

[image: Image 1]

[image: Image 2]

Line of Business Mobile Apps

with Flutter and Dart

 Distribute and Deploy to iOS and Android from a Single Codebase

Written by Isaac Lyman

Edited by Zao Yang

© 2025 Fullstack.io

All rights reserved. No portion of the book manuscript may be reproduced,

stored in a retrieval system, or transmitted in any form or by any means beyond

the number of purchased copies, except for a single backup or archival copy. The

code may be used freely in your projects, commercial or otherwise.

The authors and publisher have taken care in preparation of this book, but make

no expressed or implied warranty of any kind and assume no responsibility for

errors or omissions. No liability is assumed for incidental or consequential

damagers in connection with or arising out of the use of the information or

programs container herein.

Published by \newline

Contents

Introduction .

1

About this course .

1

Getting the most out of this course .

5

Further reading .

5

Getting Started .

6

Module 2 .

6

What is Flutter? .

6

What is Dart? .

6

Further reading .

7

Hardware .

7

Software .

7

Verifying your setup .

10

flutter create .

11

Flutter project structure .

11

Further reading .

14

main.dart .

14

Development target setup .

14

Recommendations .

20

Seeing available targets .

20

Running in debug mode .

22

Running in release mode .

24

Running in profile mode .

24

Further reading .

24

What is pub.dev? .

24

Evaluating Pub packages .

25

Installing a package .

28

Using a package .

28

Further reading .

29

Android configuration .

29

CONTENTS

iOS configuration . 30

Icons .

31

Further reading .

32

Version .

32

Build commands .

33

Distributing your app .

34

Further reading .

34

Creating A Seed App .

35

Module 3 .

35

Dart overview .

35

Cheat sheet .

36

Inheritance .

40

Further reading .

40

Exercises .

40

The Widget Hierarchy .

40

What is a Widget? .

41

Types of Widgets .

43

Creating Widgets .

44

Further reading .

45

Exercises .

45

Why manage state? .

45

provider .

46

Further reading .

48

Why set up a theme? .

48

theme_provider .

49

Download updated files .

54

Further reading .

54

Exercises .

54

Why use a navigation library? .

54

go_router .

55

Download updated files .

57

Further reading .

57

What is the Scaffold? .

57

Setting it up .

58

Further reading .

58

The Profile Page . 59

Module 4 .

59

CONTENTS

Profile widget .

59

Widget keys . 60

Text .

61

Profile GoRoute .

62

AppBar and Scaffold refactoring .

63

AppBar actions .

67

Further reading .

69

Exercises .

70

The User object .

70

Futures .

71

The Client object .

72

Further reading .

73

Exercises .

73

FutureBuilder and StatefulWidget .

73

Further reading .

79

Exercises .

79

Column . 80

Expanded .

83

Padding .

84

Logical pixels .

85

Widget inspector .

86

Center .

91

Further reading .

93

Exercises .

93

Table .

95

Table column widths .

98

ExpansionPanelList and ExpansionPanel .

99

Number formatting . 105

Text.rich . 106

Exercises . 108

Choosing a scrolling widget . 108

ListView . 108

SingleChildScrollView . 110

Scrollbar .

111

Further reading .

111

Exercises . 112

How to think about layout . 112

RenderConstrainedBox object was given an infinite size during layout . . 113

CONTENTS

RenderFlex children have non-zero flex but incoming height constraints

are unbounded . 114

Vertical viewport was given unbounded height 116

BoxConstraints forces an infinite height .

117

Flutter is not the web .

117

A final piece of advice . 118

Further reading . 119

TextButton, OutlinedButton, and ElevatedButton 119

Styling buttons . 120

MaterialStateProperty . 121

Drop shadow . 122

Download profile.page.dart . 124

Further reading . 124

Exercises . 124

Accessibility . 126

Module 5 . 126

Testing on iOS Simulator . 126

Checking accessibility . 126

Further reading . 127

Installing TalkBack on the emulator . 127

Checking accessibility . 128

Further reading . 128

Tooltip . 129

Semantic and label . 129

Semantics . 130

ExcludeSemantics . 131

MergeSemantics . 131

Summary . 131

Further reading . 132

Exercises . 132

Storage and HTTP . 133

Module 6 . 133

Local data storage solutions . 133

Using shared_preferences . 135

Further reading . 136

Exercises . 136

HTTP setup . 137

CONTENTS

Sending an HTTP request . 139

Further reading . 140

Exercises . 140

Securing the server . 140

Login HTTP methods . 141

The login overlay . 142

TextField and TextEditingController . 142

Handling authorization failures . 147

Managing cookies . 149

Logging out . 153

Further reading . 154

Exercises . 154

Creating a state object . 154

Adding a provider . 155

Consuming state . 156

Error: setState() or markNeedsBuild() called during build 157

Unloading state on logout . 158

Exercises . 159

Tables and Charts . 160

Module 7 . 160

Overview page . 160

Fetching data . 161

DataTable and PaginatedDataTable . 164

Sorting DataTables . 166

Further reading . 168

Exercises . 169

The page and route . 169

Lifting transactions into state . 177

Filtering transactions . 181

fl_chart . 182

Line chart . 182

Pie chart (purchasers) . 185

Pie chart (products) . 186

Showing the right charts . 187

Further reading . 189

Exercises . 189

Animations . 190

CONTENTS

Module 8 . 190

AnimatedSwitcher . 190

AnimatedDefaultTextStyle . 194

Other animations and transitions . 200

Further reading . 200

Exercises . 200

Preparing for a new sort icon . 200

CustomPaint . 202

Further reading . 208

Exercises . 208

TweenAnimationBuilder . 208

AnimationController, SingleTickerProviderStateMixin, and Tween 210

TweenSequence and Interval . 215

Further reading . 218

Exercises . 218

Testing . 219

Module 9 . 219

flutter_test . 219

Unit tests . 219

Further reading . 225

Exercises . 225

testWidgets . 225

Rendering more frames . 227

Assertions . 228

Further reading . 230

Exercises . 230

integration_test . 230

Don’t forget the server . 231

Testing login and profile page . 231

Further reading . 233

Wrapping up . 234

Exercises . 234

Introduction

About this course

Hello and welcome to Line-of-Business Apps with Flutter 3. I’m Isaac Lyman.

Why Flutter?

Here’s my elevator pitch for Flutter: you can publish an app for iPhone, Android, Windows, MacOS, and Linux from a single codebase, but unlike other cross-platform frameworks, Flutter actually delivers on the promise of near-native

performance without having to write any native code. It’s also a really simple framework and includes almost everything you need off the shelf, so you spend

less time struggling with third-party packages and gluing APIs together.

Flutter

Native app

React

Progressive

Native

Web App

Speed

� Compiled

� Compiled,

�

�

code

native code

Interpreted

Interpreted

JavaScript

JavaScript

with a

in a mobile

bridge

browser

Native UX

Widgets

� Native UX

Renders

� Renders

are based

if using

native com- web

on

standard

ponents

elements

Google/Ap- views and

but perfor-

with web

ple design

compo-

mance and

perfor-

languages,

nents

responsive-

mance

but don’t

ness are

render

often

native com-

noticeably

ponents

worse

Type safety

� Runtime

�

Compile-

Compile-

type safety

Objective-

time types

time types

C, Swift,

with

with

Java, and

TypeScript

TypeScript

Kotlin are

type-safe

Introduction

2

Flutter

Native app

React

Progressive

Native

Web App

Null safety

� Dart 3 is

Null safety

�

�

null safe

varies by

JavaScript

JavaScript

language

is not null

is not null

safe

safe

Consistency � Renders

� Different

� Renders

� Usually

identically

compo-

different

renders the

across

nents and

compo-

same

mobile and

behaviors

nents

across

desktop

for each

depending

standards-

platforms

platform

on

compliant

platform

browsers

Off-the-

� Hundreds

Platform-

� Heavy de-

HTML5 has

shelf

of built-in

dependent

pendence

many

usability

widgets

on

built-in

3rd-party

compo-

packages

nents

Convenience � Requires

� Separate

Uses

� Any

building

view

JavaScript;

website

from

languages,

compo-

can

scratch

program-

nents are

become a

with a

ming

similar to

PWA

niche pro-

languages,

React for

without

gramming

and

web

much de-

language

codebases

velopment

and

per

effort

framework

platform

Popularity

Slightly

� Native

Popular,

�

less

app devel-

but not as

Extremely

popular

opment is

popular as

popular

than React

well-

web apps

and well-

Native;

established

known

much less

and

popular

popular

than web

apps

Introduction

3

Flutter

Native app

React

Progressive

Native

Web App

App store

� Compiles

� The

� Compiles

� Not well

to standard

default way

to standard

supported

packages

to publish

packages

in app

for every

to mo-

for mobile

stores

mo-

bile/desk-

app stores;

bile/desk-

top app

desktop via

top app

stores

3rd party

store

Development � Minimal

Good

�

The web is

speed

configura-

tooling and

First-party

a more

tion;

IDE

tools are

powerful

powerful

support,

very

platform

IDE inte-

but

minimal;

than ever,

grations;

separate

community

but has a

stream-

for each

has to fill in

lot of room

lined CLI

platform

the gaps

to improve

tools

Visual

� Custom-

� Native

� Doing

Web

appeal

drawn

apps have

anything

elements

widget-

good

custom is

are

s/anima-

support for

difficult

extremely

tions are

custom

and may

customiz-

powerful

compo-

require

able and

and easy to

nents and

native code

styleable,

build;

animations

but very

several

little is

animations

built in

are built in

If Flutter sounds like the right choice for you, great! You’ll be building an

complete Flutter app from scratch. It’s called Revenue Explorer, and it’s the sort of thing you might build if you were working on an internal tools team for a small or mid-sized corporation.

Prerequisites

For this course, I’m assuming:

• You’ve used a statically typed, object-oriented programming language before (like TypeScript, C#, Kotlin, or Java).

• You’re familiar with asynchronous code (async/await).

Introduction

4

• You know how to find and use the terminal (command line) on your operating

system.

I won’t be covering programming fundamentals, the difference between int

and char, or what an IDE is. You’re still welcome to follow along if those things are new to you, but you might need to take some detours to other courses or reach

out for help.

You do not need any prior experience with Dart or Flutter. This course will cover those from the ground up.

Why this course?

Flutter is an extremely popular framework right now, neck and neck with React Native in the latest Stack Overflow Developer Survey. Out of all the Flutter courses you could take, here’s what makes this one unique:

• It’s fast and compact. It doesn’t waste any time rehashing what you already know from other programming languages.

• It doesn’t use Firebase. Nearly all Flutter tutorials use Firebase, but most corporate Flutter apps don’t. This course comes with an HTTP server you can

connect to, log in with, and retrieve data from. If you wanted to, you could

write a web app that uses the same server; it’s just a web API.

• It goes in depth about the most confusing parts of Flutter development, like infinite constraint errors and custom-drawn widgets.

By the end, you’ll have the skills to build API-backed pages, forms, and data

visualizations in Flutter. There won’t be anything standing between you and the

Android and iOS app stores; you’ll be able to build and publish any app ideas you may have. (And if you want to build desktop apps, you’ll be 99% of the way there, too.)

Module overview

• Module 1: What you’re reading right now.

• Module 2: You’ll set up your development environment and the Flutter template app. By the end, you’ll have iOS and Android app packages that you can

deploy to either app store at any time.

• Module 3: You’ll get a brief overview of Dart, the programming language used in Flutter apps. You’ll also add some basic packages to your template app for

theming, state management, routing, and deep linking.

Introduction

5

• Module 4: You’ll create a widget, retrieve data asynchronously to populate it, and learn about layouts.

• Module 5: You’ll make your app accessible to people who use a screen reader.

• Module 6: You’ll store app configuration settings on-device and communicate with a web API over HTTP.

• Module 7: You’ll build tables and charts to represent data.

• Module 8: You’ll create custom widgets and animations.

• Module 9: You’ll write unit, integration, and end-to-end tests for your app.

Getting the most out of this course

Some people like to read a course from beginning to end like a book. I sure don’t.

Feel free to skip around, jump into the parts that seem most interesting, and hack on the example app until it’s all screwed up. Don’t let me hold you back. I’ll try to keep each lesson small and focused so it’s easy to find what you need when you

need it.

You’ll learn better if you’re building and experimenting along the way, so even

if you do follow each lesson in order, I encourage you to build the app as you go along instead of just downloading the code samples.

Further reading

Flutter vs. React Native: Which is the right cross-platform framework for you?

(Isaac Lyman, Stack Overflow Blog)

Flutter is better than React Native…in all the ways that don’t matter. (Jamon Holmgren, Red Shift on Medium.com)

React Native vs Flutter - I built the same chat app with both (Fireship on YouTube)

Getting Started

Module 2

In this module, you’ll do three things:

• Set up your development environment and the Flutter starter project.

• Learn how to run your project on any device.

• Configure your app and package it for release.

This will get you into the groove of a Flutter development cycle. You’ll be able

to see your app in action as you make changes, and it will be ready to publish and distribute at any time.

If you just want to skip the setup and sink your teeth into some code, Module 1

will teach you Dart, and Module 2 will get you into the basics of Flutter.

Good luck!

Let’s start with a quick introduction to the Flutter framework and Dart, the

programming language it uses.

What is Flutter?

Flutter is an open-source project maintained by Google. Version 1.0 was released

in 2018. Google uses Flutter for several of its own apps, such as Google Pay and

AdSense. Flutter runs the user interface on their Nest thermostat as well.

One thing that makes Flutter unique is it ships with its own rendering engine

and doesn’t output native components, which means visual consistency across

platforms is almost never a problem. The downside, of course, is that your app

won’t look and feel exactly like a native app unless you put in the extra work to customize it to each platform. A lot of the time, you may not care. I certainly don’t.

What is Dart?

Dart is a high-level programming language also developed by Google. What’s useful about Dart is it can compile on the fly while you’re developing or ahead of time

when you’re ready to publish. It also transpiles to JavaScript for deployment to the

Getting Started

7

web. The main thing you’ll notice about it is it’s very ergonomic: most of the things you’ll want to do are built in and pretty concise. If you already know C#, Kotlin, or TypeScript, you’ll be able to read most Dart code without even taking a tutorial.

Flutter apps are written entirely in Dart. The structure, user interface, styles, and logic are all 100% Dart. So unlike native web apps, where you have to learn

some form of HTML, CSS, JavaScript, and usually a framework, here you only have

to learn Dart and Flutter. You’ll be surprised how simple it is.

Dart has a robust open-source package ecosystem called Pub. You can find it at

pub.dev. We’ll discuss it in depth in a later lesson.

Further reading

Showcase: Flutter apps in production (flutter.dev)

Why did Flutter choose to use Dart? (docs.flutter.dev)

Flutter’s rendering model (docs.flutter.dev)

Impeller rendering engine (docs.flutter.dev) Hardware

Let’s go over the hardware you’ll need to build a Flutter app.

This course is focused on smartphone apps. You can test and package Android

apps from any desktop OS, but to package iPhone apps, you’ll need Xcode, which

only runs on MacOS. So, if you’re developing mobile apps, my top recommendation

is a Mac. It can do it all. The base model M1 Macbook Air is a rock-solid development machine, though if you can afford some extra RAM, you’ll be glad to have it.

If you don’t have a Mac, that’s okay; you can still publish for Android using

Windows or Linux. And even though you won’t be able to test in an iPhone simulator, there are online services like CodeMagic that can help you package your app for iOS. I want to stress that this will be a massive headache when you’re trying to fix a bug that only happens on iPhones. But it’s not impossible.

It’s also important to test on a physical device, so make sure you have a cord to connect your smartphone or tablet to your computer.

Software

:::tip

Keep track of the install location for everything you’re about to install.

[image: Image 3]

Getting Started

8

:::

IDE

You can develop Flutter apps with any text editor or IDE, but for the best tooling and support, you’ll want to use either Android Studio or VS Code. I prefer VS Code since that’s what I use most of the time anyway. If you don’t already have one of these installed, no sweat; you’ll be downloading Android Studio here in a moment.

Whatever IDE you use, make sure to get the Flutter and Dart plugins. They’ll

help you check syntax, refactor code, and run your app. If you look up “Flutter” and

“Dart” in your extension browser, they’ll be the first ones that come up.

Screenshot of the Dart and Flutter extensions in VS Code’s extension browser

Xcode

If you’re on a Mac, start by installing Xcode. It’s a big app, so it might take a while; go ahead and take a break while the installer is running. When it’s done, start up Xcode to make sure it is installed correctly.

Android Studio and CLI tools

Next (or first, if you’re not on Mac), download and install Android Studio. This will install the Android SDK, which you need to package Android apps. You should also

install the Android command-line tools. When you’re done, make sure Android Studio starts up without any issues.

Google Chrome

If you want to deploy your app to the web, you’ll need Google Chrome. It’s the only browser supported by the Flutter debugger.

Getting Started

9

Note that the Flutter experience on the web isn’t quite as fast or smooth as on

mobile and desktop, and since Flutter apps aren’t statically generated, they’re hard for search engines to crawl. If you just want to build a website, Flutter may not be the best choice.

Flutter SDK

You’ll need the Flutter SDK, of course. Head over to the install page at the Flutter docs and run the install package.

Additional tools

If you use your computer for development already, there’s a good chance you

already have all the additional tools you need. But if you want to debug on your

desktop, here’s a quick checklist to run through (see the docs for details):

• Windows: Visual Studio 2022 or Visual Studio Build Tools 2022 (Desktop development with C++ workload)

• MacOS: CocoaPods

• Linux: Clang, CMake, GTK development headers, Ninja build, pkg-config,

liblzma-dev (if you installed Flutter using snapd, you should already have all of these)

Environment variables

You’ll want to add some folders to your PATH environment variable. The Flutter

install page includes instructions for the flutter binary. You should also add the pub binary and Android CLI tools. My preferred terminal for Mac is Oh My Zsh, so these are the magic lines I use in my .zshrc file:

1

export PATH="$PATH":"$HOME/code/flutter/bin"

2

export PATH="$PATH":"$HOME/code/flutter/.pub-cache/bin"

3

export PATH="$PATH":"$HOME/Library/Android/sdk/cmdline-tools/latest/bin"

4

export PATH="$PATH":"$HOME/Library/Android/sdk/emulator"

5

export PATH="$PATH":"$HOME/Library/Android/sdk/platform-tools"

6

export PUB_CACHE=$HOME/code/flutter/.pub-cache

:::tip

On Windows, the Android SDK is installed by default to C:\Users\yourUserName\AppData\Local\Android\sdk\.

:::

[image: Image 4]

Getting Started

10

These same lines should also work in a .bashrc file if you use vanilla bash.

Whatever your preferred folder structure is, just make sure these point to the

install locations for Flutter and the Android SDK. The last one (PUB_CACHE) is

optional; it tells Dart where to cache Pub packages.

Verifying your setup

To make sure everything’s in place, start up a terminal and run the flutter

doctor command. It will check that it’s got access to what it needs and let you know if anything is missing. You should see a line of green checkmarks if everything’s in order.

Screenshot of a terminal with the output from ‘flutter doctor‘, showing that all the above software tools have been installed correctly.

:::note

It’s okay if your terminal output doesn’t look exactly like mine. Why do I have

two versions of VS Code installed? Who even knows? The checkmarks are what

matters.

:::

Let’s create a Flutter app.

Getting Started

11

flutter create

Find the folder where you keep your code projects and start up a terminal. Then

type:

1

flutter create revenue_explorer

:::tip

The preferred file and folder naming convention in Dart is snake_case.

:::

The Flutter CLI will create the revenue_explorer folder, which you can open in

your IDE.

Flutter project structure

Your Flutter project may look a little overwhelming at first.

[image: Image 5]

Getting Started

12

A screenshot of VS Code, listing all the files and folders described below, with lib/main.dart displayed in the editor window

Let’s review what each folder is for.

:::warning

You can ignore many of the files and folders below, but that doesn’t mean you

should add them to .gitignore. They’re important files to keep in your repository.

When the Flutter CLI changes them, you should commit those changes.

:::

lib/

The lib/ folder is where your Flutter and Dart code live. You’ll be doing almost all your work here. This is the first place you should go when you open the project.

Getting Started

13

Platform folders

There’s a folder for each platform that Flutter can target:

• android/

• ios/

• linux/

• macos/

• web/

• windows/

Typically, the Flutter CLI manages these folders. You’ll only edit them by hand

under two circumstances:

1. When you’re updating platform-specific configuration files (for example,

setting your app’s Bundle ID so you can publish it on the App Store or Google

Play).

2. If you need to use a platform API (like Bluetooth connectivity, for example)

and there’s no Pub package ready-made, you can use Platform Channels to write functionality native to each platform, then call it from your Dart code.

Platform Channels won’t be covered in this course, but it’s good to know

they’re available.

.dart-tool/

The .dart-tool/ folder is used by Pub, Dart’s package manager. You can safely

ignore it.

.idea/ and app_name.iml

The .idea/ folder and revenue_explorer.iml are used by Android Studio,

which is based on IntelliJ IDEA. Again, you can safely ignore these.

test/

The test/ folder is for unit and integration tests, which will be covered in a later module.

Getting Started

14

pubspec.yaml and pubspec.lock

pubspec.yaml is your package file. It contains configuration for your app as well as the list of Pub packages your app depends on, both first-party packages and community packages. It’s the equivalent of package.json in JavaScript, Cargo.toml

in Rust, or projectName.csproj in .NET.

pubspec.lock is a lock file, which you may also recognize from other lan-

guages. It ensures the package versions you install locally will be the same ones that are installed by a CI pipeline. You can ignore this file; the Pub package manager keeps it up-to-date for you.

Further reading

Understanding the Flutter Project Structure (Logesh Kumar R, medium.com)

Flutter Platform Channels (Mikkel Ravn, medium.com) Let’s see a Flutter app in action!

main.dart

Open lib/main.dart. This is the entry point for your Flutter app. It all starts here: every widget, class, and method used in your app will be part of the family tree of main.dart.

The example app the Flutter CLI gives you is one you might have seen before.

It has a counter that starts at 0 and a button that increments the counter. Don’t worry too much about understanding the code yet; you’ll be diving in soon. For now, you just need to get it running.

Development target setup

You can start the app on any of the following.

iOS simulator (Mac only)

To open the iOS simulator from Xcode, navigate to Xcode > Open developer tool > Simulator in the menu.

[image: Image 6]

[image: Image 7]

Getting Started

15

A screenshot of the Xcode menu, with Simulator highlighted in the developer tool submenu Alternatively, you can type simulator in Spotlight Search. You don’t need to

have Xcode running to use Simulator.

To simulate a device, you first need to create it. Navigate to File > New Simulator in the Simulator menu.

A screenshot of the Simulator menu, with New Simulator highlighted in the File menu Choose the device you want to simulate, then click Create. It won’t open

automatically; you’ll need to navigate to File > Open Simulator and choose the device name in order for it to pop up.

:::tip

[image: Image 8]

Getting Started

16

If you’ll be distributing your app through the App Store, you’ll need screenshots from a few different device sizes. You might as well create the simulators for those now. I use the following:

• iPhone 8 Plus

• iPhone 13 Pro Max

• iPad Pro (12.9-inch) (2nd Generation)

• iPad Pro (12.9-inch) (5th Generation)

:::

An open simulator looks something like this:

Screenshot of an iPhone 13 Pro Max Simulator, open to the home screen

Android emulator

To start an Android emulator, open Android Studio. Navigate to Tools > Device Manager from the menu.

[image: Image 9]

Getting Started

17

A screenshot of the Android Studio menu, with Device Manager highlighted in the Tools menu Click Create Device and follow the steps to create an emulator. You can choose a preconfigured device or one with custom dimensions. When you reach the

Verify Configuration screen, click Show Advanced Settings and give your device a gigabyte or so of internal storage.

[image: Image 10]

Getting Started

18

A screenshot of Android Device Manager, on the Verify Configuration page, with Advanced Settings open and 1000 MB of memory typed in on the Internal Storage line

If your device doesn’t have enough storage, it will run out of memory constantly.

Better to make sure it’s got plenty. (If it does run out of storage at some point, you can choose Wipe Data from the Device Manager menu.)

Once a device is created, it will show up in Device Manager. You can click the

Play � button next to it to start it up.

:::tip

If you’ll be distributing your app through Google Play, you’ll need to submit

screenshots from a few different device sizes. You might as well create the emu-

lators for those now. I use the following:

• Pixel 5 smartphone (default configuration)

• 7-inch tablet (1080x1920 xhdpi)

• 10-inch tablet (1600x2844 xhdpi)

:::

An open Android emulator looks something like this:

[image: Image 11]

Getting Started

19

Screenshot of an Android Pixel 5 emulator, open to the launcher

A physical device

To debug a Flutter app on a real smartphone or tablet, plug it into your computer.

(Flutter support for wireless debugging is a little iffy right now.) It may show up as a target right away (see Seeing available targets below). If not, you may need to enable Developer Mode on your device. Instructions for doing so vary by the device manufacturer and OS; take a detour to Google here if needed.

Your desktop OS

Regardless of whether your computer runs Windows, MacOS, or Linux, Flutter

knows how to deploy to it directly. You shouldn’t need to do any special setup here as long as you have the additional tools mentioned in the “Hardware and software

setup” lesson.

Google Chrome

Though I don’t recommend it as a debug target or a deployment target, you are, of course, more than welcome to run your app on the web. The only setup required

is a Google Chrome installation.

Getting Started

20

Recommendations

For your regular development cycle, feel free to debug on whatever device or

simulator is most convenient. Most of the time, your app’s behavior and UI will

be identical across devices, with the exception of screen size.

Debugging on the desktop is nice because you can resize the app window on the

fly, which makes it easy to test the responsiveness of your layouts. Keep in mind, though, that a desktop app won’t be able to access certain mobile features (like

in-app payments), so choose a target based on the functionality you’re developing.

For this course, the desktop will be fine.

:::tip

In my experience, the iOS Simulator is faster and less troublesome than the

Android emulator.

:::

You probably won’t debug on a separate device most of the time; it’s just more

convenient to use a simulator or your desktop OS. But from here on out, it’s totally up to you.

Seeing available targets

If you have a simulator open or a device connected to your computer, Flutter will automatically detect it. You can run the flutter devices command to see what

devices are available.

[image: Image 12]

[image: Image 13]

Getting Started

21

Screenshot of a terminal after running ‘flutter devices‘. There are three devices listed: iPhone 13 Pro Max (mobile), macOS (desktop), and Chrome (web)

Alternatively, VS Code and Android Studio both have a menu to select the device

you want to debug on. It shows the default target you’ll get if you run the project right now, but you can pick a different one by clicking on it.

A screenshot of VS Code, with “iPhone 13 Pro Max” circled on the status bar

[image: Image 14]

Getting Started

22

A screenshot of Android Studio, with “iPhone 13 Pro Max” circled in the command bar below the title Your desktop OS (e.g., MacOS or Windows) should always show up as a debug

target, along with Chrome if you have it installed.

Running in debug mode

Once the device you want to debug on shows up in the device list, you’re all set. You can run your app using the Run and Debug pane/button in VS Code or the Play �

button in the Android Studio command bar.

If you prefer the CLI, you can run your app using flutter run (this will target

the first device listed by flutter devices) or flutter run -d deviceName.

For example, flutter run -d macos will target your MacOS desktop.

The example app looks like this:

[image: Image 15]

Getting Started

23

Screenshot of an app called revenue_explorer with a blue title bar reading “Flutter Demo Home Page”.

The text in the center of the screen says, “You have pushed the button this many times: 0”. There is a floating + button in the lower right corner

Go ahead and click the floating + button to see the counter increment.

If you want to take a break here and play with main.dart, go for it! I know I like

Getting Started

24

to play with a new programming toy as soon as possible. Otherwise, we’ll get into all those widgets and methods you’re seeing in Module 2. If you can’t wait, feel free to jump over there now.

:::info

Debug Mode is the only mode that works on the iOS Simulator and Android

Emulator. For any other mode, you’ll need to target a physical device.

:::

Running in release mode

You can run your app on a physical device in debug mode, but once you stop the

debugger on your computer, the app will no longer work on your phone. If you want to be able to use your app on the go, run it in release mode.

From the CLI, you can run flutter run --release. In VS Code or Android

Studio, you can use the Run dropdown and select release mode.

Running in profile mode

Profile mode is also an option for an app you want to use later. Profile mode is

similar to release mode but maintains some debugging ability (like the ability to connect to Flutter DevTools) and is most often used to debug performance issues.

From the CLI, run flutter run --profile. In VS Code or Android Studio,

open the Run dropdown and select profile mode.

Further reading

Flutter’s build modes (docs.flutter.dev)

Use a native language debugger (docs.flutter.dev) Flutter includes a lot of functionality off the shelf, more than I’ve ever seen before in a library or framework. You could feasibly build an entire app without

using any external packages. But that’s usually not the best way to go. To save time and build more reliable features, you’ll want to use Pub packages.

What is pub.dev?

There are over 30,000 Dart packages available at pub.dev, and over 28,000 of them are labeled compatible with Flutter (Pub hosts packages for Dart scripts and

[image: Image 16]

Getting Started

25

applications in general, not just Flutter apps). Most of the things you’ll want to do will have a Pub package ready-made, often a first-party one with the Flutter team’s full support behind it. And if you want to do something a little more bespoke, you can use a Pub package as your jumping-off point.

Evaluating Pub packages

If you’re considering multiple packages, there are things you can compare between them.

Publisher

The package publisher is listed right below the title after the last published date.

Screenshot of the url_launcher package on pub.dev. The publisher is listed as “flutter.dev” with a checkmark next to it

The following publishers represent internal teams at Google, offering different

levels of first-party support.

• flutter.dev is the publisher for official first-party packages. These packages are usually the best choice and cover the most common things your apps will

do.

• fluttercommunity.dev is the publisher for official but community-supported packages. This means the Flutter team thinks the package is important

enough to keep in their official code repository, but it’s built and maintained

Getting Started

26

by community members. Flutter Community packages are typically very

popular and high-quality.

• dart.dev is the publisher for official first-party Dart packages, maintained by the Dart team as opposed to the Flutter team. These are fully supported and

a great choice for your apps.

• tools.dart.dev is the publisher for internal tools used by the Dart team to build other packages. They don’t have the same level of support as dart.dev

packages, but they’re usually pretty good.

• labs.dart.dev is the publisher for experimental first-party Dart packages.

They might become official packages at some point, but they also might get

discontinued, so use them at your own risk.

For any other publisher, if you see a checkmark, it means they’ve proven they

own the domain. It doesn’t necessarily mean the Flutter team approves or has

tested the package. But it does prove the publisher’s identity and demonstrate

some amount of commitment to their package, so it’s something you can take into

account.

Lists

You’ll often be looking for packages outside of official first-party ones. There are a few curated lists you should be aware of.

• Flutter Favorites are hand-picked by the Flutter team and have a “Flutter Favorite” badge on the package page.

• The Happy Paths project is part of the Flutter documentation and tracks some of the best packages in several different categories.

• Flutter Gems is a community list. It’s by far the most expansive of these, listing and categorizing a few thousand Pub packages.

Compatibility tags

Check the SDK chip to make sure it includes Flutter. You should also check the Platform chip and make sure the package supports the targets where you’ll need it. It’s okay to use one package on some platforms and another package (or skip the feature entirely) on others; you’ll just need to handle that in your code.

[image: Image 17]

[image: Image 18]

Getting Started

27

Screenshot of the firebase_core Pub package with two chips circled in red. One says “SDK | Flutter”, the other says “Platform | Android iOS MacOS Web”

Package metrics

Pub provides three apples-to-apples metrics for every package.

 This section appears in the right sidebar of the package page. Example

• Likes are exactly what they sound like. If you’re signed in on pub.dev, you can Like a package by clicking the thumbs up. The most popular packages have

thousands of likes, but even just a few hundred is a pretty good indication

that people like it.

• Pub Points is a number out of 140 that scores the package on things like following Dart’s style conventions, being null-safe, and including a usage

example.

Getting Started

28

• Popularity is the package’s number of downloads as a percentile. For example, 100% means it’s in the top 1% of most downloaded packages on pub.dev, and

10% would mean it’s in the top 91%.

Installing a package

When installing a package, you should determine if it’s a regular dependency or a dev dependency.

• Regular dependencies are required for the app to run.

• Dev dependencies are only used during development and shouldn’t be in-

cluded in the app package—something like a linter or test runner would be

a dev dependency.

In VS Code, you can add a package from the Command Palette (cmd + shift + P)

by choosing the Dart: Add Dependency command (or Dart: Add Dev Dependency) and typing the package name. It will get added to your pubspec.yaml file automatically.

Or, on the command line, you can use the flutter pub add command. If you

want to install the provider package, you can write:

1

flutter pub add provider

If you’ve just downloaded a new repository or think your dependencies might

be out of date, you can run flutter pub get to fetch them based on your

pubspec.yaml file.

Using a package

To use a package in any Dart file, you use the import keyword. For example, to use any of the classes or methods in the provider package, you’d write:

1

import 'package:provider/provider.dart';

By convention, the entry point for a package has the same name as the package

itself.

You usually don’t have to write your own import statements. If the package

is in your pubspec.yaml file, you can type one of the class or function names

mentioned in the package documentation, and your IDE will pop up a suggestion

to import it for you.

Getting Started

29

Further reading

Using packages (docs.flutter.dev)

Flutter pubspec.yaml File Explained in a simple way. (Kamran khan, medium.com)

To publish for Android or iOS, you need what’s called a bundle ID. Bundle IDs

follow the convention com.publisherName.appName. So, for example, the App

Store app’s bundle ID is com.apple.AppStore, and my game Sootly’s bundle ID is

com.isaaclyman.sootly.

You probably also want to give your app a display name and a unique icon.

Android configuration

To configure your Android app, visit android/app/src/main/AndroidMani-

fest.xml. The lines you need to care about are at the very top:

1

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

2

package="com.example.revenue_explorer" >

3

<application

4

android:label="revenue_explorer"

5

android:name="${applicationName}"

6

android:icon="@mipmap/ic_launcher" >

The package attribute on <manifest> is for the bundle ID, and the an-

droid:label attribute on <application> is for the app’s display name. Go ahead and update those:

1

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

2

package="com.yourNameHere.revenue_explorer" >

3

<application

4

android:label="Revenue Explorer"

5

android:name="${applicationName}"

6

android:icon="@mipmap/ic_launcher" >

:::tip

You’ll be updating this AndroidManifest.xml file anytime you want to add

new permissions to your app, so make a note of its location.

:::

You’ll also need to update the bundle ID in android/app/build.gradle. It’s

in the android > defaultConfig section:

Getting Started

30

1

defaultConfig {

2

 // TODO: Specify your own unique Application ID (https://developer.android.com/st\ 3

udio/build/application-id.html).

4

applicationId "com.example.revenue_explorer"

5

 // You can update the following values to match your application needs.

6

 // For more information, see: https://docs.flutter.dev/deployment/android#reviewi\ 7

ng-the-build-configuration.

8

minSdkVersion flutter.minSdkVersion

9

targetSdkVersion flutter.targetSdkVersion

10

versionCode flutterVersionCode.toInteger()

11

versionName flutterVersionName

12

}

Update the applicationId value:

1

defaultConfig {

2

 // TODO: Specify your own unique Application ID (https://developer.android.com/st\ 3

udio/build/application-id.html).

4

applicationId "com.yourNameHere.revenue_explorer"

5

 // You can update the following values to match your application needs.

6

 // For more information, see: https://docs.flutter.dev/deployment/android#reviewi\ 7

ng-the-build-configuration.

