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Series Foreword

The world does not lack for management ideas. Thousands of research-

ers, practitioners, and other experts produce tens of thousands of arti-

cles, books, papers, posts, and podcasts each year. But only a scant few 

promise to truly move the needle on practice, and fewer still dare to 

reach into the future of what management will become. It is this rare 

breed of idea— meaningful to practice, grounded in evidence, and built 

for the future— that we seek to present in this series.

Abbie Lundberg

Editor in Chief

MIT Sloan Management Review





Foreword

There’s almost no business outcome that machine learning cannot help 

you improve today. From delivering a best- in- class customer and con-

sumer experience to fueling productivity, increasing safety, optimizing 

operations, and improving your employee experience, ML can raise the 

bar on the metrics that matter across all. Its practical deployment rep-

resents the forefront of human progress: improving operations with sci-

ence. But where do you start, and how do you ensure what you do start 

doesn’t end up in the dustbin?

Over the course of my career I’ve consulted with over thirty For-

tune Global 500 companies on data and analytics, and led global data 

and analytics organizations at Caterpillar and Unilever. I’ve seen the 

highs and the lows, including analytics programs that generate tremen-

dous value and competitive advantage, and those that never seem to 

leave the starting gate. In my experience, those companies or teams 

that struggle to embed analytics at scale typically suffer not because of 

imperfect analytics execution or ML models, but rather because of a gap 

in the other factors required for success.

As one example, while consulting, I worked with an analytics team 

at one of the world’s largest retailers on a program to improve market-

ing ROI. The in- house team had already developed an advanced media 

analytics model. They were flush with data, leveraging hundreds of 

millions of data points on marketing spend, response, products, stores, 

and other contributing factors. The team poured hours and hours into 

perfecting the model and fine- tuning it to highest possible levels of 
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accuracy and then summarizing the output into a list of top insights for 

action. The day of the big presentation to marketing leadership arrived 

and the team presented the recommendations to improve ROI by mak-

ing key changes to offline marketing spend. They looked to top market-

ing leadership for their reaction, expecting smiles, gratitude, praise, and 

appreciation. Instead, they were met with a mix of apathy and disbe-

lief. The problem was that the team had missed crucial steps required 

to fully understand and incorporate stakeholder priorities, decision- 

making factors, and processes.

Contrast that with an experience I had leading an AI- powered portfo-

lio optimization program at Unilever. Unilever is a global organization. 

The products are sold in over 25 million stores across 190 countries, 

with over 2.5 billion people using the products every day. Unilever’s 

brands include Dove, Knorr, Sunsilk, Hellmann’s, Axe, Ben & Jerry’s, 

Domestos, Suave, TRESemmé, and Magnum.

We saw an opportunity to make smarter and faster decisions by tak-

ing a global, data- driven approach to optimize our portfolio of prod-

ucts and reduce complexity— through a program we would later name 

Polaris. A sharper portfolio of products ultimately benefits consumers 

and retailers, optimizes our operations, and drives profitable growth 

for Unilever’s shareholders. Our team built an AI- powered capability 

and business process to analyze the entire product portfolio globally 

and recommend products to delist, grow, fix, and protect. The system 

leverages analytics to track the execution of those actions and drive 

accountability across thousands of individuals in the organization. We 

created and scaled Polaris globally in approximately two years, bringing 

together the best of machine and human intelligence, which empow-

ered us to make more efficient and effective decisions and grow through 

simplification.

The path to get there wasn’t easy and there wasn’t a guidebook 

available to help us at the time. Fortunately for the reader, the steps 

outlined in this book bring to life crucial best practices we followed 

in delivering a globally scaled initiative with lasting business impact. 

These include:
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1. Start with outcomes in mind and focus on delivering value incre-

mentally.

We started with a simple question: Could we increase the rate of 

decision making and execution to simplify the product portfolio— 

delivering savings while driving growth with our customers? Only 

after delivering on that scope and establishing that value did we 

expand to complete product portfolio optimization, including non- 

consumer facing simplification such as flagging specifications and 

ingredients to harmonize across products.

2. Leverage empathy to overcome barriers to change.

Consciously or unconsciously, we are all preprogrammed to resist 

change. To overcome this, the analytics team spent hundreds of 

hours with other teams across the business to understand how port-

folio decisions were being taken currently— including marketing, 

sales, supply chain, finance, research and development, and retail-

ers. By gaining an understanding of the pain points in the current 

processes, we were able to bring forward a compelling value proposi-

tion for stakeholders across levels and functions.

3. Prepare the data so that it meets business needs.

Only by anticipating early the differences in data availability, due 

to the global nature of our business, did the team succeed in scal-

ing the capability across geographies. We recognized that we had to 

adapt to variations of data across markets— some of which were rich 

with retailer and third- party data illuminating shopper behavior pat-

terns, while others held inconsistent point of sale and shopper infor-

mation based on the route to market. A versatile data infrastructure 

and stringent data validation process were key to success.

These experiences have made me acutely aware of the many hur-

dles that must be overcome to deliver scaled value realization with ML. 

Innovating the enterprise with ML is revolutionary, and revolutions 

aren’t easy.

Many senior data leaders come to learn the same lessons, but only 

after years of experience and failed projects. Then after understanding it 
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themselves, they still struggle to advocate for these success factors with 

their business counterparts. Without common understanding between 

business stakeholders and data leaders on the best practices for deliver-

ing data and analytics transformations, many projects fail to take off, 

struggle to scale, or ultimately don’t deliver on the business outcomes.

The industry needs a framework to better leverage ML for business 

results. This book introduces bizML, which brings forward the best prac-

tices in a succinct and actionable way. Not only is the book a timely and 

much needed addition to the industry; it is also powerful in bringing 

AI down to earth, eschewing the hype, and making it tangible for all 

readers. This book is the driver’s manual for machine learning— every 

business and analytics professional should read it.

Morgan Vawter

Global Vice President of Data & Analytics at Unilever,

former Chief of Analytics at Caterpillar,

former Data Management Practice Lead at Accenture,

and a Fortune magazine “40 Under 40” honoree



Preface

A Brief History of Why Machine Learning Projects Stall

When promoting breakthrough technology, be careful what you wish for.

Back in the Dark Ages, before data was cool and phones were smart, I 

networked my way into the swank office of a powerful business execu-

tive. Hoping that he would introduce me to— or become— my first cli-

ent, I declared that I was striking out on my own as a machine learning 

(ML) consultant. Unfamiliar with ML and disinterested, he looked at 

me like, “Don’t waste my time,” and I was quickly back on the streets 

of San Francisco.

This was 2003, right after I’d relocated from the East Coast and 

ordered new business cards, all in the pursuit of my passion. I had 

fallen in love with ML a dozen years earlier, first in the research lab and 

then as a Columbia University professor teaching the graduate- level ML 

and AI courses. It was the most exciting, potent, and widely applicable 

kind of technology. Moving west, I vowed to introduce it to the non- 

academic world. I wanted to see ML deployed.

At that time, a corner of the industrial world was already using ML, 

but they called it something else: data mining. I thought that term was 

misleading to the non- data folks, but “machine learning” kept getting 

me kicked out of offices. So I latched onto a new buzzword that had just 

started to gain traction, predictive analytics. A rose by any other name.

Unfortunately, my improved vocabulary didn’t immediately land me 

clients. “You should just take a full- time job,” a senior executive at an 

established analytics vendor bluntly threw in my financially insecure face.

Instead, I doubled down. Tripled down. I held corporate training 

seminars. I published articles. I networked like mad.
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Clients eventually started coming in, but only enough to keep me 

busy. I was knee- deep in demand, but I needed it up to my belly button. 

The world still didn’t get it. I had to evangelize harder. I took a three- 

pronged approach:

1. Conference. I launched Machine Learning Week (formerly Predictive 

Analytics World), the first ML conference series outside academic 

and vendor events. Bolstered by its sister publication, the Machine 

Learning Times, the conference series has since grown to serve 18,000 

attendees internationally.

2. Book. Next, I wrote Predictive Analytics, the first popular book that 

showed readers of all levels how the algorithms work under the 

hood. Written to ignite and excite, it ended up becoming a best-

seller, winning several awards, landing me 100 keynote speeches at 

conferences outside my own, and being adopted as course material 

by hundreds of universities.

3. Music video. I even dropped an educational rap music video called 

“Predict This!,” which went a bit viral (to watch, go to www.Predict 

This.org). Surely this proves that I’d literally do anything to spread 

the gospel of ML.

Whether or not these efforts helped light the fuse, one thing’s for 

sure: ML exploded in popularity. It grew from a nascent industry to a 

full- blown commercial movement. It came of age as a core enterprise 

practice necessary to sustain competitive advantage. Hyperboles reigned 

as data scientist dethroned firefighter to become “the sexiest job.”

Watching ML become so hot felt both gratifying and surreal. The 

experience reinforced an age- old lesson: Keep the faith. When you 

believe in a good idea— such as the notion that learning from data is 

not only cool but valuable— and stick to your convictions, people will 

eventually come around.

Failure to Launch

Unfortunately, ML’s great rise has also taught me another lesson: Be 

careful what you wish for. The buzz has gone too far. In a way, ML is now 

http://www.PredictThis.org
http://www.PredictThis.org
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too hot for its own good. The problem is, the onslaught of excitement 

has fed a common misconception that derails many ML projects:

The ML Fallacy: Since ML algorithms work (amazing and true), 

the models they generate are intrinsically valuable (not true).

The value of ML comes only by launching it to enact organizational 

change. After generating a model with ML, you capture its potential 

value only when you deploy it so that it actively improves operations. 

Until a model is used to actively reshape how your organization works, 

it’s use- less— literally. A model doesn’t solve any business problems on 

its own and it ain’t gonna deploy itself. ML can be the disruptive tech-

nology it’s cracked up to be, but only if you disrupt with it.

Most ML projects fail to deploy. I believe this is mainly because 

most ML leaders neglect to properly plan for the operational change 

that deployment would bring to fruition. That planning takes more 

preaching, socializing, cross- disciplinary collaboration, and change- 

management panache than many, including myself, initially realized.

Far too often, the data scientist delivers a viable model, but the oper-

ational team isn’t ready for the pass— and they drop the ball. There 

are wonderful exceptions and glowing successes, but the generally poor 

track record we witness today forewarns of broad disillusionment with 

ML— even a dreaded AI winter. It’s time to tap the brakes and correct 

course so that ML can deliver on its promise.

Breaking through the ML Snafu

So I’ve pivoted from ML cheerleader to wary disciplinarian— albeit an 

optimistic one— with a new mission: Standardize and broadcast the very 

particular business discipline needed to get ML launched. Whereas my first 

book was about how ML works technically, this book is about how to 

run ML projects so that models not only work in the lab but also suc-

cessfully deploy.

First things first: Business professionals— who are a primary audi-

ence for this book— need some edification. Before those in charge can 
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confidently green- light model deployment, they must gain a concrete 

understanding of how an ML project works from end to end: What 

will the model predict? Precisely how will those predictions affect operations? 

Which metric meaningfully tracks how well it predicts? and What kind of 

data is needed?

Only when the business leaders— including executives, managers, 

and decision makers— come up to speed on this semi- technical but 

straightforward knowledge can we bridge the gap between the tech 

and business sides and bring model deployment into the realm of 

possibility.

These days, everything I do is to unite those two worlds, tech and biz. 

In addition to this book, I’ve taken another three- pronged approach:

1. Conferences focused on deployment. Newer offshoots of my event series, 

Machine Learning Week, build on the nuts- and- bolts aspect of ana-

lytics to also cover industry- specific deployment, including appli-

cations in marketing, financial services, industry 4.0, healthcare, 

and climate technology. The first track devotes itself to the business 

side— we call it the operationalization and leadership track.

2. Business school professorship. After a twenty- two- year hiatus, I 

returned to academia to hone the methodology described in this 

book, serving for one year as the Bodily Professor in Analytics at the 

Darden School of Business at the University of Virginia. The switch 

in departments— from computer science years ago to business more 

recently— reflects my shift in focus: For ML to succeed, we need a 

business- side vantage.

3. More expansive training. Finally, I’ve launched an online course, 

“Machine Learning Leadership and Practice: End- to- End Mastery,” to 

broaden the almost universally narrow focus of today’s ML courses— 

which typically jump straight to the number crunching, forgoing 

the extensive business planning that should come first.

If you don’t have time for a three- month course, you might instead 

just read this book. It covers the disciplined approach required to 

deploy ML initiatives, formulated as a six- step playbook that I call 
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bizML. Along the way, it gets readers of all backgrounds up to speed on 

the semi- technical knowledge they need.

Considering the innumerable dollars and resources pumped into 

ML, how much more potential value could we capture by adopting 

a universal procedure that facilitates the collaboration and planning 

needed to reach deployment?

Let’s find out.
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What is this book about?

This book presents a strategic and tactical playbook for launching 

machine learning, a six- step discipline to run an ML project so that it 

successfully deploys. I call this practice bizML.

Along the way, the book also delivers the semi- technical background 

knowledge everyone participating in the project needs— in a friendly, 

accessible way anyone can understand. Because of that coverage, 

the book also serves as a non- technical introduction to the field for 

newcomers.

Why does machine learning need a specialized business practice?

Here’s the problem. ML is the world’s most powerful generally appli-

cable technology. But ML can only improve large- scale operations by 

changing them. For that reason, an ML project shouldn’t be viewed as “a 

technology project.” Instead, to make an impact, it must be reframed as a 

business project meant to improve operational performance, with ML as 

only one component— one that’s necessary but not sufficient.

You may skip this optional FAQ— but I advise looking through the ques-

tions below for those that pertain to or interest you. Readers of this book 

come with diverse backgrounds and various preconceptions about the 

problem the book aims to solve: getting machine learning deployed. This 

FAQ will orient you, clarifying why you should read this book and align-

ing your expectations.
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With the attention overwhelmingly focused on the technical portion 

and its execution, the industry has failed to establish a widely adopted 

business practice for executing the whole other half of a successful ML 

project. As a result, new ML initiatives routinely fail to deploy.

If most machine learning projects fail to deploy, is the field of 

machine learning a flop?

Not at all. Many ML projects succeed, even if it’s only a minority— even 

a fraction of this popular field’s many projects is still many. Moreover, 

in certain circumstances an ML project is bound to succeed, such as 

high- priority projects at a Big Tech firm or projects meant to update an 

existing model that’s already deployed. The industrial world remains 

bullish on ML because its great potential remains intact.

Since this book covers a practice for running ML projects, is it only 

for leaders?

No. When an ML project follows bizML, the organizational practice 

presented by this book, everyone involved in the project participates 

in that practice in some way. Only with universal familiarity with this 

end- to- end practice— and with the semi- technical background knowl-

edge that drives it— can the team collaborate most effectively.

Who is this book for?

This book serves anyone who wishes to gain value with ML by partici-

pating in its business deployment, no matter whether you’ll play a role 

on the business side or the technical side.

First and foremost, I wrote this book for business professionals— the 

people who run the ML project, hold stakes in it, make decisions about 

it, or manage the operations that will be changed (and improved) by it. 

This includes executives, directors, managers, consultants, and leaders 

of all kinds.

But this book is for techies, too. If you’re a data scientist, ML engi-

neer, or any kind of technical practitioner involved with ML, this 

book invites you to step back from the hands- on execution and gain 
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a new perspective on the holistic paradigm within which you are 

contributing.

Is this book a how- to?

This book is a business how- to, but not a technical how- to. Unlike most 

ML books, it tackles the business practice instead of the technical prac-

tice. It presents a six- step business practice, bizML, for running an ML 

project.

This book does not delve deeply enough to guide data profession-

als in the technical how- to. That’s what the vast majority of other ML 

books are for. The ML methods they cover are only one ingredient. 

They constitute a key technical component of the project, but that 

component makes for only one of the six project steps covered in this 

book. Accordingly, one and only one chapter of this book, chapter 5, 

delves into core ML methods— it provides an accessible “crash course.”

This book also differs from most business books on ML, which pres-

ent a strategic industry overview. Such books typically cover the topic 

from a higher level, without providing how- to guidance and with-

out concretely detailing how ML integrates to deliver operational 

improvements.

What introductory materials should I read before this book?

None are required. This book is accessible for all readers and serves as 

a conceptually complete introduction to the field of ML for newcom-

ers. While describing the end- to- end steps for executing an ML project, 

it covers the fundamentals along the way. Gaining some background 

knowledge of ML methods before reading this book certainly wouldn’t 

hurt, but considering the theme of this book— the business vantage of an 

ML project should precede the technical vantage— you are invited to read 

this book first and then determine how much further you’d like to dig 

into the core technology.

I already understand that ML projects must begin with a business 

objective— do I need this book?
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Establishing the deployment goal is only the first step— literally. It’s the 

first of this book’s six- step bizML practice. The rest serve to accomplish 

that goal. Pursuing it demands an in- depth, end- to- end procedure. The 

helpful mantra “begin with the business objective” alone does not sur-

mount the challenges of deployment. It takes a book.

I’m a business professional, not a data scientist— do I really need 

semi- technical knowledge?

Rapid, continuous learning and reskilling  .  .  . starts at the top. AI 

requires a new type of C- suite leadership, with deep understanding 

of AI and its implications . . .

— Julie Sweet, chair and CEO of Accenture

Yes, you must achieve a particular kind of data literacy in order to be 

involved in the deployment of ML, helping to guide each project and 

ensure that it works within— and successfully produces value for— 

business operations.

You may be unconvinced. After all, to drive a car, you don’t need 

to know how the engine works. True— but you do need expertise: a 

keen feel for how the car moves, a sense of the physics, including the 

momentum of the vehicle and the friction of the tires. As a driver, 

you’ve also internalized the rules of the road and you know what moves 

to expect from other drivers and what they’ll expect from you.

Driving an ML project is just the same. To pursue the goal of improv-

ing operational performance, you need the what, why, and how much. 

You need to understand the precise way in which this technology will 

enact change to business processes, the basis of those changes, and a 

quantitative appraisal of how well it is working.

Fear not— you don’t need a degree in the “rocket science” part, and 

what you do need to learn goes down easy. It’s conceptual, not hands-

 on, and requires no heavy math. This book delves into the nifty princi-

ples of internal combustion, not how to change a spark plug. This level 

of data literacy is useful for almost everyone, like driver’s education, not 

auto- mechanic school.
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I’m a technically trained data professional— why do I need this 

book?

This book establishes a sorely needed strategic framework, providing 

complementary business- side know- how that all great data profession-

als need to master. The real “data science unicorn” isn’t the person who 

knows every analytical technique and technology; rather, it’s the one 

who has expanded their skillset to also participate in a company- wide, 

business- oriented effort that gets their models deployed. After all, the 

soft skills are often the hard ones.

In so doing, this book does cover certain technical steps generally 

omitted by courses and books meant for data professionals, including 

how to fully establish the dependent variable (called the output variable 

in this book), how to prepare the data, and how to establish the per-

formance metric (including why accuracy and a popular technical met-

ric called AUC are usually the wrong choice)— all so that these choices 

align with business objectives and operational considerations.

On the other hand, know that this broadly accessible book is not the 

technical fare to which you’re likely accustomed. For some experienced 

data professionals, the best use of this book may be to give it a good 

skim— slowing down to give chapter 0 on the need for a specialized 

business- side practice and chapter 3 on evaluation metrics a complete 

read— and then passing it on to your boss or a key colleague.

Is this book about artificial intelligence?

The buzzword AI can mean many things, but this book is about ML, 

which is a central basis for— and what many mean by— AI. This book 

does not cover other areas that are also sometimes referred to as AI, 

including artificial general intelligence (hypothetical systems that would 

be capable of any intellectual task humans can do), natural language 

processing, rule- based systems, and computer vision.

Does this book pertain to generative AI?

Yes. Generative AI dazzles the world by writing text and producing 

images—but when it comes to improving operational efficiencies, 
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classical ML (a.k.a. predictive AI) has long reigned supreme. However, 

generative AI is also well suited and stands to potentially beat out clas-

sical ML in some arenas. The bizML practice presented by this book also 

serves generative AI—for projects that apply generative AI to measur-

ably improve great numbers of operational decisions. For either kind 

of technology, bizML gets you there, guiding the project to a successful 

deployment.

Does this book pertain to deep learning?

Yes. Although deep learning is more technically complex than many 

classical ML methods and tends to be applied for different classes of 

problems (more on image processing, for example, and less on cus-

tomer prediction), the ML project discipline presented in this book 

applies and is equally needed. The organizational challenges of deploy-

ment are largely the same, no matter how the model being deployed 

operates on the inside.

Does this book pertain to predictive analytics?

Yes— predictive analytics is a major subset of ML. It is the applica-

tion of ML methods for certain business problems. Alternatively, in 

many contexts, predictive analytics is simply a synonym for machine  

learning.

How does this book compare to your previous book, Predictive 

Analytics?

This book and my previous book— Predictive Analytics: The Power to 

Predict Who Will Click, Buy, Lie, or Die— are complementary, but each 

stands alone. Neither is required reading for the other, so you can read 

only one or both, in either order. Both make ML accessible for business 

professionals, newcomers, and other non- data professionals, but they 

serve different purposes: Predictive Analytics is about how ML works, and 

this book is about how to capitalize on it.
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The AI Playbook 
(this book)

Predictive Analytics (my 
previous book)

A business how- to Yes – 

ML deployment Yes The general idea

Performance metrics Yes The general idea

Data preparation Yes – 

Technical modeling 
methods

A one- chapter 
overview

Decision trees, ensembles, 
uplift modeling— one 
chapter each

Technical pitfalls Misreporting 
performance

P- hacking, overfitting, 
presuming that correlation 
implies causation

ML ethics A brief but wide 
overview

A chapter about how ML 
reveals sensitive information 
and predictive policing

Case studies UPS, FICO, two 
dot- coms

HP, Chase, NSA, 183 mini- 
case studies

To which ML tools and software does this book apply?

This book pertains to all ML software. It is vendor- neutral and tool- 

agnostic. The contents apply universally, regardless of which of the many 

ML software tools you or your data professionals may end up using.

Is this book about supervised or unsupervised machine learning?

This book only covers supervised machine learning, which trains models 

over supervised data, that is, data that consists of examples for which the 

target prediction is already known— either by way of accumulating his-

torical outcomes or manually labeling the data (more specifically, the 

book mostly focuses on binary classification, that is, ML for predicting 

yes/no outcomes). Supervised ML is the kind of ML most commonly 

applied to optimize business operations. However, the bizML practice 

presented in this book largely holds for unsupervised learning projects 

as well.
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How is bizML different from MLOps?

The method presented by this book, bizML, is a business practice for 

running ML projects successfully through to deployment, whereas 

MLOps is a set of technical methods and practices to manage and main-

tain models. Although both relate to the operationalization of mod-

els, MLOps addresses the technical execution of ML projects and bizML 

addresses the organizational execution, including project leadership and 

cross- functional collaboration. The two work together: A project that 

follows bizML may well employ MLOps. But no technical solution alone 

can address the business- side challenges faced by ML projects. Instead, it 

takes a business paradigm such as bizML.

How is bizML different from CRISP- DM?

This book’s introduction of bizML represents a renewed effort to estab-

lish an updated, industry- standard playbook for running successful ML 

projects that is pertinent and compelling to both business professionals 

and data professionals. One previous standard established almost thirty 

years ago, CRISP- DM, paved the way by laying out many of the funda-

mentals, but never gained much traction among business professionals. 

For more details, see chapter 0.

Where are this book’s notes and glossary?

This book’s notes— references, plus resources for further learning— 

are available at www.bizML.com. For a tutorial glossary that includes 

the terms introduced within this book and more, see www.Machine 

LearningGlossary.com.

http://www.
http://.com
http://www.MachineLearningGlossary.com
http://www.MachineLearningGlossary.com


Introduction

They tried to warn him. As Jack Levis pursued a deep- seated desire to 

innovate, his colleagues thought he was committing career suicide. “I 

love your passion,” one coworker told him, “but you need to know: 

Everyone thinks you’re nuts.”

Jack wasn’t trying to change the world. He was only taking on the 

small matter of streamlining how the United Parcel Service (UPS) deliv-

ered packages— 16 million of them a day. He just couldn’t remain satis-

fied with the status quo. There were 185 million miles of annual driving 

to potentially shave off.

Never sell AI. Instead, pitch operational improvements, with no more 

than a footnote to mention machine learning as part of the solution.

Most ML leaders focus more on the technology than its deployment, 

so most new ML initiatives fail.

Make no mistake, operational change is a tough sell, especially in 

comparison to hot tech, which sells so effortlessly that we actually call it 

“sexy.” It’s less glamorous to propose a process overhaul. Folks respond 

like you’re suggesting a root canal. But that’s life— great gains come only 

by imposing great change.

We begin with the tale of an ambitious pioneer determined to go big 

with ML at a century- old Fortune 500 company already set in its ways. 

His domain? Logistics. But stay tuned and you’ll see why stodgy ML proj-

ects are, ironically, really the sexiest. You’ll also see how the Innovator’s 

Paradox can be overcome and why it is a good thing that, ultimately, most 

practical ML projects are bound to dispense with the “AI” brand.
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Jack had tackled this whole crazy idea voluntarily. He hadn’t been 

charged with this project from above, nor was it part of his defined 

responsibilities at UPS. Instead, he had proactively formed a small team 

to develop a proof- of- concept prototype. As a group, they’d taken it on 

part- time, on the side.

One autumn day, after years of work, Jack finally landed an exciting 

opportunity to present to a key UPS executive named Chuck. So he sat 

Chuck down and pitched him an inventive story: a system that would 

prescribe more efficient delivery routes for truck drivers— and, in so 

doing, more fully realize the value of another of Jack’s recent contribu-

tions, a system that planned for tomorrow’s deliveries by predicting 

them.

Sure, implementing this system would mean introducing a mam-

moth change to existing operations. But it promised a mammoth pay-

off. Jack ran through his presentation swiftly and stuck the landing.

But in response, Chuck’s face remained blank. After a pause, he cleared 

his throat and asked, “So, are you working on anything important?”

Jack’s heart sank. Years later, he still remembers that day well. “I 

assure you,” he says, “I didn’t sleep a wink that night.”

The Innovator’s Paradox states that the more novel or radical an 

idea, the greater the struggle to gain support for it. This mighty law 

seemed to be binding Jack’s hands. How do you sell innovation that’s so 

profound the buyer doesn’t grasp it?

Pioneers Beware: Disrupt at Your Own Peril

Unfortunately, the warning from Jack’s coworkers applies far and wide: 

The greater your innovation’s potential impact, the more treacherous 

it is to pursue. Bravely press onward and there’s hell to pay, in the form 

of doubt, obstinance, resentment, and, perhaps worst of all, a glaring 

lack of appreciation. In return for your innovation, expect first to be 

misunderstood and then, eventually, ruthlessly exploited.

The world ostracizes the very innovators who built it. What if you 

developed the first television (Philo Farnsworth— inspired to emit images 
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row by row like a farmer plows a field) or invented the intermittent 

windshield wiper (Robert Kearns— more challenging than you think). 

Say you took off for the first officially observed, sustained flight (Alberto 

Santos- Dumont— don’t let the Wright brothers’ “long hop” fool you) or 

fathered theoretical computer science (Alan Turing— who also cracked 

Germany’s World War II Enigma machine and founded AI philosophy). 

Things didn’t turn out too well for you. Corporate empires came down 

on Farnsworth and Kearns and governments brutally persecuted Santos- 

Dumont and Turing. The result? Three deaths and a nervous breakdown.

And yet, in modern times, innovators disrupt more than ever. The 

greatest opportunities aren’t in building a new device such as a TV 

or airplane. Instead, the leading innovative paradigm upgrades exist-

ing systems. It infiltrates the established enterprise and overhauls its 

largest- scale activities, its millions of daily operations. It combats risk, 

targets advertising, prevents fraud, optimizes manufacturing, triages 

medical cases, and streamlines logistics.

I’m talking about machine learning (ML). This book is about ML in the 

following practical, applied sense:

Machine learning: Technology that learns from experience (data) 

to predict the outcome or behavior of each customer, patient, 

package delivery, business, vehicle, image, piece of equipment, or 

other individual unit— in order to drive better operational deci-

sions. ML generates a predictive model whose job is to calculate a 

predictive score (probability) for each individual.

ML is a central basis for— and what many mean by— AI. This book 

does not cover other areas that are also sometimes referred to as AI, 

including artificial general intelligence (hypothetical systems that would 

be capable of any intellectual task humans can do), natural language 

processing, rule- based systems, and computer vision. But this book does 

pertain to generative AI, most famous for writing text and producing 

images. When it comes to improving operational efficiencies, classi-

cal ML has long reigned supreme—but generative AI is also well suited 

and stands to potentially beat out classical ML in some arenas. The 
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framework presented by this book also serves generative AI—for proj-

ects that apply generative AI to measurably improve great numbers of 

operational decisions.

ML innovates in a straightforward, albeit disruptive way. Don’t let 

the glare emanating from this glitzy technology obscure the simplicity 

of its fundamental duty: For most business applications, the purpose 

of ML is to issue actionable predictions— which is why it’s also some-

times called predictive analytics. Although learning from data in order to 

generate a predictive model deserves as much “gee- whiz” admiration 

as any other feat of science or engineering, that capability translates 

into tangible value in an uncomplicated manner: The model generates 

predictive scores, which in turn drive millions of operational decisions.

For UPS, Jack used ML to predict package deliveries in order to opti-

mize those deliveries. This kind of use case for prediction is clear- cut— 

and yet also momentous, even historic. It’s a strategy that drives a vast 

range of innovation, improving practically all the main things that 

organizations do, all the largest- scale operations that make the world 

go ’round. After all, the universal key to driving better decisions is to 

calculate risks and likelihoods— the chances that a customer will can-

cel, a debtor will default, a component will fail, a transaction will turn 

out to be fraudulent, or a medical image conveys a positive diagnosis.

ML is the world’s most important technology. This isn’t only because 

it’s so widely applicable. It’s also because it offers a novel boost that 

can’t be found elsewhere, a critical edge for what is becoming a final 

battleground of business: process optimization. As products and ser-

vices become commoditized and organizations become increasingly 

homogenous in their operations, ML has come of age as a core enter-

prise practice necessary to sustain competitive advantage. To deploy ML 

is to participate in the latest evolutionary step of the Information Age.

But great gains come only by great disruption. Jack’s system would 

improve an enormous delivery operation— but to realize this value, 

you’d need to make enormous changes by actually deploying it “in the 

field.” Jack needed to sell his superiors on reshaping the entrenched 

procedure of more than 55,000 delivery personnel.
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When Greatness Is Too Big to See Up Close

Jack’s proposal also faced another dire challenge, one that’s universal 

to all ML projects: Success only becomes apparent after tracking multi-

tudes of cases over time. With a traditional invention, you just turn it 

on and see it work. You immediately witness its power right before your 

eyes. Press the gas pedal and the car moves. Press send and your friend 

receives your email message. And let’s take a moment to appreciate how 

your windshield wiper pauses beautifully between intermittent wipes 

when there’s only a sprinkle of rain.

But when an enterprise deploys ML, the effect is not immediately 

observable. It doesn’t operate as a single device or take effect in a single 

moment. Instead, its value accumulates as it drives many decisions, 

such as which customer to market to, which risky debtor to lend money 

to, or which delivery address to plan for. You only see the benefit of 

changing major operations after tallying many cases over time. So, as 

powerful as it may be, the story is more abstract.

For many folks, this value proposition doesn’t click as quickly as it 

would for a newly invented device. Some just aren’t mentally prepared 

to embrace this kind of operational overhaul as the pivotal innovation 

that it is— one that’s just as consequential as the various gizmos that 

have revolutionized our lives.

Besides, the decision makers who manage the world’s well- oiled 

machines naturally resist change. They’re in the business of avoiding 

risk rather than overcoming it. So, the inertia that an innovator feels 

holding them back doesn’t only stem from some capricious, abomi-

nable resistance to change. The resistance is a safety measure. It’s for 

good reason that the boss has never been prone to cultivate an interest 

in grasping highfalutin calculations like Jack’s. Given the priorities of 

keeping the boat afloat, the powers that be barely even have the band-

width to take a look.

Jack took stock of the challenge before him. Sometimes it seemed like 

only another fearless innovator would have the kind of vision needed 

to buy into this high- impact proposal. But at a long- standing Fortune 
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500, the head honchos just ain’t that type. How do you snap them out 

of their corporate trance? Jack weighed his options.

One sure bet was that, if it’s sexy, it sells. So how about packaging 

this up as the ultimate “secret sauce”?

Sexy but Vague: Artificial Intelligence

The ML industry has bitten forbidden fruit: It has chosen to promote 

itself as AI, an ill- defined umbrella term that includes ML within its 

malleable scope. This tends to mislead, especially when discussing a 

more typical, practical ML initiative designed to improve business oper-

ations and not, for example, meant to generate humanlike writing or to 

achieve human- level “intelligence.”

While the world largely knows of ML as AI— thus the title of this 

book, The AI Playbook— the term AI is also how the world largely misun-

derstands ML. Because AI alludes to “intelligence,” which is stubbornly 

nebulous when describing a technology, the term tends to overstate 

and fetishize rather than pitching the technology’s concrete value. AI is 

sometimes used to specifically refer to ML or another kind of technol-

ogy like chatbots or rule- based systems— but in many other uses, the 

term hints at exaggerated capabilities.

Vendors, consultants, and, chances are, some of your colleagues 

employ the AI brand rather than clearly advertising, without obfusca-

tion, what an ML project actually offers. After all, plenty of folks with 

a budget have ears that perk up when they hear how advanced and 

“intelligent” a technology is, even without seeing precisely how it will 

improve business operations. So that route could serve to pad your wal-

let, at least in the short term.

But it can’t last. The ML industry had better tone this down or we’re 

all going to pay dearly. Glamorizing the core technology takes the focus 

off its concrete value, the specific way its deployment can improve 

operations. When that deployment isn’t central to the plan, the plan 

is unlikely to come to fruition. Instead, the organization must consider 

the value proposition for a candidate project and buy into the project 
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for that tangible value. Then, a very particular change management 

process must commence from the project’s onset. Otherwise, you’re 

prone to develop a model that never gets launched— which is the most 

common way ML projects fail.

Logistics Is Bringing Sexy Back

The best [ML] use cases for big business are, frankly, the most mun-

dane ones.

— Caroline Zaborowski, astrophysicist turned data scientist

Jack is the impeccable hero of my story, so you can bet he was too 

prudent to garnish his pitch with flowery “AI” talk. He knew that a 

change affecting 16 million deliveries a day would have to be sold quite 

concretely. In fact, he didn’t even call it ML, predictive analytics, or data 

science. Instead, he went with just about the most boring word there is 

for it: operations research.

But boring is exciting. This project was the kind of large- scale optimi-

zation that reduces tons of carbon emissions and makes tons of money. 

It promised large- scale change and tangible gains.

The reverse is also true: Some seemingly sexy projects have been slow 

to transform business. They attract a lot of attention with impressive 

capabilities that promise to deliver value in the long run, but so far 

they’ve enacted little to no change and they won’t be moneymakers 

any time soon. Someday, fully autonomous cars will save countless 

lives, but impediments to their wide- scale deployment prevail, with 

some estimating that it will take decades to achieve. Likewise, IBM’s 

computer that defeated the humans on the quiz show Jeopardy! excited 

me in 2011 like no technology ever had— but its specialized skill does 

not readily generalize to real- world tasks. Similarly, when ML conquers 

chess, Go, and complex video games, it impresses the best of us— but 

ML’s value is captured only when it’s applied practically. And most 

prominent of all, generative AI systems, which are built with ML, gener-

ate images and text— often in such an adept and seemingly humanlike 
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manner as to give you the impression that they embody an “under-

standing” of human concepts and that they can express these concepts 

with language and images. When employed to assist humans with cre-

ative tasks, generative AI may well prove valuable to the enterprise, but 

to date it hasn’t typically been utilized to boost enterprise efficiencies 

in the straightforward manner adopted by the use cases covered here.

Instead of the glitz, get excited about the measurable impact of run-

ning established large- scale operations more effectively! Jack’s story 

took place at the United Parcel Service, a sturdy complement to the US 

Postal Service for more than a century. We’re talking about the world’s 

largest courier, with higher revenue than even FedEx. This isn’t some 

hot new tech company. No, this is precisely the kind of older, estab-

lished firm that runs society’s essential operations— entrenched proc-

esses begging to be streamlined, even while many in charge fight tooth 

and nail against change.

Who knew that optimizing brick and mortar logistics was so sexy?

Jack’s job title plainly reaffirmed this point: senior director of process 

management at UPS. He wasn’t the “director of AI”— or of any technol-

ogy whatsoever. His focus was on the ends— process improvements— 

not the means, on the business goal rather than the technical solution. 

Having been at the company for more than three decades, he was in 

charge of operations technology and oversaw six divisions. He didn’t 

sit among the upper echelons of executives whom he now had to con-

vince for approval. He worked on operations directly, right where it 

counts. He was situated to enact operational change personally.

But Jack’s superior had given him the cold shoulder. Was this project 

such a great idea after all? How do you distinguish viable progress from 

overly radical upheaval? First, let’s dive into how Jack’s system worked.

Planning for Tomorrow with Incomplete Info

Imagine that you run a typical shipping center where fifty- five trucks 

leave every morning, each tasked with delivering 300 packages that day. 

Your job is to decide exactly how to distribute these 16,500 packages 
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among the trucks so that the overall operation requires as few miles 

and driver hours as possible. To complicate things, some deliveries are 

committed for a specific time of day, plus no driver’s shift can extend 

too long. No pressure.

Packages are assigned to delivery trucks at a shipping center.

Now multiply this problem by 1,000. The system you develop must 

handle these logistics every day for 1,000 shipping centers in the 

United States. Across this mammoth operation, every moment counts. 

One minute per driver per day costs $14.5 million per year. Likewise, 

one mile is worth $50 million. Really, though, no pressure.

Overall, millions of gallons of fuel and thousands of metric tons of 

emissions are on the line annually. Okay, maybe there’s a little pressure.
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But here’s the real kicker: The system must work with incomplete 

information. Shipping centers must begin the lengthy process of plan-

ning and loading the trucks before all of tomorrow’s deliveries have 

become known. Many delivery destinations don’t become apparent 

until the wee hours of the morning.

Jack calls this the Delivery Paradox. You can’t optimally plan the 

truck- loading until you know all the deliveries that will need to be 

made. But by the time you know all the deliveries, you’ve run out of 

time to load the trucks.

This enormously complicates the problem. After all, every pack-

age matters for the overall plan. If an unforeseen last- minute package 

shows up after the trucks are loaded, it could add miles to a truck’s 

existing plan. If you’d known earlier, you might have distributed the 

packages completely differently among trucks. But you’re out of time. 

The fully loaded trucks are headed out and redistributing the packages 

would take too long.

Jack recognized that the Delivery Paradox was a central dilemma 

since shipping centers faced a plethora of unforeseen packages every 

day. At the time, up to 30 percent of deliveries still weren’t in the sys-

tem when the planning for the next day had to begin. This was because 

many packages that arrived on overnight flights had missing or only 

partial tracking information. Some shipping customers were late to 

upload data about their shipments or used noncompliant or glitchy 

systems to do so. Unexpected delays caused by factors like the weather 

could be slow to percolate. Throughout the long night of loading, some 

“dumb” packages would even show up without proper coding, so han-

dlers then had to manually enter the destination address on the spot.

Much of this information latency persists today— it’s largely unavoid-

able, despite various improvements UPS has made to its systems. For 

example, suppose that a package will fly this afternoon from the West 

Coast to an East- Coast shipping center for delivery tomorrow morning. 

If the East- Coast center begins its planning at midday, it’s still too early 

on the West Coast for the destination address to have been uploaded. 

As another example, even if all delivery addresses have been uploaded, 
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the number of stops each truck will need to make, each costing pre-

cious time, is often unknown until the deliveries are actually made, 

since, for example, a large building or strip mall with multiple recipi-

ents could turn out to require multiple stops. On top of all this, some 

broad- strokes planning must be completed days ahead, for example, to 

book the right number of drivers.

In a system as complex as UPS’s internal package network, uncer-

tainty is an inherent predicament. The antidote is prediction.

Predicting Tomorrow’s Deliveries

Jack’s system, named Package Flow Technology (PFT), predicts tomor-

row’s package deliveries so that it can plan for them. These predicted 

deliveries augment the list of known packages.

A combination of known and predicted deliveries is assigned to delivery trucks 

at a shipping center.
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PFT can form a complete plan with this augmented batch of deliv-

ery destinations and trigger the overnight loading process with time to 

spare. Trucks are typically loaded from about 4:00 a.m. to 7:00 a.m., so 

the planning must begin earlier— in the evening or even during day-

time hours for some shipping centers.

Let’s look at the mechanics of how this batch of delivery predictions 

is formed. First, a predictive model generates each individual predic-

tion, one at a time.

The model, shown here as a golden egg, was generated from data for 

this very purpose. It encodes patterns learned from the past that now 

serve to put odds on what will happen in the future— whether a given 

address will have a package coming.

The model is applied repeatedly, performing its calculations for each 

possible delivery address. For the United States, that’s 200 million pre-

dictions. Then, all the most probable destinations— say, those scored 

as being more than 80 percent likely— are combined with the list of 

known destinations.
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UPS’s PFT augments the list of known packages set for delivery with a list of 

predicted deliveries in order to make a plan in time to load the delivery trucks.

PFT regularly updates these predictions— roughly every two min-

utes—until the trucks head out. Throughout the overnight loading 

process, some predicted deliveries become known, since the package 

actually shows up— plus, other unforeseen packages also come in. The 

system revises the plan accordingly. As a result, some packages may be 

moved from one truck to another, but most of the prediction- based 

plan remains intact without imposing time- consuming changes. By 

morning, any incorrectly predicted deliveries that never materialized as 

real packages are dropped from the plan. In the end, as the trucks head 

out with their packages, they no longer need delivery predictions— but 

the predictions are what got them well planned and fully loaded in 

time for that day’s expedition.
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Predictions Run the World

Beyond UPS, the same fundamental idea applies far and wide. The 

capacity to predict on a case- by- case basis is the Holy Grail because it 

pertains everywhere, driving decisions such as which customer to target 

for marketing, which patient to triage, which transaction to audit for 

fraud, which building to inspect for risk of fire, and which product to 

replenish in a supply chain.

The story is universal: Businesses and other organizations need pre-

diction. Prediction requires ML. And ML depends on data.

Putting that in reverse, the flow runs from left to right in this 

sequence:

data → machine learning → model → predictions → operations

We have data, we give it to ML, it makes models that predict, and we 

use the predictions to drive operations more optimally.

Data fuels prediction because it embodies experience from which to 

learn. Looking back, an organization knows, for example, who bought 

what, which transactions turned out to be fraudulent, and which build-

ings burned. And UPS knows every shipment they’ve made. In making 

predictions with ML, a company applies what it has learned from this 

experience.

