly identical in this respect, with Hamilton averaging 34.55 words
per sentence, andMadison averaging 34.59 per sentence. Sentence length, therefore, would
not be very helpful in separating the two hypotheses.
Our sincere apologies to Mosteller and Wallace, but to keep things simple, we will

simplify their analysis tremendously and focus on the frequency of the use of upon by
each author.

The word “upon” appeared twice in the paper in question. Then, the rate of
upon is calculated as:

#upons
total words

¼ 2
2008

¼ 0:000996: ð5:5Þ

If we standardize this rate to 1000 words, then our manuscript has a standardized rate of
upon of

0:000996 ∗1000 ¼ 0:996 ð5:6Þ
We need some standardization because papers vary in length: a paper with 1 upon in 20
words has a very different rate of upon than a paper with 1 upon in 2008 words.
Now that we have the data in hand, we need to determine the likelihood of observing a

rate of 0.996 upons under each hypothesis.

What is step 4?

Answer: Determine the likelihood of the observed data, assuming each hypothesis
is true.
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In other words, determine:

Prð0:996 jHamiltonÞ ð5:7Þ
and

Prð0:996 jMadisonÞ: ð5:8Þ
Here we pit the observed data against each hypothesis. This step is often the most challen-
ging part of a Bayesian analysis. How exactly how do you compute the likelihood of
the data?

Dictionary.com provides three definitions of likelihood:

1. The state of being likely or probable; probability.
2. A probability or chance of something: There is a strong likelihood of his being elected.
3. Archaic.indication of a favorable end; promise.

So, likelihood is another word for probability. There is a subtle difference, however, in
the way the term is used in statistical analysis, where likelihood describes the probabil-
ity of observing data that have already been collected. We will cover this in more detail
in future chapters, but for now it’s enough just to have a good feel for the concept:
likelihood involves the collection of data, and we look retrospectively at
the probability of collecting those data. If we live in the Sahara Desert, we know
the probability of rain is low. Suppose it rains for seven consecutive days; this represents
our data. Can we all agree that that it is very unlikely to have observed seven consecu-
tive days of rain, given that we are in the Sahara Desert? We hope so!

Wolfram Math World differentiates likelihood and probability this way: “Likelihood is
the hypothetical probability that an event that has already occurred would yield a specific
outcome. The concept differs from that of a probability in that a probability refers to the
occurrence of future events, while a likelihood refers to past events with known
outcomes.”

Let’s put this in terms of authorship of the disputed paper. The paper is a past event with a
known outcome: the rate of upon is 0.996 per 1000 words. Our next step, then, is to
determine how likely it is to observe 0.996 upons per thousand words under each
hypothesis:

Prð0:996 jHamiltonÞ: ð5:9Þ

• Equation 5.9 asks: “What is the likelihood of observing a rate of 0.996 upons per 1000
words, given that the author is Hamilton?”

Prð0:996 jMadisonÞ: ð5:10Þ

• Equation 5.10 asks: “What is the likelihood of observing a rate of 0.996 upons per 1000
words, given that the author is Madison?”

Notice that the likelihoods are conditional for each hypothesis! In this Bayesian ana-
lysis, the likelihood is interpreted as the probability of observing the data, given the
hypothesis.
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How exactly do we compute the likelihood?

Answer: Computing the likelihood of the observed data is a critical part of Bayesian
analysis. Throughout this book, you’ll be learning about probability distributions that
will enable you to estimate the likelihood of the observed data under each hypothesis.
But, for now, what you need is a good, intuitive feel for what it is, and a firm understanding
of how the observed data (a rate of 0.996) has a different likelihood depending on whether
the author was Hamilton or Madison.
Imagine Mosteller and Wallace had a whole team of students who searched through 98

articles known to be penned by Hamilton or Madison, and tediously counted the
number of times each author used the word upon and also tallied the total number of
words in each document. The data might look like that shown in Table 5.1.

Our dataset consists of 98 such articles, 48 of which are known to be penned by
Hamilton, and 50 of which are known to be penned by Madison. Only the first 5
papers are shown above, and these are hypothetical, to give you a betterflavor
forwhatwas involved. Here, each article is listed in column 1. The author of each article
is identified in column 2, and the word length of the article is given in column 3. The total
number of upons is provided in column 4, and the rate of upons per 1000 words is
calculated in column 5. As you can see, the first article was known to be written byMadison,
and he used the word upon 1 time in 1672 words, for a standardized rate of 0.598 upons
per 1000 words.
Mosteller and Wallace summarized their standardized results as shown in Table 5.2

(Table 2.3 in their 1964 publication).

Table 5.2

Rate Hamilton Madison

0 (exactly) 0 41
(0,1] 1 7
(1,2] 10 2
(2,3] 11 0
(3,4] 11 0
(4,5] 10 0
(5,6] 3 0
(6,7] 1 0
(7,8] 1 0

48 50

Table 5.1

Article Author Length Upons Rate Standardized Rate

1 Madison 1672 1 0.0006 0.598
2 Hamilton 2196 2 0.00091 0.911
3 Madison 1690 2 0.00118 1.183
4 Hamilton 1013 3 0.00296 2.962
5 Madison 1160 1 0.00086 0.862
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This table assigns each article into a “rate bin,” where the bins are provided in column 1.
The first bin includes all manuscripts where the word upon is never used (i.e., the rate of
upon¼ 0). Let’s talk about the notation used for the remaining bins. A closed interval such
as [0,1] would include all manuscripts with a rate of 0 through 1, including the endpoints.
An open interval such as (0,1) does not include the endpoints 0 or 1. A half-closed interval
has the notation (0,1]. Thus, the interval (0,1] is a bin that includes all manuscripts where
the rate of upon was > 0 but � 1. For the 48 papers known to be penned by Hamilton, 0 of
them had a rate of 0, 1 had a rate in the (0,1] bin, 10 had a rate in the (1,2] bin, and so on.
For the 50 papers known to be penned byMadison, 41 of them had a rate of 0 (in which the
word upon was never used), 7 had a rate > 0 and � 1, and 2 had a rate > 1 and � 2.

The same data can be shown as a frequency histogram (see Figure 5.3). The x-axis of
this histogram are the bins, or the rate of upons per 1000 words. The y-axis is the
frequency, or number of articles, corresponding to each rate of upon. Frequency histo-
grams therefore depict the raw data in graphic format.

Remember, for this stepwe are trying to get estimates of the likelihoodof theobserved
data under each hypothesis. The unsigned manuscript has a rate of upon ¼ 0.996,
which falls into the second bin:

Prð0:996 jHamiltonÞ ð5:11Þ

• Equation 5.11 asks: “What is the probability of observing a rate of 0.996 upons per 1000
words, given that the author is Hamilton?”

Prð0:996 jMadisonÞ ð5:12Þ

• Equation 5.12 asks: “What is the probability observing a rate of 0.996 upons per 1000
words, given that the author is Madison?”

Which of the two hypotheses more closely matches the
observed rate?

Answer: Intuitively, the data are more consistent with the Madison hypothesis. Can you
see that too?
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Figure 5.3 Hamilton’s and Madison’s rates of “upon”.
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If likelihood is a probability, how do we quantify this “consistency”
in terms of probability?

Answer: Great question! We’ll try this different ways. First, though, think about how you
would approach this problem before reading on.
Looking back at Table 5.2, we can see the following:

• One of Hamilton’s 48 manuscripts had a rate of upon greater than 0 but less than 1.0.
Therefore, we can use 1/48 ¼ 0.021 as an estimate of the likelihood of the data under the
Hamilton hypothesis.

• Seven of Madison’s 50 manuscripts had a rate of upon greater than 0 but less than 1.0.
Therefore, we can use 7/50 ¼ 0.140 as an estimate of the likelihood of the data under the
Madison hypothesis.

These are quick and dirty estimates of each author’s use of upon, and we’ll run with this.

What is step 5?

Answer: Use Bayes’ Theorem to compute the updated Pr(Hamilton) and Pr(Madison),
given the data.
First, let’s recall Bayes’ Theorem and the familiar inferential terms (see Figure 5.4).

Bayes’ Theorem can be used to calculate the posterior probability that the author is
Hamilton:

PrðHamilton j0:996Þ

¼ Prð0:996 jHamiltonÞ ∗PrðHamiltonÞ
Prð0:996 jHamiltonÞ ∗PrðHamiltonÞ þ Prð0:996 jMadisonÞ ∗PrðMadisonÞ :

ð5:13Þ

Pr(B | A) * Pr(A) + Pr (B |∼A) * Pr(∼A)

Pr(B | A) * Pr(A)
Pr(A | B) =

Posterior probability
of hypothesis A,

given data B

Likelihood of the
data, B, given
hypothesis A

Prior probability of
hypothesis A

Likelihood of the
data, B, given

hypothesis ∼A
Prior probability of

hypothesis ∼A

Figure 5.4
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In words . . .

• The left side of the equation can be read as “the posterior probability that Hamilton
penned the paper, given the paper had a rate of 0.996 upon per thousand words.”

• On the right, the numerator multiplies two terms: the likelihood of observing a rate of
upons per 1000 words of 0.996 under the Hamilton hypothesis, multiplied by the prior
probability of the Hamilton hypothesis.

• The denominator repeats the numerator, but adds in the Madison hypothesis as well.

Of course, since there are only two hypotheses and they are mutually exclusive, you can get
the posterior probability of Madison as 1 minus the posterior probability of Hamilton. Or
you can write it out fully for the sake of completeness:

PrðMadison j0:996Þ

¼ Prð0:996 jMadisonÞ ∗PrðMadisonÞ
Prð0:996 jHamiltonÞ ∗PrðHamiltonÞ þ Prð0:996 jMadisonÞ ∗PrðMadisonÞ :

ð5:14Þ

In short, we can use Bayes’ Theorem to estimate the posterior probability for each hypoth-
esis. Let’s keep our focus on the Hamilton hypothesis for now:

PrðHamilton j 0:996Þ

¼ Prð0:996 jHamiltonÞ ∗PrðHamiltonÞ
Prð0:996 jHamiltonÞ ∗PrðHamiltonÞ þ Prð0:996 jMadisonÞ ∗PrðMadisonÞ :

ð5:15Þ

Where are the priors in this equation?

Answer: They are shown in color below (red and purple):

PrðHamilton j 0:996Þ

¼ Prð0:996 jHamiltonÞ ∗PrðHamiltonÞ
Prð0:996 jHamiltonÞ ∗PrðHamiltonÞ þ Prð0:996 jMadisonÞ ∗PrðMadisonÞ :

ð5:16Þ

Where is the posterior probability of the Hamilton hypothesis in this
equation?

Answer: It’s highlighted in red below:

PrðHamilton j 0:996Þ

¼ Prð0:996 jHamiltonÞ ∗PrðHamiltonÞ
Prð0:996 jHamiltonÞ ∗PrðHamiltonÞ þ Prð0:996 jMadisonÞ ∗PrðMadisonÞ :

ð5:17Þ

Where are the likelihoods of the observed data under each hypothesis
in this equation?

Answer: The likelihoods are shown in blue and green below:

PrðHamilton j 0:996Þ

¼ Prð0:996 jHamiltonÞ ∗PrðHamiltonÞ
Prð0:996 jHamiltonÞ ∗PrðHamiltonÞ þ Prð0:996 jMadisonÞ ∗PrðMadisonÞ :

ð5:18Þ
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Don’t lose track that we broke the components of Bayes’ Theorem
into pieces!

So, what is the posterior probability of the Hamilton hypothesis?

Remember that we set the priors to 0.5 for Hamilton and 0.5 for Madison. Also remember
that the likelihood of observing a rate of upons of 0.996 was 0.021 for Hamilton and 0.140
for Madison. Now let’s fill in our priors and likelihood:

PrðHamilton j 0:996Þ ¼ 0:021 ∗0:5
0:021 ∗0:5þ 0:140 ∗0:5

¼ 0:0105
0:0805

¼ 0:1304: ð5:19Þ

The answer is the posterior probability that the author of the paper in question was
Alexander Hamilton:

PrðHamilton j0:996Þ ¼ 0:1304: ð5:20Þ
Since we have only two, mutually exclusive, hypotheses, this means that our posterior
probability that the author was James Madison is 1 – 0.1304 ¼ 0.8696:

PrðMadison j0:996Þ ¼ 0:8696: ð5:21Þ
These new posterior estimates can be graphed as the posterior probability distribution.

Thus, given the manuscript (and ancillary data about word use by the two authors from
KNOWN data), we now increase our belief that that the author of Federalist Paper No. 54
was James Madison. You can read about it here!

How do we set the prior probabilities?

Answer:Great question! We’ll cover the topic of priors in more detail in Chapter 6. But for
now, let’s see what happens when we use a different set of priors instead:

PrðHamiltonÞ ¼ 0:75 ð5:22Þ
PrðMadisonÞ ¼ 0:25: ð5:23Þ
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Figure 5.5 Prior and posterior distributions.
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We considered these potential priors at the beginning of the chapter. Let’s use Bayes’
Theorem to calculate the posterior probability that the author was Alexander Hamilton
with these new priors:

PrðHamilton j1:00Þ ¼ 0:021 ∗0:75
0:021 ∗0:75þ 0:140 ∗0:25

¼ 0:01575
0:05075

¼ 0:3103: ð5:24Þ

The answer now is 0.3103, whereas our first result was 0.1304. In both cases, the analysis
now suggests that there is a greater probability that James Madison was the author.
However, the posterior probability for the Madison hypothesis is smaller when the odds
are stacked against him in the second example. In other words, priors matter . . . a point that
we will discuss in more detail in Chapter 6.

What if we found more papers known to be authored by Hamilton
and Madison?

Answer: Fantastic! The more information you have to calculate the likelihood, the better.
In this case, you would use this new information to get better estimates of the probability of
each author’s use of the word upon. Additionally, the discovery of more papers may
influence your choice of priors.

Do the likelihoods of the data have to add to 1.0?

Answer:No, don’t confuse the prior probabilities for a set of hypotheses (which must sum
to 1.0) with the probability of the data. This can be confusing!

This is a very important concept, so let’s review our calculations to nail this point
(see Table 5.3).

In Bayesian analysis, the sum of the prior probabilities across hypotheses, as well as the
sum of the posterior probabilities across hypotheses, must be 1.0. This is not true for the
likelihoods of observing the data under each hypothesis.
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Figure 5.6 Prior and posterior distributions.
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Table 5.3 shows our calculations for the analysis where the prior probabilities for the two
hypotheses were equal. You’ve seen these calculations already, but notice that the sum of
the priors is 1.000 (as required), while the sum of the likelihoods for the two hypotheses is
0.1610.
Let’s have a look at our second analysis, in which the priors were unequal (see Table 5.4).

Once again, notice the sum of the likelihoods is 0.161, whereas the sum of the priors is 1.000.

Did Mosteller and Wallace really use this approach?

Not exactly. They used a Bayesian inference approach, but they calculated their likelihoods
a bit differently than we did here. Typically, the analyst makes an assumption about the
distribution that gives rise to the data. Mosteller andWallace were premier statisticians and
instead fit the histogram data to what is called a Poisson distribution. The Poisson
distribution is used to estimate the probability of an event occurring (such as the number
of upons per 1000 words, the number of births per 1000 females, or the number of car
crashes in 100 days at a corner), given the average rate of that event.We’ll cover the Poisson
probability distribution in depth later in the book. Here, we are simply trying to give you a
general understanding of how to quantify likelihood.

Can we summarize this problem?

OK. To summarize, Mosteller and Wallace set out to determine the author of Paper No. 54.
This paper had a standardized rate of upons ¼ 0.996 per 1000 words. They sought out the
posterior probability associated with two hypotheses:

• Pr(Hamilton | data) ¼ what is the probability the author is Hamilton, given the rate of
upon is 0.996?

• Pr(Madison | data) ¼ what is the probability the author is Madison, given the rate of
upon is 0.996?

To answer this, they assigned each hypothesis a prior probability of being true. Then,
they gathered data from manuscripts known to be penned by each author and used

Table 5.3

Observed Rate Hypothesis Prior Likelihood Prior ∗ L Posterior

0.996 Hamilton 0.5 0.0210 0.0105 0.1304
0.996 Madison 0.5 0.1400 0.0700 0.8696

Sum 1.0 0.1610 0.0805 1.0000

Table 5.4

Observed Rate Hypothesis Prior Likelihood Prior ∗ L Posterior

0.996 Hamilton 0.75 0.0210 0.0158 0.3103
0.996 Madison 0.25 0.1400 0.0350 0.6897

Sum 1.00 0.1610 0.0508 1.0000
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this information to calculate the likelihood of observing the data under each
hypothesis:

• Pr(data | Hamilton) ¼ what is the likelihood of the observed rate of 0.996, given the
author is Hamilton?

• Pr(data | Madison)¼what is the likelihood of the observed rate of 0.996, given the author
is Madison?

Mosteller andWallace used Bayes’ Theorem, which says there is a relationship between the
original conditional probabilities and their inversions, in order to generate updated beliefs
that each hypothesis is true:

PrðHamilton j 0:996Þ

¼ Prð0:996 jHamiltonÞ ∗PrðHamiltonÞ
Prð0:996 jHamiltonÞ ∗PrðHamiltonÞ þ Prð0:996 jMadisonÞ ∗PrðMadisonÞ :

ð5:25Þ

The use of Bayes’ Theorem in this way is known as Bayesian inference. The Merriam–

Webster dictionary defines inference as the “the act or process of inferring.” It then defines
“inferred” or “inferring” as “deriving conclusions from facts or premises,” and “infer” as “to
form an opinion or reach a conclusion through reasoning and information.”

Bayesian inference is then the use of Bayes’ Theorem to draw conclusions about a set of
mutually exclusive, exhaustive, alternative hypotheses by linking prior knowledge about
each hypothesis with new data. The result is an updated probability for each hypothesis of
interest.

How does this problem differ from the Breast Cancer Problem in the
last chapter?

Your answer here!

Answer: Both problems had two alternative hypotheses (e.g., Madison vs. Hamilton, and
Cancer vs. No Cancer). Both used Bayesian inference. The rate of upons corresponds to
“testing positive.” The rate of upons could extend up to 8.0 per 1000 words, whereas the
test result was either positive or negative. A main difference, however, is the assignment of
prior probabilities for each hypothesis. In the Breast Cancer Problem, we were told that 1%
of women of a particular age have breast cancer. This 1% estimate presumably comes from a
different source of information. In the author problem, Mosteller andWallace did not have
an external source of information, so they set their priors at 50–50.

In Chapter 6, we will tackle a new problem that will highlight the different approaches
for setting the prior distribution.
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CHAPTER 6

The Birthday Problem: Bayesian
Inference with Multiple Discrete
Hypotheses

Now that you’ve had a taste of what Bayesian inference is all about, we’ll start on a new
example and explore two key features of Bayesian analysis: assigning priors and estimating
likelihoods. One of the more controversial aspects of Bayesian inference is the use of priors.
They are controversial, but they can’t be ignored.
In the frequentist notion of Bayes’ Theorem, the priors are just marginal probabilities. But

in Bayesian inference, the priors represent a priori probabilities that each alternative hy-
pothesis is correct, where a priorimeans “prior to data collection.”You cannot conduct a
Bayesian analysis without using a prior distribution. You must also collect some
information to estimate the likelihood of the data given a hypothesis.
By the end of this chapter, you should be able to define:

• Informative prior distribution
• Non-informative prior distribution
• Objective priors
• Subjective priors
• Prior sensitivity analysis

Let’s begin with a new example. This problem is taken from a short story called Absent
Treatment by P. G.Wodehouse (author of the infamous Jeeves collection). In this story, the
main character and author, Reggie Pepper, is helping his friend Bobbie Cardew. Bobbie is in
a pinch because he forgot the date of his wife’s birthday. The wife, Mary, has had enough
and has ditched poor Bobbie. Let’s pick up the story with Mary’s send-off letter to Bobbie
and then listen in on an exchange between Reggie and Bobbie:

I [Reggie] read it twice, then I said, “Well, why don’t you?”

“Why don’t I what?”

“Why don’t you wish her many happy returns? It doesn’t seem much to ask.”

“But she says on her birthday.”

“Well, when is her birthday?”

MY DEAR BOBBIE, I am going away. When you care enough about me to remember to
wish me many happy returns on my birthday, I will come back. My address will be Box
341, London Morning News. – Mary

Bayesian Statistics for Beginners: A Step-by-Step Approach. Therese M. Donovan and Ruth M. Mickey,
Oxford University Press (2019). © Ruth M. Mickey 2019.
DOI: 10.1093/oso/9780198841296.001.0001



“Can’t you understand?” said Bobbie. “I’ve forgotten.”

“Forgotten!” I said.

“Yes,” said Bobbie, “Forgotten.”

“How do you mean, forgotten?” I said. “Forgotten whether it’s the twentieth or twenty-first, or what? How
near do you get to it?”

“I know it came somewhere between the first of January and the thirty-first of December. That’s how near
I get to it.”

“Think.”

“Think? What’s the use of saying ‘Think’? Think I haven’t thought? I’ve been knocking sparks out of my
brain ever since I’ve opened that letter.”

“And you can’t remember?”

“No.”

I rang the bell and ordered restoratives.

“Well, Bobbie,” I said, “it’s a pretty hard case to spring on an untrained amateur like me. Suppose
someone had come to Sherlock Holmes and said, ‘Mr. Holmes, here’s a case for you. When is my
wife’s birthday?’ Wouldn’t that have given Sherlock a jolt? However, I know enough about the game
to understand that a fellow can’t shoot off his deductive theories unless you start him with a clue, so
rouse yourself out of that pop-eyed trance and come across with two or three. For instance, can’t you
remember the last time she had a birthday? What sort of weather was it? That might fix the month.”

Bobbie shook his head. “It was just ordinary weather, as near as I can recollect.”

“Warm?”

“Warmish.”

“Or cold?”

“Well, fairly cold, perhaps. I can’t remember.”

I ordered two more of the same. They seemed indicated in the Young Detective’s Manual. Getting ideas
is like golf. Some days you’re right off, others it’s as easy as falling off a log. I don’t suppose dear old
Bobbie had ever had two ideas in the same morning before in his life; but now he did it without an
effort. He just loosed another dry Martini into the undergrowth, and before you could turn round it had
flushed quite a brain-wave.

Do you know the little books called “When YouWere Born”? There’s one for each month. They tell you your
character, your talents, your strong points, and your weak points at fourpence halfpenny a go. Bobbie’s idea
was to buy the whole twelve, and go through them till we found out which month hit off Mary’s character.
That would give us the month, and narrow it down a whole lot.

A pretty hot idea for a non-thinker like dear old Bobbie. We sallied out at once. He took half and I took
half, and we settled down to work. As I say, it sounded good. But when we came to go into the thing,
we saw that there was a flaw. There was plenty of information all right, but there wasn’t a single
month that didn’t have something that exactly hit off Mary. For instance, in the December book it said,
“December people are apt to keep their own secrets. They are extensive travelers.” Well, Mary had
certainly kept her secret, and she had travelled quite extensively enough for Bobbie’s needs. Then,
October people were “born with original ideas” and “loved moving.” You couldn’t have summed up
Mary’s little jaunt more neatly. February people had “wonderful memories”—Mary’s specialty.

We took a bit of a rest, then had another go at the thing.

Bobbie was all for May, because the book said that the women born in that month were “inclined to be
capricious, which is always a barrier to a happy married life;” but I plumped for February because February
women “are unusually determined to have their own way, are very earnest, and expect a full return in their
companion or mates,” which he owned was about as like Mary as anything could be.

In the end he tore the books up, stamped on them, burnt them, and went home.
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What a great example! Here, our task is to use a Bayesian inference approach
to determine the month in which Mary was born. For the purposes of this
chapter, let’s suppose that Bobbie at least knows that Mary was born in the
year 1900.
To begin, we have 12 discrete hypotheses (n = 12). Remember that Bayes’ Theorem can be

expressed as:

PrðHi jdataÞ ¼ Prðdata jHiÞ ∗PrðHiÞ
Xn

j¼1

Prðdata jHjÞ ∗PrðHjÞ
: ð6:1Þ

In words, the posterior probability for hypothesis i given the observed data (data) is written
PrðHi jdataÞ. It is equal to a proportion. The numerator consists of the likelihood of
observing the data under hypothesis i, which is written Prðdata jHiÞ, multiplied by the
prior probability of hypothesis i, which is written PrðHiÞ. The denominator repeats this

process for all 12 hypotheses, and sums them. The symbol
Xn

j¼1

means “sum;” in this case, it

could have been written
X12

j¼1

. The indices are from j = 1 to 12 to indicate that there are

12 pieces of information to sum together. In short, i indicates a specific hypothesis, whereas
j is the index of summation and indicates a term in the denominator.
OK, here we go.

Step 1. Identify your hypotheses. There are 12 months in a year, and these represent the
alternative hypotheses. Note that the hypotheses are mutually exclusive and exhaustive.
They are mutually exclusive because Mary’s birthmonth cannot occur in both October and
November. They are exhaustive because Reggie and Bobbie considered every possible
outcome with respect to Mary’s birth month. Let’s get our nomenclature down:

• January = January hypothesis
• February = February hypothesis
• March = March hypothesis
• Etc.

Step 2. Express our belief that each hypothesis is true in terms of probabilities. We do this
because Bobbie and Reggie are uncertain about which hypothesis is correct.

• Pr(January) = prior probability that Mary’s true birth month is January
• Pr(February) = prior probability that Mary’s true birth month is February
• Pr(March) = prior probability that Mary’s true birth month is March
• Etc.

Now we assign prior probabilities that each hypothesis is true. You may be wondering how
to set priors for a problem in general. Let’s peek in on a famous article written by Eliezer
Yudkowsky for some insight:

Q. How can I find the priors for a problem?

A. Many commonly used priors are listed in the Handbook of Chemistry and Physics.

Q. Where do priors originally come from?

A. Never ask that question.

Q. Uh huh. Then where do scientists get their priors?
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A. Priors for scientific problems are established by annual vote of the AAAS. In recent years the vote has
become fractious and controversial, with widespread acrimony, factional polarization, and several out-
right assassinations. This may be a front for infighting within the Bayes Council, or it may be that the
disputants have too much spare time. No one is really sure.

Q. I see. And where does everyone else get their priors?

A. They download their priors from Kazaa.

Q. What if the priors I want aren’t available on Kazaa?

A. There’s a small, cluttered antique shop in a back alley of San Francisco’s Chinatown. Don’t ask about
the bronze rat.

Ha ha! Seriously, now. When Bobbie and Reggie first started out, they had absolutely no
idea which month was the birth month. Consequently, they gave equal weight to each
hypothesis, which is 0.083. Remember that the sum of the probabilities that make up the
prior distributionmust be 1.0, so eachmonth has a probability of 1/12¼ 0.083. The chart in
Figure 6.1 depicts the prior probability distribution; the prior probability of each and every
alternative hypothesis is provided.

These are called non-informative priors and result in equal probabilities for all
hypotheses; that is, each month has the same prior probability of being Mary’s birth
month. Other terms for the same concept include vague or diffuse priors. A SAS webpage
on Bayesian analysis states that “a prior distribution is non-informative if the prior is ‘flat’
relative to the likelihood function.” Wikipedia defines a non-informative prior as a prior
that “expresses vague or general information about a variable…The simplest and oldest rule
for determining a non-informative prior is the principle of indifference, which assigns
equal probabilities to all possibilities.”

However, Reggie and Bobbiemight have used the information within the “WhenWere You
Born” books to set the priors differently. In that case, they would employ an informative
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Figure 6.1 Prior probability distribution.

A non-informative prior is a prior distribution that adds little or no information to the
Bayesian inference.When an analyst uses a non-informative prior, their goal is to obtain
a posterior distribution that is shaped primarily by the likelihood of the data.
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prior distribution. A SAS webpage states that “an informative prior is a prior that is not
dominated by the likelihood and that has an impact on the posterior distribution. If a prior
distribution dominates the likelihood, it is clearly an informative prior.” Wikipedia defines
an informative prior as a prior that “expresses specific, definite information about a vari-
able.” These could arise from expert opinion or from previous study.
We will return to this topic shortly.

Suppose Reggie and Bobbie believe that the February andMay hypotheses are more likely
than the rest based on the information in “WhenWere You Born.” Their informative prior
distribution may have looked like the one shown in Figure 6.2, with the sum of the
probabilities across hypotheses equal to 1.00.

Usually, though, an informative prior is based on previous scientific study or expert
opinion…this is probably not the case with “When You Were Born!”

Should Bobbie and Reggie use an informative prior?

Answer: Great question! The analyst must select a prior distribution. A colleague notes
that “the most important principle of prior selection is that your prior should represent the
best knowledge that you have before you look at the data.”He notes that it is unjustified to
use default, ignorance, or other automatic priors if you have substantial information that
can affect the answer (the posterior). Of course, this assumes that your best knowledge is
well founded, which perhaps is not the case here!

Step 3. Gather the data. In this case, we have one datapoint: one woman namedMary born
in the year 1900.
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Figure 6.2 Prior probability distribution.

An informative prior is a prior distribution that adds information to the Bayesian
inference. When an analyst uses an informative prior, their goal is to obtain a posterior
distribution that is shaped by both the prior and the likelihood of the data.
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Now that we have our data, Bayes’ Theorem can provide the posterior probability of her
birth month. Here’s Bayes’ Theorem again:

PrðHi jdataÞ ¼ Prðdata jHiÞ ∗PrðHiÞ
Xn

j¼1

Prðdata jHjÞ ∗PrðHjÞ
: ð6:2Þ

For example, the posterior probability that Mary was born in January can be written:

PrðJanuary j1MaryÞ ¼ Prð1Mary j JanuaryÞ ∗PrðJanuaryÞ
Xn

j¼1

Prð1Mary jHjÞ ∗PrðHjÞ
: ð6:3Þ

Step 4. Now Reggie and Bobbie need to estimate the likelihood of observing the data
(1 Mary) for each monthly hypothesis. As we’ve said, figuring out how to estimate the
likelihood of observing the data under each hypothesis is often the trickiest part of a
Bayesian inference problem.

What data do we need then?

Answer: For this problem, we need the rate at which girls are namedMary permonth. Let’s
suppose that we had data on the names of girls born each month in 1900 in an English
“shire” where Mary was born (see Table 6.1). These figures represent the data from which
we will calculate our likelihoods. Note that Mary—the subject of our story—is included
somewhere in this table, but we’re not sure where! (This doesn’t need to be the case,
however, for Bayesian analysis.)

We can represent these raw data as a frequency histogram, with the months on the
x-axis and the total number of births on the y-axis (see Figure 6.3). Remember that a
frequency histogram is a distribution of the raw data. You can see that, in 1900,
the name Mary is a popular winter name, but not so much at other times of the year.

Table 6.1

Months Female Births Marys

January 1180 57
February 963 14
March 899 22
April 1190 20
May 862 20
June 976 28
July 1148 11
August 906 10
September 1147 8
October 945 80
November 907 95
December 917 100
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Now we need to determine the likelihood of the data, assuming each hypothesis is true.
In this case, we need to determine how likely it is to observe a newborn namedMary in each
month. We need:

• Pr(1 Mary | January)
• Pr(1 Mary | February)
• Pr(1 Mary | March)
• Pr(1 Mary | April)
• etc.

The likelihood of being named Mary in each month is just the total Marys divided by the
total births. The graph in Figure 6.4 provides the likelihood of being named Mary for each
month in the year 1900. Notice the y-axis is probability (or likelihood) and that the shape of
this graph is similar to our frequency distribution but not exactly like it, since we had to
adjust for the fact that eachmonth had a different number of births. For instance, 20Marys
were born in both April and May, but in April there were 1190 births while in May there
were only 862 births.
Now we have the likelihood of observing a baby namedMary for eachmonth of the year.

It looks like October, November, and December are more popular when it comes to “Mary.”

Step 5. Use Bayes’ Theorem to compute the posterior probabilities Pr(January), Pr(Febru-
ary), Pr(March), and so on, given the data (a baby named Mary born in the year 1900, who
grew up to marry Bobbie).
At this point, we combine the priors and the likelihoods to get a posterior probability that

each month is Mary’s birth month with Bayes’ Theorem. We’ll use the informative priors
based on the “When You Were Born” books (Figure 6.2).
Let’s start by calculating the posterior probability of the January hypothesis:

PrðJanuary j1MaryÞ ¼ Prð1Mary j JanuaryÞ ∗PrðJanuaryÞ
Xn

j¼1

Prð1Mary jHjÞ ∗PrðHjÞ
: ð6:4Þ

Notice that the likelihoods are conditional for each hypothesis! In Bayesian analyses,
the likelihood is interpreted here as the probability of observing the data, given the
hypothesis.
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Figure 6.3 Frequency histogram of Marys by month.
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The numerator focuses on the January hypothesis, which multiplies the likelihood of
observing 1 Mary given the January hypothesis, Pr(1 Mary | January), multiplied by the
prior probablity of the January hypothesis, Pr(January).

From the likelihood distribution in Figure 6.4, the likelihood of being named Mary
in January is 0.048 (57 Marys/1180 female births in January). We multiply this by
the prior probability of the January hypothesis, which is 0.06. The product of these two
terms is 0.0029.

The denominator is a different beast. Here, we need to compute the likelihood of observ-
ing 1 Mary under each hypothesis, multiply the result by its corresponding prior, and,
finally, sum the results. Here, a table specifying all 12 hypotheses can help (see Table 6.2).

A few things to notice:

• Notice that for each month, the prior from Figure 6.2 is given, the likelihood from
Figure 6.4 is given, and the product of the two is given.

Table 6.2

Month Prior Likelihood Product Denominator Posterior

January 0.06 0.0483 0.0029 0.0342 0.0848
February 0.20 0.0145 0.0029 0.0342 0.0848
March 0.06 0.0245 0.0015 0.0342 0.0439
April 0.06 0.0168 0.0010 0.0342 0.0292
May 0.20 0.0232 0.0046 0.0342 0.1345
June 0.06 0.0287 0.0017 0.0342 0.0497
July 0.06 0.0096 0.0006 0.0342 0.0175
August 0.06 0.0110 0.0007 0.0342 0.0205
September 0.06 0.0070 0.0004 0.0342 0.0117
October 0.06 0.0847 0.0051 0.0342 0.1491
November 0.06 0.1047 0.0063 0.0342 0.1842
December 0.06 0.1091 0.0065 0.0342 0.1901

1.00 0.4821 0.0342 1.0000
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Figure 6.4 Likelihood of being named Mary by month.
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• The sums are provided in the bottom row of the table. The sum of the priors must be 1.0,
but this is not true for the likelihoods.

• The sum of the products (likelihood ∗ prior) is 0.0342. This is the denominator of Bayes’
Theorem for this problem, and it is fixed across the 12 hypotheses. What changes is the
numerator, and this depends on which hypothesis you are analyzing.

• The posterior probability for each month is then computed as the product divided
by the denominator. Note that the sum of the posterior probabilities across the hypoth-
eses is 1.0.

• Notice the prior probability was dominated by the February and May hypotheses. The
data show that most babies named “Mary” were born in October, November, or Decem-
ber; their likelihoods were higher. After observing the data, the posterior probabilities for
February andMaywere reduced, while the posterior probabilities for October, November,
and December were increased relative to the prior.

Is the divisor of Bayes’ Theorem always a constant?

Answer: Yes. The divisor is also called anormalizing constant. Here, we could calculate
it easily. But summing up the denominator is often a great challenge in Bayesian statistics.
As we’ll see later, inmany problems the divisor is an intractable calculation…a topic we will
visit in future sections of this book.
Now, let’s look at Bobbie and Reggie’s prior and posterior distribution side by side (see

Figure 6.5).

Bobbie and Reggie started with an “informative” prior based on the “When You Were
Born” books. They then collected data to calculate the likelihood of being named Mary in
the year 1900. They then used Bayes’ Theorem to confront each hypothesis by the data.
That is, they calculated the posterior probability for each hypothesis in light of the data.
Adding in “Mary data” along with the “When You Were Born” priors won’t get Bobbie

out of his pickle, but you can see that posterior distribution is quite different than the prior
distribution. At this point, Bobbie could use the posterior distribution as a prior distribution
if other sources of information became available.
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Figure 6.5 Informative prior distribution and posterior
distribution.
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What if the non-informative prior were used instead of the
“When You Were Born” prior?

Answer: Let’s take a look. Here are the calculations again, this time with equal priors in
column 2 (see Table 6.3).

Once again, notice that the sumof theprior probabilities across hypotheses is 1.00, as is the
sumof the posterior probabilities acrosshypotheses. For this examplewith anon-informative
prior, wenoted earlier that the likelihood drives the results. You can see this in action here for
the January hypothesis (as an example). If you were only making use of the data, you would
say that the probability that Mary was born in January is 0.0483/0.4821 ¼ 0.1000. Here, the
numerator is 0.0483, which is the probability that “our” Mary was born in January. The
denominator is the sum of all 12 likelihoods. Thus, even if we dropped the prior altogether,
we could get the posterior probability¼ 0.1000 as shown in the final column. This illustrates
what wemean when we said “with a non-informative prior, the likelihood of the data drives
the results.” However, with a Bayesian analysis, a prior distribution is required!

A graph of the prior distribution and posterior distribution looks like the one shown in
Figure 6.6.

Table 6.3

Month Prior Likelihood Product Denominator Posterior

January 0.083 0.0483 0.0040 0.0400 0.1000
February 0.083 0.0145 0.0012 0.0400 0.0300
March 0.083 0.0245 0.0020 0.0400 0.0500
April 0.083 0.0168 0.0014 0.0400 0.0350
May 0.083 0.0232 0.0019 0.0400 0.0475
June 0.083 0.0287 0.0024 0.0400 0.0600
July 0.083 0.0096 0.0008 0.0400 0.0200
August 0.083 0.0110 0.0009 0.0400 0.0225
September 0.083 0.0070 0.0006 0.0400 0.0150
October 0.083 0.0847 0.0070 0.0400 0.1750
November 0.083 0.1047 0.0087 0.0400 0.2175
December 0.083 0.1091 0.0091 0.0400 0.2275

1.000 0.4821 0.0400 1.0000

Month

Fe
br

ua
ry

Ja
nu

ar
y

M
ar

ch

A
pr

il

M
ay

Ju
ne Ju
ly

Au
gu

st

Se
pt

em
be

r

O
ct

ob
er

N
ov

em
be

r

D
ec

em
be

r0.00

0.05

0.10

0.15

Pr
ob

ab
ili

ty 0.20

0.25

0.30
Prior
Posterior

Figure 6.6 Non-informative prior distribution and
posterior distribution.
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Now, let’s compare the two posterior distributions, where one used an informative prior
and one used a non-informative prior. The chart in Figure 6.7 shows the posterior
distributions for the “non-informative” (flat) versus “informative” (When You Were
Born) priors that we’ve looked at thus far, with the non-informative results shown in blue:

So, the choice of the prior really affects the results?

Answer: Yes, this is why the selection of priors is important. If you have some information
at your disposal (assuming it is credible), you should use it. However, you should be able to
justify it.
The chart in Figure 6.7 is an example of aprior sensitivity analysis (Berger et al., 2000).

We are comparing two posterior distributions and assessing the effect of each prior distri-
bution’s influence on the posterior, which in turn affects our conclusions. A prior sensitivity
analysis is just one tool in the Robust Bayesian Analysis toolkit.
The word robust is defined as “strong and healthy; vigorous; sturdy in construction;

strong and effective in all or most situations and conditions.” According to Wikipedia,
“Robust Bayesian Analysis, also called Bayesian sensitivity analysis, investigates the robust-
ness of answers from a Bayesian analysis to uncertainty about the precise details of the
analysis” [article accessed August 15, 2017).

Are there other times when the prior drives the results?

Answer: Well, think about it. What if 1000 girls were born each month, and 15 of them
were always named Mary. We have observed a person who is named Mary. How likely is it
that she was born in January? February? The answer is that the likelihoods are identical for
each hypothesis. In this case, the posterior distribution will be identical to the prior
distribution!
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Figure 6.7 Posterior distribution with informative
vs. uninformative priors.

In Bayesian analysis and scientific deduction, a primary goal of the analyst is to collect
data that will discriminate the hypotheses.
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What is so tricky about setting the prior?

Answer: The tricky part comes into play when you really don’t have any information to
set the prior and are trying to be as objective as possible. That is, you want to level the
playing field so that all hypotheses have equal weight. The idea behind these approaches is
to select a prior that has absolutely no bearing on the posterior; that is, you would draw
similar conclusions from a statistical analysis that is not Bayesian. We’ve demonstrated
such an approach when you have discrete hypotheses such as the birthday problem.

However, setting a purely uninformative prior is no small task. In the words of Zhu and
Lu (2004), “flat priors are not necessarily non-informative, and non-informative priors are
not necessarily flat.” We are getting a bit ahead of ourselves though. For now, Hobbs and
Hooten (2015) present friendly and informative thoughts on setting priors.

I’ve heard the terms “objective” and “subjective” with reference to
Bayesian analysis. What do these mean?

Answer: Subjectivity generally is associated with a belief. In a sense, all priors are
subjective because the analyst must select one and, in doing so, exercises subjectivity.
The term objective prior normally refers to a prior that can be justified by rationality
and consistency. The general goal in using an objective prior is that different analysts with
the same information should arrive at the same conclusions.

This is well beyond our scope here, but we encourage you to dig deeper into this topic, as
it is fodder for a rich discussion.

What really happened to Bobbie and Mary?

Answer: Eventually, Bobbie remembered that he took Mary to a play for her birthday.
After a bit of detective work, he determined Mary’s birthday was May 8th.

And they lived happily ever after.

Isn’t that nice?

Answer: Yes, it really is! We have one more problem in Bayesian inference in this section,
and we think you’ll enjoy it. See you soon.
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CHAPTER 7

The Portrait Problem: Bayesian
Inference with Joint Likelihood

Ready for some fun? Let’s take a look at Figure 7.1.

Although you see this portrait frequently associated with Thomas Bayes, there is quite a
bit of dispute about whether it is really him (the Thomas Bayes). In this chapter, we’ll use a
Bayesian inference approach to address the problem. In the spirit of fun, the data used for
our example will be completely fabricated.
A key concept in this chapter is that you can combine multiple sources of data in a

Bayesian inference framework. By the end of this chapter, you will be familiar with the
following terms:

• Joint likelihood
• Frock coat
• Parson’s wig.

Let’s return to the portrait. The editors of the IMS Bulletin, a news source from the Institute
of Mathematical Statistics, posted the picture of “Thomas Bayes” shown above and offered
this challenge to its readers:

What is the probabilty
that I am Thomas Bayes?

Figure 7.1 Is this a portrait of Thomas Bayes?

Bayesian Statistics for Beginners: A Step-by-Step Approach. Therese M. Donovan and Ruth M. Mickey,
Oxford University Press (2019). © Ruth M. Mickey 2019.
DOI: 10.1093/oso/9780198841296.001.0001



• Who is this gentleman?
• When and where was he born?

The person submitting the most plausible answer was to receive a prize!
The image is taken from a 1936 book called History of Life Insurance by Terence

O’Donnell (American Conservation Co., Chicago). What an exciting book this must be!
The image appears with the caption “Rev. T. Bayes: Improver of the Columnar Method
developed by Barrett.” It’s not clear who added the caption or where the image came from.

Who won the bet?

Answer: According to the website, “The most plausible answer received in the Bulletin
Editorial office is from Professor David R. Bellhouse, University of Western Ontario, Lon-
don, Ontario, Canada. Professor Bellhouse wrote:

“The picture in The IMS Bulletin is supposedly of Thomas Bayes, who died in 1761 aged 59 and so was born
in 1701 or 1702. I have added “supposedly” since I believe that the picture is of doubtful authenticity. There
are three clues in the picture which lead me to this conclusion . . . For the purpose of comparison, consider the
pictures [see Figure 7.2] of three other Nonconformist ministers: on the left Joshua Bayes, Thomas’es (sic)
father (d. 1746); in the middle Richard Price (this portrait is dated 1776), who read Bayes’ paper before the
Royal Society; and on the right Philip Doddridge (1702–1751), who was a friend of Bayes’ brother-in-law,
Thomas Cotton.”

Bellhouse continues: “The first thing to note in this picture is the apparent absence of a wig, or if a wig is
present, it is definitely the wrong style for the period. It is likely that Bayes would have worn a wig similar to
Doddridge’s, which was going out of fashion in the 1740s, or a wig similar to Price’s, which was coming into
style at the same time. The second thing to note is that Bayes appears to be wearing a clerical gown like his
father or a larger frock coat with a high collar. On viewing the other two pictures, we can see that the gown is
not in style for Bayes’ generation and the frock coat with a large collar is definitely anachronistic. Finally,
Price is wearing a stock or wide collar on his shirt which appears around his neck in the picture; this was
fashionable from about 1730 to 1770. Since Doddridge, one generation younger, appears without any stock
or shirt collar, it is questionable whether Bayes would have worn a stock. However, the nineteenth century-
looking clerical collar in this picture is again anachronistic. For reference, I have used C.Willett Cunnington
and P. Cunnington, Handbook of English Costume in the Eighteenth Century, pub. Faber & Faber, London,
1964.”

Figure 7.2 (Left) Joshua Bayes; (middle) Richard Price; (right) Phillip Doddridge.
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So, Professor Bellhouse made his arguments based on fashion, which included the use
of wigs. In case you were wondering, a frock coat is a man’s double-breasted, long-skirted
coat, now worn primarily on formal occasions. And, in case you were wondering, a
Nonconformist is a Protestant Christian who did not “conform” to England’s Act of
Uniformity of 1662. Incidentally, Dr. Bellhouse wrote a biography of Thomas Bayes to
celebrate the tercentenary of his birth, which you can download here.

Why did men wear wigs in the 1700’s?

Answer from wiki.answers.com: Baldness, bugs, and image.

Answer from boston1775.blogspot.com: In the 1700’s, a gentleman’s white wig not
only told other gentlemen that he was one of them; it could also signify what kind of
gentleman he was. There were general styles worn by businessmen and planters, but
there were also particular styles linked to professions. Doctors, for example, wore a
“physick’s wig,” which Karin Calvert says “had a woolly, teased appearance known as a
natty bob.” Another specialized subset was the “parson’s wig,” suitable for ministers and
characterized by its “rows of neat curls.” Figure 7.3 shows some examples and variations
on the style.

So, how can we determine the probability that the man in the
photo is Thomas Bayes?

Answer: We are asked to determine the probability that the man pictured is actually
Thomas Bayes. Why not use a Bayesian inference approach to tackle this problem?
Remember that Bayes’ Theorem can be expressed as:

PrðHi jdataÞ ¼ Prðdata jHiÞ ∗PrðHiÞXn

j¼1
Prðdata jHjÞ ∗PðHjÞ

: ð7:1Þ

In words, the posterior probability for hypothesis i is the likelihood of observing the data
under hypothesis imultiplied by the prior probability of hypothesis i, divided by the sum of
likelihood times the prior across all hypotheses from j ¼ 1 to n.

Figure 7.3 “Wigs”.
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Where do we begin?We asked our colleague Anne Clark, who studies medieval saints at
the University of Vermont, “How do you determine the authenticity of things that
happened so long ago?” She replied, “You look for clues within the objects you have
in hand.”

If we had the portrait in hand, we could do things like analyze the paint.

Paint?

Answer: In our portrait, “Thomas” might be roughly 35–45 years old. If Thomas Bayes
was born in 1701 or 1702, the portrait would have been painted in the mid-1700’s, or mid-
18th century (just prior to the American Revolution). The white paint that was used in this
period is called “lead white.”

And how can lead white help us with dating the Thomas
Bayes’ portrait?

Answer: Lead white is a paint that includes, well, lead! Wikipedia notes that white lead
dating is a technique that is often used to pinpoint the age of an object up to 1,600
years old.

Great! Can we get started?

Answer: Umm, no. Presumably the actual portrait is long gone, and we’re
stuck with the printed image in O’Donnell’s book. But, we can get started
anyway . . . there are many other clues in the printed image that we can use.
Now, let’s get started.

We’ll use the same steps for Bayesian analysis that we have in previous chapters:

1. Identify your hypotheses.
2. Express your belief that each hypothesis is true in terms of prior probabilities.
3. Gather the data.
4. Determine the likelihood of the observed data, assuming each hypothesis is true.
5. Use Bayes’ Theorem to compute the posterior probabilities for each hypothesis.

Step 1. What are the hypotheses?

Answer: For this problem, we’ll consider just two hypotheses: the portrait is of Thomas
Bayes, and the portrait is not of Thomas Bayes.

Step 2. What are the prior probabilities that each hypothesis is true?

Answer: Your answer here! Is your answer informative or non-informative?
We need a prior distribution for our hypotheses, and for this chapter we will set the

prior to 0.5 for the “Thomas Bayes Hypothesis,” and 0.5 for the “Not Thomas Bayes
Hypothesis,” which are non-informative priors.
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Step 3. What are the data?

Answer: Do you recall the author problem in Chapter 5, where we used a Bayesian
inference approach to determine the probability that an unsigned Federalist Paper was
penned by Alexander Hamilton or James Madison? The data in that problem were the
words in the paper itself, and we focused on the frequency of the word upon in the
unsigned document. For this problem, we’ll consider the following sources of data that
are contained with this portrait of “Thomas Bayes”:

• Wigs! (or the lack thereof).We know thatmostministers in the 1700’sworewigs. Butnot all
of them! If allministersworewigs, therewouldbenochance that thisportraitwasofThomas
Bayes. ButmaybeThomaswas anon-conformingNonconformistwhorefused towearawig.

• Similarity of “Thomas Bayes” to Joshua Bayes. How much do you look like either of your
birth parents? In some cases, there are striking similarities, but not so much in other cases.
Wedon’t have the luxury ofDNA testing, but supposewecanmeasure characteristics suchas
eyebrow shape, nose length, forehead length, and so on of Joshua Bayes (from a known
portrait of ThomasBayes’ father) and “ThomasBayes,” and comeupwitha similarity index.
Suppose this index is an integer that ranges between0 and100,where 0 indicates absolutely
no similarity in any of themeasured features, and 100 is an identical clone. Thus, themore
similar that Thomas is to Joshua, themore evidencewehave that theman is Thomas Bayes.

So, we will be investigating two lines of evidence that we will assume are independent of
each other (the results of one line of reasoning will not affect the results of a second line of
reasoning).

OK, then. What are the observed data with respect to wigs?

Answer: The data here are either 0 or 1, where 0 indicates a wig is absent, and a 1 indicates
a wig is present. The man is clearly not wearing a wig, so the single observation
for this line of reasoning is 0.

And what are the observed data with respect to similarity?

The score is an overall similarity between the two men, based on things like eyebrow shape,
nose width,mouth shape, and any other facial feature that we canmeasure from the images.
Perhaps if “Thomas”werewearing awig, itmight be easier to focus on the facial features only.
Let’s give him one (see Figure 7.4)!

Figure 7.4 (Left) “Thomas” with a wig; (right) Joshua Bayes.
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At first glance, the eyebrows and nose have some resemblance, but the eyes and mouth
are off. Perhaps “Thomas” inherited these traits from his mother!

For this problem, let’s assume the similarity index ¼ 55.

So what is our final dataset for step 3?

Answer: For this problem, we’re sticking with the following data that we can observe from
the portrait itself:

• Wigs = 0
• Similarity = 55.

Step 4. What is the likelihood of the observed data under
each hypothesis?

Answer: This is a critical step.
We now have two sources of data, and we assume that each piece of information is

independent of the other. We can now calculate the likelihood of observing each piece
of data under each hypothesis (the portrait is of Thomas Bayes vs. the portrait is not of
Thomas Bayes).

Once we have the two likelihood calculations, we can compute the joint likelihood for
each hypothesis. You might recall that joint probability refers to the probability that
multiple events will occur together; here we are interested in the probability of observing
no wig and a similarity score of 55.

Let’s work through each piece of information separately for each hypothesis and then
compute the joint likelihood bymultiplying the two independent likelihood results together.

Should we start with wigs?

Answer: Good idea. We can’t directly calculate the likelihood that the man in the portrait
is Thomas Bayes, but we can calculate the likelihood that a middle-aged man who sits for a
portrait in the 1750’s is a minister who does not wear a wig.

Suppose we were able to collect this information on the population of interest (middle-
aged men who sit for a portrait in the 1750’s; see Table 7.1).

Table 7.1

Person Minister Wig

1 0 1
2 1 0
3 0 1
4 0 1
5 1 0
6 1 0
7 1 1
8 1 0
9 1 1
10 0 1
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Here, we show just the first 10 records of a 100 record dataset. We will refer to this as
dataset 1. The first column identifies a person, the second identifies if the person is a
minister or not (where 1 ¼ minister), and the third column identifies whether the person
was wearing a wig (where 1 = wig).

We can then summarize the results of all 100 of our records as a two-way table (see
Table 7.2).
Notice that this table has four “quadrants,” so to speak. Our actual data are stored in the

upper left quadrant, shaded the darkest blue. The upper right quadrant (shaded lighter) sums
the number of ministers (10) and non-ministers (90) in our dataset. The lower left quadrant
(shaded lighter) sums the number ofmen that wore a wig while sitting for a portrait (23) and
those that did not (77). The lower right quadrant (no shading) gives the grand total, 100.
Now let’s plot the results in the same Venn diagram (see Figure 7.5).

The box (which is not to scale) holds all 100 individuals in our dataset. Here, we can see
that 23% of the men wear wigs while sitting for a portrait. We can also see that 10% of all of
the men are ministers. And only 2% of the men sampled are ministers who do not
wear wigs.
Now, let’s ask how likely it is to observe our data, no wig, under the Thomas

Bayes hypothesis. The answer is 0.02 (2/100 ¼ 0.02), which is the joint probability that a
man that sits for a portrait in the mid 1700’s is a minister and does not wear a wig.
OK, now let’s ask how likely it is to observe our data, no wig, under the Not

Thomas Bayes hypothesis. This is trickier because the man in the portrait could be just

Table 7.2

Wig No Wig Sum

Ministers 8 2 10
Non-ministers 15 75 90

Sum 23 77 100

Ministers

815 2

Wig

∼Wig and ∼Minister 75

Figure 7.5
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about anyone. The answer here is 0.77, which is the marginal probability that a man who
sits for a portrait in the mid 1700’s will not wear a wig. That is the best we can do.

What about similarity between “Thomas Bayes” and Joshua Bayes?

Answer: Remember that we calculated a similarity score between “Thomas Bayes” and
Joshua Bayes, with a result of 55. Now we move to the question, what is the
likelihood of observing a similarity score of 55 under each hypothesis? Suppose
we are able to collect similarity scores between 1000 known fathers and sons and also
between 1000 pairs of unrelated men in England. The first 10 records of our dataset might
look something like that shown in Table 7.3.

The first column identifies a pair, the second identifies if the pair of males have a
father–son relationship (where 1 ¼ Yes), and the third column identifies their similarity
score. We will refer to this as dataset 2; note that it is separate from our wig dataset, or
dataset 1.

It might be useful to graph the data, where you can see that unrelated men tend to have
smaller relatedness scores, but that there are some scores (such as our observed score of 55 in
black) that can belong to either group (see Figure 7.6).

Table 7.3

Pair Related Similarity

1 0 31
2 0 80
3 0 29
4 0 71
5 1 60
6 1 61
7 1 26
8 1 39
9 1 29

10 1 75
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Figure 7.6 Similarity scores of related and unrelated
men in the mid-1700’s.
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How do we calculate the likelihood under each hypothesis?

Answer: Well, we don’t want to know the exact probability of observing 55. What we
really want to find is where our observed result falls in relation to the rest of a given
distribution. For instance, a score of 55 falls in the right-hand tail of the unrelated
distribution (left), but it falls in the left-hand portion of the related distribution
(right). To make these comparable, we need to quantify the area of each distribution
that is to the right of our observed similarity score of 55. Thus, 55 is our minimum score
of interest.

OK, then, what is the likelihood of observing a similarity score of 55 or
greater under each hypothesis?

Answer: Your answer here!

• For the Thomas Bayes hypothesis, the twomen (“Thomas” and Joshua) would be related.
If we look at the green distribution above, we see that roughly 69% of the similarity scores
between related men were greater than 55 (and 31% were below 55). Thus, the likeli-
hood of observing a similarity score of at least 55 under the Thomas Bayes
hypothesis is 0.69.

• For the Not Thomas Bayes hypothesis, the two men (“Thomas” and Joshua) would be
unrelated. If we look at the orange distribution above, we see that roughly 1% of the
similarity scores between unrelated men were greater than the observed value of 55 (and
99% were below 55). The likelihood of observing a similarity score of 55 or more given
they are unrelated is thus 1%.

So how do we combine both results into one likelihood for
each hypothesis?

Answer: If our two data sources are independent, we can simply multiply the two likeli-
hood components together:
For the Thomas Bayes hypothesis, that would be

• evidence from wigs ¼ 0.02 (the joint probability that a man that sits for a portrait in the
mid-1700’s is a minister who does not wear a wig)

• evidence from similarity score ¼ 0.69 (69% of known father–son similarity scores are at
least 55).

Thus, the likelihood of observing the data under the Thomas Bayes hypothesis is the
product of these terms:

0:02 ∗0:69 ¼ 0:0138: ð7:2Þ
For the Not Thomas Bayes hypothesis, that would be

• evidence from wigs ¼ 0.77 (the marginal probability that a man that sits for a portrait in
the mid-1700’s will not wear a wig)

• evidence from similarity score ¼ 0.01 (1% of unrelated men have similarity scores of at
least 55).
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Thus, the likelihood of observing the data under the Not Thomas Bayes hypothesis is the
product of these terms:

0:77 ∗0:01 ¼ 0:0077: ð7:3Þ

Step 5. What is the posterior probability that the portrait is of
Thomas Bayes?

Answer: Just use Bayes’ Theorem! Here, we have two hypotheses, so Bayes’ Theorem can
be written as:

PrðHi jdataÞ ¼ Prðdata jHiÞ ∗PrðHiÞX2

j¼1
Prðdata jHjÞ ∗PðHjÞ

: ð7:4Þ

Let’s assume the prior probabilities are 0.5 and 0.5. Then, the posterior probability that
the man in the portrait is Thomas Bayes is shown in Table 7.4.

Let’s go through this table together:

• Row 1 of the table is the Thomas Bayes hypothesis, and row 2 is the Not Thomas Bayes
hypothesis.

• Column 1 provides the priors, which we set at 0.5 and 0.5. Remember that these must
sum to 1.0.

• Column 2 is the joint likelihood of observing the two pieces of information we observed
under each hypothesis:
• wigs ¼ 0
• similarity score � 55

• Column 3 multiplies the prior times the likelihood, which gives us the numerator of
Bayes’ Theorem for each hypothesis.

• The sum of column 3 is the denominator of Bayes’ Theorem (the sum of the products of
the priors times the likelihoods).

• Column 4 calculates the posterior for each hypothesis as the prior ∗ likelihood column
divided by the denominator. Note that the two posteriors sum to 1.0.

So, for the inputs for thisfictitious problem, the posterior probability that the
man in the portrait is Thomas Bayes is 0.64, and the posterior probability that
it is someone else is 0.36. Two lines of evidence were used in this Bayesian
analysis.

Don’t forget that the data are fictitious! A graph of our prior and posterior distributions
can now be shown in Figure 7.7.

Table 7.4

Prior Likelihood Prior ∗ Likelihood Posterior

Thomas Bayes 0.5 0.0138 0.0069 0.64

Not Thomas Bayes 0.5 0.0077 0.00385 0.36

Sum 1.0 0.01075 1.00
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Are the two pieces of information really independent?

Answer: It depends. As the analyst, you would need to make an argument to justify the
calculation of the joint likelihood. Here, we are claiming that our two datasets are inde-
pendent and that both contribute to the likelihood calculations.

Can we add on more independent pieces of information?

Answer: Yes, you can. The more lines of reasoning you have, the more information you
can bring to bear on the likelihood calculations and, ultimately, on the comparison of your
hypotheses.

What if our information is not independent?

Answer: This is a lot trickier. For instance, we could ask about the use of frock coats in
portraits for the same time period. If we scored the wearing of frock coats along with the
use of wigs in dataset 1, we may confound the analysis because frock coats and wigs appear
to go hand in hand. In addition, if you had a completely different dataset that provided
similar information with respect to father–son similarity, adding it into the likelihood
mix could spell trouble if they are not independent. These situations are beyond our
scope here, but you might want to keep them in mind.

Are there any assumptions in this analysis?

Answer: Loads of them! This problem is meant to help you understand that Bayes’
Theorem can easily incorporate multiple sources of data, but each piece of information
that you consider must be carefully thought out.We havemademultiple assumptions here,
including

• wigs and similarity indices are independent, and
• a relative of Thomas Bayes is not the subject of the portrait.

You may have thought of more assumptions, and that is great.
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What is the main take-home point for this chapter?

Answer: The main take-home point is that Bayesian analysis can be very, very flexible. As
long as you can compute the likelihood of observing the data under each hypothesis, you
are golden. However, this is not always an easy task! But, assuming it can be done, you can
set up almost any kind of problem as a Bayesian inference problem.

Looking back at the portrait, who was Barrett, developer of the
columnar method?

Answer: We were really interested in the question of whether the portrait really is of
Thomas Bayes, so went ahead and purchased a copy of The History of Life Insurance by
Terrence O’Donnell to explore this further. There it was—the picture—on p. 335. The
picture does indeed have the caption “Rev. T. Bayes, Improver of the Columnar Method
developed by Barrett.” We searched high and low for any writing on Thomas Bayes, but
could not find anything in the book.

George Barrett, who proposed the columnar method in the calculation of annuities
(insurance), lived from 1752–1821. A Wikipedia author notes that “Barrett was the son of
a farmer of Wheeler Street, a small hamlet in Surrey. At an early age, although engaged in
daily labour, he made, unaided, considerable progress in mathematics, taking special
interest in the class of problems connected with the duration of human life. He afterwards,
during a period of twenty-five years (1786–1811), laboured assiduously at his great series of
life assurance and annuity tables . . . to whose support he devoted a great part of his
earnings.” O’Donnell himself weighs in by stating, “In 1810, George Barrett presented to
the Royal Society a new mode of calculating life Annuities. The old and honorable society
refused to publish the contribution, no doubt considering his deductions too reactionary.
However in spite of the frown of the Society, [Francis] Baily gave Barrett’s findings to the
world in the appendix of his very valuable work on Annuities and it immediately began to
influence sound actuarial thought of the time.”

Given that Thomas Bayes lived from around 1701 to 1761, it is hard to see how Bayes
could have improved Barrett’s method. When Bayes died, Barrett was 9 years old!
“Rev. T. Bayes”may have improved Barrett’s method, but it probably was not the Reverend
Thomas Bayes we’ve come to know and love.

What’s next?

Answer: This ends our section on Bayesian inference. In Section 3, we begin our journey
into the world of probability distributions, which opens upmany new possibilities for using
Bayes’ Theorem.
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SECTION 3

Probability Functions

Overview

Welcome to Section 3! Now that you’ve had a taste of what Bayesian inference is about, it’s
time to take Bayes’ Theorem to the next level. A major use of Bayes’ Theorem involves
parameter estimation, and, as such, it is critical that you have a firm understanding of
parameters and variables, and how they are related in a probabilistic way.
This section consists of only two chapters.

• Chapter 8 introduces probability mass functions (pmf). This chapter introduces the idea
of a random variable and presents general concepts associated with probability distribu-
tions for discrete random variables. The binomial and Bernoulli distributions are used as
examples of these probability mass functions (pmf ’s). The pmf ’s can be used to specify
prior distributions, likelihoods, and/or posterior distributions in Bayesian inference.

• Chapter 9 introduces probability density functions (pdf). The focus is on general con-
cepts associated with probability density functions (pdf ’s), which are distributions asso-
ciated with continuous random variables. The continuous uniform and normal
distributions are highlighted as examples of pdf ’s. These and other pdf ’s can be used
to specify prior distributions, likelihoods, and/or posterior distributions in Bayesian
inference.

A solid understanding of both pmf ’s and pdf ’s is absolutely essential if you are to become a
Bayesian analyst. In Bayesian analyses, we hypothesize about the values of unknown
parameters. In doing so, we regard the unknown parameter as a random variable generated
from some probabilistic distribution. In particular, we use probability functions to specify:

• prior distributions
• likelihood functions
• posterior distributions.

These chapters pave the way to Sections 4 and 5. Take your time with this material as it is
essential for your Bayesian journey.





CHAPTER 8

Probability Mass Functions

Hopefully you have a sense now of Bayes’ Theorem and how Bayesian inference is used to
update our belief in alternative hypotheses. One of the primary uses of Bayesian inference is
to estimate parameters. To do so, we need to first build a good understanding of prob-
ability distributions.
This chapter will present general concepts associated with probability distributions.We’ll

use the binomial and Bernoulli distributions as examples ofprobabilitymass functions
(pmf ’s). In Chapter 9, we’ll use the continuous uniform and normal distributions as
examples of probability density functions (pdf ’s). Although the two chapters will
contain only a few examples, the general concepts apply to other probability distributions.
These are fairly long chapters, and it may take a few readings for the material to sink in if

this is new material for you . . . so make sure to get up and stretch every now and then!
By the end of this chapter, you will be able to define and use the following concepts:

• Function
• Random variable
• Probability distribution
• Parameter
• Probability mass function (pmf)
• Binomial pmf
• Bernoulli pmf
• Likelihood
• Likelihood profile

Since this chapter is about functions, it makes sense to start by asking the following
question:

What is a function?

Answer: In math, a function relates an input to an output, and the classic way of writing
a function is

f ðxÞ ¼ : : : ð8:1Þ
For instance, consider the function shown in Figure 8.1.

Function name is f Function input is x Function output is x2

f(x) = x2

Figure 8.1

Bayesian Statistics for Beginners: A Step-by-Step Approach. Therese M. Donovan and Ruth M. Mickey,
Oxford University Press (2019). © Ruth M. Mickey 2019.
DOI: 10.1093/oso/9780198841296.001.0001



The function name is f. You can name your function anything you want, but f is a
commonly used name. The inputs go within the parentheses. Here, we have a single
input called x. The output of the function is a set of instructions that tell us what to do
with the input. In this example, we input a value for x; the instructions tell us that we
should square x to give us the output.

In other words, f(x) maps the input x to the output. We can visualize this as shown in
Figure 8.2.

For example, if you would like to convert Fahrenheit to Celsius, you can use the function:

f ðxÞ ¼ ðx−32Þ=1:8: ð8:2Þ
If you input 80 degrees Fahrenheit to this function, the output would be:

f ð80Þ ¼ ð80−32Þ=1:8 ¼ 26:7: ð8:3Þ
We are now positioned to introduce the term “variable.”Dictionary.com defines variable as
“capable of being varied or changed.” This is certainly true of temperatures on Planet Earth:
temperatures vary over time and space. Conventionally, variables are given a name, such as
T or C, where T represents temperature in degrees Fahrenheit, and C represents temperature
in Celsius. While the capital letters provide the name of the variable, specific values are
often indicated with lower-case letters (e.g., t ¼ 80, and c ¼ 26.7).

The Oxford Dictionary of Statistics (Upton and Cook, 2014) states that a variable is “the
characteristic measured or observed when an experiment is carried out or an observation is
made. Since a non-numerical observation can always be coded numerically, a variable is
usually taken to be numerical.” In other words, capital T or C is the characteristic measured,
and its value is usually numeric.

What is a random variable?

Answer: The Oxford Dictionary of Statistics (Upton and Cook, 2014) tells us, “When the
value of a variable is subject to random variation, or when it is the value of a randomly
chosen member of a population, it is described as a random variable—though the adjective
‘random’ may be omitted.”

Can you show an example?

Answer: Yes. Suppose you flip a fair coin three times, and record each head as “H” and
each tail as “T.” Let’s call three coin flips an experiment and start by listing all possible
outcomes:

• HHH
• THH

x f x2

Input(s) Function Output(s)

Figure 8.2
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• HTH
• HHT
• TTH
• THT
• HTT
• TTT

With two possible results (H or T), and three flips, there are 23¼ 8 possible outcomes. Count
them! These outcomes make up our sample space. If this doesn’t ring a bell, see Chapter 1
for a quick review.
Clearly, what you observe after 3 flips is determined at random. In this particular case, the

outcome of an experiment is not a number. It’s something like “HHT.” So, let’s define a
random variable called Y, where Y is the number of heads. Y can assume the values of 0,
1, 2, or 3. We will let lower-case y represent a particular value from a coin toss
experiment (see Table 8.1).

If we were to flip a coin three times, we don’t know with certainty whether its value, y,
will be 0, 1, 2, or 3. But we know that is has to be one of these values. That is, our random
variable is discrete—and it can take on a finite number of values. We can get an idea of
what the value could be if we assigned probabilities to each. Incidentally, discrete random
variables can also assume a countably infinite number of values, such as 0, 1, 2, . . . , to
infinity and beyond.

Is a random variable a function?

Answer: Yes! A random variable is a function with inputs that are outcomes of an
experiment (like “HHT”) and outputs that are numerical (like “2”). In many cases, the
inputs are already numerical, so the inputs are the same as the outputs.

Where do we go from here?

Answer: We’re often interested in knowing the probability of observing particular out-
comes. This brings us to the all-important topic of probability theory.

Table 8.1

Experiment Results

HHH THH HTH HHT TTH THT HTT TTT

y! 3 2 2 2 1 1 1 0

Probability theory is a branch of mathematics concerned with the analysis of random
phenomena. The outcome of a random event cannot be determined before it occurs, but
it may be any one of several possible outcomes. The actual outcome is considered to be
determined by chance (source: https://www.britannica.com/topic/probability-theory;
article accessed August 17, 2017).
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What is the probability of observing y ¼ 3 heads?

Answer: If each of the 8 possible outcomes listed in Table 8.1 are equally likely (the coin is
fair), then we can count how many times the event y ¼ 3 appears out of 8 total. It appears
once, so:

PrðY ¼ y ¼ 3Þ ¼ 1=8 ¼ 0:125: ð8:4Þ
The notation Pr indicates probability. This is the probability that a random variable named
Y will take on the value y ¼ 3. The answer is 0.125.

How do we move from the probability of a given value of Y to the
probability distribution for all possible values of Y?

The next step moves us from the probability of a specific value of Y such as y ¼ 3 to all
possible values of Y, which can be seen in the header of Table 8.2. The possible values of
Y are 3, 2, 1, and 0. The number of times each of these values appears out of the 8 events is
given in row 1, and the probability is given in row 2. Notice that the sum of the
probabilities of observing all possible values of Y is 1.0.

Is this an example of a probability distribution?

Answer: Yes, it is. From the Oxford Dictionary of Statistics (Upton and Cook, 2014):
“Probability distribution: A description of the possible values of a random variable, and of
the probabilities of occurrence of these values.”

We divided our sample space into subsets by defining the variable Y, which is the number
of heads that can possibly appear with three flips of a coin, and assigned a probability to each.

Is this also a probability mass function?

Answer: Ah, yes . . . the title of this chapter. It is!
From The Oxford Dictionary of Statistics: “For a discrete random variable X, the prob-

ability mass function (or p.m.f.) of X is the function p such that pðxiÞ ¼ PrðX ¼ xiÞ, for all i.”
In this definition, they use X instead of Y, and they use p instead of f for the function name.

FromWikipedia: “In probability theory and statistics, a probabilitymass function (pmf)
is a function that gives the probability that a discrete random variable is exactly equal to
some value.” This definition would apply to all possible values, and the probabilities across
all values must sum to 1.

Sounds like a match, doesn’t it?

Table 8.2

y

0 1 2 3

Frequency 1 3 3 1
Pr(Y ¼ y) 0.125 0.375 0.375 0.125
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What if we had flipped the coin 10 times?

Answer:OK then! Each experiment now contains 10 flips. We’d do precisely the same thing.
We’d write out all possible outcomes, determine the associated values of Y, and then assign
to each a probability. Y is still the number of heads, and Y can assume values 0, 1, 2, . . . , 10.
For instance, we could end up with 10 heads, which would be HHHHHHHHHH. Or we
could end up with 0 heads (10 tails), which would be TTTTTTTTTT. Or we could end up
with 5 heads and 5 tails, and every combination in between. With two outcomes per flip
(H or T), our sample space would consist of 210 ¼ 1024 possible outcomes!
Remember, our variable Y can take on values of y ¼ 0, 1, 2, . . . , 10. Here are a few

examples:

• HHHHHHHHHH ! 10
• TTTTTTTTTT ! 0
• HTHTHTHTHT ! 5
• HHHHHTTTTT ! 5

Go ahead and list all of these outcomes and assign a probability to each. There
are only 1024 calculations, so it shouldn’t take too long.

Really?

Answer: Ha ha! Gotcha! Can you see what a chore that would be?
We need a function that will let us easily compute, for example, the probability of

observing y ¼ 5, or observing 5 heads in 10 coin flips. The binomial probability mass
function can aid us with this task.

OK, what does “binomial” mean?

• bi means “two”
• nomial means “name”

So, the word “binomial” means “two names.” In probability theory, it generally means
“two outcomes.” All binomial problems are composed of trials that have only two
possible outcomes (e.g., success or failure, live or die, heads or tails, present or absent).
Traditionally, we label one outcome a “success,” and the other a “failure.” For this
problem, let’s call heads a “success,” which means that tails is a “failure.” It doesn’t
matter which outcome you label a “success” and which you label a “failure,” as long as
you are clear about your choice!

When do we use binomial probability?

Answer: The binomial probability function is widely used for problems where there are a
fixed number of independent tests or trials (designated n) and where each trial can have
only one of two outcomes. Statistics textbooks worldwide use coin flipping as a way to
demonstrate the binomial distribution.
Let’s return to our 3 coin flip example, where the coin is fair. Remember that we created a

variable called Y, and it can take on values y¼ 0, 1, 2, 3. Often, you’ll see this written y¼ 0, 1,
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2, . . . , n, where n is the highest possible value that the random variable can take. The actual
number of heads observed is subject to chance. Earlier, we calculated the probability of
observing 0, 1, 2, 3 heads in 3 coin flips by hand (see Table 8.3).

Now we’ll use the binomial probability mass function instead.

What does the binomial probability mass function look like?

The binomial function is written below (Equation 8.5). Notice the f notation, which denotes
that it is a function named f. The inputs to the function are provided within parentheses:

f ðy;n; pÞ ¼ n
y

� �
pyð1−pÞðn−yÞ y ¼ 0;1; : : : ;n: ð8:5Þ

Instead of f(x), we have f(y; n, p). The semicolon is read “given.” This is read as the
probability of y successes, given n trials and probability p of success. So this function
requires three inputs: y, n, and p.

Two of the inputs are called parameters: n and p. We will discuss what a parameter is
shortly.

• n ¼ the total number of trials (in our case, n ¼ 3 coin flips or 3 trials)
• p¼ the probability of success (in our case, the probability of flipping a heads, which is 0.5

each time if the coin is fair)

The third input, y, is the observed number of successes in the experiment. The lower-case y
represents the value of a random variable, and y can take on the discrete values 0, 1, 2, . . . , n.

Given these inputs, the instructions for creating the output is provided on the right side
of the equals sign. For example, we can use the binomial function to calculate the prob-
ability of observing 2 heads in 3 flips when the coin is fair as:

f ðy;n; pÞ ¼ n
y

� �
pyð1−pÞðn−yÞ y ¼ 0;1; : : : ;n: ð8:6Þ

f ð2; 3;0:5Þ ¼ 3
2

� �
0:52ð1−0:5Þð3−2Þ: ð8:7Þ

The semicolon here means “given.” The entire left side of the equation can be read “the
probability of observing 2 heads, given 3 coin flips and a probability of a heads equal to 0.5,”

Table 8.3

y

0 1 2 3

Frequency 1 3 3 1
Pr(Y ¼ y) 0.125 0.375 0.375 0.125

You may also see this written as f(y | n, p), where the vertical bar means “given.” In this
book, we use the semicolon notation to avoid any confusion with the conditional
probability terms in Bayes’ Theorem.
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or in general terms, “the probability of 2 successes in 3 trials given the probability of success
on each trial is equal to 0.5.” This is equivalent to writing:

PrðY ¼ 2Þ ¼ f ðy ¼ 2; n ¼ 3; p ¼ 0:5Þ ¼ 3
2

� �
0:52ð1−0:5Þð3−2Þ: ð8:8Þ

This might look weird to you, but mathematicians use this notation because, to them, it is
super-clear and concise. The left term Pr(Y¼ 2) asks what is the probability that our random
variable named Y has a value of 2. This is equivalent to the binomial pmf where y ¼ 2,
n ¼ 3, and p ¼ 0.5. We use the pmf to calculate the probability.

Let’s now break the right-hand side of the binomial probability function (the output)
into pieces:

• The term py gives p (the probability of success, or heads) raised to the number of times
the success (heads) occurred (y). This term calculates the probability of observing y
independent successes together in one experiment, just as we did at the beginning of
the chapter.

• The term (1 − p)n−y gives the probability of a failure (or tails) raised to the number of times
the failures (tails) occurred, which is (n − y). This term calculates the probability of
observing y independent failures together in one experiment, just as we did at the
beginning of the chapter.

To calculate the probability of flipping 2 heads out of 3 trials, we need to observe a success y
times (2 heads), andweneed to observe a failure n − y times (1 tail). So far, our result would be:

0:52 ∗ ð1−0:5Þ1 ¼ 0:125: ð8:9Þ
But if you flip a fair coin 3 times, as we’ve seen, there is more than one way you could end
up with 2 heads and 1 tail. For instance, the sequence could be:

• HHT
• THH
• HTH.

In our problem, we are asked to compute the probability of getting 2 heads in 3 flips, given
that the coin is fair. We don’t care about the actual sequence of the outcomes, so we need to
account for all of the various possible ways we can end up with 2 heads in 3 flips. The

portion of the binomial probability function in brackets
n
y

� �
is called the binomial

coefficient and accounts for ALL the possible ways (combinations) in which two heads
and one tail could be obtained.
You can compute the binomial coefficient by hand:

n
y

� �
¼ n!

y!ðn−yÞ! ð8:10Þ

3 ∗2 ∗1
2 ∗1 ∗ ð1Þ ¼

6
2
¼ 3: ð8:11Þ

Thus, there are 3 ways of getting 2 heads in 3 flips, which we confirmed earlier. Wemultiply
3 by 0.125 to get our final answer: 0.375. The binomial probability of getting exactly two
heads out of 3 coin flips, given that the coin is fair, is:

f ðy; n; pÞ ¼ n
y

� �
pyð1−pÞðn−yÞ y ¼ 0; 1; : : : ;n ð8:12Þ
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f ðy ¼ 2;n ¼ 3; p ¼ 0:5Þ ¼ 3 ∗0:52 ∗ ð1−0:5Þ1 ¼ 0:375: ð8:13Þ
This is the same answer we got when we calculated the probability by hand (Table 8.3).

Similarly, we could use the function to compute the probability of observing, say, 0 heads
and 3 tails. That would be:

f ðy;n; pÞ ¼ n
y

� �
pyð1−pÞðn−yÞ y ¼ 0;1; : : : ;n ð8:14Þ

f ð0;3;0:5Þ ¼ 3
0

� �
∗0:50 ∗ ð1−0:5Þ3 ð8:15Þ

f ð0;3; 0:5Þ ¼ 3!
0!ð3−0Þ! ∗0:5

0 ∗ ð1−0:5Þ3 ð8:16Þ

f ð0;3;0:5Þ ¼ 1 ∗1 ∗0:125 ¼ 0:125: ð8:17Þ
Don’t forget that zero factorial (0!) is equal to 1. Notice that in the first example we added
the names of the inputs (i.e., y, n, and p), while in the second example we did not. You’ll see
this both ways in the literature. And now let’s double-check these results with the table of
results we showed previously (see Table 8.4).