8

minSdkVersion flutter.minSdkVersion

9

targetSdkVersion flutter.targetSdkVersion

10

versionCode flutterVersionCode.toInteger()

11

versionName flutterVersionName

12

}

iOS configuration

To configure your iOS app, open ios/Runner.xcworkspace in Xcode. Select the

Runner project and the Runner target, then visit the General tab and scroll down

to the Identity section. Here, you can set the Display Name and Bundle ID. You can also choose the App Category if you want. Make sure to save it when you’re done.

[image: Image 19]

Getting Started

31

Screenshot of Xcode with Runner selected in the left navigation pane, Runner selected under Targets in the main view, the General tab selected, and the Identity section scrolled into view Don’t worry about the Version or Build fields; Flutter will update those for you

when you build the app package.

Icons

You could spend hours putting together files for every icon size supported by An-

droid and iOS devices. Don’t do that. Instead, use the flutter_launcher_icons

Pub package.

Add the package to your app using any of the methods in the previous lesson (it’s a dev dependency). Then add a section like this to the end of your pubspec.yaml:

Getting Started

32

1

flutter_icons:

2

android: true

3

ios: "AppIcon"

4

remove_alpha_ios: true

5

image_path: "./images/revex-icon.png"

Quick rundown:

• android: true generates Android icons.

• ios: "AppIcon" generates iOS icons under the “AppIcon” set, which is the default icon set used by iOS apps.

• remove_alpha_ios: true removes any transparency when generating iOS

icons. Android icons usually have a transparent background, but iOS icons

aren’t allowed to.

• image_path is a relative path to the image you want to use.

:::tip flutter_launcher_icons can also generate icons for Mac, Windows,

and Web. Visit the package page on pub.dev to learn how. ::: Make sure your image_path refers to a valid file. Finally, run:

1

flutter pub run flutter_launcher_icons

This will use your base image to generate all the icons you need for iOS and

Android.

Further reading

Build and release an Android app (docs.flutter.dev)

Build and release an iOS app (docs.flutter.dev) Now you’ve got the example app configured and running, let’s package it for

distribution.

Version

Every time you want to package a new version of your app, start at pubspec.yaml.

There’s a version field that looks like this:

Getting Started

33

1

version: 1.0.0+1

There are two parts to this field.

• The first part, 1.0.0, is a standard package version—if you’re already familiar with SemVer, you know what to do here. Neither the App Store nor Google Play has strict rules on versioning, though, so you’re welcome to use any

versioning system that makes sense to you (so long as you understand that

2.0.0 is bigger than 0.0.2).

• The second part, +1, is a build number. Even though the comments generated

by Flutter CLI say this is optional, it really isn’t if you’re planning to distribute your app. You should increment this by 1 every time you package a new

version.

Build commands

Android

To create an app bundle (.aab) file for Google Play, run flutter build appbun-

dle from the CLI. It will output the file to build/app/outputs/bundle/release/app-release.aab.

Yep, it’s a really long path.

If you need an APK file for some reason (say, a third-party app store),

you can use the flutter build apk command. It will output the file to

build/app/outputs/flutter-apk/app-release.apk.

iOS

To create an iOS application archive (.ipa) file for the App Store, run flutter

build ipa from the CLI. It will output the file to build/ios/ipa/appName.ipa.

Both at once

To save time, use the following command:

1

flutter build appbundle && flutter build ipa

Getting Started

34

Other platforms

You can run flutter build --help to see all the platforms for which Flutter

knows how to package an app.

Distributing your app

There’s a lot involved in setting your app up on the App Store and Google Play, more than we could cover in this lesson—and the process is constantly changing. But for the most part, their respective websites will walk you through it, and there’s plenty of help available online.

The important thing is that once you have .aab and .ipa files, your app is just like any other app. From here on out, there’s nothing Flutter-specific you need to do. If you run into any hurdles getting your app listed for distribution, you’re in the same territory as millions of other apps.

Further reading

Publish your app (developer.android.com)

Add a new app (developer.apple.com)

Creating A Seed App

Module 3

In this module, you will:

• Start getting used to Dart, the programming language of Flutter apps.

• Get a sneak peek into the way Flutter apps are structured.

• Set up a few things that are nice to have before you start building widgets:

theming, state handling, navigation, and a Scaffold. None of these are re-

quired, but you’ll probably use them, and it’s easier to add them now rather than later.

We’ll be building our app with Material Design, Google’s official design language.

You can also build Flutter apps using Apple’s Human Interface Guidelines (known as cupertino in Flutter’s widget library) or roll your own custom widgets, but

Material Design has the best first-party support and is what Google recommends

for cross-platform apps.

(Yeah, they’re a little biased, but I’m a “do whatever’s easiest” kind of person.) To write Flutter apps, you need to understand Dart.

Dart overview

Dart is:

• High-level. No need to manage your own memory or worry about pointer

sizes.

• Object-oriented. Classes, objects, multiple types of inheritance, all that jazz.

• Null-safe. All types are non-nullable by default.

• Strongly typed. Types are often inferred for variables, but you’ll need to declare them for parameters.

• Familiar. Dart uses C-style blocks and looks a lot like C#, Kotlin, and Java.

• Productive. Code stays concise thanks to all-inclusive import statements, plenty of syntax sugar, and very little boilerplate.

I love using Dart and I think you will too.

Creating A Seed App

36

Cheat sheet

The following code demonstrates the most common features of Dart. It’s a lot to

take in all at once; feel free to download it and search the file when you need

something.

Download cheat sheet

1

var x = 5; // A public mutable variable. Type is inferred (int).

2

final y = 5; // A public immutable variable. Type is inferred.

3

const z = 10; // A public compile-time constant. Type is inferred.

4

5

double someDecimal = 5; // A public mutable variable with a declared type.

6

var someDecimalToo = 5 as double; // The same thing, but casting with às`.

7

8

 // The underscore makes this variable private to the current file.

9

var _privateVar = 'Hello';

10

 // You can use single quotes or double quotes for string literals.

11

12

var multilineString = '''

13

This string spans

14

multiple lines.

15

''';

16

17

 // An enum. Dart enums have constant int values.

18

enum Pet {

19

dog,

20

cat,

21

}

22

23

 // A public function with one argument.

24

double? getNullableValue(bool returnNull) {

25

if (returnNull) {

26

return null;

27

}

28

29

return 10;

30

}

31

32

 // Same as the previous function but private and inline.

33

double? _getNullableValueToo(bool returnNull) => returnNull ? null : 10; 34

35

double? nullableDecimal = getNullableValue(true); // A nullable variable.

36

37

var nonNullableDecimal =

38

nullableDecimal ?? 25; // If the value is null, default to 25.

39

40

 // An async function.

41

Future< int> returnArgumentInThreeSeconds(int argument) async {

Creating A Seed App

37

42

await Future.delayed(Duration(seconds: 3));

43

return argument;

44

}

45

46

void someOtherFunction() {

47

nullableDecimal = 12.7;

48

var nonNullableDecimalToo =

49

nullableDecimal!; // Assert that nullableDecimal is non-null; throw an error if nul\ 50

l.

51

print(nonNullableDecimalToo); // Print a value to the console.

52

}

53

54

 // A List literal (like a dynamic array) with boolean values.

55

var myList = < bool>[];

56

57

 // A Map literal (like a HashMap or Dictionary) with String keys and int values.

58

var myDictionary = < String, int>{};

59

60

 // An interpolated string.

61

var myString = ' $_privateVar is private, $x is public';

62

 // Value will be "Hello is private, 5 is public"

63

64

 // An interpolated string with an expression.

65

var myStringToo = "x plus y is ${x + y}";

66

 // Value will be "x plus y is 10"

67

68

 // A function that accepts a callback and has a null return value.

69

void useCallback(void Function(int callbackParam) cb) {

70

print('Calling callback...');

71

cb(10);

72

print('Done.');

73

}

74

75

 // A function that uses the previous one.

76

 // (You can't have top-level function calls in Dart.)

77

void someFunction() {

78

useCallback((callbackParam) {

79

print('Callback param was $callbackParam.');

80

});

81

}

82

83

 // A regular class.

84

class MySuperClass {

85

final String myField; // A public immutable class field.

86

final description = "Superclass"; // A public field with an initialized value.

87

final _secret =

88

"abcd"; // A private (to the class) field with an initialized value.

89

String get secret => _secret; // A public getter that returns _secret.

90

91

 // A default constructor that initializes `myField` from the first argument.

Creating A Seed App

38

92

const MySuperClass(this.myField);

93

 // A constructor can be marked `constìf all the class fields arèfinalòr `const` v\ 94

alues.

95

96

 // A named constructor.

97

MySuperClass.combined(String firstPart, String secondPart)

98

 // Initializes myField by interpolating the arguments into one string.

99

: myField = " $firstPart $secondPart";

100

101

 // A public method that returns thèdescription` field.

102

String getDescription() => description;

103

104

 // A private method that returns thèmyField` field.

105

String _getMyField() {

106

return myField;

107

}

108

}

109

110

 // Construct MySuperClass. No need for ànew` keyword.

111

var myInstance = const MySuperClass("myField value");

112

113

 // Use the named constructor.

114

var myOtherInstance = MySuperClass.combined("myField", "value"); 115

116

 // Call an instance method.

117

var myDescription = myInstance.getDescription();

118

119

 // MySubClass will inherit everything from MySuperClass.

120

class MySubClass extends MySuperClass {

121

 // This is mutable, so no const constructors can exist on this class.

122

late int _myPrivateInt = 0;

123

 // `latè means it will be initialized before it's used, but not necessarily in a const\ 124

ructor argument.

125

 // This sidesteps null safety, so avoid where possible.

126

127

int? myPublicInt; // Automatically initialized to null.

128

129

MySubClass(super.myField); // The super constructor is called automatically.

130

MySubClass.custom(String myField)

131

: super(myField); // Or you can call it manually.

132

133

MySubClass._construct(super.myField); // A private (to the class) constructor.

134

135

 // A factory function.

136

static MySubClass create(String myField) {

137

return MySubClass._construct(myField);

138

}

139

140

MySubClass.withLogic() : super("withLogic") {

141

 // A constructor body. Constructors with bodies are never const.

Creating A Seed App

39

142

_myPrivateInt = myField.length;

143

}

144

145

MySubClass.withNamedParameters({

146

 // `required` keyword means the constructor can't be called without it.

147

required String myField,

148

required privateInt,

149

this.myPublicInt, // By default, named parameters are optional.

150

 // You can initialize private fields using trailing statements.

151

})

: _myPrivateInt = privateInt * 2,

152

super(myField);

153

154

int myMethod(

155

 // You can have both positional and named params on any constructor or method.

156

int positionalParam, {

157

int? optionalParam,

158

required int? requiredParam,

159

}) {

160

return positionalParam + (requiredParam ?? 0) + (optionalParam ?? 0);

161

}

162

}

163

164

var subInstance = MySubClass.withLogic();

165

var superClassField = subInstance.myField;

166

167

var subInstanceToo = MySubClass.withNamedParameters(

168

myField: "myFieldValue",

169

privateInt: 10,

170

 // Trailing commas in parameter lists are common and help the IDE auto-format your code\ 171

nicely.

172

);

173

174

void cascadeSyntax() {

175

subInstanceToo

176

 // Cascade syntax `..` lets you access a field or method and then returns the object \ 177

again.

178

..myPublicInt = 10

179

..myMethod(4, requiredParam: 8);

180

}

181

182

 // A public extension. Extensions let you add functionality to any type.

183

extension SomethingUsefulEx on int {

184

int doMyMethod(MySubClass subClass, int requiredParam) {

185

return subClass.myMethod(this, requiredParam: requiredParam);

186

}

187

}

Creating A Seed App

40

Inheritance

Dart has three types of inheritance.

• The extends keyword on a class determines its superclass, from which it

inherits all fields and methods. The superclass constructor is called automat-

ically. There can only be one class name after extends, so the super keyword

refers to it unambiguously.

• The implements keyword on a class determines its interface. That is, what-

ever class comes after implements will be treated like an interface: its field

values and method implementations will be discarded and the class will be

required to re-implement all of them.

• The with keyword on a class determines its mixin(s), from which it inherits

all fields and methods. Whatever class(es) come after with must not have

constructors. You can have unlimited mixins on a class (comma-separated).

Further reading

Introduction to Dart (dart.dev)

Dart Basics (Jonathan Sande, kodeco.com)

DartPad - Dart language sandbox (dartpad.dev)

Exercises

1. Implement your favorite basic coding exercise (such as FizzBuzz) in Dart. You

can use an online sandbox like DartPad or save your exercise with the .dart extension and execute dart run myfile.dart from the terminal to run it.

2. Create a simple superclass with one field and one method. Then create a class

that extends it, a class that implements it, and a class that inherits it as a

mixin via the with keyword.

The Widget Hierarchy

A Flutter app is a tree or hierarchy of widgets. Most widgets have a build method that returns another widget.

[image: Image 20]

Creating A Seed App

41

Screenshot of an org chart where the top node has a ‘void main()‘ function that calls ‘runApp(Widget)‘.

Descending from the top node is a line of nodes all labeled “Widget” that branches into multiple columns.

It’s widgets all the way down, as far as you need to know. At the bottom of the

tree are widgets that know how to paint things to the screen, but most of the time, there’s no reason to think about those—just use what’s built into the framework.

If you’re already familiar with React, you’re in luck! Flutter is pretty much React in disguise.

What is a Widget?

A widget is a Dart class with any combination of UI, logic, and state.

Creating A Seed App

42

• It could paint something on the screen, like a button.

• It could decide the layout of other widgets, like arranging them in a horizontal row.

• It could know about two widgets and use an if statement to decide which

one to display.

• It could apply padding or rotation to another widget.

• It could make an API call and pass the result to another widget.

• It could monitor the app state and re-render another widget when something

changes.

If you’re a web developer, some of the tasks you’re used to doing with a CSS

property will be a widget instead. The Flutter team wanted to keep widgets simple—

they didn’t want every widget to have to know how to do everything. For example,

the Text widget doesn’t know how to have padding. Instead, there’s a Padding

widget, and you can use it to wrap your Text. Like this:

1

Padding(

2

padding: const EdgeInsets.all(100),

3

child: Text("Skidee skidoom, look at all this room"),

4

)

Or say you want to make a Text widget tappable. It doesn’t know how to be

tappable on its own; instead, there’s a GestureDetector widget you can put

around it:

1

GestureDetector(

2

onTap: () {

3

print("Text was tapped.");

4

},

5

child: Text("This text is tappable"),

6

)

A typical widget combines several other widgets. It may look something like this:

Creating A Seed App

43

1

class LetsGoButton extends StatelessWidget {

2

final bool isEnabled;

3

4

LetsGoButton({this.isEnabled = true});

5

6

@override

7

Widget build(BuildContext context) {

8

return Column(

9

children: [

10

Text("Let's go!"),

11

TextButton(

12

onPressed: !isEnabled ? null : () {

13

doTheThing();

14

},

15

child: Row(

16

children: [

17

Padding(

18

padding: const EdgeInsets.only(right: 8),

19

child: Icon(Icons.link),

20

),

21

Text("Do the thing"),

22

],

23

),

24

),

25

],

26

);

27

}

28

}

You can see how this might get out of hand. For readability reasons (and

performance), you’re better off creating several small widgets rather than one huge one.

Types of Widgets

You may wonder whether there’s a way to make small, incremental changes to a

piece of UI, like adding a letter to a text field when the user types a key. Nope!

Flutter widgets are immutable. Just construct the whole widget again with the new information. Rendering in Flutter is cheap and fast.

There are two main types of widgets you’ll create:

• A StatelessWidget re-renders when it gets constructed with different

arguments.

• A StatefulWidget re-renders when it gets constructed with different argu-

ments or when you call setState(() {}).

Creating A Seed App

44

You should always start with a StatelessWidget and switch to a State-

fulWidget if you need to—not because StatefulWidget is slow, but because

StatelessWidget is simple.

Creating Widgets

If you’re using VS Code or Android Studio, the easiest way to create a Widget is to let the IDE help out. Start by typing this:

1

class MyWidgetName extends StatelessWidget {

2

3

}

A suggestion lightbulb should appear over MyWidgetName. Click it and choose

Create 1 missing override. You’ll get this:

1

class MyWidgetName extends StatelessWidget {

2

@override

3

Widget build(BuildContext context) {

4

 // TODO: implement build

5

throw UnimplementedError();

6

}

7

}

If all you wanted was a StatelessWidget, you’re good to go. You can now modify

the build method to return any widget. Optionally, you can also create any

immutable class fields you want with a constructor to initialize them.

1

class MyWidgetName extends StatelessWidget {

2

final String text;

3

4

MyWidgetName({required this.text});

5

6

@override

7

Widget build(BuildContext context) {

8

return Text("I came to chew bubblegum and $text.");

9

}

10

}

If you need a StatefulWidget, click on StatelessWidget and open the context

actions (cmd + period in VS Code or option + return in Android Studio), then choose Convert to StatefulWidget. You’ll get this:

Creating A Seed App

45

1

class MyWidgetName extends StatefulWidget {

2

@override

3

State<MyWidgetName> createState() => _MyWidgetNameState();

4

}

5

6

class _MyWidgetNameState extends State<MyWidgetName> {

7

@override

8

Widget build(BuildContext context) {

9

 // TODO: implement build

10

throw UnimplementedError();

11

}

12

}

Like with a StatelessWidget, you’ll modify the build method to return a wid-

get. You can also add a constructor and immutable fields in the StatefulWidget

subclass and any fields that might change in the State<> subclass. You’ll have access to the setState(() {}) method from anywhere in _MyWidgetNameState.

More detail on StatelessWidget and StatefulWidget will be provided later,

but for now, you should have enough information to look back at lib/main.dart

in the generated Flutter project and get a sense of what’s going on.

Further reading

How Flutter renders Widgets (Flutter on YouTube)

Flutter architectural overview: Widgets (docs.flutter.dev)

Flutter Widget catalog (docs.flutter.dev) Exercises

1. Without using the context menu in your IDE, refactor main.dart in your

project to move the floating action button into a new StatelessWidget.

Then run the app to make sure it still works.

Why manage state?

You don’t need a state management solution to build a Flutter app. You could use StatefulWidget to handle all your state and pass data from widget to widget using constructor arguments.

But Flutter widget hierarchies are deep. If a variable needs to go from your top widget through 50 other widgets to get to where you’re using it, you’ll get

Creating A Seed App

46

super tired of passing that along. And once you have more than two or three state variables, you’ll just be miserable.

It’s easier to have something set up that lets you create data at the highest level possible in your hierarchy and then use it at the lowest level possible without having to modify any of the widgets in between.

provider

If you like Redux or Mobx or whatever, you’re welcome to use it. Pub has a package for that. But if you don’t have a preference or want to avoid a lot of setup, start with provider.

The provider Pub package is Flutter’s first-resort state management solution.

It couldn’t be simpler: there’s a widget for providing data and another widget

for accessing it from any descendant widget. No intermediate widget-to-widget

coupling is required.

Go ahead and add it to your dependencies now.

Providing static data

Following are some examples of how the provider package is used. You don’t need

to add any of this code to your app right now; you’ll come back to state management in a later lesson.

To provide state that won’t change, use the Provider widget:

1

class MyState {

2

final String username;

3

final String userId;

4

5

MyState({required this.username, required this.userId});

6

}

7

8

class MyWidget extends StatelessWidget {

9

@override

10

Widget build(BuildContext context) {

11

return Provider(

12

create: () => MyState(username: "Bob", userId: "user1"),

13

child: MyDescendantWidget(),

14

);

15

}

16

}

To use your state, use the Consumer widget:

Creating A Seed App

47

1

class MyDescendantWidget extends StatelessWidget {

2

@override

3

Widget build(BuildContext context) {

4

return Consumer<MyState>(

5

builder: (context, state, child) => Text("Your username is ${state.username}"), 6

);

7

}

8

}

Providing dynamic data

If your state changes (such as responding to events from descendant widgets), you can use ChangeNotifierProvider.

First, you’ll need to extend the ChangeNotifier class on your state.

1

class MyState extends ChangeNotifier {

2

final String username;

3

final String userId;

4

5

MyState({required this.username, required this.userId});

6

}

Then, implement the method you want to use to change state. Call the inherited

notifyListeners() method when anything that depends on your state should

update.

1

class MyState extends ChangeNotifier {

2

String username;

3

final String userId;

4

5

MyState({required this.username, required this.userId});

6

7

void changeUsername(String newUsername) {

8

username = newUsername;

9

notifyListeners();

10

}

11

}

Finally, switch out Provider for ChangeNotifierProvider:

Creating A Seed App

48

1

class MyWidget extends StatelessWidget {

2

@override

3

Widget build(BuildContext context) {

4

return ChangeNotifierProvider(

5

create: () => MyState(username: "Bob", userId: "user1"),

6

child: MyDescendantWidget(),

7

);

8

}

9

}

Your Consumer widget doesn’t need to change. When you call notifyListen-

ers(), it will rebuild its widget.

Further reading

List of state management approaches (docs.flutter.dev)

Simple app state management (docs.flutter.dev) Why set up a theme?

You don’t need any theming to start building a Flutter app. If your goal is to start pumping out widgets as fast as possible, you can skip all this and use the ThemeData the Flutter CLI generated for you:

1

ThemeData(

2

primarySwatch: Colors.blue,

3

)

This will generate a complete Material Design palette based on the color blue

(#2196F3).

The danger of this is at some point, you’ll probably decide you want something

a little different. Like a red button, maybe. You’ll do this:

Creating A Seed App

49

1

OutlinedButton(

2

onPressed: () => deleteEverything(),

3

style: OutlinedButton.styleFrom(

4

backgroundColor: Colors.red,

5

foregroundColor: Colors.white,

6

),

7

child: Text("Permanently delete all my data"),

8

)

And maybe you’ll look at it in your Simulator and decide you need a slightly

darker red for better contrast with the text, so you’ll change Colors.red to

Colors.red.shade400.

Before you know it you’ve done this 100 times. At worst, you haven’t been

consistent and your app looks like it was finger-painted by a kindergarten class. At best, the app looks fine but if you want to change something, you have to change

it in a hundred places.

And what if you want to add dark mode? Wow, that sounds painful.

You can save yourself a lot of trouble by starting with a theme handler and some

universal colors.

theme_provider

I recommend the theme_provider Pub package for all your theming needs. It helps you define multiple Material themes (and any custom colors you want) and

use them throughout your app. If you need to change a color, you’ll only have to

update it in one place.

Go ahead and add it as a dependency now.

Creating a theme

Create a new file in lib/ called theme.dart. Then create a class that implements

AppThemeOptions:

1

class RevExTheme implements AppThemeOptions {}

AppThemeOptions doesn’t have any fields or methods, it’s just there to provide

a type.

From here you can add any information you want to use to generate your

theme. For now, let’s add a theme name, a description, a brightness (which can

Creating A Seed App

50

be Brightness.dark or Brightness.light), three background colors, and

accompanying text colors:

1

class RevExTheme implements AppThemeOptions {

2

final String name;

3

final String description;

4

final Brightness brightness;

5

final Color primary;

6

final Color primaryText;

7

final Color secondary;

8

final Color secondaryText;

9

final Color danger;

10

final Color dangerText;

11

12

const RevExTheme(

13

this.name,

14

this.description, {

15

required this.brightness,

16

required this.primary,

17

required this.primaryText,

18

required this.secondary,

19

required this.secondaryText,

20

required this.danger,

21

required this.dangerText,

22

});

23

}

You can add more colors (or other things) later, as needed.

Let’s generate a theme based on your colors:

1

class RevExTheme implements AppThemeOptions {

2

 // ...

3

4

AppTheme get appTheme {

5

return AppTheme(

6

id: name,

7

description: description,

8

data: ThemeData(

9

brightness: brightness,

10

backgroundColor: secondary,

11

cardTheme: CardTheme(

12

color: primary,

13

elevation: 1,

14

),

15

inputDecorationTheme: InputDecorationTheme(

16

border: OutlineInputBorder(

17

borderSide: BorderSide(

Creating A Seed App

51

18

color: primary,

19

width: 1,

20

),

21

),

22

),

23

colorSchemeSeed: primary,

24

typography: Typography.material2021(),

25

useMaterial3: true,

26

),

27

options: this,

28

);

29

}

30

}

There are a lot of options in ThemeData, at least one each for most of the UI components in the Material Design widget library. If you use a widget and it doesn’t look the way you want, you can come back here to theme.dart and update its

theming options. Then it will look right the next time you use it, too.

Let’s create a default theme using the class you just built:

1

final revexLightTheme = RevExTheme(

2

"light",

3

"Light Theme (Default)",

4

brightness: Brightness.light,

5

primary: Colors.green,

6

primaryText: Colors.black,

7

secondary: Colors.purple,

8

secondaryText: Colors.white,

9

danger: Colors.red.shade600,

10

dangerText: Colors.white,

11

);

If you want to create a dark theme later (or any number of alternative themes),

you can reuse the same class.

Plugging it in

To tell Flutter to use your theme(s), update MyApp in lib/main.dart:

Creating A Seed App

52

1

class MyApp extends StatelessWidget {

2

const MyApp({super.key});

3

4

 // This widget is the root of your application.

5

@override

6

Widget build(BuildContext context) {

7

return ThemeProvider(

8

defaultThemeId: revexLightTheme.appTheme.id,

9

themes: [

10

revexLightTheme.appTheme,

11

AppTheme.dark(), // A default dark theme

12

],

13

child: ThemeConsumer(

14

child: Builder(

15

builder: (themeContext) => MaterialApp(

16

title: 'Flutter Demo',

17

theme: ThemeProvider.themeOf(themeContext).data,

18

home: const MyHomePage(title: 'Flutter Demo Home Page'),

19

),

20

),

21

),

22

);

23

}

24

}

Your IDE will prompt you (with red underlines) about a few files you need to

import. Go ahead and let it import them for you.

What exactly is happening here?

ThemeProvider

and ThemeConsumer are convenient wrappers over

Provider and Consumer, which you learned about in the previous lesson. They

pass values down through the widget tree using a BuildContext, which you can

grab using a Builder widget. And ThemeProvider.themeOf(themeContext)

gets the current theme, which is coming from your getter in the RevExTheme

class. You can pass its data field to MaterialApp.theme.

If you create more themes for your app, make sure to add them to the The-

meProvider.themes list. You can replace AppTheme.dark() whenever you’re

ready; it’s only here because the themes list has to be at least two items long.

You can switch between themes in a widget’s build method like this:

Creating A Seed App

53

1

@override

2

Widget build(BuildContext context) {

3

return GestureDetector(

4

onTap: () {

5

ThemeProvider.controllerOf(context).setTheme(newThemeId);

6

},

7

child: Text('Tap me to change the theme'),

8

);

9

}

Accessing theme colors

You’ll update your theme options as you build your app to make each Material

component conform to your color and design specifications. But what if you want

to build a custom component based on your theme or access one of your colors

directly?

You can access your theme from any widget’s build method like this:

1

@override

2

Widget build(BuildContext context) {

3

final myTheme = ThemeProvider.optionsOf<RevExTheme>(context);

4

 // Now you can refer tòmyTheme.primaryànd so on

5

}

That’s a little verbose, though. Why don’t you create an extension and save

yourself some keystrokes?

Add this to theme.dart:

1

extension GetThemeOptionsEx on BuildContext {

2

RevExTheme get theme {

3

return ThemeProvider.optionsOf<RevExTheme>(this);

4

}

5

}

Now anytime you want to refer to one of your custom theme fields, you can do

this instead:

Creating A Seed App

54

1

@override

2

Widget build(BuildContext context) {

3

final myTheme = context.theme;

4

 // Now we can refer tòmyTheme.primaryànd so on.

5

 // Or usècontext.theme.primary` directly and cut out the middleman.

6

}

Download updated files

lib/main.dart

lib/theme.dart

Further reading

Cookbook: Use themes to share colors and font styles (docs.flutter.dev)

Mastering Material Design 3: The Complete Guide to Theming in Flutter (Christian Findlay, christianfindlay.com)

Exercises

1. With the app running in debug mode, play with some different colors and

theming options and see how the app looks.

2. Override the background color of the floating action button in main.dart

using one of your theme colors.

Why use a navigation library?

You don’t need any navigation setup to build a Flutter app. You can use conditional rendering to decide what widgets to display, and in fact, this is pretty safe.

So why would you go to the trouble of setting up URL-style navigation?

1. It’s a good organizing principle for your app and lets you think about it like a web app. It might not be better than the best conditional-rendering solution

you could come up with, but it’s definitely better than the worst one.

2. It makes it easy to get around. If a path exists, you can link to it from any other place in the app.

Creating A Seed App

55

3. It makes it possible to implement deep-linking later, so users of your app

can share specific pages with each other via email, social media, or even text

message.

go_router

Flutter has a built-in Navigator class, but it’s not fun to use on its own. Luckily, there’s a first-party package that provides a more user-friendly API for it. “Go”

ahead and add go_router to your dependencies.

Declaring routes

Create a new file in lib/ called router.dart. Add the following code to it:

1

final revexRouter = GoRouter(routes: <GoRoute>[

2

GoRoute(

3

path: '/',

4

redirect: (_, __) => '/home',

5

),

6

GoRoute(

7

path: '/home',

8

pageBuilder: (context, state) => const MaterialPage(

9

child: MyHomePage(title: 'Flutter Demo Home Page'),

10

),

11

)

12

]);

This sets up two routes: a default empty route that redirects to the home page

and the home page route that shows the MyHomePage widget from main.dart.

Plugging it in

In main.dart, update the MyApp component’s build method. Change Materi-

alApp to MaterialApp.router, remove the home field, and add a few route fields

so it looks like this:

Creating A Seed App

56

1

builder: (themeContext) => MaterialApp.router(

2

title: 'Flutter Demo',

3

theme: ThemeProvider.themeOf(themeContext).data,

4

routeInformationParser: revexRouter.routeInformationParser,

5

routeInformationProvider: revexRouter.routeInformationProvider,

6

routerDelegate: revexRouter.routerDelegate,

7

),

You’ll need to import router.dart for revexRouter to show up. Your IDE will

help with that.

:::tip

You may notice that home.dart imports router.dart to use revexRouter

and router.dart imports home.dart to use the MyHomePage widget. How come

that doesn’t cause a circular dependency? It’s because Dart uses a multi-pass

compiler, which here means you can have all the circular dependencies you want.

Hooray!

:::

Navigating between routes

To navigate to another route from any widget’s build method, you can use the

context.go method:

1

@override

2

Widget build(BuildContext context) {

3

return TextButton(

4

onTap: () {

5

context.go('/home');

6

},

7

child: Text('Tap here to visit /home'),

8

);

9

}

Deep linking

Setting up your app for deep linking is a non-trivial process. I won’t get into the details here, but to give an overview:

1. You’ll need to own the web domain referenced in your deep links.

2. You’ll also need to have your app set up on Google Play and App Store Connect.

Creating A Seed App

57

3. Configure your AndroidManifest.xml and Info.plist files as described

here.

4. Add a static .well-known/assetlinks.json file to your website, specified

here.

5. Add a static .well-known/apple-app-site-association file to your

website, specified here.

6. Configure the Associated Domains entitlement in Xcode as described here.

7. Publish a new version of your app.

Download updated files

router.dart

main.dart

Further reading

Navigation and routing (docs.flutter.dev)

Learning Flutter’s new navigation and routing system (John Ryan, medium.com)

Flutter go_router: The Essential Guide (António Nicolau, medium.com)

Deep linking (docs.flutter.dev)

Flutter

Deep

Linking:

The

Ultimate

Guide

(Alicja

Ogonowska,

codewithandrea.com)

Create Deep Links to App Content (developer.android.com)

Allowing apps and websites to link to your content (developer.apple.com) By this point, though you may not be familiar with every widget in lib/-

main.dart, you probably have a pretty good idea of what’s going on in it.

There’s one last useful (but optional) part of Flutter apps you should be familiar with.

What is the Scaffold?

The Scaffold widget is a convenient wrapper for your app’s UI. It does a few useful things:

• It expands to fill all available space on the screen.

• It gives you a place to specify an app bar, bottom navigation bar, navigation

drawer, bottom sheet, floating action button, and/or main content area

(body) of your app, then handles layout the way you’d expect.

Creating A Seed App

58

• It uses the SafeArea widget to make sure your app bar and bottom navigation

bar aren’t covered up by any cutouts, notches, or islands in the design of the

user’s smartphone.

Setting it up

If you’ve been following along, you don’t need to do anything here. The starter app generated by Flutter CLI already includes this widget.

Further reading

Scaffold class (api.flutter.dev)

The Profile Page

Module 4

In this module, you will:

• Create your first custom route and widget (a profile page).

• Use Futures to build widgets that wait for data to arrive.

• Build responsive layouts using Columns, Rows, Stacks, and more.

• Troubleshoot common layout problems like infinite constraint errors.

This is where the fun really starts. Your app is primed for productivity, so you can start churning out pages and widgets with the full power of the Flutter framework at your disposal. You’re gonna have a great time.

Most apps have a Profile page where you can see who you’re logged in as and manage your data. Let’s build one now. Start up Revenue Explorer on whatever

device or simulator you prefer so you can see what’s changing as you go along.

Profile widget

Begin by building a widget (everything in Flutter is a widget). Create a new

folder, lib/pages, and a file at lib/pages/profile.page.dart (these are

based on personal preference, not some routing-by-convention scheme; use what-

ever folder and file names you like). Then, create a class that extends StatelessWidget.

1

class RevExProfilePage extends StatelessWidget {}

:::info

By this point, you may be wondering why I prefix all public identifiers with

RevEx. It’s short for Revenue Explorer, and I like using prefixes on everything that comes from the project itself (as opposed to a third-party package), so I know

whether it’s “mine” or “someone else’s” just by looking at it. If you don’t like that convention, you can name things however you want.

:::

Your IDE will do two things here.

The Profile Page

60

1. It will show a light bulb � on StatelessWidget to offer some

imports. You’ll want to pick the option that says Import library

‘package:flutter/material.dart’, since you’re using Material Design

components.

2. It will show a light bulb � on RevExProfilePage. Click it and choose Create 1 missing override. This will implement your build method.

Now you should have something like this:

1

import 'package:flutter/material.dart';

2

3

class RevExProfilePage extends StatelessWidget {

4

@override

5

Widget build(BuildContext context) {

6

 // TODO: implement build

7

throw UnimplementedError();

8

}

9

}

Sweet, a widget. All it does so far is throw an error, but that will be fixed soon.

Widget keys

You may notice there’s still a warning underline and a light bulb � on RevExPro-

filePage. The IDE suggests that you Add ‘key’ to constructors. If you want to click the suggestion to get rid of the underline, go for it. You’ll get this:

1

import 'package:flutter/material.dart';

2

3

class RevExProfilePage extends StatelessWidget {

4

const RevExProfilePage({super.key});

5

6

@override

7

Widget build(BuildContext context) {

8

 // TODO: implement build

9

throw UnimplementedError();

10

}

11

}

Now you have an explicit constructor that accepts a key parameter and passes

it to the super constructor (which comes from StatelessWidget). It’s a named

parameter and doesn’t have the required keyword, so it’s optional—you can

The Profile Page

61

construct your widget without it, no problem. So you’re not making any trouble

for yourself by leaving it there, even though you won’t use it most of the time.

What does super.key do? If you’ve done any web development with React,

Angular, or Vue, you’ll recognize the term from your list templates.

 If the same stateful widget appears multiple times in a list and you plan on rearranging that list at runtime, the key parameter helps Flutter track which widget is which, regardless of its position.

In some advanced cases, you can also use a key to access a widget’s context

and state from somewhere else in the widget tree. Assuming you have some kind

of state management solution, you won’t need to do this very often (or at all). But it’s good to be aware of anyway.

Text

Okay, time to replace that UnimplementedError.

Text is one of the most common widgets in Flutter. It displays text. It does almost everything you’d expect a piece of text to be able to do: use a specific font or color or font size with the style parameter, overflow onto multiple lines with the maxLines parameter, control its own alignment with the textAlign parameter,

and so on.