Let’s be real: It’s not a magic crystal ball. Perfect prediction is not 

possible— but it’s also not necessary. Even lousy predictions that are at 

least better than guessing often deliver a tremendous systematic ben-

efit. After all, business is a numbers game. Tipping the odds even a bit 

in our favor generates an enormous impact.

Going All In

In order to realize the true potential of package prediction, Jack  

would have to sell big change to UPS executives. By now, the PFT sys-

tem had been in place for a few years, but it was only being used to 

divide up the packages among the trucks so that each truck had a well- 
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designed delivery area, one that an efficient route could potentially  

cover.

Jack was now pitching to Chuck an additional optimization that 

promised even more significant gains: prescribing those efficient routes 

so that the drivers would follow them. Each truck was assigned a batch 

of packages that it could deliver efficiently— but that didn’t necessarily 

mean that it would. The drivers needed to be told where to drive. Jack’s 

team had shown that, for routing a truckload of deliveries, machines 

beat humans.

So Jack pitched this tremendous change to the executive, Chuck. 

He said, let’s tell our 55,000 drivers to follow the computer rather than 

their gut. That’s the only way to fully realize the efficiency promised by 

package prediction.

But as you know, Jack’s pitch flopped.

Show, Don’t Tell

Chuck didn’t give a truck. He sat there, unaffected, blinking at Jack.

The next move? A stiff upper lip. Jack was deflated but not deterred. 

He’d already grown a thick skin from weathering plenty of “ridicule and 

violent opposition,” as he puts it. Jack knew that selling a big idea meant 

navigating treacherous waters. To become data- driven, “you want peo-

ple to change decisions they’re making today,” Jack proclaimed years 

later, during a keynote address at the Machine Learning Week confer-

ence. “You really have to understand change management.”

Jack knew that people respond more to tangible experiences than 

abstractions. If they can observe an innovation in action before their 

eyes, then they’re more likely to feel the power.

So he took Chuck for a ride. Literally. The very next day, they drove a 

stop- by- stop delivery route navigated by Jack’s prototype. This was the 

first time an executive had hit the road to experience ORION— which 

stands for On- Road Integrated Optimization and Navigation.

A little while into the excursion, the system made a counterintuitive 

choice. It skipped right past three delivery addresses, leaving them for 
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later. A human driver would never think to do this. Jack explained how 

this short- term sacrifice improved the overall route, ensuring that the 

earlier time commitments of other deliveries would be met.

Chuck put up a hand to say, “Give me a minute.” Jack saw wheels 

turning. Then a lightbulb switched on. “This is big, isn’t it?” Chuck 

realized with awe.

Jack had surmounted the first significant organizational hurdle 

toward deployment.

Precisely what kind of mental sorcery had Jack applied that per-

suaded this practical, risk- averse decision maker to accept disruptive 

innovation? After all, you can only definitively know the benefit of 

improving major operations after tracking performance over time— you 

can’t see it in any one moment or even after navigating one driver’s 

entire delivery route.

Visceral experience inspires like no PowerPoint. Numbers prove, but 

a journey compels. Chuck felt the magnitude of 10 million miles only 

after physically driving a few. By deftly navigating this human factor, 

Jack reached a turning point in the greenlighting of progress. Good 

thing he’d been a psychology major back in college.

Hit the Road, Jack

From that point onward, it still cost Jack years of tireless perseverance 

to get to full deployment. There were more executives to convince. 

And there were lengthy trial deployments at various shipping centers 

across the country, which slowly proved the value beyond a shadow of 

a doubt. As the trials became permanent rollouts, Jack developed a rig-

orous process to ensure each shipping center adopted the new system 

effectively. In the end, managing the complete national deployment 

required a team of more than 700 people.

Ultimately, Jack bestowed this contribution upon UPS as his swan 

song. He retired from the company in 2019, and yet his legacy contin-

ues to achieve astounding gains to this day. The use of ML to predict 
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deliveries is a central component of the overall optimization system, 

one that, in his best estimation, contributes 10 percent of the overall 

savings achieved:

UPS Systems: ORION and Package Flow Technology (which work together)

Annual savings due specifically to delivery- prediction (estimated):
18.5 million miles
$35+ million

Annual savings achieved by the combined systems:
185 million miles
$350+ million
8 million gallons of fuel
185,000 metric tons of emissions

It’s fair to say that Jack shot the moon. His work has received over 

a dozen industry awards and several high- profile TV and magazine 

spotlights.

A few months after retiring, Jack chatted with a UPS driver who was 

delivering a package to his home. For better or worse, Jack had changed 

every moment of this guy’s workday. After all, it’s the drivers at large 

who bear the burden of all these gains. Their time and mileage are used 

more efficiently, which means they wind up making more deliveries 

per hour all day long. Some have lodged complaints, including more 

tenured drivers, who may be the ones most resistant to change.

“Did you work on ORION?” the driver asked. This guy had no idea 

to whom he was speaking. It was a bit like asking Thomas Edison if 

he’d had anything to do with the lightbulb. Jack identified himself and 

braced for impact.

“I love ORION!” the driver exclaimed. “I’m new, only been at UPS for 

a year. It thinks for me. I don’t have to worry about meeting delivery 

times. It takes the stress away.”

These days, Jack reflects on the significance of his contribution. “I 

really am proud that, instead of a trucking company with technology,” 

he says, “we’re now a technology company with trucks.”
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ML Done Right and Done Wrong

Jack’s story is exceptional. Beyond capturing value for UPS, he trail-

blazed for a new business paradigm, establishing best practices for 

greenlighting and executing on the massive operational overhaul that 

is ML deployment. Jack’s work defines a blueprint for effective ML 

leadership.

Here’s what Jack got right:

• Value- obsessed. Jack evangelized the concrete gains of ML deploy-

ment rather than the glitz of the technology itself.

• Launch- focused. He ruthlessly pursued a strategic path to deploy-

ment, instead of assuming that the value of deploying the system 

would be self- evident and taken on by others.

• End- to- end ownership. He took ownership of the entire, full- scoped 

process— from developing to evangelizing to testing to launching.

Years have passed, but getting these right is still not the norm. 

Instead, many companies flounder, neglecting to recognize the end- to- 

end business practice needed to deploy ML into the field.

A Tale of Two Technologies

It was the best of times, it was the worst of times, it was the age of 

wisdom, it was the age of foolishness.

— Charles Dickens

On the one hand, ML is “the most important general- purpose technol-

ogy of our era,” as Harvard Business Review astutely put it. On the other 

hand, it’s the most misunderstood and mismanaged. Misfire after mis-

fire, many ML projects go amiss in their mission to deploy, their models 

destined only to collect dust.

Capitalizing on this technology is critical— but it’s notoriously diffi-

cult to launch. Many ML projects never progress beyond the modeling, 

the number- crunching phase. Industry surveys repeatedly show that 
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most new ML initiatives don’t make it to deployment, where the value 

would be realized.

Hype contributes to this problem. ML is mythologized, miscon-

strued as “intelligent” when it is not. It’s also mismeasured as “highly 

accurate,” even when that notion is irrelevant and misleading. For now, 

these adulations largely drown out the words of consternation, but 

those words are bound to increase in volume.

Take self- driving cars. In the most publicly visible cautionary tale 

about ML hype, overzealous promises have led to slamming on the 

brakes and slowing progress. As the Guardian put it, “The driverless car 

revolution has stalled.” This is a shame, as the concept promises great-

ness. Someday, it will prove to be a revolutionary application of ML that 

greatly reduces traffic fatalities. This will require a lengthy “transforma-

tion that is going to happen over 30 years and possibly longer,” accord-

ing Chris Urmson, formerly the CTO of Google’s self- driving team and 

now the CEO of Aurora, which bought out Uber’s self- driving unit. 

But in the mid- 2010s, the investment and fanatical hype, including 

grandiose tweets by Tesla CEO Elon Musk, reached a premature fever 

pitch. The advent of truly impressive driver assistance capabilities were 

branded as “Full Self- Driving” and advertised as being on the brink of 

widespread, completely autonomous driving— that is, self- driving that 

allows you to nap in the back seat. Expectations grew, followed by . . . 

a conspicuous absence of self- driving cars. Disenchantment took hold 

and by the early 2020s investments had dried up considerably. Self- 

driving is doomed to be this decade’s jetpack.

What went wrong? Underplanning is an understatement. It wasn’t 

so much a matter of overselling ML itself, that is, of exaggerating how 

well predictive models can, for example, identify pedestrians and stop 

signs. Instead, the greater problem was the dramatic downplaying of 

deployment complexity. Only a comprehensive, deliberate plan could 

possibly manage the inevitable string of impediments that arise while 

slowly releasing such vehicles into the world. After all, we’re talk-

ing about ML models autonomously navigating large, heavy objects 

through the midst of our crowded cities! One tech journalist poignantly 
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dubbed them “self- driving bullets.” When it comes to operationaliz-

ing ML, autonomous driving is literally where the rubber hits the road. 

More than any other ML initiative, it demands a shrewd, incremental 

deployment plan that doesn’t promise unrealistic timelines.

How to Get It Right

It’s the same disappointing story with many ML projects, even though 

you don’t usually face a deployment challenge nearly as great as when 

installing models into autonomous vehicles. Likewise, you also don’t 

usually face the complexity of optimizing UPS’s operations. Most ML 

projects have it much easier. And yet greenlighting and managing 

model integration still turns out to be much harder than expected.

In this book, I present a strategic and tactical playbook for launching 

ML, a six- step business discipline to run an ML project so that it success-

fully deploys. I call this practice bizML. It overcomes ML’s common fail-

ure to launch, surmounting the hurdles to deployment by planning for 

it from the get- go, in detail, even before the hands- on data work begins.

Along the way, I also cover the semi- technical background knowledge 

everyone participating in an ML project needs— in a friendly, accessible 

way that anyone can understand. With everyone on the same page, a 

multidisciplinary team can collaborate deeply throughout the entire 

end- to- end project.

The next chapter, chapter 0, overviews the bizML paradigm, kick-

ing off with a cautionary tale from my own consulting practice. Then, 

chapters 1 through 6 cover the six- step discipline. Last, the conclu-

sion covers some final ingredients needed for planning an ML project, 

including the project’s staffing, timeline, ongoing upkeep, and ethical 

considerations.
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Six Steps to Machine Learning Deployment

It’s a crisis. Humanity’s latest, greatest invention is stalling right out of 

the gate. Machine learning projects routinely fail.

This cannot stand. The world needs ML. It combats our most signifi-

cant risks— including wildfires, climate change, pandemics, and child 

abuse. It boosts sales, cuts costs, prevents fraud, streamlines manufac-

turing, and strengthens healthcare.

But most ML initiatives die an early death: They stall before deploy-

ing. These misfires cost us dearly. Who’s to blame?

Blame data scientists like me.

My regrettable behavior began years ago. I was visiting the hip San 

Francisco offices of gay.com— now defunct, but then the most popular 

gay dating site in the United States. This was the first significant client 

engagement I’d landed as a newly minted independent consultant.

Why start with a “chapter 0”? This chapter introduces bizML, the six- step 

playbook covered by chapters 1 through 6. BizML maps out the strategic 

practice needed to get machine learning launched— that is, not only to 

perform number crunching on data, but also to operationally deploy the 

results. To understand why this approach is needed, this chapter addresses 

several pressing questions: Why do most ML projects fail to deploy? Why 

is it so important to plan ML projects backward? Why must business lead-

ers possess semi- technical know- how, even if they’re not data scientists? 

And who should lead the project in the first place?

http://gay.com
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“Sorry for making you wait,” the VP said to me, scurrying out of a 

conference room. She showed me a guilty grin— but the expression on 

her face wasn’t about time; it was about money. “We have millions of 

dollars sitting idle in a checking account . . . Oops! So, we had to decide 

where to, like, invest it or something.”

Flush with cash, she signed my contract renewal at three times the 

rate that I’d even hoped to receive as a new consultant. “This is the last 

one,” she warned, as if issuing a Twinkie to a ten- year- old.

I could have jumped for joy. Children need to play, surgeons need 

to cut, and data scientists need to model. I’d fallen head over heels for 

ML more than a decade earlier, but I’d so far pursued my passion only 

through academic research and teaching. Now I had a real company 

paying me real money to prove ML’s value to the real world.

The Potential of Prediction

Like most techies, I agreed with something Jack Levis had once said: 

“The business drives technology; the technology doesn’t drive the busi-

ness.” But, for an excited data scientist, it can also work the other way 

around. My project pursued a worthy business goal, but it served me 

as well. I got to flex my modeling muscles in the name of that pursuit.

Gay.com’s business goal was one of the most rudimentary of all: 

Retain more customers. After all, a customer saved is a customer earned. 

It’s a well- known marketing rule of thumb that holding on to an exist-

ing customer is far more cost effective than acquiring a new one “off 

the street.”

Prediction makes customer retention possible. If gay.com targeted 

customers likely to leave with marketing contact and that managed to 

turn around just 5 percent of those who would otherwise cancel their 

paid membership, the company would annually gain an estimated 

$862,000 in customer lifetime value, the additional revenue to come 

from those saved customers.

Why such great potential? This dating site was for brief flings. On 

other sites populated with relationship- seekers, users were prone to 

http://Gay.com
http://gay.com
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stick it out (until eventually finding a partner and canceling, after 

which there was little chance of winning them back). With gay.com, up 

to 80 percent of paying members were canceling before their next auto- 

renewal. I saw that behavior in the numbers, but at first I was clueless 

about why. As I crunched data behind the scenes, I was removed from 

the website’s look and feel. I knew it catered to male users, but I’d only 

catch a glance at the front end every once in a while. It was plastered 

with hot dudes. At one point, someone spelled it out for me: “This is 

where guys go for casual hookups.”

As such, business was booming. What gay.com lacked in customer 

longevity it made up for in popularity and a constant influx of new 

subscribers. This left a healthy base of 145,000 subscribers paying for a 

premium membership, plus several times as many free accounts.

This high turnover rate presented both an opportunity and a chal-

lenge. Given the torrent of customers flowing in and out, all we had to 

do was retain some small portion. Just dipping a small bucket into that 

wide river would be a great win. But changing the mind of a customer 

who’d otherwise defect is expensive, usually achieved by offering them 

a tempting discount. A company can’t afford to offer a discount to its 

entire customer base.

Prediction is the only recourse. A company focuses its outreach, offer-

ing a retention discount only to the customers most likely to cancel. This 

common use of ML, called churn modeling, pays off for many organizations. 

It’s popular, for example, with cell phone carriers. Telenor, the world’s sev-

enth largest— with over 150 million subscribers— deployed churn models 

to boost the return on its retention efforts by a factor of eleven.

So, all I had to do was develop the predictive model and explain its 

potential to gay.com. Surely they’d use it to drive a marketing cam-

paign and capture this unrealized profit.

The Two Main Technical Steps of Machine Learning

Those two steps— developing a model and then using it— are univer-

sal. They’re the two main technical steps for any ML project. First, a 

http://gay.com
http://gay.com
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modeling method, a.k.a. ML algorithm, takes data as input and processes 

it to generate a predictive model.

Machine learning generates a predictive model from data.

The model, depicted here as a golden egg, is the thing that’s been 

“learned” from data. For gay.com, I generated decision tree models, 

which are made up of if- then rules, such as:

IF the thing the customer was trying to do when they 

got upgraded from a free to a paid membership 

level was trying to chat with another user

AND

The customer signed up for a paid membership fewer 

than 238 days ago

AND

They last had a failed login attempt within the last 

2 days

THEN the probability of cancelation is 43%.

That’s the fun part. When machines automatically discover histori-

cal patterns— either as if- then rules or as more sophisticated mathemat-

ical formulas— you’re witnessing the most exciting, fascinating, and 

far- reaching kind of technology: software that learns.

http://gay.com
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Once created— or “learned”— the model’s purpose is to generate 

predictive scores (probabilities) for current customers who haven’t yet 

churned on a case- by- case basis. So, for the second step, we use it to do 

so, thereby applying what’s been learned. That’s called scoring. Scoring 

with a model and then acting on the score is called model deployment.

Scoring: A model generates a prediction for an individual.

This is the launch, the main event, the whole point. The first step may 

have been the “rocket science” part, but eventually the time must come 

to launch the rocket. In the deployment step, we dispatch the model 

into the field where it generates predictions that drive operations— such 

as marketing outreach to retain customers. Model deployment is also 

referred to as operationalization, integration, implementation, or “putting 

a model into production.”

For example, once the model’s been deployed, when the rule out-

lined above “fires” for a customer and therefore scores the customer 

with a 43 percent probability of cancellation— which is relatively 

high— it triggers an email that says, “We love you as a customer, here’s 

a discount code.”

That’s what I pitched to gay.com. After developing the model, I 

knew I had to make the business case, so I worked up a nice Power-

Point presentation to show the potential of my model and its estimated 

returns— if only they’d use it.

http://gay.com
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Machine Learning Failure Is Usually Human Failure

Individual use of technology does not always translate into knowing 

how to use these tools effectively within or as an organization.

— Gerald Kane et al., The Technology Fallacy: How People Are the Real 

Key to Digital Transformation

Statisticians, like artists, have the bad habit of falling in love with 

their models.

— Famed statistics professor George Box

But gay.com didn’t deploy my model. Instead, they complimented 

it and placed it on the back burner. The VP assured me that my pro-

posal was interesting and that they would take it into consideration. 

She thanked me for my consulting engagement, which had drawn to a 

close. No more Twinkies for me— and no value achieved for them.

I quickly shrugged it off. As a new consultant in a field that was just 

beginning to catch fire, I could only afford a moment to feel perplexed 

and disappointed. I’d done my part and it was their loss.

But today, after two more decades of consulting, the lesson has sunk 

in. Unfortunately, this lesson is still just as relevant and hard- earned 

today, perhaps in part because it’s a paradoxical one:

The ML Paradox: For this advanced technology to succeed, 

we now need improvements in humans— in the way of under-

standing and leadership— more than in the technology itself.

The ML Paradox is a special case of what James Bessen calls the Auto-

mation Paradox. “When computers start doing the work of people,” he 

wrote in the Atlantic, “the need for people often increases.”

It takes a holistic view— one that integrates business-  and technology- 

side perspectives— to sell, educate on, socialize, and lead ML projects. 

Lacking this, organizations often fail to bridge the business/tech “cul-

ture gap.” On the one hand, data scientists, who perform the model 

development step, compromise the value of their work by fixating 

http://gay.com
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solely on data science. As a rule, they prefer to be left to their highly 

technical area of expertise, not bothered with “mundane” managerial 

activities. There’s a tendency for the data scientist to take the deploy-

ment of their model for granted. Its value is self- evident— how could it 

not be put to real use? With that mindset, they enthusiastically jump 

past a rigorous business process and straight into the modeling. In most 

cases, the resulting model only collects dust.

On the other hand, many business professionals— especially those 

already inclined to forgo the particulars as “too technical”— have been 

seduced into seeing this stunning technology as a panacea that solves 

problems on its own. To them, there’s no need to get into the details, 

since the tech is intrinsically valuable and the details belong only 

within the purview of data scientists. Ultimately, when faced with the 

operational change that a deployed model would incur, it’s a tough sell. 

Taken off- guard, the stakeholder hesitates before altering the very way 

in which the company maintains its profitability.

With no one taking proactive ownership, the hose and the faucet fail 

to connect. The irony is undeniable: All parties tend to focus more on 

the technology itself than how it should deploy. This is like being more 

excited about the development of a rocket than its launch.

Many Models Never Deploy: An Industry- Wide Problem

At companies where there is no framework for the operationaliza-

tion of models, PowerPoint is where models go to die!

— Hulya Farinas, Director of Data Science, Fitbit

How many models fail to deploy? A majority of data scientists say 

that, in their work, it’s between 80 and 100 percent. Across their proj-

ects, only 0– 20 percent of models deploy. Thankfully, the remaining 

data scientists experience higher success rates. These observations 

come from a survey I conducted with KDnuggets, a seminal ana-

lytics news site popular with data scientists, as summarized by this  

bar graph.
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Survey responses to the question, “What percentage of ML models (created by 

you or your colleagues with the intention of being deployed) have actually been 

deployed?” Total respondents: 114.

Other industry research aligns with this dismal result. The industry- 

leading Data Science Survey run by ML consultancy Rexer Analytics 

showed that only 11 percent of data scientists say their models always 

deploy. Managers follow suit, indicating that “only 10% of companies 

obtain significant financial benefits from AI technologies,” according 

to research from MIT Sloan Management and the Boston Consulting 

Group. Likewise, an analyst at the research firm Gartner estimated that 

close to 85 percent of big data projects fail.

Still, ML is by no means a flop. If 15– 25 percent of the world’s many 

projects deploy, that’s far from nothing. Predictive models positively 

impact our lives on a daily basis, delivering more relevant content— 

for example, by empowering spam filters and Google search results— 

drastically reducing credit card fraud, and much more. The Machine 

Learning Week conferences I’ve been running since 2009 are built on 

loads of positive case studies from Fortune 500s and beyond.

In fact, for many ML projects, success is relatively likely. For example, 

at Big Tech firms, experienced staff and the sheer power of abundant 

resources often align the stars for deployment. The same is true if you’re 

developing a newly updated model at a bank that’s already been deploy-

ing credit risk models for years. Moreover, rare innovators like Jack Levis 

at UPS succeed by leading unusually deployment- oriented projects.
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But if you’re pioneering a deployment that’s new to your organiza-

tion and luck hasn’t aligned the stars, you may have your work cut out 

for you. McKinsey’s AI Index reveals that the “divide between AI lead-

ers and the majority of companies still struggling to capitalize on the 

technology” is only widening.

A rising tide of unfavorable buzz and anecdotes bemoans this disap-

pointing truth. When I posted our survey results, experts concurred. For 

example, Analytics leader Armin Kakas, who’s managed analytics at GE 

Capital, Molson Coors, Best Buy, and American Tire Distributors, chimed 

in to say, “Over the years, I’ve led or had oversight of many enterprise- 

level analytics initiatives. . . . If I’m generous, I’d say about one in five 

succeeded and had some level of value realization for the company.”

Consultants fight the same battle. Famed Digital Decisioning author 

James Taylor— one of the few consultants I know who run analytics 

initiatives from a business vantage rather than a data science one— has 

seen the same thing time and again. “In conversations I’ve had with 

many companies,” he says, “when I start asking about machine learn-

ing deployment, with business results not technical ones, fully rolled 

out not just pilots, there are not a lot of good examples. I say that my 

definition of project success is when a model has been developed and 

deployed such that it has created— note the past tense— business value 

for the organization that paid for it. When you impose that criterion, 

man, it’s quiet out there.”

The power is stuck in a PowerPoint. We’re slow to put it to good use. 

Then- MIT Sloan professor Erik Brynjolfsson put it plainly in a TED Talk: 

“Technology alone is not enough. Technology is not destiny. We shape 

our destiny, and just as the earlier generations of managers needed to 

redesign their factories, we’re going to need to reinvent our organiza-

tions. . . . We’re not doing as well at that job as we should be.”

ML’s broader success isn’t delayed pending some new technical break-

through. It’s on hold until the tech breaks through— until it achieves 

organizational acceptance and operational adoption. If you’re embark-

ing upon a new ML initiative and you don’t go above and beyond to 

undertake a very particular organizational practice to run the project, 
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the risk is high that your project will slip into the same pattern that has 

so often led to failure for others.

Before I outline that practice, let’s look at why so many ML projects 

struggle to deploy.

They Can’t Deploy . . . or Just Won’t?

The ML industry has nailed the development of potentially valuable mod-

els, but not their deployment. A report prepared by the AI Journal based on 

surveys by Sapio Research showed that the top pain point for data teams is 

“Delivering business impact now through AI.” Ninety- six percent of those 

surveyed checked that box. That challenge beat out a long list of broader 

data issues outside the scope of AI per se, including data security, regula-

tory compliance, and various technical and infrastructure challenges.

But when presented with a model, business leaders refuse to deploy. 

They just say no. The disappointed data scientist is left wondering, 

“You can’t . . . or you won’t?”

It’s a mixture of both, according to another question asked by my 

survey with KDnuggets, as summarized by this bar graph.

Survey responses to the question, “What is the main impediment to model 

deployment?” Total respondents: 114.
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Technical hurdles mean that they can’t. A lack of approval— including 

when decision makers don’t consider model performance strong enough 

or when there are privacy or legal issues— means that they won’t.

Another survey also told this “some can’t and some won’t” story. 

After ML consultancy Rexer Analytics’ survey of data scientists asked 

why models intended for deployment don’t get there, founder Karl 

Rexer told me that respondents wrote in two main reasons: “The orga-

nization lacks the proper infrastructure needed for deployment” and 

“People in the organization don’t understand the value of ML.” Unsur-

prisingly, the latter group of data scientists— the “won’ts” rather than 

the “can’ts”— sound the most frustrated, Karl says.

Whether they can’t or they won’t, the lack of a well- established busi-

ness practice is almost always to blame. Technical challenges abound 

for deployment, but they don’t stand in the way so long as project lead-

ers anticipate and plan for them. With a plan that provides the time 

and resources needed to handle model implementation— sometimes, 

major construction— deployment will proceed. Ultimately, it’s not so 

much that they can’t but that they won’t.

We turn now to the remedy, the proactive planning process every 

ML project needs so that they can and they will.

The Solution: BizML

Most analytics and AI projects fail because operationalization is only 

addressed as an afterthought.

— Gartner

As we saw with UPS’s story in the introduction, Jack Levis succeeded 

in his diehard drive to deploy by taking end- to- end ownership— from 

project inception to launch. That’s a wide span to cover.

The same is required for any ML initiative. To run the project so 

it successfully launches, you must follow a business practice built on 

three fundamentals guidelines— the third of which relates to end- to- 

end ownership:
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Ramp up on a semi- technical— yet accessible— side of ML. Before 

their involvement in an ML project, all professionals must gain 

some rare background knowledge, familiarity with a collection of 

accessible ML fundamentals. Surprisingly, some of them are seldom 

known even by data scientists. Chapters 1 through 6 of this book 

cover these fundamentals while stepping through the ML business  

practice.

Mandate deep collaboration between business professionals 

and data scientists. These two very different “species” must team 

up to execute each project step in order to achieve deployment. 

After all, deployment means radical change to existing operations. 

You can’t assume that the decision makers will buy in easily. To 

keep things on track and grease the wheels for operationalization, 

business- side stakeholders must be enlisted to deeply collaborate 

with data scientists and weigh in at each project step, end to end. 

This includes defining performance goals, preparing the data, and 

developing and deploying the predictive model.

Plan ML projects backward. In the first step of that collaboration, 

before modeling begins, start with the end goal: precisely how 

ML will be deployed to improve operations. Stakeholders must 

approve the way in which the probabilities calculated by a model 

will change business processes in order to improve them. Only 

by declaring this up front does an ML initiative stand a chance 

of achieving successful deployment. This “backward” strategy is a 

simple and yet surprisingly underutilized trick of the trade.

To embody these three guidelines, a knowledgeable team must coll-

aboratively follow an end- to- end practice that begins by backward 

planning for the end. I call this practice bizML and it consists of the 

following steps.

The six steps of bizML:

1. Value: Establish the deployment goal. This step defines the business 

value proposition: how ML will affect operations in order to improve 

them by way of the final step, model deployment.
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2. Target: Establish the prediction goal. This step defines exactly what the 

model will predict for each individual case. Each detail of this mat-

ters from a business perspective.

3. Performance: Establish the evaluation metrics. This step defines which 

measures matter the most and what performance level must be 

achieved— how well the model must predict— for project success.

4. Fuel: Prepare the data. This step defines what the data must look like 

and gets it into that form.

5. Algorithm: Train the model. This step generates a predictive model 

from the data. The model is the thing that’s “learned.”

6. Launch: Deploy the model. This step uses the model to render predictions 

(probabilities)— thereby applying what’s been learned to new cases— 

and then acts on those predictions to improve business operations.

These steps define a business practice that forges and navigates a 

shrewd path to ML deployment. Anyone who wishes to participate in 

ML projects must be familiar, no matter whether you’ll play a role on 

the business side or the technical side. Rip out the one- page cheat sheet 

toward the end of this book and hang it on the wall above your desk.

If you’ve seen this book’s table of contents, these six steps will look 

familiar. They’re the six subsequent chapters of this book. For each step, 

a full chapter is dedicated to exploring the step’s considerations, deci-

sion points, and challenges.

After culminating with step 6, deployment, you have finished .  .  . 

starting something new. BizML only begins an ongoing journey, a new 

phase of running improved operations— and of keeping things work-

ing. Once launched, a model requires upkeep: monitoring it, maintain-

ing it, and periodically refreshing it. This book’s conclusion introduces 

that ongoing effort.

Why the Industry Is Converging on These Six Steps

Following these six steps in this order is almost a logical inevitability. 

To understand why, let’s start with the end. The final two culminating 
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steps, steps 5 and 6, are the two main steps of ML, model training and 

deployment. BizML ushers the project through to their completion.

The step just before those two— step 4: Prepare the data— is a known 

requirement that always precedes model training. You must provide ML 

software with data in the right form in order for it to work. That step 

has always been an integral part of modeling projects, ever since linear 

regression was first applied by businesses in the 1960s.

Before the technical magic, you must perform business magic. That’s 

where the first three steps come in. They robustly backward- plan the 

project— before diving into the hands- on work of prepping data, devel-

oping a model, and using it. They establish a greatly needed “pre- 

production” phase of pitching, socializing, and collaborating in order 

to jointly agree on how ML will be applied and how its performance 

will be evaluated. Importantly, these first steps go much further than 

only agreeing on a project’s business objective. Business professionals, 

prepare to dive more deeply into the mechanics and arithmetic than 

you might have expected. Likewise, data scientists, prepare to reach 

beyond your usual sphere of techies and work closely with business- 

side personnel.

I have designed bizML to satisfy a dire, unmet need: The industry has 

not yet established a standardized practice that’s well known to lead-

ers, managers, and other business professionals who wish to apply ML. 

One standard established almost thirty years ago gained some traction, 

although almost entirely among data scientists (back then, data min-

ers). Designed in 1996, it’s called CRISP- DM: the CRoss Industry Stan-

dard Process for Data Mining. This foundational effort paved the way 

for standardization by laying out many of the fundamentals. However, 

it never gained much traction among business professionals, in part 

because it largely spoke the language of tech and perhaps also in part 

because it eventually came under the control of the ML software vendor 

SPSS (later acquired by IBM), limiting any potential for it to be champi-

oned by a vendor- neutral initiative.

This book’s introduction of bizML represents a renewed effort to 

establish an updated, industry- standard playbook for running successful 
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ML projects that is pertinent and compelling to both business profes-

sionals and data professionals.

BizML complements CRISP- DM, so the two are compatible. CRISP-

 DM applies for a broader range of projects— data science projects in 

general— whereas bizML focuses on ML projects specifically, so this 

book’s steps delve more deeply into predictive model- specific topics, 

such as a project’s prediction goal, predictive performance metrics for 

models, and how models are deployed.

On a more contemporary front, bizML also fits in neatly with the 

recently christened practice data product management, which advocates 

for a “product” orientation on analytics projects that closely parallels 

software product management. This means developing capabilities well 

tuned to the needs of the customer— who, in the case of ML projects, 

is the person who consumes model scores, either to guide their team’s 

decisions or to improve their operational system. By planning back-

ward, bizML abides, putting the customer first and serving up a viable 

product: predictive capabilities that meet the customer’s needs.

But bizML is more specialized. The wisdom of data product manage-

ment pertains to all kinds of analytics projects in general. It borrows 

prudently from software product management’s best practices to run 

a product’s development, maintenance, and customer support. Mean-

while, bizML is designed for ML projects in particular, with all six steps 

specifically addressing what it takes to successfully deploy a predictive 

model.

Before jumping into step 1 of bizML with the next chapter, this 

chapter still needs to finish setting the stage. I’ll now cover:

• Why ML lingo needs a new term: bizML

• Why the technology itself gets more hype than its launch

• How the ML industry must reframe itself

• Why data literacy is for everyone— like driver’s education, not auto- 

mechanic school

• Who should lead ML projects

• What I should have done differently with the gay.com project

http://gay.com
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BizML: A Core Requirement That Had Gone Unnamed

Following all six of the steps of the bizML practice is uncommon, but 

hardly unheard of. Many ML projects succeed wildly, even if they’re 

in the minority. While a well- known, established framework has been 

a long time coming, the ideas at the heart of the bizML framework are 

not new to many experienced data scientists.

And yet the folks who need it the most— business leaders and other 

business stakeholders— are least likely to be familiar with it. In fact, the 

business world in general has yet to become aware of even the need for 

a specialized business practice in the first place. This is understandable, 

since the common narrative leads them astray. AI is often oversold as 

an impenetrable yet exciting cure- all. Meanwhile, many data scientists 

far prefer to crunch numbers than to take pains to elucidate. All along, 

there’s been no popular business book and no commonplace business 

school curriculum that teaches a detailed playbook for ML projects.

Most unhelpfully of all, there’s not even been a name for it. No 

widely recognized lingo to spread the word and create a trend. Instead, 

the ML buzzwords that have so far gained traction pertain to techni-

cal methods, not to the business- side discipline. For one, the trending 

field MLOps— which deals with ML operationalization, another term for 

deployment— solves technical hurdles, not organizational ones. MLOps 

refers to an important collection of engineering “tricks of the trade” for 

managing and maintaining models. This should not be confused with a 

practice for managing humans. Although both relate to the operation-

alization of models, MLOps addresses the technical execution of ML 

projects and bizML addresses the organizational execution. A project 

following bizML may well employ MLOps as an invaluable approach 

to make sure that the company can deploy a model technically, but 

MLOps doesn’t holistically address whether its leaders will deploy it. No 

technical solution alone can address the business- side challenges faced 

by ML projects. Instead, an effective business practice like bizML must 

be the dog that wags the MLOps tail.
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AutoML is another popular term, but it also names technical solu-

tions rather than organizational ones. AutoML refers to an invaluable 

collection of methods that automate some of the tasks traditionally 

performed manually by data scientists, including certain aspects of data 

preparation and of selecting the best modeling method (parts of steps 

4 and 5, respectively).

Hence the name bizML for the six- step practice for running an ML 

project that is presented by this book. Rather than a technical practice, 

this is a business practice that involves technical steps.

The Origin and Cost of Hype

I predict we will see the third AI Winter within the next five years. . . . 

When I graduated with my PhD in AI and ML in ’91, “AI” was liter-

ally a bad word. No company would consider hiring somebody who 

was in AI.

— Usama Fayyad, speaking at Machine Learning Week, June 2022

Wait a minute! By ordering the chapters according to the six project 

steps, I have written an ML book that doesn’t dive into the ML itself 

until near the end of the book.

In fact, that’s perfect. A project intended to launch ML must concern 

itself first with how a model will deploy and only second with the core 

number crunching that will generate the model— no matter how excit-

ing and impressive that crunching may be from a scientific viewpoint.

But the data scientist fetishes core ML methods. She was born that 

way. Her impulse is to go “hands on” with modeling as soon as pos-

sible. Even fledgling data scientists follow suit, beginning almost invari-

ably with hands- on courses and books that presume the training data is 

already prepared. And the vast majority of instructors and authors egg 

them on: The first step is to load data into the modeling software. This 

supports a false narrative that condones skipping right past the earlier 

steps of a project. As a result, jumping straight into the core ML itself 
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before establishing a path to operational deployment is the most com-

mon mistake that derails ML projects.

Some straightforward economic factors further amplify this dispro-

portionate focus on the core technology. In the analytics industry, the 

best way to make a killing is by selling software. That’s where the mar-

gins, acquisitions, and IPOs are. But the vendors selling ML software 

tools aren’t inclined to advertise that their products do not themselves 

perform operational change. They may be slow to explain that ML 

software takes on only limited— albeit central— technical portions of 

an end- to- end ML project. These vendors are incentivized to keep the 

focus on their technical products rather than the enterprise process.

This overfixation is going to cost us. Like it or not, we’re strapped in 

for the ups and downs famously depicted by the Gartner hype cycle, 

which illustrates the expected trajectory for each new technology, from 

inception to maturity.

The Gartner hype cycle for technology.

At first, expectations rise as a new technology gains traction. But the 

hype typically goes too far, reaching the “Peak of Inflated Expectations.” 
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With ML, we’re right at that precipice, ready to tumble down to the 

“Trough of Disillusionment.” Gartner suggests that ML has already slid 

partway down toward the trough, but I would argue that it still rests at 

the peak. Industry excitement about ML does not yet appear to have 

been affected by its struggling deployment rate.

ML’s plunge could be worse than most. The disconnect between hype 

and reality seems to only be increasing, with so much more attention 

being given to the tech than to its deployed value. When the executives 

catch on, there’ll be hell to pay. If we continue on the current course, 

the fall from grace will be steeper and the disillusionment deeper. It’ll 

be central to a third AI Winter, an era of diminished excitement and 

funding. Our subsequent climb back up the “Slope of Enlightenment” 

will likely be more gradual, with productivity a longer way off.

Reframing ML

We don’t focus on the technology. To tell you the truth, I don’t have 

a single analytics project. I’ve got business projects and analytics 

may be part of that.

— Jack Levis

If we reframe ML, it could avoid such a dire plunge. Although I believe 

AI Winters are inevitable, that painful nosedive need not take ML along 

for the ride. By realistically and concretely communicating what ML 

offers— and, ideally, by calling it “ML” rather than “AI”— we can dif-

ferentiate it from the often- misinformed hype that defines the AI brand 

and save ML from being a victim of its own hotness.

We need only reorient the focus. Don’t propose an “ML project.” 

Instead, pitch and lead a project that will improve operations, with no 

more than a side note mentioning ML as part of the solution. Usually, 

ML projects are framed in this way:

AI will improve operations.

In addition to dispensing with the term “AI,” which usually compro-

mises clarity, we must reframe the project in this way:
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We will improve operations (using ML).

By way of illustration, let’s apply this reframing to the stories we’ve 

covered so far— put in the briefest of terms:

We will run a new marketing process to retain customers 

(using ML to target those most at risk of canceling).

We will improve the efficiency of UPS’s package deliveries 

(using ML to predict delivery destinations).

As a couple more examples, let’s properly frame a credit scoring and a 

fraud detection project:

We will improve our bank’s credit application processing (using 

ML to predict which applicants are most likely to default on 

their loan).

We will increase our detection of fraudulent transactions 

without increasing the auditors’ workload (using ML to pre-

dict which transactions are most likely to be fraudulent).

Reframing ML projects in this way puts the business objective first, 

rather than the technology— and, likewise, it shifts the agency from the 

technology to the business. The first word of the sentence is “we” not 

“AI,” humans not machines.

Moreover, this adjustment puts change management squarely on the 

agenda. Change management is a well- established discipline designed 

to facilitate operational shifts— but it can only do so if it’s employed. 

Many ML projects don’t recognize that the notion of change manage-

ment applies, but model deployment means changing the very way the 

business operates and that change must be proactively managed like any 

other. By viewing the endeavor as an enterprise project rather than a tech-

nology project, folks will recognize an often- overlooked truth: ML deploy-

ment presents a challenge that only a change management process can meet.

ML Vendors Help, but Enterprises Lead the Industry

ML software creates potential value, but only a broader enterprise initia-

tive can capture that value. An ML project succeeds not only by using an 
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ML software product, but by implementing a paradigm. For the business 

project, ML software plays a vital role, but it’s only a supporting one.

With some kinds of technology, the product alone delivers value. 

Faster computing hardware, larger storage solutions, and streamlined 

database software provide value in and of themselves. But ML software 

is different: To improve business operations, it must be used as only one 

part of a broader organizational process.

After all, no software product alone could solve the kind of monu-

mental problems that ML projects solve: operational inefficiencies. An 

ML project is a consulting gig, not a technology install. Those running 

the project are delivering services more than software.

Accordingly, vendors don’t lead the ML industry— users do. In this 

way, the ML industry differs from the cellphone industry, the laptop 

industry, or even many forms of enterprise software, where companies 

compete for a pole position that defines the market by way of the prod-

ucts they sell. Instead, the ML industry is a movement led by the inno-

vators within the companies that use ML. It’s more like the restaurant 

industry, where stove manufacturers are critical but restaurateurs and 

chefs lead the industry.

The myth of a do- it- all citizen data scientist is spread in part by certain 

ML vendors. They do so when they sell the false narrative that their 

ML software product itself solves an enterprise problem. Au contraire— 

untrained users can’t, unassisted, develop predictive models for new 

ML initiatives. ML software requires data science expertise to use and 

thereby create value. And capturing that value takes more than only 

using the product— it requires a holistic, collaborative enterprise prac-

tice. Inexperienced enterprises turn to ML vendors for guidance, but 

vendors lack an incentive to elucidate on the full context within which 

their product must be used. They often exploit that inexperience, sell-

ing a product to a customer who hasn’t realized what it will take to 

capture value with it.

Now, if you were hoping to be wowed by technology that just “plugs 

in” and generates value, it’s time to manage expectations. That’s silver- 

bullet thinking. From that vantage, there’s bad news:
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An ML project is a business endeavor, not simply a technical 

one that can be handed off to data scientists to take on alone.

After all, a model is going to directly change business operations, 

so the project requires a wholly collaborative process driven by busi-

ness needs. That’s entirely unlike other data- intensive initiatives, such 

as deploying a data warehouse or certain business intelligence reporting 

solutions, which can be handed off to the IT department and revisited 

later to receive the results.

But the bad news is also good news:

An ML project is a business endeavor, so those involved have 

the opportunity to guide the process and ensure that the 

resulting model is actionable within the company’s opera-

tional framework and has the greatest impact within the com-

pany’s business model.

The centerpiece of an ML project is model deployment and the oper-

ational improvement achieved by doing so— not the use of the software 

that generates the model in the first place.

The Semi- Technical Background Knowledge You Need

Reframing ML will help correct the common misconception that busi-

ness professionals need not become acquainted with any of its particu-

lars. Many mentally tuck ML into a black box that only data scientists 

penetrate. Analytics vendors love this box, since that which is mysteri-

ous seems powerful.

But most data professionals agree that business stakeholders need to 

ramp up. According to the “State of Data Science” survey by the ana-

lytics vendor Anaconda, “Only 36% of people said their organization’s 

decision- makers are very data literate and understand the stories told 

by visualizations and models.” Despite this, only 1.6 percent of respon-

dents name data literacy as their “primary area of data investment,” 

according to the NewVantage Partners 2023 survey of senior data and 

analytics executives.
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So, like any tech author worth their salt, I’m here to demystify. It’s 

time to blow the lid off and become familiar with some of the inner 

workings.

Many business professionals balk at this suggestion. “I don’t need to 

understand the inner workings of an engine to drive a car. I delegate all 

that technical stuff to the experts. Tinkering under the hood is some-

one else’s responsibility.”

Fair point— but here’s how that analogy actually applies: This is 

driver’s education, not auto- mechanic school. In order to drive, you do 

need extensive know- how, familiarity with core fundamentals such as 

navigation, acceleration, momentum, friction, and collisions. You must 

become intimately acquainted with how a car interacts with the world 

and how you control it.