Great! We hope you can see that a pmf such as the binomial pmf is a super-handy tool
(function) that returns probability very quickly. The proof of this function is credited to
Jakob Bernoulli (Bernoulli, 1744), a Swiss mathematician (see Figure 8.3). His tomb bears
the inscription “Jakob Bernoulli, the incomparable mathematician.”

Table 8.4

y

0 1 2 3

Frequency 1 3 3 1
Pr(Y ¼ y) 0.125 0.375 0.375 0.125

Figure 8.3 Jakob Bernoulli.
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What notation should I use to describe a binomial process like
coin flipping?

If we have an experiment that has independent trials and a constant probability of success,
we can indicate that a random variable Y arises from a binomial process as:

Y � Binomialðn; pÞ: ð8:18Þ
If we flip a coin three times and the coin is fair, we can say:

Y � Binomialð3;0:5Þ: ð8:19Þ

What is a binomial distribution?

Answer: The binomial distribution is a display of all possible outcomes of y, given the
n and p. In other words, we can use the binomial function to compute the probability of
observing 0, 1, 2, 3 heads out of 3 flips, given that the coin is fair (probability of heads ¼
probability of tails ¼ 0.5; see Table 8.5).

The sum of the probabilities that make up the binomial distribution must be 1.00.
We can then graph the results as in Figure 8.4.

This is a binomial distribution whose parameters are n ¼ 3 and p ¼ 0.5. The full range
of possible outcomes is given on the x-axis, and the binomial probability is given on the y-axis.
Can you find the probability of observing 2 heads out of 3 coin flips, given that the coin

is fair?

Table 8.5

Successes Probability

0 0.125
1 0.375
2 0.375
3 0.125
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Figure 8.4 Binomial distribution: n ¼ 3, p ¼ 0.5.
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How about the probability of observing 2.5 heads out of 3 coin flips,
given that the coin is fair?

Answer: This is an impossible result! You cannot observe 2.5 heads.

What is a parameter?

Answer: The Oxford Dictionary of Statistics (Upton and Cook, 2014) defines it as “a
constant appearing as part of the description of a probability function . . . The shape of
the distribution depends on the value(s) given to the parameter(s).”

The parameters of a probability distribution define how the distribution looks: change
the parameters, and you change the shape and location of the distribution. Some authors
describe parameters as the “knobs” or “controls” of a function.

Let’s return to our 10 coin flip example. Figure 8.5 shows the binomial distribution when
n ¼ 10 and p ¼ 0.5 (note that p, the probability of success, is still 0.5, but n, the number of
trials, has changed from 3 to 10).

In this example, the full range of possible values for our variable is 0 to 10. Did you notice
that the binomial distribution is symmetric when p is 0.5?

Symmetry is not always the case. To illustrate, Figure 8.6 shows yet another binomial
distribution, this time when n ¼ 100 and p ¼ 0.05 (note that p, the probability of success,
was changed from 0.5 to 0.05, and n was changed from 10 to 100).
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Figure 8.5 Binomial distribution: n ¼ 10, p ¼ 0.5.
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Figure 8.6 Binomial distribution: n ¼ 100, p ¼ 0.05.
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See how different they look? All three graphs are binomial probability distributions, but
they have different parameters (n and p). The x-axis should extend to the maximum
number of possible successes. The y-axis often ranges between 0 and 1 but is sometimes
truncated, as in Figure 8.6. Changing the y-axis does not change the distribution at all: it
just magnifies or shrinks how the distribution is displayed.

When it comes to probability mass functions, the values of the parameters identify
which binomial distribution you are talking about; they determine the shape of the distri-
bution (the distribution of probabilities along the y-axis) and its location along the x-axis.
Does the “knob” or “control” image work for you?

What are the assumptions of the binomial probability
mass function?

Answer: There are three of them.

1. The trials are independent.
2. There are two possible outcomes (success and failure) on each trial.
3. The probability of success is constant across trials.

The idea that p is constant is pretty straightforward: if we flip a coin 10 times, and p ¼ 0.5,
this means that p is held at 0.5 for each and every flip. The concept of independence relates
to the outcomes of two or more flips. If we flip a coin and it turns up heads, this outcome
has absolutely no bearing on what the result of the next flip will be.

Are there other probability mass functions besides the binomial?

Answer: You bet. A few that come to mind are:

• Negative binomial
• Bernoulli distribution
• Poisson distribution
• Discrete uniform distribution
• Geometric distribution
• Hypergeometric distribution

We will touch on the Bernoulli function in this chapter and discuss a few others in future
chapters.

What do all of these functions have in common?

Answer: In each, there is a discrete random variable, say Y. For possible values the random
variable can assume, f(y) is a probability, written Pr(Y ¼ y), and thus f(y) must assume values

Nomatter what range you use for the y-axis, the sum of the bars will still be equal to 1.0.
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between 0 and 1. The values of f(y) must sum to 1 for all values that Y can assume. This is the
definition of a probability mass function.

All right then . . .what is the Bernoulli distribution?

Answer:
From The Oxford Dictionary of Statistics (Upton and Cook, 2014): The distribution of a

discrete random variable taking two values, usually 0 and 1.
From Wikipedia: In probability theory and statistics, the Bernoulli distribution,

named after Swiss scientist Jakob Bernoulli, is the probability distribution of a random
variable which takes the value 1 with success probability of p and the value 0 with failure
probability of q ¼ 1− p.

In short, a Bernoulli distribution is a special case of a binomial distribution
inwhich the number of trials isn¼ 1. If we have just one coin flip (n¼ 1) and the coin
is fair (p ¼ 0.5), then we can use the binomial pmf to calculate the probability that the
result is heads (y ¼ 1) as:

f ðy;n; pÞ ¼ n
y

� �
pyð1−pÞðn−yÞ y ¼ 0;1; : : : ;n ð8:20Þ

f ð1;1; 0:5Þ ¼ 1 ∗0:51 ∗ ð1−0:5Þ0 ¼ 0:5: ð8:21Þ

If the coin was not fair, such that the probability of getting a heads is 0.4, then we
would have:

f ðy;n; pÞ ¼ n
y

� �
pyð1−pÞðn−yÞ ð8:22Þ

f ð1;1; 0:4Þ ¼ 1 ∗0:41 ∗ ð1−0:4Þ0 ¼ 0:4: ð8:23Þ
Some things are worth pointing out here. First of all, with 1 trial, the binomial
coefficient is 1.

Let’s run through the probability of observing a success:

• With 1 trial, if we have a success, the term py is the same as p1, which is just p.
• With 1 trial, if we have a success, the term (1 − p)0 is 1. Remember that anything raised to

the power of 0 is 1.0.
• Multiply 1 (the binomial coefficient) by p and then by 1 and you end up with p.

Now let’s run through the probability of observing a failure:

• With 1 trial, if we have a failure, the term py is the same as p0, which is 1.
• With 1 trial, if we have a failure, the term (1 − p)1 is (1 − p).
• Multiply 1 (the binomial coefficient) by 1 and then by (1 − p), and you end up with (1 − p).

Thus, with a single trial, the probability of getting a success is the same thing as p, and the
probability of getting a failure is the same thing as (1 − p).

Because of these properties, the Bernoulli distribution is often written as:

f ðy;1; pÞ ¼ pyð1−pÞð1−yÞ: ð8:24Þ

98 BAYESIAN STATISTICS FOR BEGINNERS



The Bernoulli distribution provides the probabilities for all possible outcomes. With only 1
trial, there are only two possible results, and a graph of the distribution looks like the one
shown in Figure 8.7.

We mention the Bernoulli distribution because we will be using it later in this chapter
and in future chapters. Incidentally, you can think of a binomial distribution as a series of
independent Bernoulli trials.

Likelihood

Now, let’s gracefully roll into the concept of likelihood when dealing with probability mass
functions. Likelihood is a key concept in Bayesian inference . . . remember that Bayes’
Theorem can be expressed as shown in Figure 8.8.
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Figure 8.7 Bernoulli distribution: n ¼ 1, p ¼ 0.4.

Pr(B | A) * Pr(A) + Pr (B | ∼A) * Pr(∼A)

Pr(B | A) * Pr(A)
Pr(A | B) =

Posterior probability
of hypothesis A,

given data B

Likelihood of the
data, B, given
hypothesis A

Prior probability of
hypothesis A

Likelihood of the
data, B, given

hypothesis ∼A
Prior probablity of

hypothesis ∼A

Figure 8.8
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If we let a given hypothesis stand in for A, and our data stand in for B, then this equation
can be written as:

PrðHi jdataÞ ¼ Prðdata jHiÞ ∗PrðHiÞXn
j¼1

Prðdata jHjÞ ∗PrðHjÞ
: ð8:25Þ

In words, the posterior probability for hypothesis Hi is the likelihood of observing the
data under hypothesis i (green) multiplied by the prior probability of hypothesis i, divided
by the sum of the likelihood ∗ the prior across all j ¼ 1 to n hypotheses.

In short, you must understand the concept of likelihood! In previous chapters, we tried to
give you a general feel for likelihood . . . now it is time to dig deeper.

OK, what exactly is likelihood?

Answer: As noted in Chapter 5, Dictionary.com provides three definitions of likelihood:

1. The state of being likely or probable; probability.
2. A probability or chance of something: There is a strong likelihood of his being elected.
3. Archaic: indication of a favorable end; promise.

Here, likelihood is another word for probability. As we’ll see in our next chapter, likeli-
hood can refer probability density as well. We’ll save that tidbit for Chapter 9.

There is a subtle difference, though, in how the term is used in statistical analysis, where
likelihood describes the probability of observing data that have already been
collected. That is, we have data (outcomes) in hand, and we look retrospectively at the
probability of collecting those data under a given set of parameters.

Indeed, the Cambridge Dictionary of Statistics (Everitt, 1998) formally defines likelihood
as “the probability of a set of observations given the value of some parameter or set of
parameters.”

Why is this important?

Answer: As we’ve seen, a component of Bayes’ Theorem is the Pr(data | H), which is “the
probability of the data, given a hypothesis.” If the data are in hand, then the term
“likelihood” is often used in its stead. Thus, when you see Pr(data | H) in Bayes’ Theorem,
a likelihood computation is required.

Throughout this book, the likelihood term in Bayes’ Theorem is expressed as Pr(data | H)
when there are discrete hypotheses under consideration.When the likelihood is actually
computed, we will express this as ℒðdata;HÞ, where ℒ symbolizes “likelihood” and the
semicolon means “given.”We do this to distinctly identify the likelihood term in Bayes’ Theorem
from the actual calculation.

Notice that the likelihoods are conditional on each hypothesis! In Bayesian analyses, the
likelihood is interpreted as the probability of observing the data, given the hypothesis.
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As a side note to our readers who previously have studied maximum likelihood methods,
read the box below:

Are there any other key points to bear in mind regarding likelihood?

Answer: Yes. We’ve mentioned in previous chapters that the likelihood computations do
not need to sum to 1.00. This is in sharp contrast to the prior and posterior distributions in a
Bayesian analysis, which must sum to 1.00. Don’t ever forget this!

Can we quickly confirm that the likelihoods do not need
to sum to 1.0 here?

Answer: Of course. Suppose you are given 2 heads out of 3 coin flips, but you don’t know
p. We can plug in many alternative values (hypotheses) for p and use the binomial pmf to
compute the likelihood for each and every combination (see Table 8.6).

Here, the left column represents different hypothesized values for p (the probability of
success). The right column represents the likelihood of observing 2 heads out of 3 flips
given a particular value for p.
A few things worth pointing out:

• p can assume a value in the range of 0 to 1, so there are an infinite number of possibilities
we could examine; we just recorded 11 cases.

Table 8.6

p Likelihood

0 0
0.1 0.027
0.2 0.096
0.3 0.189
0.4 0.288
0.5 0.375
0.6 0.432
0.7 0.441
0.8 0.384
0.9 0.243
1 0

You may have seen likelihood expressed as the likelihood of the parameters given
the data. For example, the likelihood of the parameter, θ, given the data, y, can
be written ℒðθ; yÞ or ℒðθ j yÞ. This is fairly conventional, but can be confusing when related
to Bayes’ Theorem. Regardless of the notation used, you must enter values for θ and y to
calculate a result.
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• When the probability of success is 0, the likelihood of observing 2 heads out of 3 flips is 0.
It’s impossible to observe ANY heads if the probability of flipping a head is 0!

• When the probability of success is 1.0, the likelihood of observing 2 heads out of 3 flips
is 0. If the coin MUST land heads, then it is impossible that you observe any tails!

• The sum of the second column does not equal 1.00.

Let’s graph our results across a full spectrum of p alternatives (see Figure 8.9).

This is a likelihood profile of the binomial function when n ¼ 3 and y ¼ 2. On the
x-axis is the unknown parameter, p, which ranges from 0 to 1. On the y-axis is the likelihood
value. The graph shows the range of likelihood values possible, given the data y ¼ 2, n ¼ 3.
Let’s look more closely:

• Find the likelihood of observing y ¼ 2 if p ¼ 0.4 in Table 8.6 and match it to Figure 8.9.
• Find the likelihood of observing y ¼ 2 if p ¼ 0.5 in Table 8.6 and match it to Figure 8.9.
• The gray dotted lines will help you, and we’ll revisit these soon.

Some other things are worth pointing out:

• We can plug in ANY value for p between 0 and 1 and calculate the likelihood of the data
given the parameters.

• That means there are an infinite number of possible values plotted along the x-axis. For
instance, we could compute the likelihood that p is 0.3, 0.301 0.302, and so on.

• The likelihood profile is often drawn as curved lines rather with bars if the parameter
depicted along the x-axis is continuous.

• And the area under the likelihood curve is not equal to 1.0.

How would this be used in a Bayesian inference problem?

Answer: OK! Let’s try to put together everything we’ve learned so far!
Let’s go through a quick example where we are considering just 2 hypotheses. Remember

that Bayes’ Theorem can be expressed as shown below, with the likelihood portion shown
in green:
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Figure 8.9 Likelihood distribution: n ¼ 3, y ¼ 2.
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PrðHi jdataÞ ¼ Prðdata jHiÞ ∗PrðHiÞXn
j¼1

Prðdata jHjÞ ∗PrðHjÞ
: ð8:26Þ

In fact, although this is not conventional, we could write Bayes’ Theorem as:

PrðHi jdataÞ ¼ ℒðdata jHiÞ ∗PrðHiÞXn
j¼1

ℒðdata jHjÞ ∗PrðHjÞ
: ð8:27Þ

Suppose we have two hypotheses for our coin in terms of fairness. A friend gives you the
coin and tells you that the coin is either fair (p ¼ 0.5) or that it is weighted such that the
probability of observing heads is only 0.4. These are the only two options.
We can now write out the posterior probability for hypothesis 1 with the expanded

denominator of Bayes’ Theorem as:

PrðH1 jdataÞ ¼ Prðdata jH1Þ ∗PrðH1Þ
Prðdata jH1Þ ∗PrðH1Þ þ Prðdata jH2Þ ∗PrðH2Þ : ð8:28Þ

Let’s review the steps of Bayesian analysis:

Step 1. What are the hypotheses?

Answer:

• H1 is the fair hypothesis: the coin is fair so that the probability of heads is 0.5 (p ¼ 0.5).
• H2 is the unfair hypothesis: the coin is weighted so that the probability of heads is 0.4

(p ¼ 0.4).

There are two discrete hypotheses (and we’ll assume these are the only two possibilities).

Step 2. What were the prior probabilities for each hypothesis?

• Let’s set the prior probability for each hypothesis ¼ 0.5. In other words, we give equal
weights to the hypothesis that the coin is fair and to the hypothesis that the coin is
weighted. In this case, we have no a priori reason to think that one hypothesis is more
likely to be true than the other.

So our prior distribution looks like Figure 8.10:

0.0
H1: p = 0.5 H2: p = 0.4

0.2

0.4

0.6

0.8

1.0

Figure 8.10 Prior distribution for a coin’s probability of heads.
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Thus, we are using a Bernoulli distribution to set our priors for the two alternative
hypotheses (p¼ 0.5 and p¼ 0.4), and the probability associated with each hypothesis is 0.5.
In contrast to the Hamilton andMadison hypotheses in Chapter 5, here we have alternative
hypotheses for a parameter.

Step 3. Collect data.

• Let’s assume you tossed a coin 3 times, and ended up with 2 heads.

Step 4. Compute the likelihood of the data under each hypothesis.

• For the fair hypothesis (p ¼ 0.5):

Prðdata jH1Þ ¼ ℒðdata jH1Þ ¼ n
y

� �
pyð1−pÞðn−yÞ ð8:29Þ

Prðdata jH1Þ ¼ ℒðdata;H1Þ ¼ 3
2

� �
0:52ð1−0:5Þð3−2Þ ¼ 3 ∗0:52 ∗0:51 ¼ 0:375: ð8:30Þ

• For the unfair hypothesis (p ¼ 0.4):

Prðdata jH2Þ ¼ ℒðdata;H2Þ ¼ n
y

� �
pyð1−pÞðn−yÞ ð8:31Þ

Prðdata jH2Þ ¼ ℒðdata;H2Þ ¼ 3
2

� �
0:42ð1−0:4Þð3−2Þ ¼ 3 ∗0:42 ∗0:61 ¼ 0:288: ð8:32Þ

You can cross-check these results in the likelihood profile in Figure 8.9.

Step 5. Use Bayes’ Theorem to update the priors to posteriors.

Now it is a matter of plugging in the numbers.

• For the fair coin hypothesis (p ¼ 0.5):

PrðH1 jdataÞ ¼ Prðdata jH1Þ ∗PrðH1Þ
Prðdata jH1Þ ∗PrðH1Þ þ Prðdata jH2Þ ∗PrðH2Þ ð8:33Þ

PrðH1 jdataÞ ¼ 0:375 ∗0:5
0:375 ∗0:5þ 0:288 ∗0:5

¼ 0:566: ð8:34Þ

• For the unfair coin hypothesis (p ¼ 0.4):

PrðH2 jdataÞ ¼ Prðdata jH2Þ ∗PrðH2Þ
Prðdata jH1Þ ∗PrðH1Þ þ Prðdata jH2Þ ∗PrðH2Þ ð8:35Þ

PrðH2 jdataÞ ¼ 0:288 ∗0:5
0:375 ∗0:5þ 0:288 ∗0:5

¼ 0:434: ð8:36Þ

Thus, after 3 coin flips, we have updated our belief that the coin is fair from 0.5 to
0.566, and we have updated our belief that the coin is biased from 0.5 to 0.434
(see Figure 8.11).

104 BAYESIAN STATISTICS FOR BEGINNERS



We hope this makes perfect sense! We are given a coin, and told that it is either fair
or weighted. These are our two hypotheses, and we gave them equal weight for the
prior distribution. We then collected data: 2 heads in 3 coin flips. We calculated the
likelihood of observing the data under each hypothesis. We then used Bayes’ Theorem to
calculate the posterior probability of each hypothesis. After the analysis, we still have two
hypotheses, but the probability that H1 is correct is now higher than the probability that H2

is correct.
Thus, our posterior distribution for the two alternative hypotheses for p is another

Bernoulli distribution.

Can we depict this problem graphically?

Answer: Yes. Let’s take a step back to get a “big picture” view of this process (see
Figure 8.12).

This sort of diagram was popularized by John Kruschke in his book, Doing Bayesian Data
Analysis (Kruschke, 2015) and is intended to communicate the structure of the prior and
likelihood. At the bottom of this diagram, we have our observed data, yi. The data were

H1 (p = 0.5) H2 (p = 0.4)

bin(n = 3, p)

0 1 2 3

yi

Figure 8.12

H1: p = 0.5 H2: p = 0.4
0.0

0.2

0.4

0.6

0.8

1.0

Figure 8.11 Posterior probability distribution.

PROBABILITY MASS FUNCTIONS 105



generated from a binomial distribution with n¼ 3 rolls and the parameter, p, shown in red.
The parameter, p, in turn, is the unknown parameter that we are trying to estimate. Here,
we use a Bernoulli distribution (shown in blue) to set the “weights” on the two alternative
hypotheses for p. Thus, you can interpret the blue distribution above as a prior distribution
which provides our weights of belief for the two hypotheses. The drawing of this distribu-
tion can be generalized.

But there is another interpretation for the blue prior distribution displayed: the unknown
parameter, p, is a randomvariable that is generated from a Bernoulli distribution. We are
trying to characterize which Bernoulli distribution produced it. Through Bayes’ Theorem,
the prior Bernoulli distribution is updated to a posterior Bernoulli distribution in light of
new data.

With either interpretation, the goal is tomake probabilistic statements about our belief in
p and the distribution that characterizes it, and to update those beliefs or knowledge in light
of new data.

Can we compare this problem with the authorship problem?

Answer: For both problems, we had two hypotheses. For the author problem, our hypoth-
eses were Madison vs. Hamilton, and for this chapter’s problem the hypotheses were about
the value of a parameter: p ¼ 0.5 vs. p ¼ 0.4.

In the author problem, we informally calculated the likelihood of the data (use of the
word upon) under each hypothesis based on previous analysis of each man’s writing. In
contrast, in this chapter we used aprobabilitymass function to calculate the likelihood
of the data under each hypothesis. The use of probability mass functions to compute the
likelihood of the data is common in Bayesian analysis (though not required, as we’ve seen).

What if we considered all possible hypotheses for p between 0 and 1
instead of just two specific hypotheses?

Answer: In that case, the prior distribution of p will be a continuous distribution
instead of a discrete distribution. Chapter 9 focuses on probability density functions, and
we provide the background needed to address this situation.

Can we summarize the main points of this chapter?

Answer: Of course. In this chapter:
• We introduced functions as a recipe that take in inputs and generate outputs based on a
set of instructions.

• We learned about the binomial probability mass function, whose inputs are n (the
number of trials), p (the probability of success in each trial), and y (the number of
observed successes across the n trials):

f ðy;n; pÞ ¼ n
y

� �
pyð1−pÞðn−yÞ: ð8:37Þ

• In this function, n and p are parameters, whereas y is a randomly observed discrete value.
The binomial distribution maps the probability associated with all possible values of the
random variable, Y.
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• We stressed that the shape of a probability distribution is controlled by its parameters:
change the parameters, and the shape and location of the distribution changes.

• We then introduced the term “likelihood,” and stressed that likelihood is another word
for probability. We use the term “likelihood” when the data are in hand.

• We repeatedly stressed that any Bayesian analysis will involve a likelihood calculation
because the term Pr(data | hypothesis) is the likelihood of observing the data, assuming
the hypothesis is true.

• Finally, we wrapped up this chapter with a simple Bayesian inference problem in which
we had two hypotheses, collected binomial data, and then updated the priors to poster-
iors using Bayes’ Theorem. There are several other probability mass functions
that youmay use in Bayesian analysis. We focused on the binomial pmf, but
the underlying concepts presented here should apply to new functions. Each
probability function has unique inputs and provides probability as an out-
put. The sum of the probabilities across all outcomes must be 1.

OK, what’s next?

Answer: Chapter 9 will tackle probability density functions, another critical tool in
your Bayesian toolbox.

PROBABILITY MASS FUNCTIONS 107



CHAPTER 9

Probability Density Functions

In this chapter, we’ll continue to build our understanding of probability distributions.
We will focus on general concepts associated with probability density functions, which
are functions associated with random variables that are continuous in nature. For this
chapter, we’ll be focusing on the continuous uniform and normal distributions. Although
we focus on only these distributions, the general concepts in this chapter will apply to other
continuous probability distributions. This is a fairly long chapter, and it may take a few
readings for the material to sink in, so make sure to get up and stretch every now and then.
By the end of this chapter, you should be able to define and use the following terms for a
continuous random variable:

• Random variable
• Probability distribution
• Parameter
• Probability density
• Likelihood
• Likelihood profile.

We’ll start with the same question that we started with in Chapter 8:

What is a function?

Answer: In math, a function relates an input to an output, and the classic way of writing
a function is

f ðxÞ ¼ : : : ð9:1Þ
Here, the function name is f, the inputs are denoted by the letter x, and the dots represent
instructions that will generate the output. For instance, consider the function shown in
Figure 9.1.

The function name is f. The inputs go between the parentheses. Here, we have a single
input called x. The output of the function is a set of instructions that tell us what to do with
the input. Here, we input a value for x; the instructions tell us that we should square x to
give us the output.

Function name is f Function input is x Function output is x2

f(x) = x2

Figure 9.1

Bayesian Statistics for Beginners: A Step-by-Step Approach. Therese M. Donovan and Ruth M. Mickey,
Oxford University Press (2019). © Ruth M. Mickey 2019.
DOI: 10.1093/oso/9780198841296.001.0001



In other words, f(x) maps the input x to the output. We can visualize this as shown in
Figure 9.2.

In Chapter 8, we introduced probability mass functions. We noted that for a discrete
random variable named Y, the probability mass function, f ðyÞ ¼ PrðY ¼ yÞ, provides the
probability for each value of y.
Andwe introduced thebinomialprobabilitymass function as a function that lets you

evaluate, for example, the probability of observing 2 heads in 3 flips when the coin is fair as:

f ðy;n; pÞ ¼ n
y

� �
pyð1� pÞðn�yÞ ð9:2Þ

f ð2;3;0:5Þ ¼ 3
2

� �
0:52ð1� 0:5Þð3�2Þ ¼ 0:375: ð9:3Þ

The function’s name is f, and the inputs are the observed random variable, y (the number of
successes, which in this case is the 2 heads), n (the total trials, which is three flips), and p
(the probability of success, which is 0.5). Don’t forget that a variable is considered random
when its value is subject to random variation.
In this example, the discrete random variable named Y could be 0, 1, 2, or 3. We just used

the binomial pmf to calculate the probability of observing a random variable y ¼ 2, given
three tosses and a fair coin.
Probability mass functions deal with random variables, such as the number

of heads observed, that are discrete (or distinct) in nature. In this chapter,
however, we focus on random variables that are continuous in nature.

Can you give me an example of a continuous random variable?

Answer: Of course. Let’s start with the following example from Wikipedia (accessed
August 17, 2017). Suppose a species of bacterium typically lives 4 to 6 hours. In this
example, we can say that capital X represents a random variable that stands for the lifespan
of a bacterium. This is an example of a continuous random variable, because the
lifespan can assume values over some interval (4 to 6 hours, such as 4.1, 4.2, 5.9999, etc.).
We can define the possible outcomes of X as:

4 � X � 6: ð9:4Þ

What is the probability that a bacterium lives exactly 5 hours?

Answer: The answer is actually 0. A lot of bacteria live for approximately 5 hours, but there
is a negligible chance that any given bacterium dies at exactly 5.0000000000 . . . hours. We
can always get more precise!

x f x 2

Input(s) Function Output(s)

Figure 9.2
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Instead we might ask: What is the probability that the bacterium dies between 5 hours
and 5.01 hours? Let’s say the answer is 0.02 (i.e., 2%). Next, what is the probability that
the bacterium dies between 5 hours and 5.001 hours? The answer is probably around
0.002, because this is 1/10th of the previous interval. The probability that the bacterium
dies between 5 hours and 5.0001 hours is probably about 0.0002, and so on. Notice that
as the time increment decreases, the probability also decreases. When the time incre-
ment is 0 (an exact time), the probability is 0. This isn’t very helpful if our goal is
probability!

So, what can we do?

Answer: For cases where a random variable is continuous, you need to consider prob-
ability in the context of a probability density function.

Can we see an example of a probability density function?

Answer: Sure! How about this one:

f ðxÞ ¼ 0:5: ð9:5Þ
Here, the function name is f, and it has one argument called x. We can name the function
and argument anything we’d like. Regardless of what it is named, the function returns the
probability density, and it is always 0.5 (with some constraints that we’ll discuss below).

I see . . . and what distribution would result from this pdf?

Answer: A uniform distribution where values range between 4 and 6. Technically, the
probability density function is written:

f ðxÞ ¼ 0:5; 4 � x � 6: ð9:6Þ
Notice the use of the comma to separate the function, f ðxÞ ¼ 0:5, from its constraints,
4 � x � 6. In other words, x must fall within this interval.

The random variable named X can be drawn from this distribution. We can write:

X � Uð4;6Þ: ð9:7Þ
The symbol � means “is distributed as.” So we read this equation “the random variable
named X is distributed as a uniform distribution with a minimum value of 4 and a
maximum value of 6.”

The uniform distribution is usually indicated by a capital U, and this distribution has two
parameters, the minimum (sometimes called a) and maximum (sometimes called b). Thus,
the uniform distribution is uniquely described as Uða; bÞ. If you change a or b, you have a
different uniform distribution.

Now let’s take a look at this uniform distribution. The lower-case x is the actual value of
X (see Figure 9.3). The blue line in this figure represents the probability density function
f ðxÞ ¼ 0.5. Notice that the y-axis is labeled “Density.”Notice also that we don’t use the word
“probability” here. If all values of x have the exact same density, it makes sense that the pdf
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of a uniform distribution is a constant, f ðxÞ ¼ 0:5, right? It’s just a matter of figuring out
what this constant is.

Why is the density 0.5 in this example?

Answer: Because just as the bars in the binomial distribution or any other pmf must sum
to 1.00, the area under the density f(x) must equal 1.00. Let’s explore this idea a
little more . . .
The uniform distribution is sometimes called a rectangular distribution because it

looks like a rectangle. Wild! And rectangles have area, which is calculated by multiplying
the length of the rectangle along the x-axis by the height of the rectangle along the y-
axis. The length of our rectangle is calculated by subtracting the minimum, 4, from the
maximum, 6, which is 2.0. If the area of our uniform distribution represents
probability, then we know that the area of this rectangle must be 1.0. So, we
now know:

• area ¼ 1.0
• length ¼ 2.0

And now solve for the height, which is called density:

area ¼ length ∗height ð9:8Þ
1:0 ¼ 2:0 ∗height ð9:9Þ

height ¼ 1:0
2:0

¼ 0:50: ð9:10Þ

The height of the distribution at any given point is called its density (Figure 9.3, blue),
whereas the total area under the distribution must be 1.00 (Figure 9.3, gray). The function
that yields the density is called a probability density function.
Now, to repeat the most crucial point: the area under the pdf is equal to 1.0.

Thus, the probability that X is between 4 and 6 is 1.0, or:

Prð4 � X � 6Þ ¼ 1:00: ð9:11Þ
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Figure 9.3
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Can we formally define a uniform pdf?

Answer: You read our minds! As we mentioned, the uniform pdf has two parameters,
called a and b, where a represents the lower bound of the distribution, and b represents the
upper bound of the distribution:

f ðx; a; bÞ ¼ 1
b� a

: ð9:12Þ

This is the uniform probability density function (pdf). For our example, where a ¼ 4 and
b ¼ 6, the density is calculated as:

f ðx; a; bÞ ¼ 1
6� 4

¼ 1
2
¼ 0:5: ð9:13Þ

Let’s not forget our constraints! The formal definition of the uniform pdf is written:

f ðx; a; bÞ ¼
1

b� a
for a � x � b

0 for x < a or x > b:

8<
: ð9:14Þ

In our example:

f ðx; a; bÞ ¼ 0:5 for 4 � x � 6

0 for x < 4 x > 6:

�
ð9:15Þ

In words, the probability density is 0.5 for all x between 4 and 6 hours; it is 0 for any values
of x that are less than 4 hours or greater than 6 hours.

What is the probability that x is between 4.5 and 5.5 hours for our
uniform distribution?

Answer: OK, now we need to move from probability density to probability. Our
uniform distribution has a¼ 4 and b¼ 6. The probability that a random variable namedX is
between 4.5 and 5.5 hours could be depicted as shown in Figure 9.4.
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Figure 9.4
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Intuitively, if the full grey box above represents an area of 1.00, then the red box
represents 1/2 of the total area, so the probability of drawing x between 4.5 and 5.5 hours
is 0.5. Here, we are talking about probability (what proportion of the full gray rectangle
consists of the red rectangle) and notdensity. However, we will use the density to calculate
the result. The area of the red rectangle is:

• length ¼ 5.5 – 4.5 = 1
• height (density) ¼ 0.5
• area ¼ length ∗ height ¼ 0.5.

The probability that a bacterium has a lifespan between 4.5 and 5.5 hours is 0.5, that is:

Prð4:5 � X � 5:5Þ ¼ 0:5: ð9:16Þ

What is the probability that x is exactly 5 hours?

Answer:Once again, the answer is zero! Assuming that 5means exactly 5 (and not a smitch
more or less), then we are dealing with a line, not a rectangle. Lines don’t have area, so the
answer technically is 0. When you ask what is the probability that x ¼ 5, you might really
mean what is the probability of 5, give or take a tiny amount.

Are there other examples of continuous probability density functions?

Answer: Yes, there are many to choose from.
Let’s return to the Wikipedia example posed in the beginning of the chapter. Suppose a
species of bacterium typically lives 4 to 6 hours. We just explored this question earlier with
a uniform distribution. But now let’s assume that most bacteria live 5 hours on
average, with fewer living to 4 or 6. Let’s us explore this answer using a normal
distribution.

What exactly is the normal distribution?

Answer: The Online Statistics Education book (Lane, 2011) tells us: “The normal distribu-
tion is the most important and most widely used distribution in statistics. It is sometimes
called the ‘bell curve,’ although the tonal qualities of such a bell would be less than
pleasing.” The normal (or Gaussian) distribution is a very common continuous prob-
ability distribution.

And what does “Gaussian” refer to?

Answer: The normal distribution is also called the Gaussian distribution, named for the
German mathematician Carl Friedrich Gauss, who “had an exceptional influence in many
fields of mathematics and science and is ranked as one of history’s most influential
mathematicians” (see Figure 9.5). Gauss’works were collected and published posthumously
in 1863.
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What does a normal (Gaussian) distribution look like?

An example of a normal distribution is shown in Figure 9.6.

Here we are interested in the lifespan of a bacterium, which is given on the x-axis. The
y-axis is labeled Density, as it was in our uniform pdf example. The normal distribution is a
bell-shaped curve. The middle of the curve is centered on the mean, or average, which is
represented by the Greek letter, mu (μ). Here, μ ¼ 5. The spread of the curve is controlled by
the standard deviation, which is represented by the Greek letter, sigma (σ). Here, σ¼ 0.5.
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Figure 9.6 Normal distribution.

Figure 9.5 Carl Friedrich Gauss.
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Keep these points in mind:

• First, the peak of the normal distribution is centered on μ. It is a symmetrical curve, so
half of the distribution is to the right of the mean, and half is to the left. In other words,
themean of a normal distribution is the same thing as its median (the value at which half
of the random variables are greater than the median, and half are less).

• Second, the distribution is shown with a smooth curve rather than discrete bars. Conse-
quently, the values of x underneath the curve comprise a continuous range of values
rather than being discrete values.

• Third, the values along the x-axis can be negative! We don’t show it here, but the normal
distribution can be used for any range of positive and negative values.

• Fourth, the spread of the distribution is controlled by the standard deviation, σ. The
higher the σ, the more spread there is.

So, the normal distribution has two parameters?

Answer: Yes. Change the mean (μ) or standard deviation (σ), and you change the location
and/or spread of the curve. Remember the parameters are like the “control knobs.” The
parameter, μ is called the location parameter: it controls where the distribution is
centered over the x-axis. In contrast, the parameter σ is called the scale parameter: it
controls the shape or spread of the distribution.
Sometimes people will denote the parameters of a normal pdf as μ and σ2 instead, where

σ2 is just σ ∗ σ. This is called the variance of the distribution. Figure 9.7 shows some
examples with different control settings.

Let’s study these distributions more closely.

• The red, purple, and blue distributions all have the samemean, μ¼ 7.What differs among
them is the standard deviation, σ. The red distribution has the lowest standard deviation
(0.5), while the blue distribution has the highest standard deviation (2.0).

• The green and black distributions have the samemean, 5.0. What differs between them is
the standard deviation. The green distribution has a standard deviation of 0.5, while the
black distribution has a standard deviation of 0.25.

• The green and the red distributions have the same standard deviation (0.5). What differs
between them is their mean: the blue distribution has a mean of 5, while the red
distribution has a mean of 7.
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Figure 9.7 Normal distributions.
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How were these distributions generated?

Answer: These graphs were generated by plugging in a range of hours (from 0 to 15 in
increments of 0.01) into the normal probability density function and then graphing
all of the results. The y-axis is labeled density because the normal probability density
function returns a probability density as opposed to actual probability (which is con-
strained between 0 and 1). The area under all of the bells is the same: namely, 1.

What exactly is the normal (Gaussian) pdf?

Answer: The normal probability density function is a pdf, just like the uniform pdf we
examined previously.
The function is as follows:

f ðx; μ; σÞ ¼ 1ffiffiffiffiffiffi
2π

p
σ
e�ðx�μÞ2=ð2σ2Þ �∞ � x � ∞: ð9:17Þ

This function is named f and it has just three inputs. Two of the inputs are parameters: the
mean (which is μ) and the standard deviation (which is σ). The third input, x, represents an
outcome, such as bacterial lifespan in hours.

Look for this function on the Deutsche Mark (see Figure 9.8)!

Can you give me an example of how to use the normal pdf?

Answer: Suppose the average lifespan of a bacterium is 5 hours. We can use the normal
pdf to get the probability density of observing, say, x ¼ 4.5 hours, when the mean
lifespan is μ ¼ 5 hours and the standard deviation σ ¼ 0.5 hours:

f ðx; μ; σÞ ¼ 1ffiffiffiffiffiffi
2π

p
σ
e�ðx�μÞ2=ð2σ2Þ ð9:18Þ

Figure 9.8 Deutsche Mark.
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f ð4:5;5;0:5Þ ¼ 1ffiffiffiffiffiffi
2π

p
∗0:5

e�ð4:5�5Þ2=ð2 ∗0:52Þ ¼ 0:4839414: ð9:19Þ

Remember that this is NOT probability . . . it is probability density!

So, we plug in multiple values for x and generate the distribution?

Answer: Yes! Figure 9.9 shows the Gaussian distribution with μ ¼ 5 and σ ¼ 0.5 (blue).
Look for the density when x ¼ 4.5 as calculated above. Also plotted is the Gaussian
distribution with μ ¼ 5 and σ ¼ 0.25 (black).

How do we go from probability density to probability with a
normal pdf?

Answer: Remember how we calculated the density for the continuous uniform distribu-
tion? For the bacterium lifespan problem, we said that lifespan is distributed as a uniform
pdf between 4 and 6 hours, X � Uð4;6Þ. We knew the area of the rectangle was 1.0, we
knew the length of the rectangle (2.0), and we simply solved to get the height of the
rectangle, which is the density. We then calculated the probability that a bacterium
would live between 4.5 and 5.5 hours by determining the proportion of U(4,6) where
4.5 � x � 5.5, which is a smaller rectangle.
We can use the same sort of reasoning with the normal distribution, only we’ll needmore

rectangles. Let’s have a look, focusing on the blue distribution in Figure 9.9, where μ ¼ 5,
σ ¼ 0.5. Here it is again in Figure 9.10, with some rectangles overlaid on top.

A critical thing to notice here is that both curves are generated by the normal pdf, but
they have different parameters. As with the continuous uniform distribution, the area
under each curve is 1.0. That is, the area is the same under the two curves. Since the
black curve has a small standard deviation compared to the blue curve, the density is
squished upward in order to accommodate the narrow spread. Notice that the density
can be greater than 1.0.
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Figure 9.9 Normal distributions.
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Here, the x-axis has been divided into 5 rectangles, where each rectangle has a
length of 1 hour and a height that is the normal pdf density (two of these rectangles
are in the tails and are barely visible). This is a very rough approximation of a normal
distribution!

See if you can find the rectangle where the lifespan is between 3.5 hours and 4.5 hours.
Now, this particular rectangle (blue) has a height, or density, of 0.1079819. The area of this
rectangle is length (1.00) times height (0.1079819) ¼ 0.1079819.

What is the probability that a bacterium has a lifespan between
4.5 and 5.5 hours?

Answer: Now look for the rectangle where lifespan is between 4.5 and 5.5 hours. This
particular rectangle (red) has a density of 0.7978846. The area of this rectangle is length
(1.0) ∗ height (0.7978846) ¼ 0.7978846.

This is our first attempt to answer the question, “What is the probability that a bacterium
has a lifespan between 4.5 and 5.5 hours?”Hang on to this answer, as wewill revisit
this same question in a few minutes.

Is the total area equal to 1.0?

Answer: If Gauss did his homework correctly, we can calculate the area of each rectangle
in the graph and then add the areas together. We should get an answer close to 1.0. Let’s try
it. We have 5 rectangles, each with a length of 1 and height that is given by its density. And
the answer is . . .

1:0143837: ð9:20Þ
Not bad at all! It’s not precisely 1.0 because our 5-rectangle distribution only approxi-
mates the normal pdf shown in blue, where the area under the curve is exactly 1.0.

Perhaps we can improve our result by creating 41 rectangles instead of five. Let’s have a
look (see Figure 9.11).

3 4 5
x = Lifespan (hours)

6 7
0.0

0.2

0.4

0.6

D
en

si
ty

0.8

1.0

Figure 9.10 μ ¼ 5, σ ¼ 0.5.
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• Now, the x-axis has been divided into 41 slivers, where each sliver has a length of
0.1 hours.

• See if you can find the rectangle where lifespan is between 3.95 hours and 4.05 hours.
Now, this particular rectangle (blue) has a density of 0.1079819. The area of this rect-
angle is 0.1 ∗ 0.1079819 ¼ 0.0107982.

• Now look for the rectangle where lifespan is between 5.55 and 5.65 hours.
This particular rectangle (red) has a density of 0.3883721. The area of this rectangle is
0.1 ∗ 0.3883721 ¼ 0.0388372.

To get the area under the curve, we can repeat this little exercise for each of the 41 slivers
and then add up the results. And the answer is . . .

0:9999599: ð9:21Þ
Notice that this answer is closer to 1.0 than our previous example, where we had only 5
rectangles.

How would one express this mathematically?

Answer: If we have 41 discrete rectangles, then the sum of the rectangles can be
expressed as:

Area ¼
X41
j¼1

length ∗density: ð9:22Þ

The general idea is that we can more closely approximate the normal pdf as we create
thinner and thinner rectangles.

With 41 slivers, what is the probability that a bacterium has a lifespan
between 4.5 and 5.5 hours?

Answer: This is the same question we answered previously with our 5-rectangle approxi-
mation. Here are the steps: Find the rectangles centered on 4.5 and 5.5. Take half of the area
of each (because half the area is outside the boundary of interest). Then, add in the area of
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Figure 9.11 μ ¼ 5, σ ¼ 0.5.
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all rectangles that fall between these two anchors. The sum is the probability, and the
answer is:

0:6810742: ð9:23Þ
Remember that the answer from our 5-rectangle approximation was:

0:7978846: ð9:24Þ
Hang on to this result, and we’ll revisit it one more time in a minute or two!

What is the total area if our rectangles became really, really skinny?

Answer:When the rectanglesapproach awidthof 0, the sumsymbol,
P

is replaced by the
integral symbol,

Ð
, and the area under the curve is exactly 1.000. A generalway towrite this is:

ð∞

�∞

f ðxÞdx ¼ 1:0: ð9:25Þ

In this general version:

• f(x) is a pdf, and you can plug in any pdf you’d like. We’ve introduced the continuous
uniform pdf and normal pdf so far.

• We want to get the area under the curve for a specified range of values of x. The range
of values is tucked next to the integral symbol, with the lower end of x provided on
the bottom of the integral symbol (here, negative infinity) and the upper end of x
provided at the top of the integral symbol (here, positive infinity). That covers all
possibilities!

• The integral symbol means “get the total area under the curve” for the specified range of
x. Since we cover all possibilities for x, the total area under the curve is 1.0.

• To the right of the pdf is the symbol dx, which is the width of the rectangles (approach-
ing 0), and not d times x. If dx is the width of the rectangles, and f(x) is the height of each
rectangle, then f(x)dx is the area of a very small rectangle.

• To the right of the equal sign is 1.0; the area under the curve for all possible values of x
between negative and positive infinity is 1.0.

Wolfram defines an integral as “a mathematical object that can be interpreted as an area or
a generalization of area. Integrals, together with derivatives, are the fundamental objects of
calculus. Other words for integral include antiderivative and primitive.”

Do all probability density functions have an area under the
curve 5 1.0?

Answer: Yes. That is a characteristic that defines all probability density functions. Click
here to see the derivation for the normal pdf!

What would the integral look like for the normal pdf?

Answer: Just replace f(x) above with the normal pdf, which is:

f ðx; μ; σÞ ¼ 1ffiffiffiffiffiffi
2π

p
σ
e�ðx�μÞ2=ð2σ2Þ: ð9:26Þ
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Then, we have:

ð∞

�∞

f ðx; μ; σÞdx ¼ 1:0 ð9:27Þ

ð∞

�∞

1ffiffiffiffiffiffi
2π

p
σ
e�ðx�μÞ2=ð2σ2Þdx ¼ 1:0: ð9:28Þ

OK, one more time! What is the probability that a bacterium has a
lifespan between 4.5 and 5.5 hours?

Answer: Before, we divided the distribution into thin rectangles, found the area of the
rectangles in question, and added them up. Now we are considering a subset of x’s, but we
make use of the density function to find the exact area.
Let’s step through this carefully:

Prð4:5 � X � 5:5Þ ¼
ð5:5

4:5

1ffiffiffiffiffiffi
2π

p
σ
e�ðx�μÞ2=ð2σ2Þdx: ð9:29Þ

Now, we need to evaluate this to get our answer. The process of finding this answer is called
integration. And the result is a probability.

How does one go about integrating?

Answer:Well, we have the pdf, and we know the shape of the curve. Now we need a tool
to help us find the area under a specific part of the curve. This area is probability. Comput-
ing the Gaussian integral is a bit beyond the scope of this book, and you really don’t need to
solve it by hand for our purposes.
Fortunately, the normal distribution is such a commonly used distribution that we can

easily find the areas that we want from calculators or computers, which often use the
“super-skinny rectangle” approach to approximate the answer. Technically, this is called
Riemann’s (ree-mahn) approximation. We can use virtually any calculator or math software
to generate the probability that a bacterium’s lifespan is between 4.5 and 5.5 hours, given a
normal pdf with μ ¼ 5 and σ ¼ 0.5. The calculation gives 0.6822689. Our 41 rectangles
approach suggested that the probability was 0.6810742, which is not a bad approximation.

Are there refresher courses that review this material?

Answer: Yes, there are several excellent sources out there. Forget about memorizing
anything . . . the only thing you need for this book is an intuition for how things work.
Here are some of our favorites:

• Khan Academy
• Better Explained
• How to Enjoy Calculus by Eli Pine

For many problems, however, integration is a complex mathematical calculation, or
worse, is completely intractable!

PROBABILITY DENSITY FUNCTIONS 121



What other probability density functions are there?

Answer: Loads of them! Here’s a look at a few that you may have come across:

• normal
• log-normal
• beta
• gamma
• exponential
• Weibull
• Cauchy

We will explore a few of these in future chapters, but encourage you to check these out on
Wikipedia. Who knows? Some may be very relevant to your work!

Likelihood

Now let’s gracefully switch to the topic of likelihood. Likelihood is a key concept in
Bayesian inference, so we need to spend time with it.

OK, what exactly is likelihood?

Answer: You may recall that Dictionary.com provides three definitions of likelihood:

1. The state of being likely or probable; probability.
2. A probability or chance of something: There is a strong likelihood of his being elected.
3. Archaic: indication of a favorable end; promise.

So, likelihood is another word for probability. However, because our data are continuous
in nature, likelihood here can be taken tomean probability density. Likelihood involves the
collection of data (variables), and we look retrospectively at the probability or probability
density of collecting those data under a given set of parameters.

We noted in Chapter 8 that the discrete version of Bayes’ Theorem can be written as
shown below, with the likelihood portion shown in red, the priors in blue, and the
posterior in purple:

PrðHi jdataÞ ¼
Prðdata jHiÞ ∗PrðHiÞXn

j¼1

Prðdata jHiÞ ∗PrðHjÞ
: ð9:30Þ

Now, let’s consider Bayes’ Theorem when the hypotheses for a parameter are infinite. Here,
Bayes’ Theorem takes a new form. Suppose we are trying to estimate a single parameter
called θ. Bayes’ Theorem in this case is specified as:

Pðθ jdataÞ ¼ Pðdata j θÞ ∗PðθÞð
Pðdata j θÞ ∗PðθÞdθ

: ð9:31Þ

This is the generic version of Bayes’ Theorem when the posterior distribution for a single
parameter, θ, given the observed data, is represented by a pdf.
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The likelihood in Bayes’ Theoremmay be written P(data | θ) or Pr(data | Hi)—which version
you use depends on the problem you are solving.

As a side note to our readers who previously have studied maximum likelihood methods,
read the box below:

Earlier in this chapter, we used the normal pdf to get the probability density of
observing x, given the mean lifespan is μ and the standard deviation is σ:

f ðx; μ; σÞ ¼ 1ffiffiffiffiffiffi
2π

p
σ
e�ðx�μÞ2=ð2σ2Þ: ð9:32Þ

This is used beforewe observe the data. When we speak of likelihood, in contrast, we have
the variables (data) in hand, and one or more of the parameters are unknown. To
compute the likelihood of the data, we first need to make an assumption about how
the data were generated. Here, we assume that the data are generated from a normal
distribution. Let’s let X be our random variable, and X is the lifetime of a bacterium in
hours. We can write:

X � Nðμ; σÞ: ð9:33Þ
Suppose we hypothesize that μ ¼ 5.0, and assume that σ is known to be 0.5. And further
suppose that we draw a randombacterium that lives x¼ 4.5 hours.We can ask, “What is the
likelihood that x ¼ 4.5 given that μ is 5.0 and σ ¼ 0.5?” We will use the normal pdf to
answer this question, which is

Lðx ¼ 4:5; μ ¼ 5:0; σ ¼ 0:5Þ ¼ 1ffiffiffiffiffiffi
2π

p
σ
e�ðx�μÞ2=ð2σ2Þ: ð9:34Þ

Now, let’s plug in the values that we know to get our answer:

Lðx ¼ 4:5; μ ¼ 5:0; σ ¼ 0:5Þ ¼ 1ffiffiffiffiffiffi
2π

p
0:5

e�ð4:5�5:0Þ2=ð2 ∗0:52Þ ¼ 0:4839414: ð9:35Þ

This is a probability density. Look for this result in blue in Figure 9.12.

You may have seen likelihood expressed as the likelihood of the parameters given the
data, or Lðθ; dataÞ, which is conventional. Regardless of the notation used, you must enter
values for the parameters and observed data to calculate a result.

Notice the notation P(θ | data) for the posterior distribution of θ. Here, P indicates
probability density. Both the prior (P(θ)) and the posterior P(θ | data) distributions are
pdfs. In contrast, with the discrete version of Bayes’ Theorem, the prior and posterior
distributions are pmfs, denoted with Pr.

Throughout this book, we will express computations for the likelihood term of Bayes’
Theorem as Lðdata; θÞ where L symbolizes “likelihood” and the semicolon means “given.” We
do this to differentiate the likelihood term in Bayes’ Theorem from the actual computation.
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Suppose now that we hypothesize that μ¼ 4.1 (with σ known to be 0.5). Now let’s calculate
the likelihood:

Lðx ¼ 4:5; μ ¼ 4:1; σ ¼ 0:5Þ ¼ 1ffiffiffiffiffiffi
2π

p
0:5

e�ð4:5�4:1Þ2=ð2 ∗0:52Þ ¼ 0:5793831: ð9:36Þ

Look for this result in green in Figure 9.12.
As you can see, we have an infinite number of possibilities for μ. Nevertheless, we can

generate the likelihood profile by repeatedly plugging in values and mapping the shape
of the surface. Here it is in Figure 9.12.

A few things are worth pointing out:

• First, notice that the y-axis is labeled “Likelihood” instead of “Density” to indicate that
we are plotting the density associated with alternative values for an unknown parameter.
The x-axis is the unknown parameter, μ.

• Second, the function that can be used to draw this curve is called a likelihood function.
Here, we are given data in the form of observed random variables. We observed x ¼ 4.5.
Assuming we know σ ¼ 0.5, we use the normal pdf to ask how likely alternative values of
μ are.

• Third, the area under a likelihood function does NOTneed to integrate to 1.0!We saw this
in Chapter 8 as well.

What if you don’t know that σ is 0.5?

Answer:We generate the likelihood surface for twoparameters. In other words, we play
the ‘what if ’ game for both μ and σ.

To illustrate, suppose we selected three bacteria at random that lived 3.6,
4.7, and 5.8 years, respectively. These are our observed data. We are trying to estimate μ
and σ from the distribution that generated these data. We choose a suite of combinations of
μ and σ. Then, for each datapoint, we calculate the likelihood of observing the data.

We use the normal pdf as our baseline:

f ðx; μ; σÞ ¼ 1ffiffiffiffiffiffi
2π

p
σ
e�ðx�μÞ2=ð2σ2Þ: ð9:37Þ
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Figure 9.12 Likelihood profile for μ.
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For instance, if μ ¼ 5 and σ ¼ 1.0, then the likelihood of observing x ¼ 3.6 is calculated as:

Lðx ¼ 3:6; μ ¼ 5:0; σ ¼ 1:0Þ ¼ 1ffiffiffiffiffiffi
2π

p ð1:0Þ e
�ð3:6�5Þ2=ð2ð1:0Þ2Þ ð9:38Þ

Lðx ¼ 3:6; μ ¼ 5:0; σ ¼ 1:0Þ ¼ 0:1497275: ð9:39Þ
For x ¼ 4.7, we have:

Lðx ¼ 4:7; μ ¼ 5:0; σ ¼ 1:0Þ ¼ 1ffiffiffiffiffiffi
2π

p ð1:0Þ e
�ð4:7�5Þ2=ð2ð1:0Þ2Þ ¼ 0:3813878: ð9:40Þ

For x ¼ 5.8, we have:

Lðx ¼ 4:8; μ ¼ 5:0; σ ¼ 1:0Þ ¼ 1ffiffiffiffiffiffi
2π

p ð1:0Þ e
�ð5:8�5Þ2=ð2ð1:0Þ2Þ ¼ 0:2896916: ð9:41Þ

If we assume that all three datapoints were independent, we can compute the
likelihood of observing the full dataset (which is 3 observations) given μ ¼ 5
and σ ¼ 1 as the product of the independent likelihoods:

Lðdata; μ ¼ 5:0; σ ¼ 1:0Þ ¼ 0:1497275 ∗0:3813878 ∗0:2896916 ¼ 0:01654262: ð9:42Þ
If we played this game across different combinations of μ and σ, we could create a likeli-
hood surface that looks like the one in Figure 9.13.

This is a likelihood surface for the unknown parameters, μ and σ. See if you can find
the likelihood value when μ ¼ 5 and σ ¼ 1. It should be 0.01654262 if our calculations were
correct.
Our observed dataset consists of 3 values of lifespan: 3.6, 4.7, and 5.8. The mean of this

dataset is 4.7 and the standard deviation is 1.1. You should see that the most likely
parameter estimates in the graph above correspond to these values.

How can this be used in a Bayesian inference problem?

Answer: Ah, yes! Let’s not lose sight of the big picture!
Suppose we are trying to estimate a single parameter called θ. Bayes’ Theorem in this case

is specified as:
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Pðθ jdataÞ ¼ Pðdata j θÞ ∗PðθÞð
Pðdata j θÞ ∗ PðθÞdθ

: ð9:43Þ

This is the generic version of Bayes’ Theorem when the posterior distribution for a single
parameter, given the observed data, is represented by a pdf.

• The posterior distribution is designated Pðθ jdataÞ, where P is probability density
(not probability). Pay attention to this notation! This is the left side of the equation,
and must integrate to 1.

• On the right side of the equation, the numerator multiplies the prior probability density
of θ, which is written P(θ), by the likelihood of observing the data under a given hypoth-
esis for θ, which is written Pðdata j θÞ. THIS is the likelihood we’ve been talking about, and
it can be a continuous or discrete function. Remember that the likelihood does not have
to integrate or sum to 1!

• In the denominator, we see the same terms, but this time we also see a fewmore symbols.
The symbol

Ð
means “integrate”, which roughly means “sum up all the pieces” for each

tiny change in θ, which is written dθ. In other words, the denominator accounts for the
prior density ∗ likelihood for all possible hypotheses for θ, and sums them.

Note that this version deals with a single parameter called θ. But you can use Bayes’ Theorem
to estimate multiple parameters. We’ll touch on this topic more in future chapters.

Can you estimate the probability of a specific hypothesis for theta?

Answer: Nope! Pðθ jdataÞ is a pdf, so the probability that θ assumes a specific value is 0.
Remember that the probability that a bacterium lives for exactly 5.0000000 hours is 0!

So, there are no specific hypotheses?

Answer: There are infinite hypotheses, and since you can’t estimate the probability of a
specific hypothesis, you are left with evaluating all of them! In other words, you
must estimate the entire posterior distribution.

Can we see a Bayesian inference problem with
infinite hypotheses?

Answer: OK! Let’s try to put together everything we’ve learned so far!
Let’s go through a quick example where we are considering hypotheses for an unknown

mean, which is a parameter from the Gaussian distribution. How about the average lifespan
of a bacterium? For this example, we’ll assume σ is known to be 0.5.

Here, Bayes’ Theorem can be expressed as:

Pðμ jdataÞ ¼ Pðdata j μÞ ∗ PðμÞð ​
Pðdata j μÞ ∗PðμÞdμ

: ð9:44Þ
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We have an infinite number of hypotheses for μ, and we want to update our beliefs after
collecting some data. Let’s review the steps of Bayesian analysis.

Step 1. What are the hypotheses?

Answer: There are an infinite number of hypotheses for μ. You could have some bounds
though.

Step 2. What were the prior probabilities for each hypothesis?
Since there are an infinite number of hypotheses, it makes sense that we use a pdf to
represent the prior distribution. Here, we have some choices. If we think that μ can range
between 4 and 6, we can use a uniform distribution to indicate that all hypotheses have the
same “weight” before considering the data (density ¼ 0.5; see Figure 9.14).

This represents our prior distribution. This is called a proper prior because the density
function integrates to 1.

Step 3. Collect data.
Suppose we draw a random bacterium that lives 4.7 years.

Step 4. Compute the likelihood of the data under each hypothesis.
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Now we play the what if game, and use the normal pdf to compute the likelihood of
observing x ¼ 4.7 under different values of μ. Suppose, for the sake of example, that we
know that σ ¼ 0.5. We start by writing the normal pdf:

f ðx; μ; σÞ ¼ 1ffiffiffiffiffiffi
2π

p
σ
e�ðx�μÞ2=ð2σ2Þ: ð9:45Þ

But instead of calling the function f, let’s call it L. And, let’s fully specify our model. Here is
the likelihood value for just one value of μ:

Lðx ¼ 4:7; σ ¼ 0:5; μ ¼ 4:0Þ ¼ 1ffiffiffiffiffiffi
2π

p ð0:5Þ e
�ð4:7�4:0Þ2=ð2ð0:5Þ2Þ ¼ 0:2994549 ð9:46Þ

and so on . . . look for this value in Figure 9.15.
As you can see, we have an infinite number of possibilities for μ. Nevertheless, we can use
the normal pdf repeatedly to generate the likelihood profile. Here it is in Figure 9.15.

Here, we have the likelihood of observing the data, x ¼ 4.7, under each hypothesized value
for μ. Given just a single datapoint, the most likely survival rate is 4.7. You can see from the
shape of this curve that several other hypotheses have decent height, too. The hypothesis
with the lowest likelihood is μ ¼ 6.0.

Step 5. Use Bayes’ Theorem to update the priors to posteriors.
Here, Bayes’ Theorem can be expressed as:

Pðμ jdataÞ ¼ Pðdata j μÞ ∗ PðμÞð​
Pðdata j μÞ ∗ PðμÞdμ

: ð9:47Þ

Remember, our prior distribution is the uniform pdf. The placeholder for that function is
shown in blue:

Pðμ jdataÞ ¼ Pðdata j μÞ ∗ PðμÞð
Pðdata j μÞ ∗PðμÞdμ

: ð9:48Þ

And our likelihood function is generated using the Gaussian pdf. The placeholder for that
function is shown in red:

Pðμ jdataÞ ¼ Pðdata j μÞ ∗ PðμÞð
Pðdata j μÞ ∗PðμÞdμ

: ð9:49Þ
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Figure 9.15 Likelihood profile for the unknown mean.
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The posterior distribution is another pdf of some sort. The placeholder for that function is
shown in purple:

Pðμ j dataÞ ¼ Pðdata j μÞ ∗ PðμÞð
Pðdata j μÞ ∗PðμÞdμ

: ð9:50Þ

Now it’s just a matter of solving.

Can we depict this problem graphically?

Answer: Yes. Let’s focus on the big picture and create a diagram for this problem (Kruschke
plot) as we did in Chapter 8 (see Figure 9.16). Remember, this diagram is intended to
communicate the structure of the prior and likelihood.

At the bottom of this diagram, we have our observed data, xi. The data were generated from
a normal distribution with an unknown parameter, μ, and σ ¼ 0.5. The parameter, μ, in
turn, is the unknown parameter that we are trying to estimate. Here, we use a uniform
distribution with parameters a ¼ 4 and b ¼ 6 to set the “weights” on the alternative
hypotheses for μ. Thus, you can interpret the blue distribution above as a prior distribution
that provides our weights of belief, or current knowledge, regarding μ. The drawing of this
distribution can be generalized.
This interpretation falls in line with that given by Sander Greenland (2006), who writes,

“It is often said (incorrectly) that parameters are treated as fixed by the frequentist but as
randomby the Bayesians. For frequentists and Bayesians alike, the value of a parametermay
have been fixed from the start or may have been generated from a physically random
mechanism. In either case, both suppose it has taken on some fixed value that we would
like to know. The Bayesian uses formal probability models to express personal uncertainty
about that value. The ‘randomness’ in these models represents personal uncertainty about
the parameter’s value; it is not a property of the parameter (although we should hope it
accurately reflects properties of the mechanisms that produced the parameter).”

But there is another interpretation for the blue prior distribution displayed: the unknown
parameter, μ, is a random variable that arises from a uniform distribution. In this

S. Greenland. “Bayesian perspectives for epidemiological research: I. Foundations and
basic methods.” International Journal of Epidemiology 35.3 (2006): 765–74.

N(μ, σ = 0.5)

μ ∼U(a = 4, b = 6)

xi

Figure 9.16
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example, μ assumes the values between μ ¼ 4 and μ ¼ 6. The Bayesian machinery will
update the prior distribution to a posterior distribution in light of new data.

If we couldn’t integrate the normal distribution, how on earth are we
going to integrate the denominator of Bayes’ Theorem?

Answer: Sometimes it is intractable! For those cases, we need a special “tool” that can help
us estimate the posterior distribution without a mathematical, closed-form solution. That
tool is called Markov Chain Monte Carlo (MCMC), and we will introduce this topic later in
the book.

There are a few cases, however, where you can use a particular pdf as a prior distribution,
collect data of a specific flavor, and then derive the posterior pdf. In these special cases, the
pdf of the prior and posterior are the same probability density function, but their param-
eters may differ. The prior distribution is called a conjugate prior (Raiffa and Schlaeffer,
1961), and the effect of the data can then be interpreted in terms of changes in parameter
values (Upton and Cook, 2014).
Here are some examples:

• beta pdf prior þ binomial data ! beta pdf posterior
• gamma pdf prior þ Poisson data ! gamma pdf posterior
• normal pdf prior þ normal data ! normal pdf posterior
• Dirichlet pdf prior þ multinomial data ! Dirichlet pdf posterior

We’ll dive into these in Section 4.We covered a lot of ground. Nowmake sure to stretch and
relax!
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SECTION 4

Bayesian Conjugates

Overview

Welcome to Section 4! As we’ve mentioned, a major use of Bayesian inference involves
parameter estimation. In this section, we will learn about three Bayesian conjugates that
can aid in parameter estimation. As you’ll see, these are special cases where a Bayesian prior
probability density function for an unknown parameter of interest can be updated to the
posterior pdf when data that are collected are a specific flavor. In these special cases, an
analytical solution exists that makes this update possible, and avoids the integration
required in the denominator of Bayes’ Theorem. In the process, we’ll learn two new
probability density functions (beta and gamma), and a new probability mass function
(Poisson).

• Chapter 10 introduces the beta-binomial conjugate. In theWhite House Problem, we use
a beta distribution to set the priors for all hypotheses of p, the probability that a famous
person could get into the White House without invitation. We then collected binomial
data to determine the number of times a famous person could gain entry out of a fixed
number of attempts, and update the prior distribution to the posterior distribution in
light of this new information. In short, a beta prior distribution for the unknown
parameter þ binomial data ! beta posterior distribution for the unknown parameter, p.

• Chapter 11 introduces the gamma-Poisson conjugate. In the Shark Attack Problem, we
use a gamma distribution as the prior distribution of λ, the mean number of shark attacks
in a given year. We then collect Poisson data to determine the number of shark attacks in
a given year, and update the prior distribution to the posterior distribution in light of this
new information. In short, a gamma prior distribution þ Poisson data ! gamma poster-
ior distribution.

• Chapter 12 introduces the normal-normal conjugate. In the Maple Syrup Problem, we
use Bayesianmethods to estimate the two parameters that identify a normal distribution,
μ and σ. To use the conjugate solution, we assume σ is known and focus our attention on
μ. We use a normal distribution as the prior distribution of μ, the mean number of
millions of gallons of maple syrup produced in Vermont in a year. We then determined
the amount of syrup produced inmultiple years and assumed that the amount followed a
normal distribution with known σ, and updated the prior distribution to the posterior



distribution in light of this new information. In short, a normal prior distribution þ
normally distributed data ! normal posterior distribution.

There are many other conjugate solutions, but we’ve highlighted three commonly used
solutions. In each chapter, we set the scene with a fun problem and then use a conjugate
solution to update the prior distribution for an unknown parameter to the posterior
distribution. We will revisit each of these chapters in Section 5, where we will show you
how to estimate the posterior distribution with a different method, MCMC.
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CHAPTER 10

The White House Problem:
The Beta-Binomial Conjugate

We hope you now have a very solid understanding of probability distributions. In this
chapter (and the next two that follow), we show you how to use Bayes’ Theorem to estimate
the parameters of a probability distribution. Indeed, a very common use of Bayesian
inference involves parameter estimation, where the analysis uses probability density
functions (pdf ’s).
By the end of this chapter, you will have a thorough knowledge of the following:

• Beta distribution
• Binomial data
• Hyperparameters
• Conjugate prior
• Credible intervals

The simplest way to show you how Bayes’ Theorem is used to estimate parameters is to dive
right into a new problem. Let’s run through an example of parameter estimation with
Bayesian inference.
This one was taken from The Mike Wise Radio Show (accessed August 18, 2017).

Here’s a picture of Shaq in case you haven’t met him (see Figure 10.1); he’s 70 100, weighs
325 pounds, and has earned tons of accolades in the NBA. On top of that, he’s a rapper and
has a Ph.D. At the time of the bet, Barack Obama was President of the United States. Shaq
knows that President Obama is a huge basketball fan and coach and is sure he can get in to
meet with the President.
For this chapter,we’re going to broaden this problem a bit and ask, “What is

the probability that any famous person (like Shaq) can drop by the White
House without an appointment?”

What do YOU think Shaq’s probability of getting into the
White House is?

Answer: Your answer here!

NBA star Shaquille O’Neal and a friend debated whether or not he could get into the
White House without an appointment. The wager: 1000 push-ups.

Bayesian Statistics for Beginners: A Step-by-Step Approach. Therese M. Donovan and Ruth M. Mickey,
Oxford University Press (2019). © Ruth M. Mickey 2019.
DOI: 10.1093/oso/9780198841296.001.0001



What probability function would be appropriate for Shaq’s bet?

Answer: Well, let’s see. Shaq is going to attempt to get into the White House, so that
represents a trial. He will either succeed or fail. Shaq thinks his probability of success is
quite high. The outcome of this trial determines who wins the bet. Ring any bells?

This is a binomial problem. You might recall that the binomial probability mass
function is:

f ðy; n; pÞ ¼ n
y

� �
pyð1� pÞðn�yÞ y ¼ 0;1; : : : ; n ð10:1Þ

The number of trials is denoted n. The number of observed successes is denoted as y.
The probability of success is denoted as p.

If we knew that Shaq’s probability of success is say, 0.7, and that Shaq had only one
chance, we could use the binomial probability mass function (pmf) to show the probability
of each outcome. The probability that Shaq would succeed is:

f ð1;1;0:7Þ ¼ 1
1

� �
0:71ð1� 0:7Þð1�1Þ ¼ 0:7: ð10:2Þ

The probability that Shaq would fail is:

f ð0;1; 0:7Þ ¼ 1
0

� �
0:70ð1� 0:7Þð1�0Þ ¼ 0:3 ð10:3Þ

We can graph this probability distribution as shown in Figure 10.2.

Figure 10.1 Shaquille O’Neal.
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With one trial, the probability of getting in is 0.7, and the probability of not getting in is
0.3. The sum of the probabilities equals 1.0. Incidentally, a binomial distribution with just 1
trial is also called a Bernoulli distribution. Remember?
If the bet let Shaq try three times, he could compute the probability of observing 0, 1, 2,

3 successes out of three trials, given p ¼ 0:7:

f ðy;3;0:7Þ ¼ 3
y

� �
0:7yð1� 0:7Þð3�yÞ: ð10:4Þ

The binomial distribution for n ¼ 3 and p ¼ 0:7 looks like the one shown in Figure 10.3.

With 3 attempts, and p (the probability of success) being 0.7, Shaq would have a small
chance of never getting in (0 successes out of 3 trials; a probability of 0.027).

Are these trials independent?

Answer: You might recall that a key assumption of the binomial distribution is that the
trials are independent. If Shaq makes all three attempts, it could be considered an example
of non-independence. Youmight argue, however, that if theWhite House guards change so
that the same guards don’t confront Shaq, the trials would be independent. However,
different guards might have different standards for uninvited guests! Let’s “play on,”
assuming that the trials are independent.
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Figure 10.2 Binomial distribution: n = 1, p = 0.7.
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Figure 10.3 Binomial distribution: n = 3, p = 0.7.
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But what about Shaq’s friend?

Shaq’s friend, however, believes Shaq’s chances are much lower than 0.7. If p is, say 0.1,
then Shaq’s chances would look much different. Figure 10.4 shows the binomial distribu-
tion with n ¼ 3 trials and p ¼ 0:1.

In this case, Shaq would have a large chance of failure (in fact, a probability of 0.729).
Here’s the kicker: We don’t know what p (the probability of success) is!

Obviously, there is some dispute over what value it is, or there would not be
a bet! So, here we are confronted with a parameter estimation problem.

You are trying to estimate p, the probability that Shaquille O’Neal or some other famous
person can get into the White House without an invitation.

Our goal here is to use a Bayesian inference approach to estimate the prob-
ability that a celebrity can get into the White House without an invitation.
We’ll use the same steps that we have in previous chapters:

1. Identify your hypotheses—these would be the alternative hypotheses for p, ranging
from 0 to 1.00.

2. Express your belief that each hypothesis is true in terms of prior densities.
3. Gather the data—Shaq makes his attempt, and will either fail or succeed.
4. Determine the likelihood of the observed data, assuming each hypothesis is true.
5. Use Bayes’ Theorem to compute the posterior densities for each value of p (i.e., the

posterior distribution).

Now, let’s go through the steps one at a time.

Step 1. What are the hypotheses for p?

Answer: We know that p, the probability of success in the binomial distribution, can
take on any value between 0 and 1.0. Shaq could say that the prior probability of p is close
to 1.0; his friend could disagree and suggest that the prior probability is closer to 0.01. These
are just two hypotheses for p. However, there’s nothing to stop us from considering
the full range of hypotheses between 0 and 1, which is infinite (p ¼ 0:01, p ¼ 0.011,
p ¼ 0.0111, etc.).
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Figure 10.4 Binomial distribution: n = 3, p = 0.1.
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Step 2. What are the prior densities for these hypotheses?

Answer: We need to assign a prior for each hypothesized value of p. Here, we will use the
beta distribution to set prior probabilities for each and every hypothesis for p. An
example of a beta probability distribution is shown in Figure 10.5.

The x-axis for the beta distribution ranges between 0 and 1. That is to say, random
variables that are beta distributed must be between 0 and 1. The y-axis gives the prob-
ability density, which we learned about in the last chapter. Remember that density is
not probability, per se, because the area under the curve must be 1. But you can think of
the densities associated with each value of p as the “weight” for each hypothesis. The
distribution above would put greater weight for p’s between, say, 0.2 and 0.6, than other
values.

What is the beta distribution?

Answer: The Oxford Dictionary of Statistics tells us that the beta distribution is “a
distribution often used as a prior distribution for a proportion.” Wikipedia has this to say:
“In probability theory and statistics, the beta distribution is a family of continuous prob-
ability distributions defined on the interval (0, 1) parameterized by two positive shape
parameters, typically denoted by alpha (α) and beta (β). The beta distribution can be suited
to the statistical modelling of proportions in applications where values of proportions equal
to 0 or 1 do not occur.”
So, the beta distribution is a statistical distribution whose x-axis spans the interval from 0

to 1. The beta distribution has two parameters that control its shape and position, and these
parameters are named alpha (α) and beta (β). The values for α and βmust be positive (0 and
negative entries won’t work). The beta probability distribution shown in Figure 10.5 has
parameters α ¼ 2 and β = 3.
Observations drawn from this distribution can take on values between 0 and 1. This can

be denoted generally as:

X � betaðα; βÞ ð10:5Þ
Here, X is a continuous random variable and is distributed as a beta distribution with
parameters α and β.
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The beta probability density function looks like this:

f ðx; α; βÞ ¼ 1
Bðα; βÞ x

α�1ð1� xÞβ�1; 0 < x < 1: ð10:6Þ

Can you find the two parameters, α and β here? The beta function, B, is a normalization
constant to ensure that the area under the curve is 1. Don’t confuse the beta function with
the beta pdf!

Can you show other examples of beta distributions?

Answer: Of course. Figure 10.6 shows some other examples.

Since Shaq and his friends have totally different ideas of what p should be, they might
settle on using a beta distribution with α ¼ 0.5 and β ¼ 0.5 as the prior distribution for p,
which gives the U-shaped result in blue.

I don’t have a good feeling for what the α and β parameters do in
terms of controlling the shape and location of the distribution.
Can you help?

Answer: Generally speaking, the bigger α is relative to β, the more we shift the weight of
the curve to the right, and the bigger β is relative to α, the more we shift the weight of the
curve to the left.

But there is another way to get a handle on α and β. The mean of a beta distribution (also
called its first moment) can be calculated as:

μ ¼ α

αþ β
: ð10:7Þ

And the variance of a beta distribution can be calculated as:

σ2 ¼ α ∗ β
ðαþ βÞ2 ∗ ðαþ βþ 1Þ

: ð10:8Þ
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Can I see an example of how this would be used?

Answer: Sure. Suppose YOU think that the average probability of Shaq getting into the
White House is p ¼ 0.10 but think that neighboring values also are likely and set the
standard deviation, σ, to 0.05. Remember that the standard deviation is the square root of
variance, or σ2. Let’s rearrange, plug in these values, and solve:

β ¼ μ� 1þ μ ∗ ð1� μÞ2
σ2

¼ 0:1� 1þ 0:1 ∗ ð1� 0:1Þ2
0:052 ¼ 31:5 ð10:9Þ

α ¼ β ∗ μ
1� μ

¼ 31:5 ∗0:1
1� 0:1

¼ 3:5: ð10:10Þ

You can derive this on your own at http://www.wolframalpha.com/. The resulting beta
distribution looks like the one shown in Figure 10.7.

This little shortcut—calledmomentmatching—can help you parameterize the beta
distribution using means and standard deviations, which are probably more familiar
to you.

What prior distribution did Shaq and his friend settle on?

Answer: Let’s assume they go with a beta distribution with α and β set to 0.5. They think p
is either really high or really low.We can designate these as α0 ¼ 0:5 and β0 ¼ 0:5, where the
“naught” subscripts alert us that these are the parameters of a prior distribution. Technic-
ally, these are known as hyperparameters.

Hyperparameters?

Answer: In Bayesian statistics, a hyperparameter is a parameter of a prior or posterior
distribution. This term is used to distinguish the parameters of the prior or posterior distri-
bution (see Figure 10.8) from the unknown parameter of interest. Our focus here is on the
parameters of the prior distribution for the unknown parameter of interest, p.
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Shaq and his friend had to select a prior distribution, and we can imagine them arguing
over which prior distribution to use. The prior distribution in Figure 10.8 may have resulted
after hours of heated discussion. Of course, Shaq and his friend may have opted to do a bit
of research and make inquiries to the FBI regarding other uninvited but attempted visits by
famous people!

Step 3. Now what?

Answer: Collect data! That is step 3. Let’s assume that Shaq makes 1 attempt and
fails to get in. In the binomial function terms, the number of trials n¼ 1, and the number
of successes y = 0.

Let’s create a diagram that illustrates the process by which the data were generated
(see Figure 10.9).

At the bottom of this diagram, we have our observed data, yi. If Shaq makes one attempt,
the data arise from a binomial distributionwith parameters n¼ 1 and p. Youmay recall that a
binomial distribution with n ¼ 1 is also called a Bernoulli distribution. The parameter, p, in
turn, is the unknown parameter that we are trying to estimate. Here, we use a beta distribu-
tion to set the “weights” on each and every hypothesis for the unknown parameter, p.
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Step 4. And then?

Answer: Step 4 is to determine the likelihood of the observed data, assuming each
hypothesis is true.
Here is where your previous study of binomial probability mass function comes into play.

Because the data, 1 failure out of 1 attempt, are in hand, we will call the result “likelihood.”

ℒðy;n; pÞ ¼ n
y

� �
pyð1� pÞðn�yÞ: ð10:11Þ

The number of trials is denoted n. The number of observed successes is denoted as y. The
probability of success is denoted as p.
Now, for eachhypothesized value of p, let’s compute the binomial likelihood

of observing 0 successes out of 1 trial.
Just to give you an example, under the p ¼ 0.3 hypothesis, the likelihood of observing

0 successes out of 1 trial, given p ¼ 0.3 is computed as:

ℒðy ¼ 0;n ¼ 1; p ¼ 0:3Þ ¼ 1
0

� �
0:30ð1� 0:3Þð1�0Þ ¼ 0:695: ð10:12Þ

Do you see a problem here?

Answer: Your answer here!
You might have noted something critical: Because p is a continuous variable between 0

and 1, we don’t have 1 hypothesis for p—we have an infinite number of hypotheses!

Now what?