For now, return a Text widget from your profile page. You can change it later,

but for now, you’re just trying to make sure the page shows up when it’s supposed to.

1

import 'package:flutter/material.dart';

2

3

class RevExProfilePage extends StatelessWidget {

4

const RevExProfilePage({super.key});

5

6

@override

7

Widget build(BuildContext context) {

8

return const Text(

9

"Profile page works!",

10

);

11

}

12

}

A couple of things to note:

• The const keyword is used to construct Text because, as you can see, there’s

no way for it to ever change. As it’s currently coded, it will always just say,

The Profile Page

62

“Profile page works!” Flutter can render it once and then leave it alone forever.

Rendering a StatelessWidget with const is pretty much the most efficient and

performant thing you can possibly do. (Your IDE will tell you when you should

use const, so don’t worry about figuring it out on your own.)

• There’s a trailing comma in the Text constructor arguments. Dart doesn’t

mind at all, and the Dart auto-formatter will take that as a cue to put each

argument on its own line. Trailing commas can go almost anywhere (one big

exception being trailing initializer statements on a class constructor). You can

use ‘em as much or as little as you like.

Now you have a page that theoretically renders something. Let’s make a route

for it.

Profile GoRoute

Open your router.dart file and add a GoRoute that renders your page:

1

final revexRouter = GoRouter(routes: <GoRoute>[

2

GoRoute(

3

path: '/',

4

redirect: (_, __) => '/home',

5

),

6

GoRoute(

7

path: '/home',

8

pageBuilder: (context, state) => const MaterialPage(

9

child: MyHomePage(title: 'Flutter Demo Home Page'),

10

),

11

),

12

GoRoute(

13

path: '/profile',

14

pageBuilder: (context, state) => const MaterialPage(

15

child: RevExProfilePage(),

16

),

17

),

18

]);

MaterialPage is, surprisingly, not a widget. It’s a Page, part of Flutter’s internal Navigator library. Here, its purpose is to define the animation for when you switch pages: on Android, you’ll get a fade effect, and on iOS, you’ll get a fly-in effect.

Now that the route exists, you can visit it from any method in the app. go_-

router provides an extension on BuildContext that lets you do this:

The Profile Page

63

1

context.go('/profile');

Easy, right? That is, as long as you have a context handy—which you always do,

as long as you’re inside of a build method or the State class of a StatefulWidget.

Wherever you are in a Flutter app, a BuildContext is never far away.

AppBar and Scaffold refactoring

Most apps let you see your profile by clicking a picture or icon in the title bar.

Flutter’s got an AppBar widget that makes that really simple.

Let’s go to main.dart. MyHomePage is a stateful widget, so its build logic lives

in a State subclass. And if you take a look, you can see that there’s already an

AppBar implemented:

1

@override

2

Widget build(BuildContext context) {

3

 // ...

4

return Scaffold(

5

appBar: AppBar(

6

 // ...

7

title: Text(widget.title),

8

),

9

...

The Scaffold widget has a parameter specifically for an AppBar, and this

implementation displays whatever title you pass into the MyHomePage constructor.

In router.dart, you’re passing the string “Flutter Demo Home Page”, so that’s

what shows up for your default route.

You probably want an AppBar on every page. But you don’t want the counter

and floating action button on every page. There are a few ways you could go about this:

1. Leave the MyHomePage widget alone and create a new widget with a Scaffold

and AppBar for each page in your app. This would work fine, but you’d end up

duplicating a lot of code.

2. Refactor the AppBar into its own StatelessWidget and let each route decide

whether/how to render it. But you’re probably always going to use a Scaffold,

so you’re still duplicating code.

3. Refactor the Scaffold into its own StatelessWidget and include the AppBar

automatically. This one sounds like it makes things easiest for “future you.”

The Profile Page

64

All agreed on #3? Great. Create a new StatelessWidget in main.dart and move

your Scaffold into it:

1

class RevExScaffold extends StatelessWidget {

2

@override

3

Widget build(BuildContext context) {

4

return Scaffold(

5

appBar: AppBar(

6

title: Text(widget.title),

7

),

8

body: Center(

9

child: Column(

10

mainAxisAlignment: MainAxisAlignment.center,

11

children: <Widget>[

12

const Text(

13

'You have pushed the button this many times:',

14

),

15

Text(

16

' $_counter',

17

style: Theme.of(context).textTheme.headline4,

18

),

19

],

20

),

21

),

22

floatingActionButton: FloatingActionButton(

23

onPressed: _incrementCounter,

24

tooltip: 'Increment',

25

child: const Icon(Icons.add),

26

),

27

);

28

}

29

}

Now you’re in red underline city, eh? You can fix the error on widget.title by

creating a constructor parameter for it (and removing the widget., since stateless widgets don’t use that).

The Profile Page

65

1

class RevExScaffold extends StatelessWidget {

2

final String title;

3

4

const RevExScaffold({required this.title});

5

6

@override

7

Widget build(BuildContext context) {

8

return Scaffold(

9

appBar: AppBar(

10

title: Text(title),

11

),

12

...

The other red underlines are for stuff that only belongs on the Home page. No

problem, you can make those into constructor parameters as well.

1

class RevExScaffold extends StatelessWidget {

2

final String title;

3

final Widget body;

4

final Widget? floatingActionButton;

5

6

const RevExScaffold({

7

required this.title,

8

required this.body,

9

this.floatingActionButton,

10

});

11

12

@override

13

Widget build(BuildContext context) {

14

return Scaffold(

15

appBar: AppBar(

16

title: Text(title),

17

),

18

body: body,

19

floatingActionButton: floatingActionButton,

20

);

21

}

22

}

floatingActionButton is optional here because it probably won’t be on every

single page. Every page should have a body, though, so that one’s required.

Finally, let’s use this widget in _MyHomePageState and pass in the stuff you just removed from the build method.

The Profile Page

66

1

class _MyHomePageState extends State<MyHomePage> {

2

int _counter = 0;

3

4

void _incrementCounter() {

5

setState(() {

6

_counter++;

7

});

8

}

9

10

@override

11

Widget build(BuildContext context) {

12

return RevExScaffold(

13

title: widget.title,

14

body: Center(

15

child: Column(

16

mainAxisAlignment: MainAxisAlignment.center,

17

children: <Widget>[

18

const Text(

19

'You have pushed the button this many times:',

20

),

21

Text(

22

' $_counter',

23

style: Theme.of(context).textTheme.headline4,

24

),

25

],

26

),

27

),

28

floatingActionButton: FloatingActionButton(

29

onPressed: _incrementCounter,

30

tooltip: 'Increment',

31

child: const Icon(Icons.add),

32

),

33

);

34

}

35

}

You’ve done a lot of refactoring here, but the app still works exactly the same.

Now you can go back to profile.page.dart and update your Profile page to use

the new widget.

The Profile Page

67

1

class RevExProfilePage extends StatelessWidget {

2

const RevExProfilePage({super.key});

3

4

@override

5

Widget build(BuildContext context) {

6

return const RevExScaffold(

7

title: "Profile",

8

body: Text(

9

"Profile page works!",

10

),

11

);

12

}

13

}

You’ll be using this RevExScaffold throughout the app.

AppBar actions

Let’s use the AppBar to link to the Profile page.

Back in main.dart, make some updates to the AppBar in RevExScaffold:

1

appBar: AppBar(

2

actions: [],

3

centerTitle: true,

4

title: Text(title),

5

),

centerTitle ensures that the AppBar title is always centered (by default it’s

left-aligned on Android; I prefer to keep it centered regardless of platform).

actions accepts a list of widgets that will appear on the right side of the AppBar.

Add an icon button that links to the Profile page:

The Profile Page

68

1

appBar: AppBar(

2

actions: [

3

IconButton(

4

onPressed: () {

5

context.go('/profile');

6

},

7

icon: const Icon(Icons.account_circle),

8

),

9

],

10

centerTitle: true,

11

title: Text(title),

12

),

If you get an error on context.go, check the IDE suggestions and let it import

'package:go_router/go_router.dart'.

IconButton is a widget that renders a Material icon button. Icon is a widget

that renders an icon. And Icons is a class with a static field for every icon in the Material icon font. (There are thousands of them! You won’t run out anytime soon.)

:::tip

Check out Material Icons on Google Fonts to browse all the icons included with Flutter.

:::

Check out your app wherever it’s running. There’s an icon button in the app bar,

and when you click it, you’ll visit your Profile page:

[image: Image 21]

The Profile Page

69

Screenshot of the running app. There’s a title bar that says “Profile” in the center and has a circular account icon on the right, and the text “Profile page works!” appears at the left edge of the screen below the title bar

Admittedly, that DEBUG banner gets in the way a bit. It doesn’t block taps and won’t show up in a production release, but if it bugs you, you can use

the debugShowCheckedModeBanner parameter in your MaterialApp.router

constructor to hide it:

1

builder: (themeContext) => MaterialApp.router(

2

debugShowCheckedModeBanner: false,

3

title: 'Flutter Demo',

4

theme: ThemeProvider.themeOf(themeContext).data,

5

routeInformationParser: revexRouter.routeInformationParser,

6

routeInformationProvider: revexRouter.routeInformationProvider,

7

routerDelegate: revexRouter.routerDelegate,

8

),

Further reading

Text widgets (docs.flutter.dev)

The Profile Page

70

BuildContext class (api.flutter.dev)

What does BuildContext do in Flutter? (Rémi Rousselet, stackoverflow.com) Exercises

1. Try different values for your AppBar title. What happens when the text is too

long? Use the maxLines and overflow constructor fields to customize this

behavior.

2. Pick any StatelessWidget in your app. Use the IDE context menu to convert

it to a StatefulWidget, then use the same menu to convert it back to a

StatelessWidget.

The Profile page needs some data to display. For now, you’ll stub out some fake

data. Later, you’ll set up a web server and swap out the stubs for API responses.

The User object

Create a new folder lib/http, and a file at lib/http/user.http.dart. Again,

it doesn’t matter what you name your folders and files; they don’t have any special meaning to Flutter as long as they’re in the lib folder.

Now you can write a simple data class for user information:

1

class RevExUser {

2

final String username;

3

final String fullName;

4

final String email;

5

final String phone;

6

final String? profilePictureUrl;

7

final String jobTitle;

8

final List< int> clientAccountIds;

9

10

RevExUser({

11

required this.username,

12

required this.fullName,

13

required this.email,

14

required this.phone,

15

this.profilePictureUrl,

16

required this.jobTitle,

17

required this.clientAccountIds,

18

});

19

}

The Profile Page

71

You can use positional arguments instead of named arguments here if you want,

but in my opinion, named arguments are much more readable.

Note that profilePictureUrl is nullable, so you’ll need to deal with a possible

null value wherever you display the profile picture.

Next, write a method to return a User object. To make it more realistic, you’ll

have it wait for a moment before returning, simulating the latency of a real web

API.

Futures

Dart, like many other programming languages, handles asynchronous code using

the async and await keywords. It also has a Future class that represents asyn-

chronous work, much like the Promise class in JavaScript or the Task class in C#.

1

int synchronousFunction() {

2

return 1;

3

}

4

5

final mySyncValue = synchronousFunction();

6

7

Future< int> asynchronousFunction() async {

8

await someAsychronousThing;

9

return 1;

10

}

11

12

final myAsyncValue = await asynchronousFunction();

In the above code, both mySyncValue and myAsyncValue are equal to 1. The

only difference is that asynchronousFunction waited for a Future to complete

before returning. If you’ve used async before, this should be pretty familiar to you.

:::tip

Remember that the async keyword goes after the function name and before

the braces, unlike in C# and JavaScript.

:::

For this situation, you want a Future that completes after a set amount of

time. Future.delayed is the easiest way to do that. Add the following after the

RevExUser class:

The Profile Page

72

1

Future<RevExUser> revExGetUser() async {

2

await Future.delayed(const Duration(milliseconds: 1500));

3

return RevExUser(

4

username: "jthorms",

5

fullName: "Jumbleton Thormsby",

6

email: "jthorms@revex.example.com",

7

phone: "1-800-867-5309",

8

profilePictureUrl:

9

"https://www.lookandlearn.com/history-images/preview/YW/YW017/YW017927V_Edward-Jenn\ 10

er-Oil-painting.jpg",

11

jobTitle: "Apprentice to the Senior Accountant's Office",

12

clientAccountIds: [1, 2, 3],

13

);

14

}

This method will wait for 1500 milliseconds (1.5 seconds) and then return a new

RevExUser object with the given fields. When you switch the implementation to

use a web API, the return type won’t need to change.

The Client object

To increase the complexity a bit, you can also use a Client class that’s related to the User class (that’s what the clientAccountIds field was for). In the lib/http

folder, create a file called client.http.dart. Then, do essentially the same things as you did for the User class:

1

class RevExClient {

2

final int id;

3

final String name;

4

final String contactFullName;

5

final String contactEmail;

6

final String contactPhone;

7

final double contractSize;

8

9

RevExClient({

10

required this.id,

11

required this.name,

12

required this.contactFullName,

13

required this.contactEmail,

14

required this.contactPhone,

15

required this.contractSize,

16

});

17

}

18

19

Future<List<RevExClient>> revExGetClients(List< int> clientIds) async {

The Profile Page

73

20

await Future.delayed(const Duration(milliseconds: 1500));

21

return clientIds

22

.map((id) => RevExClient(

23

id: id,

24

name: "Client $id",

25

contactFullName: "Alice $id",

26

contactEmail: "alice$id@client$id.example.com",

27

contactPhone: "1-800-867-5309 ext. 40",

28

contractSize: 1000000,

29

))

30

.toList();

31

}

The one difference here is that you’re accepting a list of client IDs in the method parameters and using it to construct RevExClient objects on the fly. This simulates a web API fetching real client data based on the IDs you ask for.

These two objects, RevExUser and RevExClient, will provide plenty of data to

populate the Profile page.

Further reading

Dart: Classes (dart.dev)

Exercises

1. Build your knowledge of built-in Dart types by adding some more fields to the RevExUser or RevExClient classes.

2. Add a method to the RevExClient class that accepts a RevExUser instance as

an argument and returns a Future<RevExClient>. The fullName, email,

and phone fields from RevExUser should be used to populate the contact...

fields on RevExClient. The other fields can be populated any way you like.

Now that you have some data to work with, you can switch out your “Profile page

works!” text for the (stubbed) user’s name. Once you have data coming through,

you’ll lay out the page in more detail.

FutureBuilder and StatefulWidget

You’ll need to get the RevExUser object you created in the last lesson. Remember

that it’s returned after a short delay.

The Profile Page

74

To wait for data in a build method, you can use the FutureBuilder widget.

FutureBuilder accepts a Future and rebuilds its child every time the state of the Future changes, so you can deal with each possible state:

1. Waiting

2. Success (non-null value)

3. Success (null value)

4. Error

Update your RevExProfilePage build method like this:

1

@override

2

Widget build(BuildContext context) {

3

return RevExScaffold(

4

title: "Profile",

5

body: FutureBuilder(

 // <= FutureBuilder added here

6

future: myFuture,

7

builder: (context, snapshot) {

8

return const Text(

9

"Profile page works!",

10

);

11

}

12

),

13

);

14

}

:::tip The Wrap with Builder context action on the Text widget will get you most of the way (reminder: you can see context actions using cmd + period in VS

Code or option + return in Android Studio). You can then replace Builder with FutureBuilder, add the future field, and add the snapshot argument to the

childBuilder function. :::

myFuture will be underlined in red, of course, because it doesn’t exist. You may

be tempted to do this:

1

 // BAD IDEA

2

future: revExGetUser(),

3

 // BAD IDEA

The reason you shouldn’t is that RevExProfilePage will get rebuilt (that is, the

build method will be called) any time it needs to change—theoretically, as often as once per frame. You don’t want to call revExGetUser() 60+ times per second,

The Profile Page

75

and you really won’t want to do that when you have it talking to a real web server.

Ideally, you should call it only once each time the user visits the Profile page.

To achieve that, turn RevExProfilePage into a StatefulWidget. If you click State-

lessWidget in the class declaration and pull up your context actions, you’ll see a Convert to StatefulWidget option, which handles the whole process for you. This is the result:

1

class RevExProfilePage extends StatefulWidget {

2

const RevExProfilePage({super.key});

3

4

@override

5

State<RevExProfilePage> createState() => _RevExProfilePageState();

6

}

7

8

class _RevExProfilePageState extends State<RevExProfilePage> {

9

@override

10

Widget build(BuildContext context) {

11

return RevExScaffold(

12

title: "Profile",

13

body: FutureBuilder(

14

future: myFuture,

15

builder: (context, snapshot) {

16

return const Text(

17

"Profile page works!",

18

);

19

}

20

),

21

);

22

}

23

}

Now RevExProfilePage has two parts: a StatefulWidget subclass and a State

subclass. The first one is for constructor fields (stuff the parent widget will pass in), and the second one is for state the widget itself needs to handle. Since you want to get a Future from revExGetUser() and preserve it across frames, you’ll

need to put it in State.

Create a field to hold that piece of state:

1

class _RevExProfilePageState extends State<RevExProfilePage> {

2

final Future<RevExUser> user;

3

...

There are two ways to initialize the user field.

Option 1: Write a trailing initializer statement on the constructor:

The Profile Page

76

1

class _RevExProfilePageState extends State<RevExProfilePage> {

2

final Future<RevExUser> user;

3

4

_RevExProfilePageState() : user = revExGetUser();

5

...

This is the easiest way to initialize a field that doesn’t get passed into the

constructor, and in this case, there’s absolutely no reason not to use it. But there are a couple of deficiencies to be aware of:

• You can’t use fields from the RevExProfilePage class here. If you were

writing a class method (including the build method), you’d be able to refer

to the widget object and see fields from the widget itself. But this is a State

constructor, so you don’t have that ability.

• You don’t have access to a BuildContext here. You can refer to context

from any other method on a State subclass (including the build method), but

from the constructor’s point of view, it doesn’t exist yet.

You don’t need either of those capabilities right now. But if you did, you’d have to go with Option 2.

Option 2: Override the initState() method:

1

class _RevExProfilePageState extends State<RevExProfilePage> {

2

late final Future<RevExUser> user;

3

4

@override

5

void initState() {

6

super.initState();

7

user = revExGetUser();

8

}

9

...

If you start typing initState inside the class, your IDE should pop up a sug-

gestion to write out the method (including the super.initState() call, which

should happen before anything else). initState gets called when the widget is

inserted into the UI. And unlike a class constructor, it has access to both widget and context.

The late keyword is necessary with this option—it tells Dart that even though

you won’t be initializing user from a constructor field or trailing initializer statement, you promise to initialize it before it’s used. If you fail to do so, you’ll get a runtime error.

The Profile Page

77

Feel free to use either option. Either way, you’re calling revExGetUser() only when needed. Let’s stick with Option 1 for now since it provides the added safety of not having to use the late keyword or making the user field nullable.

Now you can pass user to FutureBuilder:

1

@override

2

Widget build(BuildContext context) {

3

return RevExScaffold(

4

title: "Profile",

5

body: Padding(

6

padding: const EdgeInsets.symmetric(horizontal: 16),

7

child: FutureBuilder(

8

future: user,

9

...

Finally, you’ll update the builder function so it knows what to do while it’s

waiting for the Future (or if the Future fails).

The snapshot parameter holds an object that communicates the current state

of the Future.

• If you’re waiting for data, snapshot.connectionState == Connection-

State.waiting will be true.

• If the Future completes with a non-null value, snapshot.hasData will be

true.

• If the Future throws an error, snapshot.hasError will be true.

• If the Future completes with null, snapshot.connectionState

== ConnectionState.done && !snapshot.hasError && !snap-

shot.hasData will be true.

The last one shouldn’t be a concern since the return value of revExGetUser

is Future<RevExUser>, which isn’t nullable. You’ll need to handle the others.

Something like this should work:

The Profile Page

78

1

@override

2

Widget build(BuildContext context) {

3

return RevExScaffold(

4

title: "Profile",

5

body: FutureBuilder(

6

future: user,

7

builder: (context, snapshot) {

8

if (snapshot.connectionState == ConnectionState.waiting) {

9

return const CircularProgressIndicator();

10

}

11

12

if (snapshot.hasError) {

13

return const Text('Error: Cannot get user data.');

14

}

15

16

final user = snapshot.data;

17

18

return Text(

19

user?.fullName ?? 'User is null.',

20

);

21

},

22

),

23

);

24

}

The CircularProgressIndicator widget shows a loading spinner while the

Future is waiting to complete. If there’s an error, you’ll see 'Error: Cannot get user data.'. Otherwise, you should see the user’s full name. Everything’s kind of unattractive and unevenly aligned right now, but you’ll get to that.

Since snapshot.data should never be null if you’re not waiting and there’s no

error, you could do the following instead:

1

 // BAD HABIT

2

final user = snapshot.data!;

3

4

return Text(user.fullName);

5

 // BAD HABIT

The ! (bang) operator asserts that snapshot.data cannot be null. It feels

pretty safe to say that right now. But it’s a bad habit to use ! unless you absolutely have to because it sidesteps null safety and introduces a whole new class of runtime errors to your app. It will save you a lot of headaches to use null checks (?) and null coalescing (??) instead: user?.fullname won’t try to access fullname if user is

null, and ?? 'User is null.' provides a default value in that case. If you ever

The Profile Page

79

see 'User is null.' you’ll be glad you took the time to handle null values instead of crashing the build method.

Further reading

Asynchronous programming: futures, async, await (dart.dev)

FutureBuilder (Widget of the Week) (Flutter on YouTube) Exercises

1. Use the _RevExProfilePageState class to track how long it takes the user

Future to complete. You can use DateTime.now() to get the current time when the widget initializes and again when the Future completes. Then you

can use DateTime.difference to get the time difference between them.

2. Instead of a CircularProgressIndicator, use a LinearProgressIndi-

cator while the FutureBuilder is waiting. Since you know exactly how long it will take (right now, anyway), see if you can figure out how to make the

progress indicator go from 0% to 100% using only a loop, a field in the State

class, Future.delayed(), and setState().

You’re ready to build out the Profile page with realistic data. Here’s a mock-up

of what I have in mind:

[image: Image 22]

The Profile Page

80

Rough sketch of a page with a “Profile” header, a circular image with a name superimposed on it and a job title underneath, contact details, an expandable list of clients, and a Log Out button at the bottom Column

At the highest level, the page will be a vertical list of widgets. Anytime you need a vertical (top to bottom) layout, start with the Column widget.

Open lib/pages/profile.page.dart and replace the final Text with a

Column, like so:

The Profile Page

81

1

@override

2

Widget build(BuildContext context) {

3

return RevExScaffold(

4

title: "Profile",

5

body: FutureBuilder(

6

future: user,

7

builder: (context, snapshot) {

8

if (snapshot.connectionState == ConnectionState.waiting) {

9

return const CircularProgressIndicator();

10

}

11

12

if (snapshot.hasError) {

13

return const Text('Error: Cannot get user data.');

14

}

15

16

final user = snapshot.data;

17

18

return Column(

19

children: const [],

20

);

21

},

22

),

23

);

24

}

Column has a children field of type List<Widget>. You can add widgets to

the list literal in the code above, or use a mapping function to create a list of widgets from an array of data. In this case, adding widgets directly will be easier.

I’m imagining the “Log Out” button as belonging to a fixed footer. The AppBar

will be fixed in place as well. Everything else (profile image, contact info, client list) will be scrollable.

Create widgets to represent the two different parts of the page.

1

class _ProfileContent extends StatelessWidget {

2

@override

3

Widget build(BuildContext context) {

4

return const Text('Profile Content');

5

}

6

}

7

8

class _ProfileFixedFooter extends StatelessWidget {

9

@override

10

Widget build(BuildContext context) {

11

return const Text('Profile Footer');

12

}

13

}

The Profile Page

82

:::info

The “RevEx” prefix isn’t useful here because both of these class names start

with an underscore, meaning they’re private to the file. If you see something with an underscore, you know it came from the same file; you don’t have to wonder who

it belongs to.

:::

You’ll see a warning on each class because it isn’t being used yet. Dart likes to let you know about unused private identifiers so you can delete them. Add them to the Column you constructed earlier:

1

@override

2

Widget build(BuildContext context) {

3

return RevExScaffold(

4

title: "Profile",

5

body: FutureBuilder(

6

future: user,

7

builder: (context, snapshot) {

8

if (snapshot.connectionState == ConnectionState.waiting) {

9

return const CircularProgressIndicator();

10

}

11

12

if (snapshot.hasError) {

13

return const Text('Error: Cannot get user data.');

14

}

15

16

final user = snapshot.data;

17

18

return Column(

19

children: [

20

_ProfileContent(),

 // <= new Widgets added here

21

_ProfileFixedFooter(),

22

],

23

);

24

},

25

),

26

);

27

}

The const on the list literal has been removed because neither of your widgets

has a constant constructor right now (implicit constructors are never constant).

It’s very likely they will later, but you can let that happen when it happens.

The Profile Page

83

Expanded

If you run the app right now, you’ll see that “Profile Content” and “Profile Footer”

take up two lines just below the app bar. You want to change the _ProfileContent

widget to take up all available vertical space in the viewport, except what’s needed for the AppBar and fixed footer. Since the AppBar is higher up in the hierarchy, you don’t need to worry about it here. But to negotiate space between the main content and the footer, you can use the Expanded widget.

You can use Expanded inside of Column and Row (as well as Flex, which is the generic version of both). It takes up as much free space as it can. If you use multiple Expanded widgets, the free space will be shared equally between them. It’s very

similar to flex: 1 in a CSS flexbox layout.

:::warning Expanded doesn’t have to be an immediate child of a Row or Column—

there can be other widgets in between, as long as they’re all StatelessWidgets or StatefulWidgets. But be very careful about putting too much between them. If

Flutter can’t find the Row or Column intended as the parent, it will throw an error.

In particular, avoid putting the Row/Column in one widget and the Expanded in

another—that makes it way too easy to use the latter without the former, causing a runtime error. :::

Update the RevExProfilePage build method as follows:

1

@override

2

Widget build(BuildContext context) {

3

return RevExScaffold(

4

title: "Profile",

5

body: FutureBuilder(

6

future: user,

7

builder: (context, snapshot) {

8

if (snapshot.connectionState == ConnectionState.waiting) {

9

return const CircularProgressIndicator();

10

}

11

12

if (snapshot.hasError) {

13

return const Text('Error: Cannot get user data.');

14

}

15

16

final user = snapshot.data;

17

18

return Column(

19

children: [

20

Expanded(

 // <= Expanded added here

21

child: _ProfileContent(),

22

),

The Profile Page

84

23

_ProfileFixedFooter(),

24

],

25

);

26

},

27

),

28

);

29

}

:::tip To quickly wrap a widget with another widget (something you’ll be doing a

lot), click the widget you want to wrap and open the context actions. Then select Wrap with widget… and swap out the widget text for whatever you need.

You’ll notice several other Wrap with options. They name some of the most

commonly used widgets in Flutter layouts. By the end of this course, you’ll be

familiar with all of them.

Depending on where you are in the layout, options like Remove this widget, which deletes the widget from the build method but leaves the rest of the hierarchy (parent and child widgets) intact, and Move widget down, which swaps the widget with its immediate child, are also available. Using these context actions is much easier than trying to alter deeply nested widget trees by hand. :::

Now if you look at the app, “Profile Content” appears just below the app bar, and

“Profile Footer” appears at the bottom of the screen.

Padding

It would be nice if “Profile Content” and “Profile Footer” weren’t flush with the left side of the screen. In modern apps, people tend to prefer a lot of space around

things. You can add a Padding widget for a bit of breathing room: 1

@override

2

Widget build(BuildContext context) {

3

return RevExScaffold(

4

title: "Profile",

5

body: Padding(

 // <= Padding added here

6

padding: const EdgeInsets.symmetric(horizontal: 16),

7

child: FutureBuilder(

8

future: user,

9

builder: (context, snapshot) {

10

if (snapshot.connectionState == ConnectionState.waiting) {

11

return const CircularProgressIndicator();

12

}

13

14

if (snapshot.hasError) {

The Profile Page

85

15

return const Text('Error: Cannot get user data.');

16

}

17

18

final user = snapshot.data;

19

20

return Column(

21

children: [

22

Expanded(

23

child: _ProfileContent(),

24

),

25

_ProfileFixedFooter(),

26

],

27

);

28

},

29

),

30

),

31

);

32

}

Padding is one of the simplest and most common widgets in Flutter. It has two

constructor fields: padding and child. padding accepts an EdgeInsetsGeome-

try object. You’ll almost always use one of the named constructors of EdgeInsets:

1. EdgeInsets.all(16) adds 16 logical pixels of padding on all four sides (top,

right, bottom, left).

2. EdgeInsets.symmetric(horizontal: 16, vertical: 8) adds 16 logi-

cal pixels of padding on the left and right and 8 logical pixels of padding on

the top and bottom. Both constructor fields are optional, so if you only need

horizontal padding, you don’t need to bother writing vertical: 0.

3. EdgeInsets.only(bottom: 1, left: 2, right: 3, top: 4)

lets

you specify a different amount of padding for each side. Again, all fields are

optional, so skip the ones that don’t need any padding.

All the fields above accept double values, so feel free to use a decimal point

(e.g., 4.5) if you need it.

Logical pixels

In Flutter, the term “logical pixels” is typically used instead of just “pixels.” What is a logical pixel? It’s an abstract amount of space that you can pretty much just think of as “a pixel” when you’re writing code. Its actual size is determined by the pixel ratio of the hardware you’re running on. An iPhone 12 has a pixel ratio of 3, meaning 1 logical pixel is equal to 3 physical pixels. A Surface Pro tablet has a pixel ratio of

The Profile Page

86

1.5, so 1 logical pixel is 1.5 physical pixels. You can compare pixel ratios across many different devices here if you’re curious.

By definition, there are roughly 38 logical pixels per centimeter, or about

96 logical pixels per inch, of the physical display.

Flutter API documentation

Flutter uses logical pixels to make apps scale easily to different screen resolu-

tions without developer intervention. Most of the time, you won’t have to worry

about whether your app looks the same on a high-res or low-res screen. Anytime

you see a raw number used to indicate size in Flutter, you’re dealing with logical pixels.

You won’t often use logical pixels to define layout sizes. The layout widgets

that come with Flutter are responsive by default. But you will use pixel values for padding, border width, font size, icon size, and a handful of other things. You can do so with confidence. Flutter will scale those values so they take up about the same amount of real-world space, regardless of what screen you’re running on.

Widget inspector

By default, the Column widget expands to the maximum possible height and

centers its children horizontally (if you hover the widget, you can see some optional fields that let you change this behavior). So why does it look left-aligned?

[image: Image 23]

[image: Image 24]

The Profile Page

87

The Profile page so far, with “Profile Content” and “Profile Footer” nearly at the left side of the screen This is a great opportunity to get familiar with the Flutter Widget Inspector. If you’re running the app in VS Code using the “Run and Debug” pane, you can open

DevTools by clicking the magnifying glass icon in the debug panel:

The VS Code Debug panel, with icons to pause, debug step, reload, and stop, followed by the Widget Inspector icon.

If you’re running from the CLI, there should be a clickable link in the flutter

run output:

[image: Image 25]

[image: Image 26]

The Profile Page

88

‘flutter run‘ output, ending with the line: “The Flutter DevTools debugger and profiler on macOS is available at: http://127.0.0.1:9101?uri=http://127.0.0.1:57273/LJ9PvqIvfjM=/”

If you’re in Android Studio, you may see a “Flutter Inspector” tab in the sidebar while the app is running:

Android Studio right sidebar, with a dotted yellow line to indicate the “Flutter Inspector” tab Otherwise, you can open it from the menu by selecting View > Tool Windows > Flutter Inspector:

[image: Image 27]

The Profile Page

89

Android Studio system menu open to View > Tool Windows > Flutter Inspector.

The Flutter Inspector shows your entire widget tree. You can click a widget to

see its current dimensions and play with some of its fields. Oftentimes, the tree will be very large, so to help you zone in on the widget you want, you can use select widget mode by clicking the cursor button:

[image: Image 28]

The Profile Page

90

Flutter Widget Inspector panel with a dotted yellow line to indicate the “Toggle select widget mode”

icon button.

The next thing you click or tap in your app will be selected in the Widget

Inspector tree. It’s hard to click the Column itself because it’s filled up by two Text widgets, but clicking one of them will get you close enough to find it. Once you’ve selected it, the problem becomes clear:

[image: Image 29]

The Profile Page

91

Revenue Explorer app with the Column containing “Profile Content” and “Profile Footer” highlighted in purple. You can see that it doesn’t take up the full width of the screen and is only wide enough to contain the text.

Columns don’t expand horizontally. They’re only wide enough to contain their

children. So how can you center your content?

Center

Flutter has a Center widget that, predictably, centers its child inside of its parent (both horizontally and vertically). The Flutter context actions have a Wrap with Center option that will add it for you. Let’s wrap the FutureBuilder with a Center:

The Profile Page

92

1

@override

2

Widget build(BuildContext context) {

3

return RevExScaffold(

4

title: "Profile",

5

body: Padding(

6

padding: const EdgeInsets.symmetric(horizontal: 16),

7

child: Center(

 // <= Center added here

8

child: FutureBuilder(

9

future: user,

10

builder: (context, snapshot) {

11

if (snapshot.connectionState == ConnectionState.waiting) {

12

return const CircularProgressIndicator();

13

}

14

15

if (snapshot.hasError) {

16

return const Text('Error: Cannot get user data.');

17

}

18

19

final user = snapshot.data;

20

21

return Column(

22

crossAxisAlignment: CrossAxisAlignment.start,

23

children: [

24

Expanded(

25

child: _ProfileContent(),

26

),

27

_ProfileFixedFooter(),

28

],

29

);

30

},

31

),

32

),

33

),

34

);

35

}

Now the loading spinner appears in the center of the page, and the Text widgets

in the Profile page are centered horizontally. Since they take up the full height of the page, their vertical alignment doesn’t change.

:::tip Center is a subclass of the Align widget, which offers more fine-grained alignment options such as top-center, bottom-right, and so on. You can even create a custom alignment using a coordinate grid. :::

Column, Expanded, Padding, and Center are some of the most common layout

widgets in Flutter. Soon, you’ll be using Row, which is exactly the same as Column but in the horizontal direction. Very advanced layouts can be built using only these five widgets, but of course, there are several more to cover as well.

The Profile Page

93

Further reading

Layouts in Flutter (docs.flutter.dev)

Layout widgets (docs.flutter.dev)

Flutter Layout Cheat Sheet (Tomek Polański, Flutter Community on medium.com)

Exercises

1. Reverse the vertical layout of the Profile page so the footer is at the top

(under the App Bar) instead of the bottom. You can do this easily by moving

things around inside the children array, but is there another way? Hint: the

List.reversed property may help.

2. Make the page footer take up the same amount of vertical space as the page

content. You only need to add one widget to do this.

*

*

*

You know enough now to place the next element in your layout: the user’s job title, horizontally centered below their profile picture. Go ahead and give it a shot on your own.