The same goes for ML: To drive business with it, you must fully grasp 

its fundamentals, even if you aren’t working “under the hood.” In addi-

tion to learning about the six bizML steps, business professionals must 

gain a particular kind of data literacy by ramping up on certain semi- 

technical particulars, precisely so that they can actively weigh in on 

them. They include:

Deployment: Precisely what’s predicted and exactly how those 

predictions will change operations in order to improve them.

Performance: The particular arithmetic to measure and report on 

how well it works— how effectively it predicts and the bottom- 

line business impact of using it.

Data: How to source and prepare this “raw material”— what it 

needs to look like so that ML software can make use of it.

Models: What they function to do— what they take as input and 

what they produce as output— plus the gist of what happens in 

between. As with the basics of internal combustion, the principles 

behind these “prediction machines” are within every profession-

al’s capacity to understand—and within every professional’s pur-

view as well. After all, they’re poised to actively alter the very 

operations of your business.
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This book covers these semi- technical fundamentals, addressing 

them along the way while proceeding through the six steps of bizML 

across the next six chapters. If you’re a business professional and until 

now have felt these kinds of details fall outside your job description, 

it’s time to embrace the paradox: After just a bit of ramp- up, more than 

anything, non- data scientists like you are exactly what ML projects need. 

With this background knowledge, you can meet data scientists halfway. 

They’re great at creating value; now it’s up to you to capture it.

Who’s in Charge?

This upskilling will make you not only a valuable participant, but also 

the potential leader of ML projects— sometimes called the data product 

manager. BizML and the associated background knowledge empower 

business professionals to take the lead by providing an understanding 

of precisely how deployment will change operations— after all, one 

must know the change in order to manage it. Likewise, these learnings 

also empower data professionals by providing a holistic framework for 

aligning their technical work with business goals.

The leader doesn’t have to be you, but think twice before ruling 

yourself out. If you’ve taken all this to heart, you’re good to go. You rec-

ognize the value of the six- step practice and the additional background 

knowledge that may be new to you. The age- old proverb applies here 

more than anywhere: If you want something done right, you’ve got to 

do it yourself.

But if leadership doesn’t interest you, there’s another way you can 

still be the hero of your ML story: Make sure that whoever takes the 

lead is willing to spearhead the end- to- end business practice. If you’re 

not proactive in this way, you run the risk of defaulting to authority 

structures that have so often proved themselves insufficient. While it’s 

understandable that many business professionals defer to data scien-

tists to run the show, that technical expertise doesn’t necessarily come 

with the multifaceted enterprise leadership know- how that ML projects 

need to achieve deployment.
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Meanwhile, data scientists often submit to the authority of money. 

When gay.com paid me to model customer cancellations, it felt like 

validation— but it wasn’t. Just because those in charge are paying you 

doesn’t mean they’re signing up for big operational change. I’ve seen 

many of my colleagues also enjoy this kind of “prestige position,” where 

their employer or client feels comforted and proud, knowing they’re 

pursuing the latest, greatest technology— yet, all the while, deployment 

is only a distant dream.

But with a bit of upskilling, you or your colleagues can become that 

rare bird who, by bridging the all- too- common skills gap, is prepared to 

lead ML projects. If you’re a business professional, you may still need 

to gain the semi- technical background knowledge we’ve discussed. And 

if you’re a data professional, you also may have some learning to do. 

“Soft and business- related skills were the most significant gaps between 

what universities teach [data scientists] and what organizations need,” 

according to the “State of Data Science” survey I mentioned earlier.

As the industry warms up to this upskilling process, there’s no estab-

lished standard for who should take on the leadership role. Instead, 

there’s flexibility. In principle, a line- of- business manager may be the 

most natural fit, since the person running the operations that will be 

improved with ML should be the one in charge of optimizing them. 

This person usually owns the business objective, such as the reduction 

of customer churn. On the other hand, it’s data scientists who often 

have the clearest vision of how their handiwork could generate value. 

For many projects, a data scientist has been the main champion, hav-

ing energized the project’s inception in the first place. Alternatively, 

an experienced leader might come from your analytics center of excel-

lence, or your chief data officer could lead ML projects, although they’re 

generally too busy with executive responsibilities— it’s an in- depth, 

demanding process, as this book intends to demonstrate.

When it comes to running the project, it’s what you do, not who 

you are. It’s the process that matters, not the job title. BizML’s six steps 

are universal— they always work, regardless of your org chart. This is 

a very good thing, considering that internal structure varies like mad 

http://gay.com
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across companies. It would be a fool’s errand to prescribe any one- 

size- fits- all organizational structure for analytics projects. For all mem-

bers of an ML project’s team— including the leader— it’s the job duties  

that count.

Whoever takes charge, they’ve got to facilitate deep biz/tech collabo-

ration. In addition to managing the technical tasks, the leader must 

rally key stakeholders, executives, and decision makers. Only by achiev-

ing a certain critical mass of enterprise- wide engagement can the proj-

ect secure enough business- side feedback and buy- in. Depending on 

the project, this might mean engaging the CEO and twelve VPs— or it 

may only take the right individual line- of- business manager who over-

sees pertinent operations. Either way, the core team must break barriers 

and forge a prosperous, two- way biz/tech exchange.

Learning the Hard Way

We believe the two major reasons [for non- deployment] are the 

absence of strong leadership and a lack of buy- in . . . you conduct it 

without involving the stakeholders and then upon completion tell 

them, “Here’s what the data shows. Now make use of it.”

— Jeff Deal and Gerhard Pilcher, Mining Your Own Business

The gay.com project was doomed to fail. I was a one- man show: the 

project champion, vendor, data wrangler, and data scientist all in one. 

I lacked the proper leadership practice, so, despite all my ambition, 

enthusiasm, capabilities, and best efforts, I couldn’t convince my client 

to embrace my model and launch a new operative process to leverage it.

Like so many modeling projects, it came down to this dialogue:

Data scientist: I developed the predictive model and the performance 

is great!

Client: That sounds interesting.

Data scientist: Look at the projected ROI, if only you’d act on it.

Client: What do you mean?

http://gay.com
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Data scientist: Just integrate the model into this new, large- scale opera-

tional process.

Client: (Balking at the audacity of the data nerd) You want me to do what?

This conversation frustrates the data scientist. She throws up her 

arms and storms away to spend some alone time crunching data. It’s 

bewildering, this seeming lack of vision and unwillingness to seize 

opportunity.

But, if she sold the project and got it greenlit in the first place, the 

data scientist holds much of the responsibility. She’s plowed forward, 

executing the technical part of a project that cannot succeed because 

it’s incomplete from a business standpoint.

Many senior data scientists have already come to hold this perspec-

tive. They transcend their technical role and provide invaluable leader-

ship. Take Dean Abbott, an industry- leading consultant and the author 

of Applied Predictive Analytics, who holds us quants accountable: “We 

think, ‘Ugh, they just don’t get it, they don’t understand statistics, they 

don’t understand machine learning.’ It’s true, they don’t. But you prob-

ably don’t understand business and all the inputs they’re getting, the 

stressors they have, either. So, we have to lower the wall, be humble, 

ask a lot of questions, let them explain things in their language, and 

then try to translate the language so you can be on board with the  

same ideas.”

When I pitched gay.com, I hadn’t yet joined the enlightened minor-

ity. To help the company hold on to more customers, I should have 

sold them on just that— not ML (or predictive analytics, as was the more 

common term back then). Rather than churn modeling itself, I should 

have reframed my pitch to focus on a new operational effort, with a 

parenthetical mention of the technology that will drive it:

We will run a new marketing process to retain customers 

(using ML to target those most at risk of canceling).

Gay.com may not have bought in, but at least I wouldn’t have sold 

them on a technical project fated to require as- yet unrecognized opera-

tional efforts before it ever realized value.

http://gay.com
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Learning the Easy Way

Even after my experience with gay.com, I still hadn’t learned my lesson. 

A single experience was not enough for me to see a pattern. Besides, 

I’d been paid well for my time, so I wasn’t tremendously motivated  

to evolve.

But there are two ways for your second ML project to succeed. One 

is by experiencing a reckoning that leads you to intentionally follow a 

well- honed enterprise practice. The other is by dumb luck.

When I landed my second gig as an ML consultant, I got lucky. 

Sometimes, you learn your lesson the easy way rather than the hard. 

The next chapter kicks off with that story.

http://gay.com


1 Value

Establish the Deployment Goal

The BizML Practice:

1. Value: Establish the deployment goal.

2. Target: Establish the prediction goal.

3. Performance: Establish the evaluation metrics.

4. Fuel: Prepare the data.

5. Algorithm: Train the model.

6. Launch: Deploy the model.

In the first step of a machine learning project, you establish the value 

proposition: what the model will predict and how those predictions will 

improve operations. This is the deployment goal, the launch intended to 

take place as the final project step. Your backward planning has begun.

As with any technology, an ML project must begin with a clear busi-

ness objective, such as “decrease miles driven” or “retain more cus-

tomers.” But that’s not where participation from business stakeholders 

ends— it’s only where it begins. Business considerations also inform sev-

eral semi- technical aspects of precisely how that objective will be pursued 

by model deployment.

Beyond helping with the project’s execution, bringing business stake-

holders into the details also helps greenlight the project in the first place. 

Since the model is meant to seize some degree of control, those in charge 

must be willing to accept some loss of control. To achieve their buy- in, 

you must offer full transparency by ramping them up on the concrete 

way predictions will drive operational decisions. This way, they will come 

to embrace not only probabilistic thinking, but probabilistic doing.
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As the editor in chief of ITworld, Jodie Naze pronounced advertising 

“the lifeblood of the Internet.” Without it, she wrote, “the Internet 

would still be an isolated plaything for the sole use of the academic 

elite.”

When I took a call from the company that was to be my second cli-

ent, they asked me to use machine learning to better target ads— the 

very ads that provided their revenue. This company was in the sure- fire 

business of giving away money: It was the leading search engine for stu-

dent grants and scholarships. One in three college- bound high school 

seniors signed up to find out what kind of financial aid they were eli-

gible for. In this book, I’ll call the company EduPay.

Users “paid” to use EduPay in the same way you pay for most online 

content: by seeing ads. But these ads were different. First, most were 

relevant to a student’s interests. Some presented ways to cover tuition, 

such as student loans and military recruitment. Others pitched univer-

sities. Moreover, EduPay visually integrated the ads into the overall user 

experience. Some ads would even ask for a bit of info such as a phone 

number or intended study year in exchange for connecting the user 

to the sponsor— rather than just begging to be clicked on. As a result, 

many users would not even notice that they were interacting with a 

paid commercial.

But there was room for improvement. The current EduPay system 

didn’t personalize ads. It selected them based on overall popularity 

rather than relevancy, prioritizing those with the highest response rates 

across users. This is a solid and common tactic, but it doesn’t select ads 

based on the user’s individual preferences.

Personalizing ads with ML nudges up the number of ads that users 

experience as informative. At EduPay, a unique wellspring of data 

amplified ML’s potential to personalize. Their site collected rich pro-

files when users registered, including their backgrounds, interests, and 

educational plans. This presented just about as good an opportunity to 

target ads as you could hope for.
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But Melissa, the director of advertising products at EduPay, didn’t 

call me only to improve the user experience. She wanted to make the 

company more money. The advertisers paid bounties of up to $25 for 

each lead. If ad response rates increased, so would the earnings— even 

without a single new user or advertiser.

The Value Proposition: Defining an ML Application

Let’s start at the beginning, by which I mean the end. In planning for 

a successful deployment, the first thing Melissa at EduPay did right— 

even before she called me— was to establish the deployment plan, the 

exact way in which ML would launch. This means specifying what 

would be predicted and the way in which the predictions would take 

effect and improve operations.

EduPay’s desired business outcome was simple:

Desired business outcome: Increase ad response rates (and there-

fore revenue).

But for step 1 of an ML project, you must specify how you will get 

to that outcome, the means to that end. You must declare the way you 

plan to deploy— first, what will be predicted and, second, what will be 

done about it:

Application: Ad targeting

1. What’s predicted: Will the user respond to this ad?

2. What’s done about it: Display the ad to which the user is most 

likely to respond.

Since these two ingredients describe the way in which you’re apply-

ing ML, they specify the ML application, a.k.a. the ML use case. They 

establish the value proposition for a given ML project. The two deter-

mine, respectively, what we will do during the two culminating steps: 

step 5, train the model to predict something, and step 6, deploy the 

model into the field to drive operations.
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Backward Planning: Forging a Path to ML Deployment

AI strategies fail because AI is a means, not an end. “Do you have an 

AI strategy?” makes as much sense as asking, “Do we have an Excel 

strategy?”

— Mihnea Moldoveanu, management professor, University of 

Toronto

Being AI first means using it last.

— Will Grannis, founder and leader, Google Cloud’s CTO office

Focus on decisions and work backward.

— Jack Levis

The EduPay project stood a chance of successfully launching— because 

we had a precise definition, from the get go, of how ML models would 

actively improve operations. Every ML initiative must establish this up 

front, at its inception. Many fail to do this and therefore fail, full stop.

By establishing the end goal, you have a destination that keeps your 

project moving in the right direction. Rather than using advanced tech 

for its own sake, you’re pursuing an operational purpose.

All planning is backward planning. You start with a goal and work 

out how you’re going to get there. Say you’re writing a movie script. 

According to Hollywood screenwriter Steven Pressfield, “Start at the 

end. Begin with the climax, then work backward to the beginning. 

Carrie. The Great Gatsby. Thelma and Louise. The ending dictates the 

beginning. I’m a huge fan of this back- to- front method. It works for 

anything— novels, plays, new business pitches, music albums, choreog-

raphy. First, figure out where you want to finish. Then work backward 

to set up everything you need to get you there.”

There’s a growing consensus that we’ve been getting ML backward 

by not planning it backward. The problem should come first, not the 
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technology. Folks are pushing back on the inverted notion of The AI- 

First Company— a term coined by Alphabet CEO Sundar Pichai and con-

secrated as a book title by famed venture capitalist Ash Fontana.

While prioritizing ML certainly has merit— as proven by Alphabet 

itself, given that Google powers Internet search with ML— “AI- first” as a 

movement tends to suggest first adopting the technology and only later 

determining its specific use. In this way, it treats AI as a silver bullet sure 

to bolster enterprise functions.

This is a type of technology- first or solution- first thinking (here, “solu-

tion” refers to the technology itself, not the effective use of a tech-

nology). Those who oppose that thinking suggest that you “love the 

problem, not the solution,” as Ash Maurya put it in his book Scaling 

Lean.

“AI can’t come ‘first,’” wrote ML thought leader and executive Rich-

ard Heimann in a review of The AI- First Company for the publication 

that I edit, the Machine Learning Times. “If being AI- first literally means 

solution- first, we lack problem- specific information required to know 

anything about the right solution and value propositions. We will also 

lack customer-  or market- relevant direction and fail to align strategy 

with the business.”

MIT Technology Review asked ML industry leader Andrew Ng how he 

responds when people ask him, “How do I build an AI- first business?” 

Ng didn’t take the bait. “I usually say, ‘Don’t do that.’” He continued, 

“If I go to a team and say, ‘Hey, everyone, please be AI- first,’ that tends 

to focus the team on technology, which might be great for a research 

lab. But in terms of how I execute the business, I tend to be customer- 

led or mission- led, almost never technology- led.”

It’s not only thought leaders. Data scientists in the trenches also 

warn others about this hard- learned lesson. When a senior ML engineer 

at Bolt named Francesco Pochetti weighed in online, his usual two or 

three likes per post jumped to over 1,700, plus scores of reposts. Here’s 

what he tweeted:
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And yet, if you prudently eschew “AI- first” and start by establishing 

the business use case, you’ve only just begun. You’re reading an entire 

book rather than a bumper sticker for good reason: In and of itself, the 

industry’s helpful change in tone isn’t enough. This chapter’s step of 

establishing the deployment goal is necessary but not sufficient. It’s 

only the first of bizML’s six steps. The remaining steps are also needed 

to achieve real operational change.

In fact, this chapter alone won’t even fully prepare you for step 

1— only the entire book will. Since this first step of the project is to rig-

orously plan for the final step, deployment, you can’t complete the first 

step until you’re familiar with the deployment concepts covered in that 

culminating chapter. The chapter you’re now reading introduces the 

need for backward planning, outlines step 1, and surveys your business- 

application options— but chapter 6 is where you’ll find the logical and 

mechanical particulars of model deployment that must be established 

in advance. As you’ll see, the salient particulars aren’t arcane or “in 

the weeds” technically, but that chapter will inform just how detailed 

this first step’s deployment plan must become— more detailed than, 

“Display the ad to which the user is most likely to respond.” I wrote 
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this book to be read front- to- back, but then quite possibly referenced 

in reverse.

Why Deployment Requires a Mental Leap

Paradigm shifts don’t come easy. To deploy ML is to run mammoth 

numbers of decisions probabilistically, to systematically apply probabil-

ities on a much lower level of granularity than traditionally conceived 

of. If you’re a data scientist, allow me to shatter your world: Probabilistic 

thinking is a trendy notion, yes, but probabilistic doing— methodically 

acting on probabilities— is barely on the radar for most people.

In most popular media and books, probability serves only to support 

singular decisions, rather than millions of everyday operational ones. 

Nate Silver’s popular book, The Signal and the Noise, tells us to “think 

probabilistically.” It focuses on singular events such as terrorist attacks, 

economic recessions, pandemics, and political elections. And Peter 

Bernstein’s bestseller Against the Gods chronicles the historical develop-

ment of probabilistic methods. Neither book even hints at applying 

probability to change the very way we drive our large- scale operations. 

It’s one thing to think probabilistically— it’s another to act probabilisti-

cally hundreds of thousands of times a day.

The first deployment takes a mental leap. Even rolling out the most 

well- trodden application requires a revolutionary mindset, if it’s your 

organization’s first time— which is today still the case for most appli-

cations at most organizations, as ML’s commercial deployment is still 

relatively young. For example, imagine a company that’s considering 

deploying ML for fraud detection for the first time:

Application: Fraud detection

Desired business outcome: Catch more fraudulent transactions.

1. What’s predicted: Will the transaction turn out to be unauthorized?

2. What’s done about it: Manually audit the transaction.

Before deploying ML, a team of human auditors is doing their best 

to comb through transactions to find those enacted by criminals. 
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These mere mortals can only examine a small fraction, so inevitably 

they employ ad hoc heuristics to focus their endless search. Targeting 

auditor activities with a model would add some science to this ad hoc 

method. It would formalize and improve the choice of which transac-

tions auditors spend time on.

To deploy the model, management must accept a loss of control. The 

model takes the reins, determining a slew of transactions that will never 

be audited: those scored as improbable by the model. Any fraud therein 

will go undetected. And yet, if management forgoes the model, suc-

cumbing to the temptation to check out those unflagged cases, they’re 

only compromising the benefit of model deployment. The whole point 

of the model is to flag cases worth auditing.

The key to getting decision- makers to not only authorize this leap 

but collaborate on it is bringing them up to speed on the complete 

project plan. Trust and comfort will grow as they become familiar with 

the deployment goal and the steps to get there. This means ramping 

them up in detail, including making clear what outcome the model will 

predict, the performance metric for evaluating that model, the source 

of data, the data science resources that will be needed for producing a 

model, and the engineering plan for its deployment.

The means to accomplish this ramp- up and full project specifica-

tion? Conduct the remaining five bizML steps that come after this one— 

collaboratively, with business stakeholders. In so doing, you will enlist 

them to understand, weigh in on, and approve the project’s particulars.

But before we proceed with the rest of the steps, let’s finish this one 

first. It’s time to pick your value- driven deployment goal for ML.

Decisions, Decisions: Picking Your First ML Project

The analytics is the easy part. We’ve nailed that. The first, more 

challenging part of a machine learning project is to fully define the 

business problem. If you take the time up front to get that right, 

then, at the end of the day, you’ll be directionally in the right place, 

making it a lot faster and a lot less costly than having to make 
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course corrections toward the later, more expensive parts of the  

project.

— Gerhard Pilcher, president and CEO, Elder Research

Home in on the ML application that offers the greatest potential impact. 

Pick the lowest- hanging fruit: the application that improves the large- 

scale operational process with the most room for improvement.

And yet, start small. Even if the potential win is big, the project’s 

scope is finite in one key way: You only solve one problem at a time. 

Each project must focus on a single, modestly scoped opportunity with 

laser precision. This means settling on one application of ML, a single 

value proposition defined by what’s predicted and what’s done about it. 

This increases the likelihood that your organization’s first ML initiative 

will succeed. That early win will set a valuable precedent for future ML 

projects.

Choosing which process to improve with ML is a business decision 

very much specific to each company. There’s no one- size- fits- all answer. 

It depends on your sector, your business model, the nature of your 

operations, and how much they could stand to improve. Your current 

operational model, method, and culture must guide the choice.

First and foremost, spend time with operational stakeholders to 

understand their pain points and constraints. As a group, the stake-

holders constitute your client for the project. That’s the customer you 

are here to serve.

Explore. What’s the ripest high- volume operation, the process per-

formed repeatedly many times at your organization that could most 

stand to benefit first? Is there a frequent operational decision that’s 

already entirely or partially automated but not yet optimized?

The options are seemingly endless. Predictive models determine 

which tax returns to audit, which customers to contact for marketing, 

which debtors to approve for increased credit limits, which patients to 

clinically screen, which employees to woo away from quitting, which 

persons of interest to investigate, and which equipment to inspect for 

impending failure.
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As you investigate opportunities and weigh your options, let’s get a 

lay of the land by surveying some of the more common ML applications.

The Choice Depends Partly on Sector

The types of use cases with the greatest value potential vary by sec-

tor.  .  .  . In consumer- facing industries such as retail, for example, 

marketing and sales is the area with the most value. In industries 

such as advanced manufacturing, in which operational performance 

drives corporate performance, the greatest potential is in supply 

chain, logistics, and manufacturing.

— McKinsey’s “Notes from the AI Frontier”

Some of ML’s more typical use cases apply across industry verticals, such 

as those in marketing and advertising. Others are industry- specific. 

Here are some examples:

Application and desired 
business outcome

What’s predicted 
(model output)

What’s done about it 
(deployment)

Response modeling to 
increase the marketing 
response rate

Will the customer buy if 
contacted?

Mail a brochure to those 
likely to buy.

Targeting ads to 
increase clicks

Will the user respond to 
this ad?

Display the ad to which 
the user is most likely to 
respond.

Churn modeling to 
decrease customer 
attrition

Will the customer 
defect if not contacted?

Reach out with a 
retention offer to those 
most likely to defect.

Credit scoring to 
decrease defaults

Will the debtor default 
on their loan?

Deny risky applications 
for credit.

Supply chain 
management to 
optimize inventory

How much demand will 
there be for each item?

Maintain stock levels 
accordingly.

Delivery prediction to 
plan for more efficient 
delivery

Will the address receive 
a package delivery?

Plan the delivery truck 
assignments of predicted 
packages alongside 
known ones.
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In marketing, response modeling is the most established application, 

with several decades of proven results. But, as a rule of thumb, churn 

modeling is arguably a hotter marketing application since it’s often a 

more cost- effective way to grow business. Despite that, your circum-

stances may veer away from this trend. For example, if your customer 

attrition rate is very low, that limits the potential gain with churn mod-

eling, so response modeling may be a better fit.

In financial services, credit scoring is common practice. If your com-

pany isn’t already applying ML to assess the risk of each debtor, there 

could be a tremendous opportunity to do so. Insurance companies 

commonly apply ML to set prices and fast- track claims. On the other 

hand, most mid- sized and large companies could benefit from targeting 

their marketing, including financial services firms. The greatest oppor-

tunity with ML is not dictated by the sector alone.

In the public sector, ML is often applied to manage risk, targeting 

all kinds of safety measures and proactive investigations for risky situ-

ations such as bridges that risk collapse, buildings more likely to catch 

fire, manholes more likely to explode, homes more likely to expose kids 

to lead poisoning, restaurants more likely to violate health codes, driv-

ers to flag as less vigilant, and workplace practices more likely to lead 

to injury.

Detecting a Situation Instead of Predicting an Outcome

For some ML applications, the model detects or diagnoses a problem 

rather than predicting the future— although by convention we use 

the word “predict” anyway, such as when “predicting which transac-

tion is fraudulent,” and we still call it a predictive model. In practice, it’s 

largely the same kind of endeavor. As with models that predict a future 

outcome, a “detection” model is attempting to ascertain an unknown 

and the same technical modeling methods apply. Here are some  

examples:
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Application and desired 
business outcome

What’s predicted, i.e., 
detected (model output)

What’s done about it 
(deployment)

Fraud detection to 
prevent more fraud

Is the transaction 
fraudulent?

Place a hold on high- risk 
transactions and/or send 
them to human auditors.

Healthcare diagnosis to 
improve treatment

Does the patient have 
the condition?

Flag the patient for 
additional tests to 
potentially confirm the 
diagnosis.

Spam filtering so you 
see less spam

Is the email message 
spam?

Relegate spam to a 
separate email folder.

Speech recognition to 
transcribe the spoken 
word

Is X the word that 
corresponds with the 
audio segment?

Label the segment with 
the word predicted as 
most likely.

Fault detection to 
decrease the number of 
broken items

Is the item faulty (e.g., 
as it rolls off a factory 
assembly line)?

Inspect items predicted 
as likely to be faulty.

Autonomous driving to 
lessen human workloads 
and improve safety

Is there a stop sign in 
the image?

Bring the vehicle to a 
stop when a stop sign is 
detected.

There are many, many more ways to apply ML. Don’t be afraid to 

invent a new one, according to the exact nature of your business and 

its main operations. Allow the wide range of established use cases to 

potentially inspire an original one. New ones crop up all the time. ML 

has been used to sort cucumbers, predict the outcome of construction 

projects, detect online trolls and sewage leaks, and catch scooters being 

illegally ridden on the sidewalk.

I would like to encourage you to also consider social- good applica-

tions that benefit society. For example, models can identify those most 

vulnerable or at risk in order to intervene. The nonprofit Predict Align 

Prevent applies ML to identify children at risk for maltreatment. The 

organization’s models improve early detection and intervention. As 

another example, the US Equal Employment Opportunity Commission 

predicts discrimination, flagging which groups of people in a specific 

industry are more susceptible. ML also serves as an important tool for 

climate technology by, for example, predicting the amount of carbon 
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captured by reforestation and regenerative agriculture projects, predict-

ing supply and demand for renewable energy and storage, and predict-

ing extreme weather risks to real estate and crops (the conference series 

I founded includes an offshoot focused on this, Predictive Analytics 

World for Climate Technology).

By deciding on an ML application, you’ve established your deploy-

ment goal. Now all you’ve got to do is sell it.

Getting the Green Light

This book ends with the project’s beginning— the conclusion guides 

you on how to pitch ML projects. But for now, let’s wrap up step 1 with 

how UPS and EduPay gained traction for their respective use cases.

When Jack Levis wanted to optimize UPS delivery routes, he had a 

lot of convincing to do. “The calls I got were incredible. ‘It’s time to 

stop this. No computer can tell a professional a better way to deliver. 

You’ve gotta get your head out of the clouds.’”

But Jack had an ace up his sleeve: He was selling potential gains, not 

just cool technology. And he knew that the key to convincing was dis-

closing the details of the intended deployment and even demonstrat-

ing it in action— literally, as when he took the executive Chuck on that 

fateful ride.

Jack also knew to enlist while he convinced. As an ML project pro-

gresses, selling and educating evolve into collaborating. The stakehold-

ers and line- of- business managers should transform from skeptics to key 

team members. They run the operations, so they should help inform 

the changes to those operations. You can’t hash out a fully detailed 

deployment plan without them. As you indoctrinate, also recruit.

In contrast, when it came to selling operational change, EduPay was 

at a disadvantage: They had me rather than Jack Levis. I had emerged 

from academia in love with the tech. And even after the disappointment 

of the gay.com project, I hadn’t yet learned the lesson: The deployment 

plan must be sold first.

http://gay.com
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Fortunately, I wasn’t in charge. I was serving as the data scientist, 

not the project leader. EduPay had come to me with a specific deploy-

ment plan already in mind. My job was to devise a technical approach 

to modeling. I didn’t have to sell EduPay on operational change. The 

company was already set to do so.

The project leader, Melissa, had the wind at her back. After conceiv-

ing this project, her brainchild, she’d already secured the approval of 

her superiors to implement her vision. This has gone smoothly. EduPay 

was a small company and Melissa had a great deal of autonomy in her 

ownership of the ad system. Moreover, the change she proposed was 

relatively incremental: Instead of automating ad- selection decisions for 

the first time, her goal was merely to change how those automatic deci-

sions were being made. EduPay’s system was already selecting which ad 

to display, based mostly on each ad’s overall popularity— now we were 

going to change it to select which ad to display for each individual user.

Next Steps

But even with a path to deployment relatively unobstructed, I wasn’t 

ready to train any models for EduPay just yet. Deciding on the value 

proposition— what’s predicted and what’s done about it— is only the 

first pre- production planning step. The next step is to get more specific 

about what the model will predict— a lot more specific.

As we’ll see over the course of the remaining chapters, there was still 

much to learn from the EduPay project. We may not all be natural- born 

ML leaders like Jack Levis, but we can learn to do it right.
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Establish the Prediction Goal

The BizML Practice:

1. Value: Establish the deployment goal.

2. Target: Establish the prediction goal.

3. Performance: Establish the evaluation metrics.

4. Fuel: Prepare the data.

5. Algorithm: Train the model.

6. Launch: Deploy the model.

As we discussed in the previous chapter, to plan for machine learning 

deployment, you must begin by establishing what will be predicted by 

the model and what will be done about each prediction. In this chapter’s 

step, you more fully define the first of these two, the prediction goal. It 

must be specified in great detail.

Welcome to a key intersection between tech and biz, where business 

pragmatics inform the semi- technical details and where business stake-

holders must delve into these details. Your mission, should you choose 

to accept it, is to forge a rare collaboration, enlisting business leaders to 

weigh in on the caveats and qualifications that determine the prediction 

goal in all its detailed glory. If you succeed, you will have translated a 

broadly defined business intention into a well- defined requirement for 

technical execution.
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Jack Levis doesn’t remember the exact moment of epiphany when 

delivery prediction came to him. It’s the kind of great idea that just 

seems like a given once it’s on the table. But before anyone had con-

ceived of it, UPS couldn’t fully optimize. Recall how Jack formulated 

the paradox that had been holding the company back:

The Delivery Paradox: You can’t optimally plan the truck- loading 

until you know all the deliveries that will need to be made. But 

by the time you know all the deliveries, you’ve run out of time to 

load the trucks.

You can only predict your way out of a paradox like this. The same 

kind of conundrum arises for optimizing all kinds of logistics, whether 

you’re carpooling a bunch of kids, any one of whom may call in sick at 

the last minute; you’re casting big stars in a movie, any one of whom 

could surprisingly say yes just after you’ve offered the role to someone 

less famous; or you’re accepting a new consulting client, even though 

you know that a bigger client opportunity could come tomorrow. But 

these operations are too small for machine learning. Let’s be real: Your 

kid’s carpool probably wouldn’t benefit.

When applied to large operations, predictions help, even without 

unrealistic expectations as to their precision. When UPS predicts a 

delivery, it’s presumed without being presumptuous. It’s only tenta-

tively treated as a given— just for the purposes of loading the trucks. By 

the time the trucks roll out, all the packages have become real— they’ve 

arrived at the shipping center and wound up on a truck. Any predic-

tions that didn’t materialize are discarded.

With such a well- conceived scheme— powerful yet prudent— you 

might expect Jack to have triggered the ML project ASAP. After all, the 

prediction goal appears clear and simple: Predict which addresses will 

receive a UPS delivery tomorrow. So crank up the predictive engine and 

pour in the data.

Not so fast. Jack knew that the devil lurked in the details. Should 

the model predict which building would receive a package or should 

it be more granular, predicting for individual apartments or business 
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suites within a building? Should it predict the number of packages or 

just whether there’d be at least one stop needed at the building? And 

how about breaking down predictions by the time of day? Some pack-

ages must be delivered first thing in the morning, while others are 

promised delivery only by the end of the day. At the time, UPS offered 

thirteen levels of service that guaranteed delivery by different times  

of day.

The Deployment Plan Informs the Prediction Goal

If ML seems cool but these kinds of details seem boring, then you’re 

suffering from a common but treatable condition. Here’s the antidote, 

a law that keeps your focus on value:

The Law of ML Planning: Keep deployment at the top of your 

mind. The precise way in which predictions will affect and 

improve operations informs every step of the ML project.

With faithfulness to that law, Jack looked hard at how the predic-

tions would be used. Every day, UPS’s existing optimization process 

assigned each truck to a region that could be handled by the driver 

within one workday. Several factors determined whether an assigned 

workday would be manageable, including how large the region 

was, the number of stops needed, and the number of packages at  

each stop.

This procedure functioned everywhere, from dense urban centers 

to rural areas where stops were separated by miles. It handled this 

diversity with dynamic granularities. Out in the country, a truck could 

be assigned a few zip codes for tomorrow’s outing. But in the city, a 

truck might cover an area that included only a couple dozen delivery 

addresses.

For package prediction to be compatible with the current proce-

dures, it had to speak the same language. It had to make predictions 

at the same varying levels of granularity, depending on the region. At 

UPS, this kind of unit that varies in size is known as a sequence. It’s 
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the smallest unit of geography that is taken into consideration when 

planning a truck’s packing and deliveries. In some areas, a sequence 

corresponds to a single delivery address. In less populous areas, it may 

correspond to a group of addresses. And in the most rural regions, a 

sequence corresponds with an entire zip code.

Since the existing planning process operated in terms of each pack-

age’s sequence, predicted packages would also need to be determined on 

the sequence level. But it didn’t quite stop there. Within a sequence— 

whether large or small— the number of packages and the number of 

times the truck would need to make a stop were critical to determine 

whether a driver’s assignments were doable within one workday.  

After working through the details, here’s how Jack formulated his pre-

diction goal.

UPS Prediction Goal: For each sequence (a kind of dynamic geo-

graphical region), how many packages across how many stops 

will be required tomorrow— for each delivery time commitment? 

For example, sequence 457, a group of three office buildings with 

twenty- four business suites, will require two stops with three 

packages each by 8:30 a.m. and five stops with eight packages 

each by 5:00 p.m.

Before UPS introduced package prediction, the planning process 

already worked with this level of detail for known deliveries. Once this 

process could also work with the same level of detail for predicted deliv-

eries, it could plan even more effectively. With the predictions designed 

to be compatible with the existing process, they fit right in.

Pursuing this prediction goal took some doing. The core model pre-

dicted delivery probabilities on the individual delivery address level. 

But the prediction goal generally demanded predictions for a broader 

geographical area— plus, each prediction was not to be a yes/no “will 

there be a delivery?” prediction, but instead a prediction of how many. 

To calculate this quantitative prediction for each sequence, some hand- 

designed code “rolled up” individual per- address predictions, aggregat-

ing them into the required per- sequence prediction.
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The Difference between ML Failure and Success

It turns out that it’s easy to mess this up, failing to align the predic-

tion goal with how predictions will be operationalized. Since this is 

only step 2, such misalignments throw off the project early on. Defin-

ing the prediction goal marks a crucial turning point that all ML proj-

ects hit soon after their conception. Many projects get it wrong— they 

neglect to scrupulously flesh out the prediction goal before jumping 

into the analysis. This is a deadly error, usually resulting in a model 

that’s embalmed rather than embraced. So properly defining the predic-

tion goal is your chance to shine— not by flaunting advanced methods 

but by exercising restraint and meticulousness.

Let’s revisit the classic marketing application, response modeling. It 

aims to increase profit by targeting marketing. Here’s how we described 

it in the previous chapter:

Application and desired 
business outcome

What’s predicted 
(model output)

What’s done about it 
(deployment)

Response modeling to 
increase the marketing 
response rate

Will the customer buy 
if contacted?

Mail a brochure to those 
likely to buy.

As we see here once again, each ML application is defined by what’s 

predicted and what’s done about it. In this bizML step, we’re defining 

the prediction goal— the “what’s predicted” part. In a later step, data 

preparation will use that prediction goal to populate a column of data, 

which is known to data scientists as the dependent variable and in this 

book is called the output variable. With this column in place, the overall 

dataset is referred to as labeled or supervised data. After preparing it, an 

ML algorithm will use the data to train a model that predicts as well as 

possible. With the current step, we are defining the goal for that predic-

tive model.

The prediction goal has got to be more specific. We must fully define 

it, in all its detailed glory. For most any response modeling project, 
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“Will the customer buy if contacted?” leaves too much unspecified. 

While we iron out the details, the Law of ML Planning tells us to keep 

deployment at the top of mind. For this application, the model’s pre-

dictions will target marketing. They will determine who is and who is 

not included in a campaign’s contact list.

The question then is, Who’s worth marketing to? Well, a customer 

must buy enough to be profitable. And we need a realistic time frame— a 

customer who buys a year later doesn’t normally count for campaign 

ROI, and that kind of lag makes tracking difficult. With that in mind, 

here’s a step in the right direction:

Response Modeling Prediction Goal (hypothetical example): 

If sent a brochure, will the customer buy within thirteen business 

days with a purchase value of at least $125 after shipping and not 

return the product for a refund within forty- five days?

Now we’re in business. We’ve fully defined the prediction task that 

ML will pursue, the requirements specifications for the predictive 

model. And it’s based on the particular business context: the existing 

practices into which the model’s predictions will integrate and the way 

they’ll take effect. This is the level of detail you need to establish before 

preparing the data and training a model with it.

Prediction goals like this determine what a model will do for each 

individual. The goal poses a question about a single individual— a yes/

no question for binary models (see the following sidebar). That’s the 

question the model will attempt to answer each time it scores an indi-

vidual. “Will the customer buy?” refers to the one individual that a 

model is scoring, since it scores only one at a time.

Before you dive too deeply into defining a prediction goal, there’s a 

fundamental pitfall to consider: Settling on a poor approximation of the 

true prediction goal. Sometimes, the available data is only a proxy for 

the pertinent target of prediction. For example, law enforcement aims 

to predict future crime to drive sentencing and parole decisions, but 

only rearrest data is available. The ground truth of whether a released 

defendant went on to commit a crime is not directly known— it’s only 
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approximated, imprecisely, with data tracking whether they were 

arrested again. But using “Will the convict be rearrested?” as the pre-

diction goal brings up a central ethical issue with predictive policing. 

Because historically disadvantaged groups such as Black Americans are 

more heavily policed, this unfairly inflates the relative frequency of 

arrests and, as a result, of predicted arrests by a model trained for that 

prediction goal. Similarly, as another example, a widely used model 

for guiding healthcare treatment was trained to predict healthcare cost 

rather than need. Since the data reflected that less had been spent on 

Black patients on average, the model was shown to disadvantage those 

patients. This book’s conclusion surveys other ethical issues that arise 

with ML’s deployment.

Binary Models

Unlike UPS’s goal for package prediction, response modeling pursues a 

binary prediction goal— it predicts the answer to a yes/no question. This 

holds for both for the simplified goal, “Will the customer buy if con-

tacted?” as well as the more complete prediction goal just discussed— and 

it holds also for the remaining examples in this chapter and most of this 

book. A model trained for a binary prediction goal is called a binary model 

or a binary classifier.

For most new ML initiatives, binary models are usually the best place 

to start. Most any prediction problem can be framed as binary— to clas-

sify which individuals do or do not behave in some defined way, such 

as whether they spend beyond a certain amount, default on their credit, 

click, buy, lie, or die. This applies for detection tasks as well: Is this trans-

action fraudulent? Is this email message spam? or Is this manufactured 

item faulty?

But models can also predict how much or how many, rather than only 

whether. Such models predict the number of purchases, amount expended, 

magnitude of insurance claims, or a customer’s lifetime value, which is the 

amount of revenue or profit expected across a relatively long period of 

time (an ideal yet sometimes overly ambitious prediction goal). These are 

sometimes called continuous or numerical models.

Binary models hold a couple of significant advantages. First, even 

though they pertain to only two possible outcomes, they estimate where 
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Proactively Preventing Bad Outcomes

Some models aim to predict bad outcomes, in order to intervene before 

they come to fruition. For marketing, this means predicting customer 

defection so that we can target retention efforts most effectively. Enter 

churn modeling:

Application and desired 
business outcome

What’s predicted 
(model output)

What’s done about it 
(deployment)

Churn modeling to 
decrease customer 
attrition

Will the customer defect 
if not contacted?

Reach out with a 
retention offer to those 
most likely to defect.

But just saying “Let’s predict which customer will defect” omits some 

crucial details. Does the question pertain to all customers, even brand- 

new ones? Are we only predicting explicit quitters, or do we also want 

to predict those who significantly decrease their business with us? And 

how far ahead are we predicting?

Even back at my first consulting gig with gay.com, I got this part 

right. By naively selling the modeling piece rather than genuine opera-

tional change, I’d killed my chances of achieving deployment. But I did 

recognize the need to carefully define the prediction goal so that the 

model’s outputs could be actionable in a business context:

that outcome falls on a continuum of likelihoods. That is, they provide a 

probability for the outcome— how likely is it the customer will buy?— rather 

than only outputting a definitive “yes” or “no.” Since a probability relays 

the degree of uncertainty, it more effectively drives all kinds of decision- 

making processes, from pricing to ad selection to risk management.

Further, models that predict “how much” tend to be more technically 

challenging— both to develop and to evaluate. For many projects, binary 

models offer a more straightforward approach that avoids introducing 

unnecessary complexity.

http://gay.com
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Churn Modeling Prediction Goal (for gay.com): For customers 

on monthly and quarterly plans only, will the customer inten-

tionally and explicitly cancel within three months? Passively can-

celing due to a credit card failure doesn’t count.

The details matter. We want to predict would- be cancelers who we 

might still be able to save. Predicting too far into the future, such as a 

year from now, often proves too difficult for a model. Besides, we don’t 

want to reach out with an incentive to stay— such as a costly discount 

offer— until their departure is more imminent. This means setting aside 

those customers on annual plans, since their next renewal may be up 

to a year away (they could be handled with a separate churn model-

ing project). Finally, we can only try to change the mind of those who 

will cancel on purpose. For those whose credit card charge is declined, 

which leads to an automatic cancellation, it may suffice for the com-

pany to take reactive rather than predictive action, with potentially no 

need to offer a discount. Those customers aren’t canceling intention-

ally, so their attrition is another matter for another project.

Predicting Too Late

Some churn modeling projects predict well but predict too late. ML 

consultant Karl Rexer shared with me a perfect example of this that 

arose when he was helping a bank. The goal was to identify custom-

ers likely to close their accounts. Karl discovered that if the customer’s 

deposit and loan balances fell very low— in combination with some 

other factors about the customer— they had a 44 percent chance of clos-

ing within a month. On the scale of things, that’s an astounding find. 

Relatively speaking, 44 percent is very high. Across all customers, the 

chances were only 2 percent.