Answer: Well, we need to set this Bayesian inference problem up for a continuous
random variable. Suppose we are trying to estimate a single parameter called θ. If θ is
continuous, you have an infinite number of hypotheses for it. Bayes’ Theorem in this case
is specified as:

Pðθ jdataÞ ¼ Pðdata j θÞ ∗ PðθÞð
Pðdata j θÞ ∗ PðθÞdθ

: ð10:13Þ

This is the generic version of Bayes’ Theorem when the posterior distribution for a single
parameter, given the observed data, is represented by a pdf. This is designated Pðθ jdataÞ,
where P is probability density (not probability). Pay attention to this notation! This
is the left side of the equation. On the right side of the equation, the numerator multiplies
the prior probability density of θ, which is written PðθÞ, by the likelihood of observing the
data under a given hypothesis for θ, which is written Pðdata j θÞ. Technically, the likelihood
could be a pmf or a pdf, depending on the problem. For example, in this chapter’s
illustration, the likelihood is a pmf. In the denominator, we see the same terms, but this
time we also see a few more symbols. The symbol

Ð
means “integrate,” which roughly

means “sum up all the pieces” for each tiny change in θ, which is written dθ. In other words,
the denominator accounts for the prior density ∗ likelihood for all possible hypotheses
for theta and then sums them.
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For the Shaq problem, we replace θ with p, so Bayes’ Theorem looks like this (where the
priors are colored blue, the likelihoods red, and the posterior purple):

Pð p jdataÞ ¼ Pðdata j pÞ ∗PðpÞð1
0
Pðdata j pÞ ∗ PðpÞdp

: ð10:14Þ

But here’s the kicker: The integration of the denominator is often tedious,
and sometimes impossible!

How do we make headway?

Answer: Start integrating!

Really?

Answer: Just kidding! For this particular problem, thankfully, no. There is an analytical
shortcut that makes updating possible in a snap. Here it is:

• αposterior ¼ α0 þ y:
• βposterior ¼ β0 þ n� y:

For theWhite House Problem, our prior distribution is a beta distribution with α0 ¼ 0.5 and
β0¼ 0.5. Shaqmade an attempt, so n¼ 1. He failed to get into theWhite house, so y¼ 0.We
can now use this shortcut to calculate the parameters of the posterior distribution:

• posterior α ¼ α0 þ y ¼ 0.5 þ 0 ¼ 0.5.
• posterior β ¼ β0 þ n � y ¼ 0.5 þ 1 � 0 ¼ 1.5.

Incidentally, the parameters of the posterior distribution are also called hyperpara-
meters; posterior hyperparameters, to be exact.

Now we can look at the prior and posterior distributions for p (see Figure 10.10).

We started off with a prior distribution shown in blue, where Shaq and his friend believed
they had a very high or very low probability of gaining entry to the White House without
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an invitation. Then we collected binomial data: one failure out of one trial. We then used
the shortcut to generate the posterior distribution for all hypotheses of p.
As a result of Shaq’s failed attempt, we now have new knowledge about the support for

each and every hypothesis of p. Notice how the posterior really shifted towards the lower
end of the p spectrum.

Would the posterior be different if Shaq used a different
prior distribution?

Answer: Yes! Can we talk about priors for a minute?
Let’s suppose that Shaq and his friend were concerned about using a non-informative

(vague) prior distribution. They may have been tempted to set equal weight on all values of
p, which would look like the distribution in blue below, where α ¼ 1 and β ¼ 1. With this
prior distribution, and with 0 successes out of 1 attempt to get into the White House
without an invitation, the posterior hyperparameters are:

• αposterior ¼ α0 þ y ¼ 1þ 0 ¼ 1:
• βposterior ¼ β0 þ n� y ¼ 1þ 1 � 0 ¼ 2:

This prior distribution is shown in Figure 10.11 as solid blue, and the posterior distribution
is shown as solid purple. The Figure 10.10 result is shown as a dashed line for comparison.
These differences highlight that the choice of prior affects the posterior.

Is the flat prior really non-informative?

Answer: No. Here is a strange twist: the U-shaped prior that was actually used (α and
β ¼ 0.5) is less informative (more vague) than the “flat prior” above, where α and β ¼ 1.
The conjugate solutions show that as we make these parameters tiny, they have less
influence on the resultant posterior distributions compared to the data. In other words,
the data play a large role in determining the parameters of the beta posterior.
Thus, a non-informative prior for a beta distribution will be one in which α and β are tiny.

In the words of Zhu and Lu, “flat priors are not necessarily non-informative, and non-
informative priors are not necessarily flat.” Once again, we refer you to Hobbs and Hooten

0.0 0.2 0.4

Hypotheses for p
0.6 0.8 1.0

Prior: α0 = 1, β0= 1
Posterior: α = 1,  β = 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
en

si
ty

Figure 10.11

THE WHITE HOUSE PROBLEM 143



(2015) for a thoughtful discussion on setting priors. These authors prefer the term “vague
prior” instead of non-informative prior because it’s difficult or impossible to have a prior
that is truly non-informative when dealing with a parameter that is continuous.

What if Shaq makes a second attempt?

Answer: Let’s assume the first prior distributionmentioned was used (α0 and β0¼ 0.5), and
then updated after 1 failed attempt (α0 ¼ 0.5 and β0 ¼ 1.5). We now set a prior distribution
based on our updated knowledge, and then collect more data. Suppose Shaq fails again.
Now, the parameters for our next posterior distribution will be as follows:

• αposterior ¼ α0 þ y ¼ 0:5þ 0 ¼ 0:5:
• βposterior ¼ β0 þ n� y ¼ 1:5þ 1 � 0 ¼ 2:5:

Now we can look at the prior and posterior distributions for p (see Figure 10.12).

Here you can see the major benefit of Bayesian inference: as we collect more data, we
update our beliefs. We start with a prior, collect data and then use Bayes’ Theorem to
generate posteriors. These posteriors then become the priors for the next round of data
collection. If we track our beliefs, we track our learning.

How is this shortcut possible?

Answer: The answer is that the beta distribution is a conjugate distribution that can be
updated with binomial data. This is why we named this chapter “The beta-binomial
conjugate.”

These shortcuts were introduced by Howard Raiffa (Figure 10.13, left) and Robert Schlai-
fer (Figure 10.13, right) in their work on Bayesian decision theory. Their classic 1961 book is
titled Applied Statistical Decision Theory.

The conjugate shortcuts are conveniently provided on a Wikipedia page on Bayesian
conjugates. A visual overview of that page’s beta-binomial conjugate can be depicted as
shown in Figure 10.14.
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Here, each attempt was considered an experiment, where Shaqmade a single attempt and
either succeeded or failed. Before making any attempt, we set a prior distribution on p. He
then failed to get into the White House. We then used this new information to get an

0 0.2 0.4 0.6 0.8 1

Prior hyperparameters

α0, β0

Unknown parameter:
Prior distribution: Beta

 p

Data: y
Likelihood: Binomial; n is known

Posterior distribution: Beta

Posterior hyperparameters

α = α0 + y

β = β0 + n – y
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Figure 10.14

Figure 10.13 (Left) Howard Raiffa (HBS Archives Photograph
Collection: Faculty and Staff, Baker Library, Harvard Business
School (olvwork376291)). (Right) Robert Schlaifer (HBS Archives
Photograph Collection: Faculty and Staff, Baker Library, Harvard
Business School (olvwork383065)).
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updated posterior distribution. This in turn became our prior distribution for Shaq’s second
attempt. He failed again, and this information was used to update to yet another posterior
distribution.

Could he have just tried twice before we updated the prior?

Answer: Yes.Wewould end up in the same place if we started with a prior distribution and
considered 2 attempts (both failures) before updating. Let’s confirm this:

• The prior:
• α0 ¼ 0.5; β0 ¼ 0.5

• The data:
• n = 2
• y = 0

• The posterior:
• α ¼ 0.5 þ 0 ¼ 0.5
• β ¼ 0.5 þ 2 � 0 ¼ 2.5

This is the same answer we got before.

What exactly does the word “conjugate” mean?

Answer: First, Dictionary.com defines the word “conjugate” in several ways. In grammar it
means “to recite or display all or some subsets of the inflected forms of a verb.” For example,
the forms of “to be” are “I am, you are, he is, we are, you are, they are.” As a noun or
adjective, the word conjugatemeans “joined together,” especially in pairs. Thus, conjugates
have a common theme that ties them together.

We mentioned the statistical definition in Chapter 9, where we indicated that there are
cases where you can use a particular pdf as a prior distribution, collect data of a specific
flavor, and then derive the posterior pdf. In these special cases, the pdf of the prior and
posterior are the same probability density function, but their parameters may differ. The
prior distribution is called a conjugate prior (Raiffa and Schlaeffer, 1961), and the effect of
the data can then be interpreted in terms of changes in parameter values (Upton and
Cook, 2014).

In the White House Problem, we used a beta distribution to set the priors for all
hypotheses of p, the probability that a famous person could get into the White House
without an invitation. We then collected binomial data, and, rather than computing the
posterior by the use of Bayes’ Theorem, we used the conjugate shortcut to generate the
posterior distribution for p.

Why does the shortcut work?

Answer: Wikipedia again: “A conjugate prior is an algebraic convenience, giving a closed-
form expression for the posterior; otherwise a difficult numerical integration may be
necessary.” In other words, the shortcut solution that provides the same answer you’d get
if you worked through the integration yourself. The shortcut allows us to avoid the integral
in Bayes’ Theorem (although the result would be the same).
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Can you show me the proof?

Answer: Gladly. The proof is in Appendix 1.

Can the beta distribution be used as a conjugate prior for data other
than binomial data?

Answer: Yes. Wikipedia once more: “In Bayesian inference, the beta distribution is the
conjugate prior probability distribution for the Bernoulli, binomial, negative binomial and
geometric distributions. The beta distribution is a suitable model for the random behavior
of percentages and proportions.” These distributions all depend on a parameter, p that can
assume values between 0 and 1.

Will we have more practice with conjugate priors?

Answer: Yes! Chapters 11 and 12 will give us more practice:

• gamma prior þ Poisson data ! gamma posterior
• normal prior þ normal data ! normal posterior

Some problems don’t have the luxury of a conjugate prior. For those problems, we need
another method for avoiding the integral in the denominator of Bayes’ Theorem. That
method, called theMCMC (forMarkov ChainMonte Carlo)method, is described in Section 5.

OK. I’ll wait. Suppose I do an analysis and have a new posterior
distribution. How should I present my results?

Answer: A picture may be worth a thousand words. If you can display the posterior
distribution, do so.
In addition, often people summarize the posterior distribution with some simple statis-

tics that are familiar to most people: the mean, median, mode (all measures of middleness),
plus the quantiles.
For well-known probability distributions such as the beta distribution, you can simply

look up the expected values that characterize the distribution on Wolfram Mathworld:

• Mean ¼ α

αþ β
:

• Mode ¼ α� 1
αþ β� 2

for α and β > 1.

• Variance ¼ α ∗ β
ðαþ βÞ2 ∗ ðαþ βþ 1Þ :

Let’s do this for the Shaq problem. Let’s calculate these for our new posterior, which has
α ¼ 0.5 and β ¼ 2.5:

• Mean¼ 0:5
0:5þ 2:5

¼ 0:1667:

• Mode cannot be calculated because α < 1. Snap!

• Variance ¼ 0:5 ∗2:5
ð0:5þ 2:5Þ2 ∗ ð0:5þ 2:5þ 1Þ

¼ 0:0617:
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How should I describemy confidence in the hypothesized values for p?

Answer: Report the Bayesian “credible intervals.” Bayesian credible intervals are common-
ly reported in Bayesian inference problems that involve parameter estimation. According to
the Oxford Dictionary of Social Research Methods (Elliot et al., 2016), a credible interval
represents “an interval in the domain of the posterior or predictive distribution. For a 95
percent credible interval, the value of interest lies with a 95 percent probability in the
interval. In other words, given the data and the model, there is a 95 percent chance the true
value lies in that interval.”

A Wikipedia article describes three methods for choosing a credible interval (see also
Kruschke, 2015):

• Choosing the narrowest interval, which for a unimodal distribution will involve choos-
ing those values of highest probability density including the mode. This is sometimes
called the highest posterior density interval.

• Choosing the interval where the probability of being below the interval is as likely as
being above it. This interval will include the median. This is sometimes called the equal-
tailed interval.

• Assuming that the mean exists, choosing the interval for which the mean is the
central point.

Let’s use our most up-to-date estimation of p (given Shaq’s two failed attempts) and go with
option 2 above, that is, look for the 90% credible interval. Our posterior distribution is a
beta distribution with α ¼ 0.5 and β ¼ 2.5. We need to find the area under the curve where
5% of the distribution is in the upper tail, and 5% is in the lower tail. We can use any
computer software program to find these values, which are p ¼ 0.00087 for the lower end,
and p ¼ 0.57 for the upper end (as shown by the dashed green lines in Figure 10.15).

Interpretation: The probability that p is between 0.000867 and 0.57 is 0.90. The word
“probability” is correct here because we’ve calculated an area under the pdf.

Can we summarize this chapter?

Answer: Indeed.
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• We began by mentioning that Shaquille O’Neal made a bet with his friend that he could
get into the White House without an invitation.

• We broadened this problem to ask, “What is the probability that any famous person can
get into the White House without an invitation?”

• We introduced the beta distribution as a prior pdf that can be used to set hypotheses
for p, the probability of success, noting that the beta distribution returns a probability
density, not a probability. We selected hyperparameters for the beta distribution that
reflected both Shaq and his friend’s opinions about his probability of entry.

• We then collected data that is binomial in flavor. Shaq made one attempt and did not
get in.

• We then calculated the likelihood of observing the data under some hypothesized values
for p.

• But then we noted that we have an infinite number of hypotheses for p, so that the
denominator of Bayes’ Theorem now has an integral. This stopped us in our tracks.

• We relied on a shortcut—a conjugate solution—which allowed us to update our prior
beta distribution to a posterior beta distribution using the data (one trial, one failed
attempt).

• We then let Shaqmake a second attempt. This time, we used our newly updated posterior
as the prior distribution and then updated it again, given the outcome of the second
attempt. We discussed this as a way to formalize “learning.”

• Finally, we discussed ways of presenting your results, including calculation of credible
intervals.

What really happened to Shaq?

Answer: Sadly, he was denied entrance. Shaq recounted the story to a Washington Post
sportswriter this way (accessed August 17, 2017):

The sportswriter said that “Shaq left 1600 Pennsylvania Avenue in defeat Sunday, 1,000
push-ups in arrears. He said he was popping them off in bursts of 20 or 30 all day, and that
he had already logged about 100 by the time we saw him in the production room Monday
evening.”

Will we see Shaq again?

We will revisit this chapter again in Section 5, where we will show you a different method
for estimating the posterior distribution. For now, though, Chapter 11 introduces another
conjugate called the gamma-Poisson conjugate. The chapter features blood and gore.
Beware!

“I went to the gate,” [Shaq] said. “They were nice. They said, ‘Shaq, we can’t do it.’ I said,
‘I understand. Understood.’ ”
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CHAPTER 11

The Shark Attack Problem:
The Gamma-Poisson Conjugate

We interrupt this book to bring you the following news flash from the National Post:

Great headline, eh? This article appeared in the National Post on September 7, 2001. An
unusually large number of shark attacks off the coast of Florida in 2001 spurred a flurry of
excitement. What is the cause? Will I be next? In the story, Dr. David Kelton of Penn State
University explained the attacks this way:

“Just because you see events happening in a rash like this does not imply that there’s some
physical driver causing them to happen. It is characteristic of random processes that they exhibit
this bursty behavior.”

Comforted now? What random process was he referring to? The headline refers to a
Poisson process. You might have guessed this probability distribution is used to estimate

Shark attacks attributed to random Poisson burst

Bayesian Statistics for Beginners: A Step-by-Step Approach. Therese M. Donovan and Ruth M. Mickey,
Oxford University Press (2019). © Ruth M. Mickey 2019.
DOI: 10.1093/oso/9780198841296.001.0001



the number of times an event will occur. You’d be right! In this chapter, we’ll take a look at
the problem of shark attacks and put it into a Bayesian framework.
By the end of this chapter, you should be able to define and use the following:

• The Poisson probability mass function
• The gamma probability density function
• The gamma-Poisson conjugate

As usual, we’ll start with a question.

So, what exactly is the Poisson distribution?

Answer: Because shark attacks are a public health problem, let’s see what Oxford Diction-
ary of Public Heath (Last, 2007) has to say: “A distribution function to describe rare events,
or the sampling distribution of isolated counts in a continuum of space or time, such as
cases of uncommon diseases.”
In the Shark Attack Problem, Dr. Kelton explains: “There is something in probability

theory called a Poisson process, giving amazingly good descriptions of such random
independent events occurring through time, like customer arrivals at a fast-food store,
cosmic rays striking a planet, accidents in a factory, airplane mishaps, and maybe shark
attacks.”We need to consider pmf ’s because we have discrete numbers; that is, the number
of attacks is not continuous.

To what does “Poisson” refer?

The Poisson distribution is named for the French mathematician Simeon Poisson (see
Figure 11.1), who derived this distribution in 1837. This is the same year that Queen
Victoria of England took the throne. Coincidentally, “poisson” means “fish” in French,
which is fitting for the Shark Attack Problem!
Let’s assume that the average rate is 2.1 attacks per year, based on the number of attacks

reported annually at Florida beaches in the past 10 years (see Table 11.1).
Knowing this, you can use the Poisson probability mass function to determine the

Poisson probability that there will be, say, 10 attacks next year.

OK, what exactly is the function?

The Poisson probability mass function is written:

PrðX ¼ x; λÞ ¼ λxe−λ

x!
x ¼ 0;1;2; : : : ð11:1Þ

where λ is the mean number of occurrences in a given period of time, x is the number of
occurrences we are interested in, and e is the natural logarithm constant (approximately
2.718), also called Euler’s number. The left side of the equation can be read, “What is the
probability that a random variable called X has a value of x, given λ.” Notice the three dots
to the right of the equation. Unlike the binomial distribution, where the number of possible

The Poisson distribution is a mathematical rule that assigns probabilities to the number
of occurrences observed.
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values is fixed (x ¼ 0;1; : : : ;n), the possible values that x can assume for the Poisson
distribution (x ¼ 0;1; : : :) is not finite; rather it is “countably infinite.”

What are the parameters of the function?

Answer: The Poisson pmf has just one parameter that controls both its shape and
location. This parameter is called “lambda” and is written λ. It represents the mean number

Figure 11.1 Simeon Poisson.

Table 11.1

Year Attacks

1 1
2 0
3 2
4 1
5 1
6 3
7 2
8 3
9 4

10 4
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of occurrences in a fixed space or time period, such as the mean number of births in a year,
themean number of accidents in a factory in a year, or themean number of shark attacks in
a year. So, λmust be > 0 or the event will never occur. By the way, λ is also the variance of the
distribution.
Let’s work through an example to see the Poisson pmf in action. We have information in

Table 11.1 that suggests the average rate of shark attacks in Florida is 2.1 attacks per year.
What is the probability that there will be 10 attacks next year?
The probability would be calculated as:

Prðx; λÞ ¼ λxe−λ

x!
ð11:2Þ

Prð10;2:1Þ ¼ 2:110e−2:1

10!
¼ ð1668 ∗0:12Þ

3628800
¼ 0:0000563: ð11:3Þ

What is the probability of 3 attacks if λ ¼ 2.1?

Answer: No problem! That would be:

Prðx; λÞ ¼ λxe−λ

x!
ð11:4Þ

Prð3;2:1Þ ¼ 2:13e−2:1

3!
¼ ð9:61 ∗0:12Þ

3 ∗2 ∗1
¼ 0:189: ð11:5Þ

We could calculate the probability of observing exactly 0, 1, 2, 3, 4, 5, 6, 7, . . . attacks as well,
and display the results as the Poisson probability distribution (see Figure 11.2).

Look for the probabilities associated with 3 and 10 attacks. Also notice that the y-axis is
labeled “Probability” and that the sum of the bars must equal 1.0. Now take a look at the
x-axis; it consists of non-negative integers only. The graph is depicted in bars to indicate
there are only discrete outcomes; that is, that there is no way to observe, say, 2.5 shark
attacks in a year. In a nutshell, the outcome x is a non-negative integer, but the average rate,
λ, can be any positive number such as 2.1. Thus, the Poisson function is a probability mass
function (pmf).
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Figure 11.2 Poisson distribution with λ = 2.1.
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There is only one parameter or “knob” to twiddle with for this probability function, and
that is λ. Let’s have a look at the Poisson distribution when λ ¼ 1, 3, and 7 (see Figure 11.3).

These graphs highlight the fact that the Poisson probability distribution is governed by
just one parameter, λ. In looking at these three distributions, you might have noticed a few
things:

• First, the mean of the distribution is λ.
• Second, as λ gets larger, the Poisson distribution starts to look like a normal distribution.
• Third, the spread, or variance, of the distribution is the same as λ. So as λ increases, so does

the spread of the Poisson distribution. See if you can confirm this visually.

What is so “bursty” about a Poisson process?

Answer: The news headline read: “Shark attacks attributed to random Poisson bursts.”
Let’s have a second look at the Poisson distribution for λ ¼ 2.1, shown in Figure 11.4. The
number of shark attacks x ¼ 1, 2, and 3 are all fairly likely outcomes, but 0, 4, and 5 are also
in the running. With an average attack rate of 2.1 per year, it would be rare, but not
impossible, to observe > 7 attacks.

Let’s try an experiment where we randomly draw 50 observations from the Poisson
distribution in Figure 11.4 (λ ¼ 2.1) and record our results in a table with 10 rows and 5
columns (see Table 11.2).

Attacks per Year (x)

0
0.0

0.2

0.4

Pr
ob

ab
ili

ty 0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10 12

Figure 11.4 Poisson distribution with λ = 2.1.
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Figure 11.3 Poisson distribution.
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What you are seeing are random draws from a Poisson distribution where λ ¼ 2.1.
Heading down the columns, we drew a 2, then 1, then a 1, then 3, and so on. This is an
example of a random Poisson process like the one described in the shark attack article. We
can say that each observation, x, arises from a Poisson distribution. That is, the random
variable X is the number of shark attacks in a year, and X is distributed as a Poisson
distribution:

X � PoissonðλÞ: ð11:6Þ
Now, take a look at the last four entries in column 1 and the first entry in column 2. Do
you see a series of attacks? If you did not know that these values came from a Poisson
distribution with λ ¼ 2.1, you might conclude that shark populations are on the rise and
that the rate of attacks is actually increasing.With random variables, occasionally you can
string together a series of outcomes that strike you as “non-random,” even if they are.
Make sense?

What does the Poisson pmf have to do with a Bayesian analysis?

Answer: Ah, yes!

Suppose you are on a Bay(es) Watch patrol team, and 5 attacks occurred
this year. Your supervisor doubts that the current estimate of λ = 2.1 is valid.

Table 11.2

2 4 2 2 3
1 3 1 1 0
1 2 1 1 1
3 1 3 1 3
3 4 2 1 3
2 1 3 3 3
5 2 3 1 0
5 2 4 5 1
4 5 0 4 1
7 2 3 1 3

Are you ready for
another Bayesian
inference problem?
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She has charged you with getting an up-to-date estimate of the annual rate
of shark attacks. Thus, this is a parameter estimation problem, and you’ve
decided to use a Bayesian approach.

What is your estimate of lambda?

Answer: Your answer here!
Well, you have just one new observation, which is that there were 5 attacks this year. You

note that it’s possible to observe 5 shark attacks under a variety of λ estimates. Look for the
probability of observing 5 attacks when λ ¼ 2, 5, or 7 (see Figure 11.5).

Because there are multiple alternative Poisson distributions that can yield 5 shark attacks
with a non-0 probability, it makes sense that we focus our attention on considering all
possible values for lambda, and then confront each hypothesis with our data of 5 shark
attacks. For each hypothesis for λ, we then ask: What is the likelihood of observing 5
shark attacks under each hypothesis for λ? That way, you are estimating a probabil-
ity distribution for λ and giving credence to an infinite number of hypotheses instead of
estimating just a single point.

This is a natural Bayesian problem. With a Bayesian inference problem, we need a prior
distribution that represents our ‘belief ’ in each alternative value for λ and the likelihood of
the data to generate the posterior distribution. We’ll get there before you know it.

Sounds good! Where do I start?

Answer: Before we leap in, let’s take time to acquaint ourselves with a new probability
density function. Remember that λ can go from 0 to infinity. If our hypotheses for λ are
graphed along the x-axis, we need an x-axis that starts at 0 and increases to infinity. Because
λ can be any real number greater than 0, the x-axis must be continuous. Then on the
y-axis, we compute the probability density of each possible λ. An example of a prior
distribution for the various hypotheses for λmight look like something like the one shown
in Figure 11.6.
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Figure 11.5 Poisson distribution.
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Of course, you could use a different prior distribution if you’d like.

OK. Is there some sort of probability distribution I can use to
help me set the prior distribution?

Answer: Yes! In Chapter 10, we were intent on estimating the posterior distribution
for p, the probability that a famous person like Shaq could get into the White House
without an invitation. We used a beta distribution to set our priors for each and every
p (p ¼ probability of success, which ranges between 0 and 1). The data we collected
constituted a binomial problem (number of successes out of number of trials). Then, we
obtained a new posterior distribution for p in light of the new data.
In this problem, the beta distribution won’t work for us. Why? Because λ can be greater

than 1. Fortunately there is another distribution that is suitable, and it is called the gamma
distribution.

Gamma distribution?

Answer:Wolfram and the Oxford Dictionary of Statistics (Upton and Cook, 2014) provide
descriptions of the gamma distribution.
If you checked out these links, you may have noticed that there are different ways of

expressing the gamma distribution, which is explained in a Wikipedia entry (accessed
August 17, 2017): “In probability theory and statistics, the gamma distribution is a two-
parameter family of continuous probability distributions. There are three parameterizations
in common use:

• With a shape parameter k and a scale parameter θ.
• With a shape parameter α ¼ k and an inverse scale parameter β ¼ 1

θ
, called a rate

parameter.
• With a shape parameter k and a mean parameter μ ¼ k

β
.

The second parameterization, with α and β, is more common in Bayesian statistics, where
the gamma distribution is used as a conjugate prior distribution for various types of
inverse scale (i.e., rate) parameters, such as the λ of an exponential distribution or a Poisson
distribution.”
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Figure 11.6 Prior probability distribution for λ.
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Uh-huh. Can you simplify?

Answer: The gamma distribution is a continuous probability distribution; the x-axis is
continuous, not discrete, and begins with 0 and goes to infinity. There are three ways to
“create” a gamma distribution. In our Bayesian analysis, we are interested in a gamma
distribution whose shape and location are controlled by two parameters: the shape param-
eter is called alpha, α, and the rate parameter is called beta, β.

Let’s take a look at a few examples (see Figure 11.7).

Note that we have drawn these distributions as continuous functions (lines)—
highlighting that the gamma distribution is a probability density function—

there are an infinite number of hypotheses for λ, the average number of shark attacks
per year.

Do α and β have anything to do with the α and β from the beta
distribution in Chapter 10?

Answer: Nope, not a thing. The beta distribution is controlled by two parameters that are
also named α and β, but these could have been named something else. It just so happens
that α and β are common names for parameters in probability functions, much like Spot
and Daisy are common names for dogs!

Why are there three ways to parameterize this function?

Answer: Can you see that all three parameterizations are related to one another? In the
first form, we have a shape and scale parameter. In the second version, the rate parameter is

α = 1.0, β = 0.5
α = 2.0, β = 0.5
α = 4.0,
α = 2.1,
α = 9.0,
α = 7.5,
α = 0.5,

β = 0.5
β = 1
β = 2
β = 1
β = 1
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Figure 11.7 Gamma distributions.

Note: If you dig into other references, take care to note that different software packages
may use different names for the shape, rate, and scale parameters. In this book, we will
stick with the names α for shape, β for rate, and θ for scale.
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just 1 divided by the scale parameter. In the third version, the mean is the shape parameter
divided by the rate parameter!
Which of the three alternative parameterizations you use depends on the

problem you are tackling. Here, we’ll stick with the second version which has α as the
shape parameter and β as the rate parameter, as that is the version commonly used for
Poisson hypotheses for λ. After all, λ from the Poisson distribution is a rate!

How do we use this distribution to estimate probability?

Answer: Well, because it’s a probability density function, you can’t calculate probability
for a specific value. Rather, you are calculating the probability density.
If you are given a particular gamma distribution, say, α ¼ 2 and β ¼ 1, you can compute

the density associated with, say, x ¼ 3 with this function:

gðx; α; βÞ ¼ βαxα−1e−βx

ΓðαÞ 0 � x � ∞: ð11:7Þ

Looks Greek to me!

This is the probability density function for the gamma distribution. Here, the function
name is g, and the inputs are x, α, and β. The random variable named Xmust assume values
greater than or equal to 0, and α and β must be positive. The output will provide the
probability density of x given α and β.
The funny symbol, Γ, in the denominator is the capital Greek letter for G (called gamma),

and represents the gamma function, which is not to be confused with the gamma distri-
bution! The gamma function is needed to ensure that the function integrates to 1.0 (that is,
the total area under the curve ¼ 1.0). Let’s try an example.
The probability density of observing x ¼ 3, given α ¼ 2 and β ¼ 1 is:

gðx; α; βÞ ¼ βαxα−1e−βx

ΓðαÞ ð11:8Þ

gð3; 2;1Þ ¼ 1232−1e−1 ∗3

Γð2Þ : ð11:9Þ

But what do we do about Γ(2)?

Answer: When α is a positive integer, ΓðαÞ ¼ ðα−1Þ!, which in our case ends up being
Γð2Þ ¼ ð2−1Þ! ¼ 1! ¼ 1:0. So we are left with:

gð3;2;1Þ ¼ 1232−1e−1 ∗3

Γð2Þ ð11:10Þ

gð3;2; 1Þ ¼ 1232−1e−1 ∗ 3

ð2−1Þ! ð11:11Þ

gð3;2;1Þ ¼ 1 ∗3 ∗ e−3 ¼ 0:14936: ð11:12Þ
If α is not a positive integer, you can compute the value of the gamma function with an
online calculator.
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Here is a graph of the gamma distribution for α ¼ 2 and β ¼ 1. See if you can find the
probability density for x ¼ 3 in Figure 11.8.

It’s worth pointing out again that this is a probability density function. The
y-axis gives density, and the x-axis features a continuous variable.

OK, so how do we use the gamma distribution for the
Shark Attack Problem?

Answer: Our goal here is to use a Bayesian inference approach to estimate the
rate of shark attacks per year, or λ.

We’ll use the same steps that we have in previous chapters:

1. Identify your hypotheses—these would be the alternative hypotheses for λ, ranging
from 0 to infinity.

2. Express your belief that each hypothesis is true in terms of prior densities.
3. Gather the data—5 attacks occurred this year.
4. Determine the likelihood of the observed data, assuming each hypothesis is true.
5. Use Bayes’ Theorem to compute the posterior densities for each value of λ (i.e., the

posterior distribution).

Before we leap in, let’s create a graphical diagram that illustrates the process by which the
data were generated (see Figure 11.9).
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At the very bottom of this diagram, we have our observed data, xi. The data are random
observations that arise from a Poisson distribution, defined by the parameter λ. The par-
ameter, λ, in turn, is the unknown parameter that we are trying to estimate. We use a
gamma distribution to “weight” each and every hypothesis for λ, treating the unknown
parameter as a random variable from a gamma distribution.
Now that we have specified the problem, let’s step through these one at a time.

Step 1. What are the hypotheses for lambda?

Answer: Your answer here!
We know that λ can take on any value from 0 to infinity, so we have an infinite number of

hypotheses for λ.

Step 2. What are the prior densities for these hypotheses?

Answer: We need to assign a prior for each hypothesized value of λ, and we already
introduced the gamma distribution as a suitable prior probability distribution. We’ve
also decided that the gamma distribution that uses the shape and rate parameterization
suits our needs.

OK, what values for α and β should we use?

Answer: Your answer here!

Answer: It makes sense that we dust off the 10 years of shark attack data in Table 11.1 and
use that information to inform our prior distribution.

But the mean of that dataset is 2.1. How do I convert this to the α and β
parameters for a gamma distribution?

Answer: Here’s where the Wolfram MathWorld, the Oxford Dictionary of Statistics, or
Wikipedia pages on probability distributions can be very helpful. For instance, Figure 11.10
shows a typical Wikipedia panel featuring the gamma distribution (with our parameteriza-
tion highlighted in red).
These panels provide summary information such as the mean, median, and variance, for

a given gamma distribution when the shape α and rate β parameterization is used. Scan
down and look at the mean:

μ ¼ E½X� ¼ α

β
: ð11:13Þ

The mode is:

α−1
β

ð11:14Þ

when α � 1. The variance is:
α

β2
: ð11:15Þ
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Just as in the beta distribution in the last chapter, the magnitude of α and β are not nearly as
important as the relation between them. For instance, if the mean is 2.1, you might set α
to 2.1 and β to 1.0. Or you might set α to 4.2 and β to 2.0.

If the mode (the peak of the curve) is at 2.1, you might set α to 3.1 and β to 1.0. Or you
might set α to 31 and β to 14.3 (see Figure 11.11).

A few things worth noticing:

• The area under all five distributions is 1.
• Notice that as α and β become larger, the distribution becomes tighter.
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• α and β for all of the blue distributions were calculated assuming the mean of the
distribution ¼ 2.1. Notice that the mean is not the top of curve, though, because there
is “weight” in the right tail of the distribution.

• When α and β are parameterized in terms of the mode, the peak of the curve is the mode
(black distributions).

With these graphs, it’s clear that even though you have prior information that the mean
number of shark attacks is 2.1 per year, you still need to exercise some subjectivity with
respect to which prior distribution to use. You could also consider the variance of the data
in Table 11.1 in making your selection (we’ll cover how to do that in Chapter 13).

Which gamma distribution should we use for this problem?

Answer: Let’s go with the prior distribution of α0 ¼ 2.1 and β0 ¼ 1 (solid blue line in
Figure 11.12), which has a mean rate of 2.1. Notice that we use a “naught” subscript to
designate these as the hyperparameters of the prior distribution.

Hyperparameters?

Answer: In Bayesian statistics, a hyperparameter is a parameter of a prior or posterior
distribution. This term is used to distinguish the parameters of the prior or posterior distri-
bution from the unknown parameter of interest, which is λ.

Step 3. Now what?

Answer: Collect data! We have observed 5 shark attacks.

Step 4. And then?

Answer: Step 4 is to determine the likelihood of the observed data, assuming each
hypothesis is true.
Now, for each hypothesized value of λ, let’s compute the Poisson likelihood

of observing five attacks in one year.
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Figure 11.12 Prior distribution: α0 = 2.1, β0 = 1.

THE SHARK ATTACK PROBLEM 163



We touched on the Poisson pmf at the beginning of the chapter, where we showed that
the Poisson pmf can be used to calculate the probability of observing 0, 1, 2, 3, . . . attacks,
given lambda. This time, we have observed the value x, and nowwe are using the function to
calculate the likelihood of observing the data under each hypothesized λ.

To give you an example, under the λ ¼ 2.1 hypothesis, the likelihood of observing five
shark attacks is computed as:

ℒðX ¼ x; λÞ ¼ f ðx; λÞ ¼ λxe−λ

x!
ð11:16Þ

ℒðx ¼ 5; λ ¼ 2:1Þ ¼ 2:15e−2:1

5!
¼ ð40:84 ∗0:12Þ

120
¼ 0:04167704: ð11:17Þ

A plot of the likelihoods for a range of values for λ is called a likelihood profile (see
Figure 11.13).

And Step 5?

Answer: The final step is to use Bayes’ Theorem to compute the posterior probabilities for
each value of λ. As in Chapter 10, we need to set this Bayesian inference problem up for a
continuous random variable. Suppose we are trying to estimate a single parameter
called θ. If θ is continuous, you have an infinite number of hypotheses for it. Bayes’
Theorem in this case is specified as:

Pðθ jdataÞ ¼ Pðdata j θÞ ∗PðθÞð
Pðdata j θÞ ∗ PðθÞdθ

: ð11:18Þ

This is the generic version of Bayes’ Theorem when the posterior distribution for a single
parameter, given the observed data, is represented by a pdf. This is designated Pðθ jdataÞ,
where P is probability density. This is the left side of the equation. On the right side of
the equation, the numerator multiplies the prior probability density of θ, which is written
PðθÞ, by the likelihood of observing the data under a given hypothesis for θ, which is written
Pðdata j θÞ. Technically, the likelihood can be a pdf or a pmf. In this chapter’s illustration,
for instance, the likelihood is a pmf because it is a Poisson distribution. In the denominator,
we see the same terms, but this time we also see a few more symbols. The symbol
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“integrate,” which roughly means “sum up all the pieces” for each tiny change in θ, which
is written dθ. In other words, the denominator accounts for the prior density * likelihood for
all possible hypotheses for theta, and sums them.
For the Shark Attack Problem, we replace θwith λ, so Bayes’ Theorem looks like this, with

the posterior shown in purple, the prior in blue, and the likelihood in red:

Pðλ jdataÞ ¼ Pðdata j λÞ ∗ PðλÞð∞

0
PðdatajλÞ ∗ PðλÞdλ

: ð11:19Þ

Remember that this is a density, not a probability, because the probability of a given value
of λ will always be 0 for a continuous pdf (refer to Chapter 9 for a refresher). Thus, in this
problem, we are interested in all possible values of λ, or the entire posterior
distribution.
But here’s the kicker: The integration of the denominator can be very

difficult to calculate!

How do we make headway?

Answer: Well, for this particular problem, there is an analytical shortcut that makes
updating the prior to the posterior distribution a snap. Integration not required! Remember
that our prior distribution set α0 ¼ 2.1 and β0 = 1.
Furthermore, we have observed 5 shark attacks in one year. So here, x¼ 5. Let’s let n¼ the

number of years; here n = 1. Here is the shortcut:
The updated α parameter is α0 plus the sum of the Poisson observations. We have just

one observation, which was of 5 attacks:

αposterior ¼ α0 þ
Xn

i¼1

xi: ð11:20Þ

So, the summation term results in the number 5, because x1=5. Then we have:

αposterior ¼ 2:1þ 5 ¼ 7:1: ð11:21Þ
The updated β parameter is β0 plus n, the number of Poisson observations:

βposterior ¼ β0 þ n ð11:22Þ

βposterior ¼ 1þ 1 ¼ 2: ð11:23Þ

These parameters are referred to as the posterior hyperparameters. Now we can look at the
prior and posterior distributions for λ (see Figure 11.14).
We started off with a prior distribution shown in blue. Then we collected data in the form

of a single Poisson random variable: five attacks. We then used the shortcut to generate the
posterior distribution for all hypotheses of λ.
As a result of our data, we now have new beliefs in each and every hypothesis of λ. The

posterior distribution is shown in purple. Notice how the posterior shifted toward our
observed data for this problem.
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How is this shortcut possible?

Answer: The answer is that the gamma distribution is a conjugate distribution that can be
updated with Poisson data (Raiffa and Schlaeffer, 1961). This is why we named this chapter
“The gamma-Poisson conjugate.”

We mentioned the statistical definition of a conjugate distribution in Chapter 11, where
we indicated that there are cases where you can use a particular pdf as a prior distribution,
collect data of a specific flavor, and then derive the posterior pdf with a closed-form
solution. In these special cases, the pdf ’s of the prior and posterior distributions are the
same probability density function, but their parameters may differ. The prior distribution is
called a conjugate prior, and the effect of the data can then be interpreted in terms of
changes in parameter values (Upton and Cook, 2014).

In the Shark Attack Problem, we used a gamma distribution to set the priors for all
hypotheses of λ, the rate of shark attacks per year. We used the information provided in
Table 11.1 to help set the prior distribution. We then collected Poisson data (5 shark
attacks), and then used a shortcut to generate the posterior distribution for λ.

Raiffa and Schlaeffer’s (1961) conjugate solution is conveniently given in a Wikipedia
page on Bayesian conjugates. A quick overview of that page’s gamma-Poisson conjugate
can be visualized with the graph in Figure 11.15.

Let’s work our way through this figure. The top item indicates that the model parameter
of interest, λ, is a rate. The prior distribution is a gamma distribution, defined by hyperpara-
meters α0 and β0. The “naughts” signal that these are hyperparameters for the prior. The
data collected are Poisson in flavor, so the likelihood to be used is the Poisson pmf. With
this setup, the posterior hyperparameters (the conjugate shortcuts) are provided.

Can I see the proof?

Answer: Of course! Check out Appendix 2.

What if I used a different prior distribution?

Answer: You could have used a different prior distribution, and your inferences provided
by the posterior distribution would probably be different. You must defend your choice for
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Figure 11.14 Gamma prior and posterior.
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the prior! Here, we had previous knowledge of the annual rate of shark attacks and thus used
an informative prior. To ignore this previous information is contrary to the scientificmethod.

Why do I need to use a Bayesian approach? Couldn’t I just use the data
from Table 11.1 and add in the extra observation of 5 shark attacks?

Answer: You certainly could do that. But then youwouldn’t be capitalizing on the notion of
learning, and on the notion of multiple, competing hypotheses for λ. Table 11.3 shows the
dataset again, this time with one extra observation (our new observation of 5 shark attacks).

Unknown parameter: λ
Prior distribution: Gamma

Prior hyperparameters

α0, β0

Data: x1, x2, . . . , xn

Likelihood: Poisson

Posterior distribution:  Gamma

Posterior hyperparameters

α = α0 + ∑n
i = 1 xi β = β0 + n

Figure 11.15

Table 11.3

Year Attacks

1 1
2 0
3 2
4 1
5 1
6 3
7 2
8 3
9 4
10 4
11 5
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The mean of this dataset is 2.36. Yes, this does give you an estimate of λ, and you can ask
your friendly neighborhood statistician to help you draw conclusions about the mean
number of shark attacks in Florida based on your sample. However, this result fails to
acknowledge support for alternative values of λ. Bayesians are interested in the probability
distribution for λ, where the density associated with each alternative hypothesis for λ gives a
measure of “plausibility.” This approach is squarely in line with the scientific method. As
we collect new information, we can use Bayesian approaches to refine how plausible each
and every hypothesis for λ is.

OK, what happens to the posterior if I collect new data?

Answer: Try it! The prior distribution will now be the posterior distribution after observing
5 shark attacks: α ¼ 7.1 and β = 2.

Let’s suppose you collect 5 more years of shark attack data. Let’s define the
variable X1 as the number of shark attacks in year 1, . . . , and X5 as the number of shark
attacks in year 5. You observe the results shown in Table 11.4.

Note that we have 5 new random observations from the Poisson distribution, so n ¼ 5.

Also notice that the sum of the attacks,
Pn

i¼1xi, is 10.
Remember that the prior distribution is now defined by α0 ¼ 7.1 and β0 = 2. Now let’s

incorporate the n ¼ 5 years of new data (see Figure 11.16).

The updated α parameter is the prior α0 plus the sum of the Poisson observations:

αposterior ¼ α0 þ
Pn
i¼1

xi ð11:24Þ

Table 11.4

Year Attacks

12 1
13 2
14 0
15 3
16 4
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αposterior ¼ 7:1þ 10 ¼ 17:1: ð11:25Þ
The updated β parameter is the prior β0 plus n, the number of Poisson observations:

βposterior ¼ β0 þ n ð11:26Þ

βposterior ¼ 2þ 5 ¼ 7: ð11:27Þ

A few things are worth pointing out here:

• We started off with a prior shown in blue
• We updated this based on a single year’s worth of data: 5 shark attacks. This shifted the
posterior to the right, but with a single year’s worth of data, the distribution is still
quite broad.

• We then collected 5 more years’ worth of data, during which a total of 10 attacks were
observed. This shifted the posterior back to the left, and the distribution narrowed
considerably.

• The mean of this new distribution is
α

β
¼ 17:1

7
¼ 2:44:

• The variance is
α

β2
¼ 17:1

72 ¼ 0:35:

• The standard deviation is 0.59.

Of course, you would want to report the Bayesian credible intervals.

What parameters do you use for α0 and β0 if you want a vague prior?

Answer: If you didn’t have the information in Table 11.1 and wanted to use a vague prior,
you could set α0 and β0 to something really small, like 0.01. Let’s try our very first analysis
again, using a prior with α0 and β0¼ 0.01, and then update it after observing 5 shark attacks.
The updated alpha parameter is the prior alpha plus the sum of the Poisson observations:

αposterior ¼ α0 þ
Pn
i¼1

xi ð11:28Þ

αposterior ¼ 0:01þ 5 ¼ 5:01: ð11:29Þ
The updated beta parameter is the prior beta plus n, the number of Poisson observations:

βposterior ¼ β0 þ n ð11:30Þ

βposterior ¼ 0:01þ 1 ¼ 1:01: ð11:31Þ

If you were estimating the mean number of attacks based on the data alone, you would
estimate that λ is 5.0. Here, the mean of the posterior distribution is very close to that, and
can be calculated as:

α

β
¼ 5:01

1:01
¼ 4:96: ð11:32Þ

It’s evident that the prior is not contributing much to the posterior distribution (see
Figure 11.17).
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The prior certainly does not look “flat.” But notice in this case, since α0 and β0 were so
small for the prior distribution, they had almost no bearing on the shape of the posterior
distribution. But, why would you use this prior distribution if the data in Table 11.1 were at
your disposal?

OK, how should I present my Bayesian results?

Answer: If you can show the prior and posterior distributions, that would be fabulous! But
you can also summarize properties of the posterior distribution such as the mean and
variance by using some of the calculations presented on Wikipedia’s gamma distribution
page. And don’t forget the credible intervals!

Can I use a different prior distribution than the gamma distribution?

Answer: You may! The log-normal distribution can be used as the prior distribution for
setting alternative hypotheses for λ. Figure 11.18 shows a few examples of the log-normal
distribution, which has two parameters.

Here you can see that the distribution ranges from 0 to ∞ along the x-axis. This distribu-
tion is very useful for many analyses. However, since it is not a conjugate distribution, there

Hypotheses for λ
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is no easy way—no shortcut—to get the posterior. You could estimate the posterior distri-
bution with an MCMC analysis, but that is a matter for another day.

Can we summarize this chapter?

Answer: Why not?

• We started by mentioning an article that indicated that a string of numerous shark
attacks could be a random process.

• We introduced the Poisson distribution as a probability mass function which has a single
parameter, λ, which is the average rate of attacks per year. We showed how you can get a
burst of a high numbers of attacks even when λ is relatively low.

• We identified a new Bayesian challenge, where the goal was to estimate λ.
• We then introduced the gamma distribution as one that can be used to set hypotheses for

λ, the average number of shark attacks per year, noting that the gamma distribution
returns a probability density, not a probability.We used an informative prior distribution
that was based on previous data.

• We then collected new data for one year. There were five shark attacks.
• We then calculated the likelihood of observing the data under some hypothesized values

for λ.
• But then we noted that we have an infinite number of hypotheses for λ; the denominator

of Bayes’ Theorem is an integral.
• We used a shortcut, an analytical solution that allowed us to update our prior gamma

distribution to a posterior gamma distribution using the data.
• We then collected fivemore years of data. This time, we used our newly updated posterior

as the prior distribution, and then updated it again using the newly observed data. Thus,
we are using Bayesian inference as a way to formalize “learning.”

We will revisit this chapter again in the MCMC section of this book, where we will show
you a different method for estimating the posterior distribution. For now, though, we have
one more conjugate chapter in this section, and it is a “sticky” one. We hope to see you
there!
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CHAPTER 12

The Maple Syrup Problem:
The Normal-Normal Conjugate

In this chapter, we return to the normal distribution and set up a Bayesian inference
problem that deals with estimating parameters from the normal distribution. You might
recall that the normal distribution has two parameters that control the location and spread
of the distribution: the mean and the standard deviation. These are called mu (μ) and sigma
(σ), respectively. We’ll now be dealing with the joint distribution of the two parameters in
the normal distribution, where you need to assign a prior associated with a combination
of μ and σ.

Here’s a roadmap for this chapter. Pay attention! We’ll begin with a motivating example
that highlights the need to estimate the two parameters of the normal distribution. We’ll
first tackle the problem by considering just 10 discrete hypotheses for μ and σ so that you
can see Bayes’ Theorem at work with a joint prior. Then we’ll move to the case where the
number of joint hypotheses is infinite and in which the prior distribution is a continuous,
joint distribution. This complicates the analysis considerably. But, as with the previous two
chapters, this chapter introduces a conjugate solution, which can be applied only if you
assume that one of the parameters of the normal distribution is known. Specifically, we
assume that σ is known. Hence the focus is on estimating the unknown parameter of the
normal distribution, μ. We will revisit this chapter again in Section 5, where we show you
how to solve the problem when both μ and σ are unknown with an MCMC analysis using
Gibb’s sampling.

By the end of this chapter, you should be able to define and use the following:

• The normal distribution pdf in terms of themean and standard deviation (μ and σ) and in
terms of the mean and precision (μ and τ)

• The normal-normal conjugate

We’ll start with a story written by Brendan Borrell in 2013 for Bloomberg Business:

On the morning of July 30, 2012, an accountant named Michel Gauvreau arrived at the Global Strategic
Maple Syrup Reserve, housed in a huge red brick warehouse on the side of the Trans-Canadian Highway…
about two hours northeast of Montreal. Inside, baby-blue barrels of maple syrup were stacked six high in
rows hundreds deep. Full, each barrel weighs about 620 pounds. With grade A syrup trading at about $32
per gallon, that adds up to $1,800 a barrel, approximately 13 times the price of crude oil.

The fiscal year was coming to a close, and the Federation of Quebec Maple Syrup Producers had hired
Gauvreau’s company to audit its inventory…There were around 16,000 barrels here, about one-tenth of
Quebec’s annual production. The gap between the rows was barely wide enough to walk through, and the
rubber soles of Gauvreau’s steel-tip boots stuck to the sugar-coated concrete floor.

Bayesian Statistics for Beginners: A Step-by-Step Approach. Therese M. Donovan and Ruth M. Mickey,
Oxford University Press (2019). © Ruth M. Mickey 2019.
DOI: 10.1093/oso/9780198841296.001.0001



He scaled a row of barrels and was nearing the top of the stack when one of them rocked with his
weight. He nearly fell. Regaining his balance, he rattled the barrel: It was light because it was empty.
He soon found others that were empty. After notifying the Federation’s leaders and returning with them
to examine the stockpile, they unscrewed the cap on a full barrel. The liquid inside was not goopy,
brown, or redolent with the wintry scent of vanilla, caramel, and childhood; it was thin, clear, and
odorless. It was water… Sixty percent, or six million pounds of syrup, had vanished, worth about $18
million wholesale.

That’s some story! It has even caught Hollywood’s attention! This begs a few questions,
though.

What exactly is maple syrup?

Answer: Yum!
Here’s what Encyclopedia Britannica has to say: “Maple syrup, sweet-water sap of

certain North American maple trees, chiefly the sugar maple, Acer saccharum, but also
the black maple, Acer nigrum. It was utilized by the Indians of the Great Lakes and
St. Lawrence River regions prior to the arrival of European settlers and is still produced
solely in North America.
The sweet-water sap from which maple syrup is made is different from the circulatory sap

of the growing tree. When the tree is dormant, the sap will flow from any wound in the
sapwood, such as a taphole, each time a period of freezing is followed by a period of
thawing. The sap contains 1 1/2 to 3 percent solids, mostly sucrose, but does not contain
the colour or flavour of maple syrup, which are imparted to the sap as it is concentrated by
evaporation in open pans. About 30 to 50 gallons (115 to 190 litres) of sap yield one gallon
of syrup.”

Why does Canada have a maple-syrup cartel?

Answer: The answer is explained in an article by Josh Sandburn from Time magazine:

It may seem bizarre that Canada has a maple-syrup cartel at all. But think of it this way: Quebec, which
produces about 77% of the world’s maple syrup, is the Saudi Arabia of the sweet, sticky stuff, and the FPAQ
[Fédération des producteurs acéricoles du Québec] is its OPEC. The stated goal of the cartel, in this case, is
keeping prices relatively stable.

The problem with maple syrup is that the natural supply of it varies dramatically from year to year. “It’s
highly dependent on the weather,” explains Pascal Theriault, an agricultural economist at McGill University
in Montreal. “The maple trees need optimal climate conditions—cold nights, temperate days—to produce
the right sap,” explained a recent article in the Washington Post. “That doesn’t always happen, and
production varies sharply each spring.”

I see. And how does this apply to Bayesian inference?

Answer: Since the cartel has lost its syrup, for this chapter we are going to assume
that they want to incorporate the great state of Vermont (USA) into their
game. After all, Vermont is Quebec’s neighbor with healthy sugar maple forests (see
Figure 12.1). And by the way, the name Vermont stems from the Latin Viridis Montis,
which means Green Mountain.
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Suppose the cartel is interested in annexing Vermont’s syrup production.
They would need to have some idea of Vermont’s average annual production
of syrup, right? And because production varies from year to year, they would
want to quantify the variation, right?

So how would we capture the essence of this with a
probability distribution?

Answer:We can use thenormal probability density function.We studied the normal pdf
in detail in Chapter 9, so we’ll just briefly review it now, starting with an example
(see Figure 12.2).

The formula that generates the normal distribution for the random variable X (millions
of gallons of maple syrup produced) is called the normal probability density func-
tion. Here it is, and remember that the mean is represented by the symbol μ, and the
standard deviation is represented by the symbol σ:

f ðx; μ; σÞ ¼ 1ffiffiffiffiffiffi
2π

p
σ
e−

ðx−μÞ2
2σ2 −∞ � x � ∞ ð12:1Þ

As an example, suppose the average number of gallons (in millions) of maple syrup
produced per year is μ ¼ 10.0, with a standard deviation σ of 2.3. The probability density
of observing 6.2 million gallons, say, would be:

f ðx; μ; σÞ ¼ 1ffiffiffiffiffiffi
2π

p
σ
e−

ðx−μÞ2
2σ2 ð12:2Þ
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f ð6:2;10;2:3Þ ¼ 1ffiffiffiffiffiffi
2π

p
∗2:3

e−
ð6:2−10Þ2
2 ∗ 2:32 ð12:3Þ

f ð6:2;10;2:3Þ ¼ 1
5:765

e−
14:44
24:334 ¼ 0:044: ð12:4Þ

See if you can find this result in Figure 12.2.

What is the probability density associated with 4.8 million gallons
of syrup?

Answer: No problem! That would be:

f ðx; μ; σÞ ¼ 1ffiffiffiffiffiffi
2π

p
σ
e−

ðx−μÞ2
2σ2 ð12:5Þ

f ð4:8; 10;2:3Þ ¼ 1ffiffiffiffiffiffi
2π

p
∗2:3

e−
ð4:8−10Þ2
2 ∗ 2:32 ¼ 0:0135 ð12:6Þ

Look for the probability density associated with 4.8 million gallons in the distribution
shown in Figure 12.3.
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Figure 12.3 Pdf of a normal distribution.
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Figure 12.2 Pdf of a normal distribution.
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What does the normal pdf have to do with the
Canadian syrup cartel?

Answer: Your answer here!
The cartel is planning on annexing Vermont! Of course, this is purely hypothetical! They

need to know how much syrup is produced in Vermont on average, as well as the standard
deviation in production. In other words, they need to know which normal pdf best
describes maple syrup production in Vermont. Having this new source of syrup can help
stabilize the stockpile, and knowing the mean and standard deviation of Vermont’s pro-
duction can help them with pricing and decision making.

So, our challenge is to estimate the two parameters of the normal distribu-
tion in terms of syrup production in Vermont.

Are you ready for
another Bayesian
inference problem?

OK. Where do I start?

Our goal here is to use a Bayesian inference approach to estimate the two
parameters of the normal distribution: the mean, μ, and the standard devi-
ation, σ. This differs from that in Chapters 10 and 11, where our goal was to estimate only
one parameter of a pdf distribution (p for the White House Problem, and λ for the Shark
Attack Problem). Here, for illustrative purposes, we will consider just 10 discrete hypotheses
that represent alternative combinations of μ and σ.

We’ll use the same steps that we did in previous chapters:

1. Identify your hypotheses—these would be the alternative hypotheses for μ, and alter-
native hypotheses for σ.

2. Express your belief that each hypothesis is true in terms of prior probabilities.
3. Gather the data.
4. Determine the likelihood of the observed data under each hypothesis.
5. Use Bayes’ Theorem to compute the posterior probabilities for each hypothesis.

Let’s step through these one at a time.

Step 1. What are the hypotheses for μ and σ?

Answer: Your answer here!
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Well, let’s see. Let’s assume that the following statements are reasonable:

• The mean ranges between 5 and 15 million gallons per year.
• The standard deviation ranges between 1.2 and 2.8 millions of gallons.

To begin, let’s assume we give the cartel 10 dots to place on a chart that represent 10
combinations of μ and σ together. This is a small number of discrete hypotheses for μ and σ.
The cartel can place the dots where they’d like, putting more dots in locations that they feel
are more likely for the state of Vermont. When they are finished, the chart might look
something like that in Figure 12.4.

Each dot represents the cartel’s belief in a particular combination for the mean and the
standard deviation. For instance, the arrow in the chart indicates that one cartel member
believes that the mean is ~9.45 and the standard deviation is ~1.98.
These 10 dots represent 10 discrete hypotheses for μ and σ.

Step 2. What are the prior probabilities for each hypothesis?

Answer: A key consideration here is that we are assigning prior probabilities for each
hypothesized combination of μ and σ. They are jointly estimated. If every single dot
represents a single hypothesis, and if each dot has the same weight, then the prior
probability associated with each dot (hypothesis) is 1/10, or 0.1. This is a non-informative
prior, and a probability mass function.

Step 3. Now what?

Answer: Collect data! Suppose the cartel visits Vermont and learns that 10.2
million gallons were produced last year.

Step 4. And then?

Answer: Step 4 is to determine how likely the observed data are, assuming each joint
hypothesis is true.
Now, for each hypothesized combination of μ and σ, let’s compute the like-

lihood of observing 10.2 million gallons.
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Figure 12.4 Scatterplot example.
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At the beginning of this chapter, we showed that the normal pdf can be used to calculate
the probability density of observing a value from a normal distribution whose parameters
are given. This time, we have observed the value x, and now we are using the function to
calculate the likelihood of observing the data under a combination of entries for μ and σ.

Just to give you an example, suppose one of 10 hypotheses was μ ¼ 9.45 and σ ¼ 1.98
(the hypothesis highlighted by the arrow in Figure 12.4). Then we could ask: “What is
the likelihood of observing 10.2 from a normal distribution whose mean is μ ¼ 9.45 and
σ ¼ 1.98.” The answer is:

ℒðx; μ; σÞ ¼ 1

σ
ffiffiffiffiffiffi
2π

p e−
ðx−μÞ2
2σ2 ð12:7Þ

ℒðx ¼ 10:2; μ ¼ 9:45; σ ¼ 1:98Þ ¼ 1

1:98
ffiffiffiffiffiffi
2π

p e−
ð10:2−9:45Þ2
2 ∗1:982 ¼ 0:1875 ð12:8Þ

We can do similar calculations for other combinations as well. Table 12.1 shows 10 specific
hypotheses; our highlighted example is hypothesis 6.

Let’s walk through this table:

• The first three columns identify our 10 alternative hypotheses. Remember that a single
hypothesis considers μ and σ jointly.

• Column 4 (x) represents our observed data (Vermont produced 10.2 million gallons of
syrup last year).

• Column 5 is the prior probability for each hypothesis. In this example, each hypothesis
has equal weight.

• Column 6 uses the normal pdf to compute the likelihood of observing the data under
each hypothesis.

We’ll stop there for now. It would be a good idea to take out a pencil and paper, calculator,
or spreadsheet to verify at least a couple of results.

And Step 5?

Answer: The final step is to use Bayes’ Theorem to compute the posterior probabilities for
each combination of μ and σ. We won’t present these calculations here.

Table 12.1

Hypothesis μ σ x Prior (Pr) Likelihood (ℒ) ℒ ∗ Pr Denominator Posterior

1 9.97 1.75 10.2 0.1 0.2260 0.0226 0.1842 0.1227
2 10.26 1.83 10.2 0.1 0.2179 0.0218 0.1842 0.1183
3 11.94 2.05 10.2 0.1 0.1357 0.0136 0.1842 0.0738
4 10.85 1.78 10.2 0.1 0.2097 0.0210 0.1842 0.1140
5 9.58 1.83 10.2 0.1 0.2058 0.0206 0.1842 0.1118
6 9.45 1.98 10.2 0.1 0.1875 0.0188 0.1842 0.1021
7 11.71 2.21 10.2 0.1 0.1429 0.0143 0.1842 0.0776
8 10.51 2.04 10.2 0.1 0.1933 0.0193 0.1842 0.1048
9 12.3 1.79 10.2 0.1 0.1120 0.0112 0.1842 0.0608

10 10.36 1.89 10.2 0.1 0.2103 0.0210 0.1842 0.1140
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Is this a realistic approach?

Answer: The main challenge is that we have an infinite number of hypotheses that
represent each joint combination for the unknown parameters of the normal distribution.
Accordingly, our prior and posterior distributions should reflect the density associated
with each μ and σ combination.

Back to the drawing board?

Answer: Yes. In other words, a handful of dots is not sufficient. If we gave the cartel a zillion
grains of sand, where each grain represents a joint hypothesis for μ and σ, their prior
distribution for the parameters may look something like that shown in Figure 12.5.

Here, the prior distribution has volume. For any given parameter combination, the
corresponding height gives us the density, stressing the fact that we are dealing with a
bivariate distribution in which both parameters are continuous. Our 10 original hypotheses
are buried somewhere in this sandpile. This distribution really could have any shape—
lumps indicate those hypotheses that have more weight than others, which implies that
Figure 12.5 is an informative prior distribution.
It’s plain to see that the shape of our prior distribution for μ depends on what level of σ

you consider. For instance, Figure 12.5 illustrates that if we fix σ at the “red-level,” we see
plausible hypotheses for μ highlighted in red. And if we fix σ at the “green-level,” we see
plausible hypotheses for μ highlighted in green. These ribbons are called “slices” because
they slice through the mound at a particular location. Given a particular slice for σ, you
have a unique prior distribution for μ. Keep this point in the back of your mind—we will
return to it shortly.

OK, I’ve got it. Now what?

Answer:Well, now that the cartel has a prior distribution, they would collect new data and
use Bayes’ Theorem to generate the posterior distribution. In other words, the pile of sand
will change shape after new data are collected.
You might recall from previous chapters the generic version of Bayes’ Theorem for one

continuous variable:

Pðθ jdataÞ ¼ Pðdata j θÞ ∗PðθÞð
Pðdata j θÞ ∗ PðθÞdθ

ð12:9Þ
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This is the generic version of Bayes’ Theorem when the posterior distribution for a single
parameter, given the observed data, is represented by a pdf. This posterior density is
designated Pðθ jdataÞ, the prior density is designated PðθÞ, and the likelihood of observing
the data under a given hypothesis for θ is designated as Pðdata j θÞ. The integral in the
denominator accounts for the prior density times the likelihood for all possible hypotheses
for θ and sums them.

Now, let’s make this task even harder. For the maple syrup problem, there are two
parameters to be estimated, μ and σ. With two parameters, Bayes’ Theorem looks like this,
where each hypothesis for μ and σ is considered (the posterior is shown in purple, the prior
in blue, and the likelihood in red):

Pðμ;σ jdataÞ ¼ Pðdata j μ;σÞ ∗ Pðμ;σÞðð
Pðdata j μ;σÞ ∗ Pðμ;σÞdμdσ

ð12:10Þ

For any given prior hypothesis μ and σ, Bayes’ Theorem will return the posterior density of
the joint μ and σ by computing the likelihood of observing the data under hypothesis μ and
σ, multiplied by the prior probability of μ and σ. We need to do this for an infinite number
of hypotheses for each parameter.

How do we make headway?

Answer: As youmight have guessed by the title of this chapter, there is a conjugate solution.

For a normal-normal conjugate, we use a normal distribution as our prior distribution for
the mean, μ, and then collect data and update to the posterior distribution for the mean, μ,
which will also be normally distributed. However, in this process, we must assume that σ is
known; that is, wemust choose a level for σ (such as the green value or red value for sigma as
shown in Figure 12.5).

Let’s assumeweknow that σ = 2.0 Then, we have alternative hypotheses for μ, which
controls where the distribution is centered along the x-axis. For example, 5 alternative
hypotheses for μ are shown in Figure 12.6.

Themain approach is to simplify the problem by focusing on only one of the parameters
and assuming the second parameter is known.

0 5 10 15 20 25 30

0.1

0.0

0.2

0.3

0.4

0.5

D
en

si
ty

μ = 8,
μ = 10,
μ = 12,
μ = 14,
μ = 16,

σ = 2
σ = 2
σ = 2
σ = 2
σ = 2

Hypotheses for μ

Figure 12.6 Annual maple syrup production distribution.
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Now, are you paying attention? The normal-normal conjugate method uses
a normal pdf to weight the alternative hypotheses for μ, like the one shown in
Figure 12.7.

Thus, the prior distribution for the unknown parameter, μ, is a normal distribution.

I’m confused!

Answer: That’s completely normal. Figure 12.7 suggests that we have greater belief that
the average annual syrup production is between 10 and 15 than, say, at 5 or 25. Remember
that we have simplified the problem so we are only focusing on μ. We’ve already agreed that
sigma, σ, is known and is 2 million gallons.
In fact, the blue distribution in Figure 12.7 is a normal distribution with μ0 ¼ 12 and

σ0 ¼ 2. Alternatively, this distribution can be specified in terms of the parameters μ0 and τ0,
where μ0 ¼ 12 and τ0 ¼ 0.0625. These are formally called prior hyperparameters.

What is the parameter τ?

The spread of a normal distribution can be parameterized in a few ways:

• You can express the spread in terms of the standard deviation, σ.
• You can express the spread in terms of variance, σ2, which is simply σ ∗ σ. If σ ¼ 4, then

σ2 ¼ 16:0.
• You can express the spread in terms of precision using the Greek letter, tau (τ), which

rhymes with “cow” and is
1
σ2
. If σ2 ¼ 16:0, then τ ¼ 1

16
¼ 0:0625.

For reasons that will soon become apparent to you, we will define our prior distribution for
the unknown parameter μ in terms of μ0 and τ0. The subscripts identify the two
hyperparameters for the unknown μ. We will also define our known parameter, σ ¼ 2,
in terms of τ, which is then 1=ð22Þ ¼ 0:25.
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Figure 12.7 Annual maple syrup production,
showing the prior distribution for μ.
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Why is this chapter called “The normal-normal conjugate”?

When you use a normal distribution as a prior distribution for the unknown parameter of a
normal distribution, μ, assume that σ (or τ) is known, and then collect data (from a normal
distribution). Then, you can use a conjugate shortcut to generate the posterior distribution
for the unknown parameter μ, which will also be a normal distribution.

A diagram such as that shown in Figure 12.8 may help.

At the bottom of this diagram, we have our observed data, xi, which we assume arises
from a normal distribution with an unknown mean, μ, and known standard deviation, σ ¼
2.0. This is the same thing as a normal distribution with an unknown mean, μ, and known
precision, τ ¼ 0.25. The parameter, μ, is the unknown parameter that we are trying to
estimate. Here, we use a normal distribution as a prior distribution to set the “weights” on
each and every hypothesis for the unknown parameter, μ. This normal distribution is
defined by the hyperparameters μ0 and τ0.

So, what is the conjugate shortcut?

Answer: Ok then. Time for a concrete example. First, let’s recall the steps for Bayesian
analysis:

1. Identify your hypotheses—these would be the alternative hypotheses for themean. (The
conjugate shortcut requires that you assume either μ or σ is known; here we assume σ is
known.)

2. Express your belief that each hypothesis is true in terms of a prior distribution (i.e., a
pdf). For a normal distribution, μ can range from −∞ to ∞. For our example, however, μ
must be positive, so we will select a prior distribution such that the area under the curve
for μ < 0 is very, very small.

3. Gather the data.
4. Determine the likelihood of the observed data under each hypothesis.
5. Use Bayes’ Theorem to compute the posterior distribution, which is a pdf.

Step 1. These would be the alternative hypotheses for the mean. Here, we will assume that
τ is known and has a value of 0.25. Remember, this is known.

N(μ, σ = 2.0)

N(μ, τ = 0.25)
or

xi

μ ∼N(μ0, τ0)

Figure 12.8
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That leaves us with just one unknown parameter, μ, which has an infinite number of
hypotheses, all of which are positive.

Step 2. Establish a prior distribution for the unknown parameter, μ. Remember that
our prior distribution is a normal distribution. Although Vermont secretly collects data on
syrup production, earlier in the chapter we used a dot exercise to “elicit” information from
cartel members. Elicitation is a method for “boiling down” what experts think they know
when other sources of data are not available (pun intended!).

There are many different ways to elicit a prior distribution, and these are beyond the
scope of this book. For the sake of this chapter, let’s assume the cartel uses the normal
distribution shown in blue in Figure 12.8; it has the following hyperparameters:

• μ0 = 12
• τ0 ¼ 0.0625

Notice the subscript of 0 (naught) is used to indicate that these are prior
hyperparameters.

Step 3. Collect data. We have observed 10.2 million gallons of syrup produced.
We now write our observed data as: Xn

i¼1

xi ð12:11Þ

Here, n is the number of samples (in this case, 1). Typically, we index each year with the
letter i, where the index i goes from 1 to n. So, xi ¼ x1 ¼ 10.2.
If we collected seven years of data, the index i would be 1, 2,…,7. We would report our

observed data as the sum of our seven observations, and n would be 7:

X7

n¼1

xi ð12:12Þ

Steps 4 and 5. Steps 4 and 5 are to determine the likelihood of the observed data under
each hypothesis and then use Bayes’ Theorem to compute the posterior probabilities for
each hypothesis.
Here, though, we can update the prior normal distribution to the posterior normal

distribution with the shortcut analytic solution and avoid the use of Bayes’ Theorem
directly. Here are the shortcut calculations—pay attention to subscripting!
The mean of the posterior distribution for the unknown parameter, μ, is calculated as:

μposterior ¼
τ0μ0 þ τ

Xn

i¼1
xi

ðτ0 þ n ∗ τÞ ¼ 0:0625 ∗12þ 0:25 ∗10:2
0:0625þ 1 ∗0:25

¼ 10:56 ð12:13Þ

The precision of the posterior distribution (τ) for the unknown parameter, μ, is
calculated as:

τposterior ¼ τ0 þ n ∗ τ ¼ 0:0625þ 1 ∗0:25 ¼ 0:31 ð12:14Þ

Tip: “Use expert opinions in such a way that we stand to gain if they are correct and do
not lose if they are wrong.”—C.R. Rao
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A graph of our prior and posterior is shown in Figure 12.9.

Our prior distribution for the unknown parameter, μ, is a normal distribution with μ0 ¼
12 and τ0 ¼ 0.0625 (blue). After collecting one year of syrup data in Vermont (10.2 million
gallons shown by the dashed line), our posterior distribution for the unknown parameter μ
is a normal distribution with posterior hyperparameters μ ¼ 10.56 and τ ¼ 0.31 (purple).
Notice how the posterior has tightened up a bit and shifted to the left.

Why does the shortcut work?

Answer: The answer is that the normal distribution is a conjugate distribution that can be
updated with normal data (Raiffa and Schlaeffer, 1961). This is why we named this chapter
“The normal-normal conjugate.”

We mentioned the statistical definition of a conjugate distribution in Chapter 11, where
we indicated that there are cases where you can use a particular pdf as a prior distribution,
collect data of a specific flavor, and then derive the posterior pdf with a closed-form
solution. In these special cases, the pdf ’s of the prior and posterior distributions are the
same probability density function, but their parameters may differ. The prior distribution is
called a conjugate prior, and the effect of the data can then be interpreted in terms of
changes in parameter values (Upton and Cook, 2014).

In the maple syrup problem, we used a normal distribution to set the priors for all
hypotheses of μ, themean number of gallons of syrup (millions).We used expert opinion to
set the prior distribution. We then collected normal data, and then used a shortcut to
generate the posterior distribution for μ.

Raiffa and Schlaeffer’s (1961) conjugate solution is conveniently given in a Wikipedia
page on Bayesian conjugates. A quick overview of that page’s normal-normal conjugate can
be depicted with the diagram shown in Figure 12.10.

Let’s work our way through this figure. The top panel indicates that the model param-
eter of interest, μ, is a mean. The prior distribution is a normal distribution, defined by
hyperparameters μ0 and τ0. The “naughts” signal that these are hyperparameters for the
prior. The data collected are normal in flavor, with n being the total sample size. The
likelihood to be used is the normal pdf, where τ is known. With this setup, the posterior
distribution for the unknown parameter, μ, is a normal distribution with hyperparameters
(the conjugate shortcuts) displayed.
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Figure 12.9 Annual maple syrup production, showing
hypothesis for μ (in millions of gallons).
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Can you show me the proof?

Answer: All right. Have a look at Appendix 3. There, you can confirm that Bayes’ Theorem
is front and center, even though the results are astonishingly simple.

What happens to the posterior if we collect new data?

Answer: Let’s try it! Let’s suppose you collect five more years of syrup produc-
tion data (shown in Table 12.2).

Note that we have five new observations from the Gaussian (normal) distribution, so
n ¼ 5. Also notice that the sum of the observed data is 39 million gallons produced. Our

Prior hyperparameters:

μ0, τ0

Data: x1, x2,…, xn

Likelihood: Normal (τ is known)

Posterior distribution: Normal

Posterior hyperparameters:

μ =
τ 0 + nτ

τ0μ0 + τ ∑n
i

τ = τ0 + nτ

Unknown parameter:
Prior distribution:

μ (τ is known)

Normal

=1 xi

Figure 12.10

Table 12.2

Year Gallons

1 7
2 10
3 10
4 8
5 4

39
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prior distribution for the unknown parameter, μ, is now defined by the hyperparameters
μ0 ¼ 10.56 and τ0 ¼ 0.31; we assume τ is still known to be 0.25. If we repeat our
conjugate calculations, the mean of the posterior distribution for the unknown parameter,
μ, is calculated as:

μposterior ¼
τ0μ0 þ τ

Pn

i¼1xi
ðτ0 þ n ∗ τÞ ¼ 0:31 ∗10:56þ 0:25 ∗39

0:31þ 5 ∗0:25
¼ 8:35 ð12:15Þ

And σ for the posterior distribution of the unknown parameter, μ, is calculated as:

τposterior ¼ τ0 þ n ∗ τ ¼ 0:31þ 5 ∗0:25 ¼ 1:56 ð12:16Þ

σ2posterior ¼
1
τ
¼ 1

1:56
¼ 0:641 ð12:17Þ

σposterior ¼
ffiffiffiffiffi
σ2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
0:641

p
¼ 0:801 ð12:18Þ

Let’s add this new posterior pdf to our graph in dashed purple (see Figure 12.11).

This is a formal documentation of learning about average maple syrup production in
the Green Mountain State. A few things are worth pointing out here:

• We started off with an informative, subjective prior for μ shown in blue.
• We updated this based on a single year’s data: 10.2 million gallons produced in one year

in Vermont. This shifted the posterior to the left (solid purple), but with only a single
year’s data, the distribution is still quite broad.

• We then collected five more years of data, in which a total of 39 million gallons was
produced. This further shifted the posterior to the left (dashed purple), and the distribu-
tion narrowed considerably.

That’s what happens as you learn: the uncertainty associated with the true value of μ
shrinks as we continue to collect data.We still have uncertainty about what the truemean
is, but after some data collection we now have updated beliefs. Remember that we
have assumed that σ for maple syrup production is known with full
certainty!
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Figure 12.11 Annual maple syrup production,
showing hypotheses for μ.
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Why do we use τ instead of σ directly?

Answer: We can work with a known variance (σ2) OR known precision (τ, which is 1/σ2).
Raiffa and Schlaeffer’s (1961) conjugate solution is conveniently given in a Wikipedia page
on Bayesian conjugates. Let’s have another look at our figure, but expand it a bit (see
Figure 12.12).

• In the left panel, we assume that τ is known, and we define our prior distribution for the
unknown parameter, μ, with the hyperparameters μ0 and τ0. The conjugate calculations
of the posterior hyperparameters are shown. We used this version here and we’ll make
use of it again in future chapters.

• In the right panel, we assume that σ2 is known, and we define our prior distribution for
the unknown parameter, μ, with the hyperparameters μ0 and σ20. The conjugate calcula-
tions of the posterior hyperparameters are shown.

• Both approaches will return the same result.

What if I know μ, but want to estimate σ or τ instead?

Answer: There is a conjugate shortcut for that too, but it wouldn’t be called the normal-
normal conjugate shortcut anymore! For example, Figure 12.13 shows the conjugate
solutions for estimating σ2 or τ given a known mean, μ.
An important difference is that we no longer use the normal pdf for our prior distribu-

tion for the unknown parameter. Instead, the prior distribution of σ2 is either the inverse
gamma distribution or the scaled inverse chi-square distribution, while the prior distribu-
tion for τ is the gamma distribution. We haven’t introduced the first two distributions in

Prior hyperparameters: Prior hyperparameters:
μ0, τ0 μ0, σ2

0

Data: x1, x2, . . . ,xn
Likelihood: Normal (τ is known)

Data: x1, x2,. . . ,xn
Likelihood: Normal (σ2 is known)

Posterior distribution: Normal Posterior distribution: Normal

Posterior hyperparameters: Posterior hyperparameters:

μ =
τ0 + nτ

τ0μ0 + τ ∑n
i =1 xi

τ = τ0 + nτ

Unknown parameter:
Prior distribution:

Unknown parameter:
Prior distribution:

μ (τ is known) μ (σ2 is known)
Normal Normal

μ = ( μ0

σ2
0
+

+

∑n
i  = 1 xi)
σ2 σ2

0 σ2(1 n+ )

σ 2 = ( 1
σ2

0

n
σ2 )–1

Figure 12.12
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this book, but we learned about the gamma distribution in the Shark Attack Problem, and
that is what is shown above. And we will make use of the gamma distribution to estimate τ
with Gibbs sampling when we revisit the Maple Syrup Problem in Chapter 16. A key take-
home point is that you have quite a bit of flexibility with respect to conjugate solutions for
the parameters of the normal distribution.

Can we summarize this chapter?

Answer: Indeed.

• We started by mentioning that 60% of Quebec’s maple syrup stockpile was stolen and
that the cartel wishes to annex Vermont’s maple syrup production.

• We introduced the normal probability density function as a way to quantify the average
and variation in annual syrup production for the state of Vermont.

• We emphasized that the normal distribution has two parameters, the mean μ and the
standard deviation σ, which need to be estimated jointly.

• We remembered that we have an infinite number of hypotheses for μ and σ; these can be
described by continuous distributions. To complicate the matter, the estimate of one
parameter depends on the value the second parameter.

• Tomake headway for this problem, we assumed that one of the parameters of the normal
distribution was known. We said that σ was known to be 2.0.

• We talked about different measures of spread for the normal distribution: the standard

deviation (σ), the variance (σ2), and the precision (τ ¼ 1
σ2
).

• We then set up a prior distribution to represent our hypotheses for the mean, μ, of the
normal distribution. This prior distribution was also a normal distribution with specified
hyperparameters μ0 and τ0.

Likelihood: Normal (μ is known)

Posterior distribution:

Unknown parameter:
Prior distribution:

Prior hyperparameters

α0, β0

Normal

Posterior hyperparameters

α = α0 +
n
2

β = β0 +
∑n

i  =1 (xi –μ)2

2

τ (μ is known)
Gamma

Figure 12.13
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• We then collected data. Vermont produced 10.2 million gallons of syrup last year.
• We used a shortcut, analytical solution that allowed us to update our prior normal

distribution to a posterior normal distribution by using the data. The posterior distribu-
tion reflects our updated beliefs for each and every hypothesis for μ.

• We then collected fivemore years of data. This time, we used our newly updated posterior
as the prior distribution, and then updated it again given the newly observed data. Thus,
we are using Bayesian inference as a way to formalize “learning.”

What’s next?

Answer: This ends our section on Bayesian conjugates. You can see that these conjugate
“shortcuts” are extremely handy for certain types of problems. In Section 5, we’ll show you
how to solve these same problems using a different approach called Markov Chain Monte
Carlo, or MCMC for short.
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SECTION 5

Markov Chain Monte Carlo

Overview

Welcome to Section 5! In this section, we will learn how to use MCMC (Markov Chain
Monte Carlo) simulations to estimate the posterior distribution for a parameter that you are
interested in estimating.