You probably came up with something like this:

1

 // _ProfileContent widget

2

@override

3

Widget build(BuildContext context) {

4

final fallbackImage = LayoutBuilder(

5

builder: (context, constraints) {

6

return Icon(

7

Icons.account_circle,

8

color: Colors.grey.shade700,

9

size: min(

10

constraints.maxHeight,

11

constraints.maxWidth,

12

),

13

);

14

},

15

);

16

17

return Column(

18

children: <Widget>[

The Profile Page

94

19

Row(

20

children: [

21

const Expanded(

22

child: SizedBox.shrink(),

23

),

24

Expanded(

25

flex: 2,

26

child: Center(

27

child: Stack(

28

children: [

29

Container(

30

clipBehavior: Clip.antiAlias,

31

constraints: const BoxConstraints(maxHeight: 200),

32

decoration: const ShapeDecoration(shape: CircleBorder()),

33

child: user?.profilePictureUrl != null

34

? Image.network(

35

user!.profilePictureUrl!,

36

errorBuilder: (context, error, stackTrace) =>

37

fallbackImage,

38

fit: BoxFit.cover,

39

)

40

: fallbackImage,

41

),

42

Positioned(

43

bottom: 30,

44

left: 0,

45

right: 0,

46

child: Container(

47

color: context.theme.primary.withAlpha(180),

48

padding: const EdgeInsets.all(4),

49

child: Text(

50

user?.fullName != null

51

? initializeName(user!.fullName)

52

: "[Not Found]",

53

style: const TextStyle(

54

color: Colors.white,

55

fontWeight: FontWeight.bold,

56

),

57

textAlign: TextAlign.center,

58

),

59

),

60

),

61

],

62

),

63

),

64

),

65

const Expanded(

66

child: SizedBox.shrink(),

67

),

68

],

The Profile Page

95

69

),

70

if (user != null)

 // <= Conditionally-rendered Text added here

71

Text(

72

user!.jobTitle,

73

style: const TextStyle(

74

fontSize: 16,

75

fontWeight: FontWeight.w300,

76

),

77

textAlign: TextAlign.center,

78

)

79

],

80

);

81

}

This looks pretty good.

Table

For the next section, the user’s username, email address, and phone number should be laid out so that the colon : in each row lines up.

You could accomplish this using Row and Expanded widgets or even with

SizedBox widgets. But for the simplest and most responsive layout, a borderless

Table will serve you best. The _ProfileContent widget is getting pretty bulky already, so it’s a good idea to put this in a new widget.

1

class _ProfileUserContact extends StatelessWidget {

2

final RevExUser user;

3

final List<MapEntry< String, String>> userContactRows; 4

5

_ProfileUserContact({required this.user})

6

: userContactRows = [

7

MapEntry("Username", user.username),

8

MapEntry("Email", user.email),

9

MapEntry("Phone", user.phone),

10

];

11

12

@override

13

Widget build(BuildContext context) {

14

return Padding(

15

padding: const EdgeInsets.symmetric(vertical: 16),

16

child: Table(

17

border: TableBorder.all(

18

color: Colors.transparent,

19

),

20

defaultVerticalAlignment: TableCellVerticalAlignment.middle,

The Profile Page

96

21

children: userContactRows

22

.map<TableRow>(

23

(entry) => TableRow(

24

children: [

25

TableCell(

26

child: Padding(

27

padding: const EdgeInsets.only(right: 8),

28

child: Text(

29

" ${entry.key}:",

30

textAlign: TextAlign.right,

31

),

32

),

33

),

34

TableCell(child: Text(entry.value))

35

],

36

),

37

)

38

.toList(),

39

),

40

);

41

}

42

}

userContactRows is a list of contact methods you want to display. You could

use a Map<String, String> here, but order in a hashmap isn’t guaranteed, and you want to make sure Username, Email, and Phone always show in the same order.

So instead, this code uses a List of MapEntry<String, String> , which is the type of each entry in a Map<String, String>.

Table is Flutter’s widget for table layouts. Combined with the TableRow and

TableCell widgets, it’s very similar to an HTML table. Here, instead of manually creating a row for each contact method, the code maps over userContactRows

with each MapEntry informing the construction of a TableRow. The map method

returns a lazy-evaluated Iterable, so toList iterates it and creates a List as

expected by the children parameter.

Now add the new widget to _ProfileContent:

[image: Image 30]

The Profile Page

97

1

 // _ProfileContent build method, right at the end

2

if (user != null) ...[

3

Text(

4

user!.jobTitle,

5

style: const TextStyle(

6

fontSize: 16,

7

fontWeight: FontWeight.w300,

8

),

9

textAlign: TextAlign.center,

10

),

11

_ProfileUserContact(user: user!)

12

],

The spread operator ... allows you to keep using the inline if syntax while

adding multiple widgets to the parent Column.

It’s a good idea to run this on a desktop so you can resize the screen and check

the responsiveness of the page. You’ll see that it looks all right on a medium or large screen but makes inefficient use of space on a slimmer screen, wrapping the second column while the first column still has room to spare:

Screenshots of the profile page on a wider screen and a slimmer screen. On the slimmer screen, the email address is broken up into two lines even though there’s plenty of space on the left side, before

“Email:”

The Profile Page

98

Table column widths

By default, columns in a Flutter table behave like an Expanded widget in a Row: they share the available space equally. Here, that means it’s a 50/50 split, no matter what the contents of each column are. There are a couple of ways you can alter this.

1. Set the defaultColumnWidth field to any of the following:

1. FlexColumnWidth(), the default, behaves like an Expanded.

2. FixedColumnWidth(100) sets a constant width for the column, like 100

logical pixels.

3. IntrinsicColumnWidth() sets the column width equal to its largest

cell.

4. MinColumnWidth(a, b) sets the column width to the minimum of any

two of the above.

5. MaxColumnWidth(a, b) sets the column width to the maximum of any

two of the above.

2. Set the columnWidths field to a Map<int, TableColumnWidth> that de-

fines the sizing rule for each column individually. For example, 0: Fixed-

ColumnWidth(200) would set the first column to a fixed width of 200 logical

pixels.

Unfortunately, none of these on their own will do the trick. You can get pretty

close with something like this:

1

@override

2

Widget build(BuildContext context) {

3

return Padding(

4

padding: const EdgeInsets.symmetric(vertical: 16),

5

child: Table(

6

border: TableBorder.all(

7

color: Colors.transparent,

8

),

9

columnWidths: const {

10

0: MaxColumnWidth(IntrinsicColumnWidth(), FlexColumnWidth()),

11

1: MaxColumnWidth(IntrinsicColumnWidth(), FlexColumnWidth()),

12

},

13

...

But then the second column overflows the edge of the screen at smaller

sizes. The problem is that you want two things: when there’s enough space to

show everything, you want FlexColumnWidth() on both columns so everything’s

The Profile Page

99

centered; when there isn’t enough space, you want the first column to be only as

large as necessary (IntrinsicColumnWidth()) and the second column to take

up the remaining space (FlexColumnWidth()). You need a breakpoint.

Add a LayoutBuilder around the Table.

1

@override

2

Widget build(BuildContext context) {

3

const breakpoint = 450;

4

5

return Padding(

6

padding: const EdgeInsets.symmetric(vertical: 16),

7

child: LayoutBuilder(builder: (context, constraints) {

8

return Table(

9

border: TableBorder.all(

10

color: Colors.transparent,

11

),

12

columnWidths: {

13

0: constraints.maxWidth > breakpoint

14

? const FlexColumnWidth()

15

: const IntrinsicColumnWidth(),

16

1: const FlexColumnWidth(),

17

},

18

...

It’s not perfect, but it provides a best-effort responsive layout on the majority of screens. There are ways to tune it further: more breakpoints, more logic, exact size specifications—but don’t let perfect become the enemy of good.

:::info IntrinsicColumnWidth() is relatively slow because Flutter has to

perform layout twice: once to see how wide the column would naturally be and

again to draw it alongside the other elements on the screen. In this case, you

won’t notice the slowness, but be cautious about overusing it. If you need to tune performance and the column size isn’t likely to change, you can use the Widget

Inspector to measure it and use a FixedColumnWidth() instead. :::

ExpansionPanelList and ExpansionPanel

The last part of the Profile content area is the list of clients. The way it’s sketched out, you can expand a client entry to see details about it. Flutter’s ExpansionPanel

and ExpansionPanelList widgets will help you accomplish this.

Create a new widget for this part of the page. You’ll need to use a FutureBuilder and call revExGetClients() to get data.

The Profile Page

100

1

class _ProfileClientList extends StatefulWidget {

2

final RevExUser user;

3

4

const _ProfileClientList({required this.user});

5

6

@override

7

State<_ProfileClientList> createState() => _ProfileClientListState();

8

}

9

10

class _ProfileClientListState extends State<_ProfileClientList> {

11

late final Future<List<RevExClient>> clients;

12

final Map< int, bool> expandedStateByClientId = {};

13

14

@override

15

void initState() {

16

super.initState();

17

clients = revExGetClients(widget.user.clientAccountIds);

18

}

19

20

@override

21

Widget build(BuildContext context) {

22

return FutureBuilder(

23

future: clients,

24

builder: (context, snapshot) {

25

if (snapshot.connectionState == ConnectionState.waiting) {

26

return const CircularProgressIndicator();

27

}

28

29

if (snapshot.hasError) {

30

return const Text('Error: Cannot get client data.');

31

}

32

33

final clients = snapshot.data;

34

return ExpansionPanelList(

35

expansionCallback: (panelIndex, isExpanded) {

36

if (clients == null) {

37

return;

38

}

39

40

final client = clients[panelIndex];

41

setState(() {

42

expandedStateByClientId[client.id] = isExpanded;

43

});

44

},

45

children: [

46

if (clients != null)

47

...clients.map(

48

(client) => ExpansionPanel(

49

headerBuilder: (context, isExpanded) => Text(client.name),

50

isExpanded: expandedStateByClientId[client.id] ?? false,

The Profile Page

101

51

body: Text(

52

client.id.toString(),

53

),

54

),

55

),

56

],

57

);

58

},

59

);

60

}

61

}

Here, you have to use initState() instead of an initializer statement on the

constructor because you need to provide widget.user.clientAccountIds to

the revExGetClients call.

ExpansionPanelList is a widget that manages a group of ExpansionPanel

widgets. It lets you define a single callback for toggling any of its panels; you just have to maintain a piece of state to track which ones are expanded and which ones are collapsed. The headerBuilder of each panel builds the piece that’s visible

whether it’s expanded or not, while the body is the part you can only see when

it’s expanded. Placeholder Text widgets have been added to both of these just to

get started.

Go ahead and add _ProfileClientList to the _ProfileContent widget, just below

_ProfileUserContact, and pass the user variable to it in the same way. The Profile page should look something like this, with panels that can expand and collapse:

[image: Image 31]

The Profile Page

102

Screenshot of the profile page. Three expansion panels appear at the bottom of the content area. They read “Client 1”, “Client 2”, “Client 3”. The first one is expanded and has a 1 below the header.

You’re probably already itching to add some Padding and Align widgets to make

everything look a bit nicer. Before you do that, let’s review the prototype. Each panel header should have the client name on the left and the contact name on the

right, separated by a wall of dots. The panel body should have the rest of the client details in key: value format. You can build all of these with the layout widgets

you already know. Go ahead and give it a shot.

Perhaps you came up with something like this:

1

 // _ProfileClientList

2

@override

3

Widget build(BuildContext context) {

4

return FutureBuilder(

5

future: clients,

6

builder: (context, snapshot) {

7

if (snapshot.connectionState == ConnectionState.waiting) {

8

return const CircularProgressIndicator();

9

}

10

11

if (snapshot.hasError) {

12

return const Text('Error: Cannot get client data.');

13

}

The Profile Page

103

14

15

final clients = snapshot.data;

16

return ExpansionPanelList(

17

expansionCallback: (panelIndex, isExpanded) {

18

if (clients == null) {

19

return;

20

}

21

22

final client = clients[panelIndex];

23

setState(() {

24

expandedStateByClientId[client.id] = isExpanded;

25

});

26

},

27

children: [

28

if (clients != null)

29

...clients.map(

30

(client) => ExpansionPanel(

31

headerBuilder: (context, isExpanded) => Padding(

32

padding: const EdgeInsets.symmetric(horizontal: 16),

33

child: Row(

34

children: [

35

Text(client.name),

36

Expanded(

37

child: Text(

38

"." * 100,

39

maxLines: 1,

40

style: const TextStyle(

41

letterSpacing: 5,

42

),

43

),

44

),

45

Expanded(

46

child: Text(

47

client.contactFullName,

48

maxLines: 1,

49

overflow: TextOverflow.ellipsis,

50

),

51

),

52

],

53

),

54

),

55

isExpanded: expandedStateByClientId[client.id] ?? false,

56

body: Padding(

57

padding: const EdgeInsets.only(

58

bottom: 16,

59

left: 16,

60

right: 16,

61

),

62

child: Column(

63

crossAxisAlignment: CrossAxisAlignment.stretch,

The Profile Page

104

64

children: [

65

MapEntry(

66

"Contract Size", client.contractSize.toString()),

67

MapEntry("Contact Email", client.contactEmail),

68

MapEntry("Contact Phone", client.contactPhone),

69

]

70

.map((entry) => Text(" ${entry.key}: ${entry.value}")) 71

.toList(),

72

),

73

),

74

),

75

),

76

],

77

);

78

},

79

);

80

}

In the panel header, I used an Expanded > Text widget to build the wall of dots.

"." * 100 is an easy way to create a string of 100 periods, more than you’ll ever reasonably need. The maxLines: 1 parameter on Text ensures that the dots won’t

wrap onto a second line when they inevitably overflow.

In the panel body, the List<MapEntry> technique from _ProfileUserContact is used to avoid repeating a bunch of UI code. The CrossAxisAlignment.stretch

parameter on the Column left-aligns its contents—but unlike CrossAxisAlign-

ment.start, it also expands the Column to its maximum horizontal size.

The panels look better now, but they expand to the full width of the screen,

which looks ridiculous on a tablet.

[image: Image 32]

The Profile Page

105

Side-by-side shots of the Profile page on a slim screen and a wide screen. On the widescreen, the expansion panels go from edge to edge horizontally, which looks disproportionate.

You can fix this with a ConstrainedBox.

1

@override

2

Widget build(BuildContext context) {

3

return FutureBuilder(

4

future: clients,

5

builder: (context, snapshot) {

6

if (snapshot.connectionState == ConnectionState.waiting) {

7

return const CircularProgressIndicator();

8

}

9

10

if (snapshot.hasError) {

11

return const Text('Error: Cannot get client data.');

12

}

13

14

final clients = snapshot.data;

15

return ConstrainedBox(

16

constraints: const BoxConstraints(maxWidth: 500),

17

child: ExpansionPanelList(

18

...

Number formatting

Next issue: currently, the “Contract Size” row says “1000000.0”. That’s a reasonable way to turn a double value into a string, but it’s not a friendly way to display a

The Profile Page

106

dollar amount. Luckily, there’s an official pub.dev package for all your number and currency formatting needs. Add the intl package to pubspec.yaml, then update the Contract Size field like this:

1

...

2

MapEntry(

3

"Contract Size",

4

NumberFormat.simpleCurrency(locale: "en_US")

5

.format(client.contractSize),

6

),

7

MapEntry("Contact Email", client.contactEmail),

8

MapEntry("Contact Phone", client.contactPhone),

9

...

NumberFormat.simpleCurrency() uses the default currency symbol (like $

or €) for the given locale, defaulting to the user’s current locale. There are other named constructors you can use to show a shortcode (like USD or EUR) instead

of a symbol or to abbreviate the amount (“1M” instead of “1,000,000”). And if you want to format a simple number, not a currency value, check out NumberFormat.decimalPattern() or use the default constructor of NumberFormat, which

accepts a pattern.

Text.rich

Time to throw a curveball. For each key: value in the ExpansionPanel, it would

be nice if the value was bold.

You could do this by wrapping each Text with a Row widget and splitting the key and value into separate Texts. This mostly works but gives up the default line-wrapping functionality of Text, so the Rows will overflow at small screen sizes.

It’s also overcomplicated from a layout perspective. It would be easier to keep

everything in the same text-rendering box.

That’s where Text.rich comes in. It lets you render text as a series of nested

TextSpan objects, each with its own optional TextStyle attached.

The Profile Page

107

1

 // _ProfileClientListState build method, ExpansionPanel constructor

2

body: Padding(

3

padding: const EdgeInsets.only(

4

bottom: 16,

5

left: 16,

6

right: 16,

7

),

8

child: Column(

9

crossAxisAlignment: CrossAxisAlignment.stretch,

10

children: [

11

MapEntry(

12

"Contract Size",

13

NumberFormat.simpleCurrency()

14

.format(client.contractSize),

15

),

16

MapEntry("Contact Email", client.contactEmail),

17

MapEntry("Contact Phone", client.contactPhone),

18

]

19

.map(

20

(entry) => Text.rich(

 // <= Text.rich added here

21

TextSpan(children: [

22

TextSpan(text: " ${entry.key}: "),

23

TextSpan(

24

text: entry.value,

25

style: const TextStyle(

26

fontWeight: FontWeight.bold,

27

),

28

)

29

]),

30

),

31

)

32

.toList(),

33

),

34

),

TextSpan can have a children parameter with more TextSpans or a text

parameter with a string. If you provide a style parameter, it applies to the text parameter or cascades down to the children.

Now the values are bold, and each line of text wraps the way you’d expect.

:::info Flutter also has a RichText widget. It’s very similar to Text.rich but doesn’t inherit text styles from the widget hierarchy. Usually, you want rich text to behave the same as normal text, so in my opinion, you should always use

Text.rich. :::

The Profile Page

108

Exercises

1. For each entry in the ExpansionPanel body, make the label and value text

different colors.

2. In the ExpansionPanel body, use conditional rendering to underline the email

address but not the phone number or contract size.

It’s time to deal with that RenderFlex overflow warning. This happens anytime your content extends beyond the boundary of a widget and you haven’t set up

scrolling.

Choosing a scrolling widget

When you have content that needs to scroll, think about how you want the UX to

work.

• Do you want to scroll a full page at a time, like an image carousel? Use a

PageView widget.

• Do you want a grid of widgets that wrap in one direction and scroll in the

other? Use a GridView widget.

• Do you want a list of equally-sized widgets (like a Row or Column) that scroll

smoothly, with (optionally) Flutter disposing any off-screen widgets and re-

rendering them when they come into the viewport? Use a ListView widget.

• Do you want a list of widgets that scroll smoothly but render all at once, may

be of very different sizes, and don’t get disposed when they’re off-screen? Use

a SingleChildScrollView widget.

:::info There are several widgets that offer more granular and customized

scrolling behavior. You normally won’t need them, but you can find a full list here.

:::

The goal is to scroll the _ProfileContent widget, which has a top-level Column.

This means the choice is between ListView and SingleChildScrollView. Both would

be acceptable here, but there’s a compelling reason to choose one over the other.

Let’s examine both.

ListView

tl;dr: You should use ListView when you have a medium or long list that repeats the same inexpensive widget.

The Profile Page

109

To use a ListView, all you have to do is replace the top-level Column in _Pro-

fileContent with ListView. That’s really it, as long as you’re using a vanilla Column with no extra parameters. These widgets have the children parameter in common.

(You’ll also want to wrap the CircularProgressIndicator in _ProfileClientList with a Center widget so it doesn’t get stretched out to the full width of the screen.)

ListView has a few performance optimizations over SingleChildScrollView.

These depend on all of its children being about the same size in the scroll direction (vertical by default). If they’re different sizes, it will still work, but you may see some weirdness with the scrollbar—it will change size and jump around as you

scroll through the page.

:::tip If you’re fine-tuning performance or dealing with scrollbar jank that just won’t go away, consider using the itemExtent parameter on any kind of ListView

to tell Flutter the exact height (in logical pixels) it should expect each item to be.

This is both faster and more predictable than letting it figure that out on its own. ::: ListView has a couple of named constructors you should be aware of.

ListView.builder

ListView.builder lets you generate a list of widgets from an array. You’ll use

an itemBuilder instead of a children list (you’ve already used the Builder

pattern with LayoutBuilder and FutureBuilder, so you should find it familiar) and provide an itemCount parameter with the number of widgets you want to display.

itemBuilder will be called with the array index of the widget being built. Typical usage looks something like this:

1

class ListViewBuilderExample extends StatelessWidget {

2

final List<DataObject> arrayOfData = getData();

3

4

@override

5

Widget build(BuildContext context) {

6

return ListView.builder(

7

itemCount: arrayOfData.length,

8

itemBuilder: (context, index) {

9

final item = arrayOfData[index];

10

return MyWidget(item);

11

},

12

);

13

}

14

}

When you use this ListView variant, Flutter will lazy-load your widgets, only

building the ones that are currently visible on the screen. This is great for really

The Profile Page

110

long lists where you use the same widget over and over again with different data

and want to speed up the app by only rendering what the user is looking at.

ListView.separated

ListView.separated is similar to ListView.builder, but you also pass a

separatorBuilder that builds a widget to display between list items. This is

useful when you want a visual divider (like an <hr> in HTML) between elements.

Flutter’s Divider widget is a popular choice here.

Be careful with lazy-loading

Lazy-loading with ListView variants is a significant performance boost when you

have a long list of widgets. However, you should be careful about using it if

your widgets are expensive to render. Usually, “expensive” means something is

happening outside of Flutter’s built-in widget library: an API call, a bulky pub

package, reading data from disk, and so on. As a rule of thumb, anything you have to await is expensive.

Where possible, you should “push” expensive operations up the widget tree—

that is, do them in a parent or grandparent widget above where the ListView.builder is used. That way, they’ll be called less often, and their data will be ready when a child widget needs to render.

SingleChildScrollView

tl;dr: You should use a SingleChildScrollView when you have a short list of different widgets.

To use a SingleChildScrollView, wrap (don’t replace) the top-level Column in

_ProfileContent with SingleChildScrollView. As you might guess from the

name, SingleChildScrollView only accepts a single child widget, but that can be a Column or Row if you need to scroll a list of widgets.

The Flutter docs say:

This widget is useful when you have a single box that will normally be

entirely visible […] but you need to make sure it can be scrolled if the

container gets too small in one axis (the scroll direction).

Flutter documentation

The Profile Page

111

In other words, the intended use case for this widget is to handle abnormally

small screens (or split-screen app usage). That’s one good use case for it, but it’s also the best choice for displaying a non-uniform list of widgets. You don’t get the performance benefits of ListView, but Flutter will render the entire child, giving it better information about how the scroll bar should work.

In the case of _ProfileContent, you have a short list of very different widgets. In my opinion, a SingleChildScrollView with a Column is the best solution.

Scrollbar

Flutter adds visual scrollbars by default on desktop targets but not on mobile. If you’re okay with this behavior, you’re all set.

If you want a scrollbar on mobile, you’ll have to use the Scrollbar widget.

You can wrap any scrolling widget (like ListView or SingleChildScrollView) with a Scrollbar. By default, the scrollbar only appears when the user is actively scrolling.

If you use a Scrollbar widget and run on a desktop target, you’ll see an error

(or, possibly, two scrollbars: the default one added by Flutter and the one added by the Scrollbar widget). There’s a simple fix for this. In main.dart, update your MaterialApp with the scrollBehavior parameter:

1

MaterialApp.router(

2

scrollBehavior:

3

const MaterialScrollBehavior().copyWith(scrollbars: false),

4

...

Then set the primary: true parameter on your scrolling widget:

1

Scrollbar(

2

child: SingleChildScrollView(

3

primary: true,

4

child: Column(

5

...

This should give you a single fully-functional scrollbar on both mobile and

desktop.

Further reading

Flutter: Scrolling (docs.flutter.dev)

The Profile Page

112

Exploring the Different Types of Scrolling Widgets in Flutter: A Guide with Code

Examples (Abdul M., linkedin.com) Exercises

1. Run the app on a small screen (like an iPhone SE or a desktop window

resized to be very short). Try out a few types of scrolling widgets (ListView,

ListView.builder, ListView.separated, and SingleChildScrollView) to make the

Profile page scrollable. Scroll up and down and note any differences in

behavior between them.

One of the biggest hurdles for new Flutter developers is understanding layout.

Your first time building an app on your own, you may get very frustrated with a few error messages that are all closely related:

RenderConstrainedBox object was given an infinite size during layout.

RenderFlex children have non-zero flex but incoming height constraints

are unbounded.

Vertical viewport was given unbounded height.

BoxConstraints forces an infinite height.

The goal of this chapter is to save you from these.

How to think about layout

Let’s start by learning the essential rule of Flutter layout:

Constraints go down. Sizes go up. Parent sets position.

Flutter documentation

Memorize this rule. Write it on your mirror. Get it tattooed?

This isn’t just a rule; it’s a story. It means when Flutter is rendering a widget tree, it follows these three steps:

1. Constraints go down: The parent widget decides how big its children are allowed to be.

2. Sizes go up: The child widgets decide how big they actually are within those constraints. If the parent widget is able to do so (which is a big if), it will be the same size as all the children added together.

The Profile Page

113

3. Parent sets position: The parent decides where to put each child, starting from the first one.

A classic example is the ConstrainedBox widget. ConstrainedBox can set a

minimum and maximum height and width (for a total of four constraints) on its

child. The child is not allowed to be smaller than the minimum or bigger than the maximum (because constraints go down). It wants to be exactly as big as its content, whether that’s text, an image, or whatever (because sizes go up), but if the content is too small, it will pad it to grow to the minimum constraint, and if the content is too big, it will cut it off in order to limit itself to the maximum constraint.

So, in a fight between constraints and size, constraints win. They wouldn’t be

much use if they didn’t.

If constraints are forcing a widget to be bigger than you want it to be, you can wrap it in a Center or Align widget. That way, the Center/Align can be big enough to meet the minimum size constraint, and the child can size its content (up to the maximum constraint). The rule hasn’t been broken here; you’ve just created a new

context with new constraints.

If constraints are forcing a widget to be smaller than you want it to be, you need to fix the constraints. You can scroll within a constraint, but you can’t overflow it.

(At least not without Flutter getting mad at you.)

Now let’s use this knowledge to understand the errors I mentioned earlier.

RenderConstrainedBox object was given an infinite size

during layout

You can get this error from a very simple widget:

1

 // BAD IDEA

2

class InfiniteSizeErrorExample extends StatelessWidget {

3

@override

4

Widget build(BuildContext context) {

5

return Column(

6

children: const [

7

SizedBox.expand(),

8

],

9

);

10

}

11

}

12

 // BAD IDEA

The Profile Page

114

It will also happen if you have a SizedBox.expand() inside of a scrolling

widget like ListView.

There’s no compiler error for this, but it will crash the app the moment the

widget is rendered. What exactly is going on?

For starters, the Column widget can hold an unlimited number of children

widgets, regardless of how big they are. That’s reasonable, right? You expect it to be unopinionated. So it introduces a height constraint of infinity. (Row, its equivalent on the horizontal axis, has a width constraint of infinity.) Scrolling widgets do the same.

That explains why the child widget is confusing for Flutter. Sized-

Box.expand() tries to grow as big as it possibly can in both directions. The

biggest it can possibly grow in the vertical direction is infinity. But Flutter doesn’t know how to render something infinitely tall. And since that’s probably not what

you meant anyway, it throws an error.

In this case, what you likely wanted is to build a widget that would take up

all of the Column’s apparent height. That is, you want the Column to be as tall as its parent, and then within it, you want a widget (or two or three) that uses

all that space. That’s what the Expanded widget is for. It takes into account the Column’s own parent constraints (also called incoming constraints) and uses as much space as possible within those. So to fix the error, you can replace the

SizedBox.expand() with an Expanded().

RenderFlex children have non-zero flex but incoming height

constraints are unbounded

Here’s one way to get this error:

1

 // BAD IDEA

2

class FlexUnboundedError extends StatelessWidget {

3

@override

4

Widget build(BuildContext context) {

5

return Column(

6

children: [

7

Column(

8

children: [

9

Expanded(

10

child: Text('hello'),

11

),

12

],

13

),

14

],

The Profile Page

115

15

);

16

}

17

}

18

 // BAD IDEA

You’ll get the same error if you replace the top-level Column with a ListView.

This is weird code, right? A Column as the only direct child of a Column isn’t

something you’d write on purpose. But Flutter widget trees grow deep very quickly, and when you’re throwing around custom widgets and using intermediate styling

widgets to try to match a prototype, you can easily end up with something that’s

functionally the same as this but much less obvious. So it’s more common than

you’d think.

The problem here is that, as already discussed, Column introduces a height

constraint of infinity. When you use Expanded, it looks at the Column’s parent to figure out how much space it has to work with—but here, the Column’s parent is

another Column, so that doesn’t help. Flutter isn’t sure what to do because you

asked it to draw something infinitely tall. So it throws an error.

One way to fix this is to introduce an Expanded widget between the two

Columns, like so:

1

class FlexUnboundedError extends StatelessWidget {

2

@override

3

Widget build(BuildContext context) {

4

return Column(

5

children: [

6

Expanded(

 // <= Expanded added here

7

child: Column(

8

children: [

9

Expanded(

10

child: Text('hello'),

11

),

12

],

13

),

14

),

15

],

16

);

17

}

18

}

This introduces a new height constraint based on the top Column’s parent. That

way, the nested Column can check the Expanded, instead of the top Column, to

know how tall it can be.

The Profile Page

116

If your outer widget is a ListView instead of a Column, you can’t use this fix.

Expanded can’t be a child of a scrolling widget. You’ll need to take a step back and think about what you’re trying to achieve; it doesn’t even make sense to be “as big as possible” inside of something that can scroll.

Vertical viewport was given unbounded height

Here’s how you’d get this error:

1

 // BAD IDEA

2

class ViewportUnboundedError extends StatelessWidget {

3

@override

4

Widget build(BuildContext context) {

5

return Column(

6

children: [

7

ListView(),

8

],

9

);

10

}

11

}

12

 // BAD IDEA

This can also happen if you put a ListView inside of a ListView.

Again, it might look odd, but production Flutter apps are complicated enough

to hide this pattern; the offending ListView and Column could be in different files, separated by several layers of StatelessWidgets and StatefulWidgets. It’s easy to do this by mistake.

The problem is that scrolling widgets want to be as big as possible in the scroll direction (vertical, by default). And since ListView is in a Column, “as big as possible”

again means—you guessed it—infinite.

You could wrap the ListView in an Expanded here, if it’s inside a Column and

that’s the behavior you want. But you can’t do this with a ListView inside of a

ListView (since Expanded can’t go there), and maybe that’s not what you want,

anyway.

Another option is to set shrinkWrap: true on the inner ListView.

shrinkWrap: true tells Flutter that a scrolling widget should only be as

big as its contents—it shouldn’t try to be as big as possible. This solves the problem, but with a cost to performance, since the framework now has to evaluate all the

widget’s children to know how big it is and how to handle scrolling. If you use it, be mindful of the widgets you put below it and how often they animate or change

sizes.

The Profile Page

117

BoxConstraints forces an infinite height

You can conjure this error like so:

1

 // BAD IDEA

2

class BoxConstraintsInfiniteError extends StatelessWidget {

3

@override

4

Widget build(BuildContext context) {

5

return Column(

6

children: [

7

Container(

8

height: double.infinity,

9

),

10

],

11

);

12

}

13

}

14

 // BAD IDEA

By now, the problem should be obvious. Column introduces an infinite height

constraint, and the Container sets its height to infinity, so once again, you’re asking Flutter to render something infinitely tall.

Using an Expanded around the Container would fix the error since constraints

beat size. Removing height: double.infinity would do it as well.

Some off-the-shelf Flutter widgets (such as Slider and LinearProgressIndicator)

use width: double.infinity as a way to make them grow to the size of

whatever box you put them in. This can be a problem if you put them in a Row or a horizontal ListView. The solution is to create a finite size constraint: Expanded is the go-to solution, but a SizedBox or ConstrainedBox will work too.

Flutter is not the web

Flutter layout is especially challenging for web developers. On the web, every

element knows how to do everything: size itself, position itself, stack, scroll, clip, pad, and so on. While this offers a lot of flexibility and power, it’s also really heavy and makes layouts hard to reason about. People who understand CSS well enough

to debug complex layouts are rare.

With Flutter, layout is much simpler. Most widgets only know how to do one or

two things. There are fewer rules to learn but a lot of rules to unlearn.

• There’s no automatic scrolling. If you want something to be scrollable, you

have to use a scrolling widget.

The Profile Page

118

• There’s no position: absolute. Widgets are positioned by their parents.

If you want to overlay a widget on an arbitrary part of the screen, you’ll need

to use the Stack and Positioned widgets.

• There’s no z-index or implicit stacking context. Widgets only overlap when

you use a Stack.

• There’s no overflow: visible. If something overflows in debug mode,

Flutter will emit a warning.

• Vertical layout doesn’t happen by magic. If you want a vertical layout, you have to ask for it (use a Column or a scrolling widget).

• The edge of the viewport (screen) isn’t a hard stop. The size of the device will determine maximum height and width constraints for your top-level widget,

but most of the time, you’ll be working much deeper in the widget tree, inside

at least one infinite constraint.

• Most widgets don’t have height or max-height parameters—that is, they

don’t have an intrinsic size and don’t introduce constraints.

You can create very intricate, responsive, and visually stunning interfaces with

Flutter, but you have to approach them a little differently than you may be used to.

And that’s a good thing. When you see a Column, you don’t have to run off to another file (or several other files) to see how it actually works; a Column is a Column, and it can only do things that Columns do. It’s simple once you get to know it.

A final piece of advice

Don’t be afraid of Columns, Rows, and scrolling widgets. They’re incredibly useful.

Production apps often have Rows inside of Columns inside of Rows inside of

Columns inside of ListViews. Anytime a box has more than one thing in it, you’re

going to reach for one of these (or sometimes a Stack). You’ll use them a lot. And you should.

Inside of a layout widget, there are usually only a few things you’ll want a child widget to do:

1. Fit its contents. This is what most widgets do by default—they’re only as big

as their children.

2. Take up as much free space as possible. This is what Expanded does.

3. Try to be a specific size. This is what SizedBox and ConstrainedBox do.

If you want to do something else, there are lots of other layout widgets with different behaviors. If you want something none of the built-in widgets can do,

The Profile Page

119

there’s probably a Pub package for it. And if all else fails, you can use any of the built-in layout widgets as a starting point and build your own. They’re written in Dart.

Most of the time, you’ll use Row, Column, and ListView. And when you do, you’ll

be able to avoid almost all layout errors if you mind the infinite constraint.

Further reading

Flutter: The Advanced Layout Rule Even Beginners Must Know (Marcelo Glasberg, Flutter Community on medium.com)

Common Flutter errors (docs.flutter.dev)

Unbounded height / width | Decoding Flutter (Flutter on YouTube)

How to debug layout issues with the Flutter Inspector (Katie Lee, medium.com) It’s finally time to create a Log Out button for the Profile page footer.

TextButton, OutlinedButton, and ElevatedButton

You’ve already encountered IconButtons and FloatingActionButtons. There are four other basic types of buttons that ship with Flutter’s implementation of

Material Design. In order from least visual emphasis to most:

• TextButton has a transparent background and no border.

• OutlinedButton has a transparent background with a border.

• FilledButton has a solid background.

• ElevatedButton has a solid-color background and a drop shadow.

Most of your buttons will be one of these. The differences between them are

purely visual, so if you know how to use one, you know how to use them all.

For logging out, use a FilledButton. It’s not the main thing you’ll do on this page, but it is important. Center it in the _ProfileFixedFooter widget with some

vertical padding:

The Profile Page

120

1

class _ProfileFixedFooter extends StatelessWidget {

2

@override

3

Widget build(BuildContext context) {

4

return Padding(

5

padding: const EdgeInsets.symmetric(vertical: 16),

6

child: Center(

7

child: FilledButton(

8

onPressed: () {},

9

child: const Text("Log Out"),

10

),

11

),

12

);

13

}

14

}

For now, the onPressed method is an empty anonymous function—a no-op.

You’ll implement it later when you have some real authentication hooked up.