For any one of these customers, the bank faced a high risk of los-

ing them. Unfortunately, as Karl realized, there wasn’t much they 

could do about it. These predictions were almost useless since it was 

already too late to change their mind. That is to say, the insight wasn’t 
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actionable. By the time the account holder lowered their balances, they 

already had one foot out the door. They’d already largely emptied their 

accounts and wound things down, and only had to formally close out 

their account as an administrative step. By this point, such customers 

prove almost impossible to save.

For these predictions to be valuable, they’d need to be made further 

ahead. If a customer is destined to leave, but not for several months, 

there’s still a chance they could be saved. It’s harder to predict further 

ahead, so you may not get as glorious a predictive boost, but, in doing 

so, the predictions are often much more actionable. After all, there’s 

more time to intervene if the customer’s likely cancellation is further 

out in the future at the time that the customer is flagged as a high risk. 

And, as we’ll see in the next chapter, even when a model produces less 

confident odds, it can still be highly valuable.

This is what Karl did with his banking client— in combination with 

another tactic: Rather than predicting whether a customer would fully 

close their accounts, his model predicted whether the customer would 

partially disengage by exhibiting a steep drop in transactions. This 

made the predictions more valuable. By predicting earlier behavior that 

often precedes absolute defection, the bank could still take action to 

potentially prevent losing the customer.

To illustrate what this might look like, consider this plausible predic-

tion goal for an online subscription service:

Churn Modeling Prediction Goal (hypothetical example): 

Among subscribers who’ve been around for at least four months, 

will the customer decrease their monthly usage by 80 percent in 

the next three months and not increase their usage of another 

in- house product?

If a customer will drastically reduce their use of the product, that 

alone is cause for concern, even if we haven’t predicted they’ll fully close 

out their account. It would be worth intervening beforehand. Of course, 

a decrease in usage is only meaningful among customers who’ve been 

around long enough to establish a baseline of interaction. This is why 
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we aim to predict only for those with a tenure of at least four months. 

Finally, if a customer disengages but compensates by increasing their use 

of another one of our products, this doesn’t “count” as defection— that 

kind of change may not be worth any investment to prevent.

Predicting Intermediate Steps

Predicting a partial step also applies to predicting good outcomes rather 

than bad— to predicting customer engagement rather than disengage-

ment. Consider targeting fundraising activities for a charitable orga-

nization, which is very much akin to response modeling for direct 

marketing:

Application and desired 
business outcome

What’s predicted 
(model output)

What’s done about it 
(deployment)

Targeting fundraising 
to increase donations

Will the individual 
make a donation?

Mail a letter to those 
likely to donate.

The standard prediction goal is obvious: Will the individual make 

a donation? In some cases, this is the best tactic, such as for targeting 

direct mail solicitations.

But in the world of fundraising, direct mail mostly garners only 

small donations. Soliciting large donations is a different game. The cul-

tivation of major donors can take years of relationship building. These 

donations are difficult to predict because they’re rare and because it’s 

tough to tie them to any particular prior action. Instead, one charity 

predicted an intermediate step toward securing a large donation:

Fundraising Prediction Goal (a charitable organization): Will 

the prospective donor agree to an in- person meeting with a gift 

officer?

If the prospect is willing to meet, this at least signifies an affinity for 

the charity and marks the beginning of what will hopefully be a long- 

term relationship.
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This approach worked. By driving email, direct mail, and phone out-

reach with these predictions, the charity identified 40 percent more 

high- value prospects willing to meet. And in a retrospective evaluation 

of the model, the model identified 75 percent of major donors who’d 

already donated.

Deciding Which Instead of Whether

With the marketing applications we’ve discussed so far, the model 

drives the choice between an active and passive treatment for each indi-

vidual: To contact or not to contact— that is the question. Response 

modeling decides whether to reach out with sales material, and churn 

modeling decides whether to reach out with a retention offer.

But for EduPay, models needed to decide which ad to show. There 

was no question of whether to show an ad— one would always be 

shown. The passive treatment was never an option. In fact, there were 

a plethora of options: a pool of 291 ads from which to select. These 

sponsors had lined up, willing to pay each time a user responded to  

their ad.

Without ML, the ads were already working very well. By displaying 

the most popular ads first, the system was already generating $1.5 mil-

lion in monthly revenue. But the choices were one- size- fits all— kind 

of like advertising Hollywood blockbuster movies on television. They 

weren’t personalized. There was no attempt to target individual users 

with the ads they’d be most likely to respond to.

We needed a little trick to define the prediction goal for ad selec-

tion, as it isn’t straightforward. You can’t simply predict, “Which ad 

would the user respond to?” The reason for this is that we don’t have 

the data. We don’t have records tracking any user who was shown all 

the ads to see which they responded to. We never conducted that or 

any experiment— the aim was to use data that the business had already 

organically accumulated.

The available data told us how each user responded when shown a 

single ad— across a limited number of ads for each user. This is the data 
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collected in the regular course of business, a.k.a. found data. It encodes 

the experience from which the modeling process can learn.

The solution to this dilemma was to develop a model for each ad— 

291 different models, each predicting whether the user will respond to 

that ad. This means 291 different prediction goals, each in this form:

Prediction Goal for Targeting Ads (EduPay): Will the user 

respond to this ad if it is displayed?

To choose an ad for a given user, all the models were systematically 

applied and the choice of which ad to display was based on the pre-

dicted probabilities. Some models might say the chances are only a frac-

tion of a percent, and others might go up to a 20 percent probability 

or even higher— which is a lot, considering that online ads are more 

often than not simply ignored. In this way, the choice of ad became 

personalized, the overall odds improved, and the number of responses 

increased over time.

Ads weren’t only selected based on model probabilities. Other factors 

were also in play, such as the amount the sponsor was willing to pay 

and eligibility requirements stipulated by the sponsors. We’ll visit those 

and other mechanics of step 6, model deployment, when we get to that 

step’s chapter.

Collaborating on the Prediction Goal

Engage everyone who will touch the analytic model in the develop-

ment process. . . . The success or failure of analytics and data science 

initiatives often hinges on whether those on the “front lines” of 

business actually use and follow them.

— Tom Warden, Chief Data and Analytics Officer, EMPLOYERS

As you navigate these considerations and formulate the prediction 

goal in complete detail, you need help from across the enterprise. You 

can’t go it alone. Every semi- technical aspect that defines what you’re 

going to predict depends on pragmatic business considerations. For the 
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resulting model to be operationally viable, you’ve got to pull together 

a multidisciplinary team.

By deeply collaborating, business experts and data scientists can 

hone down the prediction goal to one at the intersection of two sets of 

prediction objectives, those held by the business side and those offered 

by the tech side:

On the top, the range of conceivable prediction goals that could be 

valuable for the business is limited only by the imagination of your 

operations and marketing staff. They could find value in predicting all 

kinds of individual outcomes or behaviors, including who will crash 

their car, fall in love, default on a payment, quit their job, or commit 

fraud. The problem is, for a given company, only some of these ideas 

can be feasibly achieved with modeling— depending, for example, on 

how well it would need to predict and the availability of pertinent data.
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The set on the bottom also contains many possibilities. Many things 

could be analytically predicted, since we have so much data recording 

so many different kinds of outcomes and behaviors. The problem is, 

many such ideas that sound appealing in the lab would never actually 

be used. Of the many outcomes that could be modeled, only a fraction 

will be business actionable. For example, a data scientist might turn out 

a model to target a direct marketing campaign, only to find that mar-

keting managers prefer to contact their entire list without targeting any 

further. Just because the data scientist has created an effective model 

doesn’t mean the business is ready to act on it to drive decisions. All too 

often, a lack of management buy- in or unforeseen business constraints 

preclude model deployment. This is the main cause of today’s low ML 

deployment rate.

A shrewd business perspective navigates to a viable prediction goal 

within the intersection of these two sets— one that’s both achievable 

and usable. You must enlist the wisest operational experts to inform 

which predicted behaviors hold potential business value. Ultimately, 

the prediction goal, in full detail, requires insight and buy- in from 

your collaborators, including those who run the operations that will be 

affected and driven by model deployment, such as marketing staff, who 

must be willing to change their targeting accordingly.

By enlisting this hard- core, multidisciplinary collaboration, you’re 

breaking boundaries and engaging in a very rare sort of teamwork. 

You’re involving a larger group in the nitty- gritty, quasi- technical 

aspects of a prediction goal that has traditionally been below the radar 

for business stakeholders, such as:

• Whether to predict a final or intermediate outcome

• How far ahead to predict

• Who or what is being predicted— for which kind of customer or 

other organizational element each prediction will apply

With this sustained business- side involvement, the predictive scores 

output by your model will deliver the greatest impact. They will be 

aligned with business strategy and actionable within your company’s 
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operational framework. And they will be approved for integration by 

those managing operations.

Detection versus Prediction: Sometimes Easier, Sometimes Harder

As you define the prediction goal, beware the differences between a 

goal to predict the future in the literal sense of prediction and a goal that 

predicts a situation or diagnosis— that is, a detection goal. As I pointed 

out in the last chapter, we do generally use the word “predict” either 

way, such as when “predicting which transaction is fraudulent,” and we 

still call it a predictive model. But there are some significant differences 

between the two that could wind up making the project alternatively 

easier or harder.

At first glance, detection goals look easier to define. When it comes 

to predicting (detecting) which transaction is fraudulent, which email 

is spam, and which medical image signifies a certain diagnosis, how 

many caveats and qualifications could there be?

The answer is, not many. Since the model doesn’t predict a future 

event, we need not grapple with the concept of time in defining exactly 

what’s to be predicted. We don’t need to decide how far ahead to predict, 

as in, “Will the customer cancel within three months?” We don’t need to 

define the extent to which the event happens, as in, “Will the customer 

decrease their usage by 80 percent?” And we don’t need to consider 

predicting intermediate actions that occur before the most important 

behavior, as in, “Will the prospective donor agree to a meeting?”

When defining a detection task, there’s not much room for variation. 

For example, a transaction is either authorized or fraudulent. Specifying 

the prediction goal tends to be simpler.

On the other hand, projects to predict the future reap the benefits of 

big data in a way detection tasks cannot: Model training can learn from 

history. We know which customers did or did not buy in the past, which 

canceled their subscription, and which clicked on an ad. This informa-

tion is already encoded in data that has been collected in the normal 

course of business. This found data serves as experience from which to 
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learn. In step 4, it will form the basis for preparing the training data that 

fuels the pursuit of the prediction goal we’re establishing in this step.

In contrast, for detection, the training data must be labeled manu-

ally. We don’t get to benefit from the “time will tell” nature of found 

data. Time has told where packages tend to be delivered— and that 

provides learning examples— but we need humans to label whether a 

transaction is fraudulent or whether a medical image signifies a posi-

tive diagnosis. Because of this, the data needed for training detection 

models is generally more expensive than the data needed for predicting 

future outcomes.

And yet the human bottleneck for labeled data isn’t always that 

bad. When we get into step 4— prepare the data— we’ll see that, for 

some detection tasks, although human input is required for each label, 

we don’t need much additional human effort beyond what people are 

already doing anyway in the normal course of commerce.

Model Performance: How Well Can We Achieve the Prediction Goal?

Now that we’ve defined the functional purpose of a model— what it 

should do— the next logical question is, How well does it do it? We’ve 

established what it should predict; now we want to know how well it 

predicts— and which performance metric is the right one to report on. 

That’s the next chapter’s step. Warning: If you were thinking “model 

accuracy” is the way to go, you’ve got another thing coming.
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Establish the Evaluation Metrics

The BizML Practice:

1. Value: Establish the deployment goal.

2. Target: Establish the prediction goal.

3. Performance: Establish the evaluation metrics.

4. Fuel: Prepare the data.

5. Algorithm: Train the model.

6. Launch: Deploy the model.

Once you’ve established what machine learning will predict, the next 

question is how well it predicts. Fortunately, evaluating its performance 

doesn’t require becoming a technical expert, since you can benchmark 

a model without regard to its inner workings. Here, we only judge how 

well it predicts, not how it predicts. It’s only a matter of arithmetic, not 

“rocket science.”

Often, you will hear of accuracy, a simple tally of how often a model 

predicts correctly. But accuracy is not only the wrong measure for most 

ML projects; it also feeds a common fallacy that tremendously misman-

ages expectations.

If not accuracy, then what metric? One is lift, a simple multiplier that 

tells you how many times better than guessing your model predicts. 

Another is cost— the price of each false positive and the (usually very dif-

ferent) price of each false negative.

Once established, the metrics serve to evaluate both model training 

(step 5) and deployment (step 6). This chapter gets to the heart of the 

matter. Exactly how valuable is imperfect prediction? In what way do all 

ML deployments serve to triage and prioritize? And how do you translate 

from raw predictive performance to true business metrics like profit?
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Headlines about machine learning promise godlike predictive power. 

Here are four examples:

• Newsweek: “AI Can Tell If You’re Gay: Artificial Intelligence Predicts 

Sexuality from One Photo with Startling Accuracy”

• The Spectator: “Linguistic Analysis Can Accurately Predict Psychosis”

• The Daily Mail: “AI- Powered Scans Can Identify People at Risk 

of a Fatal Heart Attack almost a Decade in Advance .  .  . with 90% 

Accuracy”

• The Next Web: “This Scary AI Has Learned How to Pick Out Criminals 

by Their Faces”

It’s all a lie. ML can’t confidently tell such things about each individual. 

In most cases, these things are too difficult to predict with certainty.

Here’s how the lie works. First, researchers report high “accuracy,” 

thereby suggesting— and reliably misleading the reader to believe— that 

their model can identify both positive and negative cases and generally be 

right about it either way. For many prediction problems, that level of 

performance is achievable only in science fiction.

These reports later reveal— buried within the details of a technical 

paper— that they were misusing the word accuracy to mean another 

measure of performance related to accuracy but in actuality not nearly 

as impressive as “high accuracy” implies.

But the press runs with it. Time and again, this scheme succeeds in 

hoodwinking the media, a beast that all too often thrives on hyperbole. 

This time- honored tactic repeatedly generates flagrant publicity stunts 

that mislead.

Now, the predictive models they’re reporting on often do deserve 

high praise. The ability to predict better than random guessing, even if 

not with high confidence for many cases, improves all kinds of business 

processes. That’s paydirt. And, in some limited arenas, ML can predict 

extremely well, such as for recognizing objects like traffic lights within 
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photographs or recognizing the presence of certain diseases from medi-

cal images.

But many human behaviors defy reliable prediction. Predicting them 

is like trying to predict the weather many weeks in advance. There’s no 

achieving consistently high certainty. There’s no magic crystal ball.

Stanford’s “Gaydar” Doesn’t Perform at Face Value

Take the hype surrounding Stanford University’s infamous “gaydar” 

study. In its opening summary (the abstract), a paper published in 2018 

by researchers Michal Kosinski and Yilun Wang claims their predictive 

model achieves 91 percent accuracy in distinguishing between gay and 

straight males from facial images. This inspired journalists to broadcast 

grossly exaggerated claims of predictive performance. One Newsweek 

article kicked off with, “AI can now tell whether you are gay or straight 

simply by analyzing a picture of your face.” The front cover of the 

Economist depicted a face looking like a fingerprint along with, “What 

machines can tell from your face.”

This resulting deceptive media coverage is to be expected. The 

researchers’ opening claim of 91 percent accuracy tacitly and inevita-

bly conveys— to lay readers, non- technical journalists, and even casual 

technical readers— that the system can tell who’s gay and who isn’t and 

generally be correct about it for both categories.

But that assertion is false. The model can’t confidently “tell” for any 

given individual in general. Instead, what Stanford’s model can do 91 

percent of the time is much less remarkable: It can identify which of a 

pair of two males is gay when it’s already been established that one is and 

one is not.

This benchmark— which I call the pairing test— can sound like a 

compelling story, but it’s a deceptive one. At first, it may look like a 

reasonable indication of a predictive model’s performance, since the 

test creates a level playing field where each case has 50/50 odds. And, 

indeed, the result of this test does confirm that the model performs bet-

ter than random guessing. Most data scientists know the pairing test by 



84 Chapter 3

a more technical name, AUC (Area Under the receiver operating charac-

teristic Curve). And yet most data scientists, in my experience, haven’t 

come to realize that the two metrics are one and the same. AUC is 

mathematically equal to the performance observed running the pairing 

test (assuming you run it enough times). They’re just two different ways 

to estimate the same number. Although AUC is quite popular among 

data scientists, its technical details fall outside the scope of this book. 

But since the pairing test is easier to understand and is an equivalent 

measure, that’s the term I’ll use in this chapter.

But the model’s ability to get the pairing test right 91 percent of 

the time translates to low performance outside the research lab, where 

there’s no contrived scenario presenting such pairings. In the real 

world, employing the model would require navigating a tricky trade- 

off. For example, you could tune the model to correctly identify two 

thirds of all gay individuals, but it would also wrongly identify others 

as gay, errors known as false positives. In fact, it would commit many 

such errors, predicting incorrectly more than half the time it predicted 

someone to be gay! And if you configured its settings so that it correctly 

identified even more than two thirds, the model would exhibit such 

errors even more often.

This is because one of the two categories is infrequent— in this case, 

gay individuals, which amount to about 7 percent of the general popu-

lation of males (going by the stats the Stanford study cites). When one 

category is in the minority, that intrinsically makes it more challenging 

to predict.

Besides, accuracy isn’t a helpful benchmark here in the first place. 

Accuracy only tells you how often the model is correct.

Accuracy: The proportion of cases a predictive model predicts 

correctly, that is, how often the model is correct.

For this project, it would mean nothing to achieve a bedazzling accu-

racy of 93 percent: Just classify everyone as straight. By doing so, you’re 

correct 93 percent of the time, even though you fail to correctly distin-

guish anyone in the minority, the 7 percent who are gay. To improve 
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upon this and correctly identify at least some of the minority cases 

would require trade- offs: the introduction of false positives and, in gen-

eral, a lower overall accuracy.

The Stanford model succeeded to a certain degree— it could predict 

better than guessing— but then the researchers misrepresented its per-

formance on the pairing test by calling it “accuracy.” Voila! Journalists 

and their readers believe the model can “tell” whether you’re gay or 

straight.

Some things are too hard to reliably predict. “Gaydar” as a popu-

lar notion refers to an unattainable form of human clairvoyance. We 

shouldn’t expect ML to attain supernatural abilities either.

Accuracy: A Word So Often Used Inaccurately

The Stanford study is a perfect example of a common misstep that I 

call the accuracy fallacy, which greatly exaggerates ML’s performance 

across domains. It leads the public to falsely believe that the system can 

achieve an unrealistic, “crystal- ball” level of performance— specifically, 

that it can distinguish positive and negative cases and generally be cor-

rect for both positive and negative cases. That’s just not feasible for 

many noteworthy prediction goals. Since many important behaviors— 

such as whether you’ll click, buy, lie, or die— tend to occur more rarely, 

they’re particularly difficult to predict. No model could “tell” such 

things with high reliability in general.

In some cases, researchers perpetrate a variation on the accuracy 

fallacy: They report the classification accuracy you would get if half 

the cases were positive. For example, Emory and Harvard universities 

reported on a model that predicts the onset of psychosis with “90 per-

cent accuracy,” as evaluated on data from a world where 50 percent of 

patients are eventually diagnosed with psychosis. There’s a word for 

measuring accuracy in this way: cheating. Mathematically, this usu-

ally inflates the reported “accuracy” a bit less than the pairing test, but 

it’s a similar maneuver and far overstates performance in much the  

same way.
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The accuracy fallacy scheme is applied far and wide, in reports about 

predicting criminality, suicide, job resignations, bestselling books, deep 

fakes, tsunamis, and heart attacks. This list continues on to be breath-

takingly long. For my extended coverage of the accuracy fallacy, see this 

chapter’s notes at www.bizML.com.

Reviewing these projects spotlights both good and bad sides of the 

ML industry. The studies each misrepresent predictive performance, 

but, collectively, they illustrate ML’s wide, cross- industry applicabil-

ity. Many of them are otherwise legitimate projects, having gener-

ated a sound, potentially valuable model. The only problem is in how 

they misleadingly convey the predictive performance that the model 

achieves.

The accuracy fallacy contributes to AI hype. By conveying inflated 

performance levels and referring to the technology as AI rather than 

ML, researchers exploit— and simultaneously feed into— the public’s 

fascination with awesome yet fictional powers.

The responsibility falls, first, on the researcher to communicate 

unambiguously and unmisleadingly to journalists and, second, on the 

journalists to make sure they and their readers understand the predic-

tive proficiency they’re reporting. But given current circumstances, we 

must all hone a certain vigilance: Be wary about claims of “high accu-

racy” in ML. If it sounds too good to be true, it probably is.

The Bad Rap of Imperfect Prediction

As we rightly take down overblown claims of fantastical prediction, 

others wrongly take down some of the most astute, albeit imperfect, 

forecasting. Clear- headed quants who forthrightly communicate the 

limits of their model nevertheless face a threat to their reputation by 

reactionary misinterpretation.

Take the famous political election quant Nate Silver. Despite the 

impressive track record of his political forecasts, pundits crucified him 

after Donald Trump defeated Hillary Clinton in 2016 for the US presi-

dency. Silver’s election forecast had put about 70 percent odds on it going 

http://www.bizML.com
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the other way. As the Harvard Gazette put it, “Stunned political pundits 

blamed pollsters and forecasters, proclaiming ‘the death of data.’”

But that’s simply unfair and unjustified. “70 percent” does not mean 

Clinton will clearly win. And a 30 percent chance of Trump winning 

isn’t a long shot at all. Something that happens 30 percent of the time is 

pretty common and normal. And that’s what a probability is. It means 

that, in a situation just like this, it will happen 30 out of 100 times, or 

3 out of 10 times. Those aren’t long odds.

Unless you’re posing as a soothsayer, relaying uncertainty isn’t a 

sin— rather, it’s often a virtue. Clinton’s 70 percent probability was 

closer to a 50/50 toss- up than a 100 percent “sure thing.” The take- 

away from a 70 percent forecast for Clinton isn’t that she’s pretty much 

a shoe- in. No, the take- away is, “I don’t know.” At the time, most other 

prominent forecasts put Clinton’s chances much higher— between 92 

and 99 percent. Those models exhibited overconfidence. Silver’s model 

didn’t strongly commit. It expressed, first and foremost, uncertainty. 

But, unfortunately for him, his model’s probability was widely misin-

terpreted as a definitive prediction, as if he’d made an absolute call.

Forcing Your Hand

Being noncommittal is often prudent. Silver’s best defense against pub-

lic misapprehension might be to simply abstain when there’s a fair 

amount of uncertainty and to only disclose his prediction when a can-

didate’s probability is very high.

But for many deployments of ML, it has got to commit even when the 

prediction is uncertain. It must land on yes/no decisions— over and over 

again. Who should we market to? Those predicted to buy. Who should we 

approve for a credit card? Those predicted to always pay their bill. As we’ll 

see later in the chapter on deployment, the mapping from prediction to 

action isn’t always quite that simple, but, ultimately, predictions drive 

operational decisions, and the decision at hand is often binary.

This sounds like a recipe for disaster. We know that, when it makes 

committed predictions, ML generally doesn’t achieve performance 
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anywhere in the vicinity of perfection. We know that high accuracy 

isn’t even the right objective. And we know the price Nate Silver paid.

Happily, the game ML plays is more fortuitous than the game Nate 

Silver plays, the game of singular, one- off election forecasts where each 

receives public scrutiny. ML repeatedly predicts, affecting a tremendous 

number of operational decisions and accumulating a track record along 

the way.

The Value of Imperfect Prediction

All models are wrong but some are useful.

— Famed statistics professor George Box

With the act of repeated, frequent prediction comes great news: For 

many applications of ML, getting a good number of predictions wrong 

is totally okay. So long as it predicts better than pure guesswork, that’s 

often more than sufficient to improve large- scale operations and boost 

the bottom line. I call this the Prediction Effect (introduced in my previ-

ous book, Predictive Analytics):

The Prediction Effect: A little prediction goes a long way. The law 

of large numbers is on our side; predicting better than guessing is 

generally more than sufficient— when applied across many pre-

dictions— to deliver value.

In deploying ML, we enjoy the security of a numbers game that’s 

much more reliable than a single forecast, any one of which is so easy 

to get wrong. Will the economy go up or down next quarter? Will we 

hit our sales quota next month?

In its business deployment, ML drives many repeated operational 

decisions. By playing the odds over time, the overall performance pans 

out well as the model’s predictions improve organizational efficiency. 

Your project isn’t evaluated by any one case— you need not fret over 

individual missteps.
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Okay, so a model’s potentially good enough to be valuable, but 

exactly how good? How do we measure and report on predictive perfor-

mance? Having blasted accuracy as impertinent and often misleading, 

what’s the right metric?

Lift: A Meaningful Measure of Performance

To measure predictive performance in a meaningful way, you’ve got to 

differentiate between positive and negative cases. Accuracy doesn’t do 

this. It simply reports, “How often is the model correct?”— across positive 

and negative cases alike. Since it doesn’t differentiate, it generally fails to 

report on performance in a useful way. A bad model can look good. For 

example, if only 1 percent of the customers buy, a model that predicts 

“no” for every customer achieves 99 percent accuracy but fails to correctly 

predict any positive case— that is, any customer who is going to buy.

To remedy this, a common approach is to measure how often the 

model correctly identifies positive cases in particular. For targeted mar-

keting, for example, this means we measure how often the campaign 

will contact the right customers— those who will buy. For most proj-

ects, positive signifies the less frequent class— which is typically the one 

that is more valuable to correctly identify— such as customers who will 

cancel, debtors who will default, medical images that signify the pres-

ence of a disease, or patients who will experience a heart attack.

More specifically, we want to know how much more often the model 

identifies positive cases in comparison to just guessing. There may not 

be many positive cases— say, only 1 percent of customers will buy in 

response to marketing. Can a model identify a “hot pocket” signifi-

cantly richer in respondents? If the model picks out a group who buy 3 

percent of the time, then it has improved over randomly selecting by a 

factor of three. This is known as a lift of three. That sounds like a good 

group to market to.

Wait a minute— that model is hardly better than a blindfolded mon-

key shooting darts. Its predictions aren’t very confident. Among the 
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customers it identifies for marketing contact, only 3 percent end up 

buying. It doesn’t have high confidence regarding any one customer 

who will respond. It can never proclaim, “This customer will almost 

definitely buy.”

But improving prediction just this small amount goes a long way. 

Predicting three times as well as guessing can more than triple profit. 

Let’s say the model has made these positive predictions for 25 percent 

of customers— that is, the group that it has targeted for contact makes 

up a quarter of the overall population. This could multiply profit by 

more than five, as in the example covered in the following sidebar.

The Profit of Response Modeling

For one example scenario, here’s some back- of- the- napkin arithmetic that 

shows how a lift of three translates to profit multiplying more than five 

times over.

Number of customers: 1,000,000

Cost per contact: $2

Profit per purchase: $220

Number of customers who purchase: 1 percent

Profit without a predictive model— mass marketing to all the customers:

Overall profit = revenue − cost

= ($220 × 10,000 responses) − ($2 × 1 million)

= $200,000

Profit of marketing to (only) 25 percent of the customers, with a lift of 

three—targeted with a predictive model:

Number of customers: 250,000

Cost per contact: $2

Profit per purchase: $220

Number of customers who purchase: 3 percent

Overall profit = revenue − cost

= ($220 × 7,500 responses) − ($2 × 250,000)

= $1,150,000
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Given the clear benefit of achieving a certain lift, let’s define it 

properly:

Lift: A multiplier: How many times more often positive cases 

appear within a group identified by a predictive model, in com-

parison with how often they appear in general.

Lift captures the multiplicative improvement to operations, the 

increased return for your efforts, how much more bang you get for your 

buck. With a lift of three, marketing to the targeted group will be three 

times as effective. Auditing the flagged group of transactions will find 

three times as much fraud. Examining the demarcated patients will find 

three times as many positive diagnoses. In this way, lift quantifies a 

model’s contribution, even for models that aren’t highly confident or 

anywhere in the vicinity of a magic crystal ball.

Lift reflects a limitation intrinsic to every model: It predicts less con-

fidently as you target larger groups. The more cases it predicts as posi-

tive, the lower the lift will tend to be. Lift is always measured in relation 

to the group that’s been targeted by the model. In the response model-

ing example, the model achieved a lift of three for one quarter of the 

overall population— the 25 percent predicted most likely to buy. If you 

went further and took one half, the 50 percent predicted most likely to 

buy, the lift would be lower since this group includes individuals who 

didn’t make the top 25 percent.

Alternatively, the model could achieve a higher lift if it were used to 

identify a smaller, more select portion of the population. For example, 

a model might achieve a lift of 20 for the top 1 percent of the popu-

lation. But there’s a downside to targeting only such a small group: 

In exchange for more confident predictions, you end up with a much 

smaller pool of prospects— for marketing, this means a smaller number 

of potential buyers to market to.

Even a Little Lift Helps a Lot

Sometimes it makes sense to target a larger group despite that mean-

ing a lower lift. Let’s turn to credit scoring, where the model predicts 
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whether a credit applicant will default on their loan. Suppose 10 per-

cent of applicants will ultimately default and your model attains a lift 

of 1.7 at 50 percent. That is, it identifies a full half of the population of 

applicants who are 1.7 times as likely as average to default— that is, 70 

percent more likely than average. In this case, the targeted half has a 17 

percent likelihood of defaulting.

Seventeen percent might not seem like the worst risk in the world— 

but it’s high in comparison to the other, less risky half, which defaults 

at a rate of only 3 percent. How’d we get to 3 percent? The arithmetic 

is simple: The two halves must average to an overall 10 percent default 

rate. Since that’s the average of 17 and 3, we know that the less risky 

group must have a 3 percent default rate.

What a world of difference! Translating this into profit drives it 

home— the following sidebar shows that we can choose between win-

ning or losing hundreds of millions of dollars.

The Profit of Credit Scoring

Number of loan applicants: 1,000,000

Average loss from a defaulting debtor: $5,000

Average gain from a repaying debtor: $500

The model predicts half the applicants to be high- risk, with a 17 

percent default rate, and the other half to be low- risk, with a 3 percent 

default rate.

If you approve high- risk applicants:

Gain = 83% × 500,000 × $500 = $207.5M

Loss = 17% × 500,000 × $5,000 = $425M

Profit = gain − loss = −$217.5M (a loss)

If you approve low- risk applicants:

Gain = 97% × 500,000 × $500 = $242.5M

Loss = 3% × 500,000 × $5,000 = $75M

Profit = gain − loss = $167.5M (a profit)
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Lift applies universally, across ML applications. No matter what 

you’re using ML for, lift serves as a fundamental, cross- disciplinary met-

ric to report on a model’s pure predictive performance. It provides a 

straightforward reading on how well the model can identify individuals 

relatively more likely to behave in a certain way.

But lift can only be calculated for a model once the model has tar-

geted a group. This means it must commit to yes/no predictions that 

determine which individuals do and which don’t belong in the group. 

Calculating lift— as well as profit— is possible only in relation to such a 

group. However, a raw model doesn’t commit. For each individual, it 

outputs a probabilistic score that ranges across the spectrum of 0 to 100 

percent. So, to determine who belongs in the targeted group, a threshold 

must be established in order to commit to a decision for each individual. 

Individuals with scores above the threshold belong in the targeted group.

So where do you draw that line?

An Illustrative Example: How Big Is Your TV?

When I teach lift in the classroom, I get everyone to stand up and be 

the data. Each person holds up a piece of paper with the size of the larg-

est TV in their home and the group arranges itself into a row ordered 

by TV size:

People in order of their TV size (a zero means they have no TV). Those with a 

raised hand are subscribed to HBO.

Then I ask a question related to TV usage, such as, “Who has a sub-

scription to HBO?” Not forgetting to thoroughly define the prediction 

goal, my question is actually more precise: “Who lives in a household 

that not only uses but pays for a subscription to HBO or Max?”



94 Chapter 3

As you can see, the positive cases are more concentrated within the 

top portion— the left side— of this “human dataset.” Let’s calculate the 

lift for the top portion. Overall, 32 percent of the individuals have HBO 

(12 of the 38). But among the top ten, it’s 70 percent. That’s a lift of 

2.2: That top portion has 2.2 times as many positive cases as the overall 

population.

Now, this classroom exercise oversimplifies in a couple ways. It’s a 

comically small dataset, so the results are far from reliable. And the pre-

dictions are based on one and only one variable: TV size (that’s what we 

call a univariate model). Plus, the scores aren’t scaled to be probabilities, 

although they do serve to rank- order and calculate lift just the same. 

Despite these caveats, the visual effect and sample arithmetic illustrate 

the concepts for teaching purposes.

Why did I calculate lift for the top ten rather than, say, the top 

twenty? The answer is pragmatic. Perhaps I only have a marketing bud-

get to contact that many. Or perhaps it’s only worth marketing my 

product where the HBO subscription rate is at least 70 percent. Let’s 

move on to some more realistic examples to explore further.

To Deploy ML Is to Triage and Prioritize

This story is the same for a large- scale modeling project: Cases more 

likely to be positive— and therefore more deserving of attention— rank 

more highly.

Instead of those thirty- eight people in a classroom, say we have a list 

of 100,000 customers. Here are the first four:

Name: Model score: Buy:

E. Siegel 85.628% Yes

G. Clooney 85.626% No

T. Mitchell 85.625% Yes

T. Bayes 85.623% Yes

. . . 
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The model has scored each individual and we’ve ordered the list 

based on that score. The first one has a score of 85.628 percent. For 

response modeling, that would mean the model has calculated that 

as the probability they will buy if contacted— which would be quite a 

high probability, considering marketing campaigns tend to have very 

low response rates overall, in the single digits or even only a fraction 

of a percent.

Next, let’s look at only the rightmost column, whether the case is 

positive or negative (yes or no). To show more, here are that column’s 

values for the top 100 cases, showing the positive cases as a 1 and nega-

tive cases as a 0:

10111111110111101111001111110111111011111111111110111

11001111111011111101111011111001110111110110111

From a glance you can see just how dense with 1s this highly ranked 

portion is. The frequency of 1s doesn’t necessarily decrease as you go 

through this list of 100, since this is only a small portion of a much lon-

ger list. But if we pulled out the 100 customers that are halfway down 

the list, we’d get a much different picture, with a more balanced mix of 

positive and negative cases:

10110100010110101110001000101111011100000110101110100

11011010010001011101101000101101110101101110000

And then the very final 100 would be mostly negative cases:

11000000001010010000100000001000000000100001000001000

00110000000100100001000011000010000100000100100

The same overall trend occurs across this long list as with the small 

set of students with TV sizes: Many positive cases appear early in 

the ranking, decreasing down to only small numbers at the end of  

the list.

A model achieves this same valuable effect across all kinds of ML 

applications. Its predictive scores serve to rank individuals so that the 

top portion is denser with positive cases and the bottom portion sees 

far fewer positive cases.
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By ranking individuals, ML empowers the organization to triage 

and prioritize. Contact customers more likely to buy. Expend reten-

tion efforts on customers more likely to leave. Manually audit trans-

actions more likely to be fraudulent. Inspect buildings more likely to  

catch fire.

This concept extends naturally to Internet search. It’s the antidote 

to information overload. Google does you the favor of using ML to 

place an unwieldy number of items into a meaningful order. Face-

book does too, ordering its Feed by predicting which of the many 

items your contacts have recently posted will be most of interest to 

you. Airbnb and Match.com follow suit, helping you sort through 

an oversupply of prospects, be they rental properties or romantic  

partners.

Of course, this also applies for the most literal of triage, medical tri-

age. Tend first to patients scored by a model as more likely to decline in 

health or more likely to have a positive diagnosis. Reexamine patients 

predicted as more likely to be readmitted within the next year. Reach 

out to patients more likely to skip a prescribed medication or healthcare 

appointment.

In all cases, the model proactively targets according to risk or oppor-

tunity. It earmarks the individuals with the highest risk or potential 

gain— those worthy of investing limited time and resources.

Drawing a Profit Curve

The ranked list tells us where to draw the line— where to set the 

threshold— for driving a yes/no operational decision. Consider the deci-

sion as to whether to contact each customer with a marketing outreach. 

You can see the profit accumulated as we send a promotional brochure 

to customers, from most likely to buy down to least likely.

http://Match.com


Performance 97

This is a typical profit curve. The horizontal axis corresponds with 

how far down the ordered list we’ve gone. As you proceed from left to 

right, you begin with those scored most highly by the model. At each 

position, the profit is calculated in the same way we did above in the 

sidebar on response modeling profit, based on how much we’ve spent 

to contact that many customers and how much we’ve gained from 

those who in turn responded with a purchase.

Following the upper curve, you can see the campaign’s ups and 

downs. At the beginning, the more customers you contact, the more 

your profit goes up. Although you spend more to move along to the 

right— to contact more and more customers— you’re getting enough 

positive responses to turn a profit. This is where you’re getting the most 

bang for your marketing buck.

About one quarter of the way down the list, diminishing returns 

begin to set in. You’ve exhausted the most responsive portion of the 

list and you actually start to lose money— the cumulative profit begins 

to diminish as you contact more customers but you no longer elicit as 

many positive responses.
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The overall marketing campaign is a bust if you actually contact the 

entire list. If you contact 100 percent of the customers, making your way 

to the far right of the graph, you end up with a loss of about $550,000.

For the example profit curve shown, if you have no model at all, 

you only lose. To visualize that situation, the straight, lower line shows 

what would happen without a model and therefore without any means 

to order the list. By following an effectively random order, you would 

lose money at a constant rate as you make your way through the list, 

so the lower line just keeps making a “beeline” down to the final end 

result. That line serves as a baseline for comparison. In contrast, the rise 

and eventual fall of the upper profit line is a testimony to how much 

value a model can deliver.

Either way, at the far right, you end up at the same place, losing 

about $550,000. This is because, if you’re marketing to everyone, the 

order in which you do so doesn’t matter— you always end up with the 

same overall loss, a negative profit. If you intend on just contacting 

everyone, you aren’t targeting so there’s no purpose to having a predic-

tive model.

Turning back to the upper profit curve, you’re probably feeling the 

urge to slam on the brakes, perhaps around the 25 percent mark. If 

you stopped there, your profit would be $350,000. That’s often the best 

choice— but it’s not an absolute. Sometimes, the marketing benefit of 

contacting more people takes a higher strategic priority, even if doing 

so isn’t reflected in immediate- term profits. In that case, you may argue 

that stopping around 72 percent where you break even would be a much 

better choice than spending more than half a million dollars to contact 

everyone. That way, you basically get to market to almost three quarters 

of the list for free. Ultimately, the choice depends on the longer- term 

marketing strategy and other pragmatic factors at your organization. In 

any case, a profit curve like this one helps guide that choice.

The rise and fall of this marketing campaign seems to tell a tragic 

story. If only you knew the full story before playing it out, you could 

end the story earlier, quitting while you’re still ahead— at the high 

point— instead of learning the hard way by winding up at the graph’s 

deadly lower- right point. Is there a way to tell the story before living it?
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Deploying Aggressively or Defensively— Your Cutoff  

Makes the Difference

I’m going to blow your mind: The profit curve is only a projection. You 

can draw it before conducting the marketing campaign. Rather than 

tracking how marketing went, it estimates beforehand how it would go.

That’s what data’s for. It serves not only to train the model but to 

evaluate it and to plan its deployment. We’ll dive into data in the next 

bizML step— “prepare the data”— but for now know this: Before deploy-

ment, models are provisionally tested on the same kind of historical 

data used to develop them.

Before deployment, you can draw this kind of projected curve just 

the same for most any ML project. To help decide how many individu-

als to target, you view the spectrum of options corresponding with how 

the model has ranked individuals. As you move along the spectrum, 

deciding how many to contact, approve for a loan, or audit for fraud, 

you often see the same pattern: an upward ride followed by a decline. 

There’s a sweet spot, a Goldilocks zone, that’s often the best place to 

stop. By establishing a threshold— a.k.a. a cutoff point— at that posi-

tion, the model will then serve to be selective, targeting for treatment 

those who scored above the threshold.

In this way, one model provides a whole range of options. When 

you draw the line, you’re establishing which option to go with in 

deployment— you’re deciding precisely how to use the model.

For example, a response model could be applied either to increase 

revenue or to decrease costs. After all, increased efficiency can pay off in 

either way. To cut costs while maintaining current sales, target a smaller 

number of more highly ranked prospects. In comparison to mass mar-

keting without a model, this could land the same sales even while 

spending less on the campaign. Or, to increase sales without increas-

ing costs, spend the current marketing budget more wisely by targeting 

with the response model. In this way, you’re contacting a more respon-

sive pool. The difference between these two options comes down to 

where you draw the line, that is, how far you proceed down the list of 

ranked customers.
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Similarly, fraud detection provides the same kind of trade- off options. 

For example, Citizens Bank developed a checking fraud model that could 

be used to either prevent 20 percent more loss or decrease their fraud 

prevention staff by 30 percent. On one hand, a set team of human audi-

tors would capture more fraud if they spent their time on a more tar-

geted pool of transactions that includes more fraud. This way, their time 

would be better spent. On the other hand, the model could maintain 

the current level of fraud detection with a smaller team of auditors. With 

a smaller team auditing a smaller group of transactions— but one even 

more densely filled with fraud— they’ll catch the same amount of fraud 

as a larger team with no model. Once again, the choice between these 

options is enacted by where you set the threshold and draw the line.

You can think of these pairs of options as presenting a choice between 

a more aggressive or a more defensive deployment. The decision is a 

strategic one. Although there’s some intense debate around which is 

best, there’s no one- size- fits- all choice. If the economy is dipping or 

your company is having a tough quarter, you can expect a focus on cut-

ting costs. And some ML applications are usually advertised more on 

the “defensive” side as cost- reducers, such as predictive maintenance 

and supply chain optimization. Other applications are more often sold 

as a means to increase revenue, such as price optimization and prod-

uct recommendations. But, for any use case, there’s always a range of 

options for model deployment.

In these examples, the bottom- line profit generated by a model 

has guided how to plan its deployment. We wouldn’t use lift alone to 

decide where to draw these lines. So, why do we need a raw measure of 

predictive performance such as lift when a business metric always takes 

the lead?

Business Metrics versus Model Metrics

Business metrics such as profit or ROI drive ML projects. They define 

the business objective, inform the deployment plan, and measure proj-

ect success.
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In contrast, many business managers find reports of a model’s pure 

predictive capability abstract and arcane. It feels irrelevant to them. Per-

formance metrics like lift or the pairing test tell you the technical capa-

bility of a model and give you a reading of its analytical success— for 

example, lift tells you how much better it does than guessing— but they 

don’t directly tell you the business value model deployment will deliver.

So why not work only with a directly relevant business metric like 

profit and drop technical metrics like lift entirely?

Measuring a model’s predictive power may be abstract, but that’s 

also an advantage. Model performance metrics apply universally, tell-

ing you how well your model predicts no matter the application area 

or industry. Given ML’s wide applicability, such metrics establish a lan-

guage that all data scientists— and their tools— can always speak, across 

projects, across industries. And they serve to validate and debug a raw 

model before involving the complexities of its intended business con-

text. Let’s put a name on this concept:

Predictive performance metric: A measure of a model’s pure pre-

dictive performance, such as lift, accuracy, or the pairing test. Such 

a metric serves to evaluate a model’s technical performance but does 

not directly assess the business value of a model. Therefore, when 

possible, this raw metric is translated into a business metric.