• Chapter 13 revisits the gamma-Poisson conjugate introduced in Chapter 11. There, our
goal was to estimate the unknown parameter, λ. We set a gamma distribution as the prior
distribution for λ, then collected Poisson-flavored data, and used a conjugate solution to
update the prior distribution to a posterior distribution, which is also a gamma distribu-
tion. In other words, gamma prior þ Poisson data! gamma posterior. In Chapter 13, we
show you how to estimate the posterior distribution using MCMC with the Metropolis
algorithm, and compare the results with the conjugate solution.

• Many things can go wrong with anMCMC analysis, and the analysist (you!) must put on
your diagnostics hat to ensure that the posterior distribution that has been estimated
really hits the mark. Chapter 14 introduces some common diagnostics.

• Chapter 15 revisits the beta-binomial conjugate introduced in Chapter 10. There, our
goal was to estimate the unknown parameter, p. We set a beta distribution as the prior
distribution for p, then collected binomial-flavored data, and used a conjugate solution to
update the prior distribution to a posterior distribution, which is also a beta distribution.
In other words, beta prior þ binomial data ! beta posterior. In Chapter 15, we demon-
strate how to estimate the posterior distribution using MCMC and the Metropolis–
Hastings algorithm, and compare the results with the conjugate solution.

• Chapter 16 revisits the normal-normal conjugate introduced in Chapter 12. There, our
goal was to estimate one of the parameters of the normal distribution, μ, while assuming
the second parameter of the normal distribution, τ was known. That is, normal prior þ
normal data ! normal posterior. In Chapter 16, we assume both parameters are un-
known, and thus we are trying to estimate a joint posterior distribution. Here, useMCMC
with the Gibbs sampling.





CHAPTER 13

The Shark Attack Problem
Revisited: MCMC with the
Metropolis Algorithm

As you’ve seen, a major use of Bayesian inference involves estimating parameters.
Suppose we are trying to estimate a single parameter called theta (θ). Youmight recall that

Bayes’ Theorem in this case is specified as:

Pðθ jdataÞ ¼ Pðdata j θÞ ∗PðθÞð
Pðdata j θÞ ∗ PðθÞdθ

ð13:1Þ

This is the generic version of Bayes’ Theorem, when the posterior distribution for a single
parameter,giventheobserveddata, is representedbyapdf.We’veseenthismanytimesbefore!
Do you remember the Shark Attack Problem in Chapter 11? In that chapter, we asked,

“What is the average number of shark attacks in a given year?” In this problem, our goal was
to estimate a parameter from the Poisson distribution called lambda (λ), which is an average
rate of occurrences. Example rates include the number of car crashes at an intersection
per year, the number of texts a person receives per day, or the number of photons reaching a
telescope per second. In the Shark Attack Problem, λ represents the average rate of annual
attacks, so it can range between 0 and, in theory, infinity. Of course, the number of shark
attacks is not infinite, but the idea is that the upper limit can be any reasonable value for a
given problem. Within the bounds you specify, there are an infinite number of alternative
hypotheses. We can replace the parameter θwith the parameter λ and write Bayes’ Theorem
for this problem as:

Pðλ jdataÞ ¼ Pðdata j λÞ ∗PðλÞð∞
0
Pðdata j λÞ ∗ PðλÞdλ

ð13:2Þ

You might recall for the Shark Attack Problem that we set up an informative prior distribu-
tion (a gamma distribution) that reflected our prior beliefs in each alternative hypothesis for
λ, collected some data (in the form of attacks per year), and then updated to the posterior
distribution with a conjugate solution that allowed us to avoid the integration in the
denominator of Bayes’ Theorem. This posterior distribution was also a gamma distribution,
and it represents our most up-to-date knowledge about the parameter, λ.
However, not all problems can be solved this way; Bayesian conjugates are special cases

that can be solved analytically. But there is another approach, one that is so creative and

Bayesian Statistics for Beginners: A Step-by-Step Approach. Therese M. Donovan and Ruth M. Mickey,
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versatile that it can be used to solve almost any kind of parameter estimation problem.
It involves building the posterior distribution from scratch using a process called aMarkov
Chain Monte Carlo simulation, or MCMC for short.

In this chapter, we introduce MCMC as a way to estimate the posterior distribution. We
will quickly revisit the Shark Attack Problem by estimating the posterior distribution using
the gamma-Poisson conjugate.Then,we’ll solve the sameproblemusing theMCMC
method so you can compare the two methods directly.

MCMC makes use of another “version” (so to speak) of Bayes’ Theorem. Recall that the
integral of the denominator of Equation 13.2 is a constant. Because of that, Bayes’ Theorem
is sometimes written:

Pðλ jdataÞ∝ Pðdata j λÞ ∗ PðλÞ ð13:3Þ
The symbol ∝ means “proportional to.” This equation can be read “The posterior density
of the parameter, λ, given the data, is proportional to the likelihood function of the data
given the parameter λ, multiplied by the prior density of the parameter λ.” We’ll see this
equation in action thousands of times in this chapter! By the end of this chapter, you
should understand the following:

• Monte Carlo
• Markov chain
• Metropolis algorithm
• Tuning parameter
• MCMC inference
• Traceplot
• Moment matching

Let’s start by reviewing the Shark Attack Problem.

What was the Shark Attack Problem again?

Answer: In that problem, the goal was to use a Bayesian inference approach to estimate
the average number of shark attacks per year, λ. We used the same steps that we did in
previous chapters:

1. Identify your hypotheses.
2. Express your belief that each hypothesis is true in terms of prior probabilities.
3. Gather the data.
4. Determine the likelihood of the observed data, assuming each hypothesis is true.
5. Use Bayes’ Theorem to compute the posterior probability for each hypothesis.

Let’s review these steps quickly:

Step 1. What are the hypotheses for λ?

Answer: We know that λ, the average rate in the Poisson distribution, can take on any
value between 0 and some large number. Because the distribution of λ is continuous,
there’s nothing to stop us from considering the full range of hypotheses which are infinite
(λ ¼ 0.01, λ ¼ 0.011, λ ¼ 1.234, λ ¼ 6.076, etc.).
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Step 2. What were the prior probabilities for each hypothesis?

Answer: We used the gamma distribution to set a probability density for each and every
hypothesis of λ. The gamma distribution is a continuous probability distribution; the x-axis
is continuous, not discrete, and begins with 0 and goes to infinity. The shape of the gamma
distribution is controlled by two parameters: the shape parameter, called alpha (α), and the
rate parameter, called beta (β). Examples of a few alternative gamma probability distribu-
tions are shown in Figure 13.1, and we need to choose one to represent our prior beliefs for
each and every λ. The higher the probability density, the more confidence we have in a
particular hypothesis.

Let’s look at these graphs carefully. The x-axis for the gamma distribution ranges between 0
and 20, but it could stretch out between 0 and 100, or 0 and 1000, and so on. Our graph
ends at 20 only because it’s pretty clear that any value greater than 20 will have a density
value very close to 0. The y-axis gives the probability density. The area under all of these
distributions is 1.0. For any given graph, the higher the probability density, the more belief
we have in a particular hypothesis.
For the Shark Attack Problem, we used an informative prior distribution of α0 ¼ 2.1 and

β0 ¼ 1, based on a previous (external) dataset of shark attacks (see Figure 13.2).
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Figure 13.1 Gamma distributions.
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Figure 13.2 Prior distribution: α0 ¼ 2.1, β0 ¼ 1.0.
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This prior distribution suggests that 1 or 2 shark attacks per year is much more likely than,
say, 6 or more shark attacks per year.

Step 3. Now what?

Answer: Collect data! We have observed 5 shark attacks this year.

Step 4. And then?

Answer: Step 4 is to determine the likelihood of the observed data, assuming each
hypothesis for λ is true.

And step 5?

Answer: Step 5 is to generate the posterior distribution for λ by using the version of
Bayes’ Theorem in Equation 13.2. We mentioned that integration of the denominator
is often tedious, and sometimes impossible. But, for problems where the prior distri-
bution is a gamma distribution, and the data collected come in the form of Poisson
data (number of events per unit time), an analytical approach can be used to generate
the posterior distribution that has the same form as a prior distribution.

This analytical shortcut (Raiffa and Schlaeffer, 1961) makes updating the prior to a
posterior as easy as ABC. Remember that our prior distribution set α0 ¼ 2.1 and β0 ¼ 1.
Furthermore, we have 1 new observation: 5 shark attacks. Let’s let the number of random
variables that we observe be n. So here, n ¼ 1, and its value is 5 (we observed 5 shark
attacks in a year). Here is the shortcut:

The posterior α parameter is α0 plus the sum of the Poisson observations. We have just
one observation, which was 5 attacks:

αposterior ¼ α0 þ
Xn
i¼1

xi ð13:4Þ

αposterior ¼ 2:1þ 5 ¼ 7:1 ð13:5Þ

The posterior β parameter is β0 plus n, the number of Poisson observations:

βposterior ¼ β0 þ n ð13:6Þ

βposterior ¼ 1þ 1 ¼ 2 ð13:7Þ

Now we can look at the prior and posterior distributions for λ (see Figure 13.3).

In short, prior gamma + Poisson data ! posterior gamma.
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We started off with a prior distribution shown in blue. Then we collected data in the form
of a single Poisson random variable: five attacks. We then used the shortcut to generate the
posterior distribution for all hypotheses of λ, shown in purple. As a result of our data, we
now have new knowledge regarding the plausibility for each and every hypothesis of λ.

The graphical model diagram for this problem looked like the one shown in Figure 13.4.

How would you solve the posterior distribution with a Markov
Chain Monte Carlo (MCMC) approach?

Answer: Ah, that is a great question. Here we go!
The main idea behind MCMC for Bayesian inference is that you “build” the posterior

distributionbydrawingsamples fromit. Inotherwords,wearegoingto try tobuild thepurple
distribution shown in Figure 13.3 from scratch, using Bayes’ Theorem in an entirely newway.
Remember, we had written Bayes’ Theorem as:

Pðλ jdataÞ ¼ Pðdata j λÞ ∗PðλÞð∞
0
Pðdata j λÞ ∗ PðλÞdλ

ð13:8Þ

0

Poisson(λ)

λ ∼gamma(α0, β0)

2 4 6 8 10

yi

Figure 13.4
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Now, knowing that the denominator is a constant (because it accounts for all possible
hypotheses of λ), we can write Bayes’ Theorem as:

Pðλ jdataÞ∝Pðdata j λÞ ∗ PðλÞ ð13:9Þ
In Bayesian parlance:

posterior∝ likelihood ∗prior ð13:10Þ
In words, the posterior density of a given hypothesis is proportional to the likelihood of
observing the data under the hypothesis times the prior density of the given hypothesis.
You’ll see how this is used shortly. For now, let’s color-code the pieces to help distinguish
the terms, with the purple posterior being a blend of the red likelihood and blue prior:

posterior∝ likelihood ∗prior ð13:11Þ
Now, that idea of building a distribution from scratchmay sound strange because you don’t
really know the distribution from which you are sampling. (Here, though, you have an
advantage because you know we are trying to build the purple distribution in Figure 13.3).
But come along with us and see. Let’s first go through the steps and then discuss them after
you have the big picture in mind.

In this chapter, we will be using an algorithm called the Metropolis algorithm to
conduct our MCMC analysis. An algorithm is a self-contained step-by-step set of operations
to be performed. Here is the sequence of operations. There are eight of them:

1. We start by proposing just one value from the posterior distribution. Any value will do as
long as it is a possible value from the posterior. Let’s start with 3.100. This is an
arbitrary selection, and represents our current value of λ. We can say that 3.100 is a
value of lambda (λ) that is drawn from the posterior distribution.

2. We then calculate the posterior density of observing the data under the current hypoth-
esis that λ ¼ 3.100. We just mentioned that the posterior density is proportional to the
product of two terms, the likelihood and the prior:

posterior∝ likelihood ∗prior ð13:12Þ
• To get the result, first we ask, “What is the likelihood of observing 5 attacks given

λ ¼ 3.100?” We hope that the Poisson probability mass function springs to mind!
Remember that this function has just oneparameter, λ. The probability of observing
five attacks given λ ¼ 3.1000 is:

Lðx; λÞ ¼ λxe−λ

x!
ð13:13Þ

Lð5;3:100Þ ¼ 3:1005e−3:100

5!
¼ 0:1075 ð13:14Þ

• Next, we ask “What is the probability density associated with 3.100 from the prior
distribution?” We hope that the gamma probability density function springs to
mind!We can use the gamma pdf to ask, “What is the probability density of drawing a
random value of 3.100, given the parameters of the prior distribution?” Remember
our prior distribution set α0 ¼ 2.1 and β0 ¼ 1. Here, we use the traditional gamma pdf,
and plug in λ for x:

gðx; α; βÞ ¼ βαxα−1e−βx

ΓðαÞ ð13:15Þ
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gð3:100;2:1;1Þ ¼ 12:13:1002:1−1e−1 ∗3:100

Γð2:1Þ ¼ 0:1494 ð13:16Þ

• The posterior density associated with our first guess at λ (3.100) is proportional to the
likelihood times the prior:

Pðλ¼3:100 j5Þ ∝ 0:1075 ∗ 0:1494 ¼ 0:0161 ð13:17Þ
• We will now refer to this as P(λcurrent | data). This is the posterior density value for a

particular hypothesis of λ.
3. We then propose a second value for λ, drawn at random from a symmetrical

distribution that is centered on the current value of λ. For this example, we will use a
normal distribution as our symmetrical distribution, with μ¼ λcurrent, and σ¼ 0.5. Here, σ
is called the tuning parameter, and we will talk about it later. Suppose our ran-
domly drawn proposed value is λ ¼ 4.200.

4. We now calculate the posterior for the proposed value of λ as follows:

posterior ∝ likelihood ∗prior ð13:18Þ
• First, we ask “what is the likelihood of observing five attacks given λ ¼ 4.200?” We

hope that the Poisson probability mass function springs to mind (again)! The prob-
ability of observing five attacks given λ ¼ 4.200 is:

Lðx; λÞ ¼ λxe−λ

x!
ð13:19Þ

Lð5; 4:200Þ ¼ 4:2005e−4:200

5!
¼ 0:1633 ð13:20Þ

• Then we ask, “What is the probability density associated with 4.200 from the prior
distribution?” And we hope once again that the gamma probability density function
springs to mind! We can use the gamma pdf to ask “what is the probability density of
drawing a random value of 4.200, given the parameters of the prior distribution?”
Remember our prior distribution set α0 ¼ 2.1 and β0 = 1:

gðx; α; βÞ ¼ βαxα−1e−βx

ΓðαÞ ð13:21Þ

gð4:200;2:1;1Þ ¼ 12:14:2002:1−1e−1 ∗4:200

Γð2:1Þ ¼ 0:0695 ð13:22Þ

• The posterior density associated with our proposed value of λ is proportional to the
product of the likelihood and the prior:

Pðλ¼4:200 jdataÞ ∝ 0:1633 ∗ 0:0695 ¼ 0:0113 ð13:23Þ
• We will now refer to this as P(λproposed | data).

5. Now you have two hypothesized λ values from the posterior distribution (λ ¼ 3.100 and
λ ¼ 4.200), and you know their posterior densities. Never, ever, forget that Bayes’
Theorem is at the heart of these values!
• The posterior densities for our two hypotheses are:

Pðλcurrent ¼ 3:100 jdataÞ∝ 0:0161 ð13:24Þ
Pðλproposed ¼ 4:200 jdataÞ∝ 0:0113 ð13:25Þ
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• The next step is to throw one away. Which one will you keep? Will you stay with
your original value (λ ¼ 3.100), or will you move to the proposed value (λ ¼ 4.200)?

• To help you with that decision, the Metropolis algorithm specifies that you calculate
the probability of accepting (or moving to) the proposed λ (which in our example is
4.200) as the smaller (minimum) of two values: 1 or the ratio of the two posterior
densities associated with the proposed and current λ values:

pmove ¼ min
Pðλproposed jdataÞ
Pðλcurrent jdataÞ ;1

� �
ð13:26Þ

pmove ¼ min
0:0113
0:0161

; 1
� �

ð13:27Þ

pmove ¼ minð0:7019;1Þ ¼ 0:7019 ð13:28Þ
• So, for this example, the probability of accepting the proposed value for λ is 0.7019.

6. Next, draw a randomnumber from the uniformdistribution, U(0,1). This is a uniform
distribution between 0 and 1. If the randomnumber is less than the probability ofmoving,
accept the proposed value of λ. If not, stay with the current value of λ. Notice that if the
proposal has a greater posterior density than the current, you will always move to the
proposal. But if your current posterior density is greater than your proposed, as is the case
here, you may or may not move…it depends on what random number you draw. Let’s
say our randomly drawn value is 0.8204. This value is greater than 0.7019, so we
now keep λ ¼ 3.100. This now represents our current value of λ for MCMC trial 2.

7. Repeat, repeat, repeat hundreds or thousands of times!
8. Summarize the accepted values in the form of a distribution and its corresponding

summary statistics.

By the way, the Metropolis algorithm is named for Nicholas Metropolis (see Figure 13.5), a
physicist born in Chicago (Go Cubs!). However, his seminal paper had multiple coauthors,
including Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward
Teller. Sometimes the algorithm is called the M(RT)2 algorithm for the last names of the five
authors. The history of this paper and the players involved is quite rich and intriguing.

Figure 13.5 Nicholas Metropolis (Original
photograph courtesy of the Los Alamos
National Laboratory).
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Where can I learn about the mathematics of the Metropolis
algorithm?

Answer: John Kruschke provides an excellent, non-technical discussion of the Metropolis
algorithm in his book Doing Bayesian Data Analysis (2015). For thosemoremathematically
inclined, Christophe Andrieu and co-authors (2003) provide “An introduction to MCMC
for machine learning.” Their first sentence reads, “A recent survey places the Metropolis
algorithm among the ten algorithms that have had the greatest influence on the develop-
ment and practice of science and engineering in the 20th century.” Wow!

Can we see an example of these operations in action?

Answer: You bet. Operation 7 involves a loop where you repeat the operations over and
over. This can be visualized with the map shown in Figure 13.6.

1. Select current
parameter, λc

2. Use Bayes’
Theorem to compute
the posterior density

of λc | data as
posterior ∝ prior *

likelihood 

3. Select λp from a
symmetric

distribution centered
on λc.

 

4. Use Bayes’
Theorem to compute
the posterior density

of λp | data as
posterior ∝ prior *

likelihood

5. Compute the
probability of moving

as the minimum of
p(λp | data) 

, 1
p(λc | data) 

6. Draw a random
number from U(0,1).

If the random
number is smaller

than the probability
of moving,accept λp.
Otherwise, retain λc.

Figure 13.6
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Let’s carry out ten trials. Remember that the standard deviation, σ, for our
proposal distribution, is 0.5 (see Table 13.1).

In this table, our trials are given down column 1. The observed data, five shark attacks, is
given down column 2. Notice that these are fixed for all 10 trials. Similarly, α0 and β0 from
our prior distribution (columns 3 and 4) are fixed for all 10 trials. Under the four Posterior
columns, the current λ value is labeled λc, and its posterior density (shaded purple) is labeled
Pc. The proposed λ value is labeled λp, and its posterior density (shaded purple) is labeledPp.
Under the four Decision columns, the ratio of the two purple values is stored in the
column labeled Ratio. The probability of moving to the proposed value (labeled Pmove)
is the smaller of two values: the number 1.0000 or the ratio. The column labeled Random
is a random number from a uniform distribution whose values range between 0 and 1. And,
finally, the column labeled Accepted λ uses the Metropolis decision rule to determine
which posterior λ value (λc or λp) we keep.

Now let’s focus on row 1, or trial 1, which features the example we just discussed (see
Table 13.2).

• Our current value of λ (column λc) is 3.100. This is our “starting point” and you, the
analyst, select this.

• The posterior density associated with λ ¼ 3.100 (column Pc) is the product of two terms:
the Poisson likelihood of observing the data (5 attacks), given λ ¼ 3.100, and the gamma
density associated with λ ¼ 3.100 from the prior distribution. The answer is 0.0161. We
calculated that by hand earlier, and this is the familiar Bayesian adage: “the posterior is
proportional to the likelihood times the prior.”

Table 13.1

Data Prior Posterior Decision

Trial Attacks α0 β0 λc Pc λp Pp Ratio Pmove Random Accepted λ

1 5 2.1 1 3.100 0.0161 4.200 0.0113 0.7019 0.7019 0.8204 3.100

2 5 2.1 1 3.100 0.0161 2.360 0.0134 0.8323 0.8323 0.5716 2.360

3 5 2.1 1 2.360 0.0134 2.637 0.0151 1.1269 1.0000 0.2159 2.637

4 5 2.1 1 2.637 0.0151 2.306 0.0129 0.8543 0.8543 0.3645 2.306

5 5 2.1 1 2.306 0.0129 2.435 0.0139 1.0775 1.0000 0.0979 2.435

6 5 2.1 1 2.435 0.0139 2.674 0.0153 1.1007 1.0000 0.1749 2.674

7 5 2.1 1 2.674 0.0153 2.166 0.0117 0.7647 0.7647 0.5066 2.166

8 5 2.1 1 2.166 0.0117 2.629 0.0151 1.2906 1.0000 0.4551 2.629

9 5 2.1 1 2.629 0.0151 2.035 0.0104 0.6887 0.6887 0.0251 2.035

10 5 2.1 1 2.035 0.0104 2.616 0.0150 1.4423 1.0000 0.6145 2.616

Table 13.2

Data Prior Posterior Decision

Trial Attacks α0 β0 λc Pc λp Pp Ratio Pmove Random Accepted λ

1 5 2.1 1 3.100 0.0161 4.200 0.0113 0.7019 0.7019 0.8204 3.100
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• We then consider a proposed value for lambda, λ ¼ 4.200 (column λp). We obtain the
proposal by drawing a random value from a normal distribution that is centered on λc
and has a standard deviation of 0.5.

• The posterior density associated with λ ¼ 4.200 (column Pp) is the product of two terms:
the Poisson probability of observing the data (5 attacks), given λ ¼ 4.2, and the gamma
density associated with λ ¼ 4.2 from the prior distribution. The answer is 0.0113 and is
deeply rooted in Bayes’ Theorem. We calculated that by hand earlier.

• The ratio of these two posterior densities is computed as the posterior density of the
proposed λ divided by the posterior density of the current λ (column Ratio). We
calculated that by hand earlier as 0.7019.

• The probability of moving (column Pmove) is calculated as minimum of 1 and the ratio.
Because the ratio 0.7019 is smaller than 1.0, the probability of moving (accepting the
proposal) is 0.7019.

• We then draw a random number between 0 and 1. Our random number is 0.8204
(column Random).

• We then keep the λ value according to our random number. If the random number is less
than the probability of moving, we accept the proposed value of λp; otherwise, we accept
the current value of λc. Our random number is greater than 0.7019, so we keep λc ¼ 3.100
(column Accepted λ). This value becomes λc for our next MCMC trial.

Now let’s focus on row 2 (even if it is a bit tedious); see Table 13.3.

• In trial 2, our current value of λ (column λc) is 3.100.
• The posterior density associated with λ ¼ 3.100 (column Pc) is the product of two terms:

the Poisson probability of observing the data (5 attacks) given λ ¼ 3.100) and the gamma
density associated with λ ¼ 3.100 from the prior distribution. The answer is 0.0161. We
calculated that by hand earlier.

• We then consider a proposed value, λ ¼ 2.360 (column λp). We obtain the proposal by
drawing a random value from a normal distribution that is centered on λc (3.100) and has
a standard deviation of 0.5.

• The posterior density associated with λp ¼ 2.360 (column Pp) is the product of two
terms: the Poisson probability of observing the data (5 attacks), given λ ¼ 2.360, and
the gamma density associated with λ ¼ 2.360 from the prior distribution. The answer is
0.0134.

• The ratio of these two posterior densities is computed as the posterior of the proposed λp
divided by the posterior of the current λc (column Ratio), which is 0.8323.

• The probability of moving (column Pmove) is calculated as minimum of 1 and the ratio.
Since the ratio is 0.8323, the probability of moving (accepting the proposal) is 0.8323.

• We then draw a random number between 0 and 1 from a uniform distribution. Our
random number is 0.5716 (column Random).

Table 13.3

Data Prior Posterior Decision

Trial Attacks α0 β0 λc Pc λp Pp Ratio Pmove Random Accepted λ

1 5 2.1 1 3.100 0.0161 4.200 0.0113 0.7019 0.7019 0.8204 3.100
2 5 2.1 1 3.100 0.0161 2.360 0.0134 0.8323 0.8323 0.5716 2.360
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• We then keep the λ value according to our random number. If the random number is less
than the probability of moving, we accept the proposed value for λ; otherwise, we accept
the current value of λ. Our random number is less than 0.8323, so we accept λ ¼ 2.360
(column Accepted λ). This value becomes λc for our next MCMC trial.

What are some key characteristics of the Metropolis algorithm?

Answer: The Metropolis algorithm has some unique requirements:

• The distribution that generates the proposed parameter must be symmetrical.
• Usually, the proposed parameter is drawn from anormal distribution that is centered

on the current value. This means that the analyst must provide the standard deviation for
the normal distribution to control what proposals can be drawn. In our example above,
we used a standard deviation of 0.5.

• Setting the standard deviation can be a tricky business and requires tuning such that the
probability of acceptance ranges between 20%–50% in order to converge on the posterior
distribution. The parameter to be tuned is often called a tuning parameter. We’ll
touch more on this topic later.

Are there certain terms associated with this process?

Answer: Certainly. We’re now ready to define a set of terms that you will see used in
Bayesian analyses that use MCMC.

• Starting point. The starting point is the first value you designate in trial 1. We used an
initial λ value of 3.100.

• Monte Carlo. Monte Carlo in this case refers to the Monte Carlo Casino, located in the
Principality of Monaco. The Monte Carlo Casino is filled with games of chance. Encyclo-
pedia Britannica tells us that Monte Carlo methods are “statistical methods of under-
standing complex physical or mathematical systems by using randomly generated
numbers as input into those systems to generate a range of solutions…The Monte
Carlo method is used in a wide range of subjects, including mathematics, physics,
biology, engineering, and finance, and in problems in which determining an analytic
solution would be too time-consuming.” In this context, Monte Carlo refers to the
notion that we use random sampling to generate a proposed parameter, and we also
use random sampling to determine whether or not we accept the proposed value or
retain the current parameter value.

• Proposal Distribution. The proposal distribution is the distribution that you use to
draw the next, proposed value. In our example, we used a normal distribution whose
mean is the current value in the chain and whose standard deviation (the tuning
parameter) is set by you, the analyst.

Through this process, we “pit” two posterior densities against each other, and keep only
the proposal (or proposed value) if its posterior density is higher than the current value.
If it’s not higher, we accept the proposal probabilistically. By repeating this process over
and over again, we eventually end up converging on a reasonable estimate of the
posterior distribution. Bam!
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• Markov chain. A Markov chain is named after the Russian mathematician, Andrey
Markov. A Markov chain is “a sequence of random variables in which each variable
depends only on its immediate predecessor, so the sequence moves at random, each
move being determined by its previous position” (Upton and Cook, 2014). In our
example, “chain” refers to the chain of accepted λ’s. The construction of the chain is
often described as “memorylessness” because the probability associated with the next
link (in our case, λp) depends only on the current link (λc).

• MCMC trials. The number of MCMC trials is the number of trials you decide to run. In
our example, we ran 10 trials.

How do we depict our results graphically?

Answer: Let’s graph our current λ values as a line graph so that we can see how our
values change with each iteration. In Figure 13.7, each point is a unique sample from the
posterior distribution for λ.

This graph shows the MCMC chain across trials and is called a traceplot. Here, trial
number is along the x-axis, and we plot the accepted λ (the annual rate of shark attacks). We
started off with λ ¼ 3.100 but then retained λ ¼ 3.100 (which is then our current value for
trial 2). In trial 2, we proposed λ ¼ 2.360 and kept the proposed value, which is the current
value for trial 3. In trial 3, we proposed λ ¼ 2.637 and then accepted that value (which is
plotted). Notice that for these 10 trials, each and every proposal was accepted
with the exception of trial 1, where we retained λc = 3.100.

The fact that we have a 90% acceptance rate suggests that our choice of standard deviation,
0.5, needs tuning, or adjusting. We will revisit this topic in Chapter 14.
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When the proposal is not accepted, you will see the λ value remain constant from one
trial to the next; that is, the line joining the accepted values will be horizontal.
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And how does this process lead to the posterior distribution?

Answer: We create a frequency distribution of the current λ’s. Let’s try it for our 10
samples, grouping (binning) our λ’s by 0.1. Notice that the range of λ’s graphed is between
2 and 4 (see Figure 13.8).

Here, we’ve let the current λ value run along the x-axis from 2.0 to 4.0, grouped into
“bins” of 0.1. The y-axis is the frequency. For example, we observed one λ that ranged
between 2.1 and 2.2. That would be trial 8, right? We observed two λ’s that ranged between
2.3 and 2.4. Those would be trials 3 and 5 in Table 13.1. And so on.

This is an estimate of our posterior distribution for 10 trials, except that it is
not normalized such that the sum of the bars equals 1.00.

How many trials do you need to generate an adequate
posterior distribution?

Answer: Normally, hundreds or thousands. You’ve seen how easy it is to do an
MCMC. The only limiting factor here is computing power and a software program where
you can program the steps. If you are interested, check out Wolfram Demonstrations to see
the algorithm in action on a different example.

Let’s rerun our experiment, but this time let’s run 10,000 trials to create our posterior distri-
bution. But, instead of plotting frequency, let’s plot probability density, which is the relative
frequency (frequency of a bin divided by total trials) divided by the binwidth (see Figure 13.9).
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Figure 13.8 Histogram of MCMC results.
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Figure 13.9 Prior and posterior density distributions.
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Let’s also plot the “smoothed” probability distribution in dashed purple. And, just for
kicks, let’s also add in the prior distribution (blue) as well as the posterior distribution we
calculated from the conjugate shortcut method (in solid purple). Recall that this entire
chapter demonstrates how MCMC with the Metropolis algorithm can be used to estimate
the solid purple distribution!

A remarkable use of
my theorem!

How do we summarize the posterior distribution?

Answer: With simple summary statistics! We have 10,000 datapoints now, which consist
of our chain of accepted values of hypothesized λ’s (the average rate of shark attacks per
year). Now it is a matter of just computing some simple statistics:

• Mean: the average value of our values of λ
• Variance: the variance of the λ’s
• Standard deviation: the standard deviation of our λ
• Minimum: the smallest value of λ
• Maximum: the largest value of λ

Here, we’ll make our calculations based on the full set of 10,000 trials (see Table 13.4).

Mind-blowing, eh? Never forget that our MCMC distribution is estimated via a set of
rules to be followed (in this case, the Metropolis algorithm). In each step, we have two
competing hypotheses for a parameter of interest. For each hypothesis in each step, you
compute the posterior density by multiplying the prior density by the likelihood. Then
you retain one hypothesis via a rule in which random numbers are involved. If you
repeat this process with new random numbers, you’ll almost assuredly end up with a
different purple distribution. However, as your number of trials becomes large, the
differences should become negligible. You then use this distribution to base your
inferences, or conclusions, about λ (the annual rate of shark attacks).
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Are these the statistics that we report for our analysis?

Answer: Possibly. But with an MCMC analysis, the Bayesian credible intervals are often
reported. We’d like to show the credible range of λ values from our analysis…the minimum
and maximum values would not be included in this interval. In Chapter 10, we mentioned
alternative methods for defining a suitable Bayesian credible interval, including:

• Choosing the narrowest interval, which for a unimodal distribution will involve choos-
ing those values of highest probability density including the mode. This is sometimes
called the highest posterior density interval.

• Choosing the interval where the probability of being below the interval is as likely as
being above it. This interval will include the median. This is sometimes called the equal-
tailed interval.

• Assuming that the mean exists, choosing the interval for which the mean is the
central point.

We touched on these in previous chapters. For this chapter, let’s calculate the Bayesian
credible intervals for λ using the second method, the equal-tailed interval method.

For this method, it’s important that you understand the concept of a quantile. Quan-
tiles are very flexible and easy to compute: just line up the datapoints from smallest to
largest. In our case, the datapoints are the 10,000 λ values from the MCMC trials. Then,
choose a quantile of interest, say 0.10. This means you’d like to find the datapoint where
10% of the data are smaller than that value, and 90% of the data are larger. If you’d like the
0.95 quantile, that means you’d like the find the datapoint where 95% of the data are
smaller than that value, and 5% of the data are larger. Lining the data up in order is
essential.

Table 13.5 shows some quantiles for our 10,000 MCMC results.

Table 13.4

Mean Variance Standard Deviation Minimum Maximum

3.476 1.448 1.203 0.893 7.549

Table 13.5

Quantile λ

0.010 1.41

0.025 1.57

0.050 1.76

0.250 2.59

0.500 3.33

0.750 4.17

0.950 5.75

0.975 6.24

0.990 6.87
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Looking at these results, we can see that half of our 10,000 trials were less than 3.33, and
half were greater than 3.33 (look at the 0.5 quantile, also called the median). Now look at
the 0.99 quantile. The result (6.87) suggests that 99% of the λ estimates in ourMCMC chain
were less than 6.87, which means that 1% were greater than this value. Don’t forget that λ
here specifically means the average rate of shark attacks!
If we want to find the values of λ that represent 95% of the values (with 2.5% in each tail,

or option 2 in the bulleted list above), we could just use the values associated with the 0.025
and 0.975 quantiles and report the following Bayesian credible interval:

1:57 < λ < 6:24 ð13:29Þ
In other words, given our prior distribution, and the fact that we observed five shark attacks
this year, our MCMC results suggest that the average annual rate shark attacks is between
1.57 and 6.24.

But shouldn’t we express the MCMC results as a gamma distribution?

Answer: You’re right, of course! Our prior is a gamma distribution, and it makes
sense that we’d like to express the posterior distribution as a gamma distribution as
well. The method by which we convert our MCMC results to the gamma distribution is
called moment matching. You might recall that the mean of a given gamma pdf is
equal to:

μ ¼ α

β
ð13:30Þ

And the variance of a given gamma distribution is equal to:

σ2 ¼ α

β2
ð13:31Þ

But our MCMC analysis provides us with the reverse: we have the mean and variance of the
λ’s from our MCMC trials. Can we go from these values to obtain the corresponding α and β

parameters for the gamma distribution?We can use the first and secondmoment functions
for the two unknowns (α and β), and solve in terms of μ and σ2. This is done by solving one
of the equations (it shouldn’t matter which) for α and then substituting the result into the
second equation for α. Then do the same for β. Try this yourself. You should end up with
these solutions:

α ¼ μ2

σ2
ð13:32Þ

β ¼ μ

σ2
ð13:33Þ

Now we can estimate α and β from our MCMC results in Table 13.4:

α ¼ μ2

σ2
¼ 3:4762

1:448
¼ 8:34 ð13:34Þ

β ¼ μ

σ2
¼ 3:476

1:448
¼ 2:40 ð13:35Þ
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These are close to the conjugate solutions (α ¼ 7.1 and β ¼ 2) but are not a perfect match.
We’ve hinted that we can improve this estimate of the posterior distribution by adjusting
the tuning parameter, which we’ll cover in Chapter 14.

A graph of this distribution (from our MCMC analysis), along with our original prior in
blue and the posterior from the conjugate solution in purple, can now be displayed (see
Figure 13.10).

Cool! FYI, Tom Hobbs and Mevin Hooten provide an excellent discussion of moment
matching in their book Bayesian Models: A Statistical Primer for Ecologists (Hobbs and
Hooten, 2015).

Would we get different results if we used a different prior distribution?

Answer: As with all Bayesian analyses, the posterior distribution may be influenced by
your choice of the prior distribution. In Chapter 11 (and here as well), we used an inform-
ative prior based on a 10-year dataset of annual shark attacks. This is justified: if you have
previous knowledge or information that can be used to set the prior distribution, you
should use it.

Are the other algorithms we can use in an MCMC analysis?

Answer: There are many others!

• In Chapter 15, we will revisit the White House Problem and introduce the more general
Metropolis–Hastings algorithm, which relaxes the assumption that the proposed
parameter is drawn from a symmetric distribution.

• In Chapter 16, we will revisit the Maple Syrup Problem, and use the Gibbs Sampling
algorithm.

• There are others as well, and this is an area of active research…stay tuned! (Pun
intended!)
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How do we know that our MCMC posterior really hits the spot?

Answer: Ahh…That is a great question and one we will be visiting in Chapter 14. In
this chapter, we knew all along that we were trying to build the “purple” posterior
distribution—the one we found with the conjugate shortcut and is our “target distribu-
tion.” But normally you would not have this advantage. Therefore, “diagnosing” the results
of an MCMC analysis is a critical step in any Bayesian MCMC analysis. We already hinted
that our tuning parameter, σ, needs adjustment. We won’t cover it here because our aim in
this chapter is to give you the big picture regarding MCMC. Aside from that, we’re running
out of steam!

And what’s the big picture?

Answer: We can summarize this chapter in the following way:

• We are trying to estimate the average rate of shark attacks per year.
• The hypotheses range from 0 to something very large, and there are an infinite number

of them.
• We used the gamma distribution to set our prior distribution; this gives our relative a

priori probability (i.e., a density) for each alternative hypothesis for λ.
• We collected data: there were five shark attacks this year.
• We computed the posterior probability distribution by using the conjugate method.
• We then estimated the posterior probability distribution using a Markov Chain Monte

Carlo simulation. This approach allows us to estimate a Bayesian posterior distribution
and avoid the messy integration required in the denominator of Bayes’ Theorem.

• We compiled the results of our MCMC analysis, computed the mean and variance, and
then used the method of moments to define the posterior distribution as a gamma
distribution.

• This posterior distribution provides the current state of knowledge about the annual rate
of shark attacks. It is completely consistent with the scientific method in that we now
have weights of plausibility for each and every alternative hypothesis for λ in light of new
data. We could use this information to make future predictions or in decision-making.

OK, what’s next?

Head over to Chapter 14, where we outline some of the things that can go wrong in the
MCMC analysis.
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CHAPTER 14

MCMC Diagnostic Approaches

In Chapter 13, we introduced the Markov Chain Monte Carlo approach as a means of
estimating the posterior distribution for a parameter. With MCMC, the posterior distribu-
tion is created bit by bit (trial by trial).

In the end, you have a long list of output that tracks the value of the parameter of interest
from trial to trial. With this long list, you can do the following:

• Create a traceplot of the parameter values across trials, which looks like a snake.
• Create a histogram of the current values in which the current values are “binned” and

counted, producing a first glimpse at the shape of the posterior distribution.
• Compute summary statistics of the parameter values, such as the mean, variance, and

quantiles. These can be used to create Bayesian credible intervals.
• Use moment matching to summarize the MCMC output in terms of the prior distri-

bution’s family, if applicable.

But, through this process, there has been one burning question:

How do we know that our MCMC posterior really hits the spot?

Answer: You often don’t know! However, you can “diagnose” the results of your MCMC
analysis to give you the best chance at inferring the true posterior distribution.

In this chapter, we will revisit the Shark Attack Problem, where our goal was to estimate
the annual shark attack rate, λ. There, we set a prior distribution, collected new data, and
then obtained the posterior distribution in two ways:

1. The first was a conjugate solution.
2. The second involved an MCMC analysis using the Metropolis algorithm.

Here, our goal is to illustrate some of the things that can go wrong in MCMC
analysis and to introduce you to some diagnostic tools that help identify
whether your results can be trusted or not.

By the time you have finished this chapter, you will understand the following diagnostic
concepts:

• Tuning
• Acceptance rate
• Burn in
• Thinning
• Proposal issues

Bayesian Statistics for Beginners: A Step-by-Step Approach. Therese M. Donovan and Ruth M. Mickey,
Oxford University Press (2019). © Ruth M. Mickey 2019.
DOI: 10.1093/oso/9780198841296.001.0001



What was the Shark Attack Problem again?

Answer: In that problem, the goal was to use a Bayesian inference approach to estimate
the average number of shark attacks per year. We called that rate λ. Since there is no such
thing as a negative rate of shark attacks, λ ranges from 0 to some positive number. We used
the same steps that we did in previous chapters:

1. Identify your hypotheses—these would be the alternative hypotheses for λ, and they
range from 0 to ∞.

2. Express your belief that each hypothesis is true in terms of prior probabilities.
3. Gather the data—we observe a certain number of shark attacks in a given year.
4. Determine the likelihood of the observed data, assuming each hypothesis is true.
5. Use Bayes’ Theorem to compute the posterior densities for each value of λ.

Let’s review these steps quickly.

Step 1. What are the hypotheses for λ?

Answer: We know that λ, the average rate in the Poisson distribution, can take on any
value between 0 and some large number. Since the distribution of λ is continuous, there’s
nothing to stop us from considering the full range of hypotheses which are infinite
(λ ¼ 0.01, λ ¼ 0.011, λ ¼ 1.234, λ ¼ 6.076, etc.).

Step 2. What were the prior probabilities for each hypothesis?

Answer: We used the gamma distribution to set the probability density for each and
every hypothesis for λ. For the Shark Attack Problem, we used an informative
prior distribution of α ¼ 2.1 and β ¼ 1. This prior distribution was determined based on a
previous (external) dataset with 10 years of shark attack information (see Figure 14.1).

This prior distribution suggests that one or two shark attacks per year is muchmore likely
than, say, six or more shark attacks per year.
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Figure 14.1 Gamma distribution: α ¼ 2.1, β = 1.
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Step 3. Now what?

Answer: Collect data! We have observed five shark attacks.

Step 4. And then?

Answer: Step 4 is to determine the likelihood the observed data, assuming each hypoth-
esis for λ is true.

And step 5?

Answer: Step 5 is to use Bayes’ Theorem to generate the posterior distribution for λ, given
the data:

Pðλ jdataÞ ¼ Pðdata j λÞ ∗PðλÞð∞
0
Pðdata j λÞ ∗PðλÞdλ

ð14:1Þ

We’ve repeatedly mentioned that integration of the denominator is often tedious, and
sometimes intractable. However, this challenge can be solved in two ways.

First, for problems where the prior distribution is a gamma distribution, and the data
collected come in the form of Poisson data (number of events per unit time), an analytical
approach can be used to generate the posterior distribution that has the same form as a
prior distribution, that is, a conjugate prior.

Alternatively, an MCMC approach can be used. Let’s quickly review the MCMC steps we
used in Chapter 13, which employed the Metropolis algorithm:

1. Start by proposing just one value of λ from the posterior distribution. Any reasonable
value will do. We will call this the current hypothesis, λc.

2. Calculate the posterior density of observing the data under the current hypothesis,
which is the likelihood of observing the data under the current hypothesis times the
prior probability of the current hypothesis:

posteriorc ∝ likelihoodc ∗priorc ð14:2Þ
PðλcjdataÞ∝ PðdatajλcÞ ∗ PðλcÞ ð14:3Þ

3. Propose a new value from the posterior distribution using a random process. We will call
the randomly generated value the proposal hypothesis, λp. The distribution from
which this proposal is drawn is called the proposal distribution. The Metropolis
algorithm requires that the proposal distribution be a symmetric distribution (such as a
normal distribution) that is centered on the current hypothesis. We used a normal
distribution as our symmetric distribution and specified that the proposal distribution
had a standard deviation of 0.5. The standard deviation here is called the tuning
parameter. You, the analyst, set this parameter.
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4. Calculate the posterior density of observing the data under the proposal hypothesis,
which is proportional to the likelihood of observing the data under the proposal hy-
pothesis times the prior probability of the proposal hypothesis:

posteriorp ∝ likelihoodp ∗ priorp ð14:4Þ

Pðλp jdataÞ∝ PðdatajλpÞ ∗ PðλpÞ ð14:5Þ
5. You now have two competing hypotheses for λ from the posterior distribution. The

next step is to throw one away. The Metropolis algorithm provides a rule for
calculating the probability that you will move (transition) from the current hypoth-
esis to the proposal. It is the smaller of two values: the ratio of the two posterior
densities or 1:

pmove ¼ min
Pðλp jdataÞ
Pðλc jdataÞ ;1

� �
ð14:6Þ

6. Draw a random number between 0 and 1 from a uniform distribution. If the random
number is less than the probability of moving, accept the proposed value, λp. If not, stay
with the current value, λc.

7. Repeat, repeat, repeat.

In Chapter 13, we walked through both approaches in detail and then compared the
resulting posteriors. For the sake of discussion, the plot in Figure 14.2 is based
on the first 1000 MCMC trials only.

Here, the prior distribution is shown in blue, and the MCMC results with 1000 trials
are shown by the histogram. The two posterior distributions are also shown: a density plot
fit to the MCMC results is shown in dashed purple, and the posterior distribution from

Hyperparameters
Prior: α0 = 2.1, β0 = 1
Conjugate Posterior: α = 7.1, β = 2
MCMC Density: 1000 trials
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Figure 14.2 Prior and posterior probability density distributions with
the tuning parameter σ ¼ 0.5.
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the conjugate method is shown in solid purple. The goal here is to use MCMC to
approximate the conjugate result. The conjugate result is the theoretically exact answer,
but inmany cases it’s not feasible to obtain it. You can see that the results are not perfectly
matched.

What can we do to hit our target posterior distribution?

Answer: There are several main considerations that you must keep in mind. First, let’s
focus on the number of MCMC trials. Let’s see what our posterior distribution would look
like if we ran only 100 trials (see Figure 14.3). Again, our aim is to match the solid purple
posterior distribution.

Clearly, increasing the number of trials produces a better estimate of the true posterior
distribution. Even our 1000 trial example can be improved by increasing the number of
trials. Frequently, MCMC analyses use over 10,000 trials.

Is the number of trials the only thing to consider?

Answer: Ha ha!
Now let’s turn to the concept of tuning the proposal distribution. In our example, we

drew proposals from a normal distribution whose mean was the current value, λc, and
whose standard deviation (our tuning parameter, σ) was 0.5. Let’s look at our first 20 trials as
a trace plot (see Figure 14.4).
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Figure 14.3 Prior and posterior probability density distributions
with the tuning parameter σ ¼ 0.5.

A key concept here is that the MCMC approach should draw values that will fully
represent the posterior distribution. In other words, you need your MCMC to explore
the range of values that the unknown parameter can assume in an efficient and effective
manner.
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In a trace plot, points that are connected by a horizontal line indicate trials where the
current value has been retained for the next MCMC trial. There is only 1 case here, so our
acceptance rate is 95%. This is a problem.
Our friends at the SAS Institute explain it this way: “For a random walk Metropolis, high

acceptance rate means that most new samples occur right around the current data point.
Their frequent acceptance means that the Markov chain is moving rather slowly and not
exploring the parameter space fully. On the other hand, a low acceptance rate means that
the proposed samples are often rejected; hence the chain is not moving much. An efficient
Metropolis sampler has an acceptance rate that is neither too high nor too low.” In other
words, if you accept the proposal all the time, your chain is moving towards the area of the
posterior distribution that has significant weight, but it is moving like a turtle. If you never
accept the proposal, your chain is stuck at some location, or the proposals are not very good
proposals. Both of these situations will result in a posterior distribution that does not
correspond with the true one you seek.

What acceptance rate should we target?

We can choose any standard deviation we wish, but you should aim for a standard
deviation value such that the acceptance rate ranges roughly between 20%–50%. This
is a heuristic, or rule of thumb, and the exact target depends on the problem you are trying
to solve (see Gelman et al., 2004). For simple problems like the Shark Attack Problem, we
could aim for a 25% acceptance rate. To reach this target, we need to tune our proposal
distribution by twiddling the tuning parameter.
Since we have an acceptance rate that is too high, we should increase the standard

deviation from its current setting of 0.5 to more fully explore the parameter space. But this
might introduce yet another challenge.

Uh . . . and what might that be?

Answer: Drawing a proposal that is invalid. This may be shown with the following
example (see Figure 14.5). Suppose our current value for λc is 1.00, near the left tail of the
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posterior distribution we are trying to describe (in purple). We center a normal distribution
over the current value (shown in black) and draw one random variable from this proposal
distribution.

If you draw a negative value from the blue shade area by chance, it will be invalid . . . the
gamma distribution has a left boundary of 0. If this is the case, the computer program you
are presumably using for the MCMC analysis will throw an error (i.e., the computer will
give you an error message).

What do we do in such cases?

Answer: Well, there appear to be two approaches.

1. Stick with the current value and move to the next MCMC trial.
2. If your proposal cannot be negative, simply multiply any negative proposal by −1 and

continue with the MCMC as usual.

In the graph in Figure 14.6, we reran our 1000 MCMC trials but this time set our tuning
parameter, σ, to 1.
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Figure 14.6 Prior and posterior probability distribution with the tuning
parameter σ = 1.
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Figure 14.5 Proposal distribution centered on current λ.
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If you compare these results with ourfirst analysis of 1000 trials (Figure 14.2), you’ll see that
the tuning helped. Tuning is an iterative process; we would look at the acceptance rate under
the condition that σ ¼ 1 and then decide whether more fine-tuning is required. Figure 14.6
also shows the effect of increasing the number of MCMC trials as well—more is better!

OK, once I have tuned my tuning parameter properly, am I finished
with diagnostics?

Answer:

One more biggie of concern deals with the starting values used in the MCMC analysis.
Although the Markov chain should eventually converge to the desired distribution, the
initial samples may follow a very different distribution, especially if the starting point is
in a low density region of the posterior distribution. As a result, a burn-in period is typically
necessary, where an initial number of samples (e.g., the first 1000 or so) are thrown away.
“Burn in”means you disregard a certain number of trials before building your posterior

distribution. For instance, we may disregard our first ten trials and instead build the
posterior using the remaining 990 trials. Both the starting value and the tuning parameter
can dramatically affect the shape of your posterior distribution.

Can we see an example of these challenges?

Answer: But of course. You’ve already seen how the number of trials is an important
MCMC consideration. Now, let’s try a few experiments where we change the MCMC
starting value and the proposal distribution’s standard deviation (see Figure 14.7). To
highlight the challenges involved, we’ll run only 100 trials:

• Experiment 1 (the blue experiment): Set our first λ value at 2.1, and set the tuning
parameter, σ, at 0.15 for the proposal distribution.

• Experiment 2 (the black experiment): Set our first λ value at 2.2, and set the tuning
parameter, σ, at 0.8 for the proposal distribution.
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• Experiment 3 (the red experiment): Set our first λ value at 6.6, and set the tuning
parameter, σ, at 0.15 for the proposal distribution.

• Experiment 4 (the gray experiment): Set our first λ value at 6.7, and set the tuning
parameter, σ, at 0.8 for the proposal distribution.

The graphs are based on only 100 trials, but they demonstrate some of the issues that you,
the analyst, must be aware of in using the Metropolis algorithm. The purple distribution is
our conjugate posterior, that is, the posterior distribution we are trying to estimate with
MCMC approaches. This is the gold standard. Comparing the four experiments, we see:

• The blue distribution (Experiment 1) is an approximation based on a starting λc of 2.1 and
σ of 0.15. Notice that this posterior distribution is centered somewhat on our target
posterior distribution (purple), but the distribution is much narrower than the target.
The reason for this is that our tuning parameter, σ is too low . . .we started near the heart
of the posterior distribution, our proposals never ventured very far from it. To address
this issue, we should increase the standard deviation.

• The black distribution (Experiment 2) is an approximation based on a starting λc of 2.2
and σ of 0.8. Notice that this distribution is slightly to the right of the blue distribution
and is a better match to our target (purple) distribution, even though the starting value
was in the left tail of the distribution.

• The red distribution (Experiment 3) is an approximation based on a starting λc of 6.6 and
σ of 0.15. Notice that it is shifted to the right of the other distributions. This is because the
MCMC started in the far right portion of the target posterior distribution, and with a low
standard deviation, it doesn’t draw proposals towards the center of our target
distribution.

• The gray distribution (Experiment 4) is an approximation based on a starting λc of 6.7 and
σ of 0.8. Notice that it started near the tail of the posterior distribution, but with a higher
tuning parameter, it approximates the conjugate posterior fairly well.

These issues can be further seen by examining the first 20 records of each experiment (see
Figure 14.8).
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• Experiment 1 (blue) and Experiment 3 (red) had low values for the tuning parameter;
thus, their traceplots are rather flat and do not venture far from the starting value.

• Experiment 2 (black) and Experiment 4 (gray) had high values for the tuning parameter;
thus their traceplots “bounce.”

• It’s plain to see that these trials suggest that our tuning parameter needs attention.
However, the acceptance rate is normally computed after the burn-in phase (which we
ignored) and is based on a large number of trials (Figure 14.8 shows the first 20 trials.)

These experiments emphasize that tuning the standard deviation is import-
ant. In general, tune to get an acceptance rate of 20%–50%.And run asmany trials
as you are able but then burn in (discard) the first several samples to avoid creating a
posterior distribution that is unduly influenced by your choice of the starting parameter.
This, in a nutshell, is why you want to “Feel the Bern.”

OK, I’m afraid to ask, but what else should concern me?

Answer:Due to the nature of how proposed values are selected, the samples from one trial
to the next may be correlated. Can you see that this problem is magnified if the standard
deviation is small? In MCMC analysis, thinning (also called pruning) has to do with
omitting certain MCMC trials when building the posterior distribution, such as using every
other trial, or every third trial, or every fifth trial. Thinning is the response to the correlation
of nearby trials, which boils down to non-independence of samples being used to infer the
shape of the posterior distribution. In order to map the posterior distribution, we must
assume they are independent draws (realizations) from the posterior distribution of inter-
est. There are diagnostics to ensure you have enough independent samples, and many of
these topics are covered in more advanced books.

Is there anything else to worry about with MCMC analysis?

Answer: Another source of error involves how your computer stores numbers. Computers
store numbers as bits in a base 2 system, and a number in your MCMC trial may require

0

2

4

6

8

10

5 10 15 20

Trial

Conjugate Posterior: α = 7.1, β = 2
Start = 2.1, σ = 0.15

Start = 2.2, σ = 0.8
Start = 6.6, σ = 0.15
Start = 6.7, σ = 0.8

A
cc

ep
te

d 
λ

Figure 14.8

MCMC DIAGNOSTIC APPROACHES 221



more bits than your software has allocated. For instance, the number 0.2 is stored in your
computer as 00.0011001100110011 . . . , the number 14 as 1110, and the number 133 as
10000101 (http://www.wolframalpha.com/examples/NumberBases.html). In calculating
the posterior density, we multiply the prior density times the likelihood. If these are both
small numbers, multiplying them results in a very small number. If the numbers are tiny
enough, the number may not be stored properly by your computer. This is called numerical
overflow. In such cases, you should calculate the posterior densities using logs.

Logs?

Answer: The idea is that instead of getting the posterior density by multiplying the
likelihood by the prior density, you add the logs of these numbers.

A quick refresher on the rules of logs may help. You might recall that:

logbðmnÞ ¼ logbðmÞ þ logbðnÞ ð14:7Þ
Here, if m is the likelihood, n is the prior density, and b is the base for the natural log (e, or
Euler’s number), then we have:

lnðmnÞ ¼ lnðmÞ þ lnðnÞ ð14:8Þ
This transformation allows us to add the natural log of the likelihood with the natural log
of the prior, which is a much easier calculation to make (remember that multiplication is
simply repeated addition). Here’s a quick example. First, let’s recall that:

Pðλc jdataÞ ∝ Pðdata j λcÞ ∗ PðλcÞ ð14:9Þ
Suppose the likelihood of observing the data under a current hypothesis for λc is 0.003, and
the prior density for that hypothesis is 0.009. The posterior density is proportional to the
product of these terms:

Pðλc jdataÞ∝ 0:003 ∗ 0:009 ¼ 2:7e− 05 ð14:10Þ
Suppose the proposed hypothesis for λp has a likelihood of 0.002 and the prior density is
0.004:

Pðλp jdataÞ∝ 0:002 ∗ 0:004 ¼ 8e− 06 ð14:11Þ
For this example, the probability of accepting the proposal is:

pmove ¼
Pðλp jdataÞ
Pðλc jdataÞ ¼

8e−06
2:7e−05

¼ 0:2962963 ð14:12Þ

Keep this result in the back of your mind. Now let’s do the same calculations but
work with natural logarithms instead. Let’s start with λc, noting the basic formula
and log version:

Pðλc jdataÞ ∝ Pðdata j λcÞ ∗ PðλcÞ ð14:13Þ

lnðPðλc jdataÞÞ ∝ lnðPðdata j λcÞÞ þ lnðPðλcÞÞ ð14:14Þ
For the λc hypothesis, we have:

lnðPðλc jdataÞÞ ∝ lnð0:003Þ þ lnð0:009Þ ¼ −10:51967 ð14:15Þ
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For the λp hypothesis, we have:

lnðPðλp jdataÞÞ ∝ lnð0:002Þ þ lnð0:004Þ ¼ −11:73607 ð14:16Þ
Now we are in a position to calculate the probability of accepting the proposal. Remember
the probability of moving to the proposal is the ratio of the two posterior densities. This
now brings us to a second rule of logarithms:

logb
u
v

� �
¼ logbðuÞ−logbðvÞ ð14:17Þ

In our case, this would be:

ln
u
v

� �
¼ lnðPðλp j dataÞÞ − lnðPðλc j dataÞÞ ð14:18Þ

lnðpmoveÞ ¼ −11:73607 −10:51967 ¼ −1:2164 ð14:19Þ
But don’t forget that this is now on the natural log scale. To get the probability of moving,
we need to untransform the natural log:

pmove ¼ expð−1:2164Þ ¼ 0:2962963 ð14:20Þ
The end result for pmove is the same (compare with Equation 14.12), but your computer will
appreciate the difference in calculation power.

Goodness! That’s a lot of diagnosing!

Answer: Yes, it is. Good thing we aren’t doctors! And there are other issues beyond the
scope of this book. Gelman et al.’s (2004) work is the go-to book for Bayesian analysis. The
concepts of burn in and thinning apply to every MCMC analysis. The concept of tuning
depends on whether you need to have a tuning parameter in your MCMC analysis.

Can we summarize this chapter?

Answer: Why not? The goal of a Bayesian MCMC analysis is to estimate the posterior
distribution while skipping the integration required in the denominator of Bayes’ Theorem.
The MCMC approach does this by breaking the problem into small, bite-sized pieces,
allowing us to build the posterior distribution bit by bit (sand grain by sand grain). The
main challenge, however, is that several things might go wrong in the process, and you
must run several diagnostic tests to ensure that your MCMC analysis provides an adequate
estimate of the posterior distribution. These diagnostics are required of all MCMC analyses.
This is a big topic, and certainly an area in which you will want to dig deeper.

What’s next?

Answer: This chapter ends our quick introduction toMCMC diagnostics. Our first analysis
featured an MCMC approach with the Metropolis algorithm. But there are alternative
algorithms that can be used. In Chapter 14, we revisit the White House Problem and
introduce you to the Metropolis–Hastings algorithm.
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CHAPTER 15

The White House Problem
Revisited: MCMC with the
Metropolis–Hastings Algorithm

In Chapters 13 and 14, we introduced the basic principles of Markov Chain Monte Carlo
(MCMC) and the diagnosis of MCMC results. These chapters were chock-full of new terms,
new ideas, and new calculations, and focused on the Metropolis algorithm.

In this chapter, we’ll work through another MCMC example to help solidify your under-
standing. This time, we’ll revisit theWhite House Problem that we studied inChapter 10. The
main twist for this chapter’s material is that we will use the Metropolis–Hastings algo-
rithm, which is a generalized version of the Metropolis algorithm.

By the end of this chapter, you will have a firm understanding of the following:

• Monte Carlo
• Markov chain
• Metropolis–Hastings algorithm
• Metropolis–Hastings proposal distribution
• Metropolis–Hastings correction factor.

This is a long chapter, so make sure to get up and stretch every now and then!
Now then, remember theWhite House Problem?We asked, “What is the probability that

any famous person (like Shaq) can drop by theWhite House without an invitation?” In that
problem, we were trying to estimate a parameter from the binomial distribution called
p, which is the probability of success and ranges between 0 and 1. We used a Bayesian
inference approach to estimate p, as follows:

Pðp jdataÞ ¼ Pðdata j pÞ ∗ PðpÞð1
0
Pðdata j pÞ ∗ PðpÞdp

ð15:1Þ

For the White House Problem, we set up a prior distribution (a beta distribution), collected
some data (in the form of successful or failed attempts to visit the White House without an
invitation), and then updated to the posterior beta distribution with an analytical (conjugate)
shortcut that allowed us to avoid the integration in the denominator of Bayes’ Theorem.

However, not all problems can be solved this way . . . Bayesian conjugates are special cases
that can be solved analytically. But, there is another approach, one that is so creative and
versatile that it can be used to solve almost any kind of parameter estimation problem.
It involves building the posterior distribution from scratch using a process called a Markov
Chain Monte Carlo simulation, or MCMC for short.

Bayesian Statistics for Beginners: A Step-by-Step Approach. Therese M. Donovan and Ruth M. Mickey,
Oxford University Press (2019). © Ruth M. Mickey 2019.
DOI: 10.1093/oso/9780198841296.001.0001



In this chapter, wewill use anMCMCas away to estimate the posterior distribution of p.We
will quickly revisit the White House Problem, starting off by setting the prior distribution
associated with alternative hypotheses for p and then finding the posterior distribution using
thebeta-binomialconjugate.Then,we’llsolvethesameproblemusingMCMCwiththe
Metropolis–Hastings algorithmsoyou cancompare the twomethodsdirectly.
Let’s start by reviewing the White House Problem.

What were the analytic steps again?

Answer: We used the same steps that we did in previous chapters:

1. Identify your hypotheses—these would be the alternative hypotheses for p, ranging
from 0 to 1.

2. Express your belief that each hypothesis is true in terms of prior densities.
3. Gather the data—Shaq makes his attempt(s), and will either fail or succeed.
4. Determine the likelihood of the observed data, assuming each hypothesis is true.
5. Use Bayes’ Theorem to compute the posterior densities for each hypothesis of p.

Let’s review these steps quickly:

Step 1. What are the hypotheses for p?

Answer: We know that p, the probability of success in the binomial distribution, can take
on any value between 0 and 1. Since p is a continuous variable, there’s nothing to
stop us from considering the full range of hypotheses between 0 and 1, which are infinite
(p¼0.01, p¼ 0.011, p¼0.0111, etc.).

Step 2. What were the prior probabilities for each hypothesis?

Answer:We used the beta distribution to set relative prior probabilities for each and every
hypothesis for p. Examples of a few alternative beta probability distributions are shown in
Figure 15.1, and we need to choose one to represent our prior beliefs for each and every p.
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Let’s look at these graphs carefully. The x-axis for the beta distribution ranges between 0
and 1. The y-axis gives the probability density (relative probability). For any given graph,
the higher the probability density, the more belief we have in a particular hypothesis.

Because Shaq and his friend have totally different ideas of what p should be (with Shaq
believing his chances were high and his friend believing his chances were low), we im-
agined that they settled on a beta distribution with α¼0.5 and β¼ 0.5 as a prior distribu-
tion, which gives the U-shaped result shown in blue. This is a subjective prior. For reasons
discussed in Chapter 10, it is also a vague prior. So, the prior distribution for this
example is a beta distributionwith α050.5 and β050.5. Remember that the naught
subscripts are used to indicate that these are hyperparameters, or parameters of a prior
distribution.

Step 3. Now what?

Answer: Collect data! Let’s assume that Shaq makes one attempt at visiting the
White House without an invitation, and fails to get in. In the binomial function
terms, the number of trials n¼1, and the number of successes y¼ 0.

Step 4. And then?

Answer: Step 4 is to determine the likelihood of the observed data, assuming each
hypothesis for p is true.

And step 5?

Answer: Step 5 is to generate the posterior distribution for p by using Bayes’ Theorem. We
mentioned that integration of the denominator is often tedious, and sometimes impossible.

But for problems where the prior distribution is a beta distribution, and the data collected
come in the form of binomial data (number of successes out of a given number of trials), an
analytical approach can be used to generate the posterior distribution.

The analytical shortcut makes updating to the posterior a snap. Here it is:

• posterior α¼ α0 + y
• posterior β¼ β0 + n − y

For the White House Problem, our prior distribution was a beta distribution with α0¼0.5
and β0¼0.5. Shaq made one attempt, so n¼1. He failed to get into the White House, so
y¼ 0.We can now use this shortcut to calculate the parameters of the posterior distribution:

• posterior α¼ α0 + y¼0.5 + 0¼0.5
• posterior β¼ β0 + n − y¼0.5 + 1 − 0¼ 1.5

Now we can look at the prior and posterior distributions for p (see Figure 15.2).
In short, we started off with a prior distribution shown in blue. Thenwe collected binomial

data: one failure out of one trial. We then used an analytical approach to generate the
posterior distribution for all hypotheses of p (shown in purple). As a result of Shaq’s failed
attempt, we nowhavenew beliefs in each and every hypothesis of p. Notice how the posterior
really shifted toward the lower ends of the p spectrum after just one new observation.
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How would you solve the posterior distribution with
an MCMC approach?

Answer: Here we go!
The main idea behind MCMC for Bayesian inference is that you “build” the posterior

distributionbydrawing samples from it. In otherwords,we are going to try tobuild the purple
distribution in Figure 15.2 from scratch. Bayes’ Theorem is still at the heart of the analysis.
Earlier, we had written Bayes’ Theorem as:

PðpjdataÞ ¼ Pðdata j pÞ ∗ PðpÞð1
0
Pðdata j pÞ ∗ PðpÞdp

ð15:2Þ

Now, knowing that the posterior probability is a proportion, and that the denominator is
fixed across all hypotheses, we can write Bayes’ Theorem as:

posterior ∝ likelihood *prior ð15:3Þ
In words, the posterior density of a given hypothesis is proportional to the likelihood of
observing the data under the hypothesis times the prior density of the given hypothesis.
The symbol ∝ means “proportional to.” Our color-coding is intended to help remind you
that the posterior (purple) is a blend of the likelihood (red) and prior (blue).
Now, the idea of building a distribution from scratch may sound strange because you

don’t really know the distribution from which you are sampling. But in Chapter 14 we
demonstrated it is possible using theMetropolis algorithm. We used the following set of
operations in that chapter:

1. Start by proposing just one value from the posterior distribution. We will call this the
current hypothesis, pc.

2. Calculate the posterior probability density of observing the data under the current
hypothesis, which is the likelihood of observing the data under the current hypothesis
times the prior density of the current hypothesis:

Pð pc jdataÞ∝ Pðdata j pcÞ ∗Pð pcÞ ð15:4Þ
3. Propose a new value from the posterior distribution using a random process. We will call

the randomly generated value the proposal hypothesis, and the distribution from
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which it is drawn the proposal distribution. The Metropolis algorithm requires that
the proposal distribution be a symmetric distribution (such as a normal distribution)
that is centered on the current hypothesis.

4. Calculate the posterior probability density of observing the data under the proposal
hypothesis, which is the likelihood of observing the data under the proposal hypothesis
times the prior density of the proposal hypothesis:

Pð pp jdataÞ∝ Pðdata j ppÞ ∗ Pð ppÞ ð15:5Þ

5. You now have two competing hypotheses for p from the posterior. The next step is to
throw one away. The Metropolis algorithm provides a rule for calculating the prob-
ability that youwill move (transition) from the current hypothesis pc to the proposal pp.
It is the smaller of two values: the ratio of the two posterior densities, or 1:

pmove ¼ min
Pðpp jdataÞ
Pðpc jdataÞ

;1
� �

ð15:6Þ

6. Draw a random number between 0 and 1 from a uniform distribution. If the random
number is less than the probability of moving, accept the proposed value of p. If not, stay
with the current value of p.

7. Repeat and repeat hundreds or thousands of times!

We mentioned previously that the Metropolis algorithm is a special case of a more general
algorithm called the Metropolis–Hastings algorithm. We introduced Nicholas Me-
tropolis in Chapter 14. Here, say hello to W. Keith Hastings (1930–2016), a Canadian
(see Figure 15.3).

Thus, if the posterior density of the proposed p is greater than posterior density of the
current p, you will always move to the proposed p because the probability of moving will
be 1. If not, whether you move or not depends on a random draw. In case you were
wondering, the probability of moving or accepting the proposal is also called a transi-
tion kernel.

Figure 15.3 Keith Hastings (Original
photograph courtesy of Gary Bishop).
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OK then, what is the Metropolis–Hastings algorithm?

It is virtually identical to the Metropolis algorithm in operations, with one important
difference: the probability of accepting the proposal is calculated differently.
In generalized terms, if P(θc |data) is the posterior density associated with a current

parameter (θc), and P(θp |data) is the posterior density associated a proposed parameter
(θp), then the Metropolis probability of accepting the proposal is:

pmove ¼ min
Pðθp jdataÞ
Pðθc jdataÞ ; 1
� �

ð15:7Þ

The Metropolis–Hastings algorithm is virtually identical, but with an added correction
factor that is used to compute the probability of accepting the proposal:

pmove ¼ min
Pðθp jdataÞ ∗ gðθc j θpÞ
Pðθc jdataÞ ∗ gðθp j θcÞ ; 1
� �

ð15:8Þ

The correction factor is:

gðθc j θpÞ
gðθp j θcÞ ð15:9Þ

Why do we need a correction factor?

Answer: The correction factor is needed if the proposal distribution is not symmetric.
If it is symmetric, the correction factor equals 1, so we are back to the Metropolis algorithm.
This is why the Metropolis algorithm is said to be a specific case of the Metropolis–Hastings
algorithm.

How does the correction factor work?

Answer: The correction factor focuses on the symmetry, or lack thereof, of the proposal
distribution, that is, the distribution fromwhich we draw a new, proposed hypothesis for
a parameter of interest. In the Metropolis algorithm, we draw a random variable from a
normal distribution whose mean is centered on the current parameter—the analyst sets
the standard deviation for this distribution. For example, if θc is 0.5, and we use a standard
deviation of 0.05, then our proposal would be drawn from a normal distribution with
μ¼0.5 and σ¼0.05. You might recall that σ in this example is referred to as the tuning
parameter.
The Metropolis–Hastings correction factor is the probability density of drawing the

current value (θc) from a distribution that is centered on the proposed value (θp) divided
by the probability density of drawing the proposed value (θp) from a distribution centered
on the current value (θc). The denominator is what actually happened, while the numer-
ator is the reverse. It is written this way, with color-coding that will hopefully help us keep
track of the numerator and denominator. The numerator will be coded in navy, and the
denominator will be coded in dirt brown (or blue sky above and dirt below):

gðθc j θpÞ
gðθp j θcÞ ð15:10Þ
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First, let’s see how this works when our proposal distribution is the symmetric, normal
distribution. Suppose θc is 0.5, and θp is 0.6. Let’s also assume that our proposal distribution
has a tuning parameter, σ, of 0.05:

• For the denominator of the correction factor, which is written g(θp | θc) and is what
actually happened, we compute the probability density of 0.6 from a normal distribution
with μ¼0.5 and with σ¼0.05. The normal probability density function can be used to
calculate this answer, which is 1.08. This is shown by the dirt-brown dashed line in
Figure 15.4.

For the numerator of the correction factor, which is written g(θc | θp), we compute the
probability density of 0.5 from a normal distribution whose mean is 0.6 and whose
standard deviation is 0.05. The normal probability density function can be used to
calculate this answer, which is 1.08. This is shown by the navy blue dashed line in
Figure 15.5.
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With a symmetric distribution, you can see that no matter what proposal we make, the
probability density of drawing the proposal centered on the current will be identical to the
probability density of drawing the current centered on the proposal.
The correction factor for this example is:

gðθc j θpÞ
gðθp j θcÞ ¼

1:08
1:08

¼ 1:0 ð15:11Þ

Thus, the probability of moving from the current to the proposal for this problem is:

pmove ¼ min
PðθpÞ
PðθcÞ ∗1:0; 1
� �

ð15:12Þ

which is just the Metropolis algorithm. Don’t forget that the term P(θp) is the posterior
density of the proposal, while P(θc) is the posterior density of the current, and Bayes’
Theorem is at the heart of the calculations.

What if we want to use a proposal distribution that is
not symmetrical?

Hastings’ giant insight was that you can use any proposal distribution you want as long as
you correct for the fact that the proposal distribution is non-symmetric. The same
principles apply.
Let’s try a new example, returning to our parameter of interest for this chapter, p,

the probability that a celebrity can visit the White House without an invitation.
Suppose that our current value of pc¼0.5 and that, instead of drawing a proposal
from a normal distribution, we use a beta distribution instead. Pay attention now:
we are now using the beta distribution as our proposal distribution . . .
this is completely separate from the use of a beta distribution to repre-
sent our prior hypotheses that a famous celebrity can visit the White
House without an invitation.
Remember that the beta distribution has two parameters named α and β. Just as we had to

specify the tuning parameter, σ, to draw from a normal distribution, here we have to specify
either α or β to draw from a beta distribution. Let’s assume that we specify that β53
for our proposal distribution. This is our tuning parameter for the proposal
distribution.
We now need to calculate α so that we end up with a beta distribution that is

centered on pc¼ 0.5. One way to do this is to calculate the mean of the beta distribu-
tion, which is:

μ ¼ α

αþ β
ð15:13Þ

If we set the mean to 0.5, with a little rearranging we can solve for α with the following:

α ¼ β ∗ μ
−μþ 1

¼ 3 ∗0:5
−0:5þ 1

¼ 3: ð15:14Þ

Now we have specified a proposal beta distribution with parameters α¼3.000 and β¼ 3;
this distribution is centered over pc. We can draw a random proposal from it. Suppose we
draw a proposed pp of 0.2. So,
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• pc¼0.5
• pp¼ 0.2

Now we can calculate the correction factor, starting with the denominator (you can do this
in any order, but the denominator gives what actually happened, so it may be more logical
to start there):

• For the denominator of the Metropolis–Hastings correction factor, we compute the
probability density of 0.2 from a beta distribution whose α is 3 and whose β is 3 (see
Figure 15.6). The beta probability density function can be used to calculate this
answer, which is 0.768. Here, our proposal distribution is colored black and is cen-
tered on the current value (it happens to look symmetrical but this is often not the
case). The dirt colored dashed lines represents our random draw and its correspond-
ing density.

• For the numerator of the correction factor, we now consider what might have hap-
pened instead of what actually happened. We center a beta distribution so that the mean
of the beta distribution is the proposed value (pp¼0.2) and ask, “What is the probability
density of drawing the current value (pc¼0.5)?” Again, we’ll need to solve for α to center
this new beta distribution, knowing that our tuning parameter β¼3:

μ ¼ α

αþ β
ð15:15Þ

α ¼ β ∗ μ
−μþ 1

¼ 3 ∗0:2
−0:2þ 1

¼ 0:75 ð15:16Þ

• Now we need to compute the probability density of drawing pc (0.5), given a beta
distribution that is centered on the pp (0.2), which is a beta distribution with α¼0.75
and β¼3. The beta probability density function can be used to calculate this answer,
which is 0.537. This is shown by the navy dashed lines in Figure 15.7.

Intuitively, you can see that the probability density of drawing the proposal from a
distribution that is centered on the current value is nowhere near the probability density
of drawing the current value from a distribution that is centered on the proposal.
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Figure 15.6 Proposal beta distribution centered on pc.
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The Metropolis–Hastings correction factor for this single example would be:

gðpc j ppÞ
gðpp j pcÞ

¼ 0:537
0:768

¼ 0:7 ð15:17Þ

Additionally, don’t lose sight that this correction factor is used to calculate
the probability that we accept the proposal:

pmove ¼ min
Pð ppÞgð pc j ppÞ
PðpcÞgð pp j pcÞ

;1

 !
ð15:18Þ

Do you have to center the distribution on the mean?

Answer: You can center it on the mean, mode, or median if you’d like. You just need to be
able to recalculate the parameters of the beta distribution for each step to center it. Alterna-
tively, you canavoid the recentering anddraw fromafixeddistributionwhere you specify the
parameters of the proposal distribution, and these remain constant throughout the MCMC
analysis. This is known as the Independence Metropolis–Hastings Sampler.

Why can’t you just use the normal distribution as the
proposal distribution?

Answer: Sometimes, the parameter that we are trying to estimate is bounded. For instance,
in this problem, we are trying to estimate p, the probability that Shaq can visit the White
House without an invitation, which is bounded between 0 and 1. If we use a normal
distribution for our proposal distribution, we can end up with proposal draws that are
outside of this boundary. Incidentally, we could have run into this issue in Chapter 13,
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Figure 15.7 Proposal beta distribution centered on reverse.

Don’t lose sight that all of this was to compute a correction factor because our proposal
distribution is not symmetrical!
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where we were trying to estimate λ via a Metropolis MCMC but somehow avoided it.
Additionally, sometimes we really understand the distribution from which proposals
should be drawn, and it might not be a symmetric distribution. With the Metropolis–
Hastings algorithm, we can use any proposal distribution we want. The only limiting factor
is that the correction factor must be computed for each MCMC trial, and this will increase
your computing time.

OK, I think I’ve got it. Can we walk through the White House MCMC
analysis using the Metropolis–Hastings algorithm?

Answer: OK, back to Shaq! Remember that our prior distribution for this problem
is a beta distribution with hyperparameters α0¼0.5 and β0¼0.5. Also recall that the
data for this problem consists of one failure out of one attempt (Shaq made an
attempt but failed, so n¼1 trial and y¼0 successes). With a beta prior, and binomial
data (likelihood), we can use the conjugate shortcut to obtain the beta posterior (see
Figure 15.8).

The conjugate posterior distribution is our gold standard. Now let’s estimate the purple
posterior distribution in Figure 15.8 with an MCMC analysis that uses the Metropolis–
Hastings algorithm. But before we get started, let’s remind ourselves that Bayes’ Theorem
is a central part of the MCMC analysis:

posterior∝ likelihood ∗prior ð15:19Þ
Let’s recall the MCMC operations:

1. Start by providing a current value of p. We will call this pc.
2. Calculate the posterior density of observing the data under the hypothesis pc using

Bayes’ Theorem:

Pð pc jdataÞ∝ Pðdata j pcÞ ∗ Pð pcÞ ð15:20Þ
3. Draw a random value from a proposal distribution that is centered on the current p. We

will call this the proposed pp.
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4. Calculate the posterior density of observing the data under pp using Bayes’ Theorem:

Pðpp jdataÞ ∝ Pðdata j ppÞ ∗ PðppÞ ð15:21Þ

5. You now have two competing hypotheses for p from the posterior. The next step is to
throwone away. We will use theMetropolis–Hastings rule to calculate the probability
that you will move from the current hypothesis pc to the proposal pp. It is the smaller of
two values, 1 or the ratio of the two posterior probabilities multiplied by the correction
factor:

pmove ¼ min
Pðpp jdataÞgðpc j ppÞ
Pðpc jdataÞgðpp j pcÞ

;1

 !
ð15:22Þ

6. Draw a random number between 0 and 1 from a uniform distribution. If the random
number is less than the probability of moving, accept pp. If not, stay with pc.

7. Repeat hundreds or thousands of times!

Should we start with a table?

Answer: Good idea. Let’s set up a table that will store the results of our MCMC trials (see
Table 15.1). Remember that we are using the Metropolis–Hastings algorithm, so we have a
few extra steps in our MCMC algorithm due to the correction factor (CF).