Styling buttons

Button styles follow your app theme by default. This one looks great as is, but if you want to change something, the easiest way is to use the styleFrom method

on the button class:

1

class _ProfileFixedFooter extends StatelessWidget {

2

@override

3

Widget build(BuildContext context) {

4

return Padding(

5

padding: const EdgeInsets.symmetric(vertical: 16),

6

child: Center(

7

child: FilledButton(

8

onPressed: () {},

9

style: FilledButton.styleFrom(

 // <= style parameter added here

10

backgroundColor: context.theme.secondary,

11

foregroundColor: context.theme.secondaryText,

12

),

13

child: const Text("Log Out"),

14

),

15

),

16

);

17

}

18

}

styleFrom allows you to modify the button’s base colors and configuration,

then add all of Material Design’s standard animations and behaviors on top of it. It’s really convenient.

The Profile Page

121

MaterialStateProperty

If you want more control over how the button looks and behaves, you can skip the

styleFrom method and construct a ButtonStyle from scratch. All ButtonState parameters are optional, so you don’t have to touch anything you don’t want to

change. Most of them take a MaterialStateProperty, which is a generic type that lets you change a style based on the button’s state. It works like this:

1

class _ProfileFixedFooter extends StatelessWidget {

2

@override

3

Widget build(BuildContext context) {

4

return Padding(

5

padding: const EdgeInsets.symmetric(vertical: 16),

6

child: Center(

7

child: FilledButton(

8

onPressed: () {},

9

style: ButtonStyle(

10

backgroundColor: MaterialStateProperty.resolveWith(

11

(states) {

12

if (states.contains(MaterialState.pressed)) {

13

return context.theme.danger;

14

}

15

16

return context.theme.secondary;

17

},

18

),

19

),

20

child: const Text("Log Out"),

21

),

22

),

23

);

24

}

25

}

The background color of the button will normally be your secondary color

from theme.dart, but while the button is being clicked or tapped, it will switch to your danger color. MaterialStateProperty.resolveWith() receives a Set of

active MaterialState values and can decide what value to return however you’d like.

The MaterialState enum is defined as:

The Profile Page

122

1

enum MaterialState {

2

hovered,

3

focused,

4

pressed,

5

dragged,

6

selected,

7

scrolledUnder,

8

disabled,

9

error,

10

}

Any combination of these could be passed into the function, but usually, there

will only be a couple you want to handle.

Drop shadow

The last thing your profile footer could use is a drop shadow to set it apart from the content area. You can use a DecoratedBox for that.

1

class _ProfileFixedFooter extends StatelessWidget {

2

@override

3

Widget build(BuildContext context) {

4

return DecoratedBox(

5

decoration: BoxDecoration(

6

boxShadow: [

7

BoxShadow(

8

blurRadius: 5,

9

color: Colors.black.withAlpha(50),

10

offset: const Offset(0, -3),

11

),

12

],

13

color: Colors.white,

14

),

15

child: Padding(

16

...

It’s suddenly really clear that there’s horizontal Padding above this widget in the tree!

[image: Image 33]

The Profile Page

123

A screenshot of the Profile page. The island on which the Log Out button is placed has a faint shadow on the top, left, and right edges, with a small but visible distance from the left and right edges of the screen.

That comes from the top-level Padding widget in RevExProfilePage. It doesn’t

look quite right, so you should remove that widget (use the Remove this widget context action to do so easily) and add it back in two places: below the SingleChildScrollView in _ProfileContent, and merged with the existing Padding in

_ProfileFixedFooter.

Now you’ve finished the design of the Profile page. You’ll be revisiting and

refactoring it later, but the interface will stay the same.

[image: Image 34]

The Profile Page

124

Screenshot of the Profile page, now with the Log Out island extending horizontally to the edges of the screen, and having a shadow only on its top edge.

Download profile.page.dart

lib/pages/profile.page.dart

Further reading

MaterialStateProperties | Decoding Flutter (Flutter on YouTube) Exercises

1. Add a button of each type to the Profile page. Note the differences in their

appearance and behavior.

2. Give the “Log Out” button a different background color when hovered. (Keep

in mind this will only work on desktop, since mobile devices don’t have a way

to hover.)

The Profile Page

125

3. Pick another field in ButtonStyle and add a MaterialStateProperty resolver

to it. Also try using MaterialStateProperty.all to set a value that stays the same when the button state changes.

Accessibility

Module 5

In this module, you’ll learn to test your app for accessibility to visually disabled users. Accessibility as a whole is outside the scope of this course, so there won’t be any discussion of font size, contrast, or closed captioning. However, Flutter has some accessibility widgets and settings you should be familiar with.

If you have an iPhone or iPad, you can test how your app responds to a screen

reader by opening the Settings app, tapping Accessibility, then VoiceOver, and then turning the VoiceOver toggle on. If you’re sighted, you’ll probably find it easier to use the phone without VoiceOver; you can go to Settings > Accessibility > Accessibility Shortcut to have VoiceOver turn on or off whenever you triple-click the power button on your device.

Testing on iOS Simulator

Using VoiceOver on a Simulator isn’t exactly the same experience as on a physical iPhone, but it’s close enough to help you understand where your interface may

need work. You can open Accessibility Inspector on a Mac by using Spotlight or

by opening Xcode and choosing Xcode > Open Developer Tool > Accessibility Inspector from the menu.

Checking accessibility

Start your project on the iOS Simulator. In Accessibility Inspector, click the speech bubble to turn on VoiceOver, then click the crosshair button. As you hover over

items on the simulator screen, they’ll be read aloud. You can also use the < left and

> right caret buttons to navigate between elements on the screen.

You may have trouble with Accessibility Inspector if you’re trying to use the

screen reader and develop in debug mode at the same time. Flutter’s hot-reload

functionality seems to confuse it. If all else fails, try stopping the app and running it again.

Accessibility

127

Further reading

Accessibility Inspector (developer.apple.com) If you have a physical Android device, it probably has Android Accessibility Suite preinstalled. If it doesn’t, you can download it from the Google Play Store. Testing on a physical device is always the best way to determine if your app can be used by a blind or visually impaired person.

If you don’t have an Android phone or tablet handy, you can test using the

emulator. Android emulators are very minimal and don’t come with Accessibility

Suite installed, so getting the screen reader up and running is a bit of a process.

Installing TalkBack on the emulator

First, you’ll need an emulator that has the Google Play Store preinstalled. When you go to create an emulator, only some of the device definitions will have a Play icon in the “Play Store” column. You’ll need to pick one of those. Once it’s created, start it up, open the Play Store, log in with a Google account, and search for Accessibility Suite. Download and install the official app.

Now open the Settings app in your emulator, tap Accessibility, then TalkBack.

Turn on the TalkBack shortcut toggle. You won’t want TalkBack itself turned on right away since using it through a trackpad is difficult. But having the shortcut button on your screen will let you turn it on after you start your app.

[image: Image 35]

Accessibility

128

Screenshot of the TalkBack settings in an Android Pixel 5 emulator. The “Use Talkback” toggle is off, the “TalkBack shortcut” toggle is on, and there’s a small purple button with a talk bubble on the lower right edge of the screen.

Checking accessibility

Once you’ve started your Flutter project on the Android emulator, tap the purple

TalkBack shortcut to turn on the screen reader. See if you can navigate around

using the following actions:

• Click and drag across the screen to hear different elements read aloud.

• Swipe (quickly click and drag) left and right to move to the previous or next

element, respectively.

• Double-click to activate the currently selected element.

Further reading

Test your app’s accessibility (developer.android.com) One thing you probably noticed right away is that the Profile icon button in the

top right corner of the screen just says “button” when the screen reader reads it.

That’s not very useful. Also, the user’s profile picture isn’t read at all. There’s no

Accessibility

129

need to label purely decorative images, but this is a useful part of the UI for sighted users, so you should at least let visually disabled users know it exists.

Tooltip

Start with the Profile button. If you’re troubleshooting accessibility for an off-the-shelf Flutter widget, chances are there’s a constructor field for that. You can hover the IconButton constructor (or right-click it and select Go to definition) in main.dart to see what fields it has. It has a tooltip field whose hint text says it’s

“used for accessibility,” so that should do the trick:

1

 // RevExScaffold

2

@override

3

Widget build(BuildContext context) {

4

return Scaffold(

5

appBar: AppBar(

6

actions: [

7

IconButton(

8

onPressed: () {

9

context.go('/profile');

10

},

11

icon: const Icon(Icons.account_circle),

12

tooltip: 'My Profile',

 // <= tooltip added here

13

),

14

],

15

...

Sure enough, the screen reader now says “My Profile button” when the button is

selected. The other effect of this field is if you long-press the icon button, a tooltip with the text “My Profile” will appear. This is a good practice for icon buttons since users often struggle to intuit what they’ll do.

Semantic and label

If you can’t find a tooltip field on a widget, you can look for fields that have the words “semantic” or “label” in them. The user’s profile image is created with the Image.network constructor, which has a semanticLabel parameter.

Accessibility

130

1

 // _ProfileContent widget build method

2

...

3

Image.network(

4

user!.profilePictureUrl!,

5

errorBuilder:

6

(context, error, stackTrace) =>

7

fallbackImage,

8

fit: BoxFit.cover,

9

semanticLabel: 'Profile Photo',

 // <= semanticLabel added here

10

)

11

...

The Icon widget constructor also has a semanticLabel parameter you can

use if you want to label the fallback icon.

Semantics

What if you’re creating a custom widget or using one from pub.dev? You may not

have easy access to a field intended for screen readers. Luckily, Flutter has a few widgets that make this situation easy to handle.

Pretend the IconButton constructor doesn’t have a tooltip parameter, or you

just want to add screen reader accessibility without the long-press tooltip. You can use the Semantics widget.

The Semantics widget constructor has a label parameter, which is what you’ll

use most often.

1

 // RevExScaffold widget

2

@override

3

Widget build(BuildContext context) {

4

return Scaffold(

5

appBar: AppBar(

6

actions: [

7

Semantics(

 // <= Semantics added here

8

label: 'My Profile button',

9

child: IconButton(

10

onPressed: () {

11

context.go('/profile');

12

},

13

icon: const Icon(Icons.account_circle),

14

),

You can also use the liveRegion parameter to indicate that the child may

change dynamically (like if it’s a notification area), and the screen reader will read it aloud when it does.

Accessibility

131

ExcludeSemantics

If you have a widget that the screen reader should ignore, you can wrap it in an

ExcludeSemantics widget: 1

 // Example widget

2

@override

3

Widget build(BuildContext context) {

4

return ExcludeSemantics(

5

child: MyDecorativeWidget(),

6

);

7

}

Note that the screen reader will ignore MyDecorativeWidget and all of its

children. This way, the user doesn’t have to swipe through something that isn’t

useful.

MergeSemantics

Sometimes, you’ll have a widget with several children that are all read separately by the screen reader. If you want to combine them into one thing that’s read aloud all at once, you can use the MergeSemantics widget.

1

 // Example widget

2

@override

3

Widget build(BuildContext context) {

4

return MergeSemantics(

5

child: Row(

6

children: [

7

Text('This should all be '),

8

Text('one sentence.'),

9

],

10

),

11

);

12

}

Summary

There are other Semantics widgets, but the ones above are the most commonly

used. They’re pretty simple. Adding Semantics widgets, tooltips, and labels wher-

Accessibility

132

ever they’re needed is an easy way to make your app usable for more people and

comply with accessibility regulations in your country.

Further reading

Flutter: Accessibility (docs.flutter.dev)

Semantics (Flutter Widget of the Week) (Flutter on YouTube) Exercises

1. Add some Semantics widgets of your choice to the home page of the app, then

test the app with VoiceOver or TalkBack to see how they behave.

Storage and HTTP

Module 6

In this module, you’ll learn a few ways for your app to use and store data:

• Storing small, non-essential configuration values in shared preferences.

• Communicating with an external API using HTTP requests.

Most Flutter apps (and nearly all Flutter tutorials) use Firebase, which is Google’s back-end cloud for web and mobile apps. You won’t be using Firebase here because

it’s rarely an option for line-of-business apps; in a corporate environment, there’s normally an existing API or service you need to connect to, and HTTP is how you’ll do that.

In your Flutter apps, you may want to persist certain data on the user’s device

rather than storing everything in the cloud behind an API. There are a few benefits to doing this:

• Local data can be accessed when the user is offline.

• It’s not affected by service outages on the back end.

• It can be read faster since you don’t have to wait for an HTTP request.

• You don’t have to pay to store it since it lives on the user’s hard drive.

Local data storage solutions

There are several ways to store data locally. I won’t go over all of them in depth, but knowing what they are will help you pick the right solution when you’re building

on your own.

sqflite

sqflite is a Pub package that lets you create, manage, and query local SQLite databases. If you’re comfortable with relational SQL, this is a great way to store any amount of structured data.

Pros:

• Compatible with iOS, Android, and MacOS

Storage and HTTP

134

• Supports incremental schema migrations

• One of the top 1% most popular Pub packages

• Stores data in a “.db” file, which you can find and query for easy debugging

Cons:

• Requires some boilerplate code to convert Dart objects to SQL and vice versa

• SQLite isn’t as ergonomic or full-featured as other SQL implementations

• Not compatible with Windows, Linux, or web

If sqflite isn’t quite what you’re looking for, another SQLite framework is Drift.

It’s compatible with more platforms and has more features, but isn’t quite as

popular.

hive

hive is an unstructured key-value database. It’s even more popular than sqflite thanks to its ease of use.

Pros:

• Full Dart API, no need to write SQL

• Built-in caching for high performance

• Supports desktop, mobile, and web platforms

Cons:

• When dealing with complex data or a large number of records, unstructured

data quickly becomes difficult to navigate

• No validation of incoming data

shared_preferences

shared_preferences is a very limited key-value store that uses native preference APIs on iOS and Android (though it works on all platforms).

Pros:

• Official flutter.dev package with first-party support

• The simplest way to store basic configuration values (like the user’s preferred theme)

Cons:

Storage and HTTP

135

• No advanced features, just set/get/delete

• Only recommended for a small number of keys—not a complete data storage

solution

• Only intended for primitive values—not for objects or arrays

Since most apps use shared_preferences to some extent, let’s take a closer

look at it.

Using shared_preferences

Let’s use shared_preferences to track the date when the user opens the app for

the first time. This may be useful information to us later.

Start by adding shared_preferences to your pubspec.yaml. Then create a

preferences folder under lib and a first_usage_date.dart file under that.

Paste in the following code:

1

import 'package:shared_preferences/shared_preferences.dart';

2

3

const _dateKey = 'FIRST_USAGE_DATE';

4

Future<DateTime> revexGetFirstUsageDate() async {

5

final prefs = await SharedPreferences.getInstance();

6

final now = DateTime.now();

7

8

if (!prefs.containsKey(_dateKey) || prefs. get(_dateKey) == null) {

9

await revexSetFirstUsageDate(now);

10

return now;

11

}

12

13

final storedUsageDate = prefs.getString(_dateKey)!;

14

return DateTime.parse(storedUsageDate);

15

}

16

17

Future revexSetFirstUsageDate(DateTime date) async {

18

final prefs = await SharedPreferences.getInstance();

19

await prefs.setString(_dateKey, date.toIso8601String());

20

}

The SharedPreferences class provided by the package has a static

getInstance() method that asynchronously returns a SharedPreferences

singleton. Once you have that, all shared preference values are cached in memory, so “get” methods are fast and synchronous. shared_preferences only stores

numbers, booleans, strings, and string lists, so you have to convert between

DateTime and String, but that’s simple to do.

Storage and HTTP

136

Now you can simply call revexGetFirstUsageDate() at the earliest conve-

nient point in your app. The RevExScaffold constructor is a good place:

1

class RevExScaffold extends StatelessWidget {

2

final String title;

3

final Widget body;

4

final Widget? floatingActionButton;

5

final Future<DateTime> firstUsageDate;

6

7

RevExScaffold({

8

required this.title,

9

required this.body,

10

this.floatingActionButton,

11

}) : firstUsageDate = revexGetFirstUsageDate();

12

13

...

You have to remove const from the class constructor because revexGetFirs-

tUsageDate() isn’t a constant value. Also, note that the type of firstUsageDate

is Future<DateTime>, so you’ll have to await it when you want to use it.

shared_preferences probably won’t meet all your data storage needs, but as

you can see, it’s a really fast and simple way to store small, single-value pieces of information.

Further reading

Cookbook: Store key-value data on disk (docs.flutter.dev)

Cookbook: Persist data with SQLite (docs.flutter.dev) Exercises

1. Use SharedPreferences to track the number of times the user visits the Profile page. If this number is greater than 10, change the color of the user’s name.

HTTP is the most popular protocol for communicating with a remote server in

web and mobile apps. Like almost any front-end technology, Flutter doesn’t care

what language your server is written in or where it’s hosted. All it needs to know is which URIs to hit and what information to send.

I’ve written a server in Dart for you to use. We won’t go over it in detail, but it uses the shelf package and the full source is included in your course files. To start

Storage and HTTP

137

it up, execute the command dart run from the course/server folder. (You may

need to run dart pub get first to fetch third-party dependencies.) You should

see a message that says Server running on localhost:8080.

HTTP setup

To make HTTP requests, add the http package to your pubspec.yaml file.

Before you start using it, you’ll need to define a couple of universal settings.

Create a new file in your lib/http folder called http.dart. Add the following

code:

1

const revexApiUrl = r'localhost:8080';

2

const revexDefaultHeaders = < String, String>{

3

'Content-Type': 'application/json; charset=UTF-8',

4

};

These represent the base URI of your Dart server and the default HTTP headers

you’ll use on every request.

Now you need to update your data classes to be JSON-compatible. Dart has a

reflection library, but it can’t be used with Flutter, so you’ll need to explicitly provide a method for converting an object to a Map.

:::tip For now, you’ll write manual object/Map conversions, but in larger

projects, you’ll want to automate this using a code-generation package like

json_serializable. :::

First, add a fromMap named constructor to the RevExUser class:

1

class RevExUser {

2

final String username;

3

final String fullName;

4

final String email;

5

final String phone;

6

final String? profilePictureUrl;

7

final String jobTitle;

8

final List< int> clientAccountIds;

9

10

RevExUser({

11

required this.username,

12

required this.fullName,

13

required this.email,

14

required this.phone,

15

this.profilePictureUrl,

16

required this.jobTitle,

Storage and HTTP

138

17

required this.clientAccountIds,

18

});

19

20

RevExUser.fromMap(Map< String, dynamic> map)

21

: username = map["username"],

22

fullName = map["fullName"],

23

email = map["email"],

24

phone = map["phone"],

25

profilePictureUrl = map["profilePictureUrl"],

26

jobTitle = map["jobTitle"],

27

clientAccountIds =

28

(jsonDecode(map["clientAccountIds"]) as List< dynamic>) 29

.map((id) => id as int)

30

.toList();

31

}

Then do the same for the RevExClient class:

1

class RevExClient {

2

final int id;

3

final String name;

4

final String contactFullName;

5

final String contactEmail;

6

final String contactPhone;

7

final double contractSize;

8

9

RevExClient({

10

required this.id,

11

required this.name,

12

required this.contactFullName,

13

required this.contactEmail,

14

required this.contactPhone,

15

required this.contractSize,

16

});

17

18

RevExClient.fromMap(Map< String, dynamic> map)

19

: id = map["id"],

20

name = map["name"],

21

contactFullName = map["contactFullName"],

22

contactEmail = map["contactEmail"],

23

contactPhone = map["contactPhone"],

24

contractSize = map["contractSize"];

25

}

The Dart server sends responses with a JSON body, and Dart’s jsonDecode

function decodes JSON responses to Map<string, dynamic>, so this lets you

easily construct a native object with that Map.

Storage and HTTP

139

Sending an HTTP request

Now you can switch out your stubbed HTTP functions for real ones. First, add the

following import to the top of user.http.dart and client.http.dart:

1

import 'package:http/http.dart' as http;

The new revExGetUser() function will look like this:

1

Future<RevExUser> revExGetUser() async {

2

final response = await http. get(

3

Uri.http(

4

revexApiUrl,

5

'/user',

6

),

7

headers: revexDefaultHeaders,

8

);

9

10

if (response.statusCode != 200) {

11

throw Exception("Couldn't get user.");

12

}

13

14

final dynamic responseObject = jsonDecode(response.body);

15

return RevExUser.fromMap(responseObject);

16

}

http has top-level functions for all the HTTP verbs you’re familiar with: GET,

POST, and so on. It accepts a Uri object as the first parameter, which you can

create using any of several class constructors, and a headers parameter for

request headers. (For verbs other than GET, it also has a body parameter for the

request body.) The server is hard-coded to return a default user when security is turned off; you’ll turn it on in a later lesson.

The return value of http.get has a statusCode field you can check to make

sure it succeeded, and then you can decode the body field to get the data.

Update the revExGetClients() method as well:

Storage and HTTP

140

1

Future<List<RevExClient>> revExGetClients(List< int> clientIds) async {

2

final response = await http. get(

3

Uri.http(

4

revexApiUrl,

5

'/client',

6

< String, dynamic>{"clientIds": clientIds.join(',')}, 7

),

8

headers: revexDefaultHeaders,

9

);

10

11

if (response.statusCode != 200) {

12

return List.empty();

13

}

14

15

final List< dynamic> responseList = jsonDecode(response.body); 16

return responseList.map((map) => RevExClient.fromMap(map)).toList();

17

}

If you reload the app, you’ll see that the Profile page still works the same as

before—the only difference is that it’s now getting data from a live server using a real database.

Further reading

Cookbook: Fetch data from the internet (docs.flutter.dev)

How To Use HTTP Requests in Flutter (PaulHalliday, digitalocean.com) Exercises

1. Pick a free, public API (like one from this list) and build a Dart class for making requests to it. Display a piece of information from it somewhere in the app.

The Dart server included with this course includes login functionality. It’s not

completely secure, but you won’t be using it in production anyway—it’s just here to help you practice connecting to a remote server for authentication. It uses cookies to authorize the user for up to 3 days after they log in.

Securing the server

To turn on security in the Dart server, open up server/bin/dart_server.dart

and change the useSecurity constant to true:

Storage and HTTP

141

1

const useSecurity = true;

Then, start (or restart) the server. Remember, you can run the server by

executing dart run from the server/ folder.

If you try to visit the Profile page in the app now, you’ll get an error. This is because the server is returning a 401 Unauthorized status code from all /user and

/client endpoints. You’ll need to log in to access those.

Login HTTP methods

The server has two authorization endpoints: /auth/login, which accepts an email

and password in the POST body, and /auth/logout. Let’s create a new file at

lib/http/auth.http.dart to use them.

1

import 'dart:convert';

2

import 'package:http/http.dart' as http;

3

import 'http.dart';

4

5

Future< bool> revExLogIn(String email, String password) async {

6

final response = await http.post(

7

Uri.http(revexApiUrl, '/auth/login'),

8

headers: revexDefaultHeaders,

9

body: jsonEncode(< String, String>{

10

email: email,

11

password: password,

12

}),

13

);

14

15

return response.statusCode == 200;

16

}

17

18

Future revExLogOut() async {

19

await http. get(

20

Uri.http(revexApiUrl, '/auth/logout'),

21

headers: revexDefaultHeaders,

22

);

23

}

:::tip

You may have to use an OAuth flow to authenticate in a corporate context.

Pub.dev has a first-party package called oauth2 for that.

:::

Storage and HTTP

142

The login overlay

Now you’ll build some UI. Your first instinct may be to build a new page, e.g.,

RevExLoginPage. There are a couple of reasons why that isn’t ideal.

1. All pages in your router are wrapped with a RevExScaffold, which has an app

bar. The app bar has a link to the Profile page, which won’t work unless the

user is logged in. Ideally, you shouldn’t let the user do anything until they log in.

2. Routing the user to a different page when they need to log in means they’ll lose their current context. It would be better if they could log in and immediately

return to what they were doing.

The best option here is an overlay, which will cover the entire screen without

losing context.

Create a new folder lib/overlays/ and add a file called lo-

gin.overlay.dart. There are no surprises here: an overlay is a widget, like

everything else in Flutter.

The Login overlay will need a StatefulWidget with its own Scaffold (since it

doesn’t live inside the one in RevExScaffold). It will also need a widget you haven’t used yet: TextField.

TextField and TextEditingController

Interactive buttons were covered in a previous lesson, but TextField has a whole new level of interactivity. A text field widget should be able to handle different types of input (phone numbers, email addresses, passwords, etc.), maintain its current

state when the widget re-renders, and be able to validate input as the user types.

TextField can do all of the above and integrates nicely with StatefulWidget. For

each TextField you create, you’ll need a TextEditingController, which is an object that lets you access the current value of the field (whatever the user has typed).

Storage and HTTP

143

1

class RevExLoginOverlay extends StatefulWidget {

2

@override

3

State<RevExLoginOverlay> createState() => _RevExLoginOverlayState();

4

}

5

6

class _RevExLoginOverlayState extends State<RevExLoginOverlay> {

7

final _emailController = TextEditingController();

8

final _passwordController = TextEditingController();

9

}

Once you have a TextEditingController, you can create a TextField like this:

1

TextField(

2

controller: _emailController,

3

decoration: InputDecoration(

4

labelText: "My text field",

5

),

6

keyboardType: TextInputType.text,

7

onChanged: (value) {

8

 // Anything you want to do when the user types something

9

},

10

),

The TextField constructor has a shocking number of parameters you can use,

but this is all you need to get started—and if you’re feeling especially un-picky, you can even get away without the decoration, keyboardType, and onChanged

parameters. All you really need is a controller.

You’ll use two of these: one for the user’s login email and one for their password.

You’ll also need a “Log In” button, which will be disabled if either input is invalid.

Once all the widgets you need are added, the file will look like this:

1

import 'package:flutter/material.dart';

2

import 'package:go_router/go_router.dart';

3

import 'package:revenue_explorer/http/auth.http.dart';

4

import 'package:revenue_explorer/theme.dart';

5

6

final _emailRegex = RegExp(r"[^\s]+\@[^\s]+\.[^\s]+");

7

8

class RevExLoginOverlay extends StatefulWidget {

9

@override

10

State<RevExLoginOverlay> createState() => _RevExLoginOverlayState();

11

}

12

13

class _RevExLoginOverlayState extends State<RevExLoginOverlay> {

14

final _emailController = TextEditingController();

Storage and HTTP

144

15

final _passwordController = TextEditingController();

16

bool isValid = false;

17

18

bool isEmailValid() {

19

final email = _emailController.text;

20

return email.trim().isNotEmpty && _emailRegex.hasMatch(email);

21

}

22

23

bool isPasswordValid() {

24

final password = _passwordController.text;

25

return password.isNotEmpty;

26

}

27

28

void checkFormValidity() {

29

setState(() {

30

isValid = isEmailValid() && isPasswordValid();

31

});

32

}

33

34

@override

35

Widget build(BuildContext context) {

36

return Scaffold(

37

backgroundColor: Colors.transparent,

38

body: Center(

39

child: Container(

40

decoration: BoxDecoration(

41

border: Border.all(color: Colors.transparent),

42

borderRadius: BorderRadius.circular(20),

43

color: context.theme.appTheme.data.dialogBackgroundColor,

44

),

45

margin: const EdgeInsets.symmetric(horizontal: 16),

46

padding: const EdgeInsets.all(16),

47

child: Column(

48

mainAxisSize: MainAxisSize.min,

49

children: [

50

const Padding(

51

padding: EdgeInsets.only(bottom: 16),

52

child: Text(

53

"Please log in to continue",

54

style: TextStyle(

55

fontSize: 16,

56

fontWeight: FontWeight.bold,

57

),

58

),

59

),

60

Padding(

61

padding: const EdgeInsets.symmetric(vertical: 8),

62

child: TextField(

63

autocorrect: false,

64

controller: _emailController,

Storage and HTTP

145

65

decoration: InputDecoration(

66

errorText: isEmailValid() || _emailController.text.isEmpty

67

? null

68

: "Please enter a valid email address.",

69

isDense: true,

70

labelText: "Email",

71

),

72

keyboardType: TextInputType.emailAddress,

73

onChanged: (_) {

74

checkFormValidity();

75

},

76

textInputAction: TextInputAction.done,

77

),

78

),

79

Padding(

80

padding: const EdgeInsets.symmetric(vertical: 8),

81

child: TextField(

82

autocorrect: false,

83

controller: _passwordController,

84

decoration: const InputDecoration(

85

isDense: true,

86

labelText: "Password",

87

),

88

enableSuggestions: false,

89

keyboardType: TextInputType.visiblePassword,

90

obscureText: true,

91

onChanged: (_) {

92

checkFormValidity();

93

},

94

textInputAction: TextInputAction.done,

95

),

96

),

97

ElevatedButton(

98

onPressed: isValid

99

? () async {

100

final messenger = ScaffoldMessenger.of(context);

101

final success = await revExLogIn(

102

_emailController.text, _passwordController.text);

103

104

if (!success && messenger.mounted) {

105

messenger.showSnackBar(const SnackBar(

106

content: Text(

107

"Login failed. Please check your login details and try agai\

108

n.",

109

),

110

));

111

}

112

113

if (success && context.mounted) {

114

context.pop();

[image: Image 36]

Storage and HTTP

146

115

}

116

}

117

: null,

118

child: const Text("Log In"),

119

),

120

],

121

),

122

),

123

),

124

);

125

}

126

}

You should recognize the rest of these widgets from previous lessons. Though

you haven’t added any code to show it yet, the overlay looks like this:

Screenshot of the app with an overlay visible over the Flutter Demo Home Page. The overlay has rounded corners and says “Please log in to continue” at the top, with an Email input, a Password input, and a Log In button below. The Email input is highlighted and has “bob@example.com” typed in.

Storage and HTTP

147

Handling authorization failures

You need to show the login overlay whenever you get a 401 Unauthorized response

from the web server. Start by creating a special kind of exception you can catch.

1

 // in http.dart

2

3

class UnauthorizedException implements Exception {}

This exception doesn’t need to do anything; it just needs to exist so you can

listen for it. Create an extension to simplify handling it:

1

 // also in http.dart

2

extension RevExAuthorize<T> on Future<T> Function() {

3

Future<T> authorize(BuildContext context) async {

4

try {

5

return await this();

6

} on UnauthorizedException {

7

if (context.mounted) {

8

await showGeneralDialog(

9

context: context,

10

pageBuilder: (context, _, __) => RevExLoginOverlay(),

11

);

12

}

13

return await this();

14

}

15

}

16

}

showGeneralDialog is a built-in Flutter method that shows a dialog or overlay.

Its pageBuilder parameter expects a callback with three parameters, the first one being a BuildContext. The other two are for animations, like if you want your overlay to slide in and out. In Dart, it’s idiomatic to use underscores _ for arguments you don’t care about.

The RevExAuthorize extension makes it so that instead of calling revExGe-

tUser(), you can call revExGetUser.authorize(context). If the API returns

a 401 Unauthorized response, the extension method will automatically show the

login dialog, and when the dialog closes, it will attempt the API call again and return the results to the caller.

Now in the revExGetUser and revExGetClients methods, before you check

for a 200 status code, you can check for a 401:

Storage and HTTP

148

1

if (response.statusCode == 401) {

2

throw UnauthorizedException();

3

}

4

5

if (response.statusCode != 200) {

6

 // ...

7

}

Finally, in profile.page.dart, modify your Futures to use the authorize()

extension method.

1

 // profile.page.dart

2

3

 // _RevExProfilePageState

4

class _RevExProfilePageState extends State<RevExProfilePage> {

5

late Future<RevExUser> user;

6

7

_RevExProfilePageState();

8

9

@override

10

void initState() {

11

super.initState();

12

user = revExGetUser.authorize(context);

13

}

14

15

...

16

}

17

18

 // _ProfileClientListState

19

class _ProfileClientListState extends State<_ProfileClientList> {

20

late Future<List<RevExClient>> clients;

21

final Map< int, bool> expandedStateByClientId = {};

22

23

@override

24

void initState() {

25

super.initState();

26

clients = (() => revExGetClients(widget.user.clientAccountIds))

27

.authorize(context);

28

}

29

30

...

31

}

Since revExGetClients has parameters, it’s wrapped in an anonymous func-

tion. That way, it can use the authorize() extension method as well.

Now when you visit the Profile page, you’ll see the Login overlay pop up. Enter

the following credentials:

Storage and HTTP

149

Username: jthorms@revenue.example.com

Password: revenue

You can log in, but you still won’t pass the auth check on the request to /user.

That’s because you’re not yet using the cookies sent back by the server.

Managing cookies

Web browsers handle the set-cookie HTTP header automatically, but Flutter

does not. You’ll need to add some code to store any cookies sent by the server

and use them on subsequent HTTP requests.

:::tip

You’ll be using a method from the collection Pub package, so you’ll need to add that to your pubspec file. This is a good package to import for almost any Flutter project, as it provides several useful array extensions.

:::

You can use Shared Preferences to store cookies. Create a new file under

lib/preferences called cookies.dart.

1

import 'dart:io';

2

import 'dart:math';

3

4

import 'package:http/http.dart';

5

import 'package:shared_preferences/shared_preferences.dart';

6

import 'package:collection/collection.dart';

7

8

const COOKIE_PREFIX = 'COOKIE_';

9

const COOKIE_EXPIRY = 'COOKIE-EXPIRY';

10

11

Future<List<Cookie>> revexGetAuthCookies() async {

12

final prefs = await SharedPreferences.getInstance();

13

14

final expiry = prefs.getString(COOKIE_EXPIRY);

15

if (expiry == null || DateTime.parse(expiry).isBefore(DateTime.now())) {

16

await _clearAuthCookies();

17

return [];

18

}

19

20

final storedCookies =

21

prefs.getKeys().where((key) => key.startsWith(COOKIE_PREFIX));

22

23

return storedCookies.map((key) {

24

final cookie = prefs.getString(key) ?? "";

25

return Cookie.fromSetCookieValue(cookie);

Storage and HTTP

150

26

}).toList();

27

}

28

29

Future< void> revexSetAuthCookies(List<Cookie> cookies) async {

30

final prefs = await SharedPreferences.getInstance();

31

32

final maxAge = cookies.map((c) => c.maxAge).whereNotNull().reduce(min); 33

if (maxAge == 0) {

34

await _clearAuthCookies();

35

return;

36

}

37

38

for (var cookie in cookies) {

39

final key = " $COOKIE_PREFIX${cookie.name}"; 40

await prefs.setString(key, cookie.toString());

41

}

42

43

final expiry =

44

DateTime.now().add(Duration(seconds: maxAge)).toIso8601String();

45

await prefs.setString(COOKIE_EXPIRY, expiry);

46

}

47

48

Future< void> _clearAuthCookies() async {

49

final prefs = await SharedPreferences.getInstance();

50

final storedCookies =

51

prefs.getKeys().where((key) => key.startsWith(COOKIE_PREFIX));

52

53

for (var key in storedCookies) {

54

await prefs.remove(key);

55

}

56

}

57

58

extension RevExStoreCookies on Response {

59

Future< void> captureCookies() async {

60

final cookies = headers['set-cookie']

61

?.split(',')

62

.map((val) => Cookie.fromSetCookieValue(val))

63

.toList() ??

64

[];

65

await revexSetAuthCookies(cookies);

66

}

67

}

68

69

extension RevExUseCookies on Map< String, String> {

70

Future<Map< String, String>> withCookies() async {

71

final cookies = await revexGetAuthCookies();

72

final cookieString = cookies.map((c) => " ${c.name}=${c.value}").join("; "); 73

final newHeaders = < String, String>{};

74

newHeaders.addAll(this);

75

newHeaders['Cookie'] = cookieString;

Storage and HTTP

151

76

return newHeaders;

77

}

78

}

The two methods at the top will let you store and retrieve a list of cookies with help from the Cookie class provided by the http package. The two extensions at

the bottom will make it easy to capture and use cookies whenever you make an

HTTP request.