Among the many performance metrics commonly in use, this chap-

ter focuses on lift because it’s a good place to start for many projects. As 

a “predictive multiplier,” it’s intuitive and, for many projects, translates 

to profit with straightforward arithmetic, as we’ve seen.

Beyond lift and the pairing test, predictive performance metrics also 

include f- measure, precision, recall, and sum of squares. I won’t take space 

in this book to cover them, but know that they each follow the same 

trend: They’re relatively arcane to the business leader and yet each has 

their time and place for the data scientist.

Despite the guidance that model performance metrics provide to the 

technical model development process, at the end of the day, business 

metrics rule. They have the final word. And they appear first within a 
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project summary. For UPS’s delivery- prediction project, I didn’t make 

you wait until chapter 6 on deployment to learn of the business- metric 

gains. I gave it to you up front in this book’s introduction: $35 million 

and 18.5 million driving miles saved per year.

Which brings me to the next point: Profit isn’t the only business 

metric. Savings, revenue, return on investment, marketing response 

rate, and debtor default rate are just a few others. How do you choose?

Business Metrics: Key Performance Indicators

The most important metric for your model’s performance is the busi-

ness metric that it is supposed to influence.

— Wafiq Syed, Data Product Manager, Walmart

When it comes to business metrics, we don’t have to reinvent the 

wheel. Let’s go “old school.” Your ML project’s business objective is to 

optimize something and that something is a KPI:

Key performance indicator (KPI): A measure of operational busi-

ness performance that is key to a business’s strategy. An ML project’s 

business value is expressed as a KPI improvement. Aka business metric.

The word KPI may burn your ears with the sound of twentieth- 

century jargon. It’s often associated with the older domain of business 

intelligence. After all, KPIs are simple, both conceptually and mathemat-

ically. They’re usually just about counting something.

But KPIs matter the most because they report on the most funda-

mental notions of success at an organization. A KPI measures the degree 

to which a strategic objective has been achieved. As such, business lead-

ers will feel more familiar and comfortable with a KPI than a predictive 

performance metric. And they’ll be more excited about it.

The KPI will drive the ML project, so select one that:

1. aligns with strategic objectives;

2. compels stakeholders in order to achieve buy- in for the ML proj-

ect; and

3. is measurable, in order to track ML success.
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Although revenue and profit are often obvious choices, sometimes 

it’s short- sighted to go so directly for the “gold.” For example, what’s 

most important when decreasing customer attrition? Retaining only 

the most valuable customers? Not necessarily. The absolute rate of 

defection across all customers— including those who barely turn a 

profit— speaks to the integrity of your business and the extent to which 

the customer experience satisfies.

Fraud detection brings up the same question. In the immediate term, 

it pays to intercept the biggest fraudulent transactions— so you could 

make it a priority to preempt perpetrators about to grab $50,000 worth 

of goods rather than only $50. But there is also value in punishing 

offenders large and small in order to decrease the overall crime rate and 

protect the fundamental integrity of commercial transactions.

How about often- heard, lofty business objectives like “meet today’s 

escalating customer expectations” or “enhance user experience”? These 

alone aren’t specific enough to fulfill a KPI’s third requirement: Be mea-

surable. They must be translated into well- defined quantitative mea-

sures such as “frequency of product returns” or “customer satisfaction 

conveyed on a survey.”

We seem to have our left and right feet in two very different worlds. 

KPIs pursue business goals. Performance metrics like lift pursue pure 

predictive power. How do the two relate?

Distinguishing False Positives from False Negatives

The quantities that data scientists are trained to optimize, the met-

rics they use to gauge progress on their data science models, are fun-

damentally useless to and disconnected from business stakeholders 

without heavy translation.

— Katie Malone, Harvard Data Science Review

Sometimes, translating from a performance metric to a KPI is straight-

forward. Within a couple of sidebars earlier in this chapter, we’ve 

seen that applying some arithmetic based on the model’s lift serves 
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to calculate profit— for response modeling and for credit scoring. The 

intuition behind these calculations is straightforward: Lift tells us how 

many times better the model has predicted than guessing, and that 

multiplier is how much more often we get to seize on more profitable 

cases or avert more costly cases.

More generally, we often can span a mathematical bridge from tech-

nical performance to business performance by incorporating the price 

you pay when a model predicts wrongly. You incur a misclassification 

cost for two different kinds of prediction error:

False positive (FP): When a predictive model says “positive” but 

is wrong. It’s a negative case that’s been wrongly flagged by the 

model as positive. Also known as a false alarm or a false flag.

False negative (FN): When a predictive model says “negative” but 

is wrong. It’s a positive case that’s been wrongly flagged by the 

model as negative.

As we’ve seen, accuracy is a blunt instrument. It’s one thing to know 

a model is wrong, say, 12 percent of the time. That’s the same as say-

ing it is correct 88 percent of the time; that is, it’s 88 percent accurate. 

But it’s another thing, a much more helpful thing, to separately break 
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down how often it’s wrong for positive cases and how often it’s wrong 

for negative cases. Accuracy doesn’t do that (nor does the pairing test).

That’s what FNs and FPs are for. A FP is when the model says “posi-

tive” but is wrong. It’s a negative case that’s been wrongly flagged by 

the model as positive. This is also called a false alarm. The story about 

the boy who cried wolf is about him intentionally generating false posi-

tives. A FN is when the model wrongly says “negative.” It has over-

looked a positive case.

Calculating Savings Based on Misclassification Costs

So how do we assign a cost to each of these kinds of misclassification? 

That comes down to how much each kind of error matters. For almost 

all projects, it matters a different amount for a FP versus a FN.

Take fraud detection. When your bank’s model wrongly blocks your 

legitimate credit card transaction as if it were fraudulent, you’re incon-

venienced. That’s a FP. This could cost the bank $100 on average, given 

that you may turn to another card in your wallet— not only for the cur-

rent purchase, but in general.

The other kind of error is worse. When the bank’s model wrongly 

allows a fraudulent credit card charge to go through, that could cost the 

bank $500 on average, as the criminal gets away with the contraband. 

That’s a FN.

These costs are no small deal. Global payment card fraud losses have 

surpassed $28 billion annually. The cardholder or an eagle- eyed audi-

tor may notice the bogus charge later, but for card purchases, if it isn’t 

caught by a model on the fly, it’s in the wind. In the United States, the 

bank is usually liable for this loss.

By determining the two misclassification costs, we establish a cost- 

benefit analysis not only for the entire project but for each individual 

decision about whether to hold or authorize a transaction. Next, we’ll 

add those individual costs up to calculate a KPI for the overall project: 

cost savings.



106 Chapter 3

With no fraud detection model deployed, a medium- sized regional 

bank could be losing $50 million per year. The following sidebar steps 

through a scenario for such a bank, showing the savings achieved by 

introducing a fraud detection model.

The Cost Savings of Fraud Detection

Consider a bank that has issued 100,000 credit cards and each sees an 

average of 1,000 transactions per year, with one in 1,000 being fraudu-

lent. To summarize:

Annual transactions: 100 million

Percentage that are fraudulent: 0.1 percent

Annual fraudulent transactions: 100,000

Cost per fraudulent transaction: $500 (the FN cost)

Annual loss from fraud: 100,000 × $500 = $50 million

It looks like crime does pay after all. But before you quit your day job 

to join the ranks of fraudsters, let’s see what fraud detection could do to 

improve the situation.

If the bank is willing to treat two of every 1,000 attempted transac-

tions as potentially fraudulent— holding the transaction and possibly 

inconveniencing the customer— then the onus is on a fraud detection 

model to flag which transactions should be held.

Let’s assume the model attains a lift of 300. That’s a lot higher than 

the lift of, say, 3 that we discussed in a previous example. But remember 

that lift is always relative to the size of the targeted group. In this case, we 

care about the lift only among the very top, small sliver of transactions 

scored as most likely to be fraudulent— the top 0.2 percent that will be 

blocked. We won’t block any attempted transactions other than those, 

so that sliver is all that counts. Given that it’s such a small portion, a 

high lift is feasible— a model’s scores can potentially sort transactions well 

enough so that at least the very top portion includes a high concentra-

tion of positive cases.

First, we need to calculate how many errors occur, broken into FPs  

and FNs— how often the model wrongly blocks a legitimate transaction  
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and how often it lets a fraudulent transaction slip by. Here’s the 

breakdown:

Transactions blocked: 200,000 (two per 1,000)

Percentage blocked that are fraud: 30 percent

(Lift × overall fraud rate = 300 × 0.1 percent)

Fraudulent transactions blocked: 60,000 (30 percent × 200,000)

FPs— legitimate transactions blocked: 140,000 (200,000 − 60,000)

FNs— fraudulent transactions allowed: 40,000 (100,000 − 60,000)

This model is often wrong, but extremely valuable. When it blocks a 

transaction, it’s usually wrong— only 30 percent of the blocked transac-

tions are fraud. This isn’t unusual. Since fraud is so infrequent, it would be 

very difficult to correctly detect some cases without also incorrectly flag-

ging legit transactions even more often. With legitimate transactions— 

that is, negative cases— so prevalent, even misclassifying a small portion 

of them means a lot of FPs.

So the best we can hope for from a model is that it provides an advan-

tageous trade- off between FPs (less costly) and FNs (more costly). To cal-

culate the bottom line, we add up the costs. We’ve already established the 

cost for individual errors:

Cost of a FP: $100 (inconvenience to a customer)

Cost of a FN: $500 (fraudster gets away with it)

So we need only multiply these costs by how often they’re incurred:

Aggregate FP cost: $14 million (140,000 at $100 each)

Aggregate FN cost: $20 million (40,000 at $500 each)

Total cost with fraud detection: $34 million

We’ve cut fraud losses by $30 million (from $50 million to $20 mil-

lion), but introduced $14 million in new costs resulting from FPs. Clearly, 

this is a worthy trade- off.

Overall cost savings: $16 million ($50 million − $34 million)

If you would like to access a spreadsheet with these calculations and try 

out different scenarios— such as varying the model lift, the number of 

transactions held, or the cost of each FP and FN— see the notes for this 

chapter at www.bizML.com.

http://www.bizML.com
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Fraud detection only achieves the cost savings shown in the side-

bar above by sacrificing a little accuracy. The model in that example is 

99.8 percent accurate, slightly lower than the 99.9 percent accuracy of a 

“dumb” model that simply assumes every transaction is legitimate (and 

therefore takes no action to prevent fraud). In this case, a less accurate 

model was actually better.

To understand why, just revisit accuracy’s fatal flaw: It doesn’t distin-

guish between different kinds of errors, treating FPs and FNs as equally 

bad. Since it doesn’t account for different misclassification costs, accu-

racy oversimplifies for all but very rare ML projects where the costs 

don’t differ. For most projects, accuracy is a red herring.

Beyond delivering business value, fraud detection pursues a societal 

objective: It fights crime. In the example shown, it blocks more than 

half of the attempted fraudulent transactions. In so doing, it meets the 

expectations of consumers. Although citizens at large sometimes bristle 

at being predicted by models— electronically pigeonholed to receive bad 

ads or bad credit— when it comes to using their card, many consumers 

welcome prediction, gladly withstanding the occasional blocked trans-

action. Instead, they bristle when there’s no predictive intervention and 

they’re charged for a purchase they never made. Although they may 

not quite be cognizant of it, the typical cardholder has an expectation 

of fraud detection.

In the next chapter, we will return to this vital ML application, pay-

ment card fraud detection. But first we must finish our discussion of 

misclassification costs.

Subjective Costs: Misdiagnosis versus Missed Diagnosis

Establishing misclassification costs is critical. By doing so we can bridge 

a precarious gap, translating from pure predictive performance to a 

business KPI. Analytics consultant Tom Khabaza has been telling us 

how important that is for a long time— ever since we called ML “data 

mining.” His Value Law of Data Mining states, “There is no technical 

measure of [a model’s] value. . . . The only value is business value.”
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But sometimes it’s next to impossible to set the costs. Take medical 

diagnosis. If you mistakenly tell a healthy patient they’ve just had a 

heart attack, that’s really bad. You can imagine the unnecessary stress, 

as well as the unnecessary treatments possibly administered. But if you 

mistakenly fail to detect a real heart attack, that’s worse. You let a seri-

ous condition go untreated. How much worse is a missed diagnosis in 

comparison to a positive misdiagnosis? A hundred times worse? Ten 

thousand times? Someone’s got to put a number on that and I’m glad 

it’s not me.

But we all must navigate this kind of judgment call more often than 

you may realize. For example, consider deciding whether to take a 

COVID- 19 test during the pandemic. Like predictive models, the at- 

home antigen tests are imperfect. In the spring of 2021, during the 

delta variant surge, an at- home antigen test briefly convinced me that I 

had COVID, but a subsequent series of negative antigen as well as a few 

negative PCR tests showed me that it had almost definitely been a FP. 

That FP had a cost: Before realizing I was in the clear, my life was greatly 

disrupted as I quarantined from my family and canceled various plans.

The cost of inconvenience may have paled in comparison to the cost 

of COVID going undetected, but it wasn’t a zero cost. Weighing these 

costs was rarely made explicit, but an implicit disagreement in how 

they compared underlay contentious public disputes around COVID 

policies and etiquette. In fact, when the United States cut the recom-

mended quarantine period in half in December 2021, it was partly 

because people were intentionally avoiding testing in order to avoid 

the consequences of a potential FP.

The same challenge applies for predictive policing, where rearrest- 

predicting models inform sentencing as well as decisions for or against 

paroling an incarcerated convict. A FP means someone stays in prison 

longer, even though they will not offend again. A FN means someone is 

set free sooner, even though they will commit a crime again. The quan-

dary of how to determine the relative costs of these two kinds of errors 

rests at the heart of justice. And when one race, ethnicity, or other pro-

tected group more often experiences injustice by way of a model— that 
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is, when the model commits FPs more for one group than another— it’s 

called algorithmic bias. For more on ML ethics as a general topic, I pro-

vide an overview at the end of this book’s conclusion. For a deeper dive 

on algorithmic bias and other topics in ML ethics, see my articles and 

videos at www.civilrightsdata.com.

For many business applications of ML, we have it much easier. The 

misclassification costs are often self- evident, based on business realities 

such as the cost of marketing, the cost of fraud, or the opportunity cost 

for each missed customer who would have responded if contacted.

But not always. Even spam detection can go wrong and cost you 

something immeasurable, such as a missed job— or even a missed date 

with someone you would have ended up marrying. A FP means you 

may miss out on an important message, and a FN means you have to 

manually filter spam out of your inbox. There’s no consensus on how 

to best determine the relative costs of these two, but whoever is behind 

your spam filter made that determination— if not explicitly, then by 

allowing the system to effectively default to something arbitrary.

Sometimes decision makers must quantify the unquantifiable. They 

must commit to specific costs for misclassification errors— despite the 

subjectivity and ethical dilemmas. Costs drive the development, evalu-

ation, and use of the model. “Be sure to assign costs for FPs and FNs 

that are directionally better than just passively assuming the two costs 

are equal,” industry leader Dean Abbott told me, “even when you don’t 

have a truly objective basis for doing so.”

Challenges Translating from Predictive Performance Metrics to KPIs

The analysis paralysis we may experience when setting costs is not the 

only obstacle. Sometimes, to translate from raw predictive performance 

to potential KPI improvements, you’ve got to make some audacious 

assumptions. Some projects require a presumptive leap in order to esti-

mate the expected business value deployment will deliver.

I took such a leap when pitching deployment to my first client, gay 

.com. Although they didn’t go for it, you can bet I pitched the churn 

http://www.civilrightsdata.com
http://gay.com
http://gay.com
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model’s potential value. At 27 percent, my model showed a lift of 1.5, 

which I translated into a potential profit of $286,000. That’s where the 

beautiful profit curve that I showed them came to a peak, forecasting 

the effect of a targeted marketing campaign offering a discount to cus-

tomers most at risk for cancellation.

But the value of churn modeling is harder to forecast than the value 

of response modeling. A response model is trained on data recording a 

previous marketing campaign, but a churn model is only trained on the 

history of who did and who didn’t cancel. Gay.com hadn’t conducted a 

campaign to retain customers, so even if the model promised to target 

likely defectors well, we could only guesstimate how many of those 

defectors would change their minds after receiving a discount meant 

to keep them around. For gay.com, I assumed the company would gain 

an average of $100 in value for every would- be defector offered a $25 

discount. The profit calculation also had to take into account that the 

company would lose $25 in revenue for FPs— customers who were pro-

vided that discount but weren’t actually going to cancel.

Although gay.com didn’t deploy, my second client, EduPay, cou-

rageously launched my ad targeting models— despite an equally high 

dose of uncertainty. Remember that, for EduPay, I generated 291 dif-

ferent models, each predicting whether the user would respond to its 

corresponding ad. I could see how well each model predicted, but that 

only indirectly spoke to how much deployment would pan out finan-

cially. How much would using these predictions improve over the exist-

ing process of displaying ads that are popular across users in general? 

Until we conducted the ultimate experiment that is model deployment, 

we couldn’t be certain how much value it would generate.

To Launch Is to Take a Leap

At UPS, this uncertainty only added to the pressure Jack Levis felt. It 

magnified the challenge presented by the Innovator’s Paradox— that 

the more novel or radical an idea, the greater the struggle to gain sup-

port for it. On top of that, Jack now faced the Deployment Paradox:

http://Gay.com
http://gay.com
http://gay.com
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The Deployment Paradox: For some projects, the business value 

of improved decisioning is hard to estimate before deployment; it 

can only be reliably established after you deploy.

Jack’s model was technically sound, predicting up to 93 percent 

of tomorrow’s deliveries correctly. And he knew how to estimate the 

misclassification costs. Each FP cost a good deal, on average, since the 

resulting plan would include an unnecessary delivery destination. FNs 

weren’t as bad, since it was often relatively easy to later correct a truck’s 

plan by incorporating a new destination.

But Jack wanted to translate this to business metrics. As he put it, 

“I wanted to know what more accuracy’s worth, moneywise.” How-

ever, for UPS’s complex delivery- planning system, this translation 

wasn’t straightforward. Delivery prediction injected insight into UPS’s 

complex planning system. How much this more sophisticated method 

would improve operations in business terms was something you could 

only roughly approximate beforehand. The pertinent KPIs included 

annual dollars and driving miles saved. They also included the more 

wonky metric stops- per- mile, which increases as truck planning becomes 

more efficient— the more densely a route is packed with deliveries, the 

more value is generated from each mile of driving.

Jack made rough estimates, but he would only find out the ultimate 

value of his optimization system by tracking its performance during 

deployment. When we get to the topic of deployment in chapter 6, 

we’ll see the ups and downs his system experienced. And we’ll also see 

EduPay’s deployment results in that chapter as well.

But we have a couple more steps to go before deployment. In the 

next chapter, we prepare the data on which the model will be trained.
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Prepare the Data

The BizML Practice:

1. Value: Establish the deployment goal.

2. Target: Establish the prediction goal.

3. Performance: Establish the evaluation metrics.

4. Fuel: Prepare the data.

5. Algorithm: Train the model.

6. Launch: Deploy the model.

Data trumps the algorithm. Machine learning algorithms may be the fun, 

sexy part— everyone wants to crash that party— but improving the data is 

where you usually get the greatest payoff. Data is the source of predictive 

power. It encodes the prior happenings of the world, the experience from 

which ML will learn. ML software is only as good as the data you give it.

To make use of the data you have, you’ve got to expertly reconfigure it 

into training data, which takes a simple form: Whatever you want to predict, 

you need a bunch of both positive and negative learning examples. But 

despite this simplicity, training data is no easier to prepare than Michelin- 

starred cuisine. Whatever form your existing data has come to take, it prob-

ably wasn’t accrued with ML in mind. As a result, preparing the training 

data usually represents the ML project’s greatest technical bottleneck.

So why is data prep so commonly underestimated, underplayed, and 

undervalued? How do business- side priorities drive data requirements? 

How much data do you need? And how do you know which learning 

examples are positive and which are negative— where do you get those 

labels? Finally, what kind of noise in the data kills ML and what kind is 

copacetic?
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Scott Zoldi fights crime across the globe. His superpower is data— and 

an unprecedented, innovative process to amass that data.

He’s got his work cut out for him. Every day, hordes of criminals 

work to exploit systemic vulnerabilities in how you and I shop. Their 

relentless work chips away at the very integrity of consumer commerce 

at large.

I’m talking about fraud. Crooks obtain your card details so that they 

can perform a transaction and make off with the spoils. In 2021, pay-

ment card fraud losses reached $28.58 billion worldwide. The United 

States suffers more than any other country, accounting for more than 

a third of that loss. To make matters worse, fraud increased during the 

pandemic, in part due to the increase in “card- not- present” virtual 

transactions. Some called it the “scamdemic.”

Scott is FICO’s chief analytics officer. He oversees the world’s largest- 

scope anti- fraud operation. Day in and day out, his product Falcon 

screens all of the transactions made with most of the world’s credit and 

ATM cards— 2.6 billion cards globally. With Falcon, banks and other 

financial institutions can instantly block suspicious purchases and 

withdrawals.

This capability hinges on machine learning— and it demands an 

impressive dataset. As we saw in the last chapter, a fraud- detection 

model must predict well, striking a tricky balance so that it recognizes a 

lot of fraud and yet does so without incurring too many false positives. 

To this end, the data must fulfill exacting requirements. If you visualize 

the data as a simple table, just a big spreadsheet, it must be long, wide, 

and labeled— here’s what I mean:

1. Long. You need data about real transactions— a lot of them. This list 

of many, many example cases from which to learn must be a long 

one. And by including a broad assortment of cases from around the 

world, the data can be representative. Each case composes a row of  

the data.
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2. Wide. You need revealing information about each case, including 

behavioral characteristics of both the cardholder and the merchant. 

These are the factors on which a model will base its predictions. 

Since each row enumerates all these factors, the data is also wide. 

Each factor composes a column of the data.

3. Labeled. ML software needs many known examples of fraud from 

which to learn, prior transactions that have been designated as such. 

How do these cases get labeled? The fraudsters who perpetrated these 

crimes know which are which, but they have not, so far, been coop-

erative. This means we need humans on our side to manually label 

many examples. These labels typically make up the rightmost col-

umn of the data.

Such a dataset sounds almost impossible to acquire. It could only be 

sourced from multiple banks across the globe. And even if you somehow 
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convinced these institutions to cooperate and obtained a representative 

slew of example transactions, the fraudulent ones aren’t going to label 

themselves.

To obtain this data, Scott’s got to align the stars.

The Lifeblood of Optimization

Most people think data is boring. The word “data” is a deal- killer at 

cocktail parties. I know this from personal experience  .  .  . I have the 

data.

But data isn’t just an arcane bunch of 1s and 0s. It’s a recording of 

history, a list of prior events. It encodes the collective experience of 

an organization from which it is possible to learn, analytically, how to 

predict.

Preparing the data represents both the most meaningful and the 

most mundane sides of an ML project. Although it isn’t the “rocket 

science” part, it’s how you construct predictive potential. It’s the most 

time- consuming technical step, a discipline unto itself often requiring 

a specialist known as a data engineer. Data prep is typically estimated 

to demand around 80 percent of an ML project’s technical efforts and 

generally takes longer than expected. It is habitually underestimated.

But it’s worth it! The resulting training data is the fuel that powers 

ML. So even business leaders must become conceptually familiar with 

its consequential— and simple— format.

Data prep as a topic is strikingly neglected and generally untaught. 

Its omission is an understandable but costly mistake that afflicts ML as 

a field: Newcomers flock to the excitement of hands- on model- training 

with little thought as to how the data— and its requirements— were 

conjured in the first place.

Perhaps more surprisingly, educators and other leaders encourage 

rather than correct this misguided path. Most technical ML books and 

courses take data prep for granted— they skip right past it. On day one, 

your first step is to load the data into the ML software. The presumption 

is that the data is all set and good to go. But this presumption is false. 
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There is no Santa Claus; you must gather and assemble the training 

data yourself.

As Cisco’s chief data evangelist Jennifer Redmon put it, “New data 

science graduates have a false sense of security that the data they’ll 

receive will be sound.”

By not skipping past the steps up to and including data prepara-

tion, we properly plan for deployment. In particular, step 2 established 

a prediction goal worthy of deployment— based on an informed, social-

ized, and ultimately greenlit project— and the training data, in turn, 

will embody that prediction goal; the way you pursue that goal is by 

preparing the data accordingly.

What Training Data Looks Like: Rows and Columns

Before we see how Scott and his team at FICO get their data, let’s first 

cover the basics by way of a simpler, more typical story.

When I pulled together the data for the EduPay project, I had it a lot 

easier than Scott. The data I needed was readily at my fingertips. This is 

typical. After all, most ML projects seek to optimize only the business, 

not the whole world, so you don’t have to search the world over for 

data. Internal data is enough— at least to get started.

Even so, data prep always presents a great challenge. Preparing the 

necessary long, wide, and labeled dataset from internal sources is already 

hard enough without pulling it together from across organizations.

Data serves the prediction goal so that goal must be reflected within 

the data. The prediction goal determines what the data consists of and 

affects its length, width, and labels. For EduPay, we had this goal:

Prediction Goal for Targeting Ads (EduPay): Will the user 

respond to this ad if it is displayed?

I needed a long list of examples with both positive and negative 

cases, situations in which the user did respond to the ad and others in 

which they did not. Here are three sample rows of data pertaining to an 

ad for a university:
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Three rows of training data for modeling response to an ad for a university. 

Only a sample of the input variables (columns) are shown. Grade 14 means the 

second year of college.

Each row tells a little story from which the modeling process will 

learn. For example, in the first row, a user who had already previously 

seen the ad was in tenth grade, was male, had opted in to receive 

emails, etc. When shown the ad, the user did not respond— a nega-

tive example. The rightmost column of outcomes— responded or didn’t 

respond— holds the prediction goal established back in step 2.

You now know the main requirements for training data:

Training data: The data from which modeling learns— that is, the 

data from which ML generates a predictive model. If the training 

data includes labels that indicate whether each example is posi-

tive or negative, it is supervised training data, which is required for 

supervised ML, the kind of ML covered in this book.

For most business applications of ML, the training data is really that 

simple: a two- dimensional table with one row per example. That’s why 

it’s also affectionately known as a BOFF— a “big ol’ flat file.” You may 

have started from a database of many interconnected tables, but you’ve 

got to get the training data into this two- dimensional form before feed-

ing it into ML software. The software needs it that way (technically 

speaking, some ML software only requires it be described that way, as 

a database view, rather than it being reformatted into a BOFF, but the 

conceptual effort is the same). Preparing the training data is a prereq-

uisite for modeling.
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The most notable exception is for models that handle large files 

such as images or sounds, most commonly deep learning models, a.k.a. 

deep neural networks. In that case, the raw data for each case doesn’t 

elegantly fit into a single row. So, for example, when you apply deep 

learning to classify medical images, the training data isn’t conceived of 

as a two- dimensional table. Each case consists of an image— itself two- 

dimensional— and the image’s label, such as whether there is a posi-

tive medical diagnosis. Such non- tabular data is sometimes known as 

unstructured data, with tabular data known as structured data. And yet, 

even with unstructured data, the broader concept still applies: It’s a 

long list of positive and negative examples, even though each item in 

the list isn’t structured as a simple row of data.

The Data Dictates What the Model Does

For a standard modeling project, the columns you set up in the training 

data determine the model’s functional purpose, its input and output. 

The target column, conventionally but not always the rightmost one, is 

what the model will try to predict— it corresponds to the model’s out-

put. This is where the prediction goal established back in step 2 comes 

into play. By filling that column with those values, you’re dictating 

what the model will predict.

Setting up the data is setting up the modeling. More than any config-

uration you may adjust when operating a predictive modeling software 

tool, it’s the training data you give to that tool that determines what 

your modeling project is set to do, what the model will predict for each 

individual. You don’t somehow characterize or “describe” the predic-

tion goal to the modeling software. Instead, the one and only way in 

which you set up your established prediction goal is here and now in 

step 4, by filling in that column of data.

The rest of the columns are what the model will try to predict with— it 

will take their values as inputs. By putting those columns of data in 

place, you are stipulating that they will be available to the resulting 

model. These inputs will constitute the model’s eyes and ears, the only 

pieces of information it will have in order to make its prediction about 
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any one individual. They’re the fodder the model will chew on before 

generating a predictive score.

As all data scientists know, the training data’s input columns are 

technically known as independent variables (a.k.a. features) and the out-

put column is called the dependent variable. But in this book, I’ll just call 

them input and output variables or the inputs and the output.

By placing the input variables next to the output variable on each 

row, we juxtapose what was known at one point in time alongside the 

outcome that was found out later, which we’d like to be able to pre-

dict. This juxtaposition is what enables the system to discover how 

things known at one point relate to— and therefore are predictive of— 

something that will happen later.

To be clear, in this data, both the inputs and the output are already 

known— no prediction required. Rather, each row is an example from 

which to learn. Once we ultimately have a model, we’ll apply it to cases 

that look similar to those in the training data, except the output will be 

as yet unknown. After all, that’s the whole point of the modeling pro-

cess: When the resulting model is used in deployment, all it will have 

is the input variables. The outcome will be part of the ultimate unknown 

that we call the future. Putting odds on that eventuality is precisely 

what we’re making the model for.

Big Training Data for Ad Targeting

Of course, real training data grows much wider and longer than the 

small sample of three rows and nine columns shown earlier. It’s wider 

because more model inputs means more to predict with. For EduPay, I 

pulled together thirty- three inputs— making the training data thirty- 

four columns wide if you also count the output variable. This included 

other elements from the extensive profile EduPay collects from its users, 

such as career objectives, school clubs, and military experience.

It also included inputs I designed in the hope they would provide 

novel predictive value, such as:
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• The ratio of SAT verbal and math scores. This reflects whether some-

one is relatively “more verbal”-  or “more math”- oriented. For exam-

ple, if a user got 700 on verbal and 580 on math, the value for this 

variable would be 1.2.

• College category, as determined by keywords in the institution’s 

name, for example, Ivy League, state school, university, technical 

school, or community college.

When you think up new inputs like these, they’re called derived vari-

ables and your effort to add them is called feature engineering. This is 

typically an ad hoc, manual process that taps your own creativity. It’s 

a key opportunity during the project for business insights to contrib-

ute, complementing the degree to which the machine will automati-

cally form combinations that are useful for the predictive goal at hand. 

Some of the variables that people come up with would be difficult if not 

impossible for ML to derive automatically, so manually designing new 

inputs is an important part of the data prep process. Collaborating with 

business stakeholders to generate ideas for new derived variables often 

contributes a valuable impact.

Some of the most fruitful derived variables come from thinking out-

side the box. For example, a senior analytics leader, Brandon Southern, 

engineered inputs to detect fraudulent accounts several years ago when 

working at eBay. His hypothesis was that, since a fraudster would typi-

cally create many accounts, they would automate, and, therefore, the 

time to set up a new account would be relatively short, as would the 

time to get up a first auction listing. By introducing these factors as 

model inputs, the fraud detection system was able to better detect bots 

and contributed to roughly $20 million in loss reduction across mul-

tiple fraud detection projects that he worked on.

Although he now works at Amazon, Brandon reflects on the success 

of his creative insights and the critical need for adept feature engineer-

ing. “By 2025 more than 465,000 petabytes of data will be collected on 

a daily basis across the globe,” he says. “However, only a fraction of a 

percent of this data is considered to be useful for analysis and models. 
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In order to locate the most useful attributes, feature engineering is a 

vital skill.”

On the other hand, take care not to load the training data with too 

many inputs, since they don’t come for free. Usama Fayyad, famed as 

the world’s first chief data officer— first at Yahoo! and subsequently at 

Barclays— emphasizes tying your data investment to business value. 

After all, any and all inputs you include in the training data signify a 

long- term commitment: You’ll need to maintain them moving forward 

for as long as the deployed model remains in play. “Keep the data pull 

narrow so you can justify it . . . and scope the data for only one use case 

at a time,” Fayyad advised during a keynote address at Machine Learn-

ing Week.

But let’s move on to the really big part of this big data: its length. 

Using data from eight months of EduPay’s operations, I had more 

than 50 million training cases (rows). The company had accrued this 

abundance of experience from which to learn because this website 

was popular. It had witnessed many little episodes where a user was 

shown an ad and then either did or did not respond. And this was 

only for its interstitial ads, where the user was shown a full- page ad to 

either accept or reject before moving on. We didn’t take on the regular, 

smaller ads that were embedded within normal web pages during this  

project.

However, this mammoth load actually broke down into 291 smaller 

training datasets. Remember, I was producing 291 models, one per ad— 

each trained to predict the odds that the ad would generate a response 

if displayed for the user at hand. This meant about 170,000 cases per 

training dataset on average.

170,000 rows may sound like a lot— but one can’t blithely assume 

it’s enough.

How Big Is Big Enough?

How much data do you need? Actually, that’s not the right question. 

What really matters is how many positive cases you have, because those 
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are more rare. You need a healthy mix of both positive and negative 

examples. If you have enough positive cases, you’re sure to also have 

enough negative cases.

For example, if an ad’s response rate is 1 percent, then 1 percent of 

the training data will be positive cases and the rest negative. In that 

situation, negative cases occur ninety- nine times as often as positive. 

With 1,000 positive cases, we’d have 99,000 negative cases.

Okay, then how many of those less common positive cases do you 

need? Often, you’ll have thousands or even up into six or seven digits’ 

worth. But when positive cases are very rare or your overall dataset is 

small, that’s when this question arises. Responses to ads are rare. Cases 

of fraud are even more so, amounting to somewhere around 0.1 percent 

of card transactions.

This question can only be answered vaguely. For many projects, a 

few thousand positive cases is enough. Even a few hundred may be 

enough to make a project viable— it’s still potentially worth trying. A 

few dozen usually puts you more into “research project” territory. But 

there are no absolutes here. You never know how well modeling will 

work until you try it. There is no concrete theory that provides an abso-

lute answer since the factors at play are just too complex. These include 

how well your inputs (columns) serve the prediction goal, how well 

the model must perform to deliver value— depending on the business 

context— and just how “difficult” the prediction goal is. Some things 

are easier to predict than others. For example, asking the model to pre-

dict further into the future is usually harder than predicting the more 

immediate future, in that your model’s performance would likely be 

lower for longer- term prediction.

Whatever amount of data may suffice to train the model, you actually 

need a bit more than that for the purpose of evaluating the model— you 

need test data. This is a sample of, say, 20 percent of the training data 

that’s held aside during model training. Since it’s not available during 

the model’s formation, the test data serves as a basis to assess how well 

the model performs in general— in new situations that extend beyond 

the training cases used to develop it.
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So, despite the mythology about drowning in “too much” data, the 

real scientific challenge comes when you have “small data”— especially 

when the number of positive cases is very small. For example, in health-

care, certain diseases are very rare and applicable patient records can 

be hard to come by. Modeling on very small datasets is a rich research 

area. Studies have been published with impressively small counts of 

positive cases in the training data, yet other such modeling efforts just 

plain fail.

But for business applications, you often do have enough data— and 

this is not only because of today’s general “data explosion.” The rea-

son is more specific: Large- scale operations that are worth the effort to 

improve are the ones repeated frequently and therefore are the ones for 

which you have accumulated a lot of data. It’s an almost self- evident 

piece of good news: Anything you do a lot generates the data you need 

to improve that very process. The data you need has already grown 

organically in the course of conducting operations. For example, if 

you regularly conduct large direct mail marketing campaigns, you 

already have the history for such campaigns, including who was con-

tacted and whether or not they responded. If you issue credit cards, 

you’ve tracked which customers turned out to be reliable debtors and 

which did not. Many times, ads have been displayed and the response 

recorded. Likewise, many transactions have been approved and the 

fraudulent ones subsequently spotted by unhappy credit card hold-

ers. All the main things we do are worth improving and are the very 

things for which we’ve built up experience— that is, data— from which  

to learn.

Data abundance is a good thing; the more the merrier. So long as 

the data is representative of the kinds of cases that will be given to the 

model in its deployment, then more rows of training data, both posi-

tive and negative examples, will only further help train the model.

But even as we gather as much data as possible, the ratio of posi-

tive to negative cases is usually skewed. The data simply reflects reality: 

Those all- important positive outcomes occur less often. Will the lopsid-

edness of your data throw things off?
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Are Positive Cases Underrepresented?

Positive cases are usually more important— the reward for predicting 

them correctly is higher, as is the cost for predicting them incorrectly 

(false negatives— when the model has mispredicted a positive case as 

negative). The biggest wins come from identifying those rare custom-

ers who will respond to an ad and those rare transactions that are 

fraudulent.

And yet it’s often negative cases that dominate the training data. 

Will this mean that model training prioritizes negative cases, generat-

ing a model that predicts better for them than for positive cases?

The answer is no— this problem has been solved. For some model-

ing methods, math can solve it by applying certain adjustments to the 

training algorithm that account for the imbalance. In other cases, it’s 

best to reduce the abundance of negative cases, by essentially “throw-

ing away” some of them— especially if there’s so much data that doing 

so saves a lot of computing time in exchange for only a negligible 

loss in model performance. But there’s a critical, yet often- overlooked 

caveat: If you do pare down the training data in this way, do not do so 

to the dataset used for testing the model after it’s trained. That test data 

must retain the true, original balance, as it occurs “in the wild.” If not, 

you begin treading on the accuracy fallacy territory we explored in the 

previous chapter.

In fact, having fewer positive cases often aligns with having a more 

valuable ML project. When you and your colleagues define the predic-

tion goal— that is, what would be valuable for a model to predict, what 

it means to be a positive case— it’s only natural that it occurs somewhat 

rarely. For example, if the goal is to predict which customers will can-

cel their subscription within three months, you could end up with, 

say, 15 percent positive cases. But if your prediction goal is those who 

will cancel within five years, that’s a more common occurrence—  

it could be half of your current customer base. Knowing that a cus-

tomer will cancel sometime in the next five years is less actionable. It  

doesn’t clearly mandate any immediate response. Instead, knowing 
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that a customer is likely to cancel in the near term more clearly suggests 

immediate action: Invest in retention activities to avert an imminent  

cancellation.

As another example, if you’re targeting marketing, you may want to 

predict highly valuable respondents. That is, instead of just predicting 

who will make any sort of purchase, predict rare, special cases, such as 

who will buy a lot or buy higher- margin products. Likewise, for fraud 

detection, if you predict not any and all fraud but specifically more 

costly cases of fraud, you’ll similarly be focusing the model on identify-

ing the fewer, more important cases.

Not only do rare positives tend to be more valuable— there’s also 

a cosmetic perk: Your model will look more impressive, since it will 

exhibit a higher lift. If an ad’s response rate is 1 percent, the model 

could realistically flag a small group of customers with a lift of 10. That 

impressive lift of 10 means that, among that top portion of users most 

likely to respond, they do so ten times more than average— that is, 10 

percent of the time. Last chapter, we calculated the value of a fraud 

detection model with a strikingly high lift of 300. That was only fea-

sible given the very low fraud rate of 0.1 percent.

But if you’re predicting something that happens half the time— 

for example, which customer will cancel within five years— you could 

never get a lift of 10. That would mean ten times the average cancella-

tion rate: 500 percent. The maximum lift you could ever hope to report 

would be 2 and the model’s lift will generally be somewhere below that 

maximum, so you might expect a lift around 1.2 or 1.3.

Generally speaking, reporting a low lift isn’t as good a look. To 

seasoned data scientists, it isn’t sexy. As it turns out, there’s good 

reason— for many projects, this isn’t only a cosmetic matter. A high 

lift aligns with high value. After all, finding positive cases, say, ten 

times more often than random guessing, can indeed be ten times more 

valuable to your business, since operations multiply their effective-

ness that many times over: Auditors find ten times as much fraud in 

the pool of transactions they process; an ad gains ten times as many 
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responses when displayed; and marketing hits ten times as many  

respondents.

So if this step, data prep, reveals that your positive cases occur close 

to half of the time, it may be a signal to circle back to step 2 and revisit 

the prediction goal, ensuring you’ve established as valuable a goal as 

you could.

But there’s a balance to be struck. If you find that positive cases are 

too rare, leaving you with too small a count in the training data, you 

must backtrack to step 2 just the same— or somehow get more data.

It’s about Time: Input Variables

Time is the wisest counselor of all.

— Pericles

Preparing the training data is a real ordeal because time matters. You’re 

setting the stage to train a model, which later, when put to work, will 

input what is known at the time and output the odds on what’s to 

come. This means the values you place in the input columns must 

reflect what was known at an earlier point in time than when the out-

put column became known.

For example, let’s say you pull from company logs that a user who’s 

now in tenth grade responded to an ad one year ago. That serves as a 

learning case, but you’ve got to roll back the clock: This row of training 

data should show the grade as ninth, since that’s what grade they were 

in when they responded to the ad.

It’s a similar story when targeting marketing. Behavioral variables 

meant to serve as model inputs need the same kind of TLC. Consider 

a row of training data corresponding to a customer who was sent a 

marketing brochure last October 18 and at the time we knew he was 

male, lived in California, and had made ten purchases so far, as well as 

other factors. By two months later, on December 18, we knew that the 

outcome was positive— he had purchased the product.
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In this row of data, the input variables encode what we knew back 

when we made the marketing treatment decision, the point at which it 

could have helped to make a prediction. The final piece of information 

in that row of data, the outcome, was found out later— it’s now also 

already in the past, but it came at a later point in time.

The potential for error comes in the fact that a lot may have hap-

pened since. Let’s say it is now the following May. If records currently 

show they’ve made a total of fifteen purchases, we better have a method 

to calculate that, back in October, they’d only made ten purchases so 

far and include that amount within this row of training data.

Many time- related challenges like this arise and they’re really easy to 

mess up. The mistakes are often called “leaks from the future,” where an 

input accidentally relays information that could only be known later. 

For example, consider, when applying churn modeling, an input that 

indicates whether the customer has recently been included in a market-

ing campaign that was applied only to customers who hadn’t canceled 

their subscription. In this case, the modeling method will very quickly 

“figure out” that this is a helpful input. The model’s performance will 

appear high— but it’s cheating. In deployment, the model wouldn’t 

have access to that kind of “sneak peek” into the future.

As another example, one insurance company generated a model that 

seemed to be doing a great job predicting which policyholders would 
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submit a high claim by incorporating the following pattern discovered 

within the data: Policyholders with an email address on file would be 

more likely to submit high claims. But it turned out that email addresses 

“leaked” the future because they had only been solicited from those who 

ultimately filed a claim. As a result, customers with an email address— 

that is, customers who had by now submitted at least one claim rather 

than none— were indeed more likely to have submitted a high claim. 

Once again, in deployment, the model wouldn’t yet have access to this 

indicator of a claim. The discovery was circular, not predictive.