In this table, our MCMC trials are shown in column 1. The observed data, n¼ 1 attempt
by Shaq and y¼ 0 successes, are given in columns 2 and 3, respectively. Notice that these are
fixed for all 10 trials. Similarly, α0 and β0 from our prior distribution (columns 4 and 5,
respectively) are fixed for all 10 trials.

What is operation 1?

Answer:We need to start by proposing just one value from the posterior distribution. Any
value will do as long as there is a non-0 density associated with that value. Let’s go with 0.5,

Table 15.1

Data Prior Current Proposed Decision

Trial n y α0 β0 Pc P(pp | data) αc pp P(pp | data) αp Ratio CF k Random Accept

1 1 0 0.5 0.5 — — — — — — — — — — —

2 1 0 0.5 0.5 — — — — — — — — — — —

3 1 0 0.5 0.5 — — — — — — — — — — —

4 1 0 0.5 0.5 — — — — — — — — — — —

5 1 0 0.5 0.5 — — — — — — — — — — —

6 1 0 0.5 0.5 — — — — — — — — — — —

7 1 0 0.5 0.5 — — — — — — — — — — —

8 1 0 0.5 0.5 — — — — — — — — — — —

9 1 0 0.5 0.5 — — — — — — — — — — —

10 1 0 0.5 0.5 — — — — — — — — — — —
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as in our example. This represents our current value, pc, which is the probability that a
famous person like Shaq can visit the White House without an invitation. We can say that
pc¼0.5 is a random value that is drawn from the posterior distribution.

What is operation 2?

Answer: We then calculate the posterior density of observing the data under the
hypothesis that pc¼0.5. The posterior density is proportional to the product of two
terms, the likelihood times the prior density:

posterior∝ likelihood ∗prior ð15:23Þ

Pðpc jdataÞ∝Pðdata j pcÞ ∗ PðpcÞ ð15:24Þ

• For the first term, we ask, “What is the likelihood of observing 0 successes out of 1 trial,
given pc¼ 0.5?” Let’s hope the binomial probability mass function springs to mind!
Remember that this function has two fixed parameters: n and p. The parameter
n¼ the total number of trials (in our case, n¼ 1 attempt to get into the White House, or
1 trial). The parameter p¼ the probability of success (in our case, p¼ pc¼0.5). The
likelihood of observing 1 failure in 1 trial is:

Lðy;n; pÞ ¼ n
y

� �
pyð1−pÞðn−yÞ ð15:25Þ

Lð0;1; 0:5Þ ¼ 1
0

� �
0:50ð1−0:5Þð1−0Þ ¼ 0:5 ð15:26Þ

• For the second term, we ask, “What is the probability density associated with pc¼0.5
from the prior distribution?” Again, we hope the beta probability density function
springs to mind! We can use the beta pdf to ask, “What is the probability density of
drawing a random variable of 0.5, given the parameters of the prior distribution?”
Remember that our prior distribution set α0 and β0 to 0.5. The beta distribution is written
below, where B is the beta function that ensures the curve integrates to 1.0. Here, we plug
in pc for x in the beta pdf:

f ðx; α; βÞ ¼ 1
Bðα; βÞ x

α−1ð1−xÞβ−1 ð15:27Þ

f ð0:5; α ¼ 0:5; β ¼ 0:5Þ ¼ 1
Bð0:5;0:5Þ0:5

0:5−1ð1−0:5Þ0:5−1 ¼ 0:637 ð15:28Þ

• The posterior density associated with our first guess at pc is the product of these two
results:

Pðpc jdataÞ∝ Pðdata j pcÞ ∗ PðpcÞ ð15:29Þ
Pðpc jdataÞ∝ 0:5 ∗ 0:637 ¼ 0:318 ð15:30Þ

Let’s fill these values into our MCMC table for trial 1 (see Table 15.2).
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What is operation 3?

Answer: We then propose a second value for p, drawn at random from a proposal
distribution. Let’s hope this won’t be too confusing, but we’ll use a second beta distribution
for our proposal distribution, which is totally distinct from our prior distribution,
which also happens to be a beta distribution. The proposal distribution will set the
tuning parameter β53, as in our previous narrative.

• We need to find α for the proposal distribution so that the proposal beta distribution has
a mean of 0.5, our current pc:

μ ¼ α

αþ β
ð15:31Þ

α ¼ β ∗ μ
−μþ 1

¼ 3 ∗0:5
−0:5þ 1

¼ 3:000 ð15:32Þ

• Now that we have a beta distribution that is centered over our current value, we can draw
a random value from it. That is, we will draw a random value of p from a proposal beta
distribution where α¼3.000 and β¼3. Suppose we draw a proposed p of 0.2, as in
our narrative.

Let’s now update our MCMC table (see Table 15.3).

What is operation 4?

Answer: We then calculate the posterior density under the hypotheses that p¼ 0.2.
This result is a product of two terms, the likelihood times the prior density:

Pðpp jdataÞ∝Pðdata j ppÞ ∗PðppÞ ð15:33Þ

• For the first term, we ask, “What is the likelihood of observing 0 successes out of 1 trial
given p¼ 0.2?” Again, the binomial probability mass function is used:

Lðy;n; pÞ ¼ n
y

� �
pyð1− pÞðn−yÞ ð15:34Þ

Table 15.3

Data Prior Current Proposed Decision

Trial n y α0 β0 pc P(pc | data) αc pp P(pp | data) αp Ratio CF k Random Accept

1 1 0 0.5 0.5 0.500 0.318 3.000 0.200 — — — — — — —

Table 15.2

Data Prior Current Proposed Decision

Trial n y α0 β0 pc P(pc | data) αc pp P(pp | data) αp Ratio CF k Random Accept

1 1 0 0.5 0.5 0.500 0.318 — — — — — — — — —
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Lð0;1;0:2Þ ¼ 1
0

� �
0:20ð1−0:2Þð1−0Þ ¼ 0:8 ð15:35Þ

• For the second term, we ask, “What is the probability density associated with pp¼0.2
from the prior distribution?” Again, the beta probability density function is used:

f ðx; α; βÞ ¼ 1
Bðα; βÞ x

α−1ð1− xÞβ−1 ð15:36Þ

f ð0:2; α ¼ 0:5; β ¼ 0:5Þ ¼ 1
Bð0:5; 0:5Þ0:2

0:5−1ð1−0:2Þ0:5−1 ¼ 0:796 ð15:37Þ

• The posterior density associated with our second hypothesis for p (pp) is the product of
these two results:

Pðpp jdataÞ∝ Pðdata j ppÞ ∗ PðppÞ ð15:38Þ

Pðpp jdataÞ∝ 0:8 ∗ 0:796 ¼ 0:637 ð15:39Þ

Let’s now update our MCMC table (see Table 15.4).

What is operation 5?

Answer:Now you have two proposed p values from the posterior distribution (pc¼0.5 and
pp¼0.2). You also have the posterior density associated with each (0.318 and 0.637). Note
that the posteriors are not normalized (they are just the likelihood times the prior density.).

In this step we will throw one away. Which one will you keep for your next MCMC
trial? Will you stay with your original value (pc¼ 0.5), or will you move to the proposed
value (pp¼0.2)? As you’ve guessed, we’ll use theMetropolis–Hastings algorithm to compute
the probability of moving to the proposed value (i.e., the probability of accepting the
proposal).

• Calculate the probability of accepting amove to the proposed pp, which in our example is
0.2, as the smaller of two values: 1 or the ratio of the two posterior probabilities multi-
plied by the correction factor. Here, to avoid the use of yet another letter p, we will let k be
the probability of moving (accepting) to the proposal:

k ¼ min
Pðpp jdataÞ ∗ gðpc j ppÞ
Pðpc jdataÞ ∗ gðpp j pcÞ

;1

 !
ð15:40Þ

k ¼ min
0:637 ∗ gðpc j ppÞ
0:318 ∗ gðpp j pcÞ

;1

 !
ð15:41Þ

Table 15.4

Data Prior Current Proposed Decision

Trial n y α0 β0 pc P(pc | data) αc pp P(pp | data) αp Ratio CF k Random Accept

1 1 0 0.5 0.5 0.500 0.318 3.000 0.200 0.637 — — — — — —
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• The ratio of the two posterior densities is 0.637/0.318¼2.003. The only thing left to do is
to calculate the correction factor. Remember, this is the probability density of pc¼0.5
if the proposal distribution was centered on pp¼0.2 divided by the probability density of
pp¼0.2 if the proposal distribution is centered on pc¼0.5. To calculate the correction
factor, we need the α and β parameters for each case, and in both cases our tuning
parameter β¼3.

• For the distribution centered on pc:

μ ¼ α

αþ β
ð15:42Þ

α ¼ β ∗ μ
−μþ 1

¼ 3 ∗0:5
−0:5þ 1

¼ 3 ð15:43Þ

• For the distribution centered on pp:

μ ¼ α

αþ β
ð15:44Þ

α ¼ β ∗ μ
−μþ 1

¼ 3 ∗0:2
−0:2þ 1

¼ 0:75 ð15:45Þ

• Now we can use the beta probability density function to get the density in each case (as
we did earlier):

numerator ¼ pð0:5 j α ¼ 0:75; β ¼ 3Þ ¼ 0:537 ð15:46Þ
denominator ¼ pð0:2 j α ¼ 3; β ¼ 3Þ ¼ 0:768 ð15:47Þ

• Now that we have the correction factor numerator and denominator, we can compute
the correction factor as 0.537/0.768¼0.699. Our probability of accepting the proposal is
calculated as:

k ¼ min
0:637 ∗0:537
0:318 ∗0:768

; 1
� �

ð15:48Þ

k ¼ min
0:342069
0:24576

; 1
� �

ð15:49Þ

k ¼ minð1:39;1Þ ð15:50Þ

k ¼ 1 ð15:51Þ

Let’s now update our MCMC table before we lose track of things (see Table 15.5).

Table 15.5

Data Prior Current Proposed Decision

Trial n y α0 β0 pc P(pc | data) αc pp P(pp | data) αp Ratio CF k Random Accept

1 1 0 0.5 0.5 0.500 0.318 3.000 0.200 0.637 0.750 2.003 0.699 1.000 — —
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What is operation 6?

Answer: Draw a random number between 0 and 1. If the random number is less than the
probability of moving, accept pc. If not, stay with pc. Let’s say our randomly drawn value is
0.372 (see Table 15.6). This value is less than the probability of moving, so we accept our
proposed value of pp, which is 0.2. This will then serve as pc for trial 2. Note that since k¼1,
you already know that you will accept pp, so the draw is optional!

What is operation 7?

Answer: Repeat hundreds or thousands of times!

What is operation 8?

Answer: Summarize the pc’s in the form of a distribution and its corresponding summary
statistics.

Can we see an example of operations 6 and 7, please?

Answer: You bet.
Let’s carry out ten trials, keeping in mind that we are drawing proposals from a beta

distribution that has a tuning parameter β¼3.0 (see Table 15.7).

Table 15.7

Data Prior Current Proposed Decision

Trial n y α0 β0 Pc P(pp | data) αc pp P(pp | data) αp Ratio CF k Random Accept

1 1 0 0.5 0.5 0.500 0.318 3.000 0.200 0.637 0.750 2.003 0.699 1.000 0.372 0.200

2 1 0 0.5 0.5 0.200 0.637 0.750 0.006 4.097 0.018 6.432 0.009 0.058 0.572 0.200

3 1 0 0.5 0.5 0.200 0.637 0.750 0.070 1.161 0.226 1.823 0.226 0.412 0.216 0.070

4 1 0 0.5 0.5 0.070 1.161 0.226 0.089 1.018 0.293 0.877 1.479 1.000 0.364 0.089

5 1 0 0.5 0.5 0.089 1.018 0.293 0.023 2.074 0.071 2.037 0.104 0.212 0.098 0.023

6 1 0 0.5 0.5 0.023 2.074 0.071 0.001 10.061 0.003 4.851 0.003 0.015 0.175 0.023

7 1 0 0.5 0.5 0.023 2.074 0.071 0.124 0.846 0.425 0.408 14.602 1.000 0.507 0.124

8 1 0 0.5 0.5 0.124 0.846 0.425 0.001 10.061 0.003 2.003 0.699 1.000 0.372 0.124

9 1 0 0.5 0.5 0.124 0.846 0.425 0.032 1.751 0.099 6.432 0.009 0.058 0.572 0.032

10 1 0 0.5 0.5 0.032 1.751 0.099 0.044 1.484 0.138 1.823 0.226 0.412 0.216 0.044

Table 15.6

Data Prior Current Proposed Decision

Trial n y α0 β0 pc P(pc | data) αc pp P(pp | data) αp Ratio CF k Random Accept

1 1 0 0.5 0.5 0.500 0.318 3.000 0.200 0.637 0.750 2.003 0.699 1.000 0.372 0.200
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In this table, our MCMC trials are shown in column 1. The observed data, n¼ 1 attempt
by Shaq and y¼ 0 successes, are given in columns 2 and 3. Notice that these are fixed for all
10 trials. Similarly, α0 and β0 from our prior distribution (columns 4 and 5) are fixed for
all 10 trials.
Now let’s focus on row 1, or trial 1, which is the trial we tediously walked through earlier.

It is easy to get lost in the weeds, so let’s work our way through it carefully. Take a look at the
column group labeled Current:

• Our current value of p (column Pc) is 0.5.
• The posterior probability density associated with pc¼0.5 is 0.318, stored in column 7.

This column is shaded purple to remind us that this is the posterior density from Bayes’
Theorem.

• Wenowneed to center the beta distribution on pc. Remember that tuning parameter β for
the proposal distribution was fixed at 3. We then calculate what α must be so that the
beta distribution is centered on our 0.5. This result, 3.00, is stored in column 8 (αc).

Let’s move on to the column group labeled Proposed:

• We then drew a proposed value pp¼0.2 (column Pp) from the beta distribution centered
on pc. This distribution has parameters α¼3.00 and β¼3.

• The posterior probability density associated with pp¼0.2 is 0.637, stored in column 10.
• To prepare for the correction factor calculations, we need the α value for a beta distribu-

tion centered pp, which was 0.750. This is stored in column αp.

Now take a look at the column group labeled Decision:

• The Ratio of the two posteriors is computed as posterior density of pp divided by the
posterior density of pc, which is 2.003.

• The correction factor, CF, is the probability density of the current value of p from a beta
distribution centered on the proposal divided by the probability density of the proposed
value of p from a beta distribution centered on the current. The result is 0.699.

• The probability of moving to pc (column k) is calculated as minimum of 1 and the ratio
times the correction factor. In this example, the result is 1.

• We then draw a random number between 0 and 1. Our random number is 0.372 (column
Random).

• We then keep the p value according to our random number. If the random number is less
than the probability of moving, we accept pc; otherwise, we accept pc. Our random
number is less than 1, so we accept pp¼0.2 (column Accept). This now becomes pc in
trial 2, and you can trace it in the table. Whew!

Can anything go wrong with this approach?

Answer:Well, yes, there are a few places where things can go awry in anyMCMC analysis.
The same issues we dealt with in Chapter 14 apply here as well.

Through this process, we “pit” two posterior densities against each other and keep only
the greater of the two, according to a rule. The rule we have used in this example is the
Metropolis–Hastings rule. By repeating this process over and over again, we eventually
end up converging on a reasonable estimate of the posterior distribution.
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Can we review the terms associated with this process?

Answer: Yes. A lot of jump-starting your Bayesian education involves learning a new
vocabulary. Let’s review the terms first introduced in Chapter 10:

• Starting point. The starting point is the first value you designate in trial 1. We used a
starting p value of 0.5.

• Monte Carlo. Monte Carlo in this case refers to the Monte Carlo Casino, located in the
Principality of Monaco. In statistics, theMonte Carlo methods “are statistical methods of
understanding complex physical or mathematical systems by using randomly generated
numbers as input into those systems to generate a range of solutions . . . The Monte Carlo
method is used in a wide range of subjects, including mathematics, physics, biology, engin-
eering, andfinance, and inproblems inwhichdeterminingananalytic solutionwouldbe too
time-consuming.” In this context, Monte Carlo refers to the notion that we use random
sampling to generate a proposed parameter, and we also use random sampling to determine
whether or not we accept the proposed value or retain the current parameter value.

• Proposal distribution. The proposal distribution is the distribution that you use to
draw the next, proposed value. In our example, we used a beta distribution that is
centered on pc.

• Markov chain. A Markov chain is named after the Russian mathematician, Andrey
Markov. A Markov chain is a sequence of random variables in which each variable
depends only on its immediate predecessor, so the sequence moves at random, each
move being determined by its previous position (Upton and Cook, 2014). TheMarkovian
process pertains to the value of the accepted p. The accepted p in trial t will become pc in
trial t + 1 (see Table 15.7).

• MCMC trials. The number of MCMC trials is the number of trials you decide to run. In
our example, we ran 10 trials.

Now, let’s graph our accepted values as a line graph so that we can see how our values
change with each iteration (see Figure 15.9).

This graph shows the MCMC chain across 10 trials. This graph is called a traceplot.
Here, trial number is along the x-axis, and we plot pc (the probability that a famous person
canmake it into theWhite House without an invitation). See if you canmatch these results

2 4 6 8 10

Trial

1.0

0.8

0.6

0.4

0.2

0.0

Cu
rr

en
t p

0.500

0.200 0.200

0.070 0.089
0.023 0.023

0.123 0.124

0.032

Figure 15.9
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with those in our table of 10 trials. Horizontal stretches in this plot are trials where the
proposal was not accepted. You can see that we have a 100% acceptance rate for these
10 trials, which may suggest that our tuning parameter, β¼3.00, may need adjusting. This
topic was discussed in Chapter 13 as well.

Can we see the posterior distribution after multiple trials?

Answer: Let’s rerun our experiment, but this time let’s run 10,000 trials to create our
posterior distribution. With 10,000 trials, we can “bin” our results in tight units (say, 0.01)
and then tally the number of times pc falls into each bin. A frequency histogram of these
results could be shown. But, instead of plotting frequency, let’s plot probability density,
which is the relative frequency (frequency of a bin divided by total trials) divided by the bin
width (see Figure 15.10).

How do we summarize the posterior distribution?

Answer: With simple summary statistics! We have 10,000 datapoints now, which consist
of our chain of accepted hypotheses for p. Now it is a matter of just computing some simple
statistics:

• Mean: the average value of p
• Variance: the variance of p
• Standard deviation: the standard deviation of p
• Minimum: the smallest value of p
• Maximum: the largest value of p

Here, we’ll make our calculations based on the full set of 10,000 trials (see Table 15.8).
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Figure 15.10 Posterior probability distribution.

Never forget that this distribution is estimated via a set of rules to be followed (in this
case, the Metropolis–Hastings algorithm) and that random draws are involved. If you
repeat this process with new random numbers, you’ll almost certainly end up with a
different distribution. However, if your number of trials is large, the differences should
be negligible.
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We can also report the 95% Bayesian credible interval for p by providing the 0.025 and
0.975 quantiles (see Table 15.9).

Here, with the prior distribution we selected and data consisting of 1 failed attempt at
entering the White House without an invitation, our MCMC results suggest that:

0:001< p < 0:807 ð15:52Þ
That’s quite a range and suggests quite a bit of uncertainty for future celebrities. That’s what
you get with a sample size of 1!

But shouldn’t we express the MCMC results as a beta distribution?

Answer: How right you are! Our prior is a beta distribution, and it makes sense that
we’d like to express the posterior distribution as a beta distribution as well. After all, we’re
trying to replicate the conjugate solution with an MCMC approach.

The method by which we convert our MCMC results to the beta distribution is called
moment matching. We touched on this in previous chapters. Let’s quickly recall some
general information about the beta distribution. The mean of the beta distribution can be
calculated as:

μ ¼ α

αþ β
ð15:53Þ

The variance of the beta distribution can be calculated as:

σ2 ¼ αβ

ðαþ βÞ2ðαþ βþ 1Þ
ð15:54Þ

This is great, but our MCMC analysis provides us with the reverse: we have the mean and
variance of the p’s from our MCMC trials, which are μ¼0.18 and σ2¼0.057, respectively.
Can we use these values to obtain the corresponding α and β parameters for the beta

Table 15.8

Mean Variance Standard Deviation Minimum Maximum

0.18 0.057 0.238 0.001 0.986

Table 15.9

Quantile p

0.010 0.001
0.025 0.001
0.050 0.001
0.250 0.001
0.500 0.058
0.750 0.290
0.950 0.711
0.975 0.807
0.990 0.880
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distribution? We can by solving these two equations with two unknowns, α and β. The
solution is:

α ¼ −
μðσ2 þ μ2 − μÞ

σ2
ð15:55Þ

α ¼ −
0:18ð0:057þ 0:182 −0:18Þ

0:057
¼ 0:0163

0:057
¼ 0:2861 ð15:56Þ

β ¼ ðσ2 þ μ2 − μÞðμ−1Þ
σ2

ð15:57Þ

β ¼ ð0:057þ 0:182 −0:18Þð0:18−1Þ
0:057

¼ 0:074292
0:057

¼ 1:303 ð15:58Þ

Figure 15.11 shows a graph of this distribution (from our MCMC analysis), along with our
original prior in blue, the posterior from the conjugate solution in solid purple (the one we
are trying to match), and the moment-matching result from the MCMC analysis in dashed
purple.

Not bad! As we mentioned, we could probably do a better job with a bit of tuning, in
addition to thinning and a healthy burn-in. But, let’s keep the big picture in mind here! We
can summarize this chapter as follows:

• We are trying to estimate the probability that a famous person (like Shaq) can visit the
White House without an invitation.

• The hypotheses range from 0 to 1, and there are an infinite number of them.
• We used the beta distribution to set our prior distribution (blue), which gives our relative

a priori probability for each alternative hypothesis between 0 and 1.
• We collected data: Shaq tries to visit the White House without an invitation and fails.
• We analytically computed the posterior probability distribution by using the conju-

gate method (solid purple).
• We then estimated the posterior probability distribution using a Markov Chain Monte

Carlo simulation that incorporates the Metropolis–Hastings algorithm (bars). This
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Figure 15.11 Prior and posterior probability distributions.
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approach allows us to estimate a Bayesian posterior distribution and avoid the messy
integration required in the denominator of Bayes’ Theorem.

• We used moment matching to convert our MCMC results into a beta distribution
(dashed purple).

Where can I find more information on this algorithm?

Answer: The original citation is:

The Oxford Dictionary of Statistics (Upton and Cook, 2014) provides this background:
“Hastings was a student at U. Toronto where his Ph.D. (1962) was supervised by Geoffrey
Watson. After two years at U. Canterbury in New Zealand, and two at Bell Labs, he returned
in 1966 to U. Toronto where he wrote the paper (in Biometrika) that placed an algorithm
due to Metropolis in a statistical context.”

Are there other algorithms we can use?

Answer: There are many others! We’ve touched on two so far but you may learn about
other approaches in other texts. In our next chapter, we will use the Gibbs sampling
algorithm. As we’ll see, Gibbs sampling is another special case of theMetropolis–Hastings
algorithm in which the proposal is always accepted.

W. K. Hastings. “Monte Carlo sampling methods using Markov chains and their appli-
cations.” Biometrika 57.1 (1970): 97–109. doi:10.1093/biomet/57.1.97. JSTOR 2334940.
Zbl 0219.65008.
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CHAPTER 16

The Maple Syrup Problem
Revisited: MCMC with Gibbs
Sampling

As you’ve seen, a major use of Bayesian inference involves estimating parameters. You
might recall from previous chapters the generic version of Bayes’ Theorem for one con-
tinuous parameter:

Pðθ jdataÞ ¼ Pðdata j θÞ ∗PðθÞð
Pðdata j θÞ ∗ PðθÞdθ

ð16:1Þ

This is the generic version of Bayes’ Theorem, when the posterior distribution for a single
parameter, given the observed data, is represented by a pdf. This is designated P(θ | data),
where P is probability density. This is the left side of the equation. On the right side of
the equation, the numerator multiplies the prior probability density of θ, which is written
P(θ), by the likelihood of observing the data under a given hypothesis for θ, which is written
P(data | θ). In the denominator, we see the same terms, but this time we also see a few more
symbols. The symbol

Ð
means “integrate,”which roughly means “sum up all the pieces” for

each tiny change in θ, which is written dθ. In other words, the denominator accounts for
the prior density times the likelihood for all possible hypotheses for theta and sums them.
Do you remember the Maple Syrup Problem in Chapter 12? In that chapter, we assumed

that the Federation of Quebec Maple Syrup Producers was interested in annexing Vermont’s
syrup production. We sought to estimate the mean, μ, and precision, τ, for annual maple
syrup production in the great state of Vermont. These are the two parameters of a normal
distribution. Both of the parameters are continuous in nature. With two continuous param-
eters, Bayes’ Theorem looks like this, where each hypothesis for μ and τ is considered:

Pðμ; τ jdataÞ ¼ Pðdata j μ; τÞ ∗Pðμ; τÞð ð
Pðdata j μ; τÞ ∗Pðμ; τÞdμdτ

ð16:2Þ

For any given prior hypothesis for μ and τ, Bayes’ Theorem will return the posterior joint
density of μ and τ by computing the likelihood of observing the data under the joint
hypothesis μ and τ, multiplied by the prior density of μ and τ. We need to do this for an
infinite number of joint hypotheses.
What might the prior distribution of the parameters look like? If we gave the Federation a

zillion grains of sand, where each grain represents a joint hypothesis for μ and τ, their prior
distribution for the parameters may look something like the graph shown in Figure 16.1.

Bayesian Statistics for Beginners: A Step-by-Step Approach. Therese M. Donovan and Ruth M. Mickey,
Oxford University Press (2019). © Ruth M. Mickey 2019.
DOI: 10.1093/oso/9780198841296.001.0001



This distribution can take onmany shapes, but the key thing to keep inmind is that it is a
surface. You might recall that, with one parameter, we were concerned with the area
under the curve. Here, with two parameters, we are concerned with the volume under the
surface. For any given parameter combination, the corresponding height gives us the
probability density, stressing the fact that we are dealing with a bivariate distribution
in which both parameters are continuous. With the collection of new data, Bayes’ Theorem
could be used to update the shape of our sandpile.

In Chapter 12, we introduced a conjugate shortcut that will allow us to generate a posterior
distribution that eliminates the need for integration. The approach was to simplify
the problem by focusing on only one of the parameters and assuming the
second parameter is known. For a normal-normal conjugate solution, we
assumed that τ was known and so focused on the unknown parameter, μ. We
used a normal distribution as our prior distribution for the unknownmean, μ,
and then collected data and updated the posterior distribution for the un-
known mean, μ, which was also normally distributed. However, in this pro-
cess, we assumed that τ was known; that is, we chose a level for τ (such as the
green value or red value for τ in Figure 16.1).

If you recall, the graphical diagram for this problem looked like the one shown in
Figure 16.2.
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Figure 16.1

The function that sets the prior probabilities must integrate to 1. That is, the volume
under the surface must integrate to 1.0. This can be a tough nut to crack!

yi

μ ∼ N(μ0, τ0)

N(μ, τ = 0.0625)

Figure 16.2
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Here, the observed data, yi, are at the bottom of the diagram. We assume the data arise
from a normal distribution with parameters μ and τ ¼ 0.0625. The parameter μ is unknown
and is the focus of estimation. The prior distribution for the unknown parameter μ is a
normal distribution with hyperparameters μ0 and τ0.

Did you feel a sense of dissatisfaction with the conjugate approach? Seriously, how often
do you KNOW one of the parameters (such as τ) of the normal distribution?

With two unknown parameters, the diagram is more realistically depicted as shown in
Figure 16.3.

Here, the observed data, yi, are at the bottom of the diagram. We assume the data arise
from a normal distribution with parameters μ and τ, both of which are unknown and must
be estimated. The prior distribution for the unknown parameter, μ, is a normal distribution
with hyperparameters μ0 and τ0. The prior distribution for the unknown parameter, τ, is a
gamma distribution with hyperparameters α0 and β0.

Can we make headway on this problem?

Answer: Fear not! We can! There is another approach, one that is so creative and versatile
that it can be used to solve almost any kind of parameter estimation problem. It involves

μ ∼ N(μ0, τ0)

N(μ, τ)

yi

τ ∼ gamma(α0, β0)

Figure 16.3
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building the posterior distribution from scratch using a Markov Chain Monte Carlo simu-
lation, or MCMC for short. The MCMC approach we will introduce in this chapter uses
Gibbs sampling, which makes use of the conjugate shortcuts.

By the end of this chapter, you will have a good, general understanding of the following:

• Monte Carlo
• Markov chain
• Gibbs sampling

What is Gibbs sampling?

Answer: From the SAS Institute: “The Gibbs sampler . . . is a special case of the Metropolis
sampler in which the proposal distributions exactly match the posterior conditional distri-
butions and proposals are accepted 100% of the time.”

So, Gibbs sampling is another MCMC algorithm, just like the Metropolis algorithm we
used in the Shark Attack Problem (Chapter 13) and the Metropolis–Hastings algorithm
we used in the White House Problem (Chapter 15). Remember that an algorithm is a step-
by-step procedure for solving a problem or accomplishing some end, especially by a
computer.

What is so special about Gibbs sampling?

Answer: A key feature is that Gibbs sampling allows one to estimate multiple param-
eters. In this method, in each trial, you update the prior distribution to the posterior
distribution for a given parameter, conditional on the values of the remaining param-
eters. You then draw a proposal from this trial’s posterior distribution for the target
parameter and accept it. Then, you focus on the next parameter of interest, repeating the
process for each unknown parameter in turn for each trial.

The algorithm generates a sample from the posterior distribution one sand grain at a
time, conditional on the current values of the other variables. After many trials, the results
provide an approximation of the joint distribution as well as the marginal distributions for
each parameter separately.

What would this look like visually?

Answer: A figure displayed in Wikipedia beautifully illustrates the idea (see Figure 16.4).
In Figure 16.4, there are two variables of interest (X and Y). The individual dots on the

grid represent a single hypothesis for a joint combination of X and Y. We can create a joint
density distribution similar to Figure 16.1 from these dots by counting the number of dots
in each grid cell, where the height of the distribution at each cell is proportional to the total
dots in each grid cell. This is a joint distribution.

The marginal distributions for each variable are also shown in Figure 16.4 (blue for X, and
red for Y). The heights of these distributions can be estimated by counting the dots in each
row while ignoring the columns (for, say, X) or by counting the dots in each column while
ignoring the rows (for Y). We’ll be building a distribution similar to Figure 16.4, but it won’t
be a bivariate normal distribution.Generally speaking, though, ifwe let μ stand in forX, and τ

stand in for Y, our goal for this chapter will be to estimate the posterior distributions for μ and
τ, given the data. We can estimate both marginal distributions and the joint distribution.
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So we’ll be collecting dots or sand grains across many trials?

Answer: In a manner of speaking, yes. Each trial will generate a dot. The informal
pseudocode for the algorithm looks something like this:

1. Define the unknownparameters of interest. For theMaple Syrup Problem, they are μ and τ.
2. Specify the prior distribution for all parameters (e.g., Figure 16.3).
3. Choose initial values for the unknown parameters. For example, let’s initialize τ with

some reasonable value (e.g., 40.123).
4. Begin trial 1. Our goal now is to obtain a sample from the posterior distribution for μ,

conditional on the previous trial’s value for τ. Because we assume that τ is known
(fixed) at some level (e.g., 40.123), we can use a conjugate solution to update the prior
distribution for μ to the posterior distribution for μ for trial 1. We will draw a proposal
from this distribution, designated pμ, and accept it. This is our value for μ for trial 1.

5. Still in trial 1, we now focus our attention on the unknown parameter, τ. Our goal now is to
obtain a sample from the posterior distribution for τ, conditional on this trial’s value for
pμ. Because we assume that μ is known (fixed), we can use a conjugate solution to update
the prior distribution for τ to the posterior distribution for τ for trial 1. We will draw a
proposal from this distribution, designated pτ and accept it. This is our value for τ for trial 1.

6. Repeat for numerous trials, each time accepting the proposal.

OK! Can we start now?

Let’s start by reviewing the steps in Bayesian inference:

1. Identify your hypotheses.
2. Express your belief that each hypothesis is true in terms of prior probabilities.
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Figure 16.4 Many samples from a bivariate normal
distribution. The marginal distributions are shown in red and
blue. The marginal distribution of X is also approximated by
creating a histogram of the X coordinates without
consideration of the Y coordinates.
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3. Gather the data.
4. Determine the likelihood of the observed data under each hypothesis.
5. Use Bayes’ Theorem to compute the posterior distribution for the unknown parameters.

What is step 1?

Answer: In this step, we identify the alternative hypotheses for the mean, μ, and alterna-
tive hypotheses for the precision, τ.

And step 2?

Answer:We establish prior distributions for each of the unknown parameters. Here, as in
Chapter 12, we will assume that the prior distributions are set based on the expert opinion
of federation members.

• The prior distribution for the unknown parameter, μ, will be a normal distribution.
Suppose the federation has specified the hyperparameters μ0 ¼ 12, and τ0 ¼
0.0625 (i.e., σ0 ¼ 4).

• The prior distribution for the unknown parameter, τ, will be a gamma distribution.
We learned about this distribution when estimating the rate of shark attacks.
A quick reminder may be helpful. From Wikipedia (accessed August 19, 2017): “in
probability theory and statistics, the gamma distribution is a two-parameter family
of continuous probability distributions. There are three parameterizations in
common use:
• With a shape parameter k and a scale parameter θ.
• With a shape parameter α ¼ k and an inverse scale parameter β ¼ 1

θ
, called a rate

parameter.
• With a shape parameter k and a mean parameter μ ¼ k

β
.”

• We would like to add the following advice: Beware!! Different textbooks and statistical
programs refer to β in different ways. For instance, some refer to the rate parameter as β,
while others refer to the scale parameter as β. Rate and scale are reciprocals of each other,
so rate¼ 1/scale or scale¼ 1/rate. You will need to be fully aware of how your computing
program of choice refers to these parameters.

• Wikipedia goes on to explain the parameterization, with α (shape) and β (rate) being
more common in Bayesian statistics. We need a gamma distribution that will reflect
our beliefs and uncertainty for the unknown parameter, τ. We will assume that
the Federation has identified a gamma distribution with a shape parameter
α0 5 25 and the rate parameter β0 5 0.5. Remember that these are hyperpara-
meters: in this case, they are parameters that describe the prior distribution
for a parameter of interest. We will add subscripts to the hyperparameters
to help them stand out.

Now let’s graph the prior distributions for each of the unknown parameters of the normal
distribution (see Figure 16.5).

Here, we have color-coded the prior distribution for μ in blue, and τ in red, and we
will use this color convention to help keep track of the two parameters throughout
this chapter. Take a moment to firmly fix in your mind the two unknown parameters
and their corresponding prior distributions that are identified by hyperparameters.
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Is it time for step 3?

Answer: Yes. Step 3 is to gather data.We have observed 1 year of syrup production
in Vermont, wherein 10.2 million gallons of the delicious sticky stuff was
produced.

And steps 4 and 5?

Answer: Steps 4 and 5 involve computing the likelihood of observing the data under each
joint hypothesis for μ and τ using Bayes’ Theorem. But, as you know, this is fairly intractable.

Instead, we’ll use MCMC with Gibbs sampling to estimate the marginal and joint
distributions of the unknown parameters, μ and τ.

How do we begin?

Answer: As in Chapters 13, 14, and 15, there will be a series of operations that will guide us.

1. First, let’s set up our MCMC table that will store our calculations (Table 16.1). Here, we’ll
do a short MCMC that features five trials.
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Hyperparameters:

Figure 16.5 Annual maple syrup production, showing hypotheses for μ and τ.

Table 16.1

Trial Data Proposal Distribution for μ Proposal Distribution for τ

Hyperparameters Hyperparameters

[t] Total Gallons n μ[t] τ[t] pμ[t] α[t] β[t] pτ[t]

0 10.2 1 12 0.0625 25 0.5

1 10.2 1
2 10.2 1
3 10.2 1
4 10.2 1
5 10.2 1
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• Notice that the trials are listed in column 1, and that the observed data (10.2 total
gallons ofmaple syrup with n¼ 1 year of data) will go down columns 2 and 3. The data
are fixed for all trials.

• The hyperparameters associated with the unknown parameter, μ, are given in columns
4 and5. These are parameters that describe either the prior distribution for μ (fixed for all
trials) or the posterior distribution for μ in any given trial. The columns labeled μ[t] and
τ[t] will store trial-specific values, where the subscript, [t], designates the trial. For this
exercise, the hyperparameters for the prior distribution (i.e., μ0, τ0) will be
stored in trial 0. We will use these values repeatedly. For the remaining trials,
μ[t] and τ[t] are theupdated trial-specifichyperparameters for theposterior distributionof
μ. A randomly drawnproposal from the trial’s posterior distributionwill be stored in the
blue-shaded column 6 labeled pμ[t], where p stands for proposal.

• The hyperparameters associated with the unknown parameter, τ, are given in columns
7 and 8. The columns labeled α[t] and β[t] will store trial-specific values, where [t]
designates the trial. Again, for this exercise, the hyperparameters for the
prior distribution (i.e., α0, β0) will be stored in trial 0. We will use these
values repeatedly to calculate the updated parameters of the posterior
distribution for each and every trial. For the remaining trials, α[t] and β[t] are the
updated trial-specific parameters for the posterior distribution. A randomly drawn
proposal from the trial’s posterior distribution will be stored in the red-shaded column
labeled pτ[t], where p stands for proposal.

• Take amoment now to locate the hyperparameters of the prior distribution for each of
our two unknown parameters and match them with Figure 16.5.

2. We then set a starting value for one of the unknown parameters. Either one will do.
Let’s initialize τ with a value of 40.123. This “primes” our MCMC chain and is
entered for trial 0 (see Table 16.2).

3. Now we are ready for trial 1, focusing on the parameters of the distribution of the
unknown parameter, μ. More specifically, we are interested in obtaining pμ | pτ for
this trial.
• We now assume that τ is known to be 40.123. This lets us calculate the hyperpara-

meters for the posterior distribution of the unknown parameter, μ, using one of the
conjugate shortcuts we’ve come to know and love (below in red). Pay attention to our
subscripting please; parameters that are subscripted with a 0 are hyperparameters of
the prior distribution (see Figure 16.6).

Table 16.2

Trial Data Proposal Distribution for μ Proposal Distribution for τ

Hyperparameters Hyperparameters

[t] Total Gallons n μ[t] τ[t] pμ[t] α[t] β[t] pτ[t]

0 10.2 1 12 0.0625 25 0.5 40.123

1 10.2 1
2 10.2 1
3 10.2 1
4 10.2 1
5 10.2 1
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• The posterior distribution of the unknown parameter, μ, now has trial 1
hyperparameters:

μposterior½1� ¼
ðτ0μ0 þ τ

Xn

i¼1
xiÞ

ðτ0 þ n ∗ τÞ ¼ 0:0625 ∗12þ 40:123 ∗10:2
0:0625þ 1 ∗40:123

¼ 410:0346
40:1855

¼ 10:2028

ð16:3Þ
and

τposterior½1� ¼ τ0 þ n ∗ τ ¼ 0:0625þ 1 ∗40:123 ¼ 40:1855 ð16:4Þ
• Let’s now draw a random proposal from our updated distribution for μ, that is, the

normal distribution with parameters μ1 ¼ 10.2028 and τ1 ¼ 40.1855. Let’s call this
proposal pμ[1]. Let’s say this proposal’s value is 10.5678. Again,we accept this
proposal.

• Now let’s fill these values into our table as the trial 1 posterior parameters for the
unknown parameter, μ, and a single proposal from this new distribution (see
Table 16.3).

4. Now we are ready to focus on the unknown parameter, τ for trial 1. Specifically, we are
interested in obtaining pτ for trial 1.
• We now assume that μ is known to be 10.5678. This lets us update the parameters

for the posterior distribution of the unknown parameter, τ, using the conjugate
shortcut (below in red; also see Figure 16.7). Remember that α0 and β0 are prior
hyperparameters for the gamma distribution. We added subscripting to make this
more clear.

Unknown parameter:

Prior distribution:

μ (τ is known)

Normal

Prior hyperparameters:

μ0, τ0

Likelihood: Normal (τ is known)

Posterior distribution: Normal

Posterior hyperparameters:

τ0 + nτ

τ0μ0 + τ ∑ n
i = 1

τ = τ0 + nτ

μ =
xi

Figure 16.6
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• The unknown parameter, τ, now has trial 1 posterior hyperparameters:

αposterior½1� ¼ α0 þ n
2
¼ 25þ 1

2
¼ 25:5 ð16:5Þ

and

βposterior½1� ¼ β0 þ

Xn
i¼1

ðxi−μÞ2

2
¼ 0:5þ ð10:2−10:5678Þ2

2
¼ 0:5þ 0:1352768

2
¼ 0:5676 ð16:6Þ

• Let’s now draw a random proposal from this trial’s posterior distribution, and call it
pτ[1]. Let’s say this proposal’s value is 45.678. We accept it.

• And now let’s fill these values into our table as the trial 1 hyperparameters for the
distribution of the unknown parameter, τ, and a single proposal from this new
distribution (see Table 16.4).

Table 16.3

Trial Data Proposal Distribution for μ Proposal Distribution for τ

Hyperparameters Hyperparameters

[t] Total Gallons n μ[t] τ[t] pμ[t] α[t] β[t] pτ[t]

0 10.2 1 12 0.0625 25 0.5 40.123

1 10.2 1 10.2028 40.1855 10.5678
2 10.2 1
3 10.2 1
4 10.2 1
5 10.2 1

Likelihood: Normal (μ is known)

Prior hyperparameters

Prior hyperparameters

α0, β0

Posterior distribution: Gamma

α = α0 +
n
2

β = β0 +
∑n

i  = 1 (xi –μ)2

2

Prior distribution:

Unknown parameter: τ (μ is known)

Gamma

Figure 16.7
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5. And now we are ready for trial 2. As painful as it may be, we’ll walk through the
calculations once more, just to make sure you nail it. Trial 2 will begin by assuming
that the τ is known to be 45.678. We can now use this value to update the hyperpara-
meters for posterior distribution of μ in trial 2.
• The posterior distribution of the unknown parameter, μ, now has trial 2

hyperparameters:

μposterior½2� ¼
ðτ0μ0 þ τ

Xn

i¼1
xiÞ

ðτ0 þ n ∗ τÞ ¼ 0:0625 ∗12þ 45:678 ∗10:2
0:0625þ 1 ∗45:678

¼ 466:6656
45:7405

¼ 10:2025

ð16:7Þ
and

τposterior½2� ¼ τ0 þ n ∗ τ ¼ 0:0625þ 1 ∗45:678 ¼ 45:7405 ð16:8Þ
• Let’s now draw a random proposal from our updated distribution for μ, that is, the

normal distribution with hyperparameters μ[2] ¼ 10.2025 and τ[2] ¼ 45.7405. Let’s call
this proposal pμ[2]. Let’s say this proposal value is 10.0266.

• And now let’s fill these values into our table as updated hyperparameters for the
posterior distribution of the unknown parameter, μ, and a single proposal from this
new distribution (see Table 16.5).

6. Now let’s fill in some entries under trial 2 for the unknown parameter, τ.

Table 16.4

Trial Data Proposal Distribution for μ Proposal Distribution for τ

Hyperparameters Hyperparameters

[t] Total Gallons n μ[t] τ[t] pμ[t] α[t] β[t] pτ[t]

0 10.2 1 12 0.0625 25 0.5 40.123

1 10.2 1 10.2028 40.1855 10.5678 25.5 0.5676 45.678
2 10.2 1
3 10.2 1
4 10.2 1
5 10.2 1

Table 16.5

Trial Data Proposal Distribution for μ Proposal Distribution for τ

Hyperparameters Hyperparameters

[t] Total Gallons n μ[t] τ[t] pμ[t] α[t] β[t] pτ[t]

0 10.2 1 12 0.0625 25 0.5 40.123

1 10.2 1 10.2028 40.1855 10.5678 25.5 0.5676 45.678
2 10.2 1 10.2025 45.7405 10.0266
3 10.2 1
4 10.2 1
5 10.2 1
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• Wenowassume that μ isknown tobe10.0266. This lets usupdateourhyperparameters
for the posterior distribution of the unknown parameter, τ, using the conjugate shortcut.

• The unknown parameter, τ, now has trial 2 hyperparameters:

αposterior½2� ¼ α0 þ n
2
¼ 25þ 1

2
¼ 25:5 ð16:9Þ

and

βposterior½2� ¼ β0 þ

Xn
i¼1

ðxi−μÞ2

2
¼ 0:5þ ð10:2−10:0266Þ2

2
¼ 0:5þ 0:03006756

2
¼ 0:5150

ð16:10Þ
• Let’s now draw a random proposal from this distribution and call it pτ[2]. Let’s say

this proposal value is 52.39. We accept it.
• And now let’s fill these values into our table as updated hyperparameters for the

posterior distribution of the unknown parameter, τ, and a single proposal from this
new distribution (see Table 16.6).

This brings us to trial 3 . . .
Isn’t this brilliant? The Gibbs sampler is similar to the Metropolis and Metropolis–

Hastings algorithms we previously studied in that we collect a sample from the posterior
distribution in each trial.With these algorithms, we drew a sample and then either accepted
or rejected it. However, with Gibbs sampling, there is no reject–accept criterion. Instead, we
draw a proposal from the distribution conditional on the values for the remaining
parameters and accept it. Gibbs sampling requires that you (1) can compute a posterior
distribution of a parameter conditional on the values of other parameters and (2) can
draw a sample from it. Here, we made use of the conjugate solutions. If one of the
parameters is assumed to be known for a given trial (e.g., the red or green ribbon in
Figure 16.1), we can use a conjugate solution to derive the posterior distribution for the
parameter of interest.

Before we go further, a few questions may have leapt to mind.

Who the heck is Gibbs?

Answer: From Wikipedia: the Gibbs sampler is named after Josiah Willard Gibbs, “a
theoretical physicist and chemist who was one of the greatest scientists in the United States
in the 19th century.”

Table 16.6

Trial Data Proposal Distribution for μ Proposal Distribution for τ

Hyperparameters Hyperparameters

[t] Total Gallons n μ[t] τ[t] pμ[t] α[t] β[t] pτ[t]

0 10.2 1 12 0.0625 25.0 0.5000 40.12

1 10.2 1 10.2028 40.1855 10.5678 25.5 0.5676 45.68
2 10.2 1 10.2025 45.7405 10.0266 25.5 0.5150 52.39
3 10.2 1
4 10.2 1
5 10.2 1
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Did Josiah Gibbs come up with the Gibbs sampler?

Answer: Actually, no. Wikipedia again: “The algorithm was described by brothers Stuart
and Donald Geman in 1984, some eight decades after the death of Gibbs.”

Figure 16.8 Josiah Gibbs.

Figure 16.9 Stuart Geman (left) and Donald Geman (right) (Original photograph courtesy of
Stuart Geman).
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That’s Stuart on the left, and Donald on the right, working on their paper in Paris. The
brothers came up with the method to help restore old or blurred images.

Why did they name their algorithm the Gibbs sampler?

Answer: The answer is explained by Sharon Bertsch McGrayne (2011) in The Theory That
Would Not Die: How Bayes’ Rule Cracked the Enigma Code, Hunted Down Russian Sub-
marines, and Emerged Triumphant from Two Centuries of Controversy:

“Sitting at a table in Paris, Donald Geman thought about naming their system. A popular
Mother’s Day gift at the time was a Whitman’s Sampler assortment of chocolate bonbons
(see Figure 16.10); a diagram inside the box top identified the filling hidden inside each
candy. To Geman, the diagramwas amatrix of unknown but enticing variables. ‘Let’s call it
Gibbs sampler,’ he said, after JosiahWillard Gibbs, a nineteenth century American physicist
who applied statistical methods to physical systems.”

Do you have a reference for the Geman brother’s paper?

Answer: The brothers published their method in 1984.

You can find the abstract here.

Can we finish our trials please?

Answer: Of course! See if you can trace your way through Table 16.7.

Figure 16.10 A Whitman’s Sampler.

S. Geman and D. Geman. 1984. “Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images.” IEEE Transactions on Pattern Analysis and Machine
Intelligence 6(1984): 721–41.
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How do we display the results of a Gibbs MCMC?

Answer: We show the traceplots of the MCMC proposals for each unknown parameter, μ
and τ, as in Figure 16.11.

Of course, this is just 5 trials. Let’s run the analysis again and show the traceplots for 1000
trials (see Figure 16.12).

Table 16.7

Trial Data Proposal Distribution for μ Proposal Distribution for τ

Hyperparameters Hyperparameters

[t] Total Gallons n μ[t] τ[t] pμ[t] α[t] β[t] pτ[t]

0 10.2 1 12.0 0.0625 NA 25.0 0.5000 40.12

1 10.2 1 10.2 40.1855 10.57 25.5 0.5676 45.68
2 10.2 1 10.2 45.7405 10.03 25.5 0.5150 52.39
3 10.2 1 10.2 52.4521 10.15 25.5 0.5010 44.58
4 10.2 1 10.2 44.6445 10.29 25.5 0.5043 48.33
5 10.2 1 10.2 48.3911 10.10 25.5 0.5055 46.92
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Figure 16.12 Traceplots for μ (top) and τ (bottom).
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Here, you can see the familiar “bouncing” as new proposals are drawn. We talked about
how to evaluate these chains in Chapter 14.

How do we use the MCMC results to draw conclusions about the
posterior distributions for μ and τ?

Answer:We summarize the chains. A histogram that shows the frequencies of proposals is
a good start. Figure 16.3 shows the frequency histogram of μ proposals in our 1000 trials.
Remember these are marginalized over values of the other parameter.

It is also common to present summary statistics of the data, such as various quantiles, as
shown in Table 16.8.

Based on your analysis, you can now report that you believe the mean annual maple
syrup production ranges between 9.77 and 10.64 thousand gallons. You could also present
the Bayesian credible intervals, as we’ve done in previous chapters.

But the mean (10.2) and standard deviation (0.14) of the trials are very
useful because these can now serve as hyperparameters for μ for your next
analysis. Cool!

What conclusions do I draw about τ?

Answer: Same idea. Here, we show the histogram for the τ proposals. But, we also convert τ
back to σ and show the histogram for the σ’s as well. Remember that:
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Figure 16.13 Posterior distribution of μ.

Table 16.8

Minimum 25th Percentile 50th Percentile 75th Percentile Maximum

9.77 10.11 10.2 10.3 10.64
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τ ¼ 1
σ2

ð16:11Þ

σ ¼ 1ffiffiffi
τ

p ð16:12Þ

This is probably what you are most familiar with (see Figure 16.14).

Again we’ll present summary statistics of the data, including the mean, the standard
deviation, and quantiles, as shown in Table 16.9.

If you were to use this information for your next analysis, you would need to use
moment matching to convert the mean and standard deviation of the MCMC results
to α and β from a gamma distribution. We discussed this in Chapter 13, so we won’t repeat
the calculations here.

What’s the difference between our maple syrup estimation conjugate
approach and the Gibbs sampling approach?

Answer: The main difference is that Chapter 12’s normal-normal conjugate required that
we KNEW σ . . . a bit unrealistic. With Gibbs sampling, we took advantage of the Bayesian
conjugate solutions in a different (and wickedly creative) way. This approach relaxes the
assumption that we have to know σ (or τ) and let us estimate both unknown parameters.
We had a look at the marginal distributions for each.

Can we look at the joint posterior distribution too?

Answer: Yes. Figure 16.15 shows a scatter plot using proposals from every 10th trial out of
10,000 trials.
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Figure 16.14 Posterior distribution of σ.

Table 16.9

Minimum 25th Percentile 50th Percentile 75th Percentile Maximum

0.11 0.13 0.14 0.15 0.2
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Compare Figure 16.15 with Figure 16.4. Each dot is a joint hypothesis.
Imagine now that we place a grid of hexagons over the dots and count the dots within

each hexagon so that darker hexagons indicate more values in that bin. Our resulting graph
is an approximation of the joint posterior distribution (see Figure 16.16).

And, even slicker, if we “bin” our results as shown in Figure 16.4, we can plot both the
joint and marginal distributions for the parameters μ and τ, as shown in Figure 16.17.
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Figure 16.15 Annual maple syrup production,
showing joint hypotheses for μ and τ.
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You don’t do these calculations by hand, do you?

Answer: You can! Carrying out a few trials by handmay well be the best way to internalize
this material. But after you understand the method, you certainly don’t want to do the
calculations by hand . . . computers live for tasks such as these. There are several software
programs available, but here we mention two that specifically highlight the use of Gibbs
sampling by name:

• The BUGS (Bayesian inference Using Gibbs Sampling) project: “BUGS is concerned with
flexible software for the Bayesian analysis of complex statistical models using Markov
chain Monte Carlo (MCMC) methods. The project began in 1989 in the MRC Biostatis-
tics Unit, Cambridge, and led initially to the ‘Classic’ BUGS program, and then onto the
WinBUGS software developed jointly with the Imperial College School of Medicine at St
Mary’s, London. Development is now focused on the OpenBUGS project.”

• JAGS (Just Another Gibbs Sampler) (Plummer, 2003): “JAGS is Just Another Gibbs Sam-
pler. It is a program for analysis of Bayesian hierarchical models using Markov Chain
Monte Carlo (MCMC) simulation not wholly unlike BUGS. JAGS was written with three
aims in mind:
• To have a cross-platform engine for the BUGS language
• To be extensible, allowing users to write their own functions, distributions and

samplers.
• To be a platform for experimentation with ideas in Bayesian modeling.”

There are several excellent guides written specifically to teach you how to use these
programs.

Why is the Gibbs sampler known as a special case of the
Metropolis–Hastings algorithm?

Answer: Great question! It has to do with the proposal, how it is drawn, and whether it is
accepted or not. You might recall that, in the Metropolis algorithm, the proposal is drawn
from a symmetric distribution. The Metropolis–Hastings algorithm, in contrast, relaxes
this assumption so that the proposal can be drawn from an asymmetric distribution. (You
might recall that a correction factor is used to help determine whether the proposal is
accepted or not.) Similarly, with the Gibbs sampling algorithm, the proposal can be drawn
from any distribution (symmetric or non-symmetric). We saw an example of this when we
drew proposals from a symmetric normal distribution as well as from a non-symmetric
gamma distribution. The difference, however, is that we always accept the proposal with
Gibbs sampling because it is a sample from the trial’s posterior distribution, conditional on
the values of the remaining parameters for that trial.
The SAS Institute’s tutorial introduction to MCMC describes the procedure this way:

“Gibbs sampling requires you to decompose the joint posterior distribution into full
conditional distributions for each parameter in the model and then sample from them.
The sampler can be efficient when the parameters are not highly dependent on each other
and the full conditional distributions are easy to sample from. Some researchers favor this
algorithm because it does not require an instrumental proposal distribution as Metropolis
methods do. However, while deriving the conditional distributions can be relatively easy, it
is not always possible to find an efficient way to sample from these conditional
distributions.”
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Can we solve the Maple Syrup Problem using the Metropolis–Hastings
algorithm instead?

Answer: You can! There is nothing to stop you from drawing proposals for μ and τ as we
did in previous chapters. The key is, still, that for any given trial, you draw a proposal
conditional on the values for the remaining parameters.

Why not just use the Metropolis–Hastings algorithm instead?

Answer: The simplest answer for the Maple Syrup Problem is computing speed . . . using
the conjugate shortcuts is much faster than carrying out all the steps for the Metropolis–
Hastings algorithm.

How do we know if our MCMC results are any good?

Answer: As with previous MCMC chapters, you MUST carefully consider the resulting
posterior distributions and run some diagnostic tests. These include the concepts of “burn-
in” and “pruning.” We covered MCMC diagnostics in Chapter 14.

Can we summarize the main points of this chapter?

Answer: Sure. It’s easy to lose sight of the big picture. Keep in mind that the goal of a
Bayesian MCMC analysis is to estimate the posterior distribution while skipping the
integration required in the denominator of Bayes’ Theorem. For a problem with two or
more parameters, the approach is to sample from the posterior distribution for a given
parameter, conditional on the values of the remaining parameters. Thus, the MCMC ap-
proach allows us to build the posterior distribution by breaking the problem into small,
bite-sized pieces, allowing us to build the posterior distribution bit by bit (sand grain by
sand grain). In this chapter, we introduce the Gibbs sampler, which is a special case of the
Metropolis–Hastings algorithm. Gibbs sampling requires that you (1) can compute a pos-
terior distribution of a parameter conditional on the values of other parameters and
(2) can draw a sample from it. Here, we made use of the conjugate solutions, which enabled
us decompose the joint posterior distribution into full conditional distributions for each
parameter in the model and then sample from them.

What’s next?

Answer: This ends our section on MCMC. The next section of the book highlights some
applications of Bayes’ Theorem. Chapter 17, in particular, makes use of MCMC with Gibbs
sampling.
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SECTION 6

Applications

Overview

You’ve made it! Analysts across the world are using Bayes’ Theorem to tackle a great variety
of problems. In this final section, we illustrate a variety of methods in which Bayes’
Theorem is used to solve pressing problems of the day.

• One of the most common uses of Bayes’ Theorem is in the statistical analysis of a dataset
(i.e., statistical modeling). In Chapter 17, we consider another application of Gibbs
sampling, that of parameter estimation for simple linear regression. Our example con-
siders the relationship between howmany days a contestant lasts in a Survivor game as a
function of how many years of formal education they have. It is a bit more complicated
than the previous chapter because it involves estimation of the joint posterior distribu-
tion of three parameters. As in earlier chapters, we describe the estimation process in
detail and then illustrate its application on a step-by-step basis. Finally, we discuss how to
estimate the posterior predictive distribution.

• Chapter 18 provides a very brief introduction to Bayesian model selection. We still use
the Survivor game example but now want to compare two models: one that uses years of
formal education, and a second one that uses grit as a predictor of number of days a
contestant lasts on Survivor. We use Gibbs sampling for parameter estimation and
introduce Deviance Information Critera (DIC) as a guide for model selection.We describe
in detail how this measure is computed.

• Bayesian belief networks comprise the focus of Chapter 19, and provide a very powerful
tool to aid in decision-making when there is uncertainty. The ideas are first explained in
terms of a small, standard example that explores two alternative hypotheses for why the
grass is wet: the sprinkler is on versus it is raining. We describe how to depict causal
models graphically with the use of influence diagrams and directed acyclic graphs, and
show where Bayes’ Theorem comes into play for computing conditional probabilities
and for updating probabilities once new information is obtained or assumed. We illus-
trate the software program, Netica. Finally, we provide a second example based on The
Lorax by Dr. Seuss.

• Chapter 20 introduces decision trees, a very useful technique that can be used to answer a
variety of questions and assist in making decisions. We’ve assumed you’ve read our
previous chapter on Bayesian networks. If so, you already know that Bayes’ nets can be



an aid in decision-making. We show that a decision tree is a graphical representation of
the alternatives in a decision-making problem and are very closely related to Bayes’
networks, except that they take the shape of a tree instead. The tree itself consists of
decision nodes, chance nodes, and end nodes, which provide an outcome. In the tree, we
point out the probabilities associated with chance nodes are conditional probabilities,
which Bayes’ Theorem can be used to estimate or update. We describe the calculation of
expected values (or expected utility) of competing alternative decisions. We illustrate the
use of decision trees with another application from The Lorax by Dr. Seuss.

If this book makes it to a second edition, this section will likely grow, as there are so many
fun applications of Bayes’ Theorem!
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CHAPTER 17

The Survivor Problem: Simple
Linear Regression with MCMC

Welcome to this section on applications of Bayes’ Theorem. One of the most common uses
of Bayes’ Theorem is in the statistical analysis of a dataset (i.e., statistical modeling). This
chapter, and the one that follows, introduce you to statistical modeling à la Bayes. This is
notmeant to be a course on statistics, but hopefully it will give you the general sense of how
things are done. It’s a long chapter, so make sure to get up and stretch every now and then.
When all is said and done, you will have a basic understanding of the following concepts:

• Linear equation
• Sums of squares
• Linear regression with MCMC and Gibbs sampling
• Posterior predictive distribution

Our chapter title suggests we will be learning about simple linear regression, which is a
statistical method that allows us to formalize the relationship between two variables as a
function, or model.
We thought it might be useful to begin with a refresher, so . . .

What is a function?

Answer: In math, a function relates an input to an output, and the classic way of writing
a function is:

f ðxÞ ¼ : : : ð17:1Þ
For instance, consider the function shown in Figure 17.1.

The function name is f. The inputs (also called arguments) go within the parentheses.
Here, we have a single input, or argument, called x. The function itself is a set of instructions
that tell us what to do with the input. The output is what the instructions return. Here, we
input a value for x; the instructions tell us that we should square x to give us the output.

Function name is f Function input is x Function output is x2

f(x) = x2

Figure 17.1

Bayesian Statistics for Beginners: A Step-by-Step Approach. Therese M. Donovan and Ruth M. Mickey,
Oxford University Press (2019). © Ruth M. Mickey 2019.
DOI: 10.1093/oso/9780198841296.001.0001



In other words, f ðxÞ maps the input x to the output. We can visualize this as shown in
Figure 17.2.

The Oxford Dictionary Plus Science and Technology (Upton and Cook, 2016) tells us that
a function is “ . . . a relationship between the elements of one set and one element of
another or the same set, such that one or many inputs are related to only one output. For
example, a function might relate a real number to the cube of that number. This relation
can be written as f ðxÞ ¼ x3; f is the name of the function, x is the input, and x3 is the output,
and f ðxÞ is spoken as ‘f of x’.”

Can we see another example?

Answer: Of course. How about this one:

gðxÞ ¼ mxþ b: ð17:2Þ
The function’s name is g, and it has a single argument (input), called x. You input a value for
x, and the function will multiply it by m and then add b to it. That is the function output:
mxþ b. Here, m and b are called parameters; they are part of the function’s definition.

This function looks vaguely familiar . . . is this a linear function?

Answer: It is! The linear function above might be more familiar to you in this form:

y ¼ mxþ b: ð17:3Þ
This is still a function, but it is nameless and lacks definition. Regardless, this function has
an input, an output, and instructions. Here, we assume that x is the input. You input a value
for x; the instructions tell you to multiply it by the parameter m and then add the result to
the parameter b. The final result, or output, is called y. Both x and y are called variables
because if you change the value of x, the value of y may also change. Encyclopedia
Britannica defines variable as “a symbol (usually a letter) standing in for an unknown
numerical value in an equation.”

A function like this may have great utility. For example, if you speak in Fahrenheit but
your Canadian neighbor wants to know the average temperature in February, you can
convert temperature in degrees Fahrenheit (the input) to temperature in degrees Celsius
(the output) with the following linear equation (also see Figure 17.3):

y ¼ mxþ b ð17:4Þ
Celsius ¼ 5=9 ∗ Fahrenheitþ ð−32 ∗5=9Þ: ð17:5Þ

x f x 2

Input(s) Function Output(s)

Figure 17.2
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Here, the variables are degrees in Celsius and degrees in Fahrenheit. Notice that all of the
points fall exactly on the line itself. We say that this is a deterministic function, or a
deterministic model. This model lets you plug in a value of Fahrenheit and output the exact
degrees in Celsius. For example, if you input 32 degrees Fahrenheit (shown by the red
dashed line), the output would be 0 degrees Celsius, which, of course, you already knew.

So what does this have to do with regression analysis?

Answer: Regression analysis is a statistical process for estimating the relationships among
variables.
The goal of a regression analysis is to identify a function, also called a statisticalmodel,

that describes how two or more variables are related. The main difference between a
statistical model and a deterministic model (e.g., the exact relationship between Celsius
and Fahrenheit) is that the datapoints won’t necessary fall on the line directly, and the
functional relationship must be estimated.

Can we see an example?

Answer: By all means. Consider the hypothetical dataset shown in Table 17.1.
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Figure 17.3 Conversion of Fahrenheit to Celsius scale.

Table 17.1

Var1 Var2 Error Var3

−1.0 1.0 −0.15 0.85
−0.8 1.2 0.79 1.99
−0.6 1.4 0.27 1.67
−0.4 1.6 0.45 2.05
−0.2 1.8 0.23 2.03
0.0 2.0 −0.36 1.64
0.2 2.2 0.01 2.21
0.4 2.4 −0.22 2.18
0.6 2.6 −0.48 2.12
0.8 2.8 0.07 2.87
1.0 3.0 −0.12 2.88
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Here, our dataset has four variables, and you can see that they can be positive or negative.
In column 1, we generated Var1 by setting up a series of numbers from −1 to +1 in
increments of 0.2. In column 2, Var2 was calculated with the deterministic model:

Var2 ¼ 1 ∗Var1þ 2: ð17:6Þ
This is the equation of a line. Here, the slope is 1, and the intercept is 2:

y ¼ mxþ b ð17:7Þ
Now, let’s rename the intercept b as b0, and let’s rename the slope m as b1. Statisticians
conventionally use these names for the intercept and slope. With minor rearrangement,
our linear function can be written:

y ¼ b0 þ b1 ∗ x ð17:8Þ

y ¼ 2þ 1 ∗ x: ð17:9Þ
Continuing with our table, we then generated some random numbers associated with each
datapoint in column 3, which we are calling “Error.” Finally, in column 4, Var3 is Var2 plus
Error. Notice that Var3 contains both a deterministic component (which we can call the
signal) and an error component (which we can call the noise).

Now then. Suppose we don’t know how Var3 was created, and we would like to know if
there is a relationship between Var1 and Var3. To begin, we can plot the two variables
against each other (see Figure 17.4).

You can see that our two variables are positively related: as one variable goes up, the
other tends that direction too. In other words, there is a pattern in the data, and we would
like to formalize this pattern as a statistical model.

Can you summarize the relationship between Var1 and Var3 with a
straight line?

Answer: Let’s try it. For this example, we will only use a straight line to summarize the
relationship (see Figure 17.5).

See the green circles? These are our datapoints. See the blue line? That is the linear
relationship between Var1 and Var3 (i.e., the signal). Each datapoint has a vertical line
that measures its distance to the line itself. This distance is called “error,” and it matches up
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Figure 17.4 Scatterplot of Var1 and Var3.

272 BAYESIAN STATISTICS FOR BEGINNERS



with the “Error” column in Table 17.1. It is not an error as in a “mistake,” but rather it
is information (noise) that cannot be explained by the line. An “error” for a given datapoint
i is written as ϵi. Notice that some of the errors are positive, and some are negative. Also note
that some datapoints have large error (i.e., they are far from the line) while others have
small error (they are close to the line, or even on it).
See the equation in blue at the top of Figure 17.5? That is our expression for the yi’s.

Notice that the equation itself specifies the signal (the linear equation b0 þ b1xi) and error
(noise), indicating the linear equation by itself does not perfectly fit the data. Here, we say
that Var3 and Var1 are stochastically related.

What’s the second equation written in black?

Answer: That is a general way of expressing the stochastic relationship between Var3 and
Var1. With new color-coding, our equation has the general form:

yi ¼ b0þb1 ∗ xi þ ϵi: ð17:10Þ
Encylopedia Britannica calls ϵ “a probabilistic error term that accounts for the variability in
y that cannot be explained by the linear relationship with x. If the error term were not
present, the model would be deterministic; in that case, knowledge of the value of x would
be sufficient to determine the value of y.”
Speaking of ϵi (the error term associated with datapoint i), it is not measured by the

analyst (although we provided it in Equation 17.1). Here, it can be determined as the
difference between yi and its model signal, but normally this term is estimated. We can
rearrange the terms in our model to highlight the error term:

ϵi ¼ yi−ðb0þb1 ∗ xiÞ: ð17:11Þ

So our goal is to find the signal within the data?

Answer: Yes! As such, it is a major part of science. After all, understanding pattern and
process (the underlying causes of patterns) is what science is all about. This goes way back
to our section on Bayesian inference, where we provided a short introduction to the
scientific method. Let’s quickly revisit these concepts now.
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Figure 17.5
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What exactly is science?

Answer: There are many definitions, formal and informal. Generally speaking, science
refers to a system of acquiring knowledge.

Answer: (From NASA): Science is curiosity in thoughtful action about the world and how
it behaves.

Answer: (From Wikipedia): Science (from Latin scientia, meaning “knowledge”) is a sys-
tematic enterprise that builds and organizes knowledge in the form of testable explanations
and predictions about the universe.

How do we go about actually conducting science?

Answer: We normally use what is called the scientific method. The Oxford English
Dictionary (Stevenson, 2010) says that the scientific method is “a method or procedure
that has characterized natural science since the 17th century, consisting in systematic
observation, measurement, and experiment, and the formulation, testing, and modifica-
tion of hypotheses.”

A key concept in scientific endeavors is formulating testable, alternative explanations
about how the universe works. The scientific method actually consists of two types of
inquiry: induction and deduction, which, when used in concert, produce knowledge.

The scientific process is nicely captured in the diagram in Figure 17.6 (adapted from Rao,
1997). Let’s walk through this diagram, noting that it is a (diamond-shaped) circle at heart
and has neither beginning nor end. It can be thought of as a race track or a wheel.

We need to start somewhere in this diagram, which contains four boxes and four arrows.
Let’s start with the upper box:

1. Hypothesis or Theory Box. A hypothesis is a proposed explanation for a phenom-
enon. A scientific theory is a coherent group of propositions formulated to explain a
group of facts or phenomena in the natural world and repeatedly confirmed through
experiment or observation. We will also note that process-based models, such as models
of global climate circulation, are hypotheses at heart.

Hypotheses or
Theory

Inference
(Verification
of Theory)

Data

Consequences
(Prediction)

Creation of New Ideas
(Enlightened Guess Work)

Inductive Reasoning Design of Experiments
(Ensuring Validity of Data)

Deductive Reasoning

Figure 17.6
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• A theory: Darwin’s Theory of Evolution
• A hypothesis: The earth is warming due to increased CO2 levels in the atmosphere

2. Deductive ReasoningArrow. The Oxford Reference tells us that deductive reasoning
is reasoning from the general to the particular. Here, you start with a hypothesis or
theory and test it from an examination of facts.

3. Consequences or Predictions Box. Dr. Sylvia Wassertheil-Smoller, a research pro-
fessor at Albert Einstein College of Medicine, explains “In deductive inference, we hold a
theory and based on it we make a prediction of its consequences. That is, we predict
what the observations should be if the theory were correct” (source: http://www.
livescience.com/21569-deduction-vs-induction.html; accessed August 17, 2017). A pre-
diction is the result of deduction.

4. Design of Experiments Arrow. In this step, you plan an experiment that will allow
you to collect data to test your hypothesis or hypotheses. A well-designed experiment
will ensure that the data you collect are valid.

5. Data Box. After the experiment is designed, we then collect some data. We can also use
existing datasets if they are appropriate.

6. Inductive Reasoning Arrow. The Oxford Reference tells us that inductive reasoning
involves inferring general principles from specific examples.

7. Inference Box. Inductive reasoning makes broad generalizations from specific obser-
vations. Dr. SylviaWassertheil-Smoller explains, “In inductive inference, we go from the
specific to the general. We make many observations, discern a pattern, make a general-
ization, and infer an explanation or a theory” (source: http://www.livescience.com/
21569-deduction-vs-induction.html; accessed August 17, 2017). At this point, we may
verify the pattern, or falsify our hypothesis or theory.

8. Creativity Arrow. The final process involves creativity, in which we bring to bear
creative ideas that may explain a pattern or a phenomenon, which brings us full circle.

C. R. Rao (1997) notes that the inference-through-consequences portion of the diagram
comes under the subject of research and the creative role played by scientists, while the
design of experiments through inductive reasoning comes under the realm of statistics.
Note that you can go through a portion of the scientific race track or wheel (e.g., collect

data in the lower box, analyze the data to infer a generalized pattern, and then stop).
However, going around the race track once or multiple times builds knowledge about a
system. As Dr. Wassertheil-Smoller states, “In science there is a constant interplay between
inductive inference (based on observations) and deductive inference (based on theory),
until we get closer and closer to the ‘truth,’ which we can only approach but not ascertain
with complete certainty.”

What flavor of science will we explore in this chapter?

Answer: Well, we have data in hand, and we can use a statistical analysis to take the
specific observations in our dataset and infer a pattern. Thus, many types of statistical
analysis are firmly rooted in the induction side of the diagram in Figure 17.7.

“Our search is only for working hypotheses which are supported by observational facts
and which, in course of time, may be replaced by better working hypotheses with more
supporting evidence from a wider set of data and provide wider applicability.”—
C. R. Rao
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Statistical inference is the process of identifying patterns from data. The Oxford Diction-
ary of Statistics defines statistical inference as “the process of drawing conclusions about the
nature of some system on the basis of data subject to random variation.”

In this chapter, we will use a statistical approach called simple linear regression to
generate a general pattern from our specific observations. Our approach will be to use
Bayesian analysis with MCMC.

Great! What will we be analyzing?

Answer: For this chapter (and the next), we will be analyzing a small, hypothetical dataset
that is (sort of) based on research by Angela Duckworth (University of Pennsylvania).

Duckworth and her talented colleagues are keenly interested in answering the following
question: “Why do some individuals accomplish more than others of equal
intelligence?”

They explain: “In addition to cognitive ability, a list of attributes of high-achieving
individuals would likely include creativity, vigor, emotional intelligence, charisma, self-
confidence, emotional stability, physical attractiveness, and other positive qualities. A priori,
some traits seem more crucial than others for particular vocations. Extraversion may be
fundamental to a career in sales, for instance, but irrelevant to a career in creative writing.
However, some traitsmightbe essential to successnomatter thedomain.We suggest that one
personal quality is shared by the most prominent leaders in every field: grit.”

Grit?

Answer: The researchers define grit as “perseverance and passion for long-term goals.”
They continue: “Our hypothesis that grit is essential to high achievement evolved during
interviews with professionals in investment banking, painting, journalism, academia,
medicine, and law. Asked what quality distinguishes star performers in their respective
fields, these individuals cited grit or a close synonym as often as talent. In fact, many were
awed by the achievements of peers who did not at first seem as gifted as others but whose
sustained commitment to their ambitions was exceptional. Likewise, many noted with
surprise that prodigiously gifted peers did not end up in the upper echelons of their field.”

Hypotheses or
Theory

Data

Inference
(Verification
of Theory)

Consequences
(Prediction)

Inductive Reasoning

Figure 17.7
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They put forth the “grit” hypothesis that “perseverance and passion for long-term goals”
is a characteristic that leads some people to accomplish more than others. The grit hypoth-
esis is at the top of our scientific wheel.
Duckworth and colleagues predicted that a person’s grit, if it can be measured, is one

factor that can explain variability in accomplishment among a group of individuals. To test
this hypothesis, they collected data on thousands of individuals, whichmoves us to the box
at the bottom of Figure 17.7.

Can you really measure a person’s grittiness?

Answer: You can! In fact, you can find your own grit score by taking the grit test, found
at http://angeladuckworth.com/grit-scale/. And you can read Duckworth and colleagues’
seminal work here:

Can we have a peek at their dataset?

Answer: Well, no. For this chapter, we have completely fabricated a tiny dataset in
the spirit of the Duckworth et al. analysis so that we can illustrate a simple regression
analysis with Bayesian techniques. As with other chapters, we’ll be solving things by
hand, hence the need to keep the dataset tiny. Let’s have a look at Table 17.2.

In this table, the column labeled ID identifies an individual. The column labeled Success
is some generic measure of success. We hate to identify what this measure might be, but it
could be something like “Number of days a person makes it in a Survivor competition,”

A. L. Duckworth, C. Peterson, M. D. Matthews, et al. (2007). Grit: Perseverance and
passion for long-term goals. Journal of Personality and Social Psychology 92.6, 1087–101.

Table 17.2

ID Success IQ Years in School Grit

1 33.48 112 12 2.2
2 42.53 94 14 3.2
3 48.53 118 18 3.4
4 30.21 87 10 1.8
5 38.76 96 13 2.8
6 38.59 106 22 0.2
7 52.93 71 17 4.4
8 32.65 91 15 1.0
9 52.42 95 16 4.6

10 22.22 94 9 0.4
11 41.40 100 19 1.6
12 16.28 98 8 0.0
13 40.83 94 20 1.2
14 24.43 113 11 0.6
15 56.38 85 21 4.2
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where the decimal portion of the score would indicate the exact time in which a person
exited the competition.

In case you aren’t familiar with Survivor, Wikipedia tells us: “Survivor is a reality com-
petition television franchise produced in many countries throughout the world. The show
features a group of contestants who are marooned in an isolated location, where they must
provide food, water, fire, and shelter for themselves. The contestants compete in challenges
for rewards and immunity from elimination. The contestants are progressively eliminated
from the game as they are voted out by their fellow contestants until only one remains and
is declared the winner” (article accessed August 20, 2017).

Our goal for this chapter is to analyze the dataset and look for patterns in the data.
Specifically, we will be looking to see if success can be predicted based on the following
variables:

1. IQ, which is a meaure of a contestant’s Incessant Quibbling.
2. Years in School, which is the number of years that a participant attended a formal

school.
3. Grit, measured on a scale between 0 and 5.

It’s reasonable to think that all three factors might influence how long somebody lasts in a
game of “Survivor.” As an aside, notice that, in Table 17.2, there is no column called
“Error.”

How do I get started with my analysis?

Answer: Typically, the first step in data analysis is to examine each column of the dataset
to get an overview. Here, we will generate a box plot for each of our four variables (see
Figure 17.8). Box plots are oh-so-very helpful in looking at a column of numeric data. The
Oxford Dictionary of Statistics defines a box plot (also known as a box-and-whisker dia-
gram) as: “a graphical representation of numerical data, introduced by [John] Tukey and
based on the five-number summary. The diagram has a scale in one direction only.
A rectangular box is drawn, extending from the lower quartile to the upper quartile, with
the median shown dividing the box. ‘Whiskers’ are then drawn extending from the end of
the box to the greatest and least values.”

Max ((Excluding
Outliers)

Upper Quartile

Median
Lower Quartile

Min Excluding Outliers

Figure 17.8
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Before we interpret this plot, imagine that we took all 15 individuals and ordered them
from lowest score to highest score for a particular variable, like IQ. This ordering is critical.
Now look at the box plot. The thick line in the middle of the plot is the median value. The
median is the datapoint in the middle of the IQ lineup: 50% of the data have values greater
than the median, and 50% have values less than the median. Then we see the upper and
lower quartiles in our box plot. The word “quartiles” sounds like “quarters.” You’d be right
in assuming that the upper quartile is the datapoint (in our ordered vector) where 25% of
the data have a greater value, and 75% have a lower value. Same goes for the lower quartile,
but in reverse. The tails of our box plot give the maximum andminimum values, excluding
the outliers. And the outliers themselves are identified as dots. The outliers are identified by
first calculating the Inter-Quartile Range, or IQR, which is the difference between the upper
and lower quartiles. Observations less than the lower quartile minus 1.5 times IQR are
outliers, as are observations greater than the upper quartile plus 1.5 times IQR.
Now let’s have a look at the box plots for each of the four variables in our dataset (see

Figure 17.9).

Looks like we have one outlier with respect to IQ, but you can (and should) see if the four
box plots make sense based on the raw data. Remember, this is a pattern of the raw data
considered for each variable separately.

OK, so how do I find patterns between variables?

Answer: The first step is to generate a scatter plot of the data like we did at the beginning of
the chapter. A scatterplot requires that one variable is selected to be graphed on the y-axis
and that a second variable is selected to be graphed on the x-axis. Usually, the variable on
the y-axis is called the dependent variable or response variable—it is the variable that
you thinkmight respond to changes in the other variables. We are interested in the number
of days a person can last in a game of Survivor, so Successwill be our response variable. The
x-axis is occupied by an independent variable or a predictor variable. This is a
variable that can predict the response. For instance, can we predict the success of a person
in a game of Survivor based on their IQ? Can we predict their success based on the number
of years they attended school? Is grit a predictor?