Update auth.http.dart to capture auth cookies on login and logout:

1

 // auth.http.dart

2

Future< bool> revExLogIn(String email, String password) async {

3

final response = await http.post(

4

Uri.http(revexApiUrl, '/auth/login'),

5

headers: revexDefaultHeaders,

6

body: jsonEncode(< String, String>{

7

'email': email,

8

'password': password,

9

}),

10

);

11

12

if (response.statusCode != 200) {

13

return false;

14

}

15

16

await response.captureCookies();

 // <= capture cookies on login

17

return true;

18

}

19

20

Future revExLogOut() async {

21

final response = await http. get(

22

Uri.http(revexApiUrl, '/auth/logout'),

23

headers: await revexDefaultHeaders.withCookies(),

 // <= include cookies on logout re\

24

quest

25

);

26

await response.captureCookies();

 // <= capture cookies on logout

27

}

Now you can use cookies in user.http.dart:

Storage and HTTP

152

1

 // user.http.dart

2

Future<RevExUser> revExGetUser() async {

3

final response = await http. get(

4

Uri.http(

5

revexApiUrl,

6

'/user',

7

),

8

headers: await revexDefaultHeaders.withCookies(),

 // <= include cookies here

9

);

10

11

if (response.statusCode == 401) {

12

throw UnauthorizedException();

13

}

14

15

if (response.statusCode != 200) {

16

throw Exception("Couldn't get user.");

17

}

18

19

final dynamic responseObject = jsonDecode(response.body);

20

return RevExUser.fromMap(responseObject);

21

}

And do the same in client.http.dart:

1

 // client.http.dart

2

Future<List<RevExClient>> revExGetClients(List< int> clientIds) async {

3

final response = await http. get(

4

Uri.http(

5

revexApiUrl,

6

'/client',

7

< String, dynamic>{"clientIds": clientIds.join(',')}, 8

),

9

headers: await revexDefaultHeaders.withCookies(),

 // <= include cookies here

10

);

11

12

if (response.statusCode == 401) {

13

throw UnauthorizedException();

14

}

15

16

if (response.statusCode != 200) {

17

return List.empty();

18

}

19

20

final List< dynamic> responseList = jsonDecode(response.body); 21

return responseList.map((map) => RevExClient.fromMap(map)).toList();

22

}

Now when you visit the Profile page and log in with the overlay, the API requests will succeed, and the page will populate with data.

Storage and HTTP

153

Logging out

Finally you can implement the Log Out button on the Profile page.

1

 // profile.page.dart

2

class _ProfileFixedFooter extends StatelessWidget {

3

@override

4

Widget build(BuildContext context) {

5

return DecoratedBox(

6

decoration: BoxDecoration(

7

boxShadow: [

8

BoxShadow(

9

blurRadius: 5,

10

color: Colors.black.withAlpha(50),

11

offset: const Offset(0, -3),

12

),

13

],

14

color: Colors.white,

15

),

16

child: Padding(

17

padding: const EdgeInsets.all(16),

18

child: Center(

19

child: FilledButton(

20

onPressed: () async {

 // <= This method is implemented now

21

await revExLogOut();

22

23

if (context.mounted) {

24

context.go('/');

25

}

26

},

27

style: ButtonStyle(

28

backgroundColor: MaterialStateProperty.resolveWith(

29

(states) {

30

if (states.contains(MaterialState.pressed)) {

31

return context.theme.danger;

32

}

33

34

return context.theme.secondary;

35

},

36

),

37

),

38

child: const Text("Log Out"),

39

),

40

),

41

),

42

);

43

}

44

}

Storage and HTTP

154

This will call the logout API, invalidating the user’s current session and expiring their cookies. Then context.go('/') will navigate back to the home page.

Further reading

Cookbook: Create and style a text field (docs.flutter.dev)

Cookbook: Make authenticated requests (docs.flutter.dev) Exercises

1. Somewhere in the app, create a button that shows an overlay modal when the

user clicks it. The overlay should list all the cookies currently stored by the

app.

Now that you’re logging in and getting user data from a real server, you can

make that information available throughout the app, wherever you might need it—

you can finally use the state management solution from Module 1. Add provider

to your pubspec dependencies if you haven’t already.

Creating a state object

Create a new file lib/user.state.dart. You need a class that can notify your

widgets when the state changes, like this:

1

import 'package:flutter/material.dart';

2

import 'package:revenue_explorer/http/http.dart';

3

import 'package:revenue_explorer/http/user.http.dart';

4

5

class RevExUserState extends ChangeNotifier {

6

Future<RevExUser>? user;

7

8

Future< void> loadUser(BuildContext context) async {

9

if (user == null) {

10

user = revExGetUser.authorize(context);

11

notifyListeners();

12

}

13

}

14

15

void unloadUser() {

16

user = null;

17

notifyListeners();

Storage and HTTP

155

18

}

19

}

This class does more than it needs to, given the current state of your app. You

could get away without the ChangeNotifier since loadUser will happen when

the page is initializing, giving access to a Future that updates any FutureBuilders automatically, and when you log out, you redirect back to the home page, which

will re-render any widgets that might depend on state. But it’s better to be in the habit of notifying dependent widgets when state changes, whether you do that

with ChangeNotifier, a Stream, or any number of third-party state management

libraries—that way, you can confidently update the state whenever you need to

without worrying about widgets having stale data.

Adding a provider

To make the user state available throughout the app, you can add a provider to your root widget in main.dart:

1

class MyApp extends StatelessWidget {

2

const MyApp({super.key});

3

4

 // This widget is the root of your application.

5

@override

6

Widget build(BuildContext context) {

7

return ChangeNotifierProvider(

 // <= provider added here

8

create: (context) => RevExUserState(),

9

child: ThemeProvider(

10

defaultThemeId: revexLightTheme.appTheme.id,

11

themes: [

12

revexLightTheme.appTheme,

13

AppTheme.dark(),

14

],

15

child: ThemeConsumer(

16

child: Builder(

17

builder: (themeContext) => MaterialApp.router(

18

scrollBehavior:

19

const MaterialScrollBehavior().copyWith(scrollbars: false),

20

debugShowCheckedModeBanner: false,

21

title: 'Flutter Demo',

22

theme: ThemeProvider.themeOf(themeContext).data,

23

routeInformationParser: revexRouter.routeInformationParser,

24

routeInformationProvider: revexRouter.routeInformationProvider,

25

routerDelegate: revexRouter.routerDelegate,

26

),

Storage and HTTP

156

27

),

28

),

29

),

30

);

31

}

32

}

:::tip

All providers are lazy by default: they won’t create any state until it’s consumed.

That means no instance of RevExUserState will exist until the next step, when

you use context.read and the Consumer widget to access it. If you want, you

can easily change this behavior by setting the lazy parameter to false on your

provider constructor.

:::

Consuming state

Add a consumer to RevExProfilePage to listen to the user state:

1

 // profile.page.dart

2

3

class _RevExProfilePageState extends State<RevExProfilePage> {

4

@override

5

void initState() {

6

super.initState();

7

context.read<RevExUserState>().loadUser(context);

 // <= load the user on initialize

8

}

9

10

@override

11

Widget build(BuildContext context) {

12

return RevExScaffold(

13

title: "Profile",

14

body: Center(

15

child: Consumer<RevExUserState>(

 // <= listen to user state

16

builder: (context, state, _) => FutureBuilder(

17

future: state.user,

18

builder: (context, snapshot) {

19

if (snapshot.connectionState == ConnectionState.waiting) {

20

return const CircularProgressIndicator();

21

}

22

23

if (snapshot.hasError) {

24

return const Text('Error: Cannot get user data.');

25

}

26

Storage and HTTP

157

27

final user = snapshot.data;

28

29

return Column(

30

crossAxisAlignment: CrossAxisAlignment.start,

31

children: [

32

Expanded(

33

child: _ProfileContent(user: user),

34

),

35

_ProfileFixedFooter(),

36

],

37

);

38

},

39

),

40

),

41

),

42

);

43

}

44

}

:::info

context.read is a convenience method from the provider package that

allows you to read the state from a provider outside of a widget tree.

:::

Very little needs to change here; you’re still using a Future<RevExUser>, but now it’s coming from a state provider instead of directly from an HTTP method call.

Error: setState() or markNeedsBuild() called during build

If you run the app right now and visit the Profile page, you’ll see an error indicating that you can’t call notifyListeners() while a widget is building. This makes

sense because if a build method calls another method indicating that the widget

needs to be rebuilt, you could get into an infinite re-rendering loop. However, that’s not the case here. The user will only be loaded once, and you only notify listeners if you’re changing the user state from null to a RevExUser or vice versa. To resolve this error, delay the notification slightly:

Storage and HTTP

158

1

 // user.state.dart

2

3

class RevExUserState extends ChangeNotifier {

4

Future<RevExUser>? user;

5

6

Future< void> loadUser(BuildContext context) async {

7

if (user == null) {

8

user = revExGetUser.authorize(context);

9

Future(() => notifyListeners());

 // <= use a Future here

10

}

11

}

12

13

void unloadUser() {

14

user = null;

15

notifyListeners();

16

}

17

}

The Future constructor schedules a task to happen asynchronously, which

ensures it will happen after the widget is done building. You should never do

this without thinking about it—again, you don’t want to end up in an infinite re-

rendering loop—but in this case, where you know it will only happen once, it

shouldn’t cause any problems.

Unloading state on logout

The last thing to do is unload the user state when the user logs out.

1

 // profile.page.dart

2

3

class _ProfileFixedFooter extends StatelessWidget {

4

@override

5

Widget build(BuildContext context) {

6

return DecoratedBox(

7

decoration: BoxDecoration(

8

boxShadow: [

9

BoxShadow(

10

blurRadius: 5,

11

color: Colors.black.withAlpha(50),

12

offset: const Offset(0, -3),

13

),

14

],

15

color: Colors.white,

16

),

17

child: Padding(

Storage and HTTP

159

18

padding: const EdgeInsets.all(16),

19

child: Center(

20

child: FilledButton(

21

onPressed: () async {

22

context.read<RevExUserState>().unloadUser();

 // <= grab the state object \

23

and unload the user

24

await revExLogOut();

25

26

if (context.mounted) {

27

context.go('/');

28

}

29

},

30

style: ButtonStyle(

31

backgroundColor: MaterialStateProperty.resolveWith(

32

(states) {

33

if (states.contains(MaterialState.pressed)) {

34

return context.theme.danger;

35

}

36

37

return context.theme.secondary;

38

},

39

),

40

),

41

child: const Text("Log Out"),

42

),

43

),

44

),

45

);

46

}

47

}

And you’re all set!

The app should function the same as it did before, but now you have a pattern

that allows you to easily access the RevExUser object from any widget that needs

it.

Exercises

1. Add another Provider to MyApp, then a Consumer in one of your app pages to

receive its data. You can use any data you want; a simple String or number will

do. Then refactor, using the MultiProvider widget to put both Providers at the same level of the widget hierarchy.

Tables and Charts

Module 7

You’re probably getting tired of seeing that “counter and button” demo on your

app’s home screen. Good news: it’s finally time to replace it.

In this module, you’ll use everything you’ve learned so far to build the core

functionality of the app: the ability to tabulate, explore, and visualize data.

The Dart server included in this course provides access to data in a transac-

tions table with the following format:

transaction_-purchaser_- purchase_- transaction_-product_-

id

name

date

amount

code

3

Antonio D.

2023-05-

445.96

1286_-

08T09:31:12.783221

mgmt_sft

There are 500 records in this database table. You’ll get them from the endpoint

and display them in a UI table.

Overview page

You’ll need to create a new page. Under lib/pages/, create a file called

overview.page.dart. As a reminder, the file and folder names don’t matter

here; I’m just organizing them in a way that makes sense to me.

Start with a StatelessWidget and convert it to a StatefulWidget, like so:

1

import 'package:flutter/material.dart';

2

3

class RevExOverviewPage extends StatefulWidget {

4

const RevExOverviewPage({super.key});

5

6

@override

7

State<RevExOverviewPage> createState() => _RevExOverviewPageState();

8

}

9

10

class _RevExOverviewPageState extends State<RevExOverviewPage> {

11

@override

12

Widget build(BuildContext context) {

13

return RevExScaffold(

14

title: 'Transactions',

Tables and Charts

161

15

body: const Text('Overview Page')

16

);

17

}

18

}

Now in router.dart, give this a route and make it the default page:

1

import 'package:flutter/material.dart';

2

import 'package:go_router/go_router.dart';

3

import 'package:revenue_explorer/pages/overview.page.dart';

4

import 'package:revenue_explorer/pages/profile.page.dart';

5

6

final revexRouter = GoRouter(routes: <GoRoute>[

7

GoRoute(

8

path: '/',

9

redirect: (_, __) => '/overview',

 // <= change the default route

10

),

11

GoRoute(

 // <= a new route, replacing the Home page

12

path: '/overview',

13

pageBuilder: (context, state) => const MaterialPage(

14

child: RevExOverviewPage(),

15

),

16

),

17

GoRoute(

18

path: '/profile',

19

pageBuilder: (context, state) => const MaterialPage(

20

child: RevExProfilePage(),

21

),

22

),

23

]);

Now that you’re no longer using the MyHomePage widget that flutter create

made for you, you can go to main.dart and delete it from the application

completely. Be careful not to delete the RevExScaffold component; you still need

that one.

Fetching data

You can use the /transaction API endpoint to get a list of transactions. In a real-life app, you might have access to a paginated API or some other way of narrowing down results, but for now, you can use the complete list—500 rows isn’t a lot in

computer terms, as long as you don’t try to render them all on the same screen.

Under lib/http/, create a new file called transaction.http.dart. This will

look a lot like your other HTTP files:

Tables and Charts

162

1

import 'dart:convert';

2

3

import 'package:http/http.dart' as http;

4

import 'package:revenue_explorer/http/http.dart';

5

import 'package:revenue_explorer/preferences/cookies.dart';

6

7

class RevExTransaction {

8

final int id;

9

final String purchaserName;

10

final String purchaseDate;

11

final double amount;

12

final String productCode;

13

14

RevExTransaction({

15

required this.id,

16

required this.purchaserName,

17

required this.purchaseDate,

18

required this.amount,

19

required this.productCode,

20

});

21

22

RevExTransaction.fromMap(Map< String, dynamic> map)

23

: id = map["id"],

24

purchaserName = map["purchaserName"],

25

purchaseDate = map["purchaseDate"],

26

amount = map["amount"],

27

productCode = map["productCode"];

28

}

29

30

Future<List<RevExTransaction>> revExGetTransactions() async {

31

final response = await http. get(

32

Uri.http(revexApiUrl, '/transaction'),

33

headers: await revexDefaultHeaders.withCookies(),

34

);

35

36

if (response.statusCode == 401) {

37

throw UnauthorizedException();

38

}

39

40

if (response.statusCode != 200) {

41

return List.empty();

42

}

43

44

final List< dynamic> responseList = jsonDecode(response.body); 45

return responseList.map((map) => RevExTransaction.fromMap(map)).toList(); 46

}

Now you can fetch transactions and store them in RevExOverviewPage’s state.

You’ll need to borrow the FutureBuilder from RevExProfilePage since you need

Tables and Charts

163

roughly the same behavior while you wait for the API call.

1

import 'package:flutter/material.dart';

2

import 'package:revenue_explorer/http/http.dart';

3

import 'package:revenue_explorer/http/transaction.http.dart';

4

5

class RevExOverviewPage extends StatefulWidget {

6

const RevExOverviewPage({super.key});

7

8

@override

9

State<RevExOverviewPage> createState() => _RevExOverviewPageState();

10

}

11

12

class _RevExOverviewPageState extends State<RevExOverviewPage> {

13

late Future<List<RevExTransaction>> transactions;

14

15

@override

16

void initState() {

17

super.initState();

18

transactions = revExGetTransactions.authorize(context);

19

}

20

21

@override

22

Widget build(BuildContext context) {

23

return RevExScaffold(

24

title: 'Transactions',

25

body: FutureBuilder(

26

future: transactions,

27

builder: (context, snapshot) {

28

if (snapshot.connectionState == ConnectionState.waiting) {

29

return const Center(child: CircularProgressIndicator());

30

}

31

32

if (snapshot.hasError && !snapshot.hasData) {

33

return const Text('Error: Cannot get transaction data.');

34

}

35

36

final transactions = snapshot.data!;

37

return Text(' ${transactions.length} transactions loaded.'); 38

},

39

)

40

);

41

}

42

}

Tables and Charts

164

DataTable and PaginatedDataTable

You’ve used the Table widget in the past to give a consistent layout to rows of information on the Profile page. To show tabular data on this page, you’ll use

the DataTable widget. There are a few differences between them, but the most important ones are:

• DataTable has features to enable sorting by column, while Table does not.

• DataTable has a PaginatedDataTable variant for easy pagination of large datasets.

You can think of Table as a layout widget that’s useful even in situations where the user may not think of something as a table, whereas DataTable is a

presentation widget intended specifically for spreadsheet-like interfaces.

Since you know you’ll have hundreds of rows, you can start with the Paginated-

DataTable variant.

:::info

For extremely large datasets (say, hundreds of thousands of records), it may be

better to paginate on the server instead of the front end. PaginatedDataTable

doesn’t support async callbacks but has conventions to indicate that a row is still loading. If you want something more streamlined, there are Pub packages that provide async functionality for it.

:::

To use DataTable or PaginatedDataTable, you need to create a class that

extends DataTableSource. This class will take your data and provide information about it that the widget knows how to use. You’ll need a DataTableSource

subclass that consumes your transaction data:

1

 // overview.page.dart

2

3

class _TransactionDataSource extends DataTableSource {

4

final List<RevExTransaction> transactions;

5

final columns = const [

6

DataColumn(label: Text("Purchaser")),

7

DataColumn(label: Text("Amount"), numeric: true),

8

DataColumn(label: Text("Date")),

9

DataColumn(label: Text("Product Code")),

10

];

11

12

_TransactionDataSource(this.transactions);

13

14

@override

Tables and Charts

165

15

DataRow? getRow(int index) {

16

final tx = transactions[index];

17

final formattedDate =

18

DateFormat.yMd().format(DateTime.parse(tx.purchaseDate));

19

return DataRow(cells: [

20

DataCell(Text(tx.purchaserName)),

21

DataCell(Text(tx.amount.toString())),

22

DataCell(Text(formattedDate)),

23

DataCell(Text(tx.productCode)),

24

]);

25

}

26

27

@override

28

bool get isRowCountApproximate => false;

29

30

@override

31

int get rowCount => transactions.length;

32

33

@override

34

int get selectedRowCount => 0;

35

}

The DataTableSource needs to provide each row by its index (as an ordered

list of cells), a row count, whether or not the row count is approximate, and the number of selected rows. You won’t allow the user to select rows just yet, so hard-code that one to 0. This is how you’ll implement this class in a widget:

1

 // overview.page.dart

2

3

class _TransactionTable extends StatefulWidget {

4

final List<RevExTransaction> transactions;

5

6

const _TransactionTable(this.transactions);

7

8

@override

9

State<_TransactionTable> createState() => _TransactionTableState();

10

}

11

12

class _TransactionTableState extends State<_TransactionTable> {

13

late _TransactionDataSource tableData;

14

15

@override

16

void initState() {

17

super.initState();

18

tableData = _TransactionDataSource(widget.transactions);

19

}

20

21

@override

Tables and Charts

166

22

Widget build(BuildContext context) {

23

return PaginatedDataTable(columns: tableData.columns, source: tableData); 24

}

25

}

You can see that the table columns are provided separately from the DataTable-

Source, so you don’t have to define them in the same class, but it makes the most sense to keep columns and table cells as close together as possible. If you change one, you’ll most likely need to change the other one, too.

Now if you load up the app, you’ll see a data table listing each transaction. It’s scrollable left and right if all the columns don’t fit on screen, and you can page through the transactions 10 at a time.

:::info

If your PaginatedDataTable overflows the screen on your target device, you

can wrap it in a SingleChildScrollView or a ListView.

:::

Sorting DataTables

Earlier, I mentioned that DataTable had features for sorting by column. To use

those, you need to provide an onSort method for each sortable column and listen

to changes from DataTableSource, which is a subclass of ChangeNotifier.

1

class _TransactionDataSource extends DataTableSource {

2

List<RevExTransaction> transactions;

3

late final List<DataColumn> columns;

4

5

 // Here, you'll track which column is being sorted and in which direction

6

int sortIndex = 2;

7

bool sortAscending = false;

8

9

_TransactionDataSource(this.transactions) {

10

columns = [

11

DataColumn(

12

label: const Text("Purchaser"),

13

onSort:

 // <= each column now provides an onSort method, which makes it tappab\

14

le

15

handleSort((a, b) => a.purchaserName.compareTo(b.purchaserName)),

16

),

17

DataColumn(

18

label: const Text("Amount"),

19

numeric: true,

20

onSort: handleSort((a, b) => Comparable.compare(a.amount, b.amount)),

Tables and Charts

167

21

),

22

DataColumn(

23

label: const Text("Date"),

24

onSort: handleSort((a, b) => a.purchaseDate.compareTo(b.purchaseDate)),

25

),

26

DataColumn(

27

label: const Text("Product Code"),

28

onSort: handleSort((a, b) => a.productCode.compareTo(b.productCode)),

29

),

30

];

31

32

columns[sortIndex].onSort?.call(sortIndex, sortAscending);

33

}

34

35

@override

36

DataRow? getRow(int index) {

37

final tx = transactions[index];

38

final formattedDate =

39

DateFormat.yMd().format(DateTime.parse(tx.purchaseDate));

40

return DataRow(cells: [

41

DataCell(Text(tx.purchaserName)),

42

DataCell(Text(tx.amount.toString())),

43

DataCell(Text(formattedDate)),

44

DataCell(Text(tx.productCode)),

45

]);

46

}

47

48

@override

49

bool get isRowCountApproximate => false;

50

51

Function(int, bool) handleSort(

 // <= this method returns a function to handle sort\

52

ing

53

int Function(RevExTransaction a, RevExTransaction b) compare) {

54

return (ix, ascending) {

55

sortIndex = ix;

56

sortAscending = ascending;

57

58

transactions.sort(compare);

59

if (!ascending) {

60

transactions = transactions.reversed.toList();

61

}

62

notifyListeners();

63

};

64

}

65

66

@override

67

int get rowCount => transactions.length;

68

69

@override

70

int get selectedRowCount => 0;

Tables and Charts

168

71

}

72

73

class _TransactionTable extends StatefulWidget {

74

final List<RevExTransaction> transactions;

75

76

const _TransactionTable(this.transactions);

77

78

@override

79

State<_TransactionTable> createState() => _TransactionTableState();

80

}

81

82

class _TransactionTableState extends State<_TransactionTable> {

83

late _TransactionDataSource tableData;

84

85

@override

86

void initState() {

87

super.initState();

88

tableData = _TransactionDataSource(widget.transactions);

89

tableData.addListener(() => mounted ? setState(() {}) : null);

 // <= re-render whene\

90

ver the DataTableSource updates

91

}

92

93

@override

94

Widget build(BuildContext context) {

95

return PaginatedDataTable(

96

columns: tableData.columns,

97

source: tableData,

98

sortColumnIndex: tableData.sortIndex,

 // <= tell PaginatedDataTable what the cu\

99

rrent sort column is

100

sortAscending: tableData.sortAscending,

 //

 so it can show an indicator in the \

101

header

102

);

103

}

104

}

Now you can sort by any column and in either direction. The sort will apply

across all rows, not just the ones visible on the current page.

Further reading

DataTable (Flutter Widget of the Week) (Flutter on YouTube)

Flutter’s DataTable widget: A guide to displaying data (Shalitha Suranga, blog.logrocket.com)

Tables and Charts

169

Exercises

1. Change the PaginatedDataTable’s default sort direction from descending to

ascending.

2. Change the order of columns in the PaginatedDataTable. (You’ll have to

change this in more than one place.)

You could offer insights about transactions in the database in any number of

ways. First, you’ll allow the user to slice and dice their data by selecting one of the cells in the table:

• If they tap a Purchaser name, you’ll show:

– A line chart tracking what purchasers spend over time

– A pie chart showing the proportion of spend for each product code by

that purchaser

• If they tap a Purchase date, you’ll show:

– A pie chart showing the proportion of spend by each purchaser on that

date

– A pie chart showing the proportion of spend for each product code on

that date

• If they tap a Product code, you’ll show:

– A line chart tracking the purchase of that product over time

– A pie chart showing the proportion of spend on this product by each

purchaser

You could create a separate page for each of these, but you can fairly easily

combine them into one using route parameters.

The page and route

In your lib/pages/ folder, create a new file detail.page.dart that contains a

RevExDetailPage widget with a RevExScaffold in it:

Tables and Charts

170

1

import 'package:flutter/material.dart';

2

import 'package:revenue_explorer/main.dart';

3

4

class RevExDetailPage extends StatefulWidget {

5

const RevExDetailPage({super.key});

6

7

@override

8

State<RevExDetailPage> createState() => _RevExDetailPageState();

9

}

10

11

class _RevExDetailPageState extends State<RevExDetailPage> {

12

@override

13

Widget build(BuildContext context) {

14

return RevExScaffold(

15

title: "Transaction Detail",

16

body: const Text("Details"),

17

);

18

}

19

}

The detail page needs to know two things: which database column (or class field)

to filter on, and which value to filter by. Accept those as String parameters to the widget:

1

import 'package:flutter/material.dart';

2

import 'package:revenue_explorer/main.dart';

3

4

class RevExDetailPage extends StatefulWidget {

5

final String filterColumnName;

 // <= new fields on the class

6

final String filterColumnValue;

7

8

const RevExDetailPage({

9

super.key,

10

required this.filterColumnName,

 // <= provide them through the constructor

11

required this.filterColumnValue,

12

});

13

14

@override

15

State<RevExDetailPage> createState() => _RevExDetailPageState();

16

}

17

18

class _RevExDetailPageState extends State<RevExDetailPage> {

19

@override

20

Widget build(BuildContext context) {

21

return RevExScaffold(

22

title: widget.filterColumnValue,

23

body: Text(

24

"Filtering ${widget.filterColumnName} with value ${widget.filterColumnValue}"),

Tables and Charts

171

25

);

26

}

27

}

:::tip

Although path and query parameters in go_router only accept String values,

you can pass objects and other kinds of values to a route using the extra field.

However, this makes the route inaccessible by deep-link, so if you want the page

to be shareable you should avoid it.

:::

Now define the route in lib/router.dart.

1

import 'package:flutter/material.dart';

2

import 'package:go_router/go_router.dart';

3

import 'package:revenue_explorer/pages/detail.page.dart';

4

import 'package:revenue_explorer/pages/overview.page.dart';

5

import 'package:revenue_explorer/pages/profile.page.dart';

6

7

final revexRouter = GoRouter(routes: <GoRoute>[

8

GoRoute(

9

path: '/',

10

redirect: (_, __) => '/overview',

11

),

12

GoRoute(

13

path: '/overview',

14

pageBuilder: (context, state) => const MaterialPage(

15

child: RevExOverviewPage(),

16

),

17

),

18

GoRoute(

 // <= new route defined here

19

path: '/detail/:columnName/:columnValue',

20

name: 'detail',

21

pageBuilder: (context, state) => MaterialPage(

22

child: RevExDetailPage(

23

filterColumnName: state.params['columnName']!,

24

filterColumnValue: state.params['columnValue']!,

25

),

26

),

27

),

28

GoRoute(

29

path: '/profile',

30

pageBuilder: (context, state) => const MaterialPage(

31

child: RevExProfilePage(),

32

),

33

),

34

]);

Tables and Charts

172

Path parameters in go_router start with a colon and are accessed via

state.params in the pageBuilder. The null assertion on those parameters

could result in an error if you try to visit the route without defining them properly, so you’ll need to watch out for that.

The name field on a GoRoute is optional, but it allows you to use the con-

text.goNamed method to provide a more structured approach to changing routes,

which is nice when you have path parameters like this.

Now, with some updates to RevExOverviewPage, you can provide a way to

navigate to the Detail page whenever a Purchaser, Date, or Product Code cell is

tapped. It may be nice to show an icon on cells that are tappable to clue the user in, so create a widget for that:

1

 // overview.page.dart

2

3

class _TappableCell extends StatelessWidget {

4

final String contents;

5

6

const _TappableCell(this.contents);

7

8

@override

9

Widget build(BuildContext context) {

10

return Row(

11

mainAxisAlignment: MainAxisAlignment.spaceBetween,

12

children: [

13

Padding(

14

padding: const EdgeInsets.only(right: 8),

15

child: Text(contents),

16

),

17

const Icon(Icons.bar_chart),

18

],

19

);

20

}

21

}

Now in _TransactionDataSource.getRow, use this in each tappable cell:

Tables and Charts

173

1

 // overview.page.dart

2

class _TransactionDataSource extends DataTableSource {

3

 // ...

4

5

@override

6

DataRow? getRow(int index) {

7

final tx = transactions[index];

8

final formattedDate =

9

DateFormat.yMd().format(DateTime.parse(tx.purchaseDate));

10

return DataRow(cells: [

11

DataCell(_TappableCell(tx.purchaserName)),

12

DataCell(Text(tx.amount.toString())),

13

DataCell(_TappableCell(formattedDate)),

14

DataCell(_TappableCell(tx.productCode)),

15

]);

16

}

17

18

 // ...

19

}

:::info

You may wonder why you went to the trouble of creating a whole new Stateless-

Widget instead of simply writing a method that returns the widget tree you need,

like so:

1

 // DON'T DO THIS:

2

3

 // overview.page.dart

4

class _TransactionDataSource extends TableDataSource {

5

 // ...

6

7

_tappableCell(String contents) => Row(

8

mainAxisAlignment: MainAxisAlignment.spaceBetween,

9

children: [

10

Padding(

11

padding: const EdgeInsets.only(right: 8),

12

child: Text(contents),

13

),

14

const Icon(Icons.bar_chart),

15

],

16

);

17

18

@override

19

DataRow? getRow(int index) {

20

final tx = transactions[index];

21

final formattedDate =

22

DateFormat.yMd().format(DateTime.parse(tx.purchaseDate));

23

return DataRow(cells: [

Tables and Charts

174

24

DataCell(_tappableCell(tx.purchaserName)),

25

DataCell(Text(tx.amount.toString())),

26

DataCell(_tappableCell(formattedDate)),

27

DataCell(_tappableCell(tx.productCode)),

28

]);

29

}

30

31

 // ...

32

}

The answer is you could. A widget is just a class instance, so it can be returned from a method. And in this case, there wouldn’t be much of a penalty for doing

so. In fact, you could write your whole app using methods that return widget trees, much like a React app built with functional components, instead of writing StatelessWidget and StatefulWidget classes with build methods. But this would

be a very bad habit to get into.

Flutter is packed with optimizations based on the assumption that your app

is a tree of StatelessWidget and StatefulWidget instances. It can re-render things quickly and cheaply because it tracks the parameters and state of each of these and knows which ones to ignore (i.e., there’s no reason they would have changed since the last render).

If you sidestep this by writing your own methods—effectively writing massive

build trees instead of breaking down your UI into smaller Stateless/StatefulWid-

get classes—you’re missing out on a ton of zero-effort performance gains.

:::

Your table cells look tappable now. Make them actually respond to taps:

1

 // overview.page.dart

2

class _TransactionDataSource extends TableDataSource {

3

 // ...

4

5

void _viewDetail(String columnName, String value) {

6

context.goNamed('detail', params: < String, String>{

7

'columnName': columnName,

8

'columnValue': value

9

});

10

}

11

12

@override

13

DataRow? getRow(int index) {

14

final tx = transactions[index];

15

final formattedDate =

16

DateFormat.yMd().format(DateTime.parse(tx.purchaseDate));

17

return DataRow(cells: [

Tables and Charts

175

18

DataCell(

19

_TappableCell(tx.purchaserName),

20

onTap: () => _viewDetail('purchaserName', tx.purchaserName),

21

),

22

DataCell(Text(tx.amount.toString())),

23

DataCell(

24

_TappableCell(formattedDate),

25

onTap: () => _viewDetail('purchaseDate', tx.purchaseDate),

26

),

27

DataCell(

28

_TappableCell(tx.productCode),

29

onTap: () => _viewDetail('productCode', tx.productCode),

30

),

31

]);

32

}

33

34

 // ...

35

}

It would be better if you didn’t have to use magic strings (e.g., 'purchaser-

Name') in this code. Dart doesn’t have string-valued enums, but you can define a

class with static String fields for the same ergonomics:

1

 // detail.page.dart

2

class RevExDetailColumn {

3

static const String purchaserName = 'purchaserName';

4

static const String purchaseDate = 'purchaseDate';

5

static const String productCode = 'productCode';

6

}

Now swap out the strings in _TransactionDataSource.getRow.

1

 // overview.page.dart

2

class _TransactionDataSource extends TableDataSource {

3

 // ...

4

5

@override

6

DataRow? getRow(int index) {

7

final tx = transactions[index];

8

final formattedDate =

9

DateFormat.yMd().format(DateTime.parse(tx.purchaseDate));

10

return DataRow(cells: [

11

DataCell(

12

_TappableCell(tx.purchaserName),

13

onTap: () => _viewDetail(

14

RevExDetailColumn.purchaserName,

Tables and Charts

176

15

tx.purchaserName,

16

),

17

),

18

DataCell(Text(tx.amount.toString())),

19

DataCell(

20

_TappableCell(formattedDate),

21

onTap: () => _viewDetail(

22

RevExDetailColumn.purchaseDate,

23

tx.purchaseDate,

24

),

25

),

26

DataCell(

27

_TappableCell(tx.productCode),

28

onTap: () => _viewDetail(

29

RevExDetailColumn.productCode,

30

tx.productCode,

31

),

32

),

33

]);

34

}

35

36

 // ...

37

}

Now when you tap on a cell, you’ll navigate to the Transaction Detail page and

see a message indicating which column and value you’re filtering on.

There’s one quick issue you should solve: once you’ve navigated to the Detail

page, there’s no easy way to go back to the Overview. You can fix that by using

context.pushNamed instead of context.goNamed in the _viewDetail method:

1

class _TransactionDataSource extends DataTableSource {

2

 // ...

3

4

void _viewDetail(String columnName, String value) {

5

context.pushNamed('detail', params: < String, String>{

6

'columnName': columnName,

7

'columnValue': value

8

});

9

}

10

11

 // ...

12

}

context.go and context.goNamed replace the current Navigator history,

whereas context.push and context.pushNamed add a new entry to it. By

default, Flutter’s AppBar widget recognizes when you’re above the first layer of the Navigator’s history stack and automatically provides a Back button.

Tables and Charts

177

Lifting transactions into state

You’ve got a method for fetching transactions from the API, but if you use it again here, you’ll need to call it every time the user goes back and forth between the

overview and one of the detail pages. That’s a lot of unnecessary API traffic and waiting on the user’s part. Instead, put it in some Provider state, like you did with the RevExUser object.

Create a file lib/transactions.state.dart. You can borrow most of the

code from user.state.dart.

1

import 'package:flutter/material.dart';

2

import 'package:revenue_explorer/http/http.dart';

3

import 'package:revenue_explorer/http/transaction.http.dart';

4

5

class RevExTransactionsState extends ChangeNotifier {

6

Future<List<RevExTransaction>>? transactions;

7

8

Future< void> loadTransactions(

9

BuildContext context, {

10

bool forceRefresh = false,

11

}) async {

12

if (transactions == null || forceRefresh) {

13

transactions = revExGetTransactions.authorize(context);

14

Future(() => notifyListeners());

15

}

16

}

17

}

Now make it available to your app at the root widget in main.dart:

1

class MyApp extends StatelessWidget {

2

const MyApp({super.key});

3

4

 // This widget is the root of your application.