This “time leak” pitfall compromises the integrity of predictive mod-

eling. With the relative future always readily available during data prep, 

it’s all too easy to inadvertently provide that future to the very model 

trying to predict it. Such temporal leaks are a common “gotcha.” For-

tunately, they can often be noticed when the data scientist realizes that 

the model’s performance just looks too good to be true.

Most People Aren’t Prepared for Data Preparation

With these stringent “temporal” requirements on each input— that the 

value provided to the model reflects only what was known at a cer-

tain point in the past— data prep presents a tricky challenge. The data 

sources that you’re repurposing weren’t originally collected with ML 

in mind. In whatever form your data currently sits— distributed across 

tables, databases, and even systems— you must engineer its transfor-

mation into the form and format of training data. This transforma-

tion involves more than only achieving the requisite tabular structure. 

More than just the arrangement of the data, you’re dealing with its very 

meaning.

Given these nuanced requirements, you can’t fully automate data 

prep for a new ML project. Each project necessitates a specialized data-

base programming task customized for the existing data sources in 

accordance with how they originated. Some analytics software may 

help automate limited portions of this task— and some analytics ven-

dors will promise the moon— but no software can fully handle the meat 
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of the matter for you. Once you’ve worked through how to program 

it, the programs may then automate data prep for future iterations to 

update the model. But for each project’s first pass, you’ve just got to dig 

in and take this on. There’s no running.

In some cases, you can employ a little trick to sidestep some of this 

complexity: snapshotting. This is the process of periodically capturing 

a “freeze frame” of the input variables, logging them as they look right 

now, so that later, after you’ve tracked the outcome that will serve as 

the output variable, you can then just tack this outcome onto each 

row of training data. In that case, you don’t need to recreate the past 

values of the input variables— you’ve saved them as they were at the 

right time.

However, that trick doesn’t always apply. If snapshotting hasn’t 

already been in place for a while, you’ll need to do it the hard way in 

order to make use of the data you currently have.

Common wisdom states that data prep takes a whopping 80 percent 

of the project’s hands- on time, although some estimates are lower. A 

survey by the ML software company Anaconda said that data scientists 

spend 39 percent of their time on data prep— which is still more than 

the time spent on training and deployment combined, according to 

the same survey. But, for new ML initiatives, data prep is likely to take 

longer than that. On the other hand, if you’re repeating a mostly estab-

lished data prep process in order to update an existing model, the logi-

cal hurdles and troubleshooting probably won’t pile on nearly as badly.

Understandably, the ML industry downplays all this. It prefers to 

portray itself as leading a glamorous life consumed with learning from 

data— rather than the grind of hacking that data together before-

hand. Consultants, vendors, and proponents often leave this nuisance 

unmentioned in favor of discussing the sexy part, the modeling.

Beyond the “let’s jump straight into the modeling” culture adopted 

by most of the popular courses and how- to books, one other major 

trend also inadvertently contributes to the costly devaluing of data 

prep: public ML competitions. The host of such competitions— most 

commonly a company called Kaggle— provides the training data and 
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pits data scientists against one another to train the best possible model. 

This advances the state of the art and often provides sponsors with 

the best crowdsourced model that money can buy, but as a side effect, it 

perpetuates the misleading narrative that ML projects are all about the 

modeling. If you win a modeling competition, that doesn’t necessarily 

mean you’re prepared to lead an ML project to deployment.

To address this, the education tech firm DeepLearning.AI has 

launched a new kind of data- centric competition. “In most ML competi-

tions, you are asked to build a high- performance model given a fixed 

dataset,” proclaims this unique contest. “The Data- Centric AI Compe-

tition inverts the traditional format and instead asks you to improve 

a dataset given a fixed model.” Competitors don’t get to make the 

model— they only get to improve the data that’s then used for model 

training. This could help course- correct a culture that’s overly fixated 

on modeling.

Some Noise Kills ML, but Some Is Copacetic

Given its stringent demands, how disastrous is noise in the training 

data? In light of the credo “garbage in, garbage out,” one might pre-

sume that any noise would kill ML— especially given the intricacy and 

delicacy of model training. If an ML algorithm is misled by bad data and 

develops a faulty model, the consequences could be dire— the stakes are 

high when you deploy models for fraud detection, financial credit scor-

ing, and so many other pivotal application areas.

Well, you may be surprised. ML is actually quite robust in the face 

of certain kinds of noise, so there’s only so much cleanup you actually 

need to do.

First, let’s de- noise the word noise. It can mean two very different 

things. If data has errors— plainly incorrect values— that’s one kind of 

noise. This is sometimes called corrupt data.

On the other hand, if the data shows values that appear random— 

since we have no way to predict them, no basis for understanding their 

origin— that’s another kind of noise that doesn’t necessarily involve 

http://DeepLearning.AI
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incorrect values. It just reflects our human lack of knowledge. It’s uncer-

tainty. This is the kind of noise Nate Silver references in the title of his 

famous book, The Signal and the Noise.

So, when data appears senseless or random, that doesn’t necessarily 

mean it’s faulty. It just means we don’t understand all the factors that 

have affected it. ML helps us understand the world a bit better by dis-

covering trends in the data. It finds some signal, but it doesn’t by any 

means eliminate all the noise.

On the other hand, noise in the sense of outright errors can be a 

concern. It’s pervasive, stemming from many systematic issues. Maybe 

somebody mislabeled a field within one of the databases you merged 

in. Maybe the age for a group of customers was calculated based on the 

year of birth without looking at the month and day, so it’s sometimes 

off by one, depending on the current month and day. Maybe missing 

(unknown) values were changed, incorrectly, to the value 0 when data 

was ported between systems that represent missing values in different 

ways. Maybe your sensors record only imperfectly. Or perhaps there’s 

even been malicious, intentional corruption of values in the data.

Despite all this potential noise, things aren’t so bad. Here’s your sav-

ing grace: Noise among the output variable labels is detrimental to ML, 

but ML can generally withstand noise in an input variable, so long as 

the amount of noise remains consistent.

First and foremost, the output variable labels must be sound. They 

encode the prediction goal, which gives model training its direction. 

For example, if many customers who didn’t buy are labeled as having 

bought, or vice versa, this is very much going to mislead the modeling 

process. The output variable’s integrity is critical— it must align with 

ground truth. Not only does it guide the learning process; it also serves to 

evaluate model performance after the modeling is complete.

But on the other hand, ML is robust to noise within input variables. 

Basically, you can throw a lot of junk in there, and although it won’t 

help model training, it usually won’t hurt nearly as much as you might 

imagine. The reason is that the less helpful an input is, the less the 

model will rely on it. Taking that to the extreme case, if an input has 
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so many incorrect values that it’s effectively random junk, then a good 

learning algorithm will completely avoid using that variable— or at 

least lower its involvement within the model down to nearly zero.

To put it another way, incorrect input values just make for more 

noise. Inputs are already noisy in the sense of uncertainty. For the ML 

algorithm, noise is noise and it doesn’t matter which kind of noise  

it is.

Picture it this way: If you’re doing image classification, you can see 

that even if there’s a fair amount of noise in the image, it is still easy for 

you to tell that it’s a photograph of a person wearing a hat. A model can 

handle noise much the same.

A photograph of a person wearing a hat is still easy to discern with noise added.

It’s a relief the world won’t end if you have bad values among the 

input variables. But there’s one major caveat: The level of noise must 

remain roughly consistent between the training data and the data input 

to the model during deployment. If incorrect values are provided when 

actually using a model, but a similar prevalence of errors wasn’t pres-

ent in the training data when developing the model, the model’s per-

formance won’t hold up. So its input better not be wrong much more 

often than it was within the training data that the machine learned 

from in the first place.
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This is just one part of a more general requirement: The training data 

must be representative of the data encountered during deployment. That 

is, the experience over which the machine learns must come from the 

same “world” or “universe” within which the model will subsequently 

be used. The learning cases must represent the same “reality.” For exam-

ple, if the model will target marketing for all customers in the United 

States but the training data only includes customers in California, that 

data won’t be representative; you can’t expect model performance to 

carry over to the rest of the country.

For the EduPay project, my data failed to meet this requirement. It 

wasn’t entirely representative. For each ad, the training cases were a 

result of the legacy system’s peculiarities. For example, an ad hoc method 

estimated how popular each new ad would be when first launched, 

which determined how often and on whom it was tested. I was working 

with the available data in hand, not conducting experiments to collect 

an evenly distributed battery of tests for each ad. Although there are 

technical approaches that might have helped, I didn’t take any mea-

sures to address this imperfection in the data. In the chapter on deploy-

ment, you’ll see how things panned out nonetheless.

Now that we’ve covered the various requirements for training data, 

let’s return to FICO to see how the company pulls the data together for 

its global fraud- detection system.

FICO Cultivates Data without Borders

Scott Zoldi has a PhD in theoretical physics from Duke University. 

And he’s formed a team of seventy more people with PhDs. Together, 

they generate the world’s de facto system for detecting fraudulent card 

transactions. You, me, and most people with payment cards are relying  

on them.

Scott’s antifraud operation isn’t what FICO is most widely known 

for. Along with another one of his teams, Scott also oversees this coun-

try’s most famous deployed model: the FICO Credit Score. Your FICO 
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Score determines your power to borrow. It’s the most widely used credit 

score in the United States, employed by the vast majority of banks and 

credit grantors. It’s a household name, and many understandably feel 

that their FICO Score is a central part of their identity as a consumer.

But FICO’s fraud detection, which is normally invisible to us as con-

sumers, affects us much more often. Named Falcon, this product is the 

biggest part of FICO’s software business and affects most of us almost 

every day— every time you use your card. FICO evaluates financial 

power by day— and fights financial crime by night.

To meet this responsibility, it’s important that the Falcon team gets 

the data it needs— some long, wide, and labeled data. To do so, it col-

lects data from across a global network of banks.

This reliance on inter- enterprise data— collected from multiple com-

panies— is atypical. Ordinarily, an ML project serves only the enterprise 

running the project. For such a project, internal data suffices, since the 

company has been tracking the very operations that the project aims to 

improve. In contrast, FICO isn’t a bank. It doesn’t process card transac-

tions. Rather, it holds a rare, globally central, entrusted role across banks.

In 1992, Falcon was born of a radical move by a small group of banks: 

They decided to cooperate rather than only compete. At the time, a 

tremendous portion of all credit card transactions— almost 1 percent— 

were fraudulent. The fraud rate was only growing and threatened the 

entire industry. This looming crisis convinced financial institutions to 

overcome their raw capitalistic instincts and follow a call to arms for 

the universal good: to collaborate to fight crime, improve transaction 

integrity, and cut losses. Led by a company called HNC Software, they 

joined their data together, thereby multiplying their power to train 

fraud- detection models. Ten years later, FICO acquired HNC Software— 

and both Falcon and Scott Zoldi along with it.

Since then, Falcon’s consortium has grown to more than 9,000 

banks globally, all continually sending in anonymized card transaction 

details. FICO receives about 20 billion records— amounting to terabytes 

of raw data— each month, a petabyte every five years.
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Banks provide data to develop Falcon’s fraud detection model and Falcon 

deploys that model for each bank.

Banks can’t benefit from Falcon without contributing to it. To be 

a FICO customer that uses Falcon, you must also join the consortium 

and share your data. Falcon has become so standard that, despite its 

cooperative nature, it’s a competitive necessity. To hold their position 

in the payment card market, banks need Falcon’s best- in- class fraud 

detection— which they can access only by cooperating. In the end, this 

levels the playing field: Even the smallest bank can deploy the very best 

fraud- detection model.

Engineering Better Inputs for Falcon

For each card transaction, Falcon’s model needs an informative but 

reasonably succinct summary of all the “evidence” that could reveal 

whether it’s legitimate or fraudulent. That list of factors, each a poten-

tial model input, makes for a row of training data. It includes a rundown 

of the cardholder’s previous transactions, such as the total number of 
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transactions, number of cash withdrawals, and average transaction 

amount. These counts are broken down by different time ranges, such 

as for transactions conducted over the last day, week, month, and three- 

month period. The counts are also broken down by different types of 

merchants, such as restaurants and clothing stores.

But that’s only the basic groundwork. Scott’s team has made a fine 

art of feature engineering, manually designing more complex inputs 

that further help identify fraud. These inputs encode whether recent 

transactions mark changes in cardholder behavior, such as an extreme 

acceleration in spending or purchases from a completely new kind of 

merchant— for example, purchasing from a golf store when you’ve 

never done so before. At the same time, long- term tracking for each 

cardholder must recognize annual trends so they don’t trigger false 

flags, such as when a family vacations every year in Florida.

Actually, it’s a bit more “meta” than that. Even the most dramatic 

change in behavior doesn’t necessarily reveal fraud since some card-

holders are prone to change. They’re inclined to do something unprec-

edented. For this kind of customer, purchasing from a golf store for 

the first time should not be interpreted as potential fraud. For them, 

change is nothing new. Some anomalies are benign. With the right 

inputs, a well- trained model will be able to discern which sort of change 

in behavior corresponds with fraud.

On top of all this, other inputs track updates to the cardholder’s pro-

file. For example, after you change your email address, it may turn out 

that you’re a little more likely to conduct a transaction in a new- to- you 

country. With inputs designed to reflect this kind of change, the model 

can potentially learn when to be forgiving of such first- time behaviors. 

Remember, the aim isn’t only to identify fraud but also to tame false 

positives by allowing legitimate transactions even when they’re an out-

lier for that cardholder.

Finally, other inputs help the model scrutinize aspects of the mer-

chant. After all, it’s not only the cardholder’s history that reveals that 

an attempted transaction may be fraudulent. The goings- on at the 

merchant— across all cards— also provide clues. This includes whether 
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the merchant has experienced a rise in attempted fraud or other unusual 

changes in how transactions are trending there.

It’s Not Over Yet: Labeling the Data

Beyond well- engineered inputs, Falcon’s training data needs one more 

ingredient: labels for the output. Each example transaction that makes 

for a row of data is incomplete until designated as either fraudulent 

or not fraudulent. Those labels will guide model training to do its job: 

Generate a model that can discern positive cases from negative cases.

Only humans can provide the labels. As I briefly touched on a couple 

of chapters ago, for detection, we don’t get to benefit from “time will 

tell,” as we do when predicting a future event. Time has told whether 

a user responded when shown a certain ad or whether a debtor has 

defaulted. In those cases, we get the label “for free.” But for detecting 

a qualitative attribute for each case— such as whether it is fraudulent— 

each training example’s label can only be determined by a person.

Manual labeling is labor- intensive and expensive. The expense espe-

cially racks up when it requires subject matter experts, such as doc-

tors for establishing whether each example indicates a certain medical 

diagnosis.

On the other hand, problems that don’t require special expertise, 

such as labeling traffic lights within images for an autonomous- driving 

project, can be outsourced on “crowd labor” platforms like Amazon 

Mechanical Turk for as little as a penny per case. But there’s a dark side: 

Their largely unregulated working conditions “offer a bleak glimpse of 

what could come for a growing digital underclass,” according to Vocativ. 

Marketplace calls this “the new factory floor of the digital age.”

To make matters worse, fraud detection requires an immense num-

ber of labeled transactions because positive ones are rare. If the fraud 

rate is 0.1 percent and you want the data to include at least 10,000 posi-

tive cases, then you need to label 10 million cases as to whether each is 

positive or negative.
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Don’t fret! Falcon’s training data manages to sidestep this costly bot-

tleneck by relying on what consumers do naturally. With card fraud, if 

the consumer sees an erroneous charge, they complain. We cardholders 

and our banks are in effect already doing all the grunt work to label 

many cases of fraud in the course of just living our lives.

A key reason this approach works is that, with card fraud, banks can 

afford to learn the hard way. Since the detection system is imperfect, 

it allows some fraudulent transactions to go through. This generates a 

positive training case if the cardholder later complains about the unau-

thorized charge— even though it’s then typically too late to prevent the 

fraudster’s crime. The cost is absorbed by the bank, but the overall cycle 

is economically copacetic. No humans were substantially harmed in 

the process of this data creation.

In other domains, you can’t do it that way. The missed, uncaught 

cases— false negatives— aren’t nearly as allowable for an autonomous 

vehicle that would drive through a red light or a medical system that 

would miss a diagnosis. In those domains, you often can’t avoid the 

need for additional manual work labeling many examples.

This “organic” labeling process for fraud detection, wherein people 

are essentially “following the money,” prioritizes bigger cases of fraud 

over smaller cases. FICO treats only adjudicated fraud as positive cases, 

where the cardholder has formally certified that the transaction was 

fraudulent (whether it was them or the bank who’d noticed it in the 

first place). This means that suspected cases that never get adjudicated 

aren’t labeled as positive in the training data, even if the bank had to 

write off the charge. Since folks tend to bother with adjudication more 

for larger- value cases of fraud, lower- cost fraud is less often correctly 

labeled and is therefore effectively deprioritized by Falcon’s model. And 

that’s tolerable since the false negative cost is lower for them.

On top of this manual labeling, many other positive cases are pas-

sively labeled: those Falcon has automatically spotted. A bank using 

Falcon blocks an attempted fraudulent transaction and the cardholder 

might never even hear about it. This is almost a circular process, since 
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that positive example will then serve to train an updated model for 

Falcon, which identified the positive case in the first place. However, 

once again, natural cardholder reactions help correct the data. If Falcon 

was wrong— if it is a false positive— then the cardholder, whose legiti-

mate attempt to transact was blocked, will often take action to get it 

approved and the case will wind up as negative in the training data. 

In that way, what the model got wrong will serve to improve the next 

version of the model.

Altogether, this provides plenty of positive examples for Scott’s team. 

The number of labeled cases of fraud that they end up with approaches 

one million.

FICO Falcon Fights Fraud Fantastically

Falcon works. I consider it one of the world’s most successful and widely 

impactful commercial deployments of ML. It screens all the transac-

tions for 2.6 billion payment cards worldwide. That’s two thirds of the 

world’s cards, including about 90 percent of those in the United States 

and the United Kingdom. Seventeen of the top 20 international credit 

card issuers, all of the United States’ 100 largest credit- card issuers, and 

95 of the United States’ top 100 financial institutions use Falcon.

Since its introduction, Falcon has reduced card fraud losses by more 

than 70 percent in the United States. With the United States currently 

suffering around $10 billion in annual fraud losses, that reduction is 

saving us in the vicinity of $20 billion per year.

Just as Falcon’s data collection is distributed across banks, so too is its 

deployment. What’s more, that deployment has to happen in real time, 

generating each predictive score in a matter of only milliseconds. These 

considerations are coming in chapter 6 on deployment.

But first, we turn to step 5, using our hard- earned data to train the 

model itself. How do we mere mortals design an algorithm that gener-

ates a predictive model from training data? That’s one hell of a com-

puter programming homework assignment.
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Train the Model

The BizML Practice:

1. Value: Establish the deployment goal.

2. Target: Establish the prediction goal.

3. Performance: Establish the evaluation metrics.

4. Fuel: Prepare the data.

5. Algorithm: Train the model.

6. Launch: Deploy the model.

Machine learning algorithms constitute the single most powerful gen-

erally applicable technology. They’re also the coolest. By learning from 

data, they derive models that work— the models are capable of making 

predictions for new, unique cases. When training a model, the computer 

is essentially programming itself.

If you’ve excitedly jumped right to this chapter, then you’re in good 

company— and yet you’re exactly the person for whom I wrote the chap-

ters that come before this one. You need to pay your business- side dues 

before you get to revel in this sexy rocket science. We all must fight 

our natural propensity to exalt the advanced tech in lieu of sufficiently 

obsessing over its launch— and in lieu of executing the preceding four 

project steps needed to make that launch possible. But if you’ve read all 

the pages before this one, you’ve earned the right to revel— enjoy!

This chapter delivers an accessible crash course for newcomers and 

business professionals to ramp up on ML algorithms. After all, these core 

methods have great ramifications: They will drive your large- scale opera-

tions. We’ll keep it relevant by diving into the nifty principles of internal 

combustion, not how to change a spark plug.
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For the EduPay project, I was as happy as a pig in mud. I had 50 mil-

lion rows of data, a viable business case for machine learning— ad 

selection— and a client willing to deploy.

But I also had my work cut out for me: I needed to generate models 

that would dynamically select between 291 ads in real time for one 

third of all college- bound high school seniors. That meant I needed to 

generate 291 models, one for each ad. With most ML projects, you only 

generate one model. Where to begin?

So much data, so little time.

As we’ve discussed, each model was to predict user response to its 

corresponding ad:

Prediction Goal for Targeting Ads (EduPay): Will the user 

respond to this ad if it is displayed?

I started by developing models for only a couple of ads. One had a 

lift of 3 at 10 percent. That means that the 10 percent of users predicted 

most likely to respond were three times more likely to do so than the 

average user. Those users might be the right ones to show this ad to 

rather than, say, the most universally popular ad.

The advertisement at hand recruited for the navy. It splashed the slo-

gan “Accelerate your life” across a blue graphic and then asked, “<user-

name>, are you ready to leave <city> and see the world? The Navy can 

show you how!” It presented two options, “Yes, please contact me!” 

and “No, thank you,” followed by a “submit” button. The user had to 

choose one to get past this “interstitial” page and continue using the 

EduPay website to explore grants and scholarships for college. For each 

user who selected yes, the navy paid EduPay $12.50.

Let’s dig into this model as an example.

Peering into a Model

When a newborn model emerges, it absorbs all your attention. Like 

counting a baby’s fingers and toes, you examine it thoroughly, poking 

around to see how well it works and why— what makes it tick.
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ML’s discoveries are typically a mix of the arcane, inexplicable, and 

obvious. The navy ad’s model included the following rule:

IF the user

has opted in for marketing emails

AND

has not been shown this ad yet

AND

is in college

AND

has not specified a high school name

AND

has an SAT written over 480

AND

has an SAT verbal- to- math ratio between 0.5 and 1.5

AND

has an ACT score over 15

THEN the probability of responding to the ad is 

2.6%.

It may be hard to completely understand any logical rhyme or rea-

son, but it worked. This rule— some call it a pattern— pinpointed a rela-

tively responsive group of users. The overall response rate for this ad 

was 1.6 percent, so the users to whom this rule applied were 63 percent 

more likely to respond. In other words, it attained a lift of 1.63.

By discovering this kind of pattern, an organization takes “learning 

from experience” into hyper- drive. We’ve shown this ad to these kinds 

of customers in the past and the response was relatively good, so let’s 

do more of the same. This transcends the traditional corporate move of 

simply doing more of what has been working, such as the Lands’ End 

clothing retailer, which originally sold nautical supplies but noticed its 

clothing was selling well. ML goes further than that, providing more 
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refined agility by eking out what has been working with precisely what 

kind of customer in precisely what situation.

The algorithm derived this rule from the data on its own. After push-

ing “go,” I hadn’t been actively involved in the process. It’s like parent-

hood. In the immortal words of Forrest Gump, “My mama always said, 

life was like a box of chocolates. You never know what you’re gonna 

get.” Of course, Forrest’s mama was talking about him.

Does the Model Make Sense?

Some parts seem obvious. Users who’ve opted in to receive marketing 

emails also tend to respond more to ads— not just this ad, but across 

all ads. No big surprise there. The same applies to whether the user 

has already been shown this ad. If not, they’re more likely to respond 

since, if they’re going to respond at all, they’re mostly likely to do so 

the first time they see it. The lack of a specified high school probably 

corresponds to the fact that these users are already in college, so that 

part of the rule may mostly be redundant with the “is in college” and 

therefore inconsequential.

When you look into a model and see that it’s mostly discovered 

things that seem obvious to you, that’s no cause for disappointment. 

It means that your human hunches have been validated by the data. 

That validation is more crucial than you may realize. After all, what 

you don’t see in the model are the many other potentially “obvious” 

but false presumptions that the algorithm has quite helpfully ruled out. 

Moreover, the model’s value comes from not only the “obvious” dis-

coveries but how it adeptly combines them together— along with some 

potentially surprising discoveries as well. By doing this well, modeling 

methods exhibit a certain logical and mathematical finesse.

Moreover, when a model seems to align with human intuition, that 

can help shore up confidence from business stakeholders. Depending 

on the culture and expectations of your organization, greenlighting a 

model’s launch may depend in part on decision makers believing the 

model “makes sense.”
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But understanding a model is rarely straightforward, and whether 

it’s important to do so makes for an unresolved religious debate across 

the ML industry. Take the rule shown above. It applies only for cer-

tain SAT and ACT scores and when the SAT verbal- to- math ratio is not 

terribly extreme— the user can be mentally lopsided, but not too lop-

sided. You can speculate on why such folks are more likely to respond 

to a navy recruitment ad. Perhaps military families tend to emphasize 

a well- rounded education, so avid recruits from these families are more 

likely to have more balanced scores. Or perhaps very lopsided minds 

are eccentric in some sense. The problem is, there’s always more than 

one plausible explanation.

Having rules that predict is enough; understanding why they hold 

is both optional and unwieldy. Unless your data comes from a spe-

cially designed experiment, any interpretation meant to explain the 

reason behind a rule is no more than subjective speculation. To try to 

understand the “why” is to attempt to ascertain causation, which we 

cannot conclusively establish without collecting new data for that very 

purpose with a controlled experiment— thus the often- heard correlation 

does not imply causation.

Despite this, establishing causation is the whole point for many ML 

projects. This project’s purpose was to pick the ad most likely to cause 

the user to respond. Certain ads tended to cause more responses for cer-

tain users, and the models served to capture such insights. To do this as 

well as possible, there’s an advanced method called uplift modeling that 

holds advantages over this project’s relatively simple approach of creat-

ing a separate model for each ad, but we didn’t get that far in this proj-

ect’s execution and this book doesn’t have space for it either. For more 

on that promising topic, see this chapter’s notes at www.bizML.com.

But, broadly speaking, finding the causal explanation as to why 

certain inputs (e.g., “SAT verbal- to- math”) link to increased customer 

response is outside the scope of business projects like this one. I wasn’t 

working on a PhD in sociology in order to better understand human 

behavior. I was just trying to pick the best ad for each user. If the model 

predicts well and the numbers validate that beyond a reasonable doubt, 

http://www.bizML.com
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do you care about the ultimate scientific explanation for the patterns it 

has discovered? Why should your company’s decision makers require 

such explanations in order to trust a model that sheer numbers have 

already shown is reliable, especially when the attempted explanations 

are only conjecture?

In principle, decision makers shouldn’t, but in practice, they often 

do. You certainly can’t blame people for taking a look and speculating 

on the logic behind a model’s machinations. Decision makers are often 

loath to greenlight a model without a look- see. Otherwise, the model is 

a mysterious black box that many feel is hard to trust.

I can’t resolve this religious debate and I’d be a fool to try. But even if 

you’re dead set against deriving dubious explanations, there are other, 

definitive reasons to inspect each model. One is to check for bugs, 

which I turn to now. Another is to screen for ethical issues in how the 

model drives decisions, which I address in this book’s conclusion.

Inspecting Models to Check for Bugs

With the EduPay project, I was grappling with a tough predicament: 

how to generate 291 models and then personally inspect each one, 

thoroughly.

For a typical ML project, you have to sanity- check each model. After 

all, there are many things that could go wrong, many potential gotchas 

and bugs in the data. I once had a model suggest that high- school drop-

outs were better hires. This prompted me to take another hard look at 

the data and how it had been obtained. There turned out to be a sys-

tematic problem in how humans had manually entered the data from 

the job- applicant resumes.

In another cautionary tale, researchers from the University of Wash-

ington generated a model that distinguished wolves from huskies 

within images. It showed great performance, but when they investi-

gated how it was making decisions, they found it was actually operat-

ing based on whether there was snow in the background— the wolf 

images were more likely to have snow than the husky images. This 
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was a problem in the data, but it became apparent only when they 

inspected the model.

These things happen. In general, the data scientist must do some 

ad hoc poking around, performing a kind of model- integrity checkup. 

Before concerning yourself too much with any one model, the first 

question is whether the modeling method is fundamentally work-

ing, that is, whether the resulting model combines input variables in 

an effective way. Does the model mostly rely on only one input vari-

able, failing to integrate other inputs as well? And if there is one overly  

dominant input, is its performance too good to be true— potentially 

revealing the kind of “time leak from the future” I discussed in the 

previous chapter?

At the same time, you look at the model’s predictive performance, 

such as its lift. Does it pan out over held- aside test data, in comparison 

to how well it performs on the training data used to generate it? If 

not, this kind of underperformance is known as overfitting. It means the 

modeling process is memorizing particularities that are unique to the 

training data rather than truly learning— that is, finding insights that 

hold in general. If you’re overfitting, you’ve got to troubleshoot how 

you’ve set up the modeling process or even just move on to another 

method.

On the EduPay data, a handful of models appeared to be passing 

muster. But unless I cloned myself or EduPay dramatically increased the 

project’s budget, how could I scale this process to 291 models?

Before we get to my plan of attack for this project, let’s take a step 

back and look at how modeling works in general and the wide range of 

modeling methods from which the data scientist may choose.

Learning from Data: The Ultimate Technology Challenge

After the first four project steps, we’ve completed the prep work and 

set the stage for the machine learning part of a machine learning proj-

ect, the core technology itself: step 5, train the model, a.k.a. predictive 

modeling. The business case has been agreed on and the training data 



148 Chapter 5

is ready. Now we get to feed it into the modeling software and push the 

“go” button.

When researchers set out to invent that software, they had their work 

cut out for them. They had to develop the step- by- step instructions for 

building a model from data. That is, they had to write a computer pro-

gram that would generate a mechanism that itself would work with the 

dozens or hundreds of input values for an individual in order to calcu-

late the predictive score for that individual. This model is expected to 

predict reasonably well for the example individuals within the training 

data used to guide its creation. More importantly, it must also predict 

well for a held- aside test dataset of examples. This separate set of cases 

serves to estimate the model’s performance in general on unseen cases 

never before encountered. That evaluation step tells you whether the 

modeling has succeeded.

What a challenge! Imagine the plight of your poor computer, a fee-

ble, knowledgeless mechanism. You pour reams of data into it, but it 

doesn’t “understand” the data. The variables have no meaning to it. It 

has no general knowledge about user profiles and behavior as you do— 

nor does it grasp what it’s trying to predict, the real- world meaning of 

the output variable.

The model has to take into consideration all the dozens or hundreds 

of factors known about a new, unique situation or individual. Given the 

input variables that define that situation, how should it weigh or com-

bine all these factors to calculate the most precise probability of a posi-

tive outcome? More to the point, how could the computer automatically 

learn to do that— that is, how could it automatically generate that model?

You’re about to find out. In the face of this ultimate challenge, 

predictive modeling methods such as those described in this chapter 

achieve scientific greatness: Their models work. The generalizations 

drawn from past examples still hold when applied to new, never- before- 

seen situations. This capability makes ML the world’s most powerful 

widely applicable technology.

Modeling methods are tried and true, born of research labs and 

proven in commercial deployment to be adept and robust. When we 
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use them, we’re standing on the shoulders of giants, the researchers 

who developed them. And in beholding them, we’re enjoying the privi-

lege of seeing what methods have turned out to work best, skipping 

past all the trials and tribulations that those inventors suffered. As with 

genius, some say that research is 1 percent inspiration and 99 percent 

perspiration. But for a commercial user of established ML methods, it’s 

no sweat— or at least a lot less sweat.

It’s easy to get excited by how profound an endeavor this is. Let’s 

connect that excitement to the concrete mechanics by looking at 

exactly how it works.

Decision Trees: Models Made of Rules

One of the most popular modeling methods is decision trees. A decision 

tree is made up of if- then rules like the one we looked at above— which 

I did indeed extract from a decision tree. Here’s an example:

A decision tree to predict ad response. Start at the top. If the answer is yes, go 

left; otherwise, go right.



150 Chapter 5

The modeling process automatically creates a tree like this from the 

training data— usually ending up with one much bigger than the exam-

ple shown above. Then, to use it in deployment to predictively score an 

individual (e.g., an EduPay user), you simply start at the top (the root of 

what is an upside- down tree) and by answering yes/no questions, you 

make your way down to an end point (a leaf) to derive the score for that 

individual. For example, if the answers are yes, no, yes, then by going 

left, right, and then left, you wind up at a leaf with 4.2 percent— the 

model is saying there is a 4.2 percent probability that the individual 

will respond if shown the ad.

You can think of a decision tree as a bunch of nested if- then- else 

statements (if you’ve done some programming), as a flowchart with no 

loops, or as a bunch of rules— each path from the root down to a leaf 

makes a rule. For example, for the path we just covered, the rule is: If 

the user has opted into email and has not seen the ad before and has an SAT 

math greater than 480, then the score is 4.2 percent.

The way modeling builds a decision tree is to “grow” it from the 

top down. It starts with the most predictive single input variable at the 

top, thereby dividing all individuals into two groups: in the case of the 

example tree shown, those who’ve opted in for emails and those who 

have not. Then, it further subdivides these groups as it builds the tree in 

a downward direction. This repeats as the training data is divided into 

fairly small groups, although not too small, since you can’t generalize 

well from only a handful of examples. By following this process, the 

tree’s size and shape— and the choice of input variables for its yes/no 

questions— are all determined automatically.

More Modeling Methods: Linear and Logistic Regression

Other modeling methods look completely different and work com-

pletely differently. Linear regression creates a linear model that simply 

combines input variables with a weighted sum, such as:

(0.0008 × SAT- written) + (0.4 × email- opt- in) + (0.16 × in- college)



Algorithm 151

This example linear model— which involves only three input vari-

ables—assumes that the email- opt- in and in- college variables have the 

value 1 when true and 0 when false.

In this case, the job of the modeling method is to adjust those three 

weights, tweaking them until the model does as well as possible on the 

training data. It’s unlikely to do especially well; this old- school, stan-

dard statistical method has become overshadowed by modern model-

ing methods.

However, linear models serve as the basis for other methods. One 

such method, which is very popular, is logistic regression, which is sim-

ply a linear model followed by a nonlinear transformation known as an 

S- curve or sigmoid function. This extra step “stretches” predictive scores 

in the mid- range to be closer to 100 percent or 0 percent probabilities, 

in effect trying to get the model to commit to more definitive “yes” 

or “no” predictions. This turns out to do a better job for many yes/no 

prediction goals (a.k.a. binary classification) than a plain linear model.

Now, if you’re not a data scientist, you might wish you could skip over 

these technical details for the most part. Allow me to grant your wish.

Everything You Need to Know about Modeling Methods

Before we briefly survey several more modeling methods, let’s get one 

thing clear: As vastly different as they may seem to be from one another, 

all models accomplish the same simple task: They take the inputs and 

output a predictive score. That’s literally the definition:

Predictive model: A mechanism that predicts a behavior or out-

come for an individual, such as click, buy, lie, or die. It takes char-

acteristics of the individual as input (input variables) and provides 

a predictive score as output, usually in the form of a probability. 

The higher the score, the more likely it is that the individual will 

exhibit the predicted behavior.

Since the model is generated by ML, we say it’s the thing that’s “learned” 

or “trained.” Because of this, ML is also known as predictive modeling.
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Earlier in this book, we depicted a model as a black box— more pre-

cisely, a golden egg:

Scoring: A model generates a prediction for an individual.

Inside that egg, if it’s a decision tree, then it’s applying rules to 

derive the score. If it’s a linear model, it’s applying arithmetic. But 

whatever it’s doing on the inside, the model is always used in the same 

basic way: The organization retrieves scores from the model and guides 

operational decisions accordingly, irrespective of how the scores were 

calculated.

From that utilitarian perspective, you can conceive of a model as a 

black box that outputs predictive scores. To make use of those scores, 

the model’s inner workings make little difference. In fact, the other five 

bizML steps outside this one operate in mostly the same way, regardless 

of which kind of model your data scientist develops. Those steps can 

be executed with little concern about the choice of modeling method, 

so long as the model does its job without consuming too much time or 

computational resources.

Even so, the data scientist who owns this model- training step doesn’t 

have the luxury of skipping past the inner workings. Why must they 

suffer the headache of a potentially endless range of different methods, 

each with its own arcane technical details? Why can’t there just be one 

best method?
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Why There Are Competing Modeling Methods

There is no one best predictive modeling method (a.k.a. ML algorithm). 

There’s no “Holy Grail,” no universal champion. No matter how good 

a modeling method is, there are always some datasets that would be 

better handled by another method. The method that performs the best 

depends on the problem at hand— ultimately, on the nature of the data.

As the field of ML develops, it’s not converging toward a single best 

modeling method. This fact is encapsulated by the No Free Lunch theo-

rem, a famous principle among those on the more academic and theo-

retical side. It’s a cute name that makes the point: If there were one 

method that always wins, the data scientist wouldn’t have to work as 

hard. It’d be like receiving a free lunch.

Human nature will sometimes try to defy the undeniability of No 

Free Lunch. ML practitioners often become quite infatuated with one 

modeling method or another. But the fact is, you never know what you 

might be missing by not trying an alternative method until you try it 

out on your data.

The diversity of solutions is a good thing. The industry thrives by 

leveraging a wide range of competing methods. Even if it were theoreti-

cally possible to discover one winner- takes- all algorithm, that would be 

the wrong wish to ask from a genie. Each method has its own pros and 

cons— not only with regard to predictive performance, but also regard-

ing all kinds of pragmatic factors such as speed, understandability by 

humans (a.k.a. model transparency), complexity, and the level of human 

expertise required to use it.

The diversity of methods stems from their diversity of conception. 

Today’s wide range of methods were invented at different times, in dif-

ferent countries, by different people. Each algorithm was conceived as 

and designed around a researcher’s intuitive notion, something that 

seemed like a good idea to that person.

Human ideas tend to be relatively simple, but that helps ML work— 

because simplification facilitates learning. Modeling methods only work 
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because they oversimplify. Learning from examples is only possible by 

way of an “inductive leap,” a simplifying assumption about the world. 

For example, decision trees impose a very simple structure: rigid if- then 

rules based only on whatever limited set of input variables has been 

made available. Even if it were theoretically possible to predict perfectly, 

it certainly wouldn’t be accomplished with that kind of simple mecha-

nism. However the world works, it could never be expressed in such 

simple terms. But although far from perfect, the patterns expressed by 

those if- then rules do indeed pan out in general, providing a lift over 

pure guesswork. Modeling methods only work— they only succeed in 

drawing generalizations from examples— because of the limitations 

in how patterns can be expressed that this kind of structure imposes. 

Without any such structure, an ML algorithm would overfit the data, 

memorizing its peculiarities rather than gleaning insights that hold  

in general.

Having such a diverse range of methods empowers the data scientist. 

She has a versatile, dynamic toolkit of options at her disposal. Depend-

ing on the project’s particulars and requirements, she can try out vari-

ous options, following her gut and the pragmatic rules of thumb that 

she has picked up throughout her career. There’s an ad hoc aspect 

to this process, but, with experience, experts gain a sense for how to 

proceed.

This range of available methods is especially valuable when you 

combine them together, having them cooperate rather than compete. 

An ensemble of diverse models itself is in fact one of the most important 

kinds of modeling methods. Let’s see where it fits in among a short list 

of popular methods.

A Summary of Modeling Methods

There’s a certain commonality among today’s diverse hodgepodge of 

modeling methods. As we’ve discussed, they all accomplish the same 

thing: Generate a model that takes input variables and produces a pre-

dictive score. Moreover, they all do so in a similar way: Start with a 
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crummy model— one that is very small or totally random— and then 

iteratively tweak it, repeatedly making small modifications to it so that 

its performance across the training examples improves.

Since each incremental improvement corrects the model so that it 

gets some cases right that it had been getting wrong, you can think 

of the process as a regimented, automated way to improve a scientific 

hypothesis or theory (in fact, in past decades some ML researchers used 

the word hypothesis instead of model). As Clayton Christensen put it in 

his book The Innovator’s Dilemma, “The key to improving any theory 

is to surface anomalies— events or phenomena that the theory cannot 

explain. It is only by seeking to account for outliers— exceptions to the 

theory— that researchers can improve the theory.” In a way, modeling 

automates the process of refining a hypothesis.

Modeling methods are supremely general- purpose, applying across 

industries and organizational functions. Each kind of model can serve 

marketing, financial risk management, fraud detection, or clinical 

healthcare— what makes the difference is the data you give it. With all 

the concrete ways in which we apply them across domains, the meth-

ods themselves are designed in the abstract. The input and output vari-

ables you pull together as training data determine whether the model 

will predict sales or successful surgeries.

Here’s a summary of some of the most popular modeling methods 

(these all depend on labeled training data, which makes them supervised 

ML methods):

What’s learned 
from data during 
model training

Once trained, 
how the model 
generates a score Pros and cons

Decision 
trees

The decision tree’s 
architecture: its size, 
shape, and choice 
of inputs

Start at the top 
(the root) and 
flow down to an 
end point (leaf).

Easy to interpret 
(transparent) and 
surprisingly effective for 
its simplicity, although 
usually outmatched 
by more advanced 
methods.
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What’s learned 
from data during 
model training

Once trained, 
how the model 
generates a score Pros and cons

Logistic 
regression

A weight for each 
input

Apply the formula 
to the inputs: Add 
up a weighted 
sum of the inputs 
and then apply 
a nonlinear 
adjustment.

Easy to interpret, but 
usually outmatched 
by more advanced 
methods.

Naive 
Bayes

A factor for each 
input for positive 
cases and the same 
for negative cases

Apply the formula 
to the inputs: 
Roughly speaking, 
multiply the 
inputs’ factors for 
positive, then for 
negative, then 
normalize.

Easy to program 
and robust against 
overfitting but limited in 
predictive performance.

Ensemble 
models

A set of simple 
models— sometimes 
all decision trees 
(e.g., random forests 
and TreeNet) and 
sometimes varied 
(e.g., boosting and 
bagging)

Score with each 
simple model and 
then combine the 
scores, e.g., by 
averaging them or 
taking a vote.

An elegant way to 
improve over simple 
models, but the 
resulting amalgam of 
models is difficult to 
interpret (opaque).

Deep 
learning

The many 
weights within 
a large, complex 
mathematical 
formula (a deep 
neural network)

Apply the formula 
to the inputs 
(complex).

A breakthrough 
advanced method, 
which can handle 
a great number of 
inputs— e.g., each pixel 
of a high- resolution 
image— without the 
need for preprocessing, 
but difficult to 
interpret (opaque), 
computationally 
expensive, and often 
requires highly technical 
human expertise to use 
successfully.

When experts mention one of these, such as decision trees or ensem-

ble models, they are referring to two things at once: the structure of the 

model and the process to train it. These two aspects are always paired. 

The model’s structure can be things like a tree, a simple formula, or a 
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complex network (which is just a way to visualize a complex formula). 

And then, for each type of structure, the process to train it— to perform 

modeling— is specialized for that structure.

In some cases, the modeling process has its own name, separate from 

the type of model. For neural networks, the method is backpropagation, 

which tries the model on a training case and, to the degree the output 

is wrong, propagates negative feedback backward through the network, 

adjusting weights accordingly. By doing this repeatedly, the model’s 

performance improves. Originally developed in the 1980s, backpropa-

gation still trains today’s more complex and capable neural networks, 

deep neural networks. This method is called deep learning (named in this 

case after the modeling process rather than the model’s structure).

Why Are Modeling Methods Also Called Algorithms?