Box plot of the variable Success

Box plot of the variable Years

Box plot of the variable IQ

Box plot of the variable Grit
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Let’s look at the scatterplots of the specific observations in our dataset (see
Figure 17.10).

Now we are ready to begin our analysis.

Before we dive in, it might be a good time to stretch or take a break.

Ahhh. That’s more like it!

Success vs. IQ

Success vs. Grit

Success vs. Years

70

0 1 2 3
Grit

4

80 90 100 110 8 10 12 14 16 18 20 22
IQ Years

0

60

40

20Su
cc

es
s

0

60

40

20Su
cc

es
s

0

60

40

20Su
cc

es
s

Figure 17.10

For this chapter, we will estimate the linear relationship between success and years in
school. In Chapter 18, we will estimate the linear relationship between success and grit
score and then compare the two models.
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Where were we?

In Equation 17.10, we mentioned that an individual’s success can be expressed as:

yi ¼ b0 þ b1xi þ ϵi i ¼ 1; : : : ;n ð17:12Þ
where yi is Success in Survivor (number of days) and xi is Years of formal education.

Is this a statistical model?

While we have an equation in 17.12, it is incomplete as a model.

Why is it incomplete? What exactly is a statistical model?

Answer: Wikipedia tells us that “a statistical model is a class of mathematical model,
which embodies a set of assumptions concerning the generation of some sample data, and
similar data from a larger population. A statistical model represents, often in considerably
idealized form, the data-generating process. The assumptions embodied by a statistical
model describe a set of probability distributions, some of which are assumed to adequately
approximate the distribution from which a particular data set is sampled. The probability
distributions inherent in statistical models are what distinguishes statistical models from
other, non-statistical, mathematical models” (Article accessed August 20, 2017).

What assumptions do we make about how the Survivor data were
generated?

Answer: Fantastic question! Youmay recall the notation used in previous examples in this
book. For example, the random variable X arises from a normal distribution with μ ¼ 2.0
and τ ¼ 0.001 can be written:

X � Nðμ; τÞ ð17:13Þ
X � Nðμ ¼ 2:0; τ ¼ 0:001Þ: ð17:14Þ

A specific value of X could be designated as x.
We need to similarly describe the process for our Survivor data. In this dataset, we

have n random variables:Y1;Y2; : : : ;Yn, where Y1 is a variable that represents the success
for the first person in the dataset. We have observed that y1 ¼ 33.48 (Table 17.2). This
person had 12 years of formal education, which we can write as x1 ¼ 12. We have
observed that y2 ¼ 42.53 (Table 17.2). This person had 14 years of formal education,
which we can write as x2 ¼ 14, and so on. Thus, we pair the observed yi with their years
of formal education, xi.
For any given years of formal education (xi), the random variable Yi arises

from a normal distribution whose mean is b0 + b1xi and whose precision is τ.

You may recall that τ ¼ 1
σ2
; low precision indicates high variance, and vice versa.

We can write this generally as:

Yi � Nðb0 þ b1xi; τÞ: ð17:15Þ
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This equation indicates that the random variable Yi is normally distributed.

• The mean of this distribution is the parameter b0, plus a second parameter, b1, which is
multiplied by the number of years of formal education that contestant i experienced, or xi.

• The precision of this distribution is τ.

Thus, there are three, count them, three unknown parameters to estimate in this linear
model.

To summarize:

• For any given number of years of formal education, xi, a randomly selected yi will be
plucked from a normal distribution with a mean of b0 þ b1xi and precision τ.

• This means that the mean of the normal distribution for those with, say, 8 years of
formal education will be different than the mean of the normal distribution for those
with, say, 12 years of formal education, and the level of difference depends on the size
of the b1 parameter and the number of years. For individuals with 8 years of education,
the mean is b0 þ b1 ∗8, whereas the mean is b0 þ b1 ∗12 for those with 12 years of
formal education.

• The precision of the normal distribution which gives rise to the data, τ, is the same
regardless of the years of formal education.

• The mean, b0 þ b1 ∗ xi, represents the model’s signal.
• We also assume that all observations are independent.

Is that all there is to it?

Answer: Not yet. For our Bayesian analysis, the unknown parameters will be considered
random variables that arise from some prior distribution. The prior distributions can also be
thought of as the weight of belief for each alternative parameter value. It is very useful to
diagram the process by which the data were generated (see Figure 17.11).

This sort of diagram was popularized by John Kruschke in his book, Doing Bayesian
Data Analysis (2015). Here, a single observation from our dataset, yi, is located at the
bottom of diagram. This sample is drawn from a normal distribution whose mean is μi
and whose precision is τ. In turn, μi is controlled by the parameters, b0 and b1, as well as xi,
the number of years of formal education completed by contestant i. The prior distributions

yi

b0 ∼ N(μ0, τ0) b1 ∼ N(μ1, τ1)

b0 + b1xi

N(μi, τ)

τ ∼ gamma(α0, β0)

Figure 17.11
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for the three parameters are sketched as well. Here, the prior distribution for b0 and b1 will
be a normal distribution because these parameters can take on any real value, while the
prior distribution for τ will be a gamma distribution because precision cannot be negative.
Such a diagram helps us to fully specify our model. Now we are ready to begin our

Bayesian analysis.

OK, where do we start?

Answer: Let’s briefly remind ourselves what Bayes’ Theorem is. As you’ve seen, a major use
of Bayesian inference involves estimating parameters. You might recall from previous
chapters the generic version of Bayes’ Theorem for one continuous variable:

PðθjdataÞ ¼ PðdatajθÞ ∗ PðθÞð
PðdatajθÞ ∗ PðθÞdθ

: ð17:16Þ

This is the generic version of Bayes’ Theorem when the posterior distribution for a single
parameter, θ, given the observed data, is represented by a pdf.
For our Bayesian inference problem at hand (the Survivor problem), Bayes’ Theorem

would be:

Pðb0; b1; τjdataÞ ¼ Pðdatajb0; b1; τÞ ∗Pðb0; b1; τÞððð
Pðdatajb0; b1; τÞ ∗ Pðb0; b1; τÞdb0; db1; dτ

: ð17:17Þ

This is quite the mathematical challenge, but as we’ll see, we can tackle the problem by
considering each parameter one at a time andmake use of the Bayesian conjugate solutions
that we encountered in previous chapters. You may recall that the conjugate shortcuts
allow us to update the prior pdf to the posterior pdf rather quickly.
Let’s quickly review the steps for Bayesian analysis:

1. Identify your hypotheses. These would be the alternative hypotheses for:
• b0, the model intercept
• b1, the model slope
• τ, the model precision

2. Express your belief that each hypothesis is true in terms of prior probabilities.
3. Gather the data.
4. Determine the likelihood of the observed data, assuming each hypothesis is true.
5. Use Bayes’ Theorem to compute the posterior probabilities for each parameter of

interest.

We’ve identified our hypotheses, so now we are ready for step 2.

And what is step 2?

Answer: Set prior distributions for each of the parameters of interest: b0, b1, τ. Notice that
we will color-code them from this point forward so that it will be easier to trace through our
calculations. Also note that τ does not have a subscript.
Let’s work on the two regression coefficients, b0 and b1, first.
We need to express the prior distribution for the y-intercept b0. Let’s use anormal prior

distribution that has a mean, μ0, of 0 and a standard deviation, σ0, of 100. This means
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that the variance σ20 ¼ 100 ∗ 100 ¼ 10,000. And, as we’ve just learned, we can also express
the spread in terms of τ0, which is 1

σ20
. If σ20 ¼ 10,000, then τ0 ¼ 1

10;000 ¼ 0:0001. This is a
vague (non-informative) prior distribution and suggests that we have quite a bit of uncer-
tainty about the value of b0. Recall that the parameters for this prior distribution are called
hyperparameters. One more thing very important thing to note: the hyperparameters here
have subscripts of 0 to remind us that we are talking about the parameter, b0. These
subscripts are critical—don’t lose track of them or you may confuse τ0 (a hyperparameter
for b0) with τ (one of the unknown parameters of interest).

So, for the parameter b0, our prior distribution is a normal distribution with hyperpara-
meters (see Figure 17.12):

• μ0 ¼ 0
• σ0 ¼ 100; σ20 ¼ 10000; τ0 ¼ 0.0001

Next, we need a prior distribution for b1, the slope of our regression equation. Without
any previous knowledge of the effect of Years of formal education on Success, let’s go
with a normal distribution with a mean of 0 and a high standard deviation of 100. This
means that the variance σ21 ¼ 100 ∗ 100 ¼ 10,000. It also means that τ1, which is 1

σ21
, is equal

to 0.0001. Notice that the subscripts for these hyperparameters are 1, to remind us that we
are talking about the parameter b1(see Figure 17.13):

• μ1 = 0.
• σ1 ¼ 100; σ21 ¼ 10000; τ1 ¼ 0.0001.
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Finally, we need to set a prior distribution for the precision of our error terms, τ. We know
that σ2, and therefore τ, must be positive, so you may recall that a gamma distribution
might be an appropriate prior distribution for τ. We will employ it here.
Remember that the gamma distribution is controlled by two parameters: α (also called the

“shape” parameter) and β (also called the “rate” parameter). Let’s let α0¼ 0.01 and β0¼ 0.01,
which results in a gamma distribution that is heavily weighted toward tiny numbers (i.e.,
low precision; see Figure 17.14).

So, here we have our three prior distributions for our three unknown parameters, b0, b1,
and τ, each of which is defined by their corresponding hyperparameters (see
Figure 17.15).

Hyperparameters:
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All of these prior distributions are vague. Couldn’t we have used
existing Survivor data to help set our priors?

Answer: We could have! As the analyst, you must set prior distributions for each param-
eter and be able to defend your choices! For instance, you could have used OLD Survivor
data to generate the prior, excluding any data that will be used to update the prior.

Now that we have set our prior distributions, we are ready for step 3.

What is step 3?

Answer: Collect data! We already have our dataset in hand, and we are particularly inter-
ested in just two of the columns: Success and Years of formal education (see Table 17.3).

On to steps 4 and 5?

Answer: You got it! We now have an infinite number of hypotheses for b0, an infinite
number of hypotheses for b1, and an infinite number of hypotheses for τ. For each and
every combination of parameters, we need to determine the likelihood of the observed data,
assuming each hypothesis is true, and then use Bayes’ Theorem to compute the posterior
densities for each combination. This will allow us to build our posterior distribution, which
is a joint distribution.

How do we get started?

We mentioned earlier that, with three parameters to estimate, Bayes’ Theorem becomes:

Pðb0; b1; τjdataÞ ¼ Pðdatajb0; b1; τÞ ∗Pðb0; b1; τÞððð
Pðdatajb0; b1; τÞ ∗Pðb0; b1; τÞdb0; db1; dτ

: ð17:18Þ

Table 17.3

ID Success IQ Years in School Grit

1 33.48 112 12 2.2
2 42.53 94 14 3.2
3 48.53 118 18 3.4
4 30.21 87 10 1.8
5 38.76 96 13 2.8
6 38.59 106 22 0.2
7 52.93 71 17 4.4
8 32.65 91 15 1.0
9 52.42 95 16 4.6

10 22.22 94 9 0.4
11 41.40 100 19 1.6
12 16.28 98 8 0.0
13 40.83 94 20 1.2
14 24.43 113 11 0.6
15 56.38 85 21 4.2
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The solution here is fairly intractable. Luckily, with multiple parameters to estimate,
MCMC with Gibbs sampling can be used to tackle the problem. Here, we assume that all
three parameters are independent of each other.

What is Gibbs sampling again?

Answer: A key feature is that Gibbs sampling allows one to evaluate multiple param-
eters (e.g., b0, b1, and τ). In this method, in each MCMC trial you focus on each
parameter one at a time, conditional on the values of the remaining parameters for
that trial. For a target parameter in a given trial, Bayes’ Theorem is used to compute
the parameters of the posterior distribution, and then draw a proposal from this new
distribution. Then, still within the same trial, you cycle to the next parameter, which
now is the target parameter. When this process is repeated across a large number of
MCMC trials, the proposals are used to estimate the joint posterior distribution, as
well as the marginal posterior distribution for each parameter. We introduced Gibbs
sampling in Chapter 16—if this doesn’t ring a bell, you really (truly) should review that
material before proceeding!
In each trial, Gibbs sampling can make use of the Bayesian conjugate solutions to

compute a target parameter’s posterior distribution, conditional on the values of the
remaining parameters for that trial.
In Chapter 16, we showed that conjugate solutions provide a rapid way of updating the

prior distribution to the posterior distribution with some mathematical shortcuts. Be
assured that Bayes’ Theorem is at the heart of the calculations; however, the shortcuts
allow one to move rapidly from the prior to the posterior with a few mathematical
calculations that avoid the messy integral in the denominator of Bayes’ Theorem.
We used these conjugates in our solving the Maple Syrup Problem with Gibbs sampling.

Remember? In Figure 17.16, the data are denoted as xi:

• In the left red panel, we are dealing with a normal distribution where the precision, τ, is
known. We are trying to estimate the unknown mean, or μ. The prior distribution for
the unknown parameter, μ, is a normal distribution with hyperparameters μ0 and τ0. The
bottom box provides the calculations needed to find the hyperparameters for the pos-
terior distribution (i.e., the conjugate shortcuts).

• In the right red panel, we are dealing with a normal distribution where the mean, μ, is
known. We are trying to estimate the unknown parameter, τ, or precision. The prior
distribution for the unknown parameter, τ, is a gamma distribution with hyperpara-
meters α0 and β0. The bottom box provides the shortcut calculations needed to find the
hyperparameters for the posterior distribution.

These are conjugate solutions for variables that are distributed as Nðμ; τÞ; we will need to
modify them to fit within a linear regression framework. For the grit problem, our variables are
distributed as Nðb0 þ b1x; τÞ. Thus there are three unknown parameters. For each of these
parameters, we specify a prior distribution. For each MCMC trial, we will update the prior pdf
to a posterior pdf using a Bayesian conjugate solution.
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How do we make this modification?

Answer: Before we get started, it will be very helpful to study a roadmap so we have the big
picture in mind (see Figure 17.17).

Let’s study this roadmap carefully. Here, you see three boxes, one for each of our
unknown parameters (b0, b1, and τ). Notice the arrows that link the three boxes. For
each of these parameters, we specify a prior distribution, shown in black for all three
cases. For eachMCMC trial, we will update the prior pdf to a posterior pdf using a Bayesian
conjugate solution. The posterior distributions for a hypothetical MCMC trial are shown in
color (blue for b0, red for b1, and green for τ).

The general idea is that we estimate the posterior distribution for τ in trial [t] in the green
box, given b0½t−1� and b1½t−1� from a previous trial, and draw a proposal from this posterior
Figure 17.7(a). This proposal, τ½t�, is then used in the next box (blue), which focuses on b0
Figure 17.17(b). We estimate the posterior distribution for b0½t� in trial [t] in the blue box,
given τ½t� and b1½t−1�, and draw a proposal from this posterior. This proposal, b0½t�, is then used
in the next box (red), which focuses on b1 Figure 17.17(c). We then estimate the posterior
distribution for b1½t� in trial [t] in the red box, given τ½t� and b0½t�, and draw a proposal from
this posterior, which brings us back to the green box. We continue looping around the race
track, where each loop is one MCMC trial.

Let’s now dig deeper, starting with the green box Figure 17.17(a).

• The green box focuses on the unknown parameter τ. We already indicated
that our prior distribution is a gamma distribution with hyperparameters α0 ¼ 0.01 and

Likelihood: Normal (μ is known) 
Data: x1, x2, . . . , xn

Posterior distribution: Gamma

Unknown parameter: τ (μ is known)
Prior distribution: Gamma

Prior hyperparameters

Posterior hyperparameters

α0, β0

α = α0 +
n
2

β = β0 +
∑n

i  = 1(xi –μ)2

2

Unknown parameter: μ (τ is known)
Prior distribution: Normal

Prior hyperparameters:
μ0, τ0

Likelihood: Normal
Data: x1, x2, . . . , xn

Posterior distribution: Normal

Posterior hyperparameters:

τ = τ0 + nτ

μ =
τ0 + nτ

τ0μ0 + τ ∑n
i = 1 xi

Figure 17.16

288 BAYESIAN STATISTICS FOR BEGINNERS



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Hypotheses for τ

Pr
ob

ab
ili

ty
 D

en
si

ty

τ[t] | x, y, b0[t–1], b1[t–1] ∼ Gamma(α[t], β[t])

α[t] = α0 +
n
2

β[t] = β0 +
∑ n

i = 1

 = 1 xi (yi – b0[t])

(yi – (b0[t–1] + b1[t–1]
xi))2

2

–25 –20 –15 –10 –5 0 5 10 15 20 25

Pr
ob

ab
ili

ty
 D

en
si

ty

Hypotheses for b1

–20 –15 –10 –5 0 5 10 15 20 25

Hypotheses for b0

b1[t] | x, y, b0[t], τ[t] ∼ Normal(μ[t], σ
2
[ t]) b0[t] | x, y, b1[t–1], τ[t] ∼ Normal(μ0[t], τ0[t])

μ1[t] =
τ1μ1 + τ[t] ∑

n
i

τ1 + τ[t] ∑
n
i = 1 x

2

τ1[t] = τ1 + τ[t] ∑ ni  = 1x 2

= 1(yi – b1[t–1] xi)
μ0[t] =

τ0μ0 + τ[t] ∑ ni

τ0 + nτ[t]

τ0[t] = τ0 + nτ[t]

Pr
ob

ab
ili

ty
 D

en
si

ty

Prior Posterior Trial [t]b1 Prior Posterior Trial [t]b0

τ Prior(a)

(b)(c)

Posterior Trial [t]

Figure 17.17



β0 ¼ 0.01. We will use these values in each and every trial. Now, assuming that we have
b0 and b1 from a previous MCMC trial, designated as [t − 1], the posterior distribution
for τ for the MCMC trial ½t� is another gamma distribution with hyperparameters α½t� and
β½t�. Here are the updates:

α½t� ¼ α0 þ n
2

ð17:19Þ

β½t� ¼ β0 þ
Xn

i¼1
ðyi−ðb0½t−1� þ b1½t−1�xiÞÞ2

2
: ð17:20Þ

• Note that α½t� depends only on the hyperparameter α0 and sample size, n. Thus, it will be
constant across all MCMC trials.

• Here, yi is the observed number of days candidate i lasts in a game of Survivor (i¼ 1 to n).
And xi is the years of formal education for candidate i.

• Take a good, long look at the numerator for the β½t� calculation in Equation 17.20. The
numerator here is formally called the Sum of Squared Errors, or SSE for short. The error for
each datapoint is calculated as in Equation 17.11 and then squared. The sum of these
squared error terms across the dataset is the SSE.

• Once we have calculated α½t� and β½t�, we now draw a proposal from this posterior
distribution and accept it. This is now τ½t�.

Next we move to the blue box, which focuses on the unknown parameter b0,
conditional on the values τ½t� and b1½t−1�; see Figure 17.17(b).

• We indicated that our prior distribution is a normal distribution with hyperparameters
μ0 ¼ 0 and τ0 ¼ 0.0001. Pay attention to those subscripts! We will be using these values
in each and every MCMC step. Now, assuming we have our new proposal for τ½t� from
this trial, and b1½t−1� from a previous MCMC trial, the posterior distribution for
b0 is another normal distribution defined by parameters μ0½t� and τ0½t�. Here are the
updates:

μ0½t� ¼
τ0μ0 þ τ½t�

Pðyi−b1½t−1�xiÞ
τ0 þ nτ½t�

: ð17:21Þ

τ0½t� ¼ τ0 þ nτ½t�: ð17:22Þ

• Again, yi is the observed number of days candidate i lasts in a game of Survivor (i¼ 1 to n).
And xi is the years of formal education for candidate i.

• Once we have calculated μ0½t� and τ0½t�, we draw a proposal from this posterior distribution
and accept it. This is now b0½t�.

Now we move to the red box, which focuses on the unknown parameter b1,
conditional on the values τ½t�and b0½t� (Figure 17.17 (c)).

• We know that our prior distribution is a normal distribution with hyperparameters μ1¼ 0
and τ1 ¼ 0.0001. Remember those subscripts, and note that these values will be used in
each and every MCMC step! Now, assuming we have our proposal for τ½t� from this trial,
and b0½t� from this trial, the posterior distribution for b1 is another normal distribution
defined by the parameters μ1½t� and τ1½t�. Here are the updates:
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μ1½t� ¼
τ1μ1 þ τ½t�

P
xiðyi−b0½t�Þ

τ1 þ τ½t�
P

x2i
ð17:23Þ

τ1½t� ¼ τ1 þ τ½t�
X

x2i : ð17:24Þ

• Once again, yi is the observed number of days for candidate i lasts in a game of Survivor
(i ¼ 1 to n). And xi is the years of formal education for candidate i.

• Once we have calculated μ1½t� and τ1½t�, we now draw a proposal from this posterior
distribution and accept it. This is now b1½t�.

We now move back to the green box and then move to the next MCMC iteration. This
process is repeated across several (thousands) of MCMC trials. In each case, we store our
proposals for the unknown parameters, b0½t�, b1½t�, and τ½t�. For convenience, we will present
this same roadmap multiple times in this chapter.

We encourage you to study the conjugate solution updates in Appendix 4, which are firmly
rooted in Bayes’ Theorem. It is so easy to forget this fact! The main point is that, in each
MCMC trial, you update a target parameter’s prior distribution to the posterior distribution
via the conjugate solutions and then draw a random proposal from the posterior.

Brilliant! Can we get started now?

Answer: Hold your horses! Now we are ready to work through our Bayesian regression
analysis with MCMC using Gibbs sampling. But, to give you a general idea of where we are
headed, if our MCMC consisted of only 10 trials, we would fill in Table 17.4 with the
accepted proposals and then use the results to obtain the posterior distribution.

The histogram of the proposals for each parameter individually across the MCMC trials
will provide the posterior marginal distributions. In addition, the joint distribution of
the parameters can be estimated by summarizing the joint combinations of all three
parameters.

Table 17.4

Trial b0 b1 τ

1 - - -
2 - - -
3 - - -
4 - - -
5 - - -
6 - - -
7 - - -
8 - - -
9 - - -

10 - - -
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Now can we see the Gibbs sampler in action?

Hold onto your hat while we
work through the steps!

Let’s first set up a table to hold not only our parameters of interest but also some “helper”
columns that we will use to store updated hyperparameters (see Table 17.5). We’ll stick with
just 10 trials so we can focus on the mechanics.

Let us walk you through this table, as you will soon learn to love it. There are five main
sections:

1. In the column group called Info, we list the MCMC trial [t] and the sample size, n
(which is 15 Survivor datapoints).

2. In the column group called b0 Proposal Distribution (columns 3–5), we store infor-
mation related to the unknown parameter b0 (the model intercept). Trial 0 holds the
hyperparameters for the b0 prior distribution, which, if you recall, is a normal
distribution withmean μ0¼ 0 and precision τ0¼ 0.0001. In each trial (1 through 10) (not
shown yet), we will update the prior distribution to the posterior distribution for b0.
Once we have this, we will draw a proposal from this posterior distribution and will store
it in the blue-shaded column.

3. In the column group called b1 Proposal Distribution (columns 6–8), we store infor-
mation related to the unknown parameter b1 (the model slope). Trial 0 holds the
hyperparameters for the b1 prior distribution, which, if you recall, is a normal
distribution with mean μ1 ¼ 0 and precision τ1 ¼ 0.0001. In each trial (1 through 10)
(not shown yet), we will update the prior distribution to the posterior distribution for b1.

Table 17.5

Info b0 Proposal Distribution b1 Proposal Distribution τ Proposal Distribution

Hyperparameters Hyperparameters Hyperparameters

Trial [t] n μ0[t] τ0[t] b0[t] μ1[t] τ1[t] b1[t] SSE[t] α[t] β[t] τ[t]

0 15 0.000 0.0001 0.000 0.0001 0.010 0.010
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Once we have this, we will draw a proposal from this posterior distribution and will store
it in the red-shaded column.

4. The final column group is labeled τ Proposal Distribution. Here, we store informa-
tion related to the unknown parameter τ (the model’s precision). Trial 0 holds the
hyperparameters for the τ prior distribution, which, if you recall, is a gamma
distribution with α0 ¼ 0.01 and β0 ¼ 0.01. In each trial (1 through 10) (not shown yet),
we will update the prior distribution to the posterior distribution for τ. Part of the
solution involves computing the Sums of Squares Error term, which we will store for
reference. Once we have the posterior distribution, we will draw a proposal from it and
will store it in the green-shaded column.

Take some time to orient yourself to this table. Make sure you understand
where the prior distribution’s hyperparameters are stored for each of our
three unknown parameters! The hyperparameters for each of our un-
known parameters are identified with trial 0. This is not conventional . . .
we are just storing it as trial 0 to help reference the numbers in our
narrative. Also make sure you grasp the idea that the proposals drawn
from a posterior distribution for any given trial will be stored in one of
the color-shaded cells.
To begin with, we need to “prime” the MCMC pump by entering the first values for each

parameter in the chain.
These are:

• b0 ¼ 6:000
• b1 ¼ 0:3000
• τ ¼ NA

These reasonable values for b0 and b1 are our MCMC starting values. Given these values,
you’ll soon see that an initial value for τ can be determined. We can now add them to the
table (see Table 17.6).

Now, given the parameter coefficients of our trial 0 model, we can calculate the
SSE for trial 0, which is the sum of the squared error terms given the model. First, let’s
compute the predicted yi for each observation, given trial 0 parameters:

predicted yi½0� ¼ b0½0� þ b1½0� ∗ xi ð17:25Þ

predicted yi½0� ¼ 6:000þ 0:3000 ∗ yearsi ð17:26Þ

Table 17.6

Info b0 Proposal Distribution b1 Proposal Distribution τ Proposal Distribution

Hyperparameters Hyperparameters Hyperparameters

Trial [t] n μ0[t] τ0[t] b0[t] μ1[t] τ1[t] b1[t] SSE[t] α[t] β[t] τ[t]

0 15 0.000 0.0001 6.000 0.000 0.0001 0.3000 0.010 0.010 NA
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Next, let’s calculate the error for each observation at trial 0:

errori½0� ¼ yi−ðb0½0� þ b1½0� ∗yearsiÞ ð17:27Þ
Given this model, the predicted values, error values, and squared error values for trial 0 are
shown in Table 17.7.

The sum of the final column is 13055.067 for trial 0, and we can enter that result into our
table under the column SSE½t�, as in Table 17.8.

Do you still have your hat? Now we are ready for trial 1, which consists of several
calculations. Here, [t] ¼ 1 and [t − 1] ¼ 0. We’ll begin by focusing on the unknown model
precision parameter, τ, for trial 1 (see Figure 17.18(a)).

Our prior distribution for τ is a gamma distribution with hyperparameters α0 ¼ 0.01 and
β0 ¼ 0.01. Now, assuming that we have b0 and b1 from a previous MCMC trial, designated
with the subscript ½t−1� in square brackets, the posterior distribution for τ for MCMC trial [t]
is another gamma distribution with hyperparameters α½t� and β½t�:

α½t� ¼ α0 þ n
2
¼ 0:01þ 15

2
¼ 7:510 ð17:28Þ

Table 17.8

Info b0 Proposal Distribution b1 Proposal Distribution τ Proposal Distribution

Hyperparameters Hyperparameters Hyperparameters

Trial [t] n μ0[t] τ0[t] b0[t] μ1[t] τ1[t] b1[t] SSE[t] α[t] β[t] τ[t]

0 15 0.000 0.0001 6.000 0.000 0.0001 0.300 13055.067 0.010 0.010 NA

Table 17.7

ID Success Years Predicted[0] Error[0] Error2[0]

1 33.48 12 9.600 23.880 570.254
2 42.53 14 10.200 32.330 1045.229
3 48.53 18 11.400 37.130 1378.637
4 30.21 10 9.000 21.210 449.864
5 38.76 13 9.900 28.860 832.900
6 38.59 22 12.600 25.990 675.480
7 52.93 17 11.100 41.830 1749.749
8 32.65 15 10.500 22.150 490.622
9 52.42 16 10.800 41.620 1732.224

10 22.22 9 8.700 13.520 182.790
11 41.4 19 11.700 29.700 882.090
12 16.28 8 8.400 7.880 62.094
13 40.83 20 12.000 28.830 831.169
14 24.43 11 9.300 15.130 228.917
15 56.38 21 12.300 44.080 1943.046

13055.067
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β½t� ¼ β0 þ
X

ðyi−b0½t−1�−b1½t−1�xiÞ2
2

¼ β0 þ
SSE½t−1�

2
¼ 0:010þ 13055:067

2
¼ 6527:543

ð17:29Þ
This is trial 1’s posterior gamma pdf for the unknown parameter, τ, which is fully conditional
on the parameters b0½t−1� and b1½t−1�. Next, we will draw a random variable from this pdf.
Let’s assume its value is 0.001.Wewill accept this value and store it. Our MCMC table
now looks like the one shown in Table 17.9.

Now we are ready to focus on b0 for trial 1 (see Figure 17.18(b)). Our prior distribution for
b0 is a normal distribution with hyperparameters μ0 ¼ 0 and τ0 = 0.0001. Now, assuming
that we have b1 from the previous trial and τ from the current trial, the posterior distribu-
tion for b0 for MCMC trial [t] is another normal distribution defined by parameters μ0½t�
and τ0½t�:

μ0½t� ¼
τ0μ0 þ τ½t�

X
ðyi−b1½t−1�xiÞ

τ0 þ nτ½t�
¼ 0:0001 ∗0þ 0:001

X
ðyi−0:3000 ∗ xiÞ

0:0001þ 15 ∗0:001
¼ 33:387 ð17:30Þ

τ0½t� ¼ τ0 þ nτ½t� ¼ 0:0001þ 15 ∗0:001 ¼ 0:0151 ð17:31Þ
This is our posterior normal pdf for the unknown parameter, b0, for trial 1, conditional on
τ½t� and b1½t−1�. Next, we will draw a random value from this pdf: a normal distribution with a
mean of 33.387 and precision of 0.0151. Let’s assume it is 31.888. We will accept this
value and store it. Our MCMC table now looks like the one in Table 17.10.

Now we can move to b1 for trial 1 (see Figure 17.18(c)). Our prior distribution for b1 is a
normal distribution with hyperparameters μ1 ¼ 0 and τ1 = 0.0001. Now, assuming
that we have b0 from this trial as well as τ from this trial, the posterior distribution
for b1½t� for MCMC trial [t] is another normal distribution defined by parameters μ1½t�
and τ1½t�:

μ1½t� ¼
τ1μ1 þ τ½t�

P
xiðyi−b0½t�Þ

τ1 þ τ½t�
P

x2i
¼ 0:0001 ∗0þ 0:001

P
xiðyi−33:388Þ

0:0001þ 0:001
P

x2i
¼ 0:538 ð17:32Þ

τ1½t� ¼ τ1 þ τ½t�
X

x2i ¼ 0:0001þ 0:001
X

x2i ¼ 3:6500 ð17:33Þ

This is our posterior normal pdf for the unknown parameter, b1 for trial 1. It is fully
conditional on the parameter values for b0 and τ for this trial. Next, we will draw a random
value from this pdf: a normal distribution with a mean of 0.538 and precision of 3.6500.

Table 17.9

Info b0 Proposal Distribution b1 Proposal Distribution τ Proposal Distribution

Hyperparameters Hyperparameters Hyperparameters

Trial [t] n μ0[t] τ0[t] b0[t] μ1[t] τ1[t] b1[t] SSE[t] α[t] β[t] τ[t]

0 15 0.000 0.0001 6.000 0.000 0.0001 0.300 13055.067 0.010 0.010 NA
1 15 7.51 6527.543 0.001
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Let’s assume it is −0.18. We will accept this value and store it. Our MCMC table now
looks like the one in Table 17.11.

Believe it or not, we’ve
come full circle. And I still

have my hat!

Now that we have an updated b0 and b1, we can compute the SSE for trial 1.
Then, we move to trial 2, use the SSE from trial 1 to calculate the posterior
gamma distribution hyperparameters for trial 2, and then draw a random
value from this distribution to give us τ½2� Figure 17.19(a). Once we know τ½2�,
we can use it, along with b1½1�, to compute new posterior hyperparameters for
the normal distribution associated with b0 in trial 2 and then draw a random
value from this distribution to give us b0½2� Figure 17.19(b). Finally, we can use
τ½2� and b0½2� to update the posterior hyperparameters associated with b1 in
trial 2 and then draw a random value from this distribution to give us b1½2�
Figure 17.19(c)). And so on.

Goodness! That is a lot of subscripting to track and calculating to do!

Answer: Yes, it is! Fortunately, given today’s computing power, you can program the
MCMC if you are a programmer. But even if you are not, there are many software packages
that will do the calculations for you provided that you supply:

1. A dataset
2. A description of your model.
3. The prior distributions for all model unknowns.
4. The likelihood function.
5. The know-how to tell the software what to do.

Table 17.10

Info b0 Proposal Distribution b1 Proposal Distribution τ Proposal Distribution

Hyperparameters Hyperparameters Hyperparameters

Trial [t] n μ0[t] τ0[t] b0[t] μ1[t] τ1[t] b1[t] SSE[t] α[t] β[t] τ[t]

0 15 0.000 0.0001 6.000 0.000 0.0001 0.300 13055.067 0.010 0.010 NA
1 15 33.387 0.0151 31.888 7.510 6527.543 0.001
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And where does Bayes’ Theorem fit in?

Answer: You know the answer to this, right? We had three chapters featuring Bayesian
conjugates, and we’ve made use of them here (Figure 17.20). Remember, a conjugate
distribution is a distribution that can be analytically updated in the presence of new
information without using Bayes’ Theorem directly. In other words, they may not look
like Bayes’ Theorem, but they are analytically equivalent.

Are the Geman brothers responsible for this approach?

Answer: The Geman brothers introduced the world to Gibbs sampling and used it for
image restoration. But using Gibbs sampling with MCMC for parameter estimation has
launched a modern Bayesian revolution, allowing even us commoners to estimate the
posterior probability densities for unknown parameters in a statistical model. A seminal
paper was written by Alan Gelfand and Adrian Smith.

This article was followed by a friendly version:

Their first abstract reads: “Stochastic substitution, the Gibbs sampler, and the sampling–
importance–resampling algorithm can be viewed as three alternative sampling- (or Monte
Carlo-) based approaches to the calculation of numerical estimates of marginal probability
distributions. The three approaches will be reviewed, compared, and contrasted in relation
to various joint probability structures frequently encountered in applications. In particular,
the relevance of the approaches to calculating Bayesian posterior densities for a variety of
structured models will be discussed and illustrated.”

Their second abstract reads: “Even to the initiated, statistical calculations based on Bayes’
Theorem can be daunting because of the numerical integrations required in all but the

A. F. M. Smith and A. E. Gelfand. “Bayesian statistics without tears: A sampling–
resampling perspective.” The American Statistician 46.2: 84–8. Stable URL: http://www.
jstor.org/stable/2684170

A. E. Gelfandand A. F. M Smith. “Sampling-based approaches to calculating marginal
densities.” Journal of the American Statistical Association 85.410 (1990): 398–409.

Table 17.11

Info b0 Proposal Distribution b1 Proposal Distribution τ Proposal Distribution

Hyperparameters Hyperparameters Hyperparameters

Trial [t] n μ0[t] τ0[t] b0[t] μ1[t] τ1[t] b1[t] SSE[t] α[t] β[t] τ[t]

0 15 0.000 0.0001 6.000 0.000 0.0001 0.300 13055.067 0.010 0.010 NA
1 15 33.387 0.0151 31.888 0.538 3.6500 −0.180 3341.533 7.510 6527.543 0.001
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simplest applications. Moreover, from a teaching perspective, introductions to Bayesian
statistics—if they are given at all—are circumscribed by these apparent calculational difficul-
ties. Here we offer a straightforward sampling-resampling perspective on Bayesian inference,
which has both pedagogic appeal and suggests easily implemented calculation strategies.”

Why the emphasis on marginal densities?

Answer: Well, think about it. Each MCMC trial provides us with one sample of our
unknown parameters, b0, b1, and τ from their posterior distribution. For any given param-
eter in any given trial, we fix or condition on the other two unknown parameters. Thus,
for a given trial, we draw a random sample for the given parameter conditioned on the
current values of the other two parameters. However, across MCMC trials, we explore the
full sample space for our parameter of interest. Thus, in the end, our MCMC chains provide
us with the marginal distribution of each parameter.

What do the results look like for all 10 trials?

Answer: Here they are in Table 17.12 (recall that trial 0 stores our prior distributions for
each parameter).

Remember that we are interested in the results associated with the colored columns. The
results are MCMC draws from a posterior distribution for a given parameter, conditional
on the values of the other parameters.

How do we know if our MCMC results are any good?

Answer: As with previous MCMC chapters, you MUST carefully consider the resulting
posterior distributions and run some diagnostic tests. Setting the number of MCMC trials

Table 17.12

Info b0 Proposal Distribution b1 Proposal Distribution τ Proposal Distribution

Hyperparameters Hyperparameters Hyperparameters

Trial [t] n μ0[t] τ0[t] b0[t] μ1[t] τ1[t] b1[t] SSE[t] α[t] β[t] τ[t]

0 15 0.000 0.0001 6.000 0.000 0.0001 0.300 13055.067 0.010 0.010 NA

1 15 33.387 0.0151 31.888 0.538 3.6500 −0.180 3341.533 7.510 6527.543 0.001
2 15 40.719 0.0450 39.885 0.045 10.9890 0.096 1984.146 7.510 1670.776 0.003
3 15 36.639 0.1200 36.121 0.277 29.4120 0.161 1762.932 7.510 992.083 0.008
4 15 35.673 0.1650 36.395 0.260 40.0000 0.201 1744.393 7.510 881.476 0.011
5 15 35.071 0.1500 33.245 0.454 37.0370 0.393 1549.736 7.510 872.207 0.010
6 15 32.171 0.0750 31.459 0.564 18.1820 0.781 1607.288 7.510 774.878 0.005
7 15 26.377 0.1500 24.838 0.972 37.0370 0.613 1596.203 7.510 803.654 0.010
8 15 28.887 0.1050 28.780 0.729 25.6410 0.896 1399.926 7.510 798.111 0.007
9 15 24.660 0.2550 24.527 0.991 62.5000 1.018 1116.588 7.510 699.973 0.017

10 15 22.827 0.1800 18.459 1.364 43.4780 1.352 923.707 7.510 558.304 0.012
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(usually several thousand) and discarding the initial trials (say, the first 1000 trials or more)
as a burn-in are standard procedure. After that, one of the first tests usually involves analysis
of the traceplots.

Let’s look at our results for an MCMC analysis of 20,000 trials, with a 5000 trial burn-in
and pruning every other result. To begin, let’s look at the traceplots for the first 100 trials
after the burn-in (see Figure 17.21).

The traceplots show our 100 MCMC trials after our burn-in and pruning. There
are multiple diagnostics that you can use to help determine if your MCMC is on
target. Here, we are looking to see that the proposals fully explore the posterior
distribution space.

We ran quite a few trials for this analysis. We needed to run this many to converge on
reasonable estimates of the posterior distributions. Software programs that doMCMC often
have a trick or two up their sleeves to get solutions more quickly. For example, the raw data
may be standardized so that the MCMC chains explore the posterior distribution space
more efficiently, allowing you to run fewer trials overall (Appendix 5). Definitely look into
some of the more technical books on Bayesian statistical analysis on this front. We’re just
hoping to give you the big picture.

And how do we summarize our results?

Answer: There are a few ways to do this. You can summarize the posterior distributions for
each of the unknown parameters as a histogram, which provides the shape of the param-
eter’s marginal distribution. Figure 17.22 shows the histograms for our trials after the
burn-in and prune. Because you may be more used to working with variance instead of
precision, we’ll take the inverse of our τ proposals to give us an estimate of variance, or σ2,
as well.
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What about the Bayesian credible intervals?

Answer: Let’s compute the 95% Bayesian credible intervals for all three parameters. Re-
member there are various ways to do this. In Table 17.13, we will report the 0.025 and the
0.975 quantiles for each parameter (and add in the 25th, 50th, and 75th percentiles for fun).

The credible intervals for each parameter can be found by listing the values in the first
and last rows. It appears that the credible interval for the slope is positive and does not
include 0, which would suggest that there is evidence that years of formal education is
positively related to the number of days that a participant lasts in a game of Survivor.
There are other ways to summarize our results. In Table 17.14, we summarize the MCMC

chains with a variety of common statistics, such as the minimum, maximum, mean, and
so on.

Table 17.13

Quantiles b0 b1 τ

2.5% −9.319 1.001 0.006
25% 2.392 1.683 0.012
50% 7.634 2.031 0.015
75% 13.028 2.372 0.020
97.5% 23.604 3.103 0.031
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Table 17.14

Minimum Maximum Mean Median Std

b0 −28.884 49.863 7.644 7.634 8.290
b1 −0.539 4.337 2.031 2.031 0.532
τ 0.002 0.052 0.016 0.015 0.006
σ 19.231 500.000 73.074 66.667 35.042
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Here, the mean and standard deviation outputs are very useful, especially for our param-
eters b0 and b1 since we used a normal distribution for a prior distribution. Remember that
our prior distribution set the mean to 0 and a precision of 0.0001, which translates to a
standard deviation of 100. Now that we’ve run our MCMC analysis, we can use our results
to set the prior distribution for our next analysis, which we can start on right after next
year’s Survivor competition is complete! This is a primary benefit of the Bayesian method
over other methods such as maximum likelihood and the least squares: the ability to
incorporate existing knowledge into your analysis. In next year’s analysis:

• The prior for b0 would be a normal distribution with a mean of 7.644 and a precision of
1

8:2902, or 1/68.72 ¼ 0.131.

• The prior for b1 would be a normal distribution with a mean of 2.031 and a precision of
1

0:5322, or 1/0.283 ¼ 0.492.

Can we do something similar for τ?

Answer: Yes! Remember that our prior distribution for τ was a gamma distribution with
shape and rate parameters. If you recall, the mean of a gamma distribution is:

μτ ¼
α

β
ð17:34Þ

We can find parameters for our posterior distribution as follows:

αposterior ¼ α0 þ n
2
¼ 0:01þ 15

2
¼ 7:51 ð17:35Þ

So now we just need to estimate β using the mean τ from our MCMC trials:

βposterior ¼
αposterior

τ�
¼ 7:51

0:016
¼ 469:375 ð17:36Þ

This can be the gamma prior for τ in our next analysis. There are other ways to estimate β

too. Can you think of some other ways?

So what is our linear equation?

Answer: Excellent question. You may be tempted to use the mean of the posterior
estimates for b0 and b1 to calculate a predicted yi for a given xi, where “prediction” is
designated by the little hat:

ŷ i ¼ �b0 þ �b1∗ xi ð17:37Þ

ŷ i ¼ 7:644þ 2:031 ∗ xi ð17:38Þ
Figure 17.23 shows our estimate of the model for our small dataset of 15 Survivor contest-
ants. These are based on the marginal distributions for each parameter. Let’s have a look.

Although the blue line might be used to predict the success of a new contestant, Thomas
Bayes would probably not approve of this approach. Why? Because it is based on point
estimates (i.e., specific hypotheses) from the marginal distribution of our parameters,
rather than the full joint posterior distribution.
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What would Bayes do?

Answer: We can’t be 100% certain, but he would probably embrace the uncertainty
that is reflected in the joint posterior distributions of the parameters! The MCMC trial
results provide us with a way to capture this uncertainty. Remember, each trial in the
MCMC provides a specific location in the joint distribution for the three parameters. In
each trial, we have an estimate of b0, an estimate of b1, and an estimate of τ. With this
information, we can do the following:

1. Determine the yi for each level of x in each MCMC trial as:

yi½t� ¼ b0½t�þb1½t�xi: ð17:39Þ

Then, across MCMC trials, we can compute the 95% credible intervals for each level,
which are shown in blue in Figure 17.24.

2. Determine the posterior predictive distribution of yi for each level of x in each
MCMC trial by recalling that:

yi½t� � Nðb0½t�þb1½t�xi; τ½t�Þ: ð17:40Þ

This means that we can generate a single random success value for people with 8, 9,
10, . . . , 22 years of formal education for each MCMC trial by drawing a random value
from a normal distribution defined by the trial’s mean, b0½t� þ b1½t�xi and a standard
deviation of 1ffiffi

τ
p . Then, we plot the credible intervals of choice of the predicted values

across trials, as shown in red in Figure 17.24.
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Technically, for each level of years, the red lines identify the posterior predictive
distribution.

The Oxford Dictionary of Social Research Methods (Elliot et al., 2016) describes posterior
predictive distribution this way: “A Bayesian analysis involves using the current data and
[the] prior distribution to obtain a posterior distribution of parameters defining a model of
interest and then using the model to determine a posterior predictive distribution for the
unobserved elements of the population.”

Wikipedia explains, “In statistics, and especially Bayesian statistics, the posterior predict-
ive distribution is the distribution of unobserved observations (prediction) conditional on
the observed data” (article accessed August 21, 2017).

So, if you have 18 years of formal education, the model suggests that you may last
between 26.56 and 62.48 days in a game of Survivor. That answer makes use of the full
joint distribution from ourMCMC analysis. It includes not only uncertainty in the estimate
of the mean but also uncertainty associated with “error” as modeled by the parameter τ.

Does the posterior predictive distribution help us assess model fit?

Answer: Yes, it is a good place to start. First of all, the observed data in Figure 17.24 fall
within the credible intervals, which is a good sign. Goodness of fit is simply “a test of the fit
of some model to a set of data” (Upton and Cook, 2014).

Do you get different results if you use a different prior?

Answer: You may! This is why the selection of the prior is so critical. That is one of the
many decisions that you, the analyst, must decide!

In our analysis, we used vague priors so that the prior distribution played a tiny role in
estimating the posterior distribution. You can verify this for yourself by looking at how the
prior parameters affect the posterior parameters. For example, in updating α from α0 to
αposterior, you can see that our α0 of 0.01 has little effect on the resulting αposterior:

αposterior ¼ α0 þ n
2
¼ 0:01þ 15

2
¼ 7:51 ð17:41Þ

We could have set α0 to something even smaller, such as 0.001, to make it even less
informative:

αposterior ¼ α0 þ n
2
¼ 0:001þ 15

2
¼ 7:501 ð17:42Þ

You can do the same thing with the β parameter. Additionally, for the parameters b0 and b1,
we set the prior mean to 0, and τ to 0.0001 (standard deviation ¼ 100). If you scan back to
the conjugate solutions, you’ll see that these hyperparameters have almost no bearing on
the posterior parameters. The likelihood dominates (in a major way) the resulting posterior
distribution. It becomes even more dominant as the sample size increases.

Can we summarize this chapter?

Answer: Let’s have a look at the terms we introduced at the beginning of the chapter:

• Linear equation
• Linear model
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• Sums of Squares
• Linear regression with MCMC and Gibbs sampling
• Posterior predictive distribution

We’ve covered a lot of ground, starting with functions, then linear equations and linear
models. We then introduced linear regression and tediously worked our way through a
simple analysis of a hypothetical Survivor dataset.We talked about how to present results in
terms of marginal distributions, and how to create the posterior predictive distribution as a
means for estimating success in Survival, based on the number of years of formal education.
All of this was done within the context of the scientific method, where we noted that many
statistical procedures are firmly rooted in inductive science; in doing the analysis, we have
updated our knowledge about the parameters of the years model (b0, b1, and τ). However,
we have other hypotheses that may explain why some people last longer in a game of
Survivor than others (IQ, grit).

What’s next?

Answer: Head on over to Chapter 18 after you’ve had a break. There, we will explore
another hypothesis as to why some people last longer in Survivor. In particular, we conduct
linear regression analysis on whether grit is a good predictor of success in a Survivor
challenge. We will also take a (shallow) dive into the concepts of model fit and model
selection, where we will compare the years model and the grit model.
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CHAPTER 18

The Survivor Problem Continued:
Introduction to Bayesian Model
Selection

In this chapter, we continue our journey into the world of statistical inference, which is
the process of identifying patterns from data. As in Chapter 17, we will use a statistical
approach called simple linear regression to generate a general pattern from specific
observations in a dataset. We will formalize a general pattern as a model, specifically, a
linearmodel. If a researcher has collected the data to test a specific hypothesis, the linear
model output can help determine whether the hypothesis is supported or not.

In Chapter 17, we analyzed a small, hypothetical dataset that is (sort-of) based on research
by Angela Duckworth (University of Pennsylvania).

As a quick reminder, Duckworth and her colleagues were keenly interested in answering
the following question: “Why do some individuals accomplish more than others
of equal intelligence?”

They explain: “In addition to cognitive ability, a list of attributes of high-achieving individ-
uals would likely include creativity, vigor, emotional intelligence, charisma, self-confidence,
emotional stability, physical attractiveness, and other positive qualities. A priori, some traits
seemmore crucial than others for particular vocations. Extra-versionmay be fundamental to a
career in sales, for instance, but irrelevant to a career in creative writing. However, some traits
might be essential to success no matter the domain. We suggest that one personal quality is
shared by the most prominent leaders in every field: grit.”

Grit?

Answer: The researchers define grit as “perseverance and passion for long-term goals.”
They put forth the hypothesis that “grit” is a characteristic that leads some people to

accomplish more than others. The grit hypothesis is in the top of our scientific wheel in
Figure 18.1.

Duckworth and colleagues predicted that a person’s grit, if it can be measured, is one
factor that can explain variability in accomplishment among a group of individuals. To test
this hypothesis, along with competing hypotheses, they collected data on thousands of
individuals and analyzed the patterns within.

You might recall that we have completely fabricated a tiny dataset in the spirit
of the Duckworth et al. analysis so that we can illustrate a simple regression analysis with
Bayesian techniques. In addition to grit, our little dataset includes not only how many

Bayesian Statistics for Beginners: A Step-by-Step Approach. Therese M. Donovan and Ruth M. Mickey,
Oxford University Press (2019). © Ruth M. Mickey 2019.
DOI: 10.1093/oso/9780198841296.001.0001



days an individual lasted on Survivor but also their IQ and how many years of formal
education they have had.
Let’s have a look (see Table 18.1).

Our goal for this chapter is to analyze the dataset and look for patterns in the data.
Specifically, we will be looking to see if success in a Survivor competition can be predicted
based on the following variables (known as predictor variables):

1. Years in School, which is the number of years that a participant attended a formal
school.

2. Grit, measured on a scale between 0 and 5.

In Chapter 17, we stepped through a Bayesian linear regression analysis with Gibbs sam-
pling, in which we modeled success as a function of years of formal education.

Hypotheses or
Theory

Inference
(Verification
of Theory)

Data

Consequences
(Prediction)

Creation of New Ideas
(Enlightened Guess Work)

Inductive Reasoning Design of Experiments
(Ensuring Validity of Data)

Deductive Reasoning

Figure 18.1

Table 18.1

ID Success IQ Years in School Grit

1 33.48 112 12 2.2
2 42.53 94 14 3.2
3 48.53 118 18 3.4
4 30.21 87 10 1.8
5 38.76 96 13 2.8
6 38.59 106 22 0.2
7 52.93 71 17 4.4
8 32.65 91 15 1.0
9 52.42 95 16 4.6

10 22.22 94 9 0.4
11 41.40 100 19 1.6
12 16.28 98 8 0.0
13 40.83 94 20 1.2
14 24.43 113 11 0.6
15 56.38 85 21 4.2
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In this chapter, we will conduct an additional simple linear regression analysis. Then, we
will compare the differentmodels to see which hypothesis (grit vs. years) is best supported
by the data. By the end of this chapter, you will have a basic understanding of the following
concepts:

• Model assessment (model fit)
• DIC (Deviance Information Criterion)

Shall we get started?

Answer: Yes. Let’s start with a very quick summary of the analysis in Chapter 17, where we
estimated a linear model using Bayes’ Theorem. In Chapter 17, we estimated the following
model, where yi is Success in Survivor (number of days), and xi isYears of formal education.

For our Survivor data, we presume that each datapoint, yi, is generated from
a normal distribution whose mean is b0þb1xi and whose precision is τ. We can
write:

Yi � Nðb0 þ b1xi; τÞ ð18:1Þ
This model equation fully captures our assumed data-generating process and
is an essential first step in a Bayesian statistical analysis. The observed number of
days that contestant i lasts in a Survivor competion, yi, arises from a normal distribution
whose mean is b0 þ b1xi and precision is τ. In this problem, we seek the posterior distribu-
tions for each of the three unknown parameters.

Let’s quickly review the steps for Bayesian analysis:

1. Identify your hypotheses–these would be the alternative hypotheses for b0, and alter-
native hypotheses for b1, and alternative hypotheses for τ.

2. Express your belief that each hypothesis is true in terms of prior probabilities.
3. Gather the data—we have that in hand already.
4. Determine the likelihood of the observed data, assuming each hypothesis is true.
5. Use Bayes’ Theorem to compute the posterior probabilities for each parameter of interest.

Don’t worry about your
hat for this chapter!

OK, phew! What were the results again?

Answer: Well, we ran 20,000 MCMC trials for this analysis, and, with each trial, we store
proposals from the posterior distribution. Let’s have a look at the first 10 trial results after a
burn-in of 5,000 trials, pruning every other trial (see Table 18.2).
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You might recall that the three colored columns give the proposals that have been
drawn from the joint posterior distribution for each of our unknown parameters. And you
might further recall that we generated random values for each level of years in each
MCMC trial, given the proposals for that trial. This allowed us to create the posterior
predictive distribution for each level of years (see Figure 18.2).

Are there other ways to assess fit besides the posterior predictive
distributions?

Answer: Yes. This brings us to the concept of model fit and metrics that will help us to
quantify how well a model fits to the data.

Model fit?

The Oxford Reference tells us that “model fit measures the degree to which a model is in
agreement with the empirical data.” In Chapter 17, we computed the Sums of Squares Error

Table 18.2

Info b0 Proposal Distribution b1 Proposal Distribution τ Proposal Distribution

Hyperparameters Hyperparameters Hyperparameters

Trial [t] n μ0[t] τ0[t] b0[t] μ1[t] τ1[t] b1[t] α[t] β[t] τ[t]

5002 15 8.090 0.210 7.364 2.047 50.000 1.903 7.510 450.301 0.014

5004 15 6.397 0.255 6.068 2.127 62.500 2.272 7.510 521.529 0.017

5006 15 6.187 0.270 3.957 2.257 66.667 2.194 7.510 405.404 0.018

5008 15 3.684 0.480 4.391 2.230 111.111 2.136 7.510 407.457 0.032

5010 15 4.118 0.240 7.126 2.062 58.824 2.047 7.510 405.054 0.016

5012 15 8.752 0.360 7.515 2.038 90.909 1.876 7.510 430.834 0.024

5014 15 7.357 0.375 9.027 1.945 90.909 2.043 7.510 398.051 0.025

5016 15 9.697 0.375 10.839 1.833 90.909 1.981 7.510 407.293 0.025

5018 15 7.941 0.225 4.232 2.240 55.556 2.347 7.510 428.011 0.015

5020 15 1.928 0.195 0.197 2.489 47.619 2.490 7.510 462.432 0.013
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(SSE), or residual sum of squares, in each trial of the MCMC. You may recall that SSE is
computed in each trial as:

SSE ¼
Xn
i¼1

ðyi−ðb0 þ b1xiÞÞ2 ð18:2Þ

Here, we measure the difference between an observed datapoint (yi), and what is predicted
from themodel (b0 þ b1xi), and square the result. The sum of these squared deviations is the
SSE. This metric is an intuitive measure of fit: the smaller the SSE, the less deviation there is
between the observed data and that which is predicted by the model.

In this chapter, we will focus on computing the likelihood L, the log likelihood lnL, and
the −2 log likelihood −2 lnL for each trial as a way of assessing the fit of a model. Unlike SSE,
the higher a model’s likelihood, the more closely the observed data match up with that
which is predicted by the model. Let’s have a look (see Table 18.3).

The likelihood of the model for each trial, given the trial’s parameters, can be calcu-
lated with the the normal pdf. Recall how the normal pdf is often displayed:

f ðxÞ ¼ 1ffiffiffiffiffiffi
2π

p
σ
e−ðx−μÞ

2=ð2σ2Þ: ð18:3Þ

We use the normal distribution because we assumed that this was the distribution that
generated our data. Remember? We worked with τ instead of σ2, so our normal pdf was
rewritten:

f ðxÞ ¼
ffiffiffi
τ

p
ffiffiffiffiffiffi
2π

p e
−τ
2 ðx−μÞ2: ð18:4Þ

Look more closely for the portion of the function that hints vaguely of our residual term,
“something minus something else, squared”:

f ðxÞ ¼
ffiffiffi
τ

p
ffiffiffiffiffiffi
2π

p e
−τ
2 ðx−μÞ2 : ð18:5Þ

See it? If we let yi represent an observed variable (standing in for x), and b0þb1xi stand in for
μ, the likelihood of observing a specific datapoint, given the trial’s parameters is:

Table 18.3

Proposals Model Fit

Trial [t] b0[t] b1[t] τ[t] L lnL −2 lnL
5004 6.068 2.272 0.017 3.30e−23 −51.76486 103.5297

5006 3.957 2.194 0.018 5.07e−23 −51.33613 102.6723

5008 4.391 2.136 0.032 9.38e−24 −53.02337 106.0467

5010 7.126 2.047 0.016 6.09e−23 −51.15252 102.3050

5012 7.515 1.876 0.024 1.70e−23 −52.42597 104.8519

5014 9.027 2.043 0.025 3.12e−23 −51.82250 103.6450

5016 10.839 1.981 0.025 1.60e−23 −52.48851 104.9770

5018 4.232 2.347 0.015 3.69e−23 −51.65249 103.3050

5020 0.197 2.490 0.013 2.76e−23 −51.94293 103.8859

5022 −5.374 2.976 0.026 1.23e−24 −55.05540 110.1108
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Lðyi; b0; b1; τÞ ¼
ffiffiffi
τ

p
ffiffiffiffiffiffi
2π

p e
−τ
2 ðyi−ðb0þb1xiÞÞ2 : ð18:6Þ

Now, if we plug in the trial’s values for b0, b1, and τ, we can estimate the likelihood of
observing each datapoint in our dataset. To get the likelihood of observing the full
dataset in a given trial, the equation is:

Lðy1; y2; : : : ; yn; b0; b1; τÞ ¼ ∏
n

i¼1

ffiffiffi
τ

p
ffiffiffiffiffiffi
2π

p e
−τ
2 ðyi−ðb0þb1xiÞÞ2 : ð18:7Þ

This says: the likelihood is equal to the product of n terms (one for each observation), in
which the likelihood of each observation is obtained from the normal pdf. We then
multiply the individual likelihoods together to get the model’s likelihood. As such, we
assume that the likelihoods among individual contestants are independent of each other
(which brings us back to the laws of probability introduced in our first chapters).
Take a good look at the likelihood values in Table 18.3; they are truly tiny numbers. The

column labeled lnL is just the natural log of the likelihood values. Notice that the smaller
the likelihood, the smaller the log likelihood.
You might recall that the laws of logarithms let us compute the log likelihood for each

trial, in which we add the log likelihoods together instead of multiplying them:

ln
�
Lðy1; y2; : : : ; yn; b0; b1; τÞ

�
¼
Xn
i¼1

ln
ffiffiffi
τ

p
ffiffiffiffiffiffi
2π

p e
−τ
2 ðyi−ðb0þb1xiÞÞ2

� �
: ð18:8Þ

The final gray-shaded column in Table 18.3 is −2 times the log likelihood of the dataset.
Because we multiply by a negative number, the smaller the likelihood or log likelihood, the
larger the −2lnL.
These three columns provide us with information aboutmodel fit and can be used to help

us compare two or more models. This brings us to our second model, the grit model.

OK, shall we evaluate the grit model?

Answer:OK, then! Let’s now estimate amodel that relates success in Survivor as a function
of grit.
Here, we will estimate the following model, where yi is Success in Survivor (number of

days) and xi is Grit:

yi ¼ b0 þ b1 ∗ xi þ ϵi: ð18:9Þ
Our dataset for this problem is highlighted in Table 18.4 in gray.
As a preliminary, essential step, we need to specify the process by which we

assume the data have been generated. Again, presume that each datapoint, yi,
is generated from a normal distribution whose mean is b0 þ b1xi and whose
precision is τ. We can write:

Yi � Nðb0 þ b1xi; τÞ ð18:10Þ

Yi � Nðb0 þ b1 ∗ griti; τÞ: ð18:11Þ
The observednumber of days that contestant i lasts in a Survivor competion, yi, arises from this
normal distribution; the parameters have distributions associatedwith them (see Figure 17.11).
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Let’s quickly review the steps for Bayesian analysis for this model:

1. Identify your hypotheses—these would be the alternative hypotheses for b0, and alter-
native hypotheses for b1, and τ.

2. Express your belief that each hypothesis is true in terms of prior probabilities. Here, we’ll
use the same prior distributions that we used with our first analysis. However, this is
not required! There are three parameters to estimate, each with a prior distribution
defined by hyperparameters:
• b0’s prior distribution is a normal distribution with hyperparameters μ0 ¼ 0 and

τ0 ¼ 0.0001.
• b1’s prior distribution is a normal distribution with hyperparameters μ1 ¼ 0 and

τ1 ¼ 0.0001.
• τ’s prior distribution is a gamma distribution with hyperparameters α0 ¼ 0.01 and

β0 ¼ 0.01.
3. Gather the data—we have that in hand already, shown in gray in Table 18.4. Although

the data could be standardized for analysis (see Appendix 5), we will use the raw data.
4. Determine the likelihood of the observed data, assuming each hypothesis is true.
5. Use Bayes’ Theorem to compute the posterior probabilities for each parameter of interest.

We won’t go into the details for this analysis, but essentially we do everything we did before
in Chapter 17 except that we are evaluating success as a function of grit. Let’s have a peak at
a summary of the MCMC trials for the grit model (see Table 18.5).

Remember that these statistics summarize the posterior distributions of each unknown
parameter; they are marginal distributions. We can also find and plot the posterior predict-
ive intervals as we did in Chapter 17 (see Figure 18.3).

Table 18.5

Minimum Maximum Mean Median Std

b0 10.456 41.55 24.586 24.598 3.065
b1 −0.007 12.053 6.418 6.416 1.178
τ 0.004 0.08 0.026 0.024 0.01

Table 18.4

ID Success IQ Years in School Grit

1 33.48 112 12 2.2
2 42.53 94 14 3.2
3 48.53 118 18 3.4
4 30.21 87 10 1.8
5 38.76 96 13 2.8
6 38.59 106 22 0.2
7 52.93 71 17 4.4
8 32.65 91 15 1.0
9 52.42 95 16 4.6

10 22.22 94 9 0.4
11 41.40 100 19 1.6
12 16.28 98 8 0.0
13 40.83 94 20 1.2
14 24.43 113 11 0.6
15 56.38 85 21 4.2
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So, with this model, if you have grit score of 3, the 95% posterior predictive interval
suggests that you may last between 29.99 and 57.76 days in a game of Survivor. The tighter
interval indicates that you, the researcher, have more confidence in this prediction.
This is a good time to remind you that the dataset was fabricated so that grit was a strong

predictor of success, which has nothing to do with the Duckworth et al. dataset. However,
in our own experience, rolling up your sleeves and tackling problems with fierce determin-
ation is a skill worth building!

So which model is the better model?

Answer: This brings us to the topic of model selection, which we will briefly introduce and
then point you to the experts. Upton and Cook (2014) define model selection as “a
procedure for choosing between competing models that is based on balancing model
complexity against the quality of that model’s fit to the given data.”
The first step is to identify amodel set—or the statistical models that will be pitted against

each other. Here, we treat each model as a hypothesis (see Figure 18.4).

So far, we have considered two alternative models which make up our model set. We
designate the model set as:

M ¼ fM1;M2g ð18:12Þ
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• M1 ¼ the years model
• M2 ¼ the grit model

But we could have considered more hypotheses about what drives success. Duckworth and
colleagues, for example, analyzed levels of education, age, sex, conscientiousness, neuroti-
cism, agreeableness, extraversion, and openness to experience (among other variables).

In their book Model Selection and Multimodel Inference: A Practical Information–
Theoretic Approach, Ken Burnham and David Anderson emphasize that the models within
a model set should be based on sound scientific principles (Burham and Anderson, 2004).
In other words, models represent scientific hypotheses and are intentionally evaluated.

Then what?

Answer: Once the set of candidate models has been chosen, we need to balance model
complexity against the quality of that model’s fit. The opposite of complexity is simplicity,
so we are aiming for a model that is simple but also fits the observed data well.

Simplicity?

Answer: This notion is based on Occam’s razor (see Figure 18.5). Encyclopedia Britannica
explains:“Occam’s razor, also spelledOckham’s razor, alsocalled lawofeconomyor lawofparsi-
mony, [is a] principle stated by the Scholastic philosopherWilliamofOckham (1285–1347/49)

Figure 18.5 William of Ockham.
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that pluralitas non est ponenda sine necessitate, ‘plurality shouldnot bepositedwithoutnecessity.’
The principle gives precedence to simplicity: of two competing theories, the simpler explan-
ation of an entity is to be preferred.”
The idea here is that “parameters” are akin to assumptions. For models with the same fit

(e.g., the same model likelihood), we should select the model with the fewest parameters.
A quick example is in order. Let’s consider a new, hypothetical dataset and fit a few

models to the data (see Figure 18.6). The blue line in Figure 18.6 is the equation of a
straight line, so two parameters are estimated. The black line includes 1 additional term
(a second order polynomial), and the red line includes 2 additional terms (a third order
polynomial).

Which model best fits the data: red, black, or blue? Well, there is a distinct “downward
dip” in the data, which the blue line misses. The black line captures the dip but misses the
fact that the data are relatively constant for low values of x. The red line seems to capture
the data best, but it does so by estimating an additional parameter.

So why not go with the red line?

Answer: Well, it is always easy to add more parameters to explain the data. In a famous
quote, John von Neumann said “With four parameters I can fit an elephant, and with five
I can make him wiggle his trunk.” Apparently it’s true!

You can see this in action at http://demonstrations.wolfram.com/FittingAnElephant/.
What von Neumann meant was that, with enough parameters, we can find a function
that will really capture every datapoint of interest.
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Figure 18.6

J. Mayer, K. Khairy, and J. Howard. “Drawing an elephant with four complex param-
eters.” American Journal of Physics 78.6 (2010): 648–9. DOI:10.1119/1.3254017.
J. Wei. “Least square fitting of an elephant.” Chemtech 5.2 (1975): 128–9.
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What’s wrong with that?

Answer: Well, in statistics we develop models from a sample of data and are trying
to make inferences to a broader population. In other words, we don’t want to draw
conclusions about success for only the 15 Survivor contestants that make up our dataset;
we want to draw conclusions about ALL participants of Survivor. If you use a lot of
parameters to explain the data in hand (the sample), youmay have captured your particular
dataset but completely miss the mark for the population as a whole! This is known as
“overfitting.”

’Tis a gift to be simple.

OK, so how do we quantify this trade-off between “fit” and
“simplicity” for a given model?

Answer: We need some measure of fit for each model, and some measure of simplicity for
each model. These two measures will be combined to give us some quantitative metric
for each model.

How is this metric computed?

Answer: There are several alternativemethods, and the one wewill discuss is called DIC, or
Deviance Information Criterion. It requires that you specify the following information
about each model and the dataset:

• n ¼ the sample size of the dataset
• k ¼ the number of parameters that are estimated (model simplicity)
• model fit:

• L ¼ the model’s likelihood
• lnL ¼ the model’s log likelihood (natural log, or ln)
• −2 lnL ¼ −2 ∗ the log likelihood

We previously showed that these “fit” statistics can be measured for each MCMC trial
(Equations 18.7 and 18.8). In addition to summarizing the proposals for each parameter, we
can summarize these statistics across trials for our models.

Table 18.6 shows the results for our years model.

And Table 18.7 shows the summary for our grit model.
Now that we have these summary statistics in place, we can compute the Deviance

Information Criterion, or DIC for short.

Table 18.6

Minimum Maximum Mean Median Std

L 9.72e−29 6.74e−23 2.16e−23 1.78e−23 1.73e−23
lnL −64.50106 −51.05081 −52.75127 −52.38553 1.41026
−2 lnL 102.10162 129.00213 105.50253 104.77106 2.82051
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• The SAS Institute defines deviance information criterion as: “The deviance information
criterion (DIC) is a model assessment tool…The DIC uses the posterior densities, which
means that it takes the prior information into account. Calculation of the DIC in MCMC
is trivial [easy]… A smaller DIC indicates a better fit to the data set.” This method was
developed by Spiegelhalter et al. in 2002.

DIC ¼ �D þ pD ð18:13Þ
The term D, generally speaking, is the deviance of a model and is −2 times the log
likelihood function. This is a standard term for this metric. Notice the bar over the D in
the DIC calculation. This signifies that we take the mean of the −2lnL across MCMC trials,
which is provided in the last row of each model’s summary table (Tables 18.6 and 18.7).

• The term pD is a measure of simplicity, where pD is called the effective number of
parameters and is calculated as pD ¼ �D − D̂. To calculate D̂, you plug in the average
estimates for the model parameters across MCMC trials and then calculate the −2 lnL
associated with this model. In the words of the WinBUGS helpfile, “pD is the posterior
mean of the deviance minus the deviance of the posterior means.”

Do these criteria somehow help us to compare models?

Answer: You got it. The idea is that models with smaller DIC should be preferred tomodels
with larger DIC. Let’s start with the years model (see Table 18.8).

Remember that DIC is computed as:

DIC ¼ �D þ pD ð18:14Þ
where

pD ¼ �D − D̂: ð18:15Þ

D. J. Spiegelhalter, N. G. Best, B. P. Carlin, et al. “Bayesianmeasures of model complexity
and fit.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64.4 (2002):
583–639. DOI: 10.1111/1467-9868.00353. http://doi.org/10.1111%2F1467-9868.00353.

Table 18.8

Minimum Maximum Mean Median Std

b0 −28.884 49.863 7.644 7.634 8.29
b1 −0.539 4.337 2.031 2.031 0.532
τ 0.002 0.052 0.016 0.015 0.006
−2 ln L 102.102 129.002 105.503 104.771 2.821

Table 18.7

Minimum Maximum Mean Median Std

L 1.01e−26 2.03e−21 6.55e−22 5.44e−22 5.19e−22
lnL −59.85392 −47.64556 −49.33342 −48.96228 1.39335
−2 lnL 95.29112 119.70785 98.66683 97.92457 2.7867

THE SURVIVOR PROBLEM CONTINUED 319

http://doi.org/10.1111%2F1467-9868.00353


For the years model, �D is the average of −2 lnL across MCMC trials, or 105.503:

�D ¼ 105:503 ð18:16Þ
The term pD ¼ �D − D̂ requires that we compute D̂, which is the deviance of the model when
the average parameter estimates across trials are used. We can calculate this by plugging
in the MCMC average values for each parameter estimate into the normal pdf and calcu-
lating the −2 log likelihood for this model.

Here, that would be:

D̂ ¼ −2 ∗ ln
�
Lðdata; �b0; �b1; �τÞ

�
¼ −2 ∗

Xn
i¼1

ln

ffiffiffi
�τ

p
ffiffiffiffiffiffi
2π

p e−
�τ
2ðyi−ð�b0þ�b1 ∗ xiÞÞ2Þ

�
ð18:17Þ

D̂ ¼ −2 ∗ ln
�
Lðdata; �b0; �b1; �τÞ

�
¼ −2 ∗

Xn
i¼1

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
0:016

p
ffiffiffiffiffiffi
2π

p e−
0:016
2 ðyi−ð7:644þ2:031 ∗ xiÞÞ2

 !
¼ 102:284:

ð18:18Þ
Thus, the DIC score for the years model is:

DIC ¼ �D þ pD ¼ 105:503þ ð105:503−102:284Þ ¼ 108:721: ð18:19Þ
Now for the grit model. Here, once again, are our summarized MCMC results (see
Table 18.9).

For the grit model which we just ran, �D is the average of −2lnL across MCMC trials, or
98.667. The term pD ¼ �D − D̂ for this model is 98.667 minus the model’s −2lnL when we
plug in the average values for each parameter estimate into the normal pdf.

Here, that would be:

D̂ ¼ −2 ∗ ln
�
Lðdata; �b0 ; �b1 ; �τÞ

�
¼ −2 ∗

Xn
i¼1

ln

ffiffiffi
�τ

p
ffiffiffiffiffiffi
2π

p e−
�τ
2ðyi−ð �b0þ �b1 ∗ xiÞÞ2

� �
ð18:20Þ

D̂ ¼ −2 ∗ ln
�
Lðdata; �b0 ; �b1 ; �τÞ

�
¼ −2* ∗

Xn
i¼1

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
0:026

p
ffiffiffiffiffiffi
2π

p e−
0:026
2 ðyi−ð24:586þ6:418 ∗ xiÞÞ2

 !
¼ 95:42:

ð18:21Þ
The final DIC result for the grit model is:

DIC ¼ �D þ pD ¼ 98:667þ ð98:667−95:42Þ ¼ 101:914: ð18:22Þ
So, the grit model has a DIC value of 101.914, while the years model has a DIC value of
108.721, a difference of 6.807 units.

Table 18.9

Minimum Maximum Mean Median Std

b0 10.456 41.55 24.586 24.598 3.065
b1 −0.007 12.053 6.418 6.416 1.178
τ 0.004 0.08 0.026 0.024 0.01
−2 ln L 95.291 119.708 98.667 97.925 2.787
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• YearsDIC ¼ 108:721
• GritDIC ¼ 101:914

How do you use these two results to draw conclusions?

Answer:Well, you’re looking for themodel with the smallest DIC value, which in this case
is the grit model.

The authors ofWinBUGS provide these thoughts onDIC in their user guide: “It is difficult
to say what would constitute an important difference in DIC. Very roughly, differences of
more than 10might definitely rule out the model with the higher DIC, differences between
5 and 10 are substantial. But if the difference inDIC is, say, less than 5, and themodelsmake
very different inferences, then it could be misleading just to report the model with the
lowest DIC.”
Essentially, we have two hypotheses related to success: grit vs. years of education. Our

DIC results suggest that the grit model is more strongly supported.
Technically, we should have standardized our dataset as discussed in Chapter 17. Keep in

mind that the aim throughout this book has been to provide a big-picture overview of
Bayesian topics, and you will certainly want to dig deeper.

Can we summarize the chapter so far?

Answer: Sure. Model selection is directly related to the scientific race track. Alternative
models represent alternative hypotheses that explain some phenomena. Here, grit versus
years of formal education are competing explanations (hypotheses) for why some people
last longer in a game of Survivor. After collecting data, we used MCMC approaches to
develop two linear regression models, one for each hypothesis. Each model had prior
distributions for each of themodel’s parameters, and theMCMC analysis provided updated
posterior distributions for these parameters, as well as a joint posterior distribution. With
the results of the twoMCMC analyses in hand, we used a particular model selectionmetric,
Deviance Information Criterion (DIC), to help identify which hypothesis (model) is most
strongly supported by the observed data, while accounting for simplicity (see Figure 18.7).
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Data

Inference
(Verification
of Theory)
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Figure 18.7
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Since each model is a hypothesis regarding success, can’t we use
Bayes’ Theorem in some way and update our beliefs that each
model is true?

Answer: Ahhh, yes.

Time for yet
another use of
my Theorem?

Here is the discrete version of Bayes’ Theorem that we have come to love:

PrðHi jdataÞ ¼ Prðdata jHiÞ ∗PrðHiÞXn
j¼1

Prðdata jHjÞ ∗PrðHjÞ
: ð18:23Þ

The prior probability for each discrete hypothesis is shown in blue, and the likelihood of
observing the data under each hypothesis is shown in red. Bayes’ Theorem will return the
posterior probability of hypothesis i given the data.

If alternative models can be thought of as alternative hypotheses, we can make use of
the discrete version of Bayes’ Theorem to update the prior probability that each model (Mi)
is true. In other words:

PrðMi jdataÞ ¼ Pðdata jMiÞ ∗PrðMiÞ
XK
j¼1

Pðdata jMjÞ ∗PrðMjÞ
: ð18:24Þ

In this case, we have a set of K models, written as M ¼ fM1;M2; : : : ;Mkg, under consider-
ation. Each model is provided a prior probability of being the correct model, and the prior
probabilities must sum to 1. The prior probabilities are assigned before you do your data
analysis, and you should make use of any previous knowledge that you have.

The red portion of the equation is the probability of the data given a specific model. This
is the marginal distribution of the data. Some books refer to this as the marginal data
distribution for the model (e.g., Hobbs and Hooten, 2015). This can be calculated in general
terms as:

PðdatajMiÞ ¼
ð
Pðdatajθ;MiÞPðθÞdθ: ð18:25Þ

Here, θ is a vector of parameters to be estimated for model Mi.

This looks familiar. Have I seen this before?

Answer: Yes! You’ve seen this many, many times in this book. This is what is typically in
the denominator of Bayes’ Theorem.
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PðθjdataÞ ¼ PðdatajθÞ ∗ PðθÞð
PðdatajθÞ ∗ PðθÞdθ

: ð18:26Þ

This is the generic version of Bayes’ Theorem when the posterior distribution for a single
parameter, given the observed data, is represented by a pdf.
For our specific linear regression model, we wrote this as:

Pðb0; b1; σ2jdataÞ ¼ Pðdatajb0; b1; σ2Þ ∗ Pðb0; b1; σ2Þð ð ð
Pðdatajb0; b1; τÞ ∗ Pðb0; b1; τÞdb0; db1; dτ

: ð18:27Þ

Well, how do we calculate the marginal distribution of the data
for a given model?

Answer: This is beyond the scope of our book. We’ve just touched the surface. We haven’t
even scratched it yet!

How do I get below the surface?

Answer: As we’vementioned, there’s no shortage of help. Here are a few books and articles
that grace our shelves:

• A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis. Chapman &
Hall, 2004.

• N. T. Hobbs and M. B. Hooten. Bayesian Models: A Statistical Primer for Ecologists.
Princeton University Press, 2015.

• M. B. Hooten and N. T. Hobbs. “A guide to Bayesian model selection for ecologists.”
Ecological Monographs 85.1 (2015): 3–28.

• J. V. Stone. Bayes’ Rule: a Tutorial Introduction to Bayesian Analysis. Sebtel Press, 2014.

For programming:

• J. Kruschke. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan.
Elsevier, 2015..

• J. Albert. Bayesian Computation with R. Springer New York, 2009.

For ecologists in particular:

• J. A. Royle and M. Kery. Applied Hierarchical Modeling in Ecology. Elsevier, 2016.
• B. Bolker. Ecological Models and Data in R. Princeton University Press, 2008.
• M. A. McCarthy. Bayesian Methods for Ecology. Cambridge University Press, 2007.
• M. Kéry. Introduction to WinBUGS for Ecologists. Elsevier, 2010.
• W. Link and R. Barker. Bayesian Inference. Elsevier, 2010.
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What’s next?