5

@override

6

Widget build(BuildContext context) {

7

return ChangeNotifierProvider(

8

create: (context) => RevExUserState(),

9

child: ChangeNotifierProvider(

 // <= new provider

10

create: (context) => RevExTransactionsState(),

11

child: ThemeProvider(

12

defaultThemeId: revexLightTheme.appTheme.id,

13

themes: [

14

revexLightTheme.appTheme,

15

AppTheme.dark(),

Tables and Charts

178

16

],

17

child: ThemeConsumer(

18

child: Builder(

19

builder: (themeContext) => MaterialApp.router(

20

scrollBehavior:

21

const MaterialScrollBehavior().copyWith(scrollbars: false),

22

debugShowCheckedModeBanner: false,

23

title: 'Revenue Explorer',

24

theme: ThemeProvider.themeOf(themeContext).data,

25

routeInformationParser: revexRouter.routeInformationParser,

26

routeInformationProvider: revexRouter.routeInformationProvider,

27

routerDelegate: revexRouter.routerDelegate,

28

),

29

),

30

),

31

),

32

),

33

);

34

}

35

}

If you’re an experienced programmer, you may feel some discomfort at having

nested ChangeNotifierProviders like this. Wouldn’t that get out of hand pretty

quickly? Yes, it would. Luckily the provider package has an easy way to combine them: the MultiProvider widget.

1

class MyApp extends StatelessWidget {

2

const MyApp({super.key});

3

4

 // This widget is the root of your application.

5

@override

6

Widget build(BuildContext context) {

7

return MultiProvider(

 // <= use MultiProvider widget

8

providers: [

9

ChangeNotifierProvider(create: (context) => RevExUserState()),

10

ChangeNotifierProvider(create: (context) => RevExTransactionsState())

11

],

12

child: ThemeProvider(

13

defaultThemeId: revexLightTheme.appTheme.id,

14

themes: [

15

revexLightTheme.appTheme,

16

AppTheme.dark(),

17

],

18

child: ThemeConsumer(

19

child: Builder(

20

builder: (themeContext) => MaterialApp.router(

21

scrollBehavior:

22

const MaterialScrollBehavior().copyWith(scrollbars: false),

Tables and Charts

179

23

debugShowCheckedModeBanner: false,

24

title: 'Revenue Explorer',

25

theme: ThemeProvider.themeOf(themeContext).data,

26

routeInformationParser: revexRouter.routeInformationParser,

27

routeInformationProvider: revexRouter.routeInformationProvider,

28

routerDelegate: revexRouter.routerDelegate,

29

),

30

),

31

),

32

),

33

);

34

}

35

}

Now you can provide as many different pieces of state as needed without

increasing the nesting level each time.

If the app database had row-level security, you’d also need to think about how

to change out the list of transactions when the user changes. But since it doesn’t, I’ll leave that one as an exercise to the reader. (Psst: you could use a ProxyProvider.) To use this new piece of state, you’ll need to add a method call and a Consumer

to overview.page.dart and detail.page.dart, both of which you can easily

copy over from profile.page.dart.

1

 // overview.page.dart

2

class _RevExOverviewPageState extends State<RevExOverviewPage> {

3

@override

4

void initState() {

5

super.initState();

6

context.read<RevExTransactionsState>().loadTransactions(context);

 // <= load transac\

7

tions

8

}

9

10

@override

11

Widget build(BuildContext context) {

12

return RevExScaffold(

13

title: 'Transactions',

14

body: Consumer<RevExTransactionsState>(builder: (context, state, _) {

 // <= consum\

15

e transactions

16

return FutureBuilder(

17

future: state.transactions,

18

builder: (context, snapshot) {

19

if (snapshot.connectionState == ConnectionState.waiting) {

20

return const Center(child: CircularProgressIndicator());

21

}

22

23

if (snapshot.hasError && !snapshot.hasData) {

Tables and Charts

180

24

return const Text('Error: Cannot get transaction data.');

25

}

26

27

final transactions = snapshot.data!;

28

return _TransactionTable(transactions);

29

},

30

);

31

}),

32

);

33

}

34

}

1

 // detail.page.dart

2

class _RevExDetailPageState extends State<RevExDetailPage> {

3

@override

4

void initState() {

5

super.initState();

6

context.read<RevExTransactionsState>().loadTransactions(context);

 // <= load transac\

7

tions

8

}

9

10

@override

11

Widget build(BuildContext context) {

12

return RevExScaffold(

13

title: widget.filterColumnValue,

14

body: Consumer<RevExTransactionsState>(

 // <= consume transactions

15

builder: (context, state, _) {

16

return FutureBuilder(

17

future: state.transactions,

18

builder: (context, snapshot) {

19

if (snapshot.connectionState == ConnectionState.waiting) {

20

return const Center(child: CircularProgressIndicator());

21

}

22

23

if (snapshot.hasError && !snapshot.hasData) {

24

return const Text('Error: Cannot get transaction data.');

25

}

26

27

final transactions = snapshot.data!;

28

return Text(

29

"Filtering ${widget.filterColumnName} with value ${widget.filterColumnV\ 30

alue}");

31

}

32

);

33

}

34

),

35

);

36

}

37

}

Tables and Charts

181

Filtering transactions

The Detail page should have everything it needs now: a list of transactions, a column name it should filter on, and the value to filter by. All that’s left is to filter down the transactions and display some visualizations. Filtering them is pretty standard array stuff:

1

class _RevExDetailPageState extends State<RevExDetailPage> {

2

@override

3

void initState() {

4

super.initState();

5

context.read<RevExTransactionsState>().loadTransactions(context);

6

}

7

8

@override

9

Widget build(BuildContext context) {

10

return RevExScaffold(

11

title: widget.filterColumValue,

12

body: Consumer<RevExTransactionsState>(builder: (context, state, _) {

13

return FutureBuilder(

14

future: state.transactions,

15

builder: (context, snapshot) {

16

if (snapshot.connectionState == ConnectionState.waiting) {

17

return const Center(child: CircularProgressIndicator());

18

}

19

20

if (snapshot.hasError && !snapshot.hasData) {

21

return const Text('Error: Cannot get transaction data.');

22

}

23

24

final transactions = snapshot.data!;

25

final filtered = _filterTransactions(

26

transactions,

27

onColumn: widget.filterColumnName,

28

byValue: widget.filterColumnValue,

29

);

30

return Text(

31

"Filtering ${widget.filterColumnName} with value ${widget.filterColumnV\ 32

alue}");

33

});

34

}),

35

);

36

}

37

38

List<RevExTransaction> _filterTransactions(

 // <= new filtering method

39

List<RevExTransaction> transactions, {

40

required String onColumn,

41

required String byValue,

Tables and Charts

182

42

}) {

43

switch (onColumn) {

44

case RevExDetailColumn.purchaserName:

45

return transactions.where((tx) => tx.purchaserName == byValue).toList(); 46

case RevExDetailColumn.purchaseDate:

47

String dateOnly(String dateString) =>

48

DateFormat.yMd().format(DateTime.parse(dateString));

49

return transactions

50

.where((tx) => dateOnly(tx.purchaseDate) == dateOnly(byValue))

51

.toList();

52

case RevExDetailColumn.productCode:

53

return transactions.where((tx) => tx.productCode == byValue).toList();

54

}

55

56

return transactions;

57

}

58

}

If none of the case statements in the switch block match, you’ll return the full

list of transactions. This is just to satisfy the type checker. You’ll build some error UI for that in a moment.

fl_chart

There are a few popular charting libraries for Flutter. For this project, you’ll use fl_chart, which has that magical combination of a verified uploader, top-percentile popularity, and a permissive license. Go ahead and add fl_chart to

your pubspec.yaml.

fl_chart is a widget library, so there’s no further setup needed.

Line chart

The first chart you need is a line chart showing purchase amounts over time for

a given set of transactions. Let’s put this in its own file as lib/charts/transac-tions_over_time.dart. Use the LineChart widget from fl_chart:

Tables and Charts

183

1

import 'package:collection/collection.dart';

2

import 'package:fl_chart/fl_chart.dart';

3

import 'package:flutter/material.dart';

4

import 'package:intl/intl.dart';

5

import 'package:revenue_explorer/http/transaction.http.dart';

6

7

class RevExTransactionsOverTimeChart extends StatelessWidget {

8

final List<RevExTransaction> transactions;

9

10

const RevExTransactionsOverTimeChart(this.transactions, {super.key}); 11

12

@override

13

Widget build(BuildContext context) {

14

final amountsByDate = transactions

15

.groupListsBy(

16

(tx) => DateFormat.yMd().format(DateTime.parse(tx.purchaseDate)),

17

)

18

.map(

19

(key, value) => MapEntry< String, double>(

20

key,

21

value.fold(0, (previous, tx) => previous + tx.amount),

22

),

23

);

24

final orderedDates =

25

transactions.map((tx) => DateTime.parse(tx.purchaseDate)).sorted();

26

final allDates = List.generate(

27

orderedDates.last.difference(orderedDates.first).inDays + 1,

28

(index) => orderedDates.first.add(Duration(days: index)),

29

).map((dateTime) => DateFormat.yMd().format(dateTime)).toList();

30

31

return Padding(

32

padding: const EdgeInsets.only(top: 8),

33

child: LineChart(

34

LineChartData(

35

backgroundColor: Colors.transparent,

36

lineBarsData: [

37

LineChartBarData(

38

spots: allDates

39

.mapIndexed(

40

(index, date) =>

41

FlSpot(index.toDouble(), amountsByDate[date] ?? 0),

42

)

43

.toList(),

44

)

45

],

46

lineTouchData: LineTouchData(

47

touchTooltipData: LineTouchTooltipData(

48

getTooltipItems: (dataPoints) {

49

return dataPoints.map((point) {

50

return LineTooltipItem("", const TextStyle(), children: [

Tables and Charts

184

51

TextSpan(text: allDates[point.x.toInt()]),

52

const TextSpan(text: ' \n'),

53

TextSpan(

54

text: NumberFormat.simpleCurrency().format(point.y)),

55

]);

56

}).toList();

57

},

58

tooltipBgColor: Colors.white,

59

),

60

),

61

minY: 0,

62

titlesData: FlTitlesData(

63

bottomTitles: AxisTitles(

64

sideTitles: SideTitles(

65

getTitlesWidget: (value, meta) {

66

return Padding(

67

padding: const EdgeInsets.only(top: 6),

68

child: Text(allDates[value.toInt()]),

69

);

70

},

71

interval: allDates.length / 3,

72

showTitles: true,

73

),

74

),

75

topTitles: AxisTitles(

76

axisNameWidget: const Text("Transaction volume over time"),

77

axisNameSize: 48,

78

sideTitles: SideTitles(

79

showTitles: false,

80

),

81

),

82

),

83

),

84

),

85

);

86

}

87

}

This code starts by grouping and summing transactions by date. Then, it sorts

them, generates a list of dates (including any that don’t have transactions), and uses them as data points to configure the chart. The fl_chart package has an extensive API with lots of configuration options, so you’re welcome to take a break here and play with them.

Tables and Charts

185

Pie chart (purchasers)

Next, you need a pie chart showing the proportion of spend by each purchaser for a set of transactions. Create a file lib/charts/share_by_purchaser.dart. You’ll

use fl_chart’s PieChart widget.

1

import 'package:collection/collection.dart';

2

import 'package:fl_chart/fl_chart.dart';

3

import 'package:flutter/material.dart';

4

import 'package:intl/intl.dart';

5

6

import '../http/transaction.http.dart';

7

8

class RevExShareByPurchaserChart extends StatelessWidget {

9

final List<RevExTransaction> transactions;

10

11

const RevExShareByPurchaserChart(this.transactions, {super.key}); 12

13

@override

14

Widget build(BuildContext context) {

15

final amountsByPurchaser = transactions

16

.groupListsBy((tx) => tx.purchaserName)

17

.map((key, value) => MapEntry< String, double>(

18

key, value.fold(0, (previous, tx) => previous + tx.amount)));

19

final orderedPurchasers = amountsByPurchaser.entries

20

.sortedBy< num>((entry) => entry.value)

21

.reversed;

22

23

return Column(

24

children: [

25

const Padding(

26

padding: EdgeInsets.only(bottom: 12),

27

child: Text("Transaction volume by purchaser"),

28

),

29

Expanded(

30

child: PieChart(

31

PieChartData(

32

borderData: FlBorderData(

33

show: false,

34

),

35

sections: orderedPurchasers

36

.map(

37

(entry) => PieChartSectionData(

38

value: entry.value,

39

title:

40

' ${entry.key}\n${NumberFormat.compactSimpleCurrency().format(en\

41

try.value)}',

42

titleStyle: const TextStyle(fontWeight: FontWeight.bold),

Tables and Charts

186

43

),

44

)

45

.toList(),

46

startDegreeOffset: -90,

47

),

48

),

49

),

50

],

51

);

52

}

53

}

This one’s quite a bit easier. You don’t have to strip any DateTimes down to just the date, and PieChart isn’t quite as complex as LineChart. But again, there are

more configuration options you can try out if you want.

Pie chart (products)

This pie chart will be nearly identical to the previous one. In fact, you could probably combine them if you wanted. But for now, copy it into lib/charts/share_by_-product.dart and make a few tweaks.

1

import 'package:collection/collection.dart';

2

import 'package:fl_chart/fl_chart.dart';

3

import 'package:flutter/material.dart';

4

import 'package:intl/intl.dart';

5

6

import '../http/transaction.http.dart';

7

8

class RevExShareByProductChart extends StatelessWidget {

9

final List<RevExTransaction> transactions;

10

11

const RevExShareByProductChart(this.transactions, {super.key}); 12

13

@override

14

Widget build(BuildContext context) {

15

final amountsByProduct = transactions

16

.groupListsBy((tx) => tx.productCode)

17

.map((key, value) => MapEntry< String, double>(

18

key, value.fold(0, (previous, tx) => previous + tx.amount)));

19

final orderedProducts =

20

amountsByProduct.entries.sortedBy< num>((entry) => entry.value).reversed; 21

22

return Column(

23

children: [

Tables and Charts

187

24

const Padding(

25

padding: EdgeInsets.only(bottom: 12),

26

child: Text("Transaction volume by product code"),

27

),

28

Expanded(

29

child: PieChart(

30

PieChartData(

31

borderData: FlBorderData(

32

show: false,

33

),

34

sections: orderedProducts

35

.map(

36

(entry) => PieChartSectionData(

37

value: entry.value,

38

title:

39

' ${entry.key}\n${NumberFormat.compactSimpleCurrency().format(en\

40

try.value)}',

41

titleStyle: const TextStyle(fontWeight: FontWeight.bold),

42

),

43

)

44

.toList(),

45

startDegreeOffset: -90,

46

),

47

),

48

),

49

],

50

);

51

}

52

}

Showing the right charts

Now, update the Detail page to show the right charts for the cell you clicked on.

Tables and Charts

188

1

 // detail.page.dart

2

class _RevExDetailPageState extends State<RevExDetailPage> {

3

 // ...

4

5

@override

6

Widget build(BuildContext context) {

7

return RevExScaffold(

8

title: widget.filterColumnName == RevExDetailColumn.purchaseDate

9

? DateFormat.yMd().format(DateTime.parse(widget.filterColumnValue))

10

: widget.filterColumnValue,

11

body: Consumer<RevExTransactionsState>(builder: (context, state, _) {

12

return FutureBuilder(

13

future: state.transactions,

14

builder: (context, snapshot) {

15

if (snapshot.connectionState == ConnectionState.waiting) {

16

return const Center(child: CircularProgressIndicator());

17

}

18

19

if (snapshot.hasError && !snapshot.hasData) {

20

return const Text('Error: Cannot get transaction data.');

21

}

22

23

final transactions = snapshot.data!;

24

final filtered = _filterTransactions(

25

transactions,

26

onColumn: widget.filterColumnName,

27

byValue: widget.filterColumnValue,

28

);

29

30

final List<Widget> chartsToShow = {

31

RevExDetailColumn.purchaserName: <Widget>[

32

RevExTransactionsOverTimeChart(filtered),

33

RevExShareByProductChart(transactions),

34

],

35

RevExDetailColumn.purchaseDate: <Widget>[

36

RevExShareByPurchaserChart(transactions),

37

RevExShareByProductChart(transactions),

38

],

39

RevExDetailColumn.productCode: <Widget>[

40

RevExTransactionsOverTimeChart(transactions),

41

RevExShareByPurchaserChart(transactions),

42

]

43

}[widget.filterColumnName] ??

44

const [SizedBox.shrink(), SizedBox.shrink()];

45

46

return Column(

47

children: [

48

Expanded(

49

child: Padding(

50

padding: const EdgeInsets.all(8),

Tables and Charts

189

51

child: chartsToShow.first,

52

),

53

),

54

const Divider(),

55

Expanded(

56

child: Padding(

57

padding: const EdgeInsets.all(8),

58

child: chartsToShow.last,

59

),

60

),

61

const Padding(

62

padding: EdgeInsets.only(bottom: 24),

63

),

64

],

65

);

66

});

67

}),

68

);

69

}

70

71

 // ...

72

}

Now, whatever field you click in a row, you’ll get a chart filtering by that value and breaking down the other two chartable fields. The user can slice and dice the data dynamically. And, as you’ll come to expect with Flutter, there’s no visible delay while the app churns through hundreds of transactions and renders responsive

charts, even in debug mode.

Further reading

FL Chart Documentation (github.com)

Build beautiful charts in Flutter with FL Chart (Bhavya Mishra, blog.logrocket.com)

Exercises

1. Change the pie chart you built in this lesson to a bar chart (fl_chart has a

BarChart widget for this).

Animations

Module 8

It’s time for a few finishing touches. Animations can make your user interface

look more professional and alive. There are many different ways to implement

animations and transitions—the Flutter documentation has a flowchart to help you choose—but this module will cover a couple of the most common ones, including a

custom frame-by-frame animation. You’ll also learn how to draw something to the

screen manually, for those rare cases where you can’t find a built-in widget or Pub package that does what you want.

For the most common types of animations, like fading between two widgets or

changing the style of text, Flutter has built-in widgets you can use.

AnimatedSwitcher

You have three FutureBuilders in your app, and they’re mostly identical. It would be nice to create a widget to unify them and, in the process, add a fade transition between the different states they can be in: loading, error, and content.

To start, create a new file at lib/widgets/future_handler.dart and

add a widget to it. You can copy any of your FutureBuilders. This one is from

overview.page.dart:

1

import 'package:flutter/material.dart';

2

3

class RevExFutureHandler extends StatelessWidget {

4

const RevExFutureHandler({super.key});

5

6

@override

7

Widget build(BuildContext context) {

8

return FutureBuilder(

9

future: state.transactions,

10

builder: (context, snapshot) {

11

if (snapshot.connectionState == ConnectionState.waiting) {

12

return const Center(child: CircularProgressIndicator());

13

}

14

15

if (snapshot.hasError && !snapshot.hasData) {

Animations

191

16

return const Text('Error: Cannot get transaction data.');

17

}

18

19

final transactions = snapshot.data!;

20

return _TransactionTable(transactions);

21

},

22

);

23

}

24

}

You should have some red underlines in your editor since state.transactions

and _TransactionTable aren’t in scope here. Both of those should be passed

to the widget, and you should also pass in the error message since that will differ between the three use cases.

1

 // future_handler.dart

2

import 'package:flutter/material.dart';

3

4

class RevExFutureHandler<T> extends StatelessWidget {

5

final Future<T> future;

6

final String errorText;

7

final Widget Function(BuildContext, T) childBuilder;

8

9

const RevExFutureHandler({

10

super.key,

11

required this.future,

12

required this.errorText,

13

required this.childBuilder,

14

});

15

16

@override

17

Widget build(BuildContext context) {

18

return FutureBuilder(

19

future: future,

20

builder: (context, snapshot) {

21

if (snapshot.connectionState == ConnectionState.waiting) {

22

return const Center(child: CircularProgressIndicator());

23

}

24

25

final data = snapshot.data;

26

if (snapshot.hasError || data == null) {

27

return Text(errorText);

28

}

29

30

return childBuilder(context, data);

31

},

32

);

Animations

192

33

}

34

}

This code has a type parameter <T> so type information about the Future you’re waiting for can propagate down through the childBuilder. Now you can use this

widget in place of your existing FutureBuilders:

1

 // overview.page.dart

2

class _RevExOverviewPageState extends State<RevExOverviewPage> {

3

@override

4

void initState() {

5

super.initState();

6

context.read<RevExTransactionsState>().loadTransactions(context);

7

}

8

9

@override

10

Widget build(BuildContext context) {

11

return RevExScaffold(

12

title: 'Transactions',

13

body: Consumer<RevExTransactionsState>(builder: (context, state, _) {

14

return RevExFutureHandler<List<RevExTransaction>>(

15

future: state.transactions,

16

errorText: 'Error: Cannot get transaction data.',

17

childBuilder: (_, transactions) => _TransactionTable(transactions),

18

);

19

}),

20

);

21

}

22

}

1

 // profile.page.dart

2

class _ProfileClientListState extends State<_ProfileClientList> {

3

 // ...

4

@override

5

Widget build(BuildContext context) {

6

return RevExFutureHandler(

7

future: clients,

8

errorText: 'Error: Cannot get client data.',

9

childBuilder: (_, clients) {

10

return ConstrainedBox(

11

 // ...

12

}

Animations

193

1

 // detail.page.dart

2

class _RevExDetailPageState extends State<RevExDetailPage> {

3

 // ...

4

@override

5

Widget build(BuildContext context) {

6

return RevExScaffold(

7

title: widget.filterColumnName == RevExDetailColumn.purchaseDate

8

? DateFormat.yMd().format(DateTime.parse(widget.filterColumnValue))

9

: widget.filterColumnValue,

10

body: Consumer<RevExTransactionsState>(builder: (context, state, _) {

11

return RevExFutureHandler(

12

future: state.transactions,

13

errorText: 'Error: Cannot get transaction data.',

14

childBuilder: (_, transactions) {

15

final filtered = _filterTransactions(

16

 // ...

17

}

Everything works the same as it did before, just with less duplicated code. Now

add a transition between states using the AnimatedSwitcher widget: 1

 // future_handler.dart

2

class RevExFutureHandler<T> extends StatelessWidget {

3

final Future<T>? future;

4

final String errorText;

5

final Widget Function(BuildContext, T) childBuilder;

6

7

const RevExFutureHandler({

8

super.key,

9

required this.future,

10

required this.errorText,

11

required this.childBuilder,

12

});

13

14

@override

15

Widget build(BuildContext context) {

16

return FutureBuilder(

17

future: future,

18

builder: (context, snapshot) {

19

widgetToShow() {

20

if (snapshot.connectionState == ConnectionState.waiting) {

21

return const Center(child: CircularProgressIndicator());

22

}

23

24

final data = snapshot.data;

25

if (snapshot.hasError || data == null) {

26

return Text(errorText);

27

}

Animations

194

28

29

return childBuilder(context, data);

30

}

31

32

return AnimatedSwitcher(

33

duration: const Duration(milliseconds: 500),

34

switchInCurve: Curves.easeOut,

35

switchOutCurve: Curves.easeOut,

36

child: widgetToShow(),

37

);

38

},

39

);

40

}

41

}

Whenever AnimatedSwitcher detects that its child has changed, it fades the old

child out and the new child in. switchInCurve and switchOutCurve are optional,

but I prefer an easing curve over the default linear transition. And if you don’t like the default fading transition, there are other types you can use via the transition-Builder parameter—for example, you could use the ScaleTransition widget to create a shrink-out/grow-in effect or create your own custom transition with

AnimatedBuilder.

For now, reload the app and you should see that when the HTTP call finishes

and the data is ready, there’s a smooth half-second fade from the loading spinner to the data table.

AnimatedDefaultTextStyle

The next thing to do is bold the text of whatever column is being sorted in the

Overview table. Start by creating a widget to express that logic for the column

headers:

Animations

195

1

 // overview.page.dart

2

class _TappableHeader extends StatelessWidget {

3

final String headerText;

4

final bool isSorting;

5

6

const _TappableHeader(

7

this.headerText, {

8

required this.isSorting,

9

});

10

11

@override

12

Widget build(BuildContext context) {

13

return Padding(

14

padding: const EdgeInsets.symmetric(horizontal: 6),

15

child: AnimatedDefaultTextStyle(

16

duration: const Duration(milliseconds: 200),

17

style: TextStyle(

18

color: Colors.black,

19

fontWeight: isSorting ? FontWeight.bold : FontWeight.normal,

20

),

21

child: Text(headerText),

22

),

23

);

24

}

25

}

The AnimatedDefaultTextStyle widget animates the default TextStyle of any descendant Text widgets. Since the Text widget you’re using here doesn’t

have its own TextStyle, it will fall back to whatever you pass to AnimatedDefaultTextStyle.

You’ll notice if you update the columns field assignment in the _Transaction-

DataSource constructor that the columns don’t animate yet. That’s because the

constructor only runs once; it’s not a Flutter widget, so it won’t re-construct itself when it needs to re-render. The state of each column is, therefore, “stuck” after the first render. To solve that problem, you can implement the columns as a method

instead of a field.

Animations

196

1

 // overview.page.dart

2

class _TransactionDataSource extends DataTableSource {

3

final BuildContext context;

4

List<RevExTransaction> transactions;

5

int sortIndex = 2;

6

bool sortAscending = false;

7

8

_TransactionDataSource(this.transactions, this.context) {

9

getColumns()[sortIndex].onSort?.call(sortIndex, sortAscending);

10

}

11

12

void _viewDetail(String columnName, String value) {

13

context.pushNamed('detail', params: < String, String>{

14

'columnName': columnName,

15

'columnValue': value

16

});

17

}

18

19

List<DataColumn> getColumns() {

20

return [

21

DataColumn(

22

label: _TappableHeader(

23

"Purchaser",

24

isSorting: sortIndex == 0,

25

),

26

onSort:

27

handleSort((a, b) => a.purchaserName.compareTo(b.purchaserName)),

28

),

29

DataColumn(

30

label: _TappableHeader(

31

"Amount",

32

isSorting: sortIndex == 1,

33

),

34

numeric: true,

35

onSort: handleSort((a, b) => Comparable.compare(a.amount, b.amount)),

36

),

37

DataColumn(

38

label: _TappableHeader(

39

"Date",

40

isSorting: sortIndex == 2,

41

),

42

onSort: handleSort((a, b) => a.purchaseDate.compareTo(b.purchaseDate)),

43

),

44

DataColumn(

45

label: _TappableHeader(

46

"Product Code",

47

isSorting: sortIndex == 3,

48

),

49

onSort: handleSort((a, b) => a.productCode.compareTo(b.productCode)),

50

),

Animations

197

51

];

52

}

53

54

 // ...

55

}

Now you can update _TransactionTableState to get new columns whenever

it re-renders:

1

 // overview.page.dart

2

class _TransactionTableState extends State<_TransactionTable> {

3

late _TransactionDataSource tableData;

4

5

@override

6

void initState() {

7

super.initState();

8

tableData = _TransactionDataSource(widget.transactions, context);

9

tableData.addListener(() => mounted ? setState(() {}) : null);

10

}

11

12

@override

13

Widget build(BuildContext context) {

14

return PaginatedDataTable(

15

columns: tableData.getColumns(),

16

source: tableData,

17

sortColumnIndex: tableData.sortIndex,

18

sortAscending: tableData.sortAscending,

19

);

20

}

21

}

This takes care of animating the column headers. Update _TappableCell so

the table body cells will animate too.

Animations

198

1

 // overview.page.dart

2

class _TappableCell extends StatelessWidget {

3

final String contents;

4

final bool isTappable;

5

final bool isSorting;

6

7

const _TappableCell(this.contents,

8

{this.isTappable = true, required this.isSorting});

9

10

@override

11

Widget build(BuildContext context) {

12

return Row(

13

mainAxisAlignment: MainAxisAlignment.spaceBetween,

14

mainAxisSize: isTappable ? MainAxisSize.max : MainAxisSize.min,

15

children: [

16

Padding(

17

padding: const EdgeInsets.only(right: 8),

18

child: AnimatedDefaultTextStyle(

19

duration: const Duration(milliseconds: 200),

20

style: TextStyle(

21

color: Colors.black,

22

fontWeight: isSorting ? FontWeight.bold : FontWeight.normal,

23

),

24

child: Text(contents),

25

),

26

),

27

if (isTappable) const Icon(Icons.bar_chart),

28

],

29

);

30

}

31

}

Since the “Amount” cells are sortable but not tappable, I’ve added an isTap-

pable parameter to handle the visual differences between them, along with the

isSorting parameter to bold the text when a column is sorted. Now you need to

update the getRow method in _TransactionDataSource:

Animations

199

1

 // overview.page.dart

2

@override

3

DataRow? getRow(int index) {

4

final tx = transactions[index];

5

final formattedDate =

6

DateFormat.yMd().format(DateTime.parse(tx.purchaseDate));

7

return DataRow(cells: [

8

DataCell(

9

_TappableCell(

10

tx.purchaserName,

11

isSorting: sortIndex == 0,

12

),

13

onTap: () => _viewDetail(

14

RevExDetailColumn.purchaserName,

15

tx.purchaserName,

16

),

17

),

18

DataCell(_TappableCell(

19

tx.amount.toString(),

20

isTappable: false,

21

isSorting: sortIndex == 1,

22

)),

23

DataCell(

24

_TappableCell(

25

formattedDate,

26

isSorting: sortIndex == 2,

27

),

28

onTap: () => _viewDetail(

29

RevExDetailColumn.purchaseDate,

30

tx.purchaseDate,

31

),

32

),

33

DataCell(

34

_TappableCell(

35

tx.productCode,

36

isSorting: sortIndex == 3,

37

),

38

onTap: () => _viewDetail(

39

RevExDetailColumn.productCode,

40

tx.productCode,

41

),

42

),

43

]);

44

}

Now the header cell and all body cells smoothly animate to bold when a column

is sorted.

Animations

200

Other animations and transitions

Flutter has several other widgets that make it simple to animate alignment, opacity,

or size, create sliding or rotating transitions, and more. If you’re looking to animate something simple—the kind of thing you’d do with a CSS transition property on

the web—there’s probably a built-in widget ready to use.

Further reading

Introduction to animations (docs.flutter.dev)

Animation and motion widgets (docs.flutter.dev) Exercises

1. Animate the column headers in the table so they turn upside down when you

sort descending.

Flutter has a heap of off-the-shelf widgets that render almost any UI you could

ever need in a line-of-business app. But for those rare cases where nothing seems to fit, you have the option of painting something to the screen manually. If you’ve ever written SVG paths by hand, this process will be familiar to you.

Preparing for a new sort icon

One feature that’s missing from PaginatedDataTable is the ability to customize the sort icon. There’s an issue filed in GitHub for that functionality, but it’s been waiting in the backlog for a couple of years now. Someday, someone will contribute a PR

that fixes it. But for now, you can use a workaround.

You can start by removing the sortColumnIndex and sortAscending param-

eters from your PaginatedDataTable parameters:

Animations

201

1

 // overview.page.dart

2

class _TransactionTableState extends State<_TransactionTable> {

3

late _TransactionDataSource tableData;

4

5

@override

6

void initState() {

7

super.initState();

8

tableData = _TransactionDataSource(widget.transactions, context);

9

tableData.addListener(() => mounted ? setState(() {}) : null);

10

}

11

12

@override

13

Widget build(BuildContext context) {

14

return PaginatedDataTable(

15

columns: tableData.getColumns(),

16

source: tableData,

17

);

18

}

19

}

This prevents the sort icon from showing, but now the table won’t switch

between ascending and descending sort when you tap a column header more than

once. You can fix that with a bit of extra logic in the handleSort method:

1

 // overview.page.dart

2

class _TransactionDataSource extends DataTableSource {

3

 // ...

4

Function(int, bool) handleSort(

5

int Function(RevExTransaction a, RevExTransaction b) compare) {

6

return (ix, ascending) {

7

if (ix == sortIndex) {

8

sortAscending = !sortAscending;

9

} else {

10

sortAscending = ascending;

11

}

12

13

sortIndex = ix;

14

15

transactions.sort(compare);

16

if (!sortAscending) {

17

transactions = transactions.reversed.toList();

18

}

19

notifyListeners();

20

};

21

}

22

 // ...

23

}

Animations

202

Now there’s an empty space where the sort indicator would be, and you have all

the information you need to create your own.

CustomPaint

To draw custom objects on the screen, write a class that extends CustomPainter,

then provide it to a CustomPaint widget. CustomPainter uses a canvas, paths, and paints to draw whatever you like. Let’s draw a chevron pointing down.

Create a new file at lib/widgets/sort_icon.dart, then add a CustomPaint

widget and class extending CustomPainter:

1

import 'package:flutter/material.dart';

2

3

class RevExSortIcon extends StatelessWidget {

4

RevExSortIcon({super.key});

5

6

@override

7

Widget build(BuildContext context) {

8

return CustomPaint(

9

painter: _SortIconPainter(),

10

size: const Size(16, 16),

11

);

12

}

13

}

14

15

class _SortIconPainter extends CustomPainter {

16

_SortIconPainter();

17

18

@override

19

void paint(Canvas canvas, Size size) {

20

const chevronPoints = [

21

[0.1, 0.3],

22

[0.5, 0.7],

23

[0.9, 0.3],

24

];

25

26

var path = Path();

27

28

path.moveTo(

29

size.width * chevronPoints[0][0], size.height * chevronPoints[0][1]);

30

path.lineTo(

31

size.width * chevronPoints[1][0], size.height * chevronPoints[1][1]);

32

path.lineTo(

33

size.width * chevronPoints[2][0], size.height * chevronPoints[2][1]);

34

35

var paint = Paint();

Animations

203

36

paint.color = Colors.black;

37

paint.strokeWidth = 1.5;

38

paint.style = PaintingStyle.stroke;

39

40

canvas.drawPath(path, paint);

41

}

42

43

@override

44

bool shouldRepaint(_SortIconPainter oldDelegate) => true;

45

}

The magic here is in the Path instance. You can use its moveTo method to jump to the starting point of the chevron, then the lineTo method to draw the

downward and upward strokes. A Path can also draw arcs, bezier curves, and a

handful of basic shapes. I like to plot out my shape as if I were drawing it on a square 1 unit wide and 1 unit tall so I can think of everything in terms of percentages. Then, since the paint method provides the actual size of the space available to draw

in, I can multiply my points by size.width and size.height to scale the shape

correctly.

:::info

It may seem counterintuitive, but in a CustomPainter Canvas, the origin (x=0,

y=0) is the top left corner. The larger a given y-value is, the farther down it will be.

:::

Once you have a Path, you need to provide instructions on how to paint

it. In this case, PaintingStyle.stroke gives you a chevron (whereas Paint-

ingStyle.fill would give you a filled triangle), and a strokeWidth of 1.5 seems

about right to accompany a bold column header.

The last piece of this is the shouldRepaint override, which Flutter uses to

ask you if it needs to re-draw your custom object. It provides the old instance of your class so you can compare it with the current one. I’ve set it to always return true, meaning the icon should re-render any time there’s an excuse to do so. This isn’t very efficient, but it is easy. If you were painting something more complicated, you’d probably want to be more selective.

Go ahead and add this thing to the column header widget:

Animations

204

1

 // overview.page.dart

2

class _TappableHeader extends StatelessWidget {

3

final String headerText;

4

final bool isSorting;

5

6

const _TappableHeader(

7

this.headerText, {

8

required this.isSorting,

9

});

10

11

@override

12

Widget build(BuildContext context) {

13

return Row(

14

children: [

15

Padding(

16

padding: const EdgeInsets.symmetric(horizontal: 6),

17

child: AnimatedDefaultTextStyle(

18

duration: const Duration(milliseconds: 200),

19

style: TextStyle(

20

color: Colors.black,

21

fontWeight: isSorting ? FontWeight.bold : FontWeight.normal,

22

),

23

child: Text(headerText),

24

),

25

),

26

if (isSorting) RevExSortIcon()

27

],

28

);

29

}

30

}

Now the icon appears next to the currently sorted column header. The problem

is it’s always pointed down, even when the column is sorted in ascending order.