What do you call a formula that can predict Al Gore’s dance moves? 

An Al Gore Rhythm.

— Anonymous

Modeling methods are also called modeling algorithms or ML algorithms— 

because algorithm simply means a process to get something done.

Algorithm: A well- defined, finite process that solves a problem.

In the context of ML, algorithm refers to a modeling method, such as 

decision trees or logistic regression. But more generally, algorithms are 

fundamental to the whole of computer science. In practice, the word just 

means any procedure that is defined specifically enough that you could 

program a computer to do it. The word may sound technical, but it’s a 

simple and intuitive notion.

The way media has come to use the word algorithm tells us a lot about 

ML’s elevated status. Even though the concept applies for any and all of 

the many things we do with computers, the press uses algorithm as a syn-

onym for ML. It’s like how hair stylists use the word product to mean hair 

product. Or how the word crypto usually refers to cryptocurrency even 

though cryptography applies to securing any and all kinds of transactions 

and communications. When a field gets famous, it dominates more than 

its fair share of vocabulary.
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Choosing a Modeling Method

Better prediction doesn’t come for free. Broadly speaking, the better 

the method, the more complex— both to use and to interpret how the 

resulting model works. You can see that progression as you go down the 

list of methods within the table presented earlier. After the first three 

simpler types of models— decision trees, logistic regression, and Naive 

Bayes— you come to a more complex, adept one: ensemble models. To 

improve on simpler models, an ensemble literally “ensembles them 

together”— so by definition, ensemble models are more complex. By 

the end of the list, deep learning, you’ve increased capacity greatly for 

certain problems, but you’ve also piled on complexity.

For many projects, the interpretability you get with simpler models 

is a godsend. As we’ve discussed, being able to understand what makes 

a model tick is sometimes critical for debugging and for convincing 

certain decision makers to fully buy in. And auditing a model for ethi-

cal considerations— to inspect how it renders consequential decisions 

that affect people— also hinges on understanding its innards. This 

desirable model characteristic is also known as explainability or trans-

parency. It’s at least somewhat lost when you move to the impenetra-

ble, unwieldy soup of math you get with more complex models. The 

long if- then rules of a decision tree may seem arcane and difficult to 

understand, but on the scale of things, they’re relatively friendly to  

human eyes.

In the name of interpretability, UPS kept it simple for its package- 

delivery prediction. To form predictions for tomorrow, the system looks 

at how often each address has received a shipment on similar days, 

such as the same day of the week, or, in some cases, a more specific 

day, such as the day after Thanksgiving. Then, the probability for each 

address is adjusted by an overall forecast. For example, if on the whole 

more deliveries are expected tomorrow than average, then each indi-

vidual destination’s probability is adjusted slightly upward so that the 

aggregate expected count is consistent with the forecast. The effect of 

this scheme is similar to— and has the same simplicity of— a decision 
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tree. With a model so straightforward and intuitive under the hood, 

project staff members had an easier time selling its deployment across 

the company.

Another reason to stick with simpler models is that even if you pay 

the extra price of complexity, it won’t necessarily improve prediction. 

More complex methods aren’t guaranteed to do better. Sometimes it 

isn’t worth it to go “full rocket science.” Again, the best method for any 

given data just depends. There is no one method sure to always do best. 

Every ML project has an experimental aspect to it: You can only know 

how well a method will work by trying it.

When it comes to choosing a method, human judgment is key, since 

rigorously comparing every competing method is impractical. It’s usu-

ally possible, for example, to give all five of the methods listed in the 

table above a preliminary shot, or even to try out three or four times 

as many, if you invest a lot of time. The challenge is that, for each 

method, there are many settings that affect its performance— too many 

to exhaustively test. To address this, techniques from the field AutoML 

serve to systematically explore many methods and settings. AutoML is 

an increasingly popular, albeit inexact, approach. It helps scale your 

search for the best modeling setup, but it does not replace the expertise 

of a data scientist.

Ultimately, a rigorous head- to- head comparison between even just 

two modeling methods is a challenge to accomplish, since each one has 

so many knobs and dials with which you could experimentally fiddle 

ad infinitum. Champions of any one method— data scientists who are 

fans and have become highly experienced with that method— tend to 

get the best performance out of it. Given this human factor in model 

performance, the conclusiveness of any head- to- head trial pitting 

methods against one another can always be questioned.

In the end, the data scientist must be artful. Their experience and 

intuition guides the choice of model. Practically speaking, for many 

ML projects, data scientists end up trying out only a few methods. 

Besides, there’s another, better opportunity for improving predictive 

performance.
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It’s the Data, Stupid!

We don’t have better algorithms than anyone else. We just have 

more data.

— Peter Norvig, director of research, Google

The summation of my decade of data work is that the data matters 

more than the model. Every time.

— Caitlin Hudon, principal data scientist, OnlineMedEd

Fine- tuning an algorithm and trying new ones for comparison will only 

get you so far. As you put in more and more effort, the returns tend to 

diminish. You might make small, incremental improvements by step-

ping up to a more complex model like a big, hairy ensemble or even 

deep learning— but it’s often not worth the complexity. Sometimes, 

you tweak the heck out of your modeling efforts for only a small gain. 

On other occasions, for certain projects where every little improvement 

makes a big difference, it could be worthwhile to go the extra mile. 

Even so, that extra effort may provide only a small gain and may pay 

off only for a few brief months before changes in the business require 

a full project restart.

Either way, the mandate is clear: Improve your data. That’s where 

your efforts will usually pay off much more handsomely. This means 

both more data and better data. Google research director and famed 

Artificial Intelligence textbook coauthor Peter Norvig espouses getting 

more data, but that’s not all. “More data beats clever algorithms, but 

better data beats more data,” he says.

Bettering data quality rather than its quantity is harder to formally 

define, yet it’s just as intuitive. Just think about what might make data 

more predictive. In the previous chapter, we discussed how to design 

more revealing, informative inputs through a feature engineering pro-

cess. For example, FICO developed a summary of cardholder propensi-

ties and changes in spending behavior. As another example, a telecom 

expanded its churn model inputs by merging in summaries of how a 
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user tends to use the website. Cellphone subscribers who’d checked 

out their remaining contractual obligation were more likely to cancel. 

Beyond adding new, informative inputs, one can always exert more 

effort in data quality assurance, seeking out where there might be errors.

But this takes discipline. Only the most regimented ML leaders focus 

on this “predictive fuel” more than on the sexy “prediction engine.” 

As Google ML software engineer Josh Cogan puts it, “I find most peo-

ple really tend to focus just on optimizing the ML algorithm. They 

want to make sure they have the newest, coolest thing right out of the 

papers. . . . I’ve never found anyone who overestimated how hard it was 

going to be to get that data collection right in the first place.”

Also at Google, a group of six researchers put it on the line with a 

plea for sanity: “Data quality carries an elevated significance in high- 

stakes AI due to its heightened downstream impact, impacting predic-

tions like cancer detection, wildlife poaching, and loan allocations,” 

they wrote in a research paper. “Paradoxically, data is the most under- 

valued and de- glamorized aspect of AI.” They titled their paper so that 

nobody could miss the point: “Everyone Wants to Do the Model Work, 

Not the Data Work.”

To emphasize data’s importance, data science has borrowed a clar-

ion call from political science. “It’s the economy, stupid!” proclaimed 

political strategist James Carville to campaign staffers working in 1992 

to elect Bill Clinton. By adopting that as a campaign slogan, they won 

the presidency. In more recent years, ML has revised that legendary 

catchphrase to be its own mantra: “It’s the data, stupid!”

And yet data isn’t the only game in town. More complex models do 

have their place for certain projects.

How Deep Is Your Learning?

The latest, greatest wave in modeling methods, deep learning, produces 

models that involve more complexity than ever before. And it often pays 

off. Deep learning is an advanced form of neural networks, which repre-

sent complex mathematical formulas as networks organized into layers.
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Deep learning has improved the state of the art in modeling so that it 

can truly take advantage of a large, complex model. It’s always been the 

case that you could set up a neural network with many, many inputs— 

it’s just that it never used to work well. For example, if you want the 

model to detect whether a 1280 × 720- pixel resolution image includes a 

traffic light, you could directly feed it all 921,600 pixels. That’s a hugely 

greater number of inputs than the typical few hundred provided when, 

say, predicting customer churn. The problem is, for the model to han-

dle each detailed image in a useful way, it must be possible to train it for 

adept, complex processing. Not only must the model be complex, but 

the training must be capable of leveraging that complexity. The original 

algorithms a few decades back always flopped when this was attempted.

Because of this, neural networks, which originated in the 1980s, 

started small. Back in 1997, the first time I taught the graduate ML course 

at Columbia University, neural networks were shallow rather than deep, 

and yet, for many domains, they were nonetheless the leading option. 

They were already steering self- driving cars, in limited contexts— but the 

input was only a very low- resolution view of the road ahead, an image of 

30 × 32 pixels. I even had my students apply neural nets for face recogni-

tion as a homework assignment, using the same low resolution.

Increasing the layers of a neural network— so that it is literally 

deeper— increases the complexity of the mathematical formula that 

it embodies. But, for decades, the modeling process (backpropaga-

tion) was incapable of scaling up to take advantage of that complexity. 

Since they couldn’t make use of the additional layers, neural networks 

couldn’t effectively handle a large number of inputs.

As data exploded, so did advanced modeling. After the turn of the 

century, amazingly, modeling methods improved to meet the chal-

lenge—and realize the potential— of properly training deep neural net-

works. This was possible due to bigger data and faster compute, as well 

as some new improvements to the modeling algorithm itself.

Deep learning blossomed, both in buzz and in proven value. It is the 

one and only technology that achieves and defines the state of the art 

for speech recognition and for various image- processing applications, 
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including diagnosis on medical images, autonomous vehicles recogniz-

ing and classifying objects around them, and everyday operations like 

unlocking your phone with facial recognition.

Google, for example, has made significant improvements to most 

of its main products with deep learning, including Android, Apps, 

Maps, Speech, Search, and YouTube. Gmail now intercepts 99.9 percent 

of spam. And your unlabeled Google Photos are searchable by ad hoc 

terms such as “hug.” Google Translate— which anyone can use online— 

swapped out the original underlying solution for a much- improved one 

driven by deep learning. Go try it out— translate a letter to your friend 

who has a different first language than you. I use it a lot myself.

The exploding field generative AI is built on deep learning. This 

includes large language models, which write prose that is impressively 

coherent for a computer; digital image generators, which take a written 

prompt and create an image for you; and deep fakes, depictions of peo-

ple who do not exist or of existing people doing things they’ve never 

done. Generative AI also produces synthetic music, speech, and video.

To keep up, we launched the Deep Learning World conference in 

2018 as part of the Machine Learning Week conference series that I 

founded in 2009. They take place annually on two continents.

As much as I can’t help but geek out like mad over deep learning, 

here’s the thing: This all- powerful Hulk isn’t the right superhero to 

enlist every time. When you need someone to crawl into a mousehole, 

Ant-Man would be a better choice.

For Many Business Problems, Deep Learning Is Overkill

Deep learning tends to solve different types of problems, in comparison 

to so- called classical ML algorithms. For one thing, it’s more often used 

for detection rather than the prediction of the future. Since it takes 

so many inputs, a deep learning model can directly handle an entire 

unprocessed file, such as a photograph, medical image, or an audio file 

for speech recognition. This lends itself to detecting whether each con-

tains a certain element or belongs to a certain category.
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This tends to pigeonhole deep learning into certain industries, those 

where you need to do detection on raw image and sound files, such as 

for autonomous vehicles, medical image processing, and devices that 

need to recognize speech. That’s a somewhat distinct arena from the 

kinds of customer- prediction applications that this book largely focuses 

on, such as for targeting ads and marketing, managing financial risk, 

averting fraud, and predicting which locations will receive a package 

delivery.

Deep learning applications also tend to allow for high accuracy— in 

the casual sense of the word: the ability to classify correctly a great majority 

of the time for both positive and negative cases. Just as humans can usually 

tell which photographs do or do not include a traffic light and which 

sound bites do or do not include the word “hello,” so too can deep 

learning.

In contrast, customer prediction, typically the domain of classical 

ML methods, means predicting what people will do. For those applica-

tions, you can only hope to gain some meaningful lift in comparison 

to guessing, unless you have a magic crystal ball. Not even deep learn-

ing can confidently predict human behavior in general. No matter  

how sophisticated and advanced the model and the modeling algo-

rithm, it doesn’t change the fact that we’re trying to predict the unpre-

dictable: people.

Given that there’s an intrinsic upper limit in predictive performance, 

deep learning is usually overkill for many of the more classical, stan-

dard business applications of ML. For those problems, deep learning’s 

awesome capabilities are often wasted, and working with a classical 

ML method would do virtually as well, requiring less complexity, time, 

computational resources, and advanced expertise. Moreover, simpler 

methods maintain transparency, so it’s possible to more easily under-

stand the model itself, to see what’s been learned and on what basis 

predictions and decisions are being made by the model.

On the other hand, there are exceptions where deep learning has 

provided value for traditional business applications. For example, 

FICO’s Falcon fraud detection system is based in part on deep neural 
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networks. The research and advisory firm Celent has estimated that, if 

more widely deployed, deep learning could reduce fraud losses by $161 

billion worldwide, across all kinds of financial fraud.

“Deep learning largely dominates today’s media buzz about machine 

learning,” points out industry leader Dean Abbott. “It sucks the oxygen 

out of the room.”

Still, deep learning constitutes only a subset of the field as a whole. 

Like all modeling methods, it belongs within one corner of the tax-

onomy of techniques.

Despite its unique nature, deep learning doesn’t impose much 

change on the project’s business- side execution. Successful deployment 

requires the same six- step bizML practice. You’re still altering opera-

tions with predictive probabilities by integrating them into existing 

systems. You still need to ramp up decision makers and line of business 

managers. You still need to surmount the universal challenges of data 

preparation. And the organization still needs to understand and agree 

on quantitative measures of predictive performance and business per-

formance. It’s a different animal, but the animal trainer’s skillset trans-

lates nicely.

Machine Learning Software: How to Choose a Tool

So many powerful ML algorithms, so little time. To make use of these 

algorithms, you need software that implements them. The good news 

is there are many competing solutions out there. For more than two 

decades, I’ve noticed new ones come across my radar every two or three 

months. But this exploding plethora of options is enough to give you 

analysis paralysis, with an incapacitating fear of buyer’s remorse. How to 

proceed? Here are some tips and pointers.

Don’t program ML software from scratch. Buy rather than build, 

download rather than develop. ML projects almost always leverage exist-

ing analytics software. All the standard predictive modeling methods are 

each implemented within many software tools that you have at your dis-

posal. Even the latest, cutting- edge techniques straight out of the research 

lab have often been released as open source code by the researchers 
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themselves. For industry ML projects, circumstances only very rarely war-

rant programming the algorithm from scratch.

Software selection doesn’t guide the project— project require-

ments and team skills come first. Do not hold any illusions that an 

analytics software tool can be a “plug- and- play” solution to the busi-

ness problem you’re solving. The goal of an ML project is a new way of 

business, an improvement to operations, for which ML software plays a 

central but limited part. Some ML vendors may offer an aggressive sales 

pitch that you will need to resist. Instead, allow your data scientists to 

determine software requirements as the project matures and evolves. If 

your data scientists have a strong preference or are already well versed 

with one tool in particular, their work may be most effective using  

that tool.

Postpone the decision. If no preordained tool is in place, don’t ordain 

one until absolutely necessary. After you’ve greenlit a project and pro-

ceeded through the first four steps— through data preparation— then you 

will have pertinent data on which to evaluate modeling software. Many 

vendors will provide a free evaluation license, so you can give it a go on 

your data, possibly comparing multiple tools. Moreover, other determin-

ing factors will also have become clear during later phases of the project, 

including your budget to buy software, how its models must integrate 

with your existing systems and data pipelines, and whether deployment 

is to be cloud- based or on- premises.

Use what you’ve got. If your organization has already adopted a solu-

tion, take a good hard look at that product as your first consideration. 

Often, a team will end up adopting a combination of paid and free, open- 

source tools, many of which play well together.

Generating Numerous Models for Ad Targeting

Let’s return to the challenge I faced for EduPay. I had to generate 291 

deployment- ready models, somehow streamlining and scaling the 

quality- assurance process by eliminating the need to spend a lot of time 

poking around and inspecting each model.

A couple of months into the project, I had an “aha!” moment. I ran 

a few experiments and then emailed my client to propose a solution:
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Because of its simplicity, Naive Bayes works reliably. It’s robust 

against overfitting because it doesn’t try to draw generalizations from 

small groups of individuals. In contrast, a decision tree drills down to 

“sub- sub- segments,” such as all tenth- grade males who are not US citi-

zens and have Hotmail as their email provider. When you look at such a 

specific group, it may include only a handful of cases. But Naive Bayes 

considers only one input variable at a time, never drilling down to such 

specific, smaller groups.

Melissa,

I completed a few more rounds of modeling with a differ-

ent method: Naive Bayes. The results are good— here are the 

takeaways:

• Naive Bayes gives us complete coverage. It would enable 

us to churn out a massive number of models— one per 

ad— in “one fell swoop” with the push of a button and 

little or no manual “fiddling” for each individual model.

• Naive Bayes did almost as well as decision trees with little 

“fiddling” on my part.

• Naive Bayes is free (I programmed it from scratch).

Here’s a brief description of how Naive Bayes works: It 

calculates a predictive “degree of evidence” for each input. 

For example, say a user is in tenth grade and is in ROTC and 

those both provide a degree of positive evidence that the 

user is more likely to respond to the ad. Those degrees of evi-

dence are aggregated by simply multiplying them together. 

There’s some probability theory, but the main part is multi-

plying together the degrees of predictive evidence that cor-

respond with the input variables.

Let’s discuss further!

— Eric
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With this reliability, I wouldn’t have to inspect each model to check 

for problems. As expected, each model’s performance held up on unseen 

test data. And I was able to do enough checking for data issues or other 

bugs just by inspecting several models.

With Melissa’s approval, the project proceeded— and yet I was break-

ing the first rule from the sidebar above about ML software: Don’t pro-

gram ML software from scratch. This unusual situation was the exception 

that proves the rule. At the time, there weren’t a lot of off- the- shelf 

options specialized for personalized ad targeting with a model. By pro-

gramming it myself, I could implement it right inside EduPay’s existing 

database, without learning about, choosing, adapting, and integrating 

someone else’s product.

In the time since this project, the operationalization of ML has come 

a long way and you’re much more likely to find existing software that’s 

a match for your project. My coding from scratch was a singular excep-

tion, the only time I’ve done so, other than during my previous life in 

academic research. The same track record holds for all my data science 

colleagues, to the best of my knowledge.

With the model training complete, it was launch time. I now had 

to work with a company new to predictive models, guiding them to 

integrate the models into the heart of their principal operations. What 

would it take to navigate this final mile of the project? The next chap-

ter answers this question and completes the EduPay story— but first, 

it recounts a prequel episode from the UPS story about a time when 

deployment went awry.
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Deploy the Model

The BizML Practice:

1. Value: Establish the deployment goal.

2. Target: Establish the prediction goal.

3. Performance: Establish the evaluation metrics.

4. Fuel: Prepare the data.

5. Algorithm: Train the model.

6. Launch: Deploy the model.

After step 6: Maintain the model (covered in the conclusion).

To deploy a model is to propel it from the lab to the field where the 

enterprise will drive operational decisions with its probabilistic scores. To 

be specific, each time the model scores an individual, that score directly 

informs the action taken for that individual, such as whether to contact, 

approve, or audit. This culminating project step is where machine learn-

ing begins to deliver its value (so begins model upkeep, which is covered 

in the conclusion).

Deployment requires full- stack organizational buy- in, cooperation 

from staff at every level. While executives are the ones who approve it, 

operational staff must also agree, since that’s where deployment intro-

duces change. How do you overcome the resistance to such change? How 

do you mitigate the risk of deployment mishaps and assuage even the 

most risk- averse stakeholder? How do you translate predictive probabili-

ties into operational actions? How do you engineer the right data into the 

model on the fly and get the model to work in only milliseconds for high- 

speed processes? In the end, even if performance improves, how do you 

prove that the credit should go to your ML project rather than to other 

changes within or outside the organization? As UPS and EduPay conclude 

their stories, we’ll have our answers.
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Jack Levis was in deep water at UPS. So far, trial runs of Package Flow 

Technology— the system that deployed his delivery- prediction model— 

had only delivered disappointment. “Things were really ugly inter-

nally,” Jack reflects. “It was a nightmare.”

The rocky road to deployment will test any technology pioneer’s 

mettle.

But this wasn’t only an internal affair. The media had caught wind 

of it and blown the lid off. “New Package Flow Technology Not Deliv-

ering at UPS,” screamed a Computerworld headline. The feature story 

continued, “Its highly touted Package Flow Technology isn’t flowing as 

smoothly as expected, with problems at about a third of the 300 or so 

centers where it has been implemented.”

Within an office shut off from the kerfuffle, the COO of UPS chas-

tised Jack privately. It was a heated discussion and the fallout would 

reverberate for a long while. Even two years later when they were dis-

cussing the next project iteration, the COO looked Jack dead in the eye 

with the stare that only a Fortune 500 executive could muster. “I don’t 

want another Package Flow— don’t you dare do that.”

Remember that stiff upper lip Jack had perfected early in this book? 

It comes in handy when weathering the hailstorms that arise when 

managing organizational change.

But Jack had good reason to defend his innovation: The problems 

so far weren’t in the technology— they were in the humans. To deploy 

delivery prediction at UPS was to ask people to change their habitual 

routines and embrace a new paradigm. It’s a story as old as machine 

learning: The deployment plan was easier said than done.

Shift Happens: When a Legacy Process Goes Digital

Out with the old, in with the new. Package Flow Technology (PFT) was 

designed to boost efficiency by replacing each shipping center’s legacy 

process with one that’s more automated and centralized:
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Legacy process: Each day, humans assign the delivery regions 

(sequences) that each truck must cover. Many of these decisions 

come while loading the trucks, during which time the staff adjust 

the assignments in an ad hoc manner as they deem necessary. 

This sometimes means reassigning packages that have already 

been loaded, shifting them from one truck to another.

Updated process: The PFT system centralizes and semi- automates 

the assignment of sequences to trucks, based largely on predicted 

deliveries. Just before truck- loading begins, a planning manager 

completes final adjustments through a central PFT console in the 

hope that little to no further revisions will take place on the fly 

during the loading process.

If adopted fully, this process change would radically improve the 

efficiency of operations: It would decrease the mileage— and the time 

clocked by drivers— accumulated across the entire fleet of trucks. It 

could accomplish this because of two fundamental advantages over the 

legacy process. First, it dynamically incorporated the prediction of as- 

yet unknown deliveries in order to plan and begin loading the trucks 

early for on- time departures. Second, it centralized decision making so 

that it applied across all the shipping center’s trucks at once. This would 

beat the legacy process’s distributed decisions made by individual truck 

loaders on the fly while loading.

With the PFT system in place, these two advantages held even when 

managers made manual adjustments to the plan. When they did so, 

it was at a central console, with a bird’s- eye view across all the trucks 

going out that day. The console incorporated the day’s predicted deliv-

eries along with known deliveries. As a manager revised the plan on- 

screen, it displayed the forecasted effect based on both known and 

predicted deliveries.

But the system had some “bugs”: the humans— in particular, those 

who were carrying out its instructions. If the staff loading the trucks 

overrode the centralized decisions too often, the benefits of PFT and 

delivery prediction would vanish. Changing a package’s truck assign-

ment meant not only enacting a potentially suboptimal decision 
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without the bird’s- eye perspective provided by the central console; 

it could also mean inefficiently moving packages that were already 

loaded. This risked delaying trucks so they wouldn’t depart on time. 

Moreover, when staff vetoed the system and loaded a package onto 

another truck, they typically wouldn’t update the system. This meant 

the physical world and the digital world didn’t align— and that spelled 

trouble. Following the data on their handheld device, a driver would 

go to deliver a package that was in actuality on another truck, and the 

driver of that other truck wouldn’t even know they had the package. To 

address this misalignment, Jack formulated a new mantra for his staff: 

“The data is as important as the delivery.”

Clearly, Jack’s team had more work to do getting these staff members 

to change their ways. With the legacy process, staff had applied their 

hard- earned knowledge and experience. If a seasoned truck loader saw a 

package with a delivery address that they recognized, they’d reflexively 

say, “Oh, that’s got to go on the truck with this other package.” To real-

ize the potential gains in efficiency, Jack and his team would have to 

convince and reorient staff to more strictly follow a preordained plan 

while loading the trucks.

To Manage Change, Change Management

Two- thirds of my effort was deployment, versus models and build 

with IT.

— Jack Levis

Staff at every level resist change, from the loading dock to the top- floor 

offices. Recall another precarious moment from earlier in this book, 

when Jack, struggling to gain authorization from Chuck, the executive, 

literally took him for a ride to demonstrate the system’s truck navi-

gation. Just as Chuck initially had a tough time swallowing decisions 

that seemed to defy his human intuition, so did those who loaded  

the trucks.
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But staff at every level must cooperate. Deployment stalls when an 

organization can’t or won’t. To gain buy- in from both the bottom and 

the top is to ensure both the “can” and the “will” of deployment— both 

the capacity and the authorization. Executives approve change, and yet 

those executing must also comply. We must achieve full- stack organiza-

tional buy- in.

Different decisions, same story. This chapter’s story is a prequel to 

the episode with Chuck. Here, Jack works to get prescribed truck load-

ing implemented properly. Only later did he get Chuck to approve pre-

scribed truck navigation.

The efficacy of technology so often comes down to human adoption. 

“The most difficult part of my job is not actually working with math-

ematicians to come up with a beautiful model to solve a problem,” 

lamented a keynote speaker years later, as he strode across the stage 

at Machine Learning Week 2022. As the conference chair, I’d enlisted 

another leader from UPS, network planning and optimization director 

Yentai Wan. He continued, “The most difficult part of my job is actually 

deployment. It’s the so- called change management. How do I convince 

those end- users to switch from the legacy system and leverage the mod-

ernized technology we build out?”

Such change- management challenges aren’t new in general, but 

when it comes to ML projects, the need to shrewdly manage operational 

change is often overlooked. The advanced modeling algorithm itself 

absorbs much of the project’s attention and seems to promise the moon. 

ML delivers a rocket, but those in charge still must oversee its launch.

Training Daze

Large- scale change requires advancing an inspirational vision, 

building relationship capital, and maintaining organizational align-

ment . . . leadership simultaneously embraces unifying and disrup-

tive ideals.

— Christopher Hornick, The Last Book of Leadership
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In order for transformation to be successful, leaders must approach 

it in ways designed to  .  .  . drive emotional commitment from 

employees.

— Andrew White et al., “Organizational Transformation Is an 

Emotional Journey,” Harvard Business Review

With PFT’s effectiveness in question, Jack felt the heat. But he and his 

team still saw the same potential as always, even if the payoff was pres-

ently delayed. The problem was in the human piece, not the technical 

system. Jack and his team had underestimated the effort required to 

gain widespread buy- in and compliance. It was time to follow through 

in that effort.

So they doubled down on change- management efforts. At each ship-

ping center, the training team would have to stick it out, refusing to 

leave until performance results were attained. Transferring knowledge 

wasn’t enough. The center’s staff might be fascinated by the new sys-

tem, but that excitement was often just a flash in the pan. Left on their 

own too quickly, they would return to old routines.

How do you reform stubborn creatures of habit? There’s always sheer 

will and an iron fist. Big change requires some law enforcement. The 

team supervised, cajoled, and even micromanaged a bit. For example, 

loaders who struggled to break old habits were reassigned to new areas 

with which they weren’t familiar, where they wouldn’t recognize deliv-

ery addresses. You can’t take the knowledge out of a person, but you 

can take the person out of their domain of knowledge.

But babysitting and arm- twisting go only so far. Rather than relying 

solely on the application of pressure, Jack’s team mobilized by sharing 

the rewards of success. The trick was to reward in terms of short- term 

success since improvements to bottom- line efficiency would take some 

time to materialize. “Because those early transition days are not neces-

sarily profitable, we had to use a balanced scorecard that would reward 

managers who achieved leading indicators,” Jack explains. “If you’re 

doing these leading things that are in your control, how can the lagging 

indicators of dollars saved not follow?”
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The team implemented scorecards that reported on staff adherence 

to the improved procedures, flagging when there were more than a 

small number of overrides or when drivers would have to wait for their 

truck to finish loading and depart late. Only after a passing grade would 

the shipping center “graduate” and the training team leave.

This performance- management tactic worked. It increased adher-

ence to centralized decisions and decreased the number of decentral-

ized decisions made on the fly. Off came the training wheels.

Achieving these quicker, incremental wins changed the conversa-

tion, gaining renewed support from the top. The budget and available 

resources nudged up and the training team grew to cover more ship-

ping centers. A typical shipping center required five training personnel 

working on- site for many weeks. To meet the extraordinary demands 

of this full- scale change- management process, Jack’s deployment team 

ultimately grew to about 450 (and later to 700 for the ORION naviga-

tion system described in the introduction).

But as positive results began to show, a new concern came into 

focus: How could Jack prove that the improvements were from his PFT 

optimization system rather than from other changes? Across UPS, a 

plethora of overlapping efforts were in play, all attempting to improve 

operational efficiency. The onus was on Jack to somehow demonstrate 

that his system was the cause of most of the observed improvements.

When You Don’t Need Humans in the Loop

With the EduPay project, I faced the same two deployment challenges 

as Jack: (1) getting models properly integrated to take effect and (2) 

establishing due credit for the value they generated. He was delivering 

packages and I was delivering ads, but ML’s challenges are universal.

Fortunately for me, the first challenge, integration, was more 

straightforward to address for my project with EduPay. For one thing, 

the scale was about one one- hundredth UPS’s scale. Every day, his sys-

tem would have to decide how to route each of 16 million packages. 

But mine was still hefty, deciding which ad to show about 200,000 
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times a day. The smaller magnitude did little to alleviate the engineer-

ing challenge.

More than the difference in scale, the main way I had it easier was 

that my project would automate decisions rather than support human 

decisions. I got to knock the human out of the loop. That makes for a 

simpler project. It’s easier to get computers to follow instructions. After 

all, that’s what they’re built to do. Jack needed hundreds of people to 

train the humans. I only needed an engineer or two to reprogram an 

aspect of EduPay’s website.

ML projects often automate decisions, such as with response model-

ing, churn modeling, and spam filtering. Each time a model’s output 

determines whether to contact a customer or relegate an email message 

to your spam folder, there’s no human in the loop. The system acts 

autonomously.

Decision automation: The deployment of a predictive model to 

drive a series of operational decisions automatically.

When humans are out of the loop, they aren’t out of the picture. 

Automation streamlines a central piece of the process, but humans are 

still involved somewhere down the line. After a model targets a market-

ing campaign, even if you manually lick each stamp, it’s still decision 

automation, since the batch of yes- contact/no- contact decisions was 

made unilaterally by the model. For some fraud detection projects, the 

model decides which transactions to manually audit for fraud, but this 

decision is automatic, and, indeed, most transactions go through with-

out human involvement. A credit score may determine that some small 

loan applications go through automatically, some are denied automati-

cally, and some are sent to human loan officers to render a final deci-

sion. Since the assignment to those three bins is automatic for each 

application, some would call this “decision automation,” but others 

would call it “partial automation.”

On the other hand, sheer complexity prohibited the UPS project from 

implementing decision automation. The project involved an unusually 

long distance between prediction and decision. Deliveries are predicted 
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and these inform a sophisticated planning system that assigns both pre-

dicted and known deliveries to trucks so that each truck’s route that day 

will be efficient. The predictions affect the final decisions, but more 

indirectly. Due to operational complexity, the decisions are only semi- 

automatic, with human experts modifying them as needed.

But plenty of more straightforward deployments also involve 

humans in the loop. Even when each prediction informs each deci-

sion in a direct, clear-cut manner, full automation isn’t usually a con-

sideration for human resources, healthcare, and law enforcement, for 

example. In those arenas, computers don’t have the final word. Only 

humans can make the weighty decisions of whom to hire, how to diag-

nose or treat a patient, or whether to parole an inmate.

By supporting human decisions, a model augments rather than auto-

mates. For example, if a model indicates that a job applicant is very likely 

to succeed, this may affect a hiring manager’s thinking. Or a model may 

signal to a customer service representative that the individual to whom 

they’re speaking is likely to cancel their subscription. The representa-

tive can take this under advisement as they like, depending on how 

the conversation is going. By working together, human/machine teams 

often prove to outperform either party alone. As American economist 

Leo Cherne put it, “The computer is incredibly fast, accurate, and stu-

pid. Man is unbelievably slow, inaccurate, and brilliant. The marriage of 

the two is a force beyond calculation.”

Decision support: The deployment of a predictive model to 

inform operational decisions made by a person. In their decision- 

making process, the person informally integrates or considers the 

model’s predictive scores in whatever ad hoc manner they see fit. 

Also known as human- in- the- loop.

In general, companies prefer decision automation when feasible. 

Often, the bottom line is served by leaving humans out of the loop so 

we can leverage the sheer speed and efficiency of the machine. In that 

case, we dispense with much of the effort needed to train people— 

but we must provide the machine with a bit of extra instruction that 
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supplements the model predictions themselves so that they can be 

acted upon.

Translating Predictions to Actions

For EduPay, predictions drove ad selection in a relatively direct 

manner— but you always need some customized logic to top things off. 

A user arrives on a web page, so it’s time to pick the ad. The system has 

291 models— one per ad— and uses them to derive 291 probabilities. 

Each one tells you the chances that this user would respond if shown 

the corresponding ad. If you choose the ad with the highest probability, 

you’re most likely to receive a response from the user.

But there was another factor at play: each ad’s bid, that is, the amount 

the sponsor would pay for each response. No surprise: EduPay’s aim was 

to increase revenue, not clicks. So the expected return for each ad was 

calculated, simply by multiplying the probability of a response by the 

bid. For example, consider choosing between these two ads:

Ad A has a probability of 20 percent and a bid of $5, so the 

expected return is $1.

Ad B has a probability of 10 percent and a bid of $15, so the 

expected return is $1.50.

The system will choose ad B, even though it has a lower probability 

of response. By running things this way, we don’t maximize responses, 

but we do maximize revenue. Recall the chapter 3 sidebar where we 

similarly transformed the probability that a debtor would repay into 

the expected return by factoring in the revenue generated by a loan.

Beyond this, EduPay also had to filter ads by eligibility. Sponsors 

would only pay for responses by eligible candidates, such as certain 

military recruitment pertaining only to users who were seventeen years 

old or older.

In the end, simple logic and arithmetic translate predictions to 

actions. For each ML project, leaders manually design this transla-

tion based on business pragmatics and requirements. The translation 
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scheme may be detailed and particular, but for most ML projects, it’s 

not terribly complex.

For card fraud detection, model deployment and score translation 

are carried out separately, by two different companies. FICO deploys 

the Falcon model for a bank. For each transaction, it delivers a score 

between 1 and 999— a cosmetic spin on the traditional 0- to- 1 or 0- to- 

100 range within which probabilities are normally expressed, which 

FICO employs only to make the scores feel more friendly to the bank. 

It’s then entirely up to the bank how to act on the scores, depending 

largely on their tolerance for fraud in comparison to their tolerance for 

interrupting customer purchases. For example, a bank could implement 

rules that treat different risk levels differently, depending on the dollar 

amount of the transaction, such as:

If the charge is more than $500 and the score is more than 950, 

then decline the transaction.

If the charge is more than $100 and the score is more than 980, 

then decline the transaction.

If the charge is more than $100 and the score is more than 900, 

then contact the customer to confirm the charge.

. . . 

Such rules usually fall outside the jurisdiction of data scientists. 

Banks develop them manually, based on policies, regulations, and busi-

ness strategy. The rules are not generated automatically— they embody 

how the company has decided to use a model, rather than being part 

of the model itself. Small banks may employ somewhere between fifty 

and 200 such rules, while a large bank could have thousands. In the 

end, depending on the rules set by a bank, the system usually winds up 

intervening about fifteen to thirty times for every 1,000 transactions.

There’s no secret sauce required to translate from prediction to 

action. Even while the logic may grow in detail, this translation doesn’t 

require any form of advanced analytics. Beware the often- invoked mis-

nomer prescriptive analytics, which falsely implies that you need another 

kind of sophisticated technology beyond predictive analytics to move 
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from predicting outcomes to prescribing actions. Predictive analytics, 

the use of ML for certain business applications, is already intrinsically 

prescriptive. Its purpose is to prescribe actions and it alone already gets 

you quite close to doing so. For the last few inches, you only need 

carefully crafted, customized logic— not a whole new class of analytical 

methods. Needlessly introducing the term “prescriptive analytics” has 

caused confusion by implying the presence of novel advanced methods 

where none exist.

With an established method to translate model scores to ad selec-

tion, the EduPay project was almost ready to launch. Next, we had to 

embed the models into a live website.

How to Export a Model

EduPay engineers were at the ready to integrate my models— but they 

were entirely new to ML. What does it take for a quant to transfer his 

model to a group of engineers?

To deploy a model, you must set it free. You’ve got to export it out of 

the ML software tool and into the operational system. Nowhere is this 

send- off more literal than when you embed a model within a mobile 

device. Within each iPhone sits a neural network for face detection. 

Meanwhile, the Google Pixel 6 was the first phone to house a separate 

chip to run models.

But even when you aren’t deploying to an untethered device, your 

model must migrate just the same— to the hands of coders who will 

integrate it as the functional apparatus it was meant to be. Most ML 

software tools facilitate this in a couple ways. One is to generate code. 

At the press of a button, it translates the model’s mechanics into Python 

or C so that an engineer can more easily integrate it into an existing sys-

tem. Alternatively, an engineer can create a stand- alone software mod-

ule that houses the model and is invoked via an application programming 

interface (API)— which is a standard mechanism by which one system 

can call on another. This provides to the engineers a function that they 

can invoke from within their code, passing to it the details about an 
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individual— that is, the model inputs— and receiving in return the pre-

dictive score for that individual.

I didn’t have it so easy. Since I’d programmed the modeling method 

from scratch, I had no industrialized tool. To make matters worse, I 

wasn’t an engineer. Although I’d been programming since I was ten, 

I’d never pursued a career in it. As an academic- turned- analytics con-

sultant, I knew what needed to be done conceptually, but I was in no 

position to personally translate my models into production- ready code 

and integrate that code into an operational system.

So, I spelled it out for them. In a dense, three- page, single- spaced 

Word document entitled “Scoring Module Requirements,” I wrote 

down every single detail the engineers needed, every step they would 

need to code in order to use the models to predict responses to ads. For 

a given user and a given ad, it described how their code should look up 

a bunch of values within a table I’d created— the table had about 50,000 

rows of values that constituted the 291 models— and then apply the 

right arithmetic. The document ended like this:

Finally, after calculating the relative probabilities of a response (p1) and of 

no response (p0), normalize the two with the formula p1/(p0 + p1). This is 

the absolute probability of a response, that is, the score output by the model.

Given the characteristics of an individual that make up the inputs 

to a model, calculating the score isn’t all that complex— especially with 

the simple kind of model I’d used for EduPay, Naive Bayes. But pulling 

together those inputs on the fly is a whole ’nother ball game.

The Data Disconnect: Getting the Inputs to a Deployed Model

Getting the data right and having it in the right place at the right 

time is 80– 90 percent of the problem.

— Scott Zoldi, chief analytics officer, FICO

If the struggle to deploy predictive models is a battle, then the chal-

lenge of hooking up its inputs is right at the frontlines. Somehow, 

a deployed model must receive the right set of values each time the 
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model is invoked. At the moment a model is to score an individual 

case, it needs its inputs— the values that characterize that case. Having 

those inputs at the right place at the right time may be the very trickiest 

engineering challenge when architecting for deployment.

The problem stems from the data disconnect, an abominable divide 

between model development and deployment. When preparing the 

training data, the data scientist is typically focused only on incubating 

a model and ensuring that it performs well in “the lab.” To that end, 

they set up the input variables— positioned as columns in the training 

data— in whatever ad hoc manner is most convenient.

This leaves a formidable challenge for deployment. The system hous-

ing the model will need to recreate the variables exactly as the data 

scientist set them up during development, mimicking the form and 

format they held within the data scientist’s system or within the ML 

software, both of which are typically foreign to the engineers.

In that endeavor, every detail matters. For example, my EduPay mod-

els took the email domain as input. Should it be a string of characters 

like “yahoo” or “gmail”? Or should it also include the “.com”? Must it 

be all lowercase? Should Boolean variables like “US citizen— yes or no” 

or “Has opted in for marketing email— yes or no” be represented as 1 

and 0, “yes” and “no,” or “Y” and “N”? How do you represent a value 

that’s simply unknown, a.k.a. a missing value— is it the word “NULL,” 

an empty string, a negative one (– 1), or something else? How do you 

calculate the SAT verbal- to- math ratio if the math score is unknown, 

considering that dividing by zero is impossible?

When it comes to transferring a model from one system to another, 

it’s like we’re stuck in 1980 typing commands at a DOS prompt with 

no spell check. Get any detail wrong, and the model doesn’t work as it 

should.

To make matters worse, model inputs may originate from various 

siloed sources across the organization. Since the inputs were designed 

to comprehensively represent much of what’s known about an individ-

ual, the databases that hold them could reside across disparate systems. 

For example, demographics may come from a customer relationship 
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management database, while variables such as “Already seen this ad 

before— yes or no” may only be available by scanning an operational 

log to check. Pulling these together on the fly at scale during deploy-

ment presents an engineering challenge that data scientists often fail 

to anticipate.

It’s a tough job. According to a 2021 survey of data engineers, 97 

percent feel “burned out” and 78 percent wish their job came with a 

therapist. Although that’s not a joke, the report, by DataKitchen and 

data.world, couldn’t resist asking, “Tell me about your motherboard.”

One Firm’s Firm Approach to the Data Disconnect

The antidote to the data disconnect? A new connection. Model devel-

opment and deployment must be bound and inseparable. The two have 

traditionally been handled discretely, as isolated steps— conceptually 

linked yet decoupled in practice— but successful leaders seek to unify 

them so that preparing the data for modeling and engineering the 

inputs for deployment are one and the same.

But this means asking data scientists to change their habits and 

to accept some new responsibility. Many have grown accustomed to 

thinking up and implementing input variables at will during the model 

training step— without paying heed to how they’ll be made available 

during deployment. With a focus on developing and evaluating models 

offline, they view engineering as a distinct job, department, and mind-

set. Data scientists often see themselves in the business of prototyping, 

not production.

Nothing breaks techie habits like executive authority. Enter Gerhard 

Pilcher, the president and CEO of Elder Research, a widely experienced 

data consulting firm with which I’ve collaborated many times. Ger-

hard has instilled best practices across the firm’s client projects that 

have data scientists collaborating in detail with data engineers from the 

beginning of each modeling effort.