Go forth and be gritty!
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CHAPTER 19

The Lorax Problem: Introduction
to Bayesian Networks

Welcome to our chapter on Bayesian networks, a very useful technique that can be used to
answer a variety of questions and aid decision making. Conditional and marginal probabil-
ities rule the day in a Bayesian network.
By the end of this chapter, you will have a firm understanding of the following concepts:

• Bayesian network
• Directed acyclic graph
• Parent or root node
• Child node
• Influence diagram
• Conditional probability table (CPT)
• Chain rule for joint probability

To set the stage for this chapter, we’ll begin with a story called The Lorax, one of Dr. Seuss’s
personal favorites. You may have read this story or even watched the film.
Pour yourself a cold glass of milk and grab a cookie or two, as we’ll take a moment to read

the plot line from Wikipedia:
A boy living in a polluted area visits a strange isolated man called the Once-

ler in the Street of the Lifted Lorax. The boy pays the Once-ler fifteen cents, a
nail, and the shell of a great-great-great grandfather snail to hear the legend
of how the Lorax was lifted away.
The Once-ler tells the boy of his arrival in a beautiful valley containing a

forest of Truffula trees and a range of animals.
The Once-ler, having long searched for such a tree as the Truffula, chops one

down and uses its wool-like foliage to knit a Thneed, an impossibly versatile
garment. TheLorax,who “speaks for the trees”as theyhaveno tongues, emerges
fromthe stumpof theTruffula andvoices his disapproval bothof the sacrifice of
the tree and of the Thneed itself. However, the first other person to happen by
purchases the Thneed for $3.98, so the Once-ler is encouraged and starts a busi-
ness making and selling Thneeds.
The Once-ler’s small shop soon grows into a factory. The Once-ler’s relatives

all come to work for him and new vehicles and equipment are brought in to
log the Truffula forest and ship out Thneeds.
The Lorax appears again to report that the small bear-like Bar-ba-loots, who

eat Truffula fruits, are short of food and must be sent away to find more. The
Lorax later returns to complain that the factory has polluted the air and the
water, forcing the Swomee-Swans and Humming-Fish to migrate as well.

Bayesian Statistics for Beginners: A Step-by-Step Approach. Therese M. Donovan and Ruth M. Mickey,
Oxford University Press (2019). © Ruth M. Mickey 2019.
DOI: 10.1093/oso/ 9780198841296.001.0001



The Once-ler is unrepentant and defiantly tells the Lorax that he will keep
on “biggering” his business, but at that moment one of his machines fells the
very last Truffula tree. Without raw materials, the factory shuts down and
the Once-ler’s relatives leave.

What a bleak, bleak story! In the end, everybody loses.

How could this tragedy have been averted?

Answer:Wouldn’t it be nice to understand how Thneed production, Truffula trees, Bar-ba-
loots, Swomee-Swans and Humming-Fish influence each other? If the Once-ler had known
about Bayesian networks, he could have used them as an aid to his business so that the
trees were harvested in a sustainable manner.

Sustainable manner?

Answer: Encyclopedia Britannica says that “sustainability is presented as an alternative to
short-term, myopic, and wasteful behaviour.”

Of course, if the Once-ler was interested in such an approach, he wouldn’t advocate
squandering the resource (Truffula trees) that fuels his business, and the name “Once-ler”
wouldn’t really apply!

What is a Bayesian belief network?

Answer:Wikipedia tells us that “a Bayesian network, Bayes network, belief network, Bayes
(ian) model or probabilistic directed acyclic graphical model is a probabilistic graphical
model (a type of statistical model) that represents a set of random variables and their
conditional dependencies via a directed acyclic graph (DAG)” (article accessed August
21, 2017).

Aack! Can we see an example?

Answer: That’s what we’re here for. Let’s take a quick look at the example shown on the
Wikipedia page (see Figure 19.1).

This example is also provided by the makers of a software program called Netica, which
enables analysis of Bayesian networks. This particular diagram is a model of why the grass
could be wet or dry, or why the sprinkler may be on or off.

Here, we see three variables of interest, each shown by an oval. These variables are often
called “nodes.”

SPRINKLER RAIN

GRASS_WET

Figure 19.1
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You’ve probably noticed that some variables (nodes) have arrows leading out of them,
and some have arrows leading into them. The RAIN node has arrows leading out of it, while
SPRINKLER node has arrows leading into it and out of it, and GRASS WET node has arrows
leading into it. The nodes and arrows collectively make up a model of how the system
works, loosely corresponding to cause and effect. Rain affects whether the grass is wet, and
it also affects whether the sprinkler is turned on. The sprinkler also affects whether the grass
is wet. If the grass is wet, it could be due to the sprinkler, the rain, or both.
The Netica tutorial indicates that “the direction of the link arrows roughly corresponds to

causality.” The node that is the origin of an arrow is sometimes called the “parent node” or
a “root node,” and the node to which an arrow leads is sometimes called the “child node.”
In our example, Rain is a parent node, Sprinkler is both a parent and a child node, and Grass
Wet is a child node. The diagram in Figure 19.1 is called an influence diagram because it
specifies how variables influence one another.
Now let’s look at this same network as depicted in theWikipedia example, where we see a

table associated with each node (see Figure 19.2).

1. The SPRINKLER has two states: it can be on (T) or off (F).
2. RAIN has two states: it can be raining (T) or not (F).
3. The GRASS WET variable has two states: it can be wet (T) or dry (F).

The definition of a state here is identical to the definition of an event introduced in
Chapter 1. There, we quoted from the Oxford Dictionary of Statistics (Upton and
Cook, 2014):
“An event is a particular collection of outcomes, and is a subset of the sample space.” For

example, when a die is thrown and the score observed, the sample space is {1, 2, 3, 4, 5, 6},
and a possible event is the score is even, that is, {2, 4, 6}. If all the possible outcomes are
equally likely, then the probability of an event A is given by

PrðAÞ ¼ Number of events in subset of sample space corresponding toA
Number of events in sample space

: ð19:1Þ

In a network, we take a given variable, like RAIN, and write out the probability of observing
each state.
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Figure 19.2 A simple Bayesian network with conditional probability tables.
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• Let’s let S represent the sprinkler is on (SPRINKLER ¼ T) and �S represent the sprinkler is
off (SPRINKLER ¼ F).

• Let’s let R represent it is raining (RAIN ¼ T) and �R represent not raining (RAIN ¼ F)
• Let’s let G represent the grass is wet (GRASS WET ¼ T) and �G represent the grass is dry

(GRASS WET ¼ F).

Then we can express the probability that it is raining as:

PrðRÞ ¼ 0:2 ð19:2Þ
The probability that it is not raining is:

Prð�RÞ ¼ 0:8: ð19:3Þ
See Figure 19.3.

These probabilities for RAIN aremarginal probabilities: they are the sum over all states
for any other variable that may influence whether it rains or not. We will pick up on this
topic soon.

So, is this a probabilistic model?

Answer: Yes! It is a networkmodel that consists of three variables, and each variable state
has an associated probability.

We could generalize the problem like this, which is an example of a directed acyclic graph
(DAG; see Figure 19.4).
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Figure 19.3 A simple Bayesian network with conditional probability tables.

Figure 19.4 Directed acyclic graph.
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Directed acyclic graph?

Answer: The Oxford Dictionary of Social Research Methods (Elliot et al., 2016) states that
“a directed acyclic graph (DAG) is a directed graph that contains no cycles. Any two nodes
can be joined or not (by an edge) and edges can either directed or undirected.”
Our graph in Figure 19.4 has three nodes (points or vertices) and three directed arrows

(edges) that connect them. The arrows specify directionality. The graph is designed so that
there is no way to start at any one point and return to it later (cycling).
The general idea of directed acyclic graphs is not as complicated as it seems. Have you

ever worked in a spreadsheet? A spreadsheet can bemodeled as a DAG, where entries in one
cell are used in other cells. If you’ve used a spreadsheet, have you ever generated a circular
error? This occurs when the rules of DAGs are broken. For instance, if the formula in cell
D3 specifies adding the values stored in cell D1, D2, and D3, an error will result (see
Figure 19.5).

This equation in cell D3 can be graphed as in Figure 19.6.

Since cell D3 feeds back or cycles back into itself, this is not a DAG and an error is
generated. Similarly, a Bayesian network is a DAG, and it will not work if it does not follow
DAG rules.

OK. Got it! Who created the sprinkler–rain–grass network?

Answer:We’re not sure! The main point is that you take a problem of interest, identify the
relevant variables, and then draw arrows to show how they relate to one another. Notice
that whoever created this network did not indicate that rain depends on the sprinkler
event. You can probably see why the arrows are necessary in our network. Does it make any
sense that the probability of rain is influenced by whether the sprinkler is on or off? But
notice that the network creator also did not let the state of the grass influence the state of
the sprinkler. If you are a homeowner, you might be tempted to turn on the sprinkler if the
grass is too dry. However, that would create a double-headed arrow, and the graph would
not be a DAG.

Sum
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fxX √

2

3

4

5

Figure 19.5

cell D1

cell D3

cell D2

Error!

Figure 19.6
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All right then. What about the SPRINKLER node of our diagram?

See Figure 19.7.

Answer: The arrow from the RAIN node to the SPRINKLER node indicates that the
SPRINKLER node is conditional, that is, it depends on the state of the RAIN node. This
harkens back to ideas presented in Chapter 2 when we introduced the terms joint prob-
ability, marginal probability, and conditional probability.

It will be well worth our time to review these terms. Let’s suppose we collect a dataset on
sprinkler use and rain across 100,000 days. Here’s the dataset, shown in the dark turquoise
(see Table 19.1).

The rows indicate whether it rained on a given day or not, and the columns indicate
whether the sprinkler was on or off. The number 32,000 in the upper left cell indicates
that we observed 32,000 days in which it did not rain and the sprinkler was on. The number
48000 in the upper right cell indicates that we observed 48,000 days in which it did not rain
and the sprinkler was off. And so on.

The margins of the table give the sums of the rows and columns. In this instance, we
observed 80,000 days of no rain and 20,000 days with rain. In addition, we observed 32,200
days when the sprinkler was on and 67,800 days in which the sprinkler was off (light
turquoise).
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Figure 19.7 A simple Bayesian network with conditional probability tables.

Table 19.1

SPRINKLER

On Off Sum

RAIN
No 32,000 48,000 80,000
Yes 200 19,800 20,000

Sum ! 32,200 67,800 100,000
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These raw numbers can be turned into probabilities by dividing the entire table by the
number of samples, or 100,000 (see Table 19.2).

This table, sometimes called a conjoint table, provides us with the joint and marginal
probabilities of interest. A joint probability, shaded in dark turquoise, is the probability
of two things happening together, such as the probability that it rained AND that the
sprinkler was on. The answer is 0.002. This can be written:

PrðR \ SÞ ¼ 0:002: ð19:4Þ
When you hear the word joint, you should think of the word AND.

In addition to the joint probabilities, the table also provides themarginal probabilities,
which look at the probability of rain or no rain (aggregating over the state of the sprinkler)
and the probability of sprinkler on versus sprinkler off (aggregating over the state of the
rain). The word marginal is defined in the dictionary as “pertaining to the margins; or
situated on the border or edge.” In calculating a marginal probability, the variables that are
aggregated are said to be “marginalized out.”

In Table 19.2, the marginal probabilities are just the totals for one characteristic of
interest accumulated over the other characteristics that might be listed in the table.
The marginal probabilities associated with RAIN in column 3 are not shaded. Here, as

we’ve seen earlier, the marginal probability of no rain ¼ 0.8, and the marginal probability
of rain is 0.2. Themarginal probabilities associated with SPRINKLER in row 3 of our table are
shaded light turquoise. Here, the marginal probability that the SPRINKLER is on is 0.322,
while the marginal probability that the SPRINKLER is off ¼ 0.678. In these calculations, we
have “marginalized out” the variable, RAIN. These can be written:

PrðSÞ ¼ 0:322 ð19:5Þ

Prð�SÞ ¼ 0:678: ð19:6Þ

Are there any other probabilities stored in this table?

Answer: One more type of probability can be calculated from this table, and that is
conditional probability. You may recall that conditional probability measures the
probability of an event given that another event has occurred. Conditional probability is
written as:

• Pr(S | R), which is read, “the probability that the sprinkler is on, given rain.”
• Pr(S | �R), which is read, “the probability that the sprinkler is on, given no rain.”

Table 19.2

SPRINKLER

On Off Sum

RAIN
No 0.32 0.48 0.8
Yes 0.002 0.198 0.2

Sum ! 0.322 0.678 1
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• Pr(R | �S), which is read, “the probability that it is raining, given the sprinkler is off.”
• Pr(R | S), which is read, “the probability that it is raining, given the sprinkler is on” (article

accessed August 21, 2017).

Remind me again . . . how do you calculate conditional probability?

Answer: You “zoom” to the marginal probability for the conditioning event of interest
and then ask “what portion of the total marginal probability is made up of the other
characteristic of interest?”

For example, the conditional probability that the sprinkler is on, given that it is raining, is
computed as:

PrðS jRÞ ¼ PrðS \ RÞ
PrðRÞ ¼ 0:002

0:2
¼ 0:01: ð19:7Þ

The conditional probability that the sprinkler is off, given that it is raining, is computed as:

Prð� S jRÞ ¼ 0:198
0:2

¼ 0:99: ð19:8Þ

The conditional probability that the sprinkler is on, given that is does not rain, is
computed as:

PrðS j� RÞ ¼ 0:32
0:8

¼ 0:4: ð19:9Þ

The conditional probability that the sprinkler is off, given that it does not rain, is
computed as:

Prð� S j� RÞ ¼ 0:48
0:8

¼ 0:6: ð19:10Þ

Now let’s have another look at the Wikipedia network, paying close attention to the
SPRINKLER section (see Figure 19.8). Do the numbers look familiar?
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Figure 19.8 A simple Bayesian network with conditional probability tables.
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Um. . . the tables consist of conditional probabilities?

Answer: You got it! In addition to the influence diagram, a Bayesian network requires
tables that hold conditional probabilities. These tables are called, not surprisingly,
conditional probability tables, or CPT’s for short.
Now we can make some important, general comments about a Bayesian network:

• Nodes with no arrows leading to them have tables that providemarginal probabilities.
• Nodes with arrows leading to them have tables that provide conditional probabilities.

What do you notice about the setup of the SPRINKLER table?

Answer: The states of the sprinkler make up the columns of this table, while the states of
the variable that influences it are provided as rows. Because sprinkler state (T or F) depends
on the rain state (T or F), the table is a two-by-two table that is filled with conditional
probabilities.
Note that the sumof each row equals 1 becausewe completely accounted for

both of the sprinkler events for a specific rainfall condition.

And what about the GRASS WET variable?

Answer: Once again, notice that the columns of the table GRASS WET provide the two
possible states for the node of interest. Also notice that the combinations of the variables
that influence it are provided in the rows of the table.
What should the rows consist of? Well, the state for GRASS WET (T or F) is conditional

upon both the state of the sprinkler and the state of rain. The arrows in the network tell us
that this is the case. Since SPRINKLER has two states, and RAIN has two states, there are four
possible combinations of SPRINKLER and RAIN that make up the rows in the GRASS WET
table (see Figure 19.9).
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Figure 19.9 A simple Bayesian network with conditional probability tables.
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Once again, it should be clear that the numbers in this table are conditional prob-
abilities – each row sums to 1.0.

How do we calculate the values in this table?

Answer: Well, we started off with the dataset shown in Table 19.3, which was very
appropriate for computing the SPRINKLER conditional probabilities.

This dataset contains no information on grass conditions. To get the conditional
probabilities in the GRASS WET table, we need a more refined dataset.

What if you don’t have any data for the necessary calculations?

Answer: The conditional probabilities associated with any of the tables in the network can
come from data, but they can also come from your best guess. Or they could come from a
combination of data and expert guesses. In the words of Bayesian belief network guru Bruce
Marcot, “That’s cool!”

We were not provided with a refined dataset that included the state of the
grass. As a result, we will assume that the conditional probabilities were
provided by experts, perhaps a friendly neighborhood lawn company.

Can we use this particular network to answer questions?

Answer: Once our network is fully specified as in Figure 19.9, we can use it to answer all
kinds of questions, and Bayes’ Theorem plays a central role. For instance:

• If the grass is wet, what are the chances it was caused by rain?
• If the chance of rain increases, how does that affect the amount of time I’ll need to spend

watering the lawn?

How do we start?

Answer: Since both questions above include the state of the grass, we will need to create a
conjoint table based on the conditional probabilities in the GRASS WET node, and ANY
parent nodes that affect it.

Table 19.3

SPRINKLER

On Off Sum

RAIN
No 32,000 48,000 80,000
Yes 200 19,800 20,000

Sum ! 32,200 67,800 100,000

To use the network, the relevant underlying conjoint tables must be computed.
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Our table will end up looking something like that shown in Table 19.4; we will fill in the
turquoise cells shortly.

Notice that the structure of this table mirrors the structure of the conditional probability
table . . . themaindifference is that itwill hold jointprobabilities in the dark turquoise cells
instead of conditional probabilities. As you’ll see, the sum of ALL turquoise cells will be 1.0.
We can calculate each joint probability easily by making use of the chain rule

in probability, which is also called the general product rule and is not to be
confused with the chain rule in calculus. The chain rule is just an extension—a repeated
application—of the joint probability formula given in Chapter 2. Wikipedia tells us: “The
rule is useful in the study of Bayesian networks, which describe a probability distribution in
terms of conditional probabilities.”

Wikipedia continues with an example of four events, where the chain rule produces this
product of conditional probabilities to compute a joint probability of 4 events:

PrðA4 \ A3 \ A2 \ A1Þ ¼ PrðA4 jA3 \ A2 \ A1Þ ∗PrðA3 jA2 \ A1Þ ∗PrðA2 jA1Þ ∗PrðA1Þ:
ð19:11Þ

Hopefully, the pattern is apparent. Let’s use the chain rule to compute the joint probability
that the grass is wet, the sprinkler is on, and it is raining (see Figure 19.10).We canwrite this
as PrðG;R; SÞ, and it can be calculated as:

PrðG \ R \ SÞ ¼ PrðG j S \ RÞ ∗PrðS jRÞ ∗PrðRÞ ¼ 0:99 ∗0:01 ∗0:2¼ 0:00198: ð19:12Þ

Table 19.4
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Figure 19.10 A simple Bayesian network with conditional probability tables.
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Notice the calculation simply multiplies a series of conditional probabilities that lead
back to the root node. This should make sense, knowing which nodes influence the others.
Three terms will be multiplied:

• PrðG j S \ RÞ ¼ 0:99
• PrðS jRÞ ¼ 0:01
• PrðRÞ ¼ 0:2

The answer is 0.00198. We can add this result to our joint probability table (see Table 19.5).

Can you tell me more about the chain rule?

Answer: Indeed. Formally, the chain rule is:

Prð \n
k¼1

AkÞ ¼ ∏
n

k¼1
ðAk j \

k−1

j¼1
AjÞ: ð19:13Þ

In a nutshell, this equation basically says that the joint probability of n events called A1, A2,
A3, . . . , An occurring is the product of n − 1 conditional probability terms and one marginal
probability term. The equation looks scarier than its implementation, don’t you agree? In
our example, there are n ¼ 3 events, and the joint probability was calculated as the product
of 2 conditional probabilities—PrðG j S \ RÞ and Pr(S | R)—and one marginal probability—
Pr(R).

Can we try another one?

Answer: Sure! How about the upper right cell? We can write this as Pr(�G, �R, �S), and it
can be calculated as:

Prð� G\ � R\ � SÞ ¼ Prð� G j � S\ � RÞ∗Prð� S j� RÞ∗Prð� RÞ ¼ 1:0∗0:6∗0:8 ¼ 0:48000:

ð19:14Þ
Let’s use the Bayes’ net to visualize the calculations (see Figure 19.11).

Three terms will be multiplied to calculate the result:

• Prð� G j � S\ � RÞ ¼ 1
• Prð� S j � RÞ ¼ 0:6
• Prð� RÞ ¼ 0:8

The answer is 0.48000. We can add this result to our joint probability table, along with rest
of the joint probability calculations. Crank out your pencil and double check our

Table 19.5

GRASS WET

SPRINKLER RAIN T F

1 False False
2 False True
3 True False
4 True True 0.00198
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results before continuing! Notice that we’ve also added in the marginal calculations
and that the sum of the full table is 1.0 (see Table 19.6).

The chain rule rocks! Because the network is composed of conditional probabilities (except
for root nodes, which are marginal probabilities), we can use it to quickly compute the joint
probabilities which can be used to answer all kinds of questions.

Why is this important?

Answer: Because a Bayesian network simplifies the number of calculations dramatically by
computing only those joint probabilities that are required. Think about it: if we have a
network of one node that consists of two states (rain or no rain), we need to estimate two
parameters: Pr(R) and Pr(�R) (or only one if you can get the second by subtraction). Let’s
add a new node: the sprinkler can be on or off. That results in four joint probability
estimates. Let’s add yet another new node: the lawn can be wet or dry. That results in 8
joint probabilities to estimate. Suppose we have one more node: the hose is working (yes or
no). That brings us to 16 joint parameters to estimate.
Do you see a pattern here? 2, 4, 8, 16, 32, . . .
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Figure 19.11 A simple Bayesian network with conditional probability tables.

Table 19.6

GRASS WET

SPRINKLER RAIN T F Sum

1 False False 0.00000 0.48000 0.480
2 False True 0.15840 0.03960 0.198
3 True False 0.28800 0.03200 0.320
4 True True 0.00198 0.00002 0.002
Sum ! 0.44838 0.55162 1.000

The network size grows geometrically, with each new node doubling the number of
parameters to estimate.
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If we had 100 nodes, each with just two options, that results in 2100 parameters! That’s
1.26765eþ30. That is one large number! That is just toomany parameters for any computer
program to handle.

Our friends at Netica suggest that a better way is needed, and that “Bayesian nets are one
such way. Because a Bayes net only relates nodes that are probabilistically related by some
sort of causal dependency, an enormous saving of computation can result. There is no need
to store all possible configurations of states, all possible worlds, if you will. All that is needed
to store and work with is all possible combinations of states between sets of related parent
and child nodes (families of nodes, if you will). This makes for a great saving of table space
and computation.”

How do we actually use the Bayes’ network for addressing
practical problems?

Answer: Let’s find out. Let’s answer the following question:

We’ll solve this four different ways. First, we’ll use the conjoint tables directly. Second,
we’ll use Bayes’ Theorem. Third, we’ll use a Bayesian inference approach. Finally, we’ll use a
Bayesian network software program that will provide the answer (all four will give the same
result).

First, let’s use our new conjoint table. The probability that it is raining given that the grass
is wet is:

PrðR jGÞ ¼ 0:15840þ 0:00198
0:44838

¼ 0:3576877: ð19:15Þ

Did you see howwe used the conjoint table (Table 19.6) in these calculations?We were told
the grass is wet, which occurs 44.838% of the time. Two entries in our conjoint table make
up the numerator (first column, second and fourth row of the table).

And where does Bayes’ Theorem come into play?

Answer: In our secondapproach,we’ll solve this problemwithBayes’Theorem. In Section 1,
we learned that the following joint probability of A and B occurring can be expressed as:

PrðA \ BÞ ¼ PrðA jBÞ ∗PrðBÞ: ð19:16Þ
In words: the joint probability of A and B is the product of the conditional
probability of A, given B and themarginal probability of B. Look familiar? This is
a mini-chain rule problem!

Similarly, the joint probability of A and B occurring can be expressed as:

PrðB \ AÞ ¼ PrðB jAÞ ∗PrðAÞ: ð19:17Þ
Therefore:

PrðA jBÞ ∗PrðBÞ ¼ PrðB jAÞ ∗PrðAÞ: ð19:18Þ

Given the lawn is wet, what are the chances it was caused by rain?
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And dividing both sides by Pr(B) gives us Bayes’ Theorem (at least one version of it!):

PrðA jBÞ ¼ PrðB jAÞ ∗PrðAÞ
PrðBÞ : ð19:19Þ

We can use Bayes’ Theorem to calculate the probability that it is raining, given the grass is
wet as:

PrðR jGÞ ¼ PrðG jRÞ ∗PrðRÞ
PrðGÞ : ð19:20Þ

0:15840þ 0:00198
ð0:198þ 0:002Þ ∗ ð0:198þ 0:002Þ

0:44838
¼ 0:3576877: ð19:21Þ

Same answer as before, right? The first method took fewer steps because we ignored the
terms in the numerator that cancel out.

And how does Bayesian inference fit into this network?

Answer: Our third approach will place this same problem within a Bayesian inference
context. Think back to the Author Problem in Chapter 5 (you know the one . . .who penned
the unsigned Federalist paper: Alexander Hamilton or James Madison). In that chapter, we
noted that Bayes’ Theorem expresses how a subjective degree of belief should rationally
change to account for evidence.
To use Bayes’ Theorem for scientific inference, it’s useful (actually, essential) to replace

the marginal denominator Pr(B) as the sum of the joint probabilities that make it up:

PrðA jBÞ ¼ PrðB jAÞ ∗PrðAÞ
PrðA \ BÞ þ Prð� A \ BÞ : ð19:22Þ

Now, let’s replace the joint probabilities with their conditional probability equivalents:

PrðA jBÞ ¼ PrðB jAÞ ∗PrðAÞ
PrðB jAÞ ∗PrðAÞ þ PrðB j� AÞ ∗Prð� AÞ : ð19:23Þ

This version of Bayes’ Theorem will work well for a Bayesian inference problem, where we
have multiple, competing hypotheses. For a given hypothesis, Bayes’ Theorem can be used
to update the prior probability of a hypothesis to a posterior probability of a hypothesis,
given new data. Do you remember the terms?
Let’s use this framework and our Bayes network to address our problem: The grass is

wet . . . what is the likely cause? Instead of hypotheses A and �A as shown in Figure 19.12,
the conjoint table shows that we have four hypotheses:

1. It’s not raining and the sprinkler is off.
2. It is raining and sprinkler is off.
3. It’s not raining and the sprinkler is on.
4. It is raining and the sprinkler is on.

Here, instead of determining the probabilities for each of these four hypotheses, we’ll focus
on obtaining the marginal probability that the wet grass was caused by rain versus the
marginal probability that it was caused by the sprinkler. Thus, the “rain” hypothesis, R, will
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capture hypotheses 2 and 4 above, and the “sprinkler” hypothesis, S, will capture hypoth-
eses 3 and 4 above.

The posterior probability of the rain hypothesis, given the grass is wet is:

PrðR jGÞ ¼ PrðG jRÞ ∗PrðRÞ
PrðG jRÞ ∗PrðRÞ þ PrðG j �RÞ ∗Prð�RÞ ¼ 0:35768: ð19:24Þ

This is the same result as for our first two examples.

What about the hypothesis that the grass is wet because the
sprinkler is on?

Answer: This is an alternative hypothesis for why the grass is wet. The posterior probabil-
ity of the sprinkler hypothesis, given the grass is wet is:

PrðS jGÞ ¼ PrðG j SÞ ∗PrðSÞ
PrðG j SÞ ∗PrðSÞ þ PrðG j �SÞ ∗Prð�SÞ ð19:25Þ

Again, the conjoint table can provide this answer quickly:

PrðS jGÞ ¼ 0:28800þ 0:00198
0:44838

¼ 0:6467282: ð19:26Þ

That is, 0.3576877 + 0.6467282¼ 1.0044159. The reason? It’s because rain and sprinkler are
NOT mutually exclusive. You can see this in the influence the diagram, and also see in the
conjoint table, and by looking at hypothesis 4 above. Look for the entry in the conjoint
table where the grass is wet, it is raining, and the sprinkler is on. The probability for that

Pr(B | A) * Pr(A) + Pr(B | ∼A) * Pr(∼A)

Pr(B | A) * Pr(A)
Pr(A | B) =

Posterior probability
of hypothesis A,

given data B

Likelihood of the
data, B, given
hypothesis A

Prior probability of
hypothesis A

Likelihood of the
data, B, given

hypothesis ∼A

Prior probablity of

hypothesis ∼A

Figure 19.12

Note, however, that these two posterior probabilities do not sum to 1!
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joint entry is 0.00198. If we restrict ourselves to the grass being wet, the probability that it is
wet due to both factors is:

0:00198
0:44838

¼ 0:0044159: ð19:27Þ

This tiny number in the conjoint table (0.00198) is included in both the calculation of Pr(S |
G) and Pr(R | G), and thus we’ve double-dipped! In other words, the conjoint table shows us
clearly that there are four hypotheses when the grass is wet, but we have collapsed these
into two hypotheses.
Given our results, if we had to choose which hypothesis is most supported, we would go

with the sprinkler hypothesis. This is the maximum a posteriori probability, or the updated
posterior probability with the most support.
Bayes’ Theorem and Bayesian inference are at the heart of the Bayes network, but you can

use simple, direct calculations to generate your results. That is, it can be easy to miss Bayes’
Theorem in a Bayesian network, even though it is lurking in every node.

What is the fourth approach?

Answer: To answer this question, we are going to use Netica, a popular computer program
used for Bayesian network analysis. With Netica, you create a DAG, and each node is
associated with either a conditional probability table (CPT) or a marginal probability
table. Once these tables are populated, Netica displays the marginal probabilities for each
node as horizontal bars (see Figure 19.13).
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In the top portion of this figure, the node view is shown. In the bottom portion, the
yellow boxes display the marginal probabilities associated with each node. This is what
Netica displays. The bars inside these boxes are called “belief bars.” They are calculated from
entries that the Netica user (you!) specifies in the conditional or marginal probability tables.
For example, the belief bars associated with the rain node show the probability of rain is
20%, and the probability of no rain is 80%. The table to the right of this box shows the
entries made by the Netica user, and this is a root node. Root nodes (or parent nodes) are
nodes that have arrows coming FROM them but nothing leading TO them.

The belief bars associated with the sprinkler node indicate that the chance that the
sprinkler is on is 32.2%, and the chance that the sprinkler is off is 67.8%. These values
are computed from the CPT entries made by the Netica user for this node. For example, the
probability that the sprinkler is on is computed as:

PrðSÞ ¼ PrðS \ RÞ þ PrðS\�RÞ ¼ PrðS jRÞ ∗PrðRÞ þ PrðS j�RÞ ∗Prð� RÞ ð19:28Þ

PrðSÞ ¼ 0:01 ∗0:2þ 0:4 ∗0:8 ¼ 0:322 ð19:29Þ
In Netica, this result is multiplied by 100 to give 32.2% chance. Compare this result with
Table 19.2.

Once the network is fully specified, you can use it as means of computing posterior
probabilities after you have observed a state. For example, if we observe that the grass is wet,
we “click” on this belief bar, andNetica updates the entire network, as shown in Figure 19.14.

The gray box indicates that we have observed wet grass. The two arrows into this box
indicate we have two hypotheses: it’s raining or the sprinkler is on. The probability that the
sprinkler is on is 64.7%, while the probability that it is raining is 35.8%.We calculated these
by hand in our previous three examples. Notice once again that these don’t add to 100%
because of the double-dipping issue! In short, before wemake an observation, themarginals
act like a prior probability for a hypothesis. After wemake an observation, the marginals are
updated (and are interpreted as posteriors).

OK, I think I’ve got it. Can we try setting up the Once-ler’s network?

Answer: We’ll guide you through the development of the Once-ler’s Bayesian network.
The Once-ler could build a Bayesian network to gain a holistic perspective on how his

business affects the state of his raw materials (Truffula Trees) as well as other resources that
may be affected by business activities. We start by drawing an influence diagram highlight-
ing the key variables of interest and how they relate to each other. In Figure 19.15, we’ve
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used the Netica software both to draw the influence diagram and to assign probabilities to
states. Remember, this is a model of a system. If you were to watch or read The Lorax and
create an influence diagram, your diagram may look different than ours!

Here, at the top of the diagram is our Thneed business, which will have two states:
sustainable and unsustainable. The Thneed business directly influences the Truffula Tree
harvest level, the air quality, and the water quality. The air and water quality variables, in
turn, along with population size in the previous year (t − 1), affect the Swomee-Swan and
Humming-Fish population size. As for the Bar-ba-loot population, it is affected by the state
of the previous year’s population size as well as the Truffula fruit production, which in turn
is affected by Truffula tree harvest probability. For our three wild species, the reason we
include the population size in the previous year (t − 1) should make some sense: if the
population size is small, there will be fewer breeders present to produce offspring. Thus,
even if Truffula fruits abound, the Bar-ba-loot population size may still be small if there are
just a few animals to begin with.

Look closely at this diagram and identify the root nodes. There are four
of them: Thneed Business, Bar-ba-loot (t − 1), Swomee-Swan (t − 1), and
Humming-Fish (t − 1).

Is there a way to create an influence diagram without drawing it like
you did?

Answer: There is! Often, a Bayesian network is specified by an expert and is then used to
perform inference. We’re not experts, but this is the approach we just used for the Lorax.

In other cases, humans may not be able to define the network because it may be too
complex. However, machine learning algorithms can be used on a complex dataset to infer
the influence diagram from an existing dataset. In other words, feed a complex dataset to a
computer, and, with the right algorithm, a graph structure of a Bayesian network can be
found. Double cool!

What about the conditional probability tables (CPT’s)?

Answer: Right you are! A Bayesian network consists of both the DAG and the underlying
conditional probability tables as well as the marginal probabilities for the root nodes. Let’s
add those now, keeping in mind that all tables are based on our limited expertise! If only
Dr. Seuss were still alive!

Let’s start by identifying the states andmarginal probabilities for the states in each root
node. These are nodes that have arrows coming FROM them but nothing leading TO them,
and are identified in Figure 19.16 with red check marks.

• The Thneed business has two states: Sustainable (0.3) and Unsustainable (0.7). These are
marginal probabilities that suggest that there is a 30% chance that the business is
operating in a sustainable manner, and a 70% chance that it is operating in an unsus-
tainable manner.

• The Bar-ba-loot population in year t − 1 has 0 probability of being extinct, a 20% chance
of being low in size, a 60% chance of being medium in size, and a 20% chance of being
high in size.

• The Swomee-Swan and Humming-Fish population sizes are scored with the same pro-
cedure, but with probabilities assigned based on their specific biology.
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• Notice that the Netica diagram displays percentages rather than probabilities. So, a
probability of 0.60 is displayed as 60.0 in the diagram.

• Notice that all tables in Netica show marginal probabilities, even for those nodes
that have an arrow leading into them. We’ll come back to this shortly.

Where are the CPT’s?

Answer: TheNetica usermust provide them in order to show the belief bars in Figure 19.16.
Table 19.7 shows the CPT that we entered in Netica for the Truffula harvest level.

Here, you can see that the columns are the three states of harvest level (low, medium, and
high). The rows are the two states of the parent node (sustainable and unsustainable). When
theThneedbusiness is sustainable, there is a 50%chance that theTruffulaharvestwill be low,
a 40% chance that the Truffula harvest will be medium, and a 10% chance that the Truffula
harvest will be at a high level. Although these numbers can be estimated from real
data, we made these numbers up! When the Thneed business is operating in an
unsustainable manner, there is a 90% chance that the harvest level will be high, and no
chance at all that the harvest level will be low. Notice once again that the row sums are 1.0.

Given these conditional probabilities, it is straightforward to understand why Netica’s
marginal probabilities for Truffula harvest probability are 0.15, 0.19, and 0.66 for low,
medium, and high harvest, respectively—just use the chain rule to convert the CPT to
joint probabilities. Remember that our conjoint table will have the same structure as the
underlying CPT table; the difference is that it will hold joint probabilities instead of
conditional probabilities (see Table 19.8).

Compare the numbers in the final row of this table with the Netica Truffula Tree Harvest
Level node (Figure 19.16). Theymatch. In summary, the CPT tables are there, but they don’t
appear in the Netica diagram; themarginal probabilities for each table are displayed instead.

Can we look at one more CPT?

Answer:Of course. Let’s look at the Water Quality node, which has two states. Netica tells
us that the marginal probability that water quality is good is 0.31, and the marginal

Table 19.7

Harvest Level

Low Medium High Sum

Sustainable 0.5 0.4 0.1 1
Unsustainable 0 0.1 0.9 1

Table 19.8

Harvest Level

Low Medium High Sum

Sustainable 0.15 0.12 0.03 0.3
Unsustainable 0 0.07 0.63 0.7
Sum 0.15 0.19 0.66 1
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probability that the water quality is bad is 0.69. These numbers are calculated from the
underlying CPT, which is shown in Table 19.9.

Now let’s use the chain rule and convert these conditional probabilities to joint prob-
abilities (see Table 19.10).

Once again, verify that the last row of the conjoint table, which gives the marginal
probability of Good or Bad water quality, matches with the Netica diagram (Figure 19.16).

OK, now what?

Answer: Now that our network diagram, marginal probabilities, and CPT’s are defined,
we can use this network to address many questions. The key is to enter observations
in this network. Your observations for a given variable are your data, or evidence.
In a nutshell, you identify which state you have actually observed. Then, given your
observations about a variable, the entire network will update using the rules of
probability.
For instance, suppose we observe that the water quality is bad. In Netica, the updated

network looks like the one shown in Figure 19.17.
Notice that the marginal probability of bad water quality is now 1.00 (or 100, in

percentages). Take a look at the right side of the diagram. We see that last year’s
Humming-Fish state probabilities are unchanged, but that the current Humming-Fish
population’s state probabilities have all been updated because the population is influ-
enced by water quality. Originally, the percentages associated with extinct, low, me-
dium, and high population size were 0.2, 55.5, 26.9, and 17.4, respectively. After
observing that the state of water quality is bad, these state probabilities have been
updated to 0.2, 67.8, 22.0, and 9.98, respectively.
Cool! . . .Well, maybe not for the Humming-Fish!
In addition, we can see the probability that the Thneed business is run in an unsustain-

able manner jumped from 0.70 (70%) to 0.913 (91.3%).

Table 19.10

Water Quality

Good Bad Sum

Sustainable 0.24 0.06 0.3
Unsustainable 0.07 0.63 0.7
Sum 0.31 0.69 1

Table 19.9

Water Quality

Good Bad Sum

Sustainable 0.8 0.2 1
Unsustainable 0.1 0.9 1
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The arrows do not show that water quality influences the Thneed
business, so what is going on here?

Answer: Well, for this example, the CPT table is fixed. Here it is again, with our observed
water quality information highlighted in turquoise (see Table 19.11).

If we observe that water quality is bad, then the marginal table that feeds into it must
be adjusted accordingly. How is this adjusted? Bayes’ Theorem, of course! We use
Bayes’ Theorem to compute the posterior probability that the Thneed business is operat-
ing sustainably, as well as the posterior probability that the business is operating
unsustainably.

Are you ready for
another Bayesian
inference problem?

Here’s the Theorem:

PrðA jBÞ ¼ PrðB jAÞ ∗PrðAÞ
PrðB jAÞ ∗PrðAÞ þ PrðB j �AÞ ∗Prð�AÞ ð19:30Þ

Let’s let S be the prior probability of running a sustainable business, �S be the prior
probability of running an unsustainable business, and bad represent our observed water
quality data. Then we can calculate the posterior probability that the business is operating
sustainably as:

PrðS jbadÞ ¼ Prðbad j SÞ ∗PrðSÞ
Prðbad j SÞ ∗PrðSÞ þ Prðbad j�SÞ ∗Prð�SÞ ð19:31Þ

PrðS jbadÞ ¼ 0:2 ∗0:3
0:2 ∗0:3þ 0:9 ∗0:7

¼ 0:06
0:69

¼ 0:087 ð19:32Þ

Table 19.11

Water Quality

Good Bad Sum

Sustainable 0.8 0.2 1
Unsustainable 0.1 0.9 1
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And although we can calculate the posterior probability that the business is operating
unsustainably by subtraction, let’s use Bayes’ Theorem again:

Prð�S jbadÞ ¼ Prðbad j�SÞ ∗Prð�SÞ
Prðbad j�SÞ ∗Prð�SÞ þ Prðbad j SÞ ∗PrðSÞ ð19:33Þ

Prð�S jbadÞ ¼ 0:9 ∗0:7
0:9 ∗0:7þ 0:2 ∗0:3

¼ 0:63
0:69

¼ 0:913 ð19:34Þ

These updated posterior probabilities are displayed in Thneed business node (Figure 19.17).
Way cool!

What if you have more observations?

Answer: Let’s suppose you also observe the Swomee-Swan population is low. Again, this
represents our observed data (or evidence), and the network is automatically updated (see
Figure 19.18).

Of course, we haven’t shown you the CPT’s we entered for the Swomee-Swans, nor the
CPT’s for air quality, but you can see the entire network has been updated. And we hope
you get the idea of how powerful Bayesian networks can be.

Who came up with the idea of Bayesian networks?

Answer: The term “Bayesian networks” was coined by Judea Pearl in 1985. Encyclopedia
Brittanica can help us here with some background:

“Pearl introduced the messiness of real life to artificial intelligence. Previous work in the
field had a foundation in Boolean algebra, where statements were either true or false. Pearl
created the Bayesian network, which used graph theory (and often, but not always, Bayes-
ian statistics) to allow machines to make plausible hypotheses when given uncertain or
fragmentary information. He described this work in his book Probabilistic Reasoning in
Intelligent Systems.

Can we summarize this chapter?

Answer: We’ve seen that a Bayesian network is a probabilistic graphical model (a type of
statistical model) that represents a set of random variables and their conditional depend-
encies via a directed acyclic graph (DAG). Each node in the graph is a variable that has
alternative states, and each state occurs with some probability. The variables themselves are
linked with arrows, and the direction of the link roughly corresponds to causality. Bayes’
Theorem is at the heart of these connections; it can be used to estimate the probability of
observing a state conditional on the state of the linked variables, and it can be used to update
the probabilities once a particular state has been observed.
Bayesian networks have been used for:

• diagnosis
• prediction
• classification
• decision-making
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• financial risk management, portfolio allocation, insurance
• modeling ecosystems
• sensor fusion
• monitoring and alerting

McCann et al. (2006) provide an overview of the approach and its uses in ecology and
natural resource management. We’ve just scratched the surface. Who knows? Maybe the
next version of this book will shed light on some of these examples.

I noticed decision-making is on the list. Canwe see an example of this?

Answer: At the end of the story, the Once-ler gives the boy the last Truffula seed and tells
him “You’re in charge of the last Truffula seed, and Truffula trees are what everyone needs.
Plant a new Trufulla. Treat it with care. Give it clean water, give it fresh air. Grow a forest,
protect it from axes that hack, then the Lorax and all of his friends may come back.”

For the Lorax system, it sounds like the old Once-ler now has some interest in the state of
Bar-ba-loots, Swomee-Swans, and Humming-Fish. Specifically, he is interested in anything
and everything except the non-extinct state. How can he manage this? Well, the arrows in
the influence diagram show that his business choice (sustainable versus unsustainable)
directly influences Truffula Tree Harvest Level, Air Quality, and Water Quality. Thus, we
can convert the Thneed Business node to a decision node and then look at updated results.

There’s one more concept, though, with respect to decision-making, and this is the
concept of utility. Nicholson (2014) defines utility as “a measure of the total perceived
value resulting from an outcome or course of action. This may be negative, for example if an
oil exploration company undertakes a survey showing that no oil can be extracted, the
costs of undertaking the survey will be reflected in a negative utility for that outcome.”

If we were to use our Bayes’ net for decision-making, and the wild species were our
primary concern, we would need to assign a utility score for each state of each variable.
We could then see what happens if we plug in “sustainable” for the Thneed Business node
and see how our wildlife populations will fare in terms of overall utility. By comparing the
utilities associated with the two separate business models, we have some information in
hand that may help us ultimately choose our path.

Chapter 20 will show you how Bayes’ Theorem can be used to aid decision-making via
the use of decision trees. We will cover the concept of utility in much more detail there!
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CHAPTER 20

The Once-ler Problem:
Introduction to Decision Trees

Welcome to our chapter on decision trees, a very useful technique that can be used to
answer a variety of questions and assist in making decisions. We’ll assume that you’ve read
our chapter on Bayesian networks. If so, you already know that Bayes’ nets can be an aid in
decision-making. Decision trees are very closely related to Bayes’ networks, except that they
take the shape of a tree rather than a net.
By the end of this chapter, you will have a firm understanding of the following concepts:

• Decision tree
• Decision node
• Chance node
• Payoff
• Utility
• Linked decisions

To set the stage for this chapter, we’ll quickly revisit a story called The Lorax that we
introduced in Chapter 19.
Here’s the plot line from Wikipedia:
A boy living in a polluted area visits a strange isolated man called the Once-

ler in the Street of the Lifted Lorax. The boy pays the Once-ler fifteen cents, a
nail, and the shell of a great-great-great grandfather snail to hear the legend
of how the Lorax was lifted away.
The Once-ler tells the boy of his arrival in a beautiful valley containing a

forest of Truffula trees and a range of animals. The Once-ler, having long
searched for such a tree as the Truffula, chops one down and uses its wool-
like foliage to knit a Thneed, an impossibly versatile garment. The Lorax, who
“speaks for the trees” as they have no tongues, emerges from the stump of the
Truffula and voices his disapproval both of the sacrifice of the tree and of
the Thneed itself. However, the first other person to happen by purchases the
Thneed for $3.98, so the Once-ler is encouraged and starts a business making
and selling Thneeds. The Once-ler’s small shop soon grows into a factory. The
Once-ler’s relatives all come to work for him and new vehicles and equipment
are brought in to log the Truffula forest and ship out Thneeds.
The Lorax appears again to report that the small bear-like Bar-ba-loots, who

eat Truffula fruits, are short of food and must be sent away to find more. The
Lorax later returns to complain that the factory has polluted the air and the
water, forcing the Swomee-Swans and Humming-Fish to migrate as well.

Bayesian Statistics for Beginners: A Step-by-Step Approach. Therese M. Donovan and Ruth M. Mickey,
Oxford University Press (2019). © Ruth M. Mickey 2019.
DOI: 10.1093/oso/9780198841296.001.0001



The Once-ler is unrepentant and defiantly tells the Lorax that he will keep
on “biggering” his business, but at that moment one of his machines fells the
very last Truffula tree. Without raw materials, the factory shuts down and
the Once-ler’s relatives leave.

At the end of the story, the Once-ler regrets his business practices and gives the boy the
last Truffula seed in hopes that the environment can be restored.

How could this tragedy have been averted?

Answer:Well, the Once-ler could have used adecision tree to aid his business so that the
resource that fuels his business, the Truffula tree, persists through time, together with the
wild species.

Decision tree?

Answer: The Oxford Dictionary of Statistics describes a decision tree as “a graphical
representation of the alternatives in a decision-making problem.” Wikipedia tells us: “In
decision analysis a decision tree and the closely related influence diagram are used as a
visual and analytical decision support tool, where the expected values (or expected utility)
of competing alternatives are calculated.”

As you’ll see, a decision tree is a very handy tool. As a special bonus, all-time great New
York Yankee baseball player Yogi Berra will serve as our guide through this chapter.

You’ve got to be very
careful if you don’t know

where you’re going,
because you might not

get there.

Why is it called a tree?

Answer: Think about a tree for a moment. A tree emerges from the root, and as it grows, it
develops branches. Branches continue to fork and split until, ultimately, you end up at a
terminal branch, or the tip (see Figure 20.1).

With this inmind, we can now label the different parts of our decision tree. Decision trees
consists of three types of nodes, as illustrated in Figure 20.1.

1. Assumeyou start at the root andadvance to thefirstmainbranches.Here, you face adecision
and outline the alternative choices that can be selected. Our tree shows five branches
(alternatives) you can take. This junction in the tree is called a decision node. In decision
trees, decision nodes are often represented by squares. Here, it is shown in yellow.
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2. Assume you select the fifth path on the tree’s right and come to another fork. This fork
could be another decision node, or it may be a chance node, where the next path is
associated with a probability, not a decision. With chance nodes, some branches may be
more likely than others, or they may all be equally likely. Here, the chance node is
shown as a green circle with three branches emerging from this node.

3. Assume the middle branch is manifested. Again, you come to forks which may be either
decision nodes or chance nodes. Ultimately, you end at a tip, such as the tip crowned by
the blue triangle. Tips are often referred to as end nodes, where some reward or payoff
awaits the decision-maker.

Let’s now create such a tree for our story. The Once-ler arrives in a beautiful valley and
considers setting up a business selling Thneeds. He makes his decision rapidly, perhaps
using the decision tree depicted in Figure 20.2. Decision trees are often depicted “sideways,”
as shown.

Here, the decision is whether to start a Thneed business or not. The yellow square is the root
of this tree and is a decision node, and the tree has two branches which represent decision
alternatives. The tips of the tree are depicted with end nodes that are represented by blue
triangles, where we see the payoff for each alternative. In the spirit of Dr. Seuss, we’ll
measure the payoff in something silly, like pickles. If a business is not launched, the
Once-ler will gain 0 pickles. If he launches the business, he will gain 100 pickles.
This is a pretty straightforward decision, right? He looked at the pickle payoff and made

his choice. Look for the number 100 near the yellow decision box, which indi-
cates that the business route is the optimal choice with a payoff of 100.

Figure 20.1

Thneed Business

No Thneed Business
100

Payoff
(pickles)

100

0

Figure 20.2
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Is that all there is to it?

Answer: Heavens, no! Suppose the Once-ler had considered whether the business,
once launched, might not succeed. We can add the probability that the business will
succeed as a chance node to our diagram, which is shown by the green circle (see
Figure 20.3).

Here, let’s assume that the probability that the business will be successful is 0.6, and the
probability that it is unsuccessful is 0.4. Notice that these sum to 1.0. The addition of a
chance node to the decision tree is a way in which we can incorporate uncertainty into the
decision process.

What kind of probabilities do these represent?

Your answer here!
Answer: These are conditional probabilities. The probability that the business will be
successful, given that the business was launched, is 0.6, and the probability that the business
will be unsuccessful, given that the business was launched, is 0.4.

When you come to a fork
in the road, take it

Thneed Business

No Thneed Business

Unsuccessful

Successful
0.6

0.4

100

–20

Payoff
(pickles)

100

–20

0
0

Figure 20.3
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Now there are three tree tips, or outcomes, associated with this decision process. If the
business is launched and is successful, the payoff is 100 pickles. If the business is launched
but is unsuccessful, it will cost the Once-ler 20 pickles. And if the business is not launched,
the payoff in pickles is 0.

Now what’s the best decision?

Answer: Well, the decision consists of two alternatives, but we have three tips. If the
business is not started, the payoff is 0. If it is started, the payoff may be 100 if it is successful
or −20 if it is not. We need the payoff associated with the business alternative as a whole,
however, and not the different tips.
The payoff is a function of the variable, “business,” which has two states (successful and

unsuccessful; see Table 20.1).

To calculate the expected payoff (expected number of pickles) for the business alterna-
tive, we take the weighted average of the payoffs:

Expected Payoff for Business Alternative ¼ ð0:6 ∗100Þ þ ð0:4 ∗−20Þ ¼ 52 ð20:1Þ

Now let’s add this information to our tree (see Figure 20.4).

You can see the number 52 displayed below the yellow decision node in the tree in
Figure 20.4. It suggests that the decision to go into the Thneed business has an expected
payoff of 52, while the decision to not go into the Thneed business has an expected payoff
of 0. Look for the number 52 displayed by the yellow box (our decision node), and the

Thneed Business

No Thneed Business

Unsuccessful

Successful
0.6

52

0.4

100

–20

Payoff
(pickles)

100

–20

0

0

52
1

Figure 20.4

Table 20.1

Business Probability Payoff

Successful 0.6 100
Not Successful 0.4 −20
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number 1 inside this box. This indicates that the top branch is the optimal decision, which
yields an expected payoff of 52 pickles.

Does this answer tell the Once-ler what he should do?

Answer: Ha ha! Good one! The Once-ler will make the decision, not the decision tree.
A decision tree is just a tool. It provides the expected monetary value for this decision
problem. The Concise Oxford Dictionary of Mathematics (Clapham and Nicholson, 2014)
tells us, “Where the payoff to the player in a game is dependent on chance outcomes, the
expected monetary value is the average gain the player would achieve per game in the long
run.” It is calculated as the sum of each payoff multiplied by the probability of that payoff.
In our case, the “game” corresponds to whether or not the business is successful, and the
expected payoff is measured in pickles.

Technically, the expected value of a function f(x) of the discrete random variable X is
written:

E f ðXÞ½ � ¼
P

PrðxÞf ðxÞ ð20:2Þ

In our case, X is the variable “business,” x is the value that the variable X can take on (e.g.,
1 = successful and 0 = unsuccessful), f ðxÞ is the payoff (100, −20), and PrðxÞ is the probability
of x (0.6, 0.4).

The tree calculations suggest that if the Once-ler stumbled into a forest of Truffula trees
thousands of times, in the long run he would have gained 52 pickles, on average.

But the Once-ler can’t play this experiment thousands of times. He has one shot. The tree
calculations provide him with guidance, but, ultimately, the choice is his! Moreover, he
would not actually make 52 pickles, the average payoff for going into business. If he goes
into business, he can only make 100 pickles or lose 20 pickles.

It’s tough to make
predictions, especially

about the future.

So true, Yogi! Since this is a one-time decision (a decision that won’t be repeated thousands
of times), the Once-ler could replace thepayoff (in cold, hard pickles) withutility scores.

Utility?

Clapham and Nicholson (2014) define utility as “a measure of the total perceived value
resulting from an outcome or course of action. This may be negative, for example if an oil
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exploration company undertakes a survey showing that no oil can be extracted, the costs of
undertaking the survey will be reflected in a negative utility for that outcome.”
Let’s suppose the Once-ler’s new tree looked like the one in Figure 20.5.

The only difference between this tree and the previous examples is that we have replaced
pickles with a utility score. In this case, we’ve set the tip with the highest pickle gain to a
utility of 1.0. And we set the tip with the lowest pickle gain (a loss) to 0. We also arbitrarily
entered 0.7 as the utility associated with the No Thneed tip.

• The expected utility for the Thneed Business option is now

ð0:6 ∗1Þ þ ð0:4 ∗0Þ ¼ 0:6 ð20:3Þ

• The expected utility for the No Thneed Business option is 0.7.
• Given these values, the better choice is to not go into business. You can see that the

second option is displayed in the yellow box, with its expected value of 0.7 posted
beneath it.

How is utility determined?

In decision-making circles, utility scores represent the values of the decision-maker. These
scores, which generally represent some sort of satisfaction, can be elicited from decision-
makers when they don’t have a good idea how to assign numbers to each tip.
In the words of Decision Analysis forManagement Judgement authors Paul Goodwin and

George Wright (2014), “The most commonly used methods involve offering the decision
maker a series of choices between receiving given sums of money [pickles] for certain or
entering hypothetical lotteries.…which will result in either the best outcome on the tree…
or the worst…with specified probabilities.”
We are trying to find out what the Once-ler’s utility score is for the No Thneed Business

tip, where the original payoff was zero pickles. Here’s how this dialogue might go:
You: “Hey, Once-ler! Choose between these two options. Option 1 is that I give you zero pickles;

Option 2 is that we flip a coin where the probability of heads is 0.9. If it comes up heads, I will give
you 100 pickles, but if it comes up tails, you give me 20 pickles.”
Once-ler: “I’ll take Option 2.”

Thneed Business

No Thneed Business

Unsuccessful

Successful
0.6

0.6

0.4

1

0

Utility

1

0

0.7

0.7

0.7
2

Figure 20.5
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You: “Ok, then. Choose between these two options. Option 1 is that I give you zero pickles;
Option 2 is that we flip a coin where the probability of heads is 0.8. If it comes up heads, I will give
you 100 pickles, but if it comes up tails, you give me 20 pickles.”

Once-ler: “I’ll take Option 2.”
You: “Ok, let’s keep going. Choose between these two options. Option 1 is that I give you zero

pickles; Option 2 is that we flip a coin where the probability of heads is 0.7. If it comes up heads,
I will give you 100 pickles, but if it comes up tails, you give me 20 pickles.”

Once-ler: “I’ll take the zero pickles!”
Now that the Once-ler has switched his choice, we can calculate the utility for this tip:

uð0 picklesÞ ¼ ð0:7 ∗1Þ þ ð0:3 ∗0Þ ¼ 0:7 ð20:4Þ

This equation basically says that the Once-ler’s decision to accept zero pickles is the same as
70% of the tip with the highest utility, and 30% of the tip with the lowest utility. Of course,
the process can be more finely tuned than we’ve shown here.

Notice that the Once-ler’s answers are his own…your answers and ours may differ! This
process of elicitation is intended to help determine the utility of each outcome that may
not easily be scored.

Do people really use utility in practice in decision-making?

In theory, there is no
difference between

theory and practice. In
practice, there is.

Goodwin and Wright (2014) tell us that utility theory is designed to simply aid decision-
making, and if a decision-maker wants to ignore its indications, that prerogative is available.
They continue, “In important problems which do involve a high level of uncertainty and
risk, we do feel that utility has a valuable role to play as long as the decisionmaker is familiar
with the concept of probability and has the time and patience to devote the necessary effort
and thought to the questions required by the elicitation procedure. In these circumstances
the derivation of utilities may lead to valuable insights into the decision problem.”

What about the Bar-ba-loots, Swammy-Swans, and Humming-Fish?

Answer: Right-o. If the Once-ler considered the fates of these species in his decision, his
tree would need some attention. The reason? Now he has more objectives to consider in
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his decision besides maximizing pickle profits. In addition to pickles, suppose that he is also
concerned with keeping wildlife on part of the landscape. Let’s suppose that the Once-ler
sketches out the decision tree shown in Figure 20.6.

Here, the first decision node is whether to go into business or not. If he goes into business,
he is faced with another decision: should he establish a wildlife reserve or not?
If the reserve is established, the chance that wildlife will persist is 0.8, and the chance that

they go extinct is 0.2. If he does not establish the reserve, the chance that wildlife will
persist is 0.05, and the chance they will go extinct is 0.95.
In this tree, utilities are used instead of pickles, and represent theOnce-ler’s satisfaction

of each tip. We set a utility of zero for cases where wildlife goes extinct and for the case
where a business is not established. We established a utility of 1 when a reserve is NOT
established but the wildlife persists. This is because, in the Once-ler’s opinion, profits will be
maximized by not setting aside the reserve, so this is his best-case scenario. If a reserve is
established and wildlife persists, the Once-ler’s utility is 0.8.
With the utilities and the conditional probabilities shown in green in Figure 20.6, we can

calculate the expected utility for both decisions. This is done by “rolling back the tree”
from the tips to the root:

• The expected utility for setting up a reserve is:

ð0:8 ∗0:8Þ þ ð0:2 ∗0Þ ¼ 0:64 ð20:5Þ

• The expected utility for not setting up a reserve is:

ð0:05 ∗1Þ þ ð0:95 ∗0Þ ¼ 0:05 ð20:6Þ

• Thus, if the Once-ler follows themaximum utility for the reserve decision, he would elect
to set up the reserve. This is shown in the yellow box associated with the reserve node (as
is themaximum utility associated with this decision, 0.64). This is the expected utility for
the Thneed business decision.

0.64

0.64

1

1
Thneed Business

No Thneed Business

No Reserve

Truffula Reserve

0.64

0.05

Wildlife Persist

Wildlife Extinct

Wildlife Extinct

Wildlife Persist
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0.8
0.8

0
0

1
1

0

0
0

0

0.8

0.2

0.05

0.95

Figure 20.6
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• Now we can move left in the tree and consider the decision about whether to go into
business or not. The expected utility of not going into business is 0.

• Thus, if the Once-ler follows the maximum utility for the business decision, he would
elect to go into business because 0.64 > 0.

Of course, if the utilities are changed, or if the conditional probabilities associated with
chance nodes change, then the results may differ! A very useful exercise here is to twiddle
with the utilities and conditional probabilities to find out what it takes to change the
decision.

Is that how Bayes’ Theorem is used in decision trees?

Answer: Yes. Bayes’ Theorem is an essential tool when new information becomes available
and the conditional probabilities associated with any chance node are updated.

To show you how this works, let’s now consider a new decision tree in which the payoff is
in pickles (see Figure 20.7).

In this new example, there are up to three decisions to be made. The first decision is
whether to launch a business or not, where no launch results in a payoff of zero pickles.
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However, if the business is launched, the next decision is whether to set up a wildlife reserve
or not. If a reserve is established, the probability that the wildlife species will persist is 0.8. If
a reserve is not established, yet a third decision faces the Once-ler: should he reforest the
Truffulas or not? That is, should he actively plant trees to replace those removed? Lack of
reforestation results in a 2% chance that wildlife will persist. Alternatively, the reforestation
effort has a 60% chance of succeeding, and a 40% chance of failure. If it is successful, the
probability that the wildlife species will persist is 0.95. If it fails, the probability of persist-
ence is 0.02. For each of the possible branches associated with the business start, there is a
chance node regarding the persistence of the wild species, resulting in nine possible paths.
Let’s hope you can see that the tree structure must adequately describe the decision
problem(s)…sometimes, this is tricky!

It’s like deja-vu, all over
again

Now, let’s review the payoffs. In this problem, if the wildlife species go locally extinct, the
Once-ler must pay a regulatory fine of 50 pickles. The other payoffs result from a combin-
ation of the pickle gain and pickle expenses associated with each path.
To determine the expected payoffs, we again roll back the tree from right to left.

• The expected payoff for the Reserve alternative is 54, indicated underneath the top green
chance node:

ð0:8 ∗80Þ þ ð0:2 ∗−50Þ ¼ 54 ð20:7Þ

• The expected payoff of the No Reserve alternative requires more calculations. We must
calculate the expected values for the Reforest alternative and the Don’t Reforest
alternative.
• The expected payoff for the Reforest alternative if it is successful is 59.25, shown under

the green node second from the top:

ð0:95 ∗65Þ þ ð0:05 ∗−50Þ ¼ 59:25 ð20:8Þ

• The expected payoff for the Reforest alternative, if it is unsuccessful, is −49.6:

ð0:02 ∗−30Þ þ ð0:98 ∗−50Þ ¼ −49:6 ð20:9Þ
• The expected payoff for the Reforest alternative is 15.71:

ð0:6 ∗59:25Þ þ ð0:4 ∗−49:6Þ ¼ 15:71 ð20:10Þ
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• The expected payoff for the Don’t Reforest alternative is −47:

ð0:02 ∗100Þ þ ð0:98 ∗−50Þ ¼ −47 ð20:11Þ

• The expected payoff for the No Reserve alternative is the maximum of 15.71 and −47,
or 15.71:

maxð15:71;−47Þ ¼ 15:71 ð20:12Þ

• The expected payoff for the Thneed Business alternative is the maximum of 54 and
15.71, or 54:

maxð54;15:71Þ ¼ 54 ð20:13Þ

Thus, under the current tree setup, the long-term expected payoff can be maximized at a
value of 54 pickles, which the Once-ler can attain by going into business and setting
up a reserve.

Did you forget Bayes’ Theorem?

Answer: We’re getting there! Bayes’ Theorem can be used to update the conditional
probabilities as new information becomes available.

Are you ready for
another Bayesian
inference problem?

Let’s assume that you obtain new information from 10 Truffula reforest-
ation efforts, and 9 of them were successful. This represents our data.

Here’s the Theorem:

PrðAjBÞ ¼ PrðBjAÞ ∗PrðAÞ
PrðBjAÞ ∗PrðAÞ þ PrðBj�AÞ ∗Prð�AÞ ð20:14Þ

In the decision tree, we pointed out that the probabilities associated with chance nodes are
conditional probabilities. With new information in hand, we now consider various
hypotheses. Our prior probability for the hypothesis that the reforestation effort would be
successful is 0.6, and the prior probability for the hypothesis that reforestation will fail is
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0.4. With these new data, we can use Bayes’ Theorem to compute the posterior probability
of successful reforestation, S, as:

PrðSjdataÞ ¼ PrðdatajSÞ ∗PrðSÞ
PrðdatajSÞ ∗PrðSÞ þ Prðdataj �SÞ ∗Prð�SÞ ð20:15Þ

We hope you can recall the critical Bayesian inference terms (see Figure 20.8)!

Let’s run through our Bayesian analysis steps:

1. Identify the hypotheses. Easy! These are:
• Reforestation will be successful.
• Reforestation will be a failure.

2. Set the prior probabilities for each hypothesis. Easy again! These are given in our tree:
• The prior probability that reforestation will be successful is 0.6
• The prior probability that it will be a failure is 0.4.

3. Collect data!
• Nine of 10 Truffula reforestation efforts in other locations have been successful.

4. Determine the likelihood of the observed data, assuming each hypothesis is true. The
binomial probability mass function can serve us here:
• The likelihood of observing 9 successes (y) out of 10 trials (n), given the probability of

success (p) = 0.6, is:

f ðy; n; pÞ ¼ n
y

� �
pyð1−pÞðn−yÞ ð20:16Þ

L y ¼ 9; n ¼ 10 ; p ¼ 0.6ð Þ ¼ f ðy; n; pÞ ¼ 10
9

� �
0:69ð1−0:6Þð10−9Þ ¼ 0:0403 ð20:17Þ

• The likelihood of observing 9 successes out of 10 trials, given the probability of
success = 0.4, is:

Pr(B | A) * Pr(A) + Pr(B | ∼A) * Pr(∼A)

Pr(B | A) * Pr(A)
Pr(B | A) =

Posterior probability
of hypothesis A,

given data B

Likelihood of the
data, B, given
hypothesis A

Prior probability of
hypothesis A

Likelihood of the
data, B, given

hypothesis ∼A

Prior probablity of

hypothesis ∼A

Figure 20.8
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f ðyjn; pÞ ¼ n
y

� �
pyð1−pÞðn−yÞ ð20:18Þ

f ðyjn; pÞ ¼ 10
9

� �
0:49ð1−0:4Þð10−9Þ ¼ 0:00157 ð20:19Þ

5. Use Bayes’ Theorem to compute the posterior probability that reforestation is successful,
given the data:

PrðSjdataÞ ¼ PrðdatajSÞ ∗PrðSÞ
PrðdatajSÞ ∗PrðSÞ þ Prðdataj�SÞ ∗Prð�SÞ ð20:20Þ

PrðSjdataÞ ¼ 0:0403 ∗0:6
0:0403 ∗0:6þ 0:00157 ∗0:4

¼ 0:97469 ð20:21Þ

This means that our posterior probability that the reforestation will fail is 1− 0.97469 ¼
0.02531.

These updated posterior probabilities can now be inserted into our tree, and the entire
tree’s calculations will be updated (see Figure 20.9).
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With this new, updated information, the decision outcome differs. The maximized
expectation is that the Once-ler will get a payoff of �56.5 if he goes into business and,
instead of setting up a wildlife reserve, he plants Truffula trees after harvest.

Who can we credit for developing the decision tree analysis?

Answer: Many people have been involved, but two key players are Howard Raiffa and
Robert Schlaifer, who co-authored the book Applied Statistical Decision Theory. We met
these two gentlemen in Chapter 10, remember? Author Sharon Bertsch McGrayne devotes
a full chapter to them in her book, The Theory That Would Not Die: How Bayes’ Rule
Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant
from Two Centuries of Controversy.

• Howard Raiffa is known as Mr. Decision Tree. McGrayne recounts the following ex-
change: “I began using decision tree diagrams that depicted the sequential nature of
decision problems faced by business managers. Should I, as decision maker, act now or
wait to collect further marketing information (by sampling or further engineering)?…I
never made any claim to being the inventor of the decision tree but…I became known as
Mr. Decision Tree.” McGrayne continues, “As a pioneer in decision analysis, [Raiffa] was
one of four organizers of the Kennedy School of Government at Harvard; the founder
and director of a joint East–West think tank to reduce Cold War tensions long before
perestroika; a founder of Harvard Law School’s widely replicated role-playing course in
negotiations; and scientific advisor to McGeorge Bundy, the national security assistant
under Presidents Kennedy and Johnson. Raiffa also supervised more than 90 Ph.D.
dissertations at Harvard in business and economics and wrote 11 books…As a Bayesian,
Raiffa would cast a long shadow.” Howard Raiffa died in 2016.

• Robert Schlaifer was trained as a classical Greek scholar but was a pioneer of Bayesian
decision theory. How many statisticians do you know who could nimbly author “Greek
theories of slavery from Homer to Aristotle” (Schlaifer, 1936)? Schlaifer was highly regarded
by his peers. In the dedication of the book Introduction to Statistical Decision Theory (Pratt
et al., 1995), Howard Raiffa and John Pratt said this of Schlaifer, their deceased co-author
(1915–1994): “An original, deep, creative, indefatigable, persistent, versatile, demanding,
sometimes irascible scholar, who always was an inspiration to us both.”

Can we summarize this chapter?

Answer:We’ve seen that a decision tree is a graphical representation of the alternatives in
a decision-making problem where the expected values (or expected utility) of competing
alternatives are calculated. The tree itself consists of decision nodes, chance nodes, and end
nodes, which provide an outcome. In the decision tree, we pointed out the probabilities
associated with chance nodes are conditional probabilities, which Bayes’ Theorem can be
used to estimate or update.
There are many excellent books and articles on the topic of decision-making, in case you

are interested. A very approachable and practical guide is the following:

J. S. Hammond, R. L. Keeney, and H. Raiffa. Smart Choices: A Practical Guide to Making
Better Decisions. Harvard Business Review Press, 1999.
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For any kind of managerial decision-making, Goodwin and Wright (2009) is a classic
reference. For natural resource management in particular, see Conroy and Peterson
(2013) and Gregory et al. (2012). See also Williams and Hooten (2016) for a more technical
link between statistical analysis and decision analysis.

One more question…Did Yogi Berra really deliver the quotes in this
chapter?

I didn’t really say
everything I said.
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APPENDIX 1

The Beta-Binomial Conjugate
Solution

Here, we aim to show that the Bayesian posterior can be easily obtained for problems in
which the prior distribution is a beta distribution and the observed data are binomial in
flavor.

The prior distribution

A prior distribution is set for an unknown parameter, p, which is a beta distribution. We’re
interested in a beta distribution because our parameter of interest, p, can range between 0
and 1. The beta distribution is defined on the interval 0 to 1. The prior distribution has two
hyperparameters, α0 and β0.

Our prior distribution, PðpÞ, is a beta distribution, whose probability density function
looks like this:

PðpÞ ¼ f ðp; α0; β0Þ ¼
1

Bðα0;β0Þ
pα0−1ð1−pÞβ0−1 0 < p < 1 (A1.1)

The beta function, B, is a normalization constant to ensure that the density integrates to 1.
That is, different combinations of α0 and β0 yield a curve with a different shape, and the
beta function ensures no matter what the shape, the area under the curve is 1.
An example of a beta probability distribution is shown in Figure A1.1.

0.0

0.0

0.5

1.0

D
en

si
ty

1.5

0.2 0.4

Hypotheses for p
0.6 0.8 1.0

Figure A1.1



The x-axis for the beta distribution ranges between 0 and 1. The y-axis gives the probabil-
ity density. You can think of the densities associated with each value of p as the “weight”
for each hypothesis. The distribution above would put greater weight for p’s between, say,
0.2 and 0.6 than other values.

The observed data

The data in this problem are binomial data, and the likelihood of observing the data can be
obtained with the binomial probability mass function:

Lðy; n; pÞ ¼ n
y

� �
pyð1−pÞðn−yÞ (A1.2)

The number of trials is denoted n. The number of observed successes is denoted as y. The
probability of success is denoted as p.

As an example, the binomial distribution for n = 3 and p = 0.7 is shown in Figure A1.2.

With 3 trials, and p (the probability of success) being 0.7, the binomial probability of 2
successes is 0.441). We show this only to illustrate the binomial distribution; we don’t
know what p is.

Bayes’ Theorem

Remember that Bayes’ Theorem is:

Pðp jdataÞ ¼ Pðdata j pÞ ∗ PðpÞð1
0
Pðdata j pÞ ∗PðpÞdp

(A1.3)

This is the version of Bayes’ Theorem when the posterior distribution for a single
parameter, given the observed data, is represented by a pdf. This is designated Pðp jdataÞ.
This is the left side of the equation. On the right side of the equation, the numerator
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Figure A1.2 Binomial distribution: n = 3, p = 0.7
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multiplies the prior probability density of p, which is written PðpÞ, by the likelihood of
observing the data under a given hypothesis for p, which is written Pðdata j pÞ. In the
denominator, we see the same terms, but this time we also see a few more symbols. The
symbol

Ð
means “integrate,” which roughly means “sum up all the pieces” for each tiny

change in p, which is written dp. In other words, the denominator accounts for the prior
density * likelihood for all possible hypotheses for p, and sums them.
We’ll now add color-coding to Bayes’ Theorem to help track the terms:

Pðp jdataÞ ¼ Pðdata j pÞ ∗ PðpÞð1
0
Pðdata j pÞ ∗ PðpÞdp

(A1.4)

In this equation, Pðp jdataÞ and the p’s in the numerator refer to a specific value of p. In
the denominator, we are integrating over all possible values that p can assume (0 to 1). To
avoid confusion in the derivation, we replace p with u in the denominator, where u is a
variable that can take on these possible values.

Pðp jdataÞ ¼ Pðdata j pÞ ∗ PðpÞð1
0
Pðdata j uÞ ∗PðuÞdu

(A1.5)

For a problem in which the prior distribution is a beta distribution with hyperparameters α0
and β0, and in which the collected data are binomial, the posterior distribution is a beta
distribution with hyperparameters:

αposterior ¼ α0 þ y (A1.6)

βposterior ¼ β0 þ n − y (A1.7)

Our goal now is to show how Bayes’ Theorem generates these results.

The conjugate proof

Applying Bayes’ Theorem to our problem, the prior is:

PðpÞ ¼ f ðp; α0; β0Þ ¼
1

Bðα0; β0Þ
pα0−1ð1−pÞβ0−1 0< p <1 (A1.8)

And the likelihood is:

Pðdata j pÞ ¼ Lðy; n; pÞ ¼ f ðy;n;pÞ¼ n
y

� �
pyð1−pÞðn−yÞ (A1.9)

Replacing the terms with their functional equivalents:

Pðp jdataÞ ¼
n
y

� �
pyð1−pÞðn−yÞ ∗ 1

Bðα0;β0Þ
pα0−1ð1−pÞβ0−1

ð1
0

n
y

� �
uyð1−uÞðn−yÞ ∗ 1

Bðα0; β0Þ
uα0−1ð1−uÞβ0−1du

(A1.10)

A couple of terms here are constants, and cancel out, which reduces the equation to:

Pðp jdataÞ ¼ pyð1−pÞðn−yÞ ∗ pα0−1ð1−pÞβ0−1ð1
0
uyð1−uÞðn−yÞ ∗ uα0−1ð1−uÞβ0−1du

(A1.11)

THE BETA-BINOMIAL CONJUGATE SOLUTION 371



The next step involves combining terms in both the numerator and denominator, where
we lose our color-coding:

Pðp jdataÞ ¼ pα0þy−1ð1−pÞðβ0þn−y−1Þ
ð1
0
uα0þy−1ð1−uÞðβ0þn−y−1Þdu

(A1.12)

However, the integral (the area under the curve) in Equation A1.12 is not equal to 1.
To ensure the denominator integrates to 1.0, we bring in the beta function, which in

our case has the parameters α0 þ y and β0 þ n− y. The inverse of this is:

1
Bðα0 þ y; β0 þ n− yÞ (A1.13)

We now multiply both the numerator and denominator by 1 over the beta function:

Pðp jdataÞ ¼
1

Bðα0þy;β0þn−yÞ ∗ p
α0þy−1ð1−pÞðβ0þn−y−1Þ

1
Bðα0þy;β0þn−yÞ ∗

ð1
0
uα0þy−1ð1−uÞðβ0þn−y−1Þdu

(A1.14)

Now, the denominator is equal to 1. This leaves us with just the numerator, which is our
posterior distribution!

Pðp jdataÞ ¼ 1
Bðα0 þ y; β0 þ n− yÞ p

α0þy−1ð1−pÞðβ0þn−y−1Þ (A1.15)

Look familiar? Remember the form of our prior distribution (a beta distribution in
Equation A1.1):

PðpÞ ¼ 1
Bðα0; β0Þ

pα0−1ð1−pÞβ0−1 0< p <1 (A1.16)

If Equation A1.1 (or A1.16) is our prior distribution, the posterior distribution
(Equation A1.15) is another beta distribution, with updated hyperparameters.

To help see this, let’s bring back our color-coding (blue for prior, red for data). The alpha
hyperparameter of the posterior distribution is:

αposterior ¼ α0 þ y (A1.17)

where α0 is from the prior distribution. The beta hyperparameter of the posterior
distribution is:

βposterior ¼ β0 þ n− y (A1.18)

where β0 is from the prior distribution.
The posterior distribution is:

Pðp jdataÞ ¼ 1
Bðα0 þ y; β0 þ n−yÞ p

ðα0þy−1Þð1−pÞðβ0þn−y−1Þ 0< p <1 (A1.19)
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APPENDIX 2

The Gamma-Poisson Conjugate
Solution

Here, we aim to show that the Bayesian posterior can be easily obtained for problems in
which the prior distribution is a gamma distribution and the observed data are Poisson in
flavor.

The prior distribution

A prior distribution is set for an unknown parameter, λ, which can range from 0 to infinity.
The probability density function for our gamma distribution (our prior distribution) is:

PðλÞ ¼ gðλ; α0; β0Þ ¼
β0

α0λα0−1e−β0λ

Γðα0Þ 0< λ<∞ ðA2:1Þ

The shape and location of our prior gamma distribution are controlled by two hyperpara-
meters: the shape parameter is called alpha, α0, and the rate parameter is called beta, β0. The
parameter values must be positive real numbers. Note: There are other forms of gamma
distributions too, but the formulation above is standard for Bayesian problems.
Let’s take a look at a few examples with the shape and rate parameterization in

Figure A2.1.
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Figure A2.1 Gamma distributions.



Note that we have drawn these distributions as continuous functions (curves)—high-
lighting that the gamma distribution is a probability density function—there are an
infinite number of hypotheses for λ.

The observed data

The data in this problem are Poisson data:

x1; x2; x3; : : : ; xn ðA2:2Þ
That is, they are assumed to have been generated from a Poisson distribution.

The Poisson pmf has just one parameter that controls both its shape and location. This
parameter is called “lambda,” and is written λ. Lambda represents the mean number of
occurrences in a specified time period, such as the mean number of births in a year, the
mean number of accidents in a factory in a year, themean number of shark attacks in a year.
So λmust be > 0 or the event will never occur. The units can also be volume or area instead
of time; regardless, the unit must be specified in order to fully describe a Poisson distribu-
tion. By the way, λ is also the variance of the distribution.

An example of Poisson distribution where λ ¼ 2.1 is shown in Figure A2.2.

Notice that the y-axis is labeled “Probability,” and that the sum of the bars must equal
1.0. Now take a look at the x-axis; it consists of non-negative integers only. The graph is
depicted in bars to indicate there are only discrete outcomes; that is, that there is no way to
observe, say, x ¼ 2.5. That is, the outcome x is an integer, but the average rate, λ, can be any
positive number such as 2.1.