I asked Gerhard if he had implemented this change with a rule pro-

hibiting data scientists from cobbling together their training data in a 

http://data.world
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vacuum. He shied away from “rule,” but he put it this way: “We dis-

courage ad hoc data aggregation. That change took a little while to 

take root.” His firm but friendly leadership ushered the team through a 

culture shift and into a new paradigm.

Under the guidance of this improved practice, data scientists request 

the model inputs that they will want available for model deployment 

from the data engineers rather than only hacking them together on 

their own for the training data. It’s a bit less impulsive and a bit more 

team spirited. With this process in place, the data infrastructure to 

support deployment— called the data pipeline— is already being con-

structed even during the model training step. Come deployment time, 

the process to deliver inputs on the fly is repeatable and reliable. This 

is because the pertinent data sources have been pre- connected during 

model development. This way, “once you’ve tuned and validated the 

model,” Gerhard says, “you can deliver the result much more easily.”

By designing the data pipeline early, you not only proactively pre-

pare for deployment— you also win by recognizing infeasibilities early, 

moving up project decision points and even failing fast when needed. 

Since some data sources can be costly to integrate, “the client will expe-

rience sticker shock,” warns Gerhard. “We can preempt that shock and 

ease the blow, or cancel if necessary. The sooner you kill an effort that’s 

not deployable, the better.”

This makes deploying ML projects a scalable endeavor. My EduPay 

project would have benefited— without it, I had to brute- force my way 

to deployment by painfully detailing the inputs’ calculations within 

my “Scoring Module Requirements” document and hoping the engi-

neers would get all of it right. FICO Falcon, on the other hand, has by 

now streamlined its data pipelines by sheer repetition, since each time 

FICO sets up the system for a new bank, the same inputs must be calcu-

lated with that bank’s data.

Beyond the data disconnect, Elder Research has also learned other 

hard lessons about the change- management challenges of deployment, 

the struggle to gain acceptance from those on the ground— much the 

same as the lessons UPS has learned. ML “often dictates a major change 
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in how people act,” says founder John Elder. “Many people revert to 

the old way of doing things instead of trusting the model. We studied 

this and found several ways to improve the environment of trust— both 

technical and interpersonal. People (often rationally) fear change. They 

don’t want to abandon the way they make decisions. The most impor-

tant way to address that is to work side- by- side with potential allies 

from the very beginning and earn their trust.”

These process improvements worked. By implementing them, Elder 

Research boosted its deployment track record. During the first decade 

after the company was founded in the mid- 1990s, only 65 percent of 

the models they developed for clients were deployed, even though 90 

percent met predictive performance requirements. This success rate was 

about three times higher than that of the industry as a whole, but the 

firm was determined to do better. By implementing these new practices, 

over the following ten- year period, the firm’s model- deployment rate 

soared from 65 to 92 percent, and its model performance success rate 

rose from 90 to 98 percent.

The proactive tactic of establishing a tight connection between 

model development and deployment is a key ingredient for success. But 

our work is not over yet. After resolving the data disconnect, one major 

engineering challenge remains: ensuring the model operates quickly 

enough.

The Need for Speed: Driving Decisions in Real Time

For some deployments, models must act fast. When an EduPay web 

page loads, the chosen ad must appear immediately. To that end, the 

models must drive their decisions instantaneously. When a fraudster 

attempts to perform a card transaction, FICO Falcon must act quickly 

enough to block it. Autonomous vehicles must recognize obstacles 

quickly enough to steer or brake.

For other deployments, unhurried, offline scoring fits the bill. For 

example, take direct mail targeting. You may have 10 million contacts, 

each to be scored according to the likelihood they’ll buy if you send 



186 Chapter 6

them a brochure. But even with that many, your system would only 

need to score a few hundred per second to complete the task overnight, 

or just a couple dozen per second if you have a few days and a few 

computers.

The same is true for other kinds of operations. Offline, batch proc-

essing often suffices for purchase orders, insurance claims, banking 

checks, or applications for insurance coverage or lines of credit. For 

these uses, introducing scoring to an existing process doesn’t usu-

ally impose intense performance challenges. Higher speeds could still 

improve organizational efficiency, but we don’t need to scrutinize each 

millisecond.

For these applications, you don’t necessarily even need to export 

the model. Many ML software tools can apply a model to score a batch 

of cases from within the tool itself. You simply point the tool toward 

a data table of new individuals, and it generates the score for each 

one, which can be tacked on as a new column of data. This use of a 

model is still called model deployment even though the model itself isn’t 

exported.

But many of the greatest business opportunities for ML require real- 

time scoring. This is because high velocity means high volume— the 

operations that take place most quickly happen most abundantly. To 

optimize these largest- scale processes, model scoring must take place in 

real time, at the moment of each interaction.

On the web, speed is of the essence. According to Google, when 

search is half a second slower, traffic and revenue suffer by 20 percent. 

Similarly, in its experiments, Amazon showed that even web- page slow-

downs of 100 milliseconds result in a “substantial and costly” drop in 

revenue. Booking.com found that an increase of 30 percent in latency 

costs about 0.5 percent in conversion rates— “a relevant cost for our 

business”— and the web analytics firm Kissmetrics reports, “A one- 

second delay in page response can result in a 7 percent reduction in 

conversions.”

Latency also clobbers automated trading since a handful of millisec-

onds can mean a missed price opportunity. Estimates show that if an 

http://Booking.com
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electronic trading system lags 5 milliseconds behind a competitor, this 

could cost $4 million per millisecond.

Speedy Delivery: Models Work Fast

Great news: Model scoring can be fast, as fast as most any project needs 

it to be. Model scoring is not the learning part of machine learning— 

that’s the “heavy lifting.” Rather, it’s the application of what’s been 

learned. To score with a model is usually only a matter of applying a 

fixed mathematical formula that does not involve any loops. Comput-

ers do so super quickly.

The previous step, model training, consumes the most time. It must 

operate across an entire set of training data, which could consist of 

hundreds of thousands or millions of learning cases. That algorithm 

eats up many computational cycles to generate the model, running 

through the data with its trial- and- error process. Model training is typi-

cally executed as an offline process that doesn’t need to utilize real- 

time systems. In rare cases, an already- deployed model is continuously 

updated as new training examples are encountered, but such online 

learning is very uncommon, since it’s complex and costly to implement 

and it fails to deliver— if properly scheduled, periodic batch training for 

refreshing a model usually results in model performance that holds up 

virtually as well.

Once trained, models work fast. To calculate the score for an indi-

vidual, models need only operate on the input data for that one indi-

vidual. And since the model itself is often a relatively simple structure, 

applying it can be a relatively lightweight step for the machine. For 

example, a logistic model is simply a weighted sum of the inputs, with a 

bit of nonlinear “squeezing and stretching” added on for good measure.

Of course, the right computer hardware must be in place to score in 

real time. But you may well already have it: the existing hardware that’s 

currently running the high- speed operations you’re aiming to improve. 

For many projects, high- performance systems that have already been 

optimized for online functions can potentially also handle the relatively 
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light additional task of scoring, incorporating it so that there’s only a 

miniscule impact on speed.

For detecting payment card fraud, models often deploy on a main-

frame computer. Often misunderstood to be legacy technology, main-

frames have simply never stopped advancing over the decades. They 

achieve very high velocities and are so reliable that they typically run 

for more than a decade without any outages. Financial institutions use 

them to process 90 percent of all credit card transactions.

Depending on the bank that’s using it, FICO Falcon sometimes 

deploys its fraud model on a mainframe and sometimes on less expen-

sive systems such as a Linux server in the cloud. Either way, the aim is 

to score each transaction in less than 30 milliseconds, including the 

latency incurred if each request for a score must travel to the cloud and 

back. The company has confirmed that many banks take less than 100 

milliseconds to score each transaction, sometimes averaging only 10 

milliseconds.

Mainframe manufacturers are quick to point out how much cloud 

deployment can slow things down. Jonathan Sloan, who runs market-

ing for ML solutions that run on IBM’s Z system, which is the front- 

runner of the mainframe market, conducted experiments to compare 

the speed of scoring with an on- premises mainframe to scoring with 

calls to a computer in the cloud. His results showed that the cloud can 

multiply the time it takes by a factor of over 80, for example, from 1 

millisecond to 80+ milliseconds. With a mainframe, “Organizations can 

achieve much greater throughput, dramatically better response times, 

and greater confidence in meeting service- level agreements,” he and a 

colleague wrote in a white paper.

Either way, whatever kind of system you already have handling 

large- scale operations, it can usually also handle the model. A bank 

that’s processing hundreds of thousands of card transactions a day can 

introduce one more step for each one: scoring with a fraud detection 

model. Likewise, EduPay’s web servers were already hosting its heavily 

visited website and they could also handle model- scoring in order to 

improve ad selection each time the site served an ad to a user.
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Organizations can deploy in real time— we have the technology— 

but that doesn’t mean that they will. Many still hesitate.

The Greatest Opportunities Are the Hardest to Tap

Organizations often fumble the greatest opportunity that ML has to 

offer: optimizing the largest- scale operations. Since they’re often the 

highest- speed operations, they require real- time deployment, which is 

harder to greenlight. It’s more complex and carries greater risk, since it 

means changing mission- critical, high- speed systems.

As a result, integrating real- time predictive scoring is more rare 

and cutting- edge than many realize. During its formative decades 

when the ML industry was incubating and developing— and building 

a reputation— most models were deployed not in real time but only 

offline in “batch mode,” for applications that didn’t require real- time 

scoring, such as targeting direct marketing and scoring credit appli-

cants. For most ML projects, this is still the case.

Deploying in real time increases the potential gains— but also the 

resistance to change. It’s only human nature. The larger the scale, the 

greater the fear. If you suggest a plan to enhance operations that are 

currently flying by at thousands of transactions per second, some of 

your colleagues just might freeze up. Some will argue that the company 

can’t possibly afford the cost of introducing a new step to each and 

every transaction— nor the risk that doing so could slow things down.

But neglecting to move forward incurs a severe opportunity cost and 

puts the organization’s competitive stronghold in jeopardy.

Back to basics. The six- step practice of bizML overcomes resistance 

by making known what is otherwise a fearful unknown. Only by engag-

ing and ramping up decision makers on the end- to- end plan— so that 

they fully understand both the value and the technical feasibility of 

deployment— can a leader overcome an otherwise costly case of analy-

sis paralysis.

One simple clarification especially greases the wheels for the green 

light: Runtime operations remain unaffected by the heavy lifting of 
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model training. Data scientists train the model somewhere else, spar-

ing online systems from that burden so that they may continue run-

ning smoothly. Those well immersed in ML may neglect to make this 

abundantly clear, but this distinction will assuage stakeholders, who are 

understandably protective of operational systems. They will be relieved 

to hear that there’s no need to strain real- time systems that are already 

handling operations, that the heavy lifting carried out by modeling 

algorithms is kept apart, handled by separate resources allocated to data 

scientists for model development.

I was pleased to find that EduPay was both capable of and confi-

dent about deploying my models— they could and they would. But 

confidence is never literally 100 percent. Rather than swapping out the 

existing ad- selection system entirely, it would be safer to start with an 

incremental step.

Mitigating Deployment Risk with a Control Group

Melissa, the director at EduPay who’d brought me on board, proposed 

a prudent next step: Deployment would start by using the models only 

half the time. For half the users, nothing would change, but the other 

half would see ads selected by the models.

This is A/B testing, but not the way web marketers usually conceive of 

it. Typically, you set up a head- to- head comparison between two simple 

options. Color 1 versus color 2. Product A versus product B. But in this 

case the website would compare a complex ad- selection method with 

an even more complex, model- based ad- selection method. Data scien-

tists call this a controlled experiment.

Whatever you call it, this tactic measures how much the new 

method improves the business metrics over the existing legacy method 

by trying them both simultaneously. This is critical since, if you try 

one for a predetermined time period, stop, and then try the other, then 

you are not controlling for other changes that may have taken place 

in the meantime. You can’t directly control all sorts of factors that 

might make the comparison unfair, such as seasonal shifts, changes in 
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customer trends, or other concurrent operational changes. As a result, 

even if performance improves with deployment, you can only be sure 

it resulted from the model (or models) if you simultaneously track a 

control group.

Beyond establishing credit where it is due, a control group serves 

another critical need: mitigating deployment risk. Many things can go 

wrong when you deploy, resulting in performance that is disappoint-

ing if not disastrous. After all, any new system might have bugs— and 

in the case of model deployment, you’ve opened yourself up not only 

to logical or programming bugs but also to quantitative bugs, including 

mistakes in the math or misconceptions about the data.

Fortunately, you can manage this risk as conservatively as you’d like 

by deploying incrementally, just a bit at a time. For example, rather 

than jumping to Melissa’s 50/50 champion/challenger runoff, you 

could start with an even smaller, more incremental step by introducing 

the model- based process only 5 percent of the time. After this, as trust 

increases, grow from there. Along these lines, UPS also started with only 

a partial deployment, initially integrating the system at only a few ship-

ping centers.

Without a control group, it’s all too easy to grant undeserved credit 

to a model. This is a common mistake that’s often made, for example, 

with direct marketing. If a targeted campaign elicits a high response 

rate, stop and think for a moment before you congratulate the market-

ing manager. It may be that the model is doing a great job identifying 

customers more likely to buy, but that most of them would have bought 

anyway, even if not contacted. In that case, the money spent mailing 

brochures may not have been making an actual impact on sales. A con-

trol group would avert this pitfall by righting the misconception. If you 

simultaneously observe the purchases made by a control group of cus-

tomers with whom no contact was made, then you have your baseline 

for comparison.

For EduPay, the control group provided a critical gauge, since we 

were moving to deployment with a lot of uncertainty. We had no 

solid method for estimating the gain beforehand. We could evaluate 
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individual models, but the combined effect of using all 291 models for 

each ad choice was an unknown before deployment. Improving over 

the existing legacy method was not a sure thing since it was a tough 

champion to unseat. Even though the existing method didn’t personal-

ize ad choices based on the particulars of each user, the fact is that you 

do well by simply serving up the most universally popular, high- paying 

ads that a user hasn’t yet seen. That’s a standard approach for online 

ads. Any time a model- based system goes with a less universally popular 

ad, it takes a risk.

It’s no wonder that Gary Loveman, when he was at Harrah’s casino— a 

CEO with a PhD in economics from MIT— famously said that he’d fire 

any employee who runs an experiment without a control group just as 

quickly as one who steals from the company.

After this champion- challenger runoff, the EduPay results came in. 

In comparison to the control group, model- based ads boosted revenue 

by 3.6 percent, enough to aggregate an extra $1 million every nineteen 

months— and possibly more, if extended from interstitial ads to also tar-

get those embedded within other web pages. It achieved this improve-

ment by sometimes selecting ads that were less universally profitable, 

but that the individual customer was more likely to click on. As a result, 

the overall response rate increased more than revenue did— by 25 per-

cent. It’s safe to assume that this higher rate of response meant that 

the users were now experiencing even greater ad relevancy, more often 

seeing ads that served their interests.

When it comes to large- scale systems, a boost of a few points goes 

a long way. According to McKinsey, “Our research finds that for each 

$5 billion in credit balances a bank originates, an increase of just one 

percentage point in the predictive power of a credit model could reduce 

losses by up to $10 million within the first year alone.”

Credit Where Credit Is Due: A Control Group at UPS

UPS also saw the same potential from a small win. As Jack at UPS put it, 

“Little things matter. If we can just reduce one mile per driver per day 
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in the U.S. alone, we can impact the bottom line by $50 million . . . one 

minute per driver per day is worth $14.6 million.”

Big or small, Jack needed a win. Having doubled down on deploy-

ment training with large teams devoted to the task, there was every 

reason to believe business performance would benefit.

And Jack had a control group against which to compare performance 

improvements: all the UPS shipping centers that hadn’t yet deployed 

his PFT system. Since deployment had started at only a limited number 

of trial locations— a sample that was considered representative of ship-

ping centers in general— the performance at all the other sites served as 

a control.

Initial signs were good. Within a few months of deployment, it 

became clear that performance had improved by 15 percent over con-

trol sites, according to a highly visible key performance indicator (KPI) 

within UPS: stops- per- mile. The more efficiently a truck’s route was 

planned and utilized, the more delivery stops it would make for every 

mile it drove. As stops- per- mile increased, the aggregate miles, gas, and 

driver time needed to fulfill a day’s deliveries decreased.

PFT flourished, eventually gaining notoriety as a success: It was sav-

ing 85 million miles annually. The press was ready to congratulate 

rather than eviscerate. InformationWeek even placed the project atop its 

annual “20 Great Ideas to Steal” list.

This great gain came from the deployment of the package- prediction 

model in combination with other related improvements, such as cen-

tralizing the package- delivery planning at each shipping center. Jack 

informally credits the predictive model itself with an estimated 10– 25 

percent of PFT’s wins, although it is hard to differentiate between the 

contributions of mutually interdependent innovations.

The rest is history, as already told in this book’s introduction: Jack 

built ORION on top of PFT and convinced the executive Chuck to 

authorize the system, which prescribes turn- by- turn driving routes. 

The overall efficiency compounded even further, ultimately saving 

the company 185 million miles and 185,000 metric tons of emissions  

every year.
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The End Is a New Beginning

“Happy ending” is an oxymoron— if a good thing ends, you’re unhappy. 

Once you deploy a model, you’ve only just begun to reap the benefits. 

Likewise, you’ve also only just begun to maintain the model. To keep it 

in play and sustain its effectiveness, you must monitor and periodically 

refresh it. Proceed to this book’s conclusion for the lowdown on model 

upkeep, as well as a few other practicalities for your ML project: how 

to sell it, who to enlist for it, how long it takes, and how to responsibly 

manage its societal impact.



BizML Cheat Sheet

The Strategic Playbook for Machine Learning Deployment

1. Establish the deployment goal (value)

Define the business value proposition: how ML will affect opera-

tions in order to improve them.

2. Establish the prediction goal (target)

Define what the ML model will predict for each individual case.

3. Establish the evaluation metrics (performance)

Determine the salient benchmarks to track during both model 

training and model deployment and determine what performance 

level must be achieved for the project to be considered a success.

4. Prepare the data (fuel)

Define what the training data must look like and get it into that 

form.

5. Train the model (algorithm)

Generate a predictive model from the data.

6. Deploy the model (launch)

Use the model to render predictive scores and then act on those 

scores to improve business operations.

After step 6: Maintain the model (upkeep)

Monitor and periodically refresh the model as an ongoing process.

Key Execution Strategy

All steps require deep collaboration with business stakeholders.

Business stakeholders must hold a semi- technical understanding of ML.

The steps are not executed linearly— backtracking prevails.

— from The AI Playbook by Eric Siegel
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ML’s Elevator Pitch, Staff, Timeline, Upkeep, and Ethics

When you’re selling machine learning deployment, swimming upstream 

against resistance and inertia, it sometimes feels like you’re hustling. 

But in actuality, you’re recruiting. You’re enlisting collaborators and 

orchestrating a vision. Don’t get me wrong; as you advocate for the 

project, there are times you might need to aggressively cajole. During 

parts of Jack Levis’s story, it looked like a battle of wills between him 

and a universe of naysayers. But sometimes it takes a hard sell— not 

only to prevail and achieve buy- in, but to catalyze a fruitful, unified 

collaboration across the enterprise.

At first, the imbalance is real: You get it and they don’t. And they 

may be slow to come around. But once they finally do, it’s up to you 

to embrace a profound shift in perspective: More than a skeptic you’ve 

convinced, they’re now a critical partner who will deliver new insights 

that the project needs. Only by having sold them on your plan can you 

now jointly refine and improve it.

Now that we’ve seen the entire end- to- end process, it’s time to distill it 

back down to a brief proposition. This book concludes by describing how 

a machine learning initiative must begin: pitching the project. In a nut-

shell, you must sell the way in which ML will launch and the value of 

doing so. This conclusion also rounds out the bizML practice with the 

who, how long, and then- what: who constitutes the project team, how 

long it takes, and then what ongoing maintenance you must perform to 

keep the model in operation. Finally, I end with the enormous ethical 

responsibilities you accept when you deploy ML.
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When you first pitch, bending over backward is part of the deal. 

You may feel like this stuff should basically just sell itself. After all, 

the value proposition can seem totally obvious when you’re already 

invested in it. The potential operational improvement is a “no- brainer.” 

But, to get the green light, you must get the people in charge not only 

interested but enthusiastic. This means taking a step back from the 

excitement and telling a simple, non- technical story that is dispassion-

ate rather than fervent, one that could just as well come from the lips 

of a truly impartial third party. In the art of sales, evenhandedness is 

more rousing.

To sell ML convincingly, sell it succinctly. Strengthen your pitch by 

distilling it down to the fundamentals: the precise operational change, 

the value of that change, and how ML will achieve the change— in that 

order. It’s time to perfect your elevator pitch.

The Elevator Pitch

No one wants to be sold to, but everybody loves to buy. Give them 

something to buy.

— Jack Levis

The premise to this book’s bizML practice is simple: Reframe “ML proj-

ects” as “operations- improvement projects that use ML.” Leading with 

the scientific virtues and quantitative capabilities of the technology— 

such as modeling algorithms, the idea of learning from data, or the 

notion of probabilities— is putting the cart before the horse. Instead, 

lead with the business value proposition, a simple story about how 

processes will improve.

Here’s an example elevator pitch:

Currently, 99.5 percent of our direct mail is ineffective. Only half 

a percent respond.

If we could increase that to 1.5 percent, that would mean a pro-

jected $500,000 increase in revenue in return for our current 
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marketing spend, tripling the ROI of marketing campaigns. I can 

show you the arithmetic in detail.

ML can hone down the population to whom we’re marketing 

by targeting the customers more likely to respond. This should 

deliver the gains and ROI I just mentioned.

What do you think? Would you support this project or would you 

have objections? What questions do you have?

When you pitch, get straight to the point, the business value and 

the bottom line, and then gauge the person to whom you’re speaking. 

They will be interested in the business value, but they’re not necessar-

ily excited about ML. ML is only the technical solution, the means to 

the end, so, in this early stage, its details can easily distract, confuse,  

or bore.

Your narrowly focused pitch must accomplish three things:

1. Lead with the value proposition, expressed in business terms, without 

details about ML, models, or data. For now, share nothing about 

how ML works, only the actionable value it delivers, the operational 

improvement gained by model deployment. This usually means 

avoiding the words “model” and “deployment.”

2. Estimate the value, a performance improvement in terms of one or 

two key performance indicators (KPIs), such as response rate, profit, 

ROI, cost reduction, or labor reduction. You must include a potential 

KPI win, even if only from scratch calculations. Convey this poten-

tial in simple terms, such as a bar graph that has only two bars to 

illustrate the potential improvement. It’s not yet time to mention 

predictive performance metrics such as lift. Make the case that the 

KPI win will more than justify the expense of the ML project.

3. Stop and listen. Keep the pitch short and then open the conversation. 

Realize your pitch isn’t the conclusion but rather a catalyst to begin 

a dialogue. By laying out the fundamental proposition and asking 

them to go next, you get to find out which aspects are of concern 

and which are of interest, and you get a read on their comfort level 

with ML or with analytics in general.
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After the pitch, you’ve got to interactively gauge when to get into 

details about how ML will be applied— and at what depth and speed. 

It’s more common than you may realize for the business professional to 

whom you’re speaking to feel nervous about their own ability to under-

stand analytical methods. People are skilled at covering this nervousness.

Keep it simple. As with many technologies, convolution and the 

appearance of arcane complexity threaten to extinguish a newcomer’s 

excitement about the potential value. This might leave them feeling com-

pelled only by the pressure that comes from all the “Everyone’s doing it!” 

hype. Nip that in the bud with a straightforward, concrete explanation. 

Cover just enough of the inside mechanics to demystify ML.

Resist the temptation to ride the wave of “AI” hype. It oversells. 

The propaganda’s sheer excitement does successfully broadcast that 

there’s value to be had— but it only distracts from the concrete value 

proposition by idealizing the core technology. Don’t passively affirm 

starry- eyed decision makers who appear to be bowing at the altar of an 

all- capable AI. If you do, here’s the risk that you face: When the hype 

fades and the overselling is debunked, much of ML’s true value proposi-

tion will inevitably be disposed of along with the myths, like the baby 

with the bathwater.

Exercise Patience and Solicit Input

One of the hardest things I have to teach my employees in the art 

of consulting is you have to talk to people much more often than 

you want to.

— John Elder, founder, Elder Research

Data scientists will literally solve AGI instead of talking to a product 

manager.

— Josh Wills, experienced data scientist

As decision makers slowly come around, you may find that they do so 

by way of a long, winding road. The first meeting is only one of many. 

Ramping up others on the proposed initiative is, well, a process.
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In the end, it’s you versus the Fear of Change. Volumes have been 

written on change management. In fact, that’s the theme of this book 

as well. It covers the practice and the background knowledge for man-

aging the particular kind of change made by ML deployment.

But no preordained plan of action is bulletproof against the wild card 

you will ultimately face: human anxiety. “We can’t afford the cost of 

integrating a model into mission- critical operations,” nervous execu-

tives will declare, “nor can we afford the associated risk of doing so.”

Your response is simple: We can’t afford not to. Turn up the heat 

from there as you see fit. If we don’t jump on the opportunity, one of 

a diminishing number of unique differentiators that technology can 

provide, we will incur a severe opportunity cost and jeopardize our 

competitive stronghold. Streamlining operations with models is not a 

question of whether but of when: before the competition does or after? 

Change can be hard, but the facts are much harder. If pure apprehen-

sion is precluding the company from pursuing the value propositions 

that ML has to offer, then the business is getting in the way of doing 

business.

Even as you’re selling, you’re learning. Be prepared to change course. 

You can’t know beforehand what objections, valid feedback, and new 

information may arise. You’re there to listen as much as you are to talk. 

Undoubtedly, you will learn about new pragmatic considerations that 

mean modifying the operational deployment you’ve had in mind.

Ultimately, your persistence will pay off— but only after providing 

more information than you’ve crammed into the elevator pitch. Man-

agement needs more specifics, including the staffing requirements and 

project timeline, in order to finalize their decision. And you will need 

these specifics too, in order to properly execute. Let’s dive into them.

Assemble Your Team: Staffing the ML Project

At a minimum, in addition to the project lead— sometimes called the 

data product manager— you need technical experts to facilitate each of 

the three culminating project steps. Be warned that there’s not a lot of 

agreement on terminology for these roles. Here’s the breakdown:
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For step 4— prepare the data— you need a data engineer or data wran-

gler, someone familiar with the data tables in their current form 

and capable of transforming them into training data. This person 

is responsible for accessing and reconfiguring the data. This task 

will often be split across multiple people, since it involves mis-

cellaneous tasks often assigned to certain database administrators 

and database programmers, and it involves multiple technologies 

such as cloud computing and high- bandwidth data pipelines.

For step 5— train the model— you need a predictive modeler, a 

hands- on expert in core ML methods. This person creates the 

model using ML software that operates on the training data. 

Often, this person takes on the more general title of data scientist, 

so that’s the title named most often throughout the chapters of 

this book.

For step 6— deploy the model— you need an ML engineer capable 

of modifying the existing operational system so that a model is 

newly integrated. The engineering requirements will vary greatly 

depending on what kind of operational change you’re making 

and how the operational system was constructed in the first place.

For a pilot project— an isolated, narrowly focused ML initiative— you 

may not need more than the skeleton staff listed above. With such a 

project, you start judiciously small, and so your staffing investment 

should start small as well. On the other hand, if your project is part of a 

broader analytics initiative that will spawn multiple projects across the 

enterprise, that’s a very different story, one that likely involves shared 

teams and resources across projects.

For most projects, in addition to this technical staff and the project 

leader, you also need another business- side role filled: an operational liaison 

(a.k.a. analytics translator, business translator, data product partner, or inno-

vation marshal). This person bridges the gap between tech and business, 

between the technical project staff and the line- of- business stakeholders 

in charge of the operations that the project will alter. The operational 

liaison ensures the model will be understood and embraced by those 
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running operations. This person works within— or closely with— the line- 

of- business team. The pertinent team may be in marketing, website oper-

ations, fraud investigations, or financial credit application processing. 

The liaison is involved from the get- go, delivering feedback to the ML 

team to ensure the prediction goal, deployment plan, and performance 

objectives are aligned with the operational team’s needs.

Sourcing the ML Project Team

Where do you get these people? After all, folks with these very particu-

lar skills can be hard to come by.

Well, when you need something, there are three ways to get it: Buy 

it, rent it, or make it. For a staff member, that means hire someone new, 

engage consultants, or train existing staff.

External consultants are often central when you’re launching a pilot 

ML project, since, that way, you don’t need to commit to hiring ML 

experts until you have more firmly established the value of the ML 

application that you’re pursuing for the first time. Outsourcing to con-

sultants can be expensive, but the good news is that you can often 

keep this expense reasonably low, since you need these experts only 

for a relatively light engagement. During the first three planning steps 

of bizML, a consultant can be engaged for light “consulting” in the 

literal sense of the word, helping to refine the project plan down to the 

details of the prediction goal, and informing the data requirements. 

Then, most of step 4, data preparation, can be handled by your exist-

ing internal staff. The core predictive modeling is where you’ll need 

the most intensive expert assistance, but that step is relatively short in 

terms of person hours and calendar days.

Eventually, as you tackle more ML projects and move toward estab-

lishing more in- house expertise, training your existing staff is a favored 

way to “grow your own” ML team. In addition to training your staff, 

ML leadership innovator and professor Bryan Bennett advocates for a 

complementary approach he calls the DataScienceStein approach— à la 

Frankenstein’s monster. Since data scientists are hard to come by and 



204 Conclusion

data science involves so many varied skills, he suggests “building your 

data scientist out of a team of people currently on staff or readily avail-

able in the marketplace” with the right complementary skills.

ML experts come from all kinds of backgrounds and scientific fields. 

While your staff further develops its ML skills, keep in mind that we 

see ML practitioners who have moved laterally from all walks of life, 

including neurosurgeons, physicists, and psychologists. It turns out 

that experience in all kinds of quantitative fields often translates quite 

nicely to working in ML.

As you bring staff onboard or upskill them, beware the overzealous 

notion of an “all- capable” data scientist. It’s better your staff develop 

the specific skills that your ML project needs than for them to pursue 

the overly ambitious goal of becoming an individual super- employee 

capable of performing any and all data- related tasks. Make sure the 

project roles are well defined and the team member skills meet the 

needs of each role.

Regardless of how you source your staff for an ML project, they 

won’t come cheap. For how much time will you need to utilize these 

in- demand experts?

Projecting the Project: How Long It Will Take

In theory there is no difference between theory and practice, while 

in practice there is.

— Benjamin Brewster, nineteenth- century American industrialist

You might be in for a long journey. ML projects vary in duration as 

widely as enterprise projects in general. And they suffer delays as often 

as any kind of operational change.

In the very best of scenarios, the stars could align for a two- month 

project. This could be the case, for example, if you’re cranking out a 

model to target an existing direct marketing operation— swapping it 

into an established process, and only requiring batch deployment from 

within the ML software without the need to export the model.
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In contrast, Jack’s project at UPS took years to launch at full scale. 

It was a first- of- its- kind initiative at the company, deploying a model 

within a complex, semi- automatic system for which extensive in- person 

staff training was required across many sites.

Only the people and protocols at your company can properly project 

the timeline. But, to help establish your rough estimate, here are some 

ballpark ranges for each step, with the caveat that, for each one, the sky 

could turn out to be the limit:

Steps 1, 2, 3: Establish the deployment goal, prediction goal, and 

evaluation metrics: two weeks to three months.

Step 4: Prepare the data: four weeks to five months.

Step 5: Train the model: three weeks to two months.

Step 6: Deploy the model: three weeks to one year.

Even with great excitement about a new ML initiative, the first three 

pre- production steps make for an era of planning, socializing, and 

greenlighting. Your up- front pitch may take less than two minutes, but 

you will need to ride that elevator quite a few times.

Of the three technical steps, the most sophisticated science takes 

the least calendar time. Data preparation is a perpetually underesti-

mated bottleneck, and model deployment can be as well, especially if 

it requires the model to be integrated into existing real- time systems. 

On the other hand, although model- training demands the greatest 

depth of ML experience and expertise, it’s a relatively contained, iso-

lated process— the steps just before and after it effectively buffer the 

core number crunching itself from many enterprise complexities.

Another consideration makes the project timeline harder to estimate 

and potentially drags it out: Following the six steps is not a linear process.

Backtracking: Iteratively Looping on the Steps

Almost always what happens in my most successful engagements 

is you get trust and buy- in up front, you try to solve the problem, 

and then you’re wrong about, like, half of the assumptions . . . you 
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uncover things you have to adjust and adapt in the middle of the 

project.

— Dean Abbott, renowned consultant and chief data scientist of 

Abbott Analytics

With bizML, you backtrack a lot, looping back to a previous step as new 

insights come to bear. At each iteration, the team must reconvene with 

stakeholders to revisit earlier choices. Here are some examples:

• While preparing the data, data scientists or data engineers discover 

that there aren’t enough positive examples available. This triggers 

team members to reconvene and modify the prediction goal to be 

one for which there are plenty.

• While training the model, data scientists detect a bug in the training 

data: a data leak. This circles back to data preparation.

• After training the model, its performance is disappointing and deci-

sion makers say it’s not ready for deployment. This can mean cir-

cling back to any previous step, such as reconsidering the prediction 

goal, reconsidering the evaluation metrics, or enhancing the train-

ing data.

• During deployment, field tests show that model- scoring is too slow, 

because the model itself is too complex. By circling back to model 

training, it may be possible to generate a simpler, faster model that 

exhibits only a minimal loss in predictive performance. In one 

famous case, Netflix decided not to deploy the complex model with 

which competitors won the firm’s $1 million contest to improve 

movie recommendations. Netflix elected to deploy internally devel-

oped models instead.

• After deployment, the business context changes— new regulations 

emerge or new strategic imperatives are handed down that prompt 

a change to the deployment goal. Although this means beginning 

again with step 1, much of the work completed throughout all the 

bizML steps may be repurposable during this new project iteration.
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In the best of cases, you circle back due to a happy surprise or a new 

inspiration. For example:

• During model training, an input variable unexpectedly proves to be 

important, inspiring the introduction of related data sources during 

data preparation.

Critically, each time the project backtracks, a cross- disciplinary team 

jointly navigates, incorporating the insights of data scientists as well as 

those of business stakeholders and operations managers.

Life after Launch: Maintaining the Model

“Developing and deploying ML systems is relatively fast and cheap, 

but maintaining them over time is difficult and expensive,” warns a 

technical paper from Google. This writing has gained some notoriety 

among data scientists— although perhaps not enough, in my opinion. 

The paper’s title would strike fear in the most stoic accountant: “Hid-

den Technical Debt in Machine Learning Systems.”

When you launch astronauts into space, you commit yourself to a 

new job: You’ve got to keep them alive. Likewise, once it’s in play, sus-

taining a model’s viability moving forward takes maintenance, moni-

toring, and vigilance. The model and the deployment infrastructure 

that cradles it join the ranks of mission- critical enterprise systems. 

These things require upkeep.

For one thing, models stagnate. If they remain unchanged, they 

degrade. The world changes around them. The economy shifts and cus-

tomer behavior patterns evolve. As a result, the data over which a model 

was trained becomes less pertinent, less representative of today’s world. 

After all, that training data becomes a part of the more distant past 

every day. Over time, your model inevitably devolves into a defunct 

dinosaur, a phenomenon known as model drift. This prompts the need 

to monitor model performance over time. The tools and techniques for 

doing so are sometimes collectively called ML observability.
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The remedy is to periodically update the model. That’s standard 

protocol. This normally means training a whole new model over more 

recent data (incrementally updating an existing model is an alterna-

tive, but only rarely worth the complexity involved). For some projects, 

the refresh is daily and for others it’s annual. It can be triggered when 

model performance weakens or can be scheduled at regular intervals. 

When the world changes drastically, due to political upheaval, natu-

ral disasters, or a pandemic, models become outdated more quickly. 

Such events potentially highlight ML’s strength: the capacity to adapt 

to a changed world. But this capacity is realized only if you refresh the 

model on data that reflects the new world in which you now live.

It’s worth clarifying that, in a certain sense, some deployed models 

adapt on their own between updates in that the inputs are always kept 

updated. For example, FICO Falcon’s fraud detection model is updated 

only once a year for the 9,000- plus banks that use it. But some of its 

inputs are engineered to track the ever- changing usage patterns of each 

individual cardholder. For example, if a cardholder begins to regularly 

shop at small online stores, an input could reflect this change in the 

individual’s tendencies, showing such purchases as less anomalous for 

them. This level of adaptation is continuous and ongoing between 

model updates. What changes with periodic model updates is how the 

model weighs and considers such an input, whereas the input itself is 

continually updated.

The expense of upkeep only adds to the already substantial price tag 

attached to each ML project. The resources needed just to get to deploy-

ment include staff, software, and deployment infrastructure, such as 

data pipelines and possibly an upgraded operational system to incorpo-

rate model scoring. The total that these expenditures come to can grow 

almost as much as for any kind of business initiative.

But ML’s value eases the sticker shock. Divide the estimated win by 

the cost and you have your potential ROI. It’s bound to be strong for 

one simple reason: Prediction pays.

But beyond the business gains, there’s a nonfinancial consideration 

to also account for.
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Morality Matters

AI is a superpower that enables a small team to affect a huge num-

ber of people’s lives .  .  . make sure the work you do leaves society  

better off.

— Andrew Ng

When you use ML, you aren’t just optimizing models and streamlin-

ing business. You’re governing. In effect, models embody and imple-

ment policies that control access to opportunities and resources, such 

as credit, employment, housing— and even freedom, when it comes to 

arrest- prediction models that inform parole and sentencing. Insurance 

risk models determine what each policyholder must pay, and targeted 

marketing determines who gains discounts, exclusive deals, and even 

the awareness of certain financial products.

When ML acts as the gatekeeper to these opportunities, it can per-

petuate or magnify social injustice, adversely affecting underprivileged 

groups by undeservingly denying access disproportionately often. Here 

are four ways in which that can happen, among others:

1. Discriminatory models: Models that take a protected class such as race 

or national origin as an input so that their decisions are directly based 

in part on that class. These models discriminate explicitly, doing so 

more visibly and detectably than a person who discriminates but 

keeps private the basis for their decisions. For example, such a model 

could penalize a Black person for being Black. Although outlawed 

in some contexts and relatively uncommon so far, some decorated 

experts in ML ethics loudly advocate for allowing protected classes as 

model inputs.

2. Machine bias: Unequal false- positive rates between groups, which 

means the model incorrectly denies approval for or access to oppor-

tunities to one group more often than another. This can and often 

does occur even if the model is not discriminatory (per above), since 

a model can employ other, unprotected input variables as proxies 
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for a protected class. For example, ProPublica famously exposed a 

rearrest- prediction model that wrongly jails Black defendants more 

often than White defendants.

3. The coded gaze: When a group is underrepresented in the training 

data, the resulting model won’t work as well for members of that 

group. This results in exclusionary experiences, such as when a facial 

recognition system fails for Black people more often than for people 

of other races. Also known as representation bias, this phenomenon 

can also occur for speech recognition.

4. Inferring sensitive attributes: A model’s predictions can reveal group 

membership, such as sexual orientation, whether someone is preg-

nant, whether they’ll quit their job, or whether they’re going to die. 

Researchers have shown that it is possible to predict race based on 

Facebook likes, and officials in China use facial recognition to iden-

tify and track the Uighurs, a minority ethnic group systematically 

oppressed by the government. In these cases, sensitive information 

about an individual is derived from otherwise innocuous data.

The question to always ask is, “For whom will this fail?” says Cathy 

O’Neil, author of Weapons of Math Destruction and one of the most vis-

ible activists in ML ethics. This fundamental question conjures the four 

issues above and many others as well. It’s an ardent call to action that 

reminds us to pursue ethical considerations as an exercise in empathy.

Only proactive leaders can meet these ethical challenges. Compa-

nies using ML are mostly frozen by the cosmetics demanded by corpo-

rate public relations. It’s often only to posture when firms call for ML 

deployment to be “fair, unbiased, accountable, and responsible.” These 

are vague platitudes that don’t alone guide concrete action. Declaring 

them, corporations perform ethics theater, protecting their public image 

rather than protecting the public. Rarely will you hear a firm come 

down explicitly on one side or the other for any of the four issues I 

listed above, for example.

O’Neil has taken on the indifference to these and other issues with 

another weapon: shame. She advocates for shaming as a means to battle 
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corporations that deploy analytics irresponsibly. Her more recent book, 

The Shame Machine, takes on “predatory corporations” while criticizing 

shame that punches down rather than up. The fear of shame delivers 

clients for her model- auditing consulting practice. “People hire me to 

look into their algorithms,” says O’Neil. “Usually, to be honest, the rea-

son they do that is because they got in trouble, because they’re embar-

rassed . . . or sometimes it’s like, ‘We don’t want to be accused of that 

and we think that this is high- risk.’”

But I would invite you to also consider a higher ideal: Do good rather 

than avoid bad. Instead of dodging shame, make efforts to improve 

equality. Take on the setting of ethical ML standards as a form of social 

activism. To this end, define standards that take a stand rather than 

only conveying vague platitudes. For starters, I advocate for the follow-

ing standards, which I consider necessary but not sufficient: Prohibit 

discriminatory models, balance the false- positive rates across protected 

groups, deliver on a person’s right to explanation for algorithmic deci-

sions— at least in the public sector— and diversify analytics teams.

Your role is critical. As someone involved in initiatives to deploy ML, 

you have a powerful, influential voice— one that is quite possibly much 

more potent than you realize. You are one of a relatively small number 

who will mold and set the trajectory for systems that automatically 

dictate the rights and resources to which great numbers of consum-

ers and citizens gain access. Allan Sammy, director of data science and 

audit analytics at Canada Post, put it this way: “A decision made by an 

organization’s analytic model is a decision made by that entity’s senior 

management team.”

ML can help rather than hurt. Its widening adoption provides an 

unprecedented new opportunity to actively fight injustice rather than 

perpetuate it. When a model shows the potential to disproportionately 

affect a protected group adversely, it has put the issue on the table and 

under a spotlight by quantifying it. The analytics then provide quanti-

tative options to tackle injustice by adjusting for it. And the very same 

operational framework to automate or support decisions with ML can 

be leveraged to deploy models adjusted to improve social justice.
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As you follow this book’s practice to get ML successfully deployed, 

make sure you’re putting this powerful technology to good use. If you 

optimize only for a single objective such as improved profit, there will 

be fallout and dire ramifications. But if you adopt humanistic objec-

tives as well, science can help you achieve them. O’Neil sees this, too: 

“Theoretically, we could make things more fair. We could choose values 

that we aspire to and embed them in code. We could do that. That’s the 

most exciting thing, I think, about the future of data science.”

Over the last decade, I have spent a considerable portion of my work on ML 

ethics. For a more in- depth dive, such as a visual explanation of machine 

bias, a call against models that explicitly discriminate, and more details 

regarding the standards I propose, see my writing and videos at 

www.civilrightsdata.com.

http://www.civilrightsdata.com
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