The likelihood of observing a single observation can be obtained with the Poisson
probability mass function, which is written:

Lðx; λÞ ¼ λxe−λ

x!
ðA2:3Þ

where λ is the mean number of successes in a given period of time, x is the number of
successes we are interested in, and e is the natural logarithm constant (approximately
2.718), also called Euler’s number.
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Figure A2.2 Poisson distribution with λ ¼ 2.1.
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When there is more than one observation of x, the likelihood is written:

Lðx1: : : xn; λÞ ¼ ∏
n

i¼1

λxi e−λ

xi!
ðA2:4Þ

This can also be expressed as:

Lðx1: : : xn; λÞ ¼ λΣxi e−nλ

∏xi!
ðA2:5Þ

Bayes’ Theorem

Remember that Bayes’ Theorem is:

Pðλ jdataÞ ¼ Pðdata j λÞ ∗PðλÞð∞

0
Pðdata j λÞ ∗ PðλÞdλ

ðA2:6Þ

This is the version of Bayes’ Theoremwhen the posterior distribution for a single parameter,
given the observed data, is represented by a pdf. This is designated P(λ | data). This is the left
side of the equation. On the right side of the equation, the numerator multiplies the prior
probability density of λ, which is written P(λ), by the likelihood of observing the data under
a given hypothesis for λ, which is written P(data | λ). In the denominator, we see the same
terms, but this timewe also see a fewmore symbols. The symbol

Ð
means “integrate,”which

roughly means “sum up all the pieces” for each tiny change in λ, which is written dλ. In
other words, the denominator accounts for the prior density * likelihood for all possible
hypotheses for λ, and sums them.
In this equation, P(λ | data) and the λs in the numerator refer to a specific value of λ. In the

denominator, we are integrating over all possible values that λ can assume (0 to ∞). To
avoid confusion in the derivation, we replace λ with u in the denominator, where u is a
variable that can take on these possible values:

PðλjdataÞ ¼ PðdatajλÞ ∗ PðλÞð∞

0
PðdatajuÞ ∗ PðuÞdu

ðA2:7Þ

For a problem in which the prior distribution is a gamma distribution with hyperpara-
meters α0 and β0, and in which the collected data are Poisson, the posterior distribution is a
gamma distribution with hyperparameters:

αposterior ¼ α0 þ
Xn

i¼1

xi ðA2:8Þ

βposterior ¼ β0 þ n ðA2:9Þ

Our goal now is to show how Bayes’ Theorem generates these results.

Conjugate proof

Now, assuming we have a prior distribution for an unknown parameter, λ, and Poisson-
distributed data in hand, we can use Bayes’ Theorem to update the prior distribution to the
posterior distribution.
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The prior pdf for our unknown parameter, λ is a gamma distribution:

PðλÞ ¼ gðλ; α0; β0Þ ¼
β0

α0λα0−1e−β0λ

Γðα0Þ 0< λ <∞ ðA2:10Þ

The likelihood of observing the data is calculated using the Poisson pmf:

PðdatajλÞ ¼ Lðx1: : : xn; λÞ ¼ ∏
n

i¼1

λxi e−λ

xi!
¼ λΣxi e−nλ

∏n
i¼1xi!

ðA2:11Þ

Notice that the right side is expressed in two equivalent ways. Now we can replace these
terms with their functional equivalents:

Pðλ jdataÞ ¼
λΣxi e−nλ

∏xi!
∗
β0

α0λα0−1e−β0λ

Γðα0Þð∞

0

uΣxi e−nu

∏xi!
∗
β0

α0uα0−1e−β0u

Γðα0Þ du
ðA2:12Þ

Here, we replaced the prior (in blue) with the gamma pdf, and we replace the likelihood (in
red) with the Poisson pmf.

Several terms here cancel out, namely ∏xi !, Γ(α0), and β0
α0. In the numerator, you can also

combine the terms involving λ:

λΣxi ∗ λα0−1 ¼ λα0þΣxi−1 ðA2:13Þ
And you can combine the e terms as well:

e−nλ ∗ e−β0λ ¼ e−λðβ0þnÞ ðA2:14Þ
In the denominator, you can similarly combine terms involving u and e. These steps
muddle our color-coding and reduce our equation to:

Pðλ jdataÞ ¼ λα0þΣxi−1e−λðβ0þnÞ
ð∞

0
uα0þΣxi−1e−uðβ0þnÞdu

ðA2:15Þ

The denominator in Equation A2.15 does not integrate to 1, so we will need to address this.
The next step involves multiplying both the numerator and denominator by a
common term:

ðβ0 þ nÞα0þΣxi

Γðα0 þ ΣxiÞ ðA2:16Þ

This results in the following:

Pðλ jdataÞ ¼
ðβ0 þ nÞα0þΣxi

Γðα0 þ ΣxiÞ ∗ λα0þΣxi−1e−λðβ0þnÞ

ðβ0þnÞα0þΣxi

Γðα0þΣxiÞ ∗
ð∞

0
uα0þΣxi−1e−uðβ0þnÞdu

ðA2:17Þ

The denominator is now equal to 1. We’re left with the numerator:

Pðλ jdataÞ ¼ ðβ0 þ nÞα0þΣxiλα0þΣxi−1e−λðβ0þnÞ

Γðα0 þ ΣxiÞ ðA2:18Þ

This is our posterior gamma distribution! Look familiar? Let’s compare this distribution
with our prior gamma distribution, which has the form:
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PðλÞ ¼ β0
α0λα0−1e−β0λ

Γðα0Þ ðA2:19Þ

Can you see the correspondence? Here is our posterior:

Pðλ jdataÞ ¼ ðβ0 þ nÞα0þΣxiλα0þΣxi−1e−λðβ0þnÞ

Γðα0 þ ΣxiÞ ðA2:20Þ

Thus, our posterior distribution is a gamma pdf.We learned about the conjugate solution in
our shark attack chapter (Chapter 11), where we had a prior distribution with hyperpara-
meters α0 and β0. The posterior parameters are then:

α0posterior ¼ α0 þ
Xn

i¼1

xi ðA2:21Þ

and

β0posterior ¼ β0 þ n ðA2:22Þ

This is the gamma-Poisson conjugate solution.
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APPENDIX 3

The Normal-Normal Conjugate
Solution

Here, we aim to show that the Bayesian posterior can be easily obtained for problems in
which the prior distribution is a normal distribution and the observed data are normal in
flavor.
Remember that the normal distribution is defined by two parameters: μ and some

measure of spread. You may also recall that the spread of a normal distribution can be
expressed in several ways:

• Standard deviation ¼ σ.
• Variance ¼ σ2.
• Precision ¼ τ ¼ 1

σ2.

The so-called normal-normal conjugate that we used in Chapter 12 requires that the
measure of spread is known; the goal is to estimate the unknown parameter, μ. Here,
we will assume that τ is known, such as the green ribbon shown in Figure A3.1, and the goal
is to estimate the unknown parameter, μ, conditional on τ.

We can use Bayesian methods to update our beliefs associated with values of the un-
known parameter, μ. First, we set a prior distribution for μ, then we collect data, and finally
we use the conjugate solution to update the prior distribution to the posterior distribution
for μ, our parameter of interest.

Hypotheses for mu
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The prior distribution

To begin, we set a prior distribution for the unknown parameter, μ, which provides weights
of belief in alternative values of μ. The prior distribution is, perhaps confusingly, a normal
distribution defined by hyperparameters μ0 and τ0. For example, in Figure A3.2 we have set
more “weight” on the belief that μ¼ 10.00 as opposed to, say, μ¼ 5 (or any other value for μ).

You may recall that the pdf for a normal distribution in terms of μ and σ is expressed as:

PðxÞ ¼ f ðx; μ; σÞ ¼ 1ffiffiffiffiffiffi
2π

p
σ
e− ðx−μÞ

2=ð2σ2Þ: ðA3:1Þ

Our prior distribution for the unknown parameter, μ, is a normal distribution with hyper-
parameters μ0 and σ20. Here, though, we express the parameters in terms of μ0 and τ0, where

τ0 ¼ 1
σ20

ðA3:2Þ

We can now express the prior distribution for the unknown parameter, μ as:

PðμÞ ¼ f ðμ; μ0; τ0Þ ¼
ffiffiffiffiffi
τ0

p
ffiffiffiffiffiffi
2π

p e−
1
2τ0ðμ−μ0Þ2 : ðA3:3Þ

Because
ffiffiffiffiffi
τ0

p ¼ τ
1
2
0 and 1ffiffiffiffi

2π
p ¼ ð2πÞ− 1

2, this can be re-expressed as:

PðμÞ ¼ ð2πÞ− 1
2τ

1
2
0e

− 1
2τ0ðμ−μ0Þ2 : ðA3:4Þ

The observed data

The data in this problem are normally distributed data:

x1; x2; x3; : : : ; xn: ðA3:5Þ
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Figure A3.2 Pdf of a normal distribution
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That is, they are assumed to have been generated from a normal distribution.
The likelihood of observing the data, P(data | μ), can be obtained with the normal

probability density function, which for one datapoint is written:

Lðx; μ; σÞ ¼ 1ffiffiffiffiffiffi
2π

p
σ
e− ðx−μÞ

2=ð2σ2Þ: ðA3:6Þ

With more than one datapoint, the likelihood is written:

Lðx1; : : : ; xn; μ; σÞ ¼ ∏
n

i¼1

1ffiffiffiffiffiffi
2π

p
σ
e− ðxi−μÞ

2=ð2σ2Þ ðA3:7Þ

We can rearrange this equation as:

Lðx1; : : : ; xn; μ; σÞ ¼ ð2πÞ− n
2σ−ne−

1
2Σðxi−μÞ2=σ2 : ðA3:8Þ

Now, let’s write this equation in terms of τ instead of σ2. The likelihood can be written:

Pðdata j μÞ ¼ Lðx1; : : : ; xn; μ; τÞ ¼ ð2πÞ− n
2τ

n
2e−

1
2τΣðxi−μÞ2 : ðA3:9Þ

For convenience, we will refer to this likelihood below as Pðdata j μÞ. This is the likelihood of
observing the data, given a normal distribution. Remember that the mean, μ, is unknown,
and the precision, τ (with no subscript), is known!

Bayes’ Theorem

For this example, Bayes’ Theorem looks like this:

Pðμ jdataÞ ¼ Pðdata j μÞ ∗PðμÞð1
−1

Pðdata j μÞ ∗ PðμÞdμ
: ðA3:10Þ

The posterior distribution of the unknown parameter, μ, is a normal distribution with
hyperparameters:

μposterior ¼
τ0μ0 þ τ

Pn
i¼1xi

ðτ0 þ n � τÞ ðA3:11Þ

and

τposterior ¼ τ0 þ n � τ: ðA3:12Þ
Our goal here is to show how Bayes’ Theorem generates these results.

Conjugate proof

We start with Bayes’ Theorem:

Pðμ jdataÞ ¼ Pðdata j μÞ ∗PðμÞð1
−1

Pðdata j μÞ ∗ PðμÞdμ
: ðA3:13Þ

In the equation, P(μ | data) is referring to a specific value of μ. In the denominator, we are
integrating over all possible values that μ can assume (−∞ to +∞). To avoid confusion in the
derivation, we let u be a variable that takes on these possible values:
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Pðμ jdataÞ ¼ Pðdata j μÞ ∗ PðμÞð1
−1

Pðdata j uÞ ∗ PðuÞdu
: ðA3:14Þ

Now we replace the prior and likelihood with the equations above:

PðμjdataÞ ¼ ð2πÞ−n2τn
2e−

1
2τΣðxi−μÞ2 ∗ ð2πÞ−1

2τ
1
2
0e

−
τ0
2 ðμ−μ0Þ2ð−1

1
ð2πÞ−n

2τ
n
2e−

1
2τΣðxi−uÞ2 ∗ ð2πÞ−1

2τ
1
2
0e

−
τ0
2 ðu−μ0Þ2du

: ðA3:15Þ

First, let’s focus on the numerator. We can combine terms andmultiply the prior density by
the likelihood. In doing so, we lose our color-coding:

PðμÞ ∗ Pðdata j μÞ ¼ ð2πÞ− nþ1
2 τ

1
2
0τ

n
2e−

1
2τ0ðμ−μ0Þ2− 1

2τΣðxi−μÞ2 : ðA3:16Þ
Now let’s expand the terms in the exponent (notice that only the exponent term contains
μ, our unknown parameter):

PðμÞ ∗Pðdata j μÞ ¼ ð2πÞ− nþ1
2 τ

1
2
0τ

n
2e−

1
2τ0 μ2−2μμ0þμ20½ �− 1

2τ Σx2i −2μΣxiþnμ2½ �: ðA3:17Þ
Now we can combine terms involving μ2 and μ in the exponent:

PðμÞ ∗ Pðdata j μÞ ¼ ð2πÞ− nþ1
2 τ

1
2
0τ

n
2e−

1
2ðτ0þnτÞμ2− 1

2ð−2τ0μ0−2τΣxiÞμ− 1
2τ0μ

2
0−

1
2τΣxi

2
: ðA3:18Þ

At this point, we will add and subtract the same term to the exponent, which is the same as
adding 0. This will make a future step easier. The term we will add and subtract is:

− 1
2 ðτ0μ0 þ τΣxiÞ2

τ0 þ nτ
: ðA3:19Þ

This gives us:

ð2πÞ−nþ1
2 τ

1
2
0τ

n
2e−

1
2ðτ0þnτÞμ2−12ð−2τ0μ0−2τΣxiÞμþ

−12ðτ0μ0þτΣxiÞ2
τ0þnτ −

− 12ðτ0μ0þτΣxiÞ2
τ0þnτ − 1

2τ0μ
2
0 −

1
2τΣx

2
i : ðA3:20Þ

The first three terms in the exponent can be re-expressed as:

−
1
2
ðτ0 þ nτÞ μ−

ðτ0μ0 þ τΣxiÞ
τ0 þ nτ

� �2
: ðA3:21Þ

We have now completed the square. The last three terms of the exponent don’t depend on
μ, our parameter of interest. Let’s simplify them as C:

C ¼
1
2 ðτ0μ0 þ τΣxiÞ2

τ0 þ nτ
−
1
2
τ0μ

2
0−

1
2
τΣxi2: ðA3:22Þ

Remember that we have been focusing on the numerator of Bayes’ Theorem only. We can
carry out these same steps for the denominator, but we won’t show them because they are
essentially identical.

Now we are ready to plug these new equations into Bayes’ Theorem:

Pðμ jdataÞ ¼ Pðdata j μÞ ∗ PðμÞð1
−1

Pðdata j uÞ ∗ PðuÞdu
ðA3:23Þ
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Pðμ jdataÞ ¼ ð2πÞ− nþ1
2 τ

1
2
0τ

n
2e

− 1
2ðτ0þnτÞ μ−

τ0μ0þτΣxið Þ
τ0þnτ

h i2

þC

ð1
−1

ð2πÞ− nþ1
2 τ

1
2
0τ

n
2e

− 1
2ðτ0þnτÞ u−

τ0μ0þτΣxið Þ
τ0þnτ

h i2

þC
du

: ðA3:24Þ

Various terms cancel out from the numerator and denominator, so we are left with:

Pðμ jdataÞ ¼ e
− 1

2ðτ0þnτÞ μ−
τ0μ0þτΣxið Þ

τ0þnτ

h i2

ð1
−1

e
− 1

2ðτ0þnτÞ u−
τ0μ0þτΣxið Þ

τ0þnτ

h i2

du

: ðA3:25Þ

Next, we multiply the numerator and denominator by a term highlighted in blue, which is
the same thing as multiplying by 1:

ð2πÞ− 1
2ðτ0 þ nτÞ12: ðA3:26Þ

So we have:

Pðμ jdataÞ ¼ ð2πÞ− 1
2ðτ0 þ nτÞ12e−

1
2ðτ0þnτÞ μ−

τ0μ0þτΣxið Þ
τ0þnτ

h i2

ð1
−1

ð2πÞ− 1
2ðτ0 þ nτÞ12e−

1
2ðτ0þnτÞ u−

τ0μ0þτΣxið Þ
τ0þnτ

h i2

du

ðA3:27Þ

Now, the denominator is the integral of a pdf and thus is equal to 1. So, now we can ignore
the denominator.
Still with us? Let’s compare the prior distribution and the posterior distribution. The prior

distribution has the following form with the mean in red and the precision in blue:

PðμÞ ¼ ð2πÞ− 1
2τ0

1
2e−

1
2τ0ðμ−μ0Þ2 ðA3:28Þ

We now know that the posterior distribution is written with the following form, with the
mean in red and the precision in blue:

PðμÞ ¼ ð2πÞ−1
2ðτ0 þ nτÞ12e −12

ðτ0þnτÞ μ−
τ0μ0þτΣxi

τ0þnτ

� �2

ðA3:29Þ
These are both normal distributions. The posterior hyperparameters are:

μposterior ¼
τ0μ0 þ τΣxi
τ0 þ nτ

ðA3:30Þ

τposterior ¼ τ0 þ nτ ðA3:31Þ
Compare Equation A3.30 with Equation A3.11, and Equation A3.31 with Equation A3.12.
Brilliant!
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APPENDIX 4

Conjugate Solutions for Simple
Linear Regression

In Chapter 17 we introduced MCMC as a method for fitting a simple linear regression
model. In simple linear regression, there is a dependent variable, Y, and an independent
or predictor variable, X. It is “simple” because there is just one predictor variable.

Here is the statistical model we wish to build:

yi ¼ b0 þ b1xi þ ϵi i ¼ 1; : : : ; n (A4.1)

We presume that each variable, Yi, is follows a normal distribution whosemean, μi, is
equal to b0þb1xi and whose standard deviation is σ. We can write:

Yi � Nðb0 þ b1xi; σ2Þ (A4.2)

For a given datapoint xi, yi, arises from a normal distribution:

• Themean of this distribution is the parameter, b0, plus a second parameter, b1, multiplied
by the level of the predictor variable, xi.

• The standard deviation of this distribution is σ. The precision of this distribution is τ,
which is 1

σ2.

Thus, there are three unknown parameters to estimate in this linear model. In a Bayesian
analysis, a prior distribution for each parameter is specified. Then, MCMC approaches with
Gibbs sampling can be used to estimate the posterior distributions of b0, b1, and τ. The
problem is captured in the model diagram in Figure A4.1.

The likelihood of the data

The data in this problem are normally distributed data:

y1; y2; y3; : : : ; yn: (A4.3)

That is, they are assumed to have been generated from normal distributions.
The likelihood of observing the data, Pðdata j μ; σ2Þ, can be obtained with the normal

probability density function, which for one datapoint, yi, is written:

f ðyi; μi; σ2Þ ¼
1ffiffiffiffiffiffi
2π

p
σ
e−ðyi−μiÞ

2=ð2σ2Þ: (A4.4)



With more than one datapoint, the likelihood is written:

f ðy1; μ1; σ2Þ: : : f ðyn; μn; σ2Þ ¼ ∏
n

i¼1

1ffiffiffiffiffiffi
2π

p
σ
e−ðyi−μiÞ

2=ð2σ2Þ (A4.5)

We can rearrange this equation to remove the denominator:

f ðy1; μ1; σ2Þ: : : f ðyn; μn; σ2Þ ¼ ð2πÞ−n
2σ−ne−

1
2σ2

Σðyi−μiÞ2 : (A4.6)

Now, let’s write this equation in terms of τ instead of σ2. The likelihood can be written:

Pðdata j μ1; μn; τÞ ¼ ð2πÞ− n
2τ

n
2e−

1
2τΣðyi−μiÞ2 : (A4.7)

Next, we know that the mean for each datapoint is given by b0 þ b1xi. Thus, the likelihood
for the simple linear regression problem is:

Pðdata j b0; b1; τÞ ¼ ð2πÞ− n
2τ

n
2e−

1
2τΣðyi−ðb0þb1xiÞÞ2 : (A4.8)

This likelihood applies for all three parameters. As you’ll soon see, we will write this as
Pðdata j b0Þ when we compute the posterior distribution of b0 given data, b1 and τ,
Pðdata j b1Þ when we compute the posterior distribution of b1 given data b0 and τ, and
Pðdata j τÞ when we compute the posterior distribution of τ given data b0 and b1.
In other words:

Pðdata j b0Þ ¼ Pðdata j b1Þ ¼ Pðdata j τÞ ¼ ð2πÞ− n
2τ

n
2e−

1
2τΣðyi−ðb0þb1xiÞÞ2 : (A4.9)

The remaining portions of this appendix are dedicated to showing the conjugate solutions
for each of the three parameters in turn.

The b0 parameter

The goal now is to focus only on the unknown parameter b0. We assume that both b1 and τ

are known. (You may recall that at eachMCMC trial, we draw a proposal from the posterior
distribution for a parameter of interest – here, b0, conditional on the values for the
remaining parameters in that trial.)

yi

b0 ∼N(μ0, τ0)  

τ ∼gamma (α0, β0)

b1 ∼N(μ1, τ1)   

N(μi, τ)  

b0 + b1 xi

Figure A4.1
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The prior distribution

The prior distribution for the unknown parameter, b0 provides weights of belief in alterna-
tive values of the intercept, b0. The prior distribution is a normal distribution defined by
hyperparameters for mean and precision, μ0 and τ0.
As shown in Appendix 3, we may write:

Pðb0Þ ¼
ffiffiffiffiffi
τ0

p
ffiffiffiffiffiffi
2π

p e−
τ0
2 ðb0−μ0Þ2 : (A4.10)

The posterior distribution for b0 will be another normal distribution, with a mean of

μ0½posterior� ¼
τ0μ0 þ τΣðyi−b1xiÞ

τ0 þ nτ
(A4.11)

and precision of:

τ0½posterior� ¼ τ0 þ nτ (A4.12)

We will next show how Bayes’ Theorem provides the posterior hyperparameters.

Bayes’ Theorem

We start with Bayes’ Theorem. Here, we write it in the most general form for one parameter
called θ to review the general form.

Pðθ jdataÞ ¼ Pðdata j θÞ ∗ PðθÞð∞
−∞

Pðdata j θÞ ∗ PðθÞdθ
: (A4.13)

The prior distribution is shown in blue, and the likelihood is shown in red. For b0, Bayes’
Theorem looks like this:

Pðb0 jdataÞ ¼ Pðdata j b0Þ ∗ Pðb0Þð∞
−∞

Pðdata j b0Þ ∗ Pðb0Þdb0
: (A4.14)

In the equation, Pðb0 jdataÞ is referring to a specific value of b0. In the denominator, we are
integrating over all possible values that b0 can assume (−∞ to +∞). To avoid confusion in the
derivation, we let u be a variable that takes on these possible values:

Pðb0 jdataÞ ¼ Pðdata j b0Þ ∗ Pðb0Þð∞
−∞

Pðdata j uÞ ∗ PðuÞdu
: (A4.15)

Let’s focus on the numerator only, and replace each termwith their respective functions for
this simple linear regression problem:

Pðb0Þ ∗Pðdata j b0Þ ¼ ð2πÞ−1
2τ

1
2
0e

−
τ0
2 ðb0−μ0Þ2 ∗ ð2πÞ−n

2τ
n
2e−

1
2τΣðyi−ðb0þb1xiÞÞ2 : (A4.16)

We can simplify (and lose our color-coding) as:

Pðb0Þ ∗ Pðdata j b0Þ ¼ ð2πÞ− nþ1
2 τ

1
2
0τ

n
2e−

1
2τ0ðb0−μ0Þ2−1

2τΣðyi−b0−b1xiÞ2 : (A4.17)
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Now, we notice that the unknown parameter, b0, occurs in the exponent. We will focus
our attention there. First, we will expand the terms in the exponent:

Pðb0Þ ∗Pðdata j b0Þ ¼ ð2πÞ− nþ1
2 τ

1
2
0τ

n
2e−

1
2τ0½b20−2b0μ0þμ20�−1

2τ½nb20−2boΣðyi−b1xiÞþΣðyi−b1xiÞ2�: (A4.18)

Next, we combine terms in the exponent involving b20 and b0:

Pðb0Þ ∗ Pðdata j b0Þ ¼ ð2πÞ− nþ1
2 τ

1
2
0τ

n
2e−

1
2½τ0þnτ�b20−1

2½−2τ0μ0−2τΣðyi−b1xiÞ�b0− 1
2τ0μ

2
0−

1
2τΣðyi−b1xiÞ2 : (A4.19)

Next, we will add and subtract a term to the exponent, which is adding 0 to the exponent
but will make our next steps easier. This allows us to complete a square for b0. The term is:

− 1
2 ½τ0μ0 þ τΣðyi−b1xiÞ�2

τ0 þ nτ
(A4.20)

Pðb0Þ � Pðdata j b0Þ

¼ ð2πÞ−nþ1
2 τ

1
2
0τ

n
2e−

1
2½τ0þnτ�b20þ½τ0μ0þτΣðyi−b1xiÞ�b0þ

−12½τ0μ0þτΣðyi−b1xiÞ�2
τ0þnτ −

−12½τ0μ0þτΣðyi−b1xiÞ�2
τ0þnτ −12τ0μ

2
0−

1
2τΣðyi−b1xiÞ2 :

(A4.21)

The first three terms in the exponent can be re-expressed (completing the square) as:

−
1
2
∗ ðτ0 þ nτÞ b0−

�
τ0μ0 þ τΣðyi−b1xiÞ

�
τ0 þ nτ

2
4

3
5
2

: (A4.22)

The last three terms in the exponent don’t depend on b0. Let’s simplify them as C.
Remember that we have been focusing on the numerator of Bayes’ Theorem only.We can

carry out these same steps for the denominator but won’t show them because they are
essentially identical.

Plugging in our equations into Bayes’ Theorem, we have:

Pðb0 jdataÞ ¼ ð2πÞ−nþ1
2 τ

1
2
0τ

n
2e−

1
2ðτ0þnτÞ½b0−ðτ0μ0þτΣðyi−b1xiÞÞ

τ0þnτ �2þCð∞
−∞

ð2πÞ−nþ1
2 τ

1
2
0τ

n
2e−

1
2ðτ0þnτÞ½u−ðτ0μ0þτΣðyi−b1xiÞÞ

τ0þnτ �2þCdu
: (A4.23)

Various terms cancel out from the numerator and denominator, which leaves:

Pðb0 jdataÞ ¼ e−
1
2ðτ0þnτÞ½b0−ðτ0μ0þτΣðyi−b1xiÞÞ

τ0þnτ �2ð∞
−∞

e
1
2ðτ0þnτÞ½u−ðτ0μ0þτΣðyi−b1xiÞÞ

τ0þnτ �2du
: (A4.24)

Next, we multiply both the numerator and denominator by the term:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ0 þ nτ

p
ffiffiffiffiffiffi
2π

p : (A4.25)

This gives:

Pðb0 jdataÞ ¼
ffiffiffiffiffiffiffiffiffiffi
τ0þnτ

p ffiffiffiffi
2π

p e−
1
2ðτ0þnτÞ½b0−ðτ0μ0þτΣðyi−b1xiÞÞ

τ0þnτ �2

ð∞
−∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ0 þ nτ

p
ffiffiffiffiffiffi
2π

p e−
1
2ðτ0þnτÞ½u−ðτ0μ0þτΣðyi−b1xiÞÞ

τ0þnτ �2du
: (A4.26)
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The denominator is the integral of a pdf—a normal distribution. Thus, the denominator is
equal to 1. This leaves us with:

Pðb0 jdataÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ0 þ nτ

p
ffiffiffiffiffiffi
2π

p e−
1
2ðτ0þnτÞ½b0−ðτ0μ0þτΣðyi−b1xiÞÞ

τ0þnτ �2
: (A4.27)

Here is the normal pdf for our prior distribution for b0 again:

Pðb0Þ ¼
ffiffiffiffiffi
τ0

p
ffiffiffiffiffiffi
2π

p e−
τ0
2 ðb0−μ0Þ2 : (A4.28)

Thus, the posterior distribution of b0 is a normal distribution with mean and precision
hyperparameters that are defined by:

μ0posterior ¼
τ0μ0 þ τΣðyi−b1xiÞ

τ0 þ nτ
(A4.29)

τ0posterior ¼ τ0 þ nτ: (A4.30)

Match these results with Equations A4.11 and A4.12.

The b1 parameter

We now focus only on the conjugate solutions for the unknown parameter b1 in a simple
linear regression problem.We assume that both b0 and τ are known. (Youmay recall that at
each MCMC trial, we draw a proposal from the posterior distribution for a parameter of
interest—here, b1, conditional on the values for the remaining parameters in that trial.)

The prior distribution

The prior distribution for the unknown parameter, b1 provides weights of belief in alterna-
tive values of the slope, b1. The prior distribution is a normal distribution defined by
hyperparameters μ1 and τ1.
Recall from Equation A4.9 that we may write this normal distribution as:

Pðb1Þ ¼
ffiffiffiffiffi
τ1

p
ffiffiffiffiffiffi
2π

p e−
τ1
2 ðb1−μ1Þ2 : (A4.31)

The posterior distribution for b1 will be another normal distribution, with a mean hyper-
parameter equal to

μ1½posterior� ¼
τ1μ1 þ τΣxiðyi−b0Þ

τ1 þ τΣx2i
(A4.32)

and precision hyperparameter equal to

τ1½posterior� ¼ τ1 þ τΣx2i (A4.33)

We will next show how Bayes’ Theorem provides these posterior hyperparameters.

Bayes’ Theorem

We start with Bayes’ Theorem. Here, we write it in the most general form for one parameter
called θ to review the general form:
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Pðθ jdataÞ ¼ Pðdata j θÞ ∗PðθÞð
Pðdata j θÞ ∗PðθÞdθ

: (A4.34)

For b1, Bayes’ Theorem looks like this:

Pðb1 jdataÞ ¼ Pðdata j b1Þ ∗ Pðb1Þð∞
−∞

Pðdata j b1Þ ∗ Pðb1Þdb1
: (A4.35)

In the equation, Pðb1 jdataÞ is referring to a specific value of b1. In the denominator, we are
integrating over all possible values that b1 can assume (−∞ to +∞). To avoid confusion in the
derivation, we let u be a variable that takes on these possible values:

Pðb1 jdataÞ ¼ Pðdata j b1Þ ∗ Pðb1Þð∞
−∞

Pðdata j uÞ ∗PðuÞdu
: (A4.36)

The prior distribution is shown in blue, and the likelihood is shown in red.
Let’s focus on the numerator only and replace each term with their respective functions for
this simple linear regression problem:

Pðb1Þ ∗ Pðdata j b1Þ ¼ Pðb1Þ ¼
ffiffiffiffiffi
τ1

p
ffiffiffiffiffiffi
2π

p e−
τ1
2 ðb1−μ1Þ2 ∗ ð2πÞ−n2τn

2e−
1
2τΣðyi−ðb0þb1xiÞÞ2 (A4.37)

We can simplify (and lose our color-coding) as:

Pðb1Þ ∗Pðdata j b1Þ ¼ ð2πÞ−nþ1
2 τ

1
2
1τ

n
2e−

1
2τ1ðb1−μ1Þ2−12τΣððyi−b0Þ−b1xiÞ2 (A4.38)

Now, we notice that the unknown parameter, b1, occurs in the exponent. We will focus
our attention there. First, we will expand the terms in the exponent:

Pðb1Þ ∗ Pðdata j b1Þ ¼ ð2πÞ−nþ1
2 τ

1
2
1τ

n
2e−

1
2τ1½b21−2b1μ1þμ21�−12τ½b21Σx2i −2b1Σxiðyi−b0ÞþΣðyi−b0Þ2� (A4.39)

Next, we combine terms in the exponent involving b21 and b1:

Pðb1Þ ∗Pðdata j b1Þ ¼ ð2πÞ−nþ1
2 τ

1
2
0τ

n
2e−

1
2½τ1þτΣx2i �b21−12½−2τ1μ1−2τΣxiðyi−b0Þ�b1−1

2τ1μ
2
1−

1
2τΣðyi−b0Þ2 (A4.40)

Next, we will add and subtract a term to the exponent, which is adding 0 to the
exponent but will make our next steps easier. This allows us to complete a square for
b1. The term is:

− 1
2 ½τ1μ1 þ τΣxiðyi−b0Þ�2

τ1 þ τΣx2i
(A4.41)

Pðb1Þ*Pðdatajb1Þ

¼ ð2πÞ−nþ1
2 τ

1
2
1τ

n
2e

−12½τ1þτΣx2i �b21−12½−2τ1μ1−2τΣxiðyi−b0Þ�b1þ
−12½τ1μ1þτΣxiðyi−b0Þ�2

τ1þτΣx2
i

−
−12½τ1μ1þτΣxiðyi−b0Þ�2

τ1þτΣx2
i

−1
2τ1μ

2
1−

1
2τΣðyi−b0Þ2

(A4.42)

The first three terms in the exponent can be re-expressed (completing the square) as:

−
1
2
½τ1 þ τΣx2i � b1−

τ1μ1 þ τΣxiðyi−b0Þ
τ1 þ τΣx2i

" #2

(A4.43)
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The last three terms in the exponent don’t depend on b1. Let’s simplify them as C.
We are now ready to plug these into Bayes’ Theorem. In this case, it is:

Pðb1 jdataÞ ¼ ð2πÞ−nþ1
2 τ

1
2
0τ

n
2e

−1
2 τ1þτΣx2i½ � b1−

τ1μ1þτΣxi yi−b0ð Þ
τ1þτΣx2

i

� �2

þC

ð∞
−∞

ð2πÞ−nþ1
2 τ

1
2
0τ

n
2e

−1
2 τ1þτΣx2i½ � u−

τ1μ1þτΣxi yi−b0ð Þ
τ1þτΣx2

i

� �2

þC

du

(A4.44)

Various terms cancel out from the numerator and denominator, which leaves:

Pðb1 jdataÞ ¼ e
− 1

2½τ1þτΣx2i � b1−
τ1μ1þτΣxiðyi−b0Þ

τ1þτΣx2
i

� �2

ð∞

−∞

e
− 1

2½τ1þτΣx2i � u−
τ1μ1þτΣxiðyi−b0Þ

τ1þτΣx2
i

� �2

du

(A4.45)

Next, we multiply both the numerator and denominator by the term:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ1 þ τΣx2i

q
ffiffiffiffiffiffi
2π

p (A4.46)

This gives:

Pðb1 jdataÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ1þτΣx2i

p ffiffiffiffi
2π

p e
− 1

2½τ1þτΣx2i � b1−
τ1μ1þτΣxiðyi−b0Þ

τ1þτΣx2
i

� �2

ð∞
−∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ1 þ τΣx2i

q
ffiffiffiffiffiffi
2π

p e
− 1

2 τ1þτΣx2i½ � u−
τ1μ1þτΣxiðyi−b0Þ

τ1þτΣx2
i

� �2

du

(A4.47)

The denominator is the integral of a pdf—a normal distribution. Thus, the denominator is
equal to 1. Thus, we have:

Pðb1 jdataÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ1 þ τΣx2i

q
ffiffiffiffiffiffi
2π

p e
−12 τ1þτΣx2i½ � b1−

τ1μ1þτΣxiðyi−b0Þ
τ1þτΣx2

i

� �2

(A4.48)

Here is the normal pdf again for our prior distribution for the unknown parameter, b1,
defined by hyperparameters τ1 and μ1 (see Equation A4.28):

Pðb1Þ ¼
ffiffiffiffiffi
τ1

p
ffiffiffiffiffiffi
2π

p e−
τ1
2 ðb1−μ1Þ2 : (A4.49)

Now look for the corresponding terms in Equation A4.43. You can see that the posterior
distribution of b1 is a normal distribution with hyperparameters defined by:

μ1posterior ¼
τ1μ1 þ τΣxiðyi−b0Þ

τ1 þ τΣx2i
(A4.50)

τ1posterior ¼ τ1 þ τΣx2i : (A4.51)

Match these results with Equations A4.32 and A4.33.
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The τ parameter

We now focus only on the conjugate solutions for the unknown parameter τ in a simple
linear regression problem. We assume that both b0 and b1 are known. (You may recall that
at each MCMC trial, we draw a proposal from the posterior distribution for a parameter of
interest—here, τ, conditional on the values for the remaining parameters in that trial.)

The prior distribution

The prior distribution for the unknown parameter, τ, provides weights of belief in alterna-
tive values of the precision, τ. The prior distribution is a gamma distribution, and you may
recall that the gamma pdf can be written:

gðx; α; βÞ ¼ βαxα−1e−βx

ΓðαÞ ; 0 � x � ∞: (A4.52)

Remember that the gamma distribution is controlled by two parameters: α (also called the
“shape” parameter) and β (also called the “rate” parameter). Figure A4.2 shows a few
alternative gamma distributions.

The prior distribution is a gamma distribution defined by hyperparameters α0 and β0:

PðτÞ ¼ βα00 τα0−1e−β0τ

Γðα0Þ 0 � τ � ∞: (A4.53)

The posterior distribution for τ will be another gamma distribution, with a hyperparameter
equal to

α½posterior� ¼ α0 þ n
2

(A4.54)

β½posterior� ¼ β0 þ
Σn
i¼1

�
yi−ðb0 þ b1xiÞ

�2

2
: (A4.55)
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Figure A4.2 Gamma distributions
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We will next show how Bayes’ Theorem provides these posterior hyperparameters.

Bayes’ Theorem

We start with Bayes’ Theorem. Here, we write it in the most general form for one parameter
called θ to review the general form:

Pðθ jdataÞ ¼ Pðdata j θÞ ∗ PðθÞð
Pðdata j θÞ ∗ PðθÞdθ

: (A4.56)

For τ, Bayes’ Theorem looks like this:

Pðτ jdataÞ ¼ Pðdata j τÞ ∗ PðτÞð∞
0
Pðdata j τÞ ∗ PðτÞdτ

: (A4.57)

In the equation, Pðτ jdataÞ is referring to a specific value of τ. In the denominator, we are
integrating over all possible values that τ can assume (0 to +∞). To avoid confusion in the
derivation, we let u be a variable that takes on these possible values:

Pðτ jdataÞ ¼ Pðdata j τÞ ∗ PðτÞð∞
0
Pðdata j uÞ ∗ PðuÞdu

: (A4.58)

The prior distribution is shown in blue, and the likelihood is shown in red. Let’s focus on
the numerator only and replace each term with their respective functions for this simple
linear regression problem:

PðτÞ ∗ Pðdata j τÞ ¼ βα00 τα0−1e−β0τ

Γðα0Þ ∗ ð2πÞ−n2τn
2e−

1
2τΣðyi−ðb0�b1xiÞÞ2 (A4.59)

For convenience, we’ll combine terms and re-express this as:

Pðdata j τÞ ∗ PðτÞ ¼ ð2πÞ−n2τα0þn
2−1βα00 e−β0τ−

τ
2Σðyi−b0−b1xiÞ2=Γðα0Þ (A4.60)

We are now ready to plug these into Bayes’ Theorem. In this case, it is:

PðτjdataÞ ¼ ð2πÞ−n2τα0þn
2−1βα00 e−τ½β0þ

1
2Σðyi−b0−b1xiÞ2�=Γðα0Þð∞

0
ð2πÞ−n2uα0þn

2−1βα00 e−u½β0þ1
2Σðyi−b0−b1xiÞ2�=Γðα0Þdu

(A4.61)

The terms, ð2πÞ−n2 and βα00 and Γðα0Þ cancel from the numerator and denominator. Next,
we’ll multiply both the numerator and denominator by a term:

½β0 þ 1
2Σðyi−b0−b1xiÞ2�α0þ

n
2

Γðα0 þ n
2Þ

(A4.62)

This gives us:

Pðτ jdataÞ ¼
τα0þ

n
2−1

Γðα0þn
2Þ β0 þ 1

2Σðyi−b0−b1xiÞ2
h iα0þn

2
e−ðβ0þ

1
2Σðyi−b0−b1xiÞ2Þτ

ð∞
0

uα0þ
n
2−1

Γðα0 þ n
2Þ

β0 þ 1
2Σðyi−b0−b1xiÞ2

h iα0þn
2
e−ðβ0þ1

2Σðyi−b0−b1xiÞ2Þudu
(A4.63)
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The denominator is the integral of a pdf—a gamma distribution. Thus, the denominator is
equal to 1.

With some minor rearrangement, we now have:

Pðτ jdataÞ ¼
β0 þ 1

2Σðyi−b0−b1xiÞ2
h iα0þn

2
τα0þ

n
2−1e− β0þ1

2Σðyi−b0−b1xiÞ2ð Þτ

Γ α0 þ n
2

� � (A4.64)

Here is the gamma pdf again for our prior distribution for the unknown parameter, τ,
defined by hyperparameters α0 and β0 (see Equation A4.53):

PðτÞ ¼ βα00 τα0−1e−β0τ

Γðα0Þ ; 0 � x � ∞: (A4.65)

You can see that the posterior distribution of τ is a gamma distribution with hyperpara-
meters defined by:

α½posterior� ¼ α0 þ n
2

(A4.66)

β½posterior� ¼ β0 þ
Σn

i¼1ðyi−b0 � b1xiÞ2
2

: (A4.67)

Match these results with Equations A4.54 and A4.55.
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APPENDIX 5

The Standardization of
Regression Data

In Chapter 17 we introduced MCMC as a method for developing a simple linear regression
model. In simple linear regression, there is a dependent variable, Y, and an independent or
predictor variable, X. It is “simple” because there is just one predictor variable.
Here is the statistical model we wish to build, where yi is success in Survivor (number of

days) and xi is years of formal education:

yi ¼ b0 þ b1xi þ ϵi i ¼ 1; : : : ;n (A5.1)

We presume that each, Yi follows a normal distribution whose mean, μi, is equal to
b0þb1xi and whose standard deviation is σ. We can write:

Yi � Nðb0 þ b1xi; σ2Þ (A5.2)

For a given datapoint xi, yi, arises from a normal distribution:

• Themean of this distribution is the parameter, b0, plus a second parameter, b1, multiplied
by the level of the predictor variable, xi.

• The standard deviation of this distribution is σ. The precision of this distribution is τ,
which is 1

σ2.

Thus, there are three unknown parameters to estimate in this linear model. In a Bayesian
analysis, a prior distribution for each parameter is specified. Then, MCMC approaches
with Gibbs Sampling can be used to estimate the posterior distributions of b0, b1, and τ.
In Chapter 17, we demonstrated howMCMC approaches with Gibbs sampling can be used
to estimate the parameters. We mentioned that datasets may be standardized to Z scores
prior to an MCMC analysis. The reason for this is that an MCMC analysis often produces a
joint posterior distribution in which the parameters are highly correlated. Standardization
of data can relieve some of this correlation.
Here, we aim to illustrate how to standardize variables in a dataset, and then how to back-

transform them to the original scale for a simple linear regression analysis.

Standardizing datasets

To illustrate the process, we start with our original grit dataset (see Table A5.1), focusing
only on the columns Success and Years (as in Chapter 17):

Here, the dependent variable is success, and the predictor variable is years. The original
dataset is highlighted in gray.



To standardize the dataset column by column, we find the mean and standard deviation
for each column. Then, the standardized Z score for success for a given individual, zsuccessi , is
computed as:

zsuccessi ¼
ðyi−�yÞ
sy

: (A5.3)

For example, the mean success, �y, is 33.11 days, and the standard deviation, sy, is 11.76.
The first record in Table A5.1 is a contestant that lasted 33.48 days in a Survivor contest. The
Z score for this contestant is:

zsuccess1 ¼
ðy1−�yÞ

sy
¼ 33:48−38:11

11:76
¼ −0:39: (A5.4)

Similarly, the Z score for the first contestant for the years variable can be computed as:

zyears1 ¼
ðx1−�xÞ

sx
¼ 12−15

4:47
¼ −0:67: (A5.5)

Now that the data are standardized, theMCMC can be run, and the resulting joint posterior
distribution of the three parameters will hopefully have less correlation. The “challenge” is
that the parameters are now on this new scale, whose meaning is not as apparent. For
instance, b1 no longer is the unit increase that a contestant will last on Survivor with each
unit increase in years of formal education.

Back-transforming standardized coefficients to the original scale

Themain challenge now is how to convert the b0 and b1 estimates to their original scale. For
simple linear regression, the solution is straightforward.

Table A5.1

Success Z_Success Years Z_Years

1 33.48 −0.39 12.00 −0.67
2 42.53 0.38 14.00 −0.22
3 48.53 0.89 18.00 0.67
4 30.21 −0.67 10.00 −1.12
5 38.76 0.06 13.00 −0.45
6 38.59 0.04 22.00 1.57
7 52.93 1.26 17.00 0.45
8 32.65 −0.46 15.00 0.00
9 52.42 1.22 16.00 0.22

10 22.22 −1.35 9.00 −1.34
11 41.40 0.28 19.00 0.89
12 16.28 −1.86 8.00 −1.57
13 40.83 0.23 20.00 1.12
14 24.43 −1.16 11.00 −0.89
15 56.38 1.55 21.00 1.34

Mean 38.11 0 15.00 0
Std 11.76 1 4.47 1

396 BAYESIAN STATISTICS FOR BEGINNERS



• Let’s let b*0 represent the standardized coefficient for b0. This is equal to 0. Let b*1 represent
the standardized coefficient for b1.

• Let sy represent the standard deviation of the y vector. Let’s let sx represent the standard
deviation of the x vector.

We begin by writing the equation to predict the standardized response score (success) for
contestant i as a function of the standardized coefficients and standardized predictor score
(years). Let’s let the predicted value of z for individual i be expressed as ẑyi :

ẑyi ¼
ŷ i−�y
sy

¼ b*0 þ b*1
ðxi−�xÞ
sx

: (A5.6)

Next, multiply through by sy:

ŷ i−�y ¼ 0þ b*1
sy
sx
ðxi−�xÞ: (A5.7)

Now, we isolate ŷ i by adding �y to both sides and then add a bit of color-coding to help us see
the pattern:

ŷ i ¼ 0þ �y−b*1
sy
sx
�x þ b*1

sy
sx
xi: (A5.8)

This gives us the linear form that we seek:

ŷ i ¼ b0 þ b1xi: (A5.9)

Thus, the back-transformed estimate of b0 is:

b0 ¼ �y−b*1
sy
sx
�x: (A5.10)

And the back-transformed estimate of b1 is:

b1 ¼ b*1
sy
sx
: (A5.11)

These coefficients are now on the original scale. In an MCMC analysis, b0* and b1*

are generated in each trial. Similarly, the back-transformed estimates are computed for
each trial.
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• Definition of conditional probability: http://mathworld.wolfram.com/Conditional
Probability.html

• Kalid Azad: http://www.betterexplained.com

Chapter 3: Bayes’ Theorem

• Bayes’ Theorem: http://mathworld.wolfram.com/BayesTheorem.html
• Definition of conditional probability: http://mathworld.wolfram.com/Conditional

Probability.html
• Breast cancer example: http://yudkowsky.net/rational/bayes

Chapter 4: Bayesian Inference

• Definition of science: http://spaceplace.nasa.gov/science/en/
• Definition of science: http://en.wikipedia.org/wiki/Science
• Scientific method: http://www.britannica.com/science/scientific-method
• Definition of hypothesis: http://www.britannica.com/topic/scientific-hypothesis
• Definition of scientific theory: http://www.dictionary.com/browse/scientific-theory
• Definition of deductive reasoning: http://www.oxfordreference.com/view/10.1093/

oi/authority.20110803095706311
• Deductive versus inductive inference quote from livescience: http://www.

livescience.com/21569-deduction-vs-induction.html
• Link to the word verify: http://en.wikipedia.org/wiki/Verification_and_validation)
• Link to the word falsify: http://www.britannica.com/topic/criterion-of-falsifiability
• Theory That Would Not Die lecture: http://www.youtube.com/watch?v=

8oD6eBkjF9o
• Pierre-Simon Laplace: http://en.wikipedia.org/wiki/Pierre-Simon_Laplace
• Definition of Bayesian inference: http://www.oxfordreference.com/view/10.1093/

acref/9780199679188.001.0001/acref-9780199679188-e-135?rskey=CHC1xV&result=1
• Definition of Bayesian inference: http://en.wikipedia.org/wiki/Bayesian_inference
• Definition of posterior probability: http://en.wikipedia.org/wiki/Posterior_probability
• Definition of infer: http://www.merriam-webster.com/dictionary/infer

Chapter 5: The Author Problem

• Frederick Mosteller: http://ww2.amstat.org/about/statisticiansinhistory/index.cfm?
fuseaction=biosinfo&BioID=10

• David Wallace: http://www.stat.uchicago.edu/faculty/emeriti/wallace/index.shtml
• Federalist Papers: http://www.britannica.com/topic/Federalist-papers
• Alexander Hamilton: http://www.britannica.com/biography/Alexander-Hamilton

-United-States-statesman
• James Madison: http://www.britannica.com/biography/James-Madison
• Federalist Paper 54: http://www.congress.gov/resources/display/content/The

+Federalist+Papers#TheFederalistPapers-54
• Additional information on Federalist Paper 54: http://en.wikipedia.org/wiki/

Federalist_No._54
• Definition of likelihood: http://www.dictionary.com/browse/likelihood?s=t
• Definition of likelihood: http://mathworld.wolfram.com/Likelihood.html
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Chapter 6: The Birthday Problem

• Absent Treatment: http://americanliterature.com/author/p-g-wodehouse/short-story/
absent-treatment

• Yudkowski priors: http://yudkowsky.net/rational/bayes
• Definition of non-informative and informative prior: http://support.sas.com/

documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_introbayes
_sect004.htm

• Definition of non-informative and informative prior: http://en.wikipedia.org/wiki/
Prior_probability

• Link to the word robust: http://www.dictionary.com/browse/robust
• Zhu and Lu link: http://ww2.amstat.org/publications/jse/v12n2/zhu.pdf
• LinktorobustBayesiananalysis:http://en.wikipedia.org/wiki/Robust_Bayesian_analysis

Chapter 7: The Portrait Problem

• IMS Bulletin: http://bulletin.imstat.org/
• Challenge: http://www.york.ac.uk/depts/maths/histstat/bayespic.htm
• History of Life Insurance: http://www.amazon.com/History-life-insurance-

formative-years/dp/B00085BVQY
• Definition of a non-conformist: http://www.britannica.com/topic/Nonconformists
• Description of England’s Act of Uniformity: http://www.parliament.uk/about/

living-heritage/transformingsociety/private-lives/religion/collections/common-prayer/
act-of-uniformity-1662/

• Dr. Bellhouse article: http://www2.isye.gatech.edu/~brani/isyebayes/bank/bayes
biog.pdf

• Answer to why men wear wigs: http://boston1775.blogspot.com
• Link to Anne Clark’s page: http://www.uvm.edu/~religion/?Page=clark.php

Chapter 8: Probability Mass Functions

• Definition of variable: http://www.oxfordreference.com/view/10.1093/acref/97801
99679188.001.0001/acref-9780199679188-e-1703?rskey=cgYSYj&result=4

• Definition of variable: http://www.oxfordreference.com/view/10.1093/acref/
9780199679188.001.0001/acref-9780199679188-e-1703?rskey=cgYSYj&result=4

• Definition of a variable: http://www.britannica.com/topic/variable-mathematics-and-
logic

• Definition of random variable: http://www.oxfordreference.com/view/10.1093/acref/
9780199679188.001.0001/acref-9780199679188-e-1351?rskey=LxzeOh&result=1

• Definition of random variable: http://en.wikipedia.org/wiki/Random_variable
• Definition of probability theory: http://www.britannica.com/topic/probability-theory
• Definition of probability distribution: http://www.oxfordreference.com/view/10.

1093/acref/9780199679188.001.0001/acref-9780199679188-e-1295?rskey=D26yAE
&result=1

• Definition of probability mass function:http://www.britannica.com/science/
statistics/Random-variables-and-probability-distributions#ref367430

• Definition of probability mass function: http://en.wikipedia.org/wiki/Probability_
mass_function
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• Link to Jakob Bernoulli: http://www.britannica.com/biography/Jakob-Bernoulli
• Definition of parameter: http://www.oxfordreference.com/view/10.1093/acref/

9780199679188.001.0001/acref-9780199679188-e-1206?rskey=f6caGK&result=2
• Definition of parameter: http://en.wikipedia.org/wiki/Parameter
• Link to negative binomial distribution: http://mathworld.wolfram.com/Negative

BinomialDistribution.html
• Link to Bernoulli distribution: http://mathworld.wolfram.com/Bernoulli

Distribution.html
• link to Poisson distribution: http://mathworld.wolfram.com/PoissonDistribution.

html
• Link to discrete uniform distribution: http://mathworld.wolfram.com/Discrete

UniformDistribution.html
• Link to geometric distribution: http://mathworld.wolfram.com/Geometric

Distribution.html
• Link to hypergeometric distribution: http://mathworld.wolfram.com/Hypergeo

metricDistribution.html
• Definition of Bernoulli distribution: http://www.oxfordreference.com/view/10.

1093/acref/9780199541454.001.0001/acref-9780199541454-e-149
• Definition of Bernoulli distribution: http://en.wikipedia.org/wiki/Bernoulli_

distribution
• Definition of likelihood: http://www.dictionary.com/browse/likelihood?s=t
• Link to John Kruschke’s blog: http://doingbayesiandataanalysis.blogspot.com.au/

2012/05/graphical-model-diagrams-in-doing.html

Chapter 9: Probability Density Functions

• Definition of pmf: http://www.britannica.com/science/statistics/Random-variables-
and-probability-distributions#ref367430

• Definition of random variable: http://www.oxfordreference.com/view/10.1093/
acref/9780199679188.001.0001/acref-9780199679188-e-1351?rskey=5IndNY&result=2

• Bacteria growth example: http://en.wikipedia.org/wiki/Probability_density_function
• Uniform or rectangular distribution: http://mathworld.wolfram.com/Uniform

Distribution.html
• Online Statistics Education ebook: http://onlinestatbook.com/2/normal_distri

bution/intro.html
• Carl Friedrich Gauss: http://www.britannica.com/biography/Carl-Friedrich-Gauss
• Integral symbol: http://en.wikipedia.org/wiki/Integral_symbol
• Definition of integral: http://mathworld.wolfram.com/Integral.html
• Gaussian integral: http://mathworld.wolfram.com/GaussianIntegral.html
• Riemann Sum: http://mathworld.wolfram.com/RiemannSum.html
• Khan Academy: http://www.khanacademy.org/math/
• Better Explained: http://betterexplained.com/calculus/
• How to Enjoy Calculus: http://www.youtube.com/watch?v=GSV-AuGOjsg
• Normal distribution: http://mathworld.wolfram.com/NormalDistribution.html
• Log normal distribution: http://mathworld.wolfram.com/LogNormalDistribution.

html
• Beta distribution: http://mathworld.wolfram.com/BetaDistribution.html
• Gamma distribution: http://mathworld.wolfram.com/GammaDistribution.html
• Exponential distribution: http://mathworld.wolfram.com/ExponentialDistribution

.html
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• Weibull distribution: http://mathworld.wolfram.com/WeibullDistribution.html
• Cauchy distribution: http://mathworld.wolfram.com/CauchyDistribution.html
• Definition of likelihood function: http://www.oxfordreference.com/view/10.1093/

acref/9780199679591.001.0001/acref-9780199679591-e-1671?rskey=uGoV2J&result=1
• Definition of closed-form expression: http://en.wikipedia.org/wiki/Closed-form_

expression
• Definition of conjugate prior: http://www.oxfordreference.com/view/10.1093/

acref/9780199679188.001.0001/acref-9780199679188-e-135?rskey=HNKSuc&
result=5

• Dirichlet distribution: http://en.wikipedia.org/wiki/Dirichlet_distribution

Chapter 10: The White House Problem: The Beta-Binomial Conjugate

• Link to bet: http://voices.washingtonpost.com/dcsportsbog/2009/07/could_shaq_
get_into_the_white.html?wprss=dcsportsbog

• Binomial pmf link: http://mathworld.wolfram.com/BinomialDistribution.html
• Bernoulli distribution link: http://mathworld.wolfram.com/BernoulliDistribution.

html
• Beta distribution description: http://www.oxfordreference.com/view/10.1093/

acref/9780199679188.001.0001/acref-9780199679188-e-158?rskey=DESoj3&result=1
• Beta distribution description: http://en.wikipedia.org/wiki/Beta_distribution
• Wolfram calculator link: http://www.wolframalpha.com/
• Zhu and Lu link: http://ww2.amstat.org/publications/jse/v12n2/zhu.pdf
• Link to Howard Raiffa: http://en.wikipedia.org/wiki/Howard_Raiffa
• Link to Robert Schlaifer: http://en.wikipedia.org/wiki/Robert_Schlaifer
• Bayesian conjugate table: http://en.wikipedia.org/wiki/Conjugate_prior
• Conjugate prior definition: http://www.oxfordreference.com/view/10.1093/acref/

9780199679188.001.0001/acref-9780199679188-e-135?rskey=HNKSuc&result=5
• Beta distribution link: http://mathworld.wolfram.com/BetaDistribution.html
• Credible interval definition: http://www.oxfordreference.com/view/10.1093/acref/

9780191816826.001.0001/acref-9780191816826-e-0087?rskey=cmncUS&result=1
• Credible intervals: http://en.wikipedia.org/wiki/Credible_interval
• Result of bet: http://voices.washingtonpost.com/dcsportsbog/2009/07/shaq_denied_

entrance_by_the_wh.html

Chapter 11: The Shark Attack Problem: The Gamma-Poisson Conjugate

• Link to shark attack post: http://www.sciencedaily.com/releases/2001/08/0108230
84028.htm

• Description of Poisson distribution: http://www.oxfordreference.com/view/10.
1093/acref/9780199684274.001.0001/acref-9780199684274-e-6897?rskey=NlK26q
&result=5

• Simeon Poisson link: http://www.britannica.com/biography/Simeon-Denis-Poisson
• Euler’s number link: http://www.oxfordreference.com/view/10.1093/acref/97801

99679591.001.0001/acref-9780199679591-e-1026?rskey=hJEPVP&result=1
• Gamma distribution link: http://mathworld.wolfram.com/GammaDistribution.

html
• Gamma distribution link: http://www.oxfordreference.com/view/10.1093/acref/

9780199679188.001.0001/acref-9780199679188-e-649?rskey=lJwBFp&result=3
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• Gamma distribution link: http://mathworld.wolfram.com/GammaDistribution.
html

• Gamma function: http://mathworld.wolfram.com/GammaFunction.html
• Gamma function online calculator: http://www.wolframalpha.com/input/?i=gamma

+function
• Definition of conjugate prior: http://www.oxfordreference.com/view/10.1093/

acref/9780199679188.001.0001/acref-9780199679188-e-135?rskey=HNKSuc&result=5
• Wikipedia table of conjugate priors: http://en.wikipedia.org/wiki/Conjugate_prior
• Log-normal distribution link: http://mathworld.wolfram.com/LogNormal

Distribution.html

Chapter 12: The Maple Syrup Problem: The Normal-Normal Conjugate

• Link to syrup movie: http://entertainment.time.com/2013/09/26/jason-segel-will-
star-in-canadian-syrup-heist-film/

• Maple syrup link: http://www.britannica.com/topic/maple-syrup
• Article about cartel: http://business.time.com/2012/12/24/why-does-canada-

have-a-maple-syrup-cartel/
• Link to Vermont maple: http://vermontmaple.org/
• Wikipedia conjugate prior table: http://en.wikipedia.org/wiki/Conjugate_prior
• Link to inverse gamma: http://reference.wolfram.com/language/ref/

InverseGammaDistribution.html
• Link to inverse chi square: http://reference.wolfram.com/language/ref/Inverse

ChiSquareDistribution.html
• Link to gamma distribution: http://mathworld.wolfram.com/GammaDistribution.

html

Chapter 13: The Shark Attack Problem Revisited: MCMC with the
Metropolis Algorithm

• Link to Poisson distribution: http://mathworld.wolfram.com/PoissonDistribution.
html

• Link to gamma distribution: http://mathworld.wolfram.com/GammaDistribution.
html

• Link to Metropolis algorithm: http://en.wikipedia.org/wiki/Equation_of_State_
Calculations_by_Fast_Computing_Machines

• Definition of algorithm: http://www.britannica.com/topic/algorithm
• Link to Nicholas Metropolis: http://en.wikipedia.org/wiki/Nicholas_Metropolis
• Link to Andrieu paper: http://www.cs.princeton.edu/courses/archive/spr06/

cos598C/papers/AndrieuFreitasDoucetJordan2003.pdf
• Link to Monte Carlo casino: http://www.britannica.com/place/Monte-Carlo-resort-

Monaco
• Link to Monte Carlo method: http://www.britannica.com/science/Monte-Carlo-

method
• Link to Markov Chain: http://www.oxfordreference.com/view/10.1093/acref/

9780191793158.001.0001/acref-9780191793158-e-6731?rskey=Ggi5ev&result=3
• Link to Andrey Markov: http://www.britannica.com/biography/Andrey-

Andreyevich-Markov
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• Link to Wolfram MCMC demo: http://demonstrations.wolfram.com/
MarkovChainMonteCarloSimulationUsingTheMetropolisAlgorithm/

• Link to calculator: http://www.wolframalpha.com/
• Link to rules of logs: http://www.britannica.com/topic/logarithm

Chapter 14: MCMC Diagnostic Approaches

• SAS Institute link: http://support.sas.com/documentation/cdl/en/statug/63962/
HTML/default/viewer.htm#statug_mcmc_sect024.htm

• Definition of heuristic: http://www.dictionary.com/browse/heuristic
• How your computer stores numbers: http://www.britannica.com/topic/numeral

#toc233819
• Converting numbers to binary: http://www.wolframalpha.com/examples/Number

Bases.html
• Link to numerical overflow: http://en.wikipedia.org/wiki/Integer_overflow

Chapter 15: The White House Problem Revisited: MCMC with the
Metropolis-Hastings Algorithm

• Link to Metropolis algorithm: http://en.wikipedia.org/wiki/Equation_of_State_
Calculations_by_Fast_Computing_Machines

• Link to Keith Hastings: http://www.probability.ca/hastings/
• Normal pdf: http://mathworld.wolfram.com/NormalDistribution.html
• Link to beta pdf: http://mathworld.wolfram.com/BetaDistribution.html
• Link to Metropolis–Hastings algorithm: http://support.sas.com/documentation/

cdl/en/statug/63033/HTML/default/viewer.htm#statug_introbayes_sect007.htm
• Independence Metropolis–Hastings Sampler: http://support.sas.com/documen

tation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_introbayes_sect007.
htm

• Link to Monte Carlo resort: http://www.britannica.com/place/Monte-Carlo-resort-
Monaco

• Definition of Monte Carlo methods: http://www.britannica.com/science/Monte-
Carlo-method

• Link to Andrey Markov: http://www.britannica.com/biography/Andrey-
Andreyevich-Markov

• Link to Markov Chain: http://www.oxfordreference.com/view/10.1093/acref/
9780191793158.001.0001/acref-9780191793158-e-6731?rskey=Ggi5ev&result=3

• Link to beta distribution (to show table): http://en.wikipedia.org/wiki/Beta_
distribution

• Link to Hastings entry: http://www.oxfordreference.com/view/10.1093/acref/
9780199679188.001.0001/acref-9780199679188-e-1977?rskey=IyPQN9&result=1

Chapter 16: The Maple Syrup Problem Revisited: MCMC with Gibbs
Sampling

• SAS link to Gibbs sampler: http://support.sas.com/documentation/cdl/en/statug/
63033/HTML/default/viewer.htm#statug_introbayes_sect007.htm

• Definition of algorithm: http://www.merriam-webster.com/dictionary/algorithm
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• Wikipedia figure of joint and marginal distributions: http://en.wikipedia.org/wiki/
Marginal_distribution

• Link to gamma distribution: http://en.wikipedia.org/wiki/Gamma_distribution
• Link to Josiah Gibbs: http://www.britannica.com/biography/J-Willard-Gibbs
• Link to Stuart Gemen: http://en.wikipedia.org/wiki/Stuart_Geman
• Link to Donald Gemen: http://en.wikipedia.org/wiki/Donald_Geman
• Link to Theory That Would Not Die: http://www.mcgrayne.com/the_theory_that_

would_not_die__how_bayes__rule_cracked_the_enigma_code__hunted_d_107493.
htm

• Link toGeman andGemanpaper: http://www.ncbi.nlm.nih.gov/pubmed/22499653
• Link to BUGS: http://www.mrc-bsu.cam.ac.uk/software/bugs/
• Link to JAGS: http://mcmc-jags.sourceforge.net/

Chapter 17: The Survivor Problem

• Definition of function: http://www.oxfordreference.com/view/10.1093/acref/
9780191826726.001.0001/acref-9780191826726-e-468?rskey=kC5yBF&result=11

• Definition of linear function: http://www.oxfordreference.com/view/10.1093/acref/
9780199679591.001.0001/acref-9780199679591-e-1692?rskey=N38sCm&result=1

• Definition of variable: http://www.britannica.com/topic/variable-mathematics-
and-logic

• Definition of error term: http://www.britannica.com/science/statistics/
Experimental-design#ref367485

• Additional link to statistical model: http://en.wikipedia.org/wiki/Statistical_model
• Definition of science: http://spaceplace.nasa.gov/science/en/
• Definition of science: http://en.wikipedia.org/wiki/Science
• Definition of hypothesis: http://www.britannica.com/topic/scientific-hypothesis
• Definition of scientific theory: http://www.dictionary.com/browse/scientific-theory
• Definition of deductive reasoning: http://www.oxfordreference.com/view/10.1093/

oi/authority.20110803095706311
• Wassertheil-Smoller quotes: http://www.livescience.com/21569-deduction-vs-

induction.html
• Link to verification and validation: http://en.wikipedia.org/wiki/Verification_and_

validation
• Definition of falsification: http://www.britannica.com/topic/criterion-of-falsifiability
• Definition of statistical inference: http://www.oxfordreference.com/view/10.1093/

acref/9780199679188.001.0001/acref-9780199679188-e-1557?rskey=oryjck&result=1
• Angela Duckworth: http://angeladuckworth.com/
• Grit scale: http://angeladuckworth.com/grit-scale/
• Grit paper: http://www.dropbox.com/s/0y545gn2withb5e/DuckworthPeterson

MatthewsKelly_2007_PerseveranceandPassion.pdf?dl=0
• Description of Survivor show: http://en.wikipedia.org/wiki/Survivor_(franchise)
• Definition of statistical model: http://en.wikipedia.org/wiki/Statistical_model
• Link to binomial distribution: http://reference.wolfram.com/language/ref/Binomial

Distribution.html
• Link to normal distribution: http://reference.wolfram.com/language/ref/Normal

Distribution.html
• Link to gamma distribution: http://reference.wolfram.com/language/ref/

GammaDistribution.html

410 HYPERLINKS ACCESSED AUGUST 2017

http://en.wikipedia.org/wiki/Marginal_distribution
http://en.wikipedia.org/wiki/Marginal_distribution
http://en.wikipedia.org/wiki/Gamma_distribution
http://www.britannica.com/biography/J-Willard-Gibbs
http://en.wikipedia.org/wiki/Stuart_Geman
http://en.wikipedia.org/wiki/Donald_Geman
http://www.mcgrayne.com/the_theory_that_would_not_die__how_bayes__rule_cracked_the_enigma_code__hunted_d_107493.htm
http://www.mcgrayne.com/the_theory_that_would_not_die__how_bayes__rule_cracked_the_enigma_code__hunted_d_107493.htm
http://www.mcgrayne.com/the_theory_that_would_not_die__how_bayes__rule_cracked_the_enigma_code__hunted_d_107493.htm
http://www.ncbi.nlm.nih.gov/pubmed/22499653
http://www.mrc-bsu.cam.ac.uk/software/bugs/
http://mcmc-jags.sourceforge.net/
http://www.oxfordreference.com/view/10.1093/acref/9780191826726.001.0001/acref-9780191826726-e-468?rskey=kC5yBF&result=11
http://www.oxfordreference.com/view/10.1093/acref/9780191826726.001.0001/acref-9780191826726-e-468?rskey=kC5yBF&result=11
http://www.oxfordreference.com/view/10.1093/acref/9780199679591.001.0001/acref-9780199679591-e-1692?rskey=N38sCm&result=1
http://www.oxfordreference.com/view/10.1093/acref/9780199679591.001.0001/acref-9780199679591-e-1692?rskey=N38sCm&result=1
http://www.britannica.com/topic/variable-mathematicsand-logic
http://www.britannica.com/topic/variable-mathematicsand-logic
http://www.britannica.com/science/statistics/Experimental-design#ref367485
http://www.britannica.com/science/statistics/Experimental-design#ref367485
http://en.wikipedia.org/wiki/Statistical_model
http://spaceplace.nasa.gov/science/en/
http://en.wikipedia.org/wiki/Science
http://www.britannica.com/topic/scientific-hypothesis
http://www.dictionary.com/browse/scientific-theory
http://www.oxfordreference.com/view/10.1093/oi/authority.20110803095706311
http://www.oxfordreference.com/view/10.1093/oi/authority.20110803095706311
http://www.livescience.com/21569-deduction-vsinduction.html
http://www.livescience.com/21569-deduction-vsinduction.html
http://en.wikipedia.org/wiki/Verification_and_validation
http://en.wikipedia.org/wiki/Verification_and_validation
http://www.britannica.com/topic/criterion-of-falsifiability
http://www.oxfordreference.com/view/10.1093/acref/9780199679188.001.0001/acref-9780199679188-e-1557?rskey=oryjck&result=1
http://www.oxfordreference.com/view/10.1093/acref/9780199679188.001.0001/acref-9780199679188-e-1557?rskey=oryjck&result=1
http://angeladuckworth.com/
http://angeladuckworth.com/grit-scale/
http://www.dropbox.com/s/0y545gn2withb5e/DuckworthPetersonMatthewsKelly_2007_PerseveranceandPassion.pdf?dl=0
http://www.dropbox.com/s/0y545gn2withb5e/DuckworthPetersonMatthewsKelly_2007_PerseveranceandPassion.pdf?dl=0
http://en.wikipedia.org/wiki/Survivor_(franchise)
http://en.wikipedia.org/wiki/Statistical_model
http://reference.wolfram.com/language/ref/BinomialDistribution.html
http://reference.wolfram.com/language/ref/BinomialDistribution.html
http://reference.wolfram.com/language/ref/NormalDistribution.html
http://reference.wolfram.com/language/ref/NormalDistribution.html
http://reference.wolfram.com/language/ref/GammaDistribution.html
http://reference.wolfram.com/language/ref/GammaDistribution.html


• Wikipedia table of conjugate shortcuts: http://en.wikipedia.org/wiki/Conjugate_
prior

• Alan Gelfand homepage: http://www2.stat.duke.edu/~alan/
• Adrian Smith bio: http://en.wikipedia.org/wiki/Adrian_Smith_(statistician)
• Link to Bayesian Statistics without Tears: http://www.jstor.org/stable/2684170?seq=

1#page_scan_tab_contents
• Linktopropergammadistribution:http://en.wikipedia.org/wiki/Gamma_distribution
• Link to posterior predictive distribution: http://www.oxfordreference.com/view/10.

1093/acref/9780191816826.001.0001/acref-9780191816826-e-0031?rskey=
wjRLiA&result=1

• Link to posterior predictive distribution: http://en.wikipedia.org/wiki/Posterior_
predictive_distribution

• Link to goodness of fit definition: http://www.oxfordreference.com/view/10.1093/
acref/9780199679188.001.0001/acref-9780199679188-e-687?rskey=B6T6sC&result=6

Chapter 18: The Survivor Problem Continued: Introduction to
Bayesian Model Selection

• Link to Angela Duckworth: http://angeladuckworth.com/
• Link to SSE: http://www.oxfordreference.com/view/10.1093/oi/authority.2011101

3151335747?rskey=W9nlte&result=9
• Laws of logarithms: http://www.britannica.com/topic/logarithm
• Occam’s razor: http://www.britannica.com/topic/Occams-razor
• John von Neumann: http://www.britannica.com/biography/John-von-Neumann
• Fitting an elephant: http://demonstrations.wolfram.com/FittingAnElephant/
• Link to DIC: http://support.sas.com/documentation/cdl/en/statug/63347/HTML/

default/viewer.htm#statug_introbayes_sect009.htm#statug.introbayes.bayesdic
• Link to WinBUGS: http://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-

winbugs/

Chapter 19: The Lorax Problem: Introduction to Bayesian Networks

• Summary of The Lorax: http://en.wikipedia.org/wiki/The_Lorax
• Definition of sustainable forest management: http://en.wikipedia.org/wiki/

Sustainable_forest_management
• Link to sustainability: http://www.britannica.com/topic/sustainability
• Example of Bayesian network: http://en.wikipedia.org/wiki/Bayesian_network
• Netica: http://www.norsys.com/tutorials/netica/nt_toc_A.htm
• Influence diagram: http://www.lumina.com/technology/influence-diagrams/
• Definition of sample space and event: http://www.oxfordreference.com/view/10.

1093/acref/9780199679188.001.0001/acref-9780199679188-e-1433#
• DAG: http://www.oxfordreference.com/view/10.1093/acref/9780191816826.001.

0001/acref-9780191816826-e-0168?rskey=gb73bl&result=2
• Dictionary definition of marginal: http://www.dictionary.com/browse/marginal
• Wikipedia definition of marginal probability: http://en.wikipedia.org/wiki/

Marginal_distribution
• Bruce Marcot: http://www.fs.fed.us/research/people/profile.php?alias=bmarcot
• Chain rule in probability: http://en.wikipedia.org/wiki/Chain_rule_(probability)
• Machine learning: http://www.britannica.com/technology/machine-learning
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47, 61

author problem 50–1, 56,
57–9, 60

birthday problem 63–5, 69,
70–2

coin flipping 103, 105–6
Once-ler problem 365
portrait problem 76, 82

prior probability distributions 61
author problem 50, 57, 58
bacteria lifespans 127, 128,

129–30
birthday problem 64–5, 69,

70–1
coin flipping 103, 105–6
conjugate priors 130, 146–7,

166, 184
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prior probability distributions
(cont.)

informative 64–5, 69, 71, 72,
179

maple syrup problem 177,
179–82, 183, 184–5, 187–8,
252–3

in Markov Chain Monte
Carlo 198, 199, 206–7, 210,
254–5

non-informative 64, 70–1, 72,
143–4, 169–70

portrait problem 76, 82
with probability density

functions 127, 128, 129–30,
146

with probability mass
functions 103, 105–6

proper priors 127
shark attack problem 156–7,

161–3, 165–7, 168–71,
195–6, 213

survivor problem 282–6, 287–91,
292–3, 294–9, 301, 306

White House problem 137–40,
142, 143–4, 146, 225–6

prior sensitivity analysis 71
priors, types of

informative 64–5, 69, 71,
72, 179

non-informative 64, 90–1, 72,
143–4, 169–70

objective 72
proper 127
subjective 72

probabilistic models 328
probability 3–10, 14, 89–90

conditional probability 22–5,
31–6, 38, 42, 44

Bayesian networks and 330,
331–9, 341–2, 344–7

decision trees and 356–7,
361–2, 364–7

frequentist notion of 4, 18
joint probability 18–19, 20,

21, 25, 31–2, 34–6, 37–8,
41–2

Bayesian networks and 330,
331, 335–7, 338–9, 346–7

chain rule for 335–7, 338–9,
346–7

portrait problem 78, 79, 82
marginal probability 19–21, 25,

31–2, 34–5, 38, 41, 42
Bayesian networks and 328,

330, 331, 332, 336, 337,
338, 339, 341–2, 344–7

see also posterior probability;
prior probability

probability density
functions 108–30

Bayesian inference with 125–30
beta 122, 130, 138, 232, 236,

238, 239
gamma 122, 130, 158–60, 198,

199
likelihood and 122–5, 127–8
normal/Gaussian 113–21, 128,

129, 130, 174–6, 178, 181,
184, 230

uniform 110–13, 127, 128, 129
probability distributions 7, 90
Bernoulli distribution 97, 98–9,

104–6, 135, 140
beta distribution 137–40,

142–4, 146–7, 148, 149, 157,
158, 225–6, 231–4, 236, 237,
240–1, 244–6

binomial distribution 95, 96–7,
98, 99, 134–6, 140, 224

continuous uniform 110–13,
127, 129

discrete uniform 7, 97
empirical 5, 6
gamma distribution 157–63,

166, 170–1, 187–8, 193, 195,
209–10, 252, 285, 288–90,
294–6, 304

normal/Gaussian
distribution 113–16, 117,
129, 172, 229–31, 233–4,
281–3

Poisson distribution 59, 97,
151–2, 153–5, 156, 163–4,
193, 194

see also posterior probability
distributions; prior
probability distributions

probability mass
functions 87–107, 109

Bayesian inference with 102–6
Bernoulli 97, 98–9, 104–6
binomial 91–7, 98, 101–2, 106,

109, 134–6, 141, 365–6
definitions 90
likelihood and 99–102, 104, 106
Poisson 151–4, 155–6, 164, 198,

199
types of 97–8

proper priors 127
proposal distributions 204, 242
Gibbs sampling algorithm 250,

292–3
Metropolis algorithm 202, 214,

228
Metropolis–Hastings

algorithm 229–34, 237,
239, 241

tuning 216–19
pruning 221, 302

quantiles 208–9, 244, 262, 263

random variables 88–9
continuous 109–10
discrete 89, 90, 97–8, 109

rate parameters 157, 158–9, 252
raw data 5, 6, 23, 54, 66–7
rectangular distribution 111
regression analysis 271–3,

276–307
Markov Chain Monte

Carlo 287–306
credible intervals 303–4, 305–6
diagnostic tests 301–2
posterior predictive
distribution 305–6, 311

results 301–3, 310–11
roadmap 288–91

residual sum of squares 312
Riemann’s approximation 121
Robust Bayesian Analysis 71
root nodes 327

sample space 3–4, 89, 90, 91
scale parameters 115, 157, 158–9,

252
scaled inverse chi-square

distribution 187
science, definitions of 38, 274
scientific method 38–40, 43–5,

274–5
scientific theories 39–40, 274–5
shape parameters 157, 158–9, 252
shark attack problem
with gamma-Poisson

conjugate 150–71, 194–7,
213–14

data collection 163, 168–9,
196, 214

identify hypotheses 161, 194,
213

likelihoods 156, 163–5, 196,
214

posterior probabilitity
distribution 164–71, 196–7,
214

prior probability
distribution 156–7, 161–3,
165–7, 168–71, 195–6, 213

with Markov Chain Monte
Carlo 193–4, 197–204,
205–11

signal 272–3
simple linear regression 276–307
Markov Chain Monte

Carlo 287–306
credible intervals 303–4,
305–6

diagnostic tests 301–2
posterior predictive
distribution 305–6, 311

results 301–3, 310–11
roadmap 288–91
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simplicity 316–18
sprinkler–rain–grass

network 326–42
SSE see Sum of Squared Errors
standard deviation 114–17, 123,

125, 181
starting point 204, 219–21
statistical inference 276
statistical models 271–3, 281
subjective priors 72
Sum of Squared Errors 290, 293–6,

298, 311–12
survivor problem 277–307
Bayesian model

selection 308–23
Bayes’ Theorem and 322–3
Deviance Information

Criterion (DIC) 318–21
identify model set 315–16
model complexity vs model

fit 316–21
Markov Chain Monte

Carlo 287–306
credible intervals 303–4, 305–6
diagnostic tests 301–2
posterior predictive

distribution 305–6, 311

results 301–3, 310–11
roadmap 288–91

tau (τ) parameter 181, 182, 183–4,
186, 187

thinning 221, 302
traceplots 205, 212, 221, 242, 261,

302
trials 134
see also coin flipping; die rolling;

Markov Chain Monte Carlo
(MCMC); White House
problem

tuning 216–19
tuning parameter 199, 204, 211,

214, 217–19

uniform probability density
function 110–13, 127, 128,
129

uniform probability distributions
continuous 110–13, 127, 129
discrete 7, 97

utility 352, 358–62

vague priors see non-informative
prior distributions

variables 88, 270
see also random variables

variance 115, 181
of beta distribution 138, 147
of gamma distribution 161–2,

209
Venn diagrams 13, 14–17, 21,

22–3, 30, 35–6, 37, 79

White House problem
with beta-binomial

conjugate 133–49, 225–7
credible intervals 148
data collection 140, 144, 226
identify hypotheses 136, 225
likelihoods 141–2, 226
posterior probability
distribution 141–4, 146–8,
226–7

prior probability
distribution 137–40, 142,
143–4, 146, 225–6

with Markov Chain Monte
Carlo 224–5, 234–41, 242–6

white lead dating 76
wigs see portrait problem
WinBUGS software 265, 319, 321
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