You can fix that by adding a parameter to RevExSortIcon and using it to change the coordinates of the chevron:

Animations

205

1

 // sort_icon.dart

2

class RevExSortIcon extends StatelessWidget {

3

final bool isAscending;

4

5

const RevExSortIcon({

6

super.key,

7

required this.isAscending,

8

});

9

10

@override

11

Widget build(BuildContext context) {

12

return CustomPaint(

13

painter: _SortIconPainter(

14

ascendingness: isAscending ? 1 : -1,

15

),

16

size: const Size(16, 16),

17

);

18

}

19

}

20

21

class _SortIconPainter extends CustomPainter {

22

final double ascendingness;

23

24

_SortIconPainter({required this.ascendingness});

25

26

@override

27

void paint(Canvas canvas, Size size) {

28

const baseline = 0.5;

29

const extent = 0.2;

30

final startY = (ascendingness * extent) + baseline;

31

final midY = (-1 * ascendingness * extent) + baseline;

32

33

final chevronPoints = [

34

[0.1, startY],

35

[0.5, midY],

36

[0.9, startY],

37

];

38

39

var path = Path();

40

41

path.moveTo(

42

size.width * chevronPoints[0][0], size.height * chevronPoints[0][1]);

43

path.lineTo(

44

size.width * chevronPoints[1][0], size.height * chevronPoints[1][1]);

45

path.lineTo(

46

size.width * chevronPoints[2][0], size.height * chevronPoints[2][1]);

47

48

var paint = Paint();

49

paint.color = Colors.black;

50

paint.strokeWidth = 1.5;

Animations

206

51

paint.style = PaintingStyle.stroke;

52

53

canvas.drawPath(path, paint);

54

}

55

56

@override

57

bool shouldRepaint(_SortIconPainter oldDelegate) => true;

58

}

It might seem odd to use a number like ascendingness to represent whether

the icon should point up or down. If this were all I wanted to do with RevExSortIcon, I would use a boolean. But (spoiler for next lesson) I want to animate the icon flip, and numbers can transition smoothly, whereas booleans can’t.

You need to make a couple tweaks to pass the isAscending value through

_TappableHeader.

1

 // overview.page.dart

2

class _TransactionDataSource extends DataTableSource {

3

 // ...

4

List<DataColumn> getColumns() {

5

return [

6

DataColumn(

7

label: _TappableHeader(

8

"Purchaser",

9

isSorting: sortIndex == 0,

10

isAscending: sortAscending,

11

),

12

onSort:

13

handleSort((a, b) => a.purchaserName.compareTo(b.purchaserName)),

14

),

15

DataColumn(

16

label: _TappableHeader(

17

"Amount",

18

isSorting: sortIndex == 1,

19

isAscending: sortAscending,

20

),

21

numeric: true,

22

onSort: handleSort((a, b) => Comparable.compare(a.amount, b.amount)),

23

),

24

DataColumn(

25

label: _TappableHeader(

26

"Date",

27

isSorting: sortIndex == 2,

28

isAscending: sortAscending,

29

),

30

onSort: handleSort((a, b) => a.purchaseDate.compareTo(b.purchaseDate)),

31

),

Animations

207

32

DataColumn(

33

label: _TappableHeader(

34

"Product Code",

35

isSorting: sortIndex == 3,

36

isAscending: sortAscending,

37

),

38

onSort: handleSort((a, b) => a.productCode.compareTo(b.productCode)),

39

),

40

];

41

}

42

 // ...

43

}

44

45

 // ...

46

47

class _TappableHeader extends StatelessWidget {

48

final String headerText;

49

final bool isSorting;

50

final bool isAscending;

51

52

const _TappableHeader(

53

this.headerText, {

54

required this.isSorting,

55

required this.isAscending,

56

});

57

58

@override

59

Widget build(BuildContext context) {

60

return Row(

61

children: [

62

Padding(

63

padding: const EdgeInsets.symmetric(horizontal: 6),

64

child: AnimatedDefaultTextStyle(

65

duration: const Duration(milliseconds: 200),

66

style: TextStyle(

67

color: Colors.black,

68

fontWeight: isSorting ? FontWeight.bold : FontWeight.normal,

69

),

70

child: Text(headerText),

71

),

72

),

73

if (isSorting)

74

RevExSortIcon(

75

isAscending: isAscending,

76

)

77

],

78

);

79

}

80

}

Animations

208

Now the icon indicates the sort direction. This is probably as low-level as you’ll ever get in Flutter: you’re hand-drawing a UI element exactly how you want it to

look rather than using something off-the-shelf.

Further reading

Definitive Flutter Painting Guide (Deven J., getstream.io) Exercises

1. Change the sort icon so it’s a half circle or an arrow (with a stem) instead of a chevron.

2. Update _SortIconPainter to draw the sort icon in the opposite direction

(starting from the right instead of the left).

3. Make the sort icon a double chevron instead of a single chevron.

The RevExSortIcon CustomPainter is set up so it knows how to draw not just an

ascending or descending icon but any state in between. This will make it easier to animate between states.

TweenAnimationBuilder

The easiest way to animate a widget parameter from one value to another is with a

TweenAnimationBuilder. This widget doesn’t offer a lot of control or flexibility, but if you just need to get from point A to point B, it’s the fastest way to do it.

To use it, alter RevExSortIcon like so:

1

class RevExSortIcon extends StatelessWidget {

2

final bool isAscending;

3

4

const RevExSortIcon({

5

super.key,

6

required this.isAscending,

7

});

8

9

@override

10

Widget build(BuildContext context) {

11

final double startingValue = isAscending ? 1 : -1;

12

return TweenAnimationBuilder(

13

tween: Tween< double>(begin: startingValue, end: startingValue),

Animations

209

14

duration: const Duration(milliseconds: 250),

15

builder: (_, tweenValue, __) {

16

return CustomPaint(

17

painter: _SortIconPainter(

18

ascendingness: tweenValue,

19

),

20

size: const Size(16, 16),

21

);

22

},

23

);

24

}

25

}

TweenAnimationBuilder requires three parameters:

• A Tween instance with a start and end value.

• A Duration, indicating how long the transition should take.

• A builder.

For this Tween, I’ve provided the same value for both the begin and end

parameters; when you’re using TweenAnimationBuilder, these should only be

different if you want to animate something right when the widget first loads. After that, TweenAnimationBuilder will remember the most recent value in end and

animate whenever it changes.

The builder function should take any value that could come out of the Tween

and return a widget tree based on that value. So, as the TweenAnimationBuilder

animates between values, the tweenValue parameter could be 1, -1, 0.5, -0.7779,

0.9999, or literally any other double value between 1 and -1. The CustomPaint will be rebuilt 60 times per second when the animation is running, and on each rebuild, it will draw a single “frame” of the animation. Since _SortIconPainter knows how

to build in-between states with different amounts of ascendingness, this is no

problem.

Now, if you run the app, you’ll see how the sort icon smoothly changes the

direction it’s pointing, flattening from a chevron to a straight line and then growing into a chevron again—and all this in under a hundred lines of code.

:::tip

TweenAnimationBuilder can do non-linear transitions, too. If you’d like the

transition to speed up or slow down at the end, for example, you can use the curve parameter. Normally, you’ll pass in a static field from the built-in Curves class, which provides several common transition curves like easeIn and easeOut.

::::

Animations

210

AnimationController, SingleTickerProviderStateMixin, and

Tween

What if you want more control over your animations? With a little more code, you

can control every aspect of the animation, allowing you to do things like:

• Chaining animations together so one or more widgets animate in sequence

or have overlapping animations.

• Making animations that reverse as soon as they finish, repeat a certain

number of times, or repeat indefinitely.

• Pausing and resuming animations whenever you want.

Start by rewriting RevExSortIcon to use an AnimationController. To accom-modate the controller, you’ll have to convert to a StatefulWidget.

1

class RevExSortIcon extends StatefulWidget {

2

final bool isAscending;

3

4

const RevExSortIcon({

5

super.key,

6

required this.isAscending,

7

});

8

9

@override

10

State<RevExSortIcon> createState() => _RevExSortIconState();

11

}

12

13

class _RevExSortIconState extends State<RevExSortIcon>

14

with SingleTickerProviderStateMixin {

15

late bool isAscendingCached;

16

late final AnimationController controller;

17

late final Tween< double> flipTween;

18

late final Animation< double> flipAnimation;

19

20

@override

21

void initState() {

22

super.initState();

23

24

isAscendingCached = widget.isAscending;

25

26

controller = AnimationController(

27

duration: const Duration(milliseconds: 250),

28

vsync: this,

29

);

30

31

flipTween = Tween< double>(

Animations

211

32

begin: isAscendingCached ? 1 : -1,

33

end: isAscendingCached ? 1 : -1,

34

);

35

36

flipAnimation = controller.drive(flipTween);

37

38

flipAnimation.addListener(() {

39

setState(() {});

40

});

41

}

42

43

@override

44

void didUpdateWidget(RevExSortIcon oldWidget) {

45

super.didUpdateWidget(oldWidget);

46

47

if (widget.isAscending != isAscendingCached) {

48

flipTween.begin = isAscendingCached ? 1 : -1;

49

flipTween.end = widget.isAscending ? 1 : -1;

50

controller.reset();

51

controller.forward();

52

53

isAscendingCached = widget.isAscending;

54

}

55

}

56

57

@override

58

void dispose() {

59

controller.dispose();

60

super.dispose();

61

}

62

63

@override

64

Widget build(BuildContext context) {

65

return CustomPaint(

66

painter: _SortIconPainter(

67

ascendingness: flipAnimation.value,

68

),

69

size: const Size(16, 16),

70

);

71

}

72

}

There are a few new classes here to learn about.

• SingleTickerProviderStateMixin is a class mixin that adds a TickerProvider to any StatefulWidget. A Ticker is something that notifies a listener every time

a frame is drawn to the screen—theoretically, 60 times per second, though

there are situations where the frame rate will drop if the processor is busy. If

Animations

212

you need multiple Tickers (that is, you have multiple AnimationControllers),

you can use TickerProviderStateMixin instead.

• AnimationController is the class that drives the animation. It needs a TickerProvider (that’s what vsync: this does—this refers to the class itself,

including any mixins) and a Duration so it knows how long the animation

should last. You can use controller.value at any time to get a value

between 0.0 and 1.0 representing the animation’s progress, which will be 0.0

until you call controller.forward(), and then progress to 1.0 over the

specified duration. You should call dispose() on the controller when you’re

done with it.

• Tween<T> is a class that takes values between 0.0 and 1.0 from an AnimationController and maps them to a range you specify. In this case, you want

double values between -1.0 and 1.0, but you can set any range you want.

Tweens can be used for other types of values too—any class that implements

the mathematical operators +, -, and *, such as Offset or Alignment, can be the type parameter to a Tween. There are also specialized subclasses,

like ColorTween for animating between different colors and RectTween for animating between differently-sized Rect objects.

• Animation<T> is the superclass of AnimationController. It’s a relatively simple class with a status and a value. The status tells us if it’s stopped at

the beginning, running forward, stopped at the end, or running backward; the

value can be anything of type T. The class also provides methods for attaching

listeners so we can react when the value or status changes.

When the widget initializes, you construct the AnimationController and Tween

objects, use the AnimationController to drive the Tween, and call setState() to

redraw the widget whenever the resulting animation updates. In didUpdateWid-

get, anytime the value of isAscending on the parent widget changes, you update

the start and end values of the Tween, reset the AnimationController to 0.0, and

run it forward.

The sort icon now does the same thing it did before, but you can make fine-

tuned tweaks to the way it animates.

Let’s add an easing curve to make the flip animation feel more natural. You

can do this by chaining a CurveTween between the AnimationController and the

existing Tween:

Animations

213

1

class _RevExSortIconState extends State<RevExSortIcon>

2

with SingleTickerProviderStateMixin {

3

 // ...

4

5

@override

6

void initState() {

7

super.initState();

8

9

isAscendingCached = widget.isAscending;

10

11

controller = AnimationController(

12

duration: const Duration(milliseconds: 250),

13

vsync: this,

14

);

15

16

flipTween = Tween< double>(

17

begin: isAscendingCached ? 1 : -1,

18

end: isAscendingCached ? 1 : -1,

19

);

20

21

flipAnimation =

22

controller.drive(CurveTween(curve: Curves.easeOut)).drive(flipTween); // Added a \ 23

CurveTween

24

25

flipAnimation.addListener(() {

26

setState(() {});

27

});

28

}

29

30

 // ...

31

}

Now the animation is faster when it starts and slower when it ends. What if you

want the animation to repeat continuously? It looks terrible, but you can do it like this:

Animations

214

1

class _RevExSortIconState extends State<RevExSortIcon>

2

with SingleTickerProviderStateMixin {

3

 // ...

4

5

@override

6

void didUpdateWidget(RevExSortIcon oldWidget) {

7

super.didUpdateWidget(oldWidget);

8

9

if (widget.isAscending != isAscendingCached) {

10

flipTween.begin = isAscendingCached ? 1 : -1;

11

flipTween.end = widget.isAscending ? 1 : -1;

12

controller.reset();

13

controller.repeat();

14

15

isAscendingCached = widget.isAscending;

16

}

17

}

18

19

 // ...

20

}

If you want it to repeat a set number of times, you can do that with an async

method and await:

1

class _RevExSortIconState extends State<RevExSortIcon>

2

with SingleTickerProviderStateMixin {

3

 // ...

4

5

@override

6

void didUpdateWidget(RevExSortIcon oldWidget) {

7

super.didUpdateWidget(oldWidget);

8

9

if (widget.isAscending != isAscendingCached) {

10

flipTween.begin = isAscendingCached ? 1 : -1;

11

flipTween.end = widget.isAscending ? 1 : -1;

12

beginAnimation();

13

14

isAscendingCached = widget.isAscending;

15

}

16

}

17

18

Future beginAnimation() async {

19

for (var times = 1; times <= 3; times++) {

20

controller.reset();

21

await controller.forward();

22

}

23

}

24

Animations

215

25

 // ...

26

}

TweenSequence and Interval

Let’s do something more whimsical. Say you want the sort icon to flatten, spin 360

degrees, then unflatten in the other direction. This sounds difficult, but Flutter gives you all the tools you need. You’ll create three separate animations: one for pointing the arrow up, one for pointing the arrow down, and one for rotating it.

You’ll use a TweenSequence (which is a list of Tweens that run in order) for the up/down animation and an Interval curve for the rotation.

1

class _RevExSortIconState extends State<RevExSortIcon>

2

with SingleTickerProviderStateMixin {

3

late bool isAscendingCached;

4

late final AnimationController controller;

5

late final Animation< double> ascendAnimation;

6

late final Animation< double> descendAnimation;

7

late final Animation< double> rotateAnimation;

8

9

@override

10

void initState() {

11

super.initState();

12

13

isAscendingCached = widget.isAscending;

14

15

controller = AnimationController(

16

duration: const Duration(milliseconds: 600),

17

vsync: this,

18

)..value = 1.0;

19

20

controller.addListener(() {

21

setState(() {});

22

});

23

24

final ascendTween = TweenSequence(<TweenSequenceItem< double>>[

25

TweenSequenceItem(

26

tween: Tween< double>(

27

begin: -1,

28

end: 0,

29

).chain(

30

CurveTween(curve: Curves.easeOut),

31

),

32

weight: 0.3,

33

),

Animations

216

34

TweenSequenceItem(

35

tween: ConstantTween< double>(0),

36

weight: 0.4,

37

),

38

TweenSequenceItem(

39

tween: Tween< double>(

40

begin: 0,

41

end: 1,

42

).chain(

43

CurveTween(curve: Curves.easeOut),

44

),

45

weight: 0.3,

46

),

47

]);

48

49

ascendAnimation = controller.drive(ascendTween);

50

51

final descendTween = TweenSequence(<TweenSequenceItem< double>>[

52

TweenSequenceItem(

53

tween: Tween< double>(

54

begin: 1,

55

end: 0,

56

).chain(

57

CurveTween(curve: Curves.easeOut),

58

),

59

weight: 0.3,

60

),

61

TweenSequenceItem(

62

tween: ConstantTween< double>(0),

63

weight: 0.4,

64

),

65

TweenSequenceItem(

66

tween: Tween< double>(

67

begin: 0,

68

end: -1,

69

).chain(

70

CurveTween(curve: Curves.easeOut),

71

),

72

weight: 0.3,

73

),

74

]);

75

76

descendAnimation = controller.drive(descendTween);

77

78

final rotateInterval = CurveTween(

79

curve: const Interval(

80

0.33,

81

0.66,

82

curve: Curves.easeOut,

83

),

Animations

217

84

);

85

86

final rotateTween = Tween< double>(begin: 0, end: pi * 2);

87

88

rotateAnimation = controller.drive(rotateInterval).drive(rotateTween);

89

}

90

91

@override

92

void didUpdateWidget(RevExSortIcon oldWidget) {

93

super.didUpdateWidget(oldWidget);

94

95

if (widget.isAscending != isAscendingCached) {

96

isAscendingCached = widget.isAscending;

97

controller.reset();

98

controller.forward();

99

}

100

}

101

102

@override

103

void dispose() {

104

controller.dispose();

105

super.dispose();

106

}

107

108

@override

109

Widget build(BuildContext context) {

110

return Transform.rotate(

111

angle: rotateAnimation.value,

112

child: CustomPaint(

113

painter: _SortIconPainter(

114

ascendingness: isAscendingCached

115

? ascendAnimation.value

116

: descendAnimation.value,

117

),

118

size: const Size(16, 16),

119

),

120

);

121

}

122

}

The TweenSequence constructor takes a list of TweenSequenceItem, each of which takes tween and weight parameters. The weight is the portion of the total

animation time the tween should take. The combined weights don’t have to add up

to 1, but since these do, the arrow will flatten for 30% of the animation time and stay flat for 40% (thanks to the ConstantTween, which always produces the same value), then unflatten for the remaining 30%. This code chains some CurveTweens

onto the flattening and unflattening Tweens to ease those animations.

Animations

218

To handle rotation while the arrow is flat, this code uses an Interval curve.

This is a special kind of curve that stays at 0.0 until the controller’s progress matches the first parameter, then curves from 0.0 to 1.0 by the time the controller’s progress reaches the second parameter. In this case, it restricts the entire rotation to happen between 33% and 66% progress, which is while the arrow is flat. The

AnimationController drives this tween, which drives a second tween, mapping the

value to between 0 and 2π radians (0 to 360 degrees), and then the value of the

animation is used in a Transform.rotate widget.

You’ll notice the initial value of controller is set to 1.0. This is because the

arrow needs to act like it’s at the end of its “starting” animation (ascending or descending). When you change from ascending to descending (or vice versa), the

animation will switch and the controller will reset, which will be seamless because the end value of one animation is the start value of the other.

You may also notice that every time the AnimationController runs, both the

ascending and the descending animations are running simultaneously. _SortI-

conPainter is only listening to one of them at a time, so it may seem inefficient to run both. But at the end of the day, they’re just listeners and mathematical

transforms, and you’re only constructing them once. It would be much more

inefficient to dispose and construct new Tweens and Animations every time you

change direction (or, heaven forbid, in the build method itself).

You can build highly specific animations using CustomPainter, Animation-

Controller, and various kinds of Tween. If this seems like too much boilerplate,

there are “halfway” options, like AnimatedWidget and AnimatedBuilder, that let you give up control in small ways in exchange for writing less code. And if you’re lucky enough to be working with a professional animator, you can bring in a Pub

package like Lottie (for Adobe After Effects animations) or Rive (for Rive animations).

When you need to animate something in Flutter, there’s never a lack of options.

Further reading

Flutter: Animations tutorial (docs.flutter.dev) Exercises

1. Try some different easing curves on the sort icon animation and note the

differences. If it’s too fast, set the timeDilation property to slow it down.

2. When the sort icon switches from ascending to descending or vice versa,

make it fade out and then back in.

Testing

Module 9

Your app is feature-complete, but no app is truly finished until it has some

automated tests. In this module, you’ll write a few unit tests, widget tests, and end-to-end tests to ensure your app runs smoothly and instill confidence in any

changes you make.

Unit tests in Flutter will probably look very familiar to you. They use group,

test, and expect functions, plus any other Dart code you choose to include.

flutter_test

The flutter_test package is included in the CLI template, so it should already be in your pubspec.yaml file under dev_dependencies:

1

dev_dependencies:

2

flutter_test:

3

sdk: flutter

The sdk: flutter constraint tells Pub to use whatever version of flutter_-

test is already on your machine from back when you installed the Flutter SDK.

When you want to update to the latest version of the SDK, you can run flutter

upgrade on the command line.

Unit tests

Let’s test everything before the return statement in your RevExShareByPurchaser-

Chart widget build method. Right now, it looks like this:

Testing

220

1

import 'package:collection/collection.dart';

2

import 'package:fl_chart/fl_chart.dart';

3

import 'package:flutter/material.dart';

4

import 'package:intl/intl.dart';

5

6

import '../http/transaction.http.dart';

7

8

class RevExShareByPurchaserChart extends StatelessWidget {

9

final List<RevExTransaction> transactions;

10

11

const RevExShareByPurchaserChart(this.transactions, {super.key}); 12

13

@override

14

Widget build(BuildContext context) {

15

final amountsByPurchaser = transactions

16

.groupListsBy((tx) => tx.purchaserName)

17

.map((key, value) => MapEntry< String, double>(

18

key, value.fold(0, (previous, tx) => previous + tx.amount)));

19

final orderedPurchasers = amountsByPurchaser.entries

20

.sortedBy< num>((entry) => entry.value)

21

.reversed;

22

23

return Column(

24

children: [

25

const Padding(

26

padding: EdgeInsets.only(bottom: 12),

27

child: Text("Transaction volume by purchaser"),

28

),

29

Expanded(

30

child: PieChart(

31

PieChartData(

32

borderData: FlBorderData(

33

show: false,

34

),

35

sections: orderedPurchasers

36

.map(

37

(entry) => PieChartSectionData(

38

value: entry.value,

39

title:

40

' ${entry.key}\n${NumberFormat.compactSimpleCurrency().format(en\

41

try.value)}',

42

titleStyle: const TextStyle(fontWeight: FontWeight.bold),

43

),

44

)

45

.toList(),

46

startDegreeOffset: -90,

47

),

48

),

49

),

50

],

Testing

221

51

);

52

}

53

}

In order to test the transformation from transactions to orderedPur-

chasers as a unit, you can create a pure function that only does that. An easy way to start is by highlighting those 7 lines of code, opening the refactoring context menu, and choosing Extract Method. Name the new method getOrderedPurchasers. After using var to simplify the new line of code in the build method,

you should get something like this:

1

class RevExShareByPurchaserChart extends StatelessWidget {

2

final List<RevExTransaction> transactions;

3

4

const RevExShareByPurchaserChart(this.transactions, {super.key}); 5

6

@override

7

Widget build(BuildContext context) {

8

var orderedPurchasers = getOrderedPurchasers();

 // <= replaced Iterable<MapEntry<...\

9

>> with `var`

10

11

return Column(

12

children: [

13

const Padding(

14

padding: EdgeInsets.only(bottom: 12),

15

child: Text("Transaction volume by purchaser"),

16

),

17

Expanded(

18

child: PieChart(

19

PieChartData(

20

borderData: FlBorderData(

21

show: false,

22

),

23

sections: orderedPurchasers

24

.map(

25

(entry) => PieChartSectionData(

26

value: entry.value,

27

title:

28

' ${entry.key}\n${NumberFormat.compactSimpleCurrency().format(en\

29

try.value)}',

30

titleStyle: const TextStyle(fontWeight: FontWeight.bold),

31

),

32

)

33

.toList(),

34

startDegreeOffset: -90,

35

),

36

),

Testing

222

37

),

38

],

39

);

40

}

41

42

Iterable<MapEntry< String, double>> getOrderedPurchasers() {

 // <= new method

43

final amountsByPurchaser = transactions

44

.groupListsBy((tx) => tx.purchaserName)

45

.map((key, value) => MapEntry< String, double>(

46

key, value.fold(0, (previous, tx) => previous + tx.amount)));

47

final orderedPurchasers = amountsByPurchaser.entries

48

.sortedBy< num>((entry) => entry.value)

49

.reversed;

50

return orderedPurchasers;

51

}

52

}

Turn this into a pure method by making transactions a parameter instead of

using the class field, then make it static so it’s easier to access from a test.

1

class RevExShareByPurchaserChart extends StatelessWidget {

2

final List<RevExTransaction> transactions;

3

4

const RevExShareByPurchaserChart(this.transactions, {super.key}); 5

6

@override

7

Widget build(BuildContext context) {

8

var orderedPurchasers = getOrderedPurchasers(transactions);

9

10

return Column(

11

children: [

12

const Padding(

13

padding: EdgeInsets.only(bottom: 12),

14

child: Text("Transaction volume by purchaser"),

15

),

16

Expanded(

17

child: PieChart(

18

PieChartData(

19

borderData: FlBorderData(

20

show: false,

21

),

22

sections: orderedPurchasers

23

.map(

24

(entry) => PieChartSectionData(

25

value: entry.value,

26

title:

27

' ${entry.key}\n${NumberFormat.compactSimpleCurrency().format(en\

28

try.value)}',

Testing

223

29

titleStyle: const TextStyle(fontWeight: FontWeight.bold),

30

),

31

)

32

.toList(),

33

startDegreeOffset: -90,

34

),

35

),

36

),

37

],

38

);

39

}

40

41

static Iterable<MapEntry< String, double>> getOrderedPurchasers(

 // <= made static

42

List<RevExTransaction> transactions,

 // <= added parameter

43

) {

44

final amountsByPurchaser = transactions

45

.groupListsBy((tx) => tx.purchaserName)

46

.map((key, value) => MapEntry< String, double>(

47

key, value.fold(0, (previous, tx) => previous + tx.amount)));

48

final orderedPurchasers = amountsByPurchaser.entries

49

.sortedBy< num>((entry) => entry.value)

50

.reversed;

51

return orderedPurchasers;

52

}

53

}

Now you can test it. Your Flutter project should already have a test folder,

thanks to the CLI template. The widget_test.dart file contains an example

test that won’t work anymore since you removed the “Counter” example from

the home page. You can delete that file. Create a folder called charts/, then a

file at test/charts/share_by_purchaser_test.dart. The folder names don’t

matter here, but I like my test folder structure to mirror lib/. Test files need to have the phrase _test in them to be recognized by the test runner, but that’s also useful so you don’t confuse them with app files when you’re using the “Jump to File”

functionality in your IDE.

Add the following code to your new test file:

Testing

224

1

import 'package:flutter_test/flutter_test.dart';

2

import 'package:revenue_explorer/charts/share_by_purchaser.dart';

3

import 'package:revenue_explorer/http/transaction.http.dart';

4

5

void main() {

6

group('RevExShareByPurchaserChart', () {

7

test('handles an empty list of transactions', () {

8

final result = RevExShareByPurchaserChart.getOrderedPurchasers([]);

9

expect(result.length, 0);

10

});

11

12

test('sorts and categorizes a list of transactions', () {

13

final transactions = <RevExTransaction>[

14

RevExTransaction(

15

id: 0,

16

purchaserName: 'Test Alice',

17

purchaseDate: "00/00/00",

18

amount: 10,

19

productCode: "Test A"),

20

RevExTransaction(

21

id: 1,

22

purchaserName: 'Test Alice',

23

purchaseDate: "00/00/00",

24

amount: 10,

25

productCode: "Test B"),

26

RevExTransaction(

27

id: 2,

28

purchaserName: 'Test Bob',

29

purchaseDate: "00/00/00",

30

amount: 10,

31

productCode: "Test C"),

32

];

33

34

final result =

35

RevExShareByPurchaserChart.getOrderedPurchasers(transactions)

36

.toList();

37

38

expect(result.length, 2);

39

40

expect(result[0].key, 'Test Alice');

41

expect(result[0].value, 20);

42

43

expect(result[1].key, 'Test Bob');

44

expect(result[1].value, 10);

45

});

46

});

47

}

group defines a group of tests (you can group your tests however you want),

Testing

225

and test defines a single test. expect compares two values and expects them to be the same.

:::tip

expect is surprisingly capable compared to other assertion methods you may

have encountered. It handles Lists, Maps, and Sets the way you’d want it to,

recursively comparing each value instead of trying to compare the whole collection by identity. If you need more advanced matching logic, you can implement the

Matcher class.

:::

If you run flutter test on the command line, you should see the following

message:

+2: All tests passed!

The +2 means there were two passing tests.

Of these two tests, you may wonder if the first one is really that useful—it just provides an empty list and expects an empty Iterable. But I strongly encourage you to write tests like this. Dart is a null-safe language, but you can still be surprised by null references and out-of-range exceptions when you’re working with collections.

Testing your methods with empty collections is an easy way to catch errors that

would crash your app for users who don’t have data yet.

Further reading

Cookbook: An introduction to unit testing (docs.flutter.dev)

Unit testing in Flutter (John Wogu, medium.com) Exercises

1. Pick another piece of logic in your app. Extract it to a method and unit test it.

What if you want to test a whole widget? The flutter_test package has some

more methods to help with that.

testWidgets

When testing widgets, you’ll use the testWidgets method in place of test.

Let’s create a test file for RevExOverviewPage at test/pages/overview.page_-

test.dart. Start it off with this code:

Testing

226

1

import 'package:flutter_test/flutter_test.dart';

2

import 'package:revenue_explorer/pages/overview.page.dart';

3

4

void main() {

5

group('RevExOverviewPage', () {

6

testWidgets('handles an empty list of transactions', (tester) async {

7

await tester.pumpWidget(const RevExOverviewPage());

8

});

9

});

10

}

tester is an instance of WidgetTester, which can control a widget very precisely—all the way down to controlling the number of frames or the amount

of time it experiences. pumpWidget instantiates and renders a widget as if it were an app all by itself, then triggers one frame.

If you run flutter test right now, you’ll get a ProviderNot-

FoundException.

That’s

because

_RevExOverviewPageState

calls

context.read<RevExTransactionsState>()

in its initState method

and uses a Consumer<RevExTransactionsState> in its build method, but in

your test environment, there’s no Provider<RevExTransactionState>. That’s

easy to fix.

1

void main() {

2

group('RevExOverviewPage', () {

3

testWidgets('handles an empty list of transactions', (tester) async {

4

final transactionState = RevExTransactionsState()

5

..transactions = Future.value(<RevExTransaction>[]);

6

await tester.pumpWidget(ChangeNotifierProvider.value(

7

value: transactionState,

8

builder: (_, __) => const RevExOverviewPage(),

9

));

10

});

11

});

12

}

Future.value returns a Future that resolves immediately with the given value.

Plug that into RevExTransactionsState and wrap RevExOverviewPage with

a ChangeNotifierProvider, and that makes the state available to the widget.

However, you’re not done yet. If you run flutter test again, you’ll get a “No

Directionality widget found” error.

The Directionality widget tells its children whether text should go from left to right or right to left (this is important for internationalization). The reason you haven’t heard of it is because the MaterialApp widget in main.dart takes care

Testing

227

of it, along with a few other basic “setup” widgets. If the widget you were testing didn’t have a Scaffold, you probably wouldn’t need all this—so one option is to make the _TransactionTable widget public (by removing the underscore) and test that

instead. But it’s also easy to provide your own MaterialApp in the test:

1

void main() {

2

group('RevExOverviewPage', () {

3

testWidgets('handles an empty list of transactions', (tester) async {

4

final transactionState = RevExTransactionsState()

5

..transactions = Future.value(<RevExTransaction>[]);

6

await tester.pumpWidget(MaterialApp(

7

home: ChangeNotifierProvider.value(

8

value: transactionState,

9

builder: (_, __) => const RevExOverviewPage(),

10

),

11

));

12

});

13

});

14

}

Now flutter test will run without any failing tests.

Rendering more frames

All you’re doing so far is rendering the widget for one frame. That doesn’t necessarily prove it works. You should wait for all of its children to render, including any animations or delays:

1

void main() {

2

group('RevExOverviewPage', () {

3

testWidgets('handles an empty list of transactions', (tester) async {

4

final transactionState = RevExTransactionsState()

5

..transactions = Future.value(<RevExTransaction>[]);

6

await tester.pumpWidget(MaterialApp(

7

home: ChangeNotifierProvider.value(

8

value: transactionState,

9

builder: (_, __) => const RevExOverviewPage(),

10

),

11

));

12

await tester.pumpAndSettle();

13

});

14

});

15

}

Testing

228

pumpAndSettle keeps rendering frames until there are no more frames scheduled. It’s a bit slow and imprecise but easy to use.

Now when you run flutter test, you may get a “RenderFlex overflow” error.

This is because, by default, widget tests run on a virtual “screen” that is 2400

physical pixels wide and 1800 physical pixels tall, with a pixel ratio of 3. This works out to 800 logical pixels of width and 600 logical pixels of height, which isn’t

enough to show 10 rows of a table—and PaginatedDataTable defaults to showing

10 rows per page, even when there aren’t 10 rows of data! If you didn’t wrap your PaginatedDataTable in a scrolling view back a few modules ago, it now overflows

the virtual screen.

You can think about this in two ways.

On the one hand, the test has a point. Small screens (including some mobile

screens, like iPhone SE) make the table overflow with no way to scroll. It’s a good idea to wrap the PaginatedDataTable in a SingleChildScrollView or ListView.

On the other hand, if you’re targeting a specific range of devices, you might not care about overflow on smaller screens. If that’s the case, you can set a custom size for the test’s virtual screen:

1

await tester.binding.setSurfaceSize(const Size(1170, 2532));

2

addTearDown(() => tester.binding.setSurfaceSize(null));

1170 by 2532 is the resolution of an iPhone 12. The addTearDown method will reset the virtual screen back to the default size at the end of the test, so any tests that run after this one aren’t affected by it.

Assertions

You have a widget rendering and settling successfully. Now you should make sure

it has the UI you expect.

There should be a PaginatedDataTable widget, and there should be columns for

Purchaser, Amount, Date, and Product Code. The find global lets you find widgets on the screen, and the findsOneWidget global is a Matcher that asserts that only one widget was found:

Testing

229

1

expect(find.byType(PaginatedDataTable), findsOneWidget);

2

3

for (final column in ["Purchaser", "Amount", "Date", "Product Code"]) {

4

expect(find.text(column), findsOneWidget);

5

}

You can also find widgets that have certain Icons, key parameters, Semantics

labels, or Images, and there are variations of all the above for convenience. And in addition to findsOneWidget, there’s findsNothing if you expect a widget not to exist, findsNWidgets if you expect a widget to exist a certain number of times, and matchesGoldenFile if you want to compare screenshots of the widget over time and make sure they match.

The final version of the widget test looks like this:

1

 // overview.page_test.dart

2

3

group('RevExOverviewPage', () {

4

testWidgets('handles an empty list of transactions', (tester) async {

5

await tester.binding.setSurfaceSize(const Size(1170, 2532));

6

addTearDown(() => tester.binding.setSurfaceSize(null));

7

8

final transactionState = RevExTransactionsState()

9

..transactions = Future.value(<RevExTransaction>[]);

10

await tester.pumpWidget(MaterialApp(

11

home: ChangeNotifierProvider.value(

12

value: transactionState,

13

builder: (_, __) => const RevExOverviewPage(),

14

),

15

));

16

17

await tester.pumpAndSettle();

18

19

expect(find.byType(PaginatedDataTable), findsOneWidget);

20

21

for (final column in ["Purchaser", "Amount", "Date", "Product Code"]) {

22

expect(find.text(column), findsOneWidget);

23

}

24

});

25

});

If you want to see the test fail, try misspelling one of the columns in the for

array. The test runs pretty fast, but it actually renders the entire widget and checks the assertions you made.

Testing

230

Further reading

Cookbook: An introduction to widget testing (docs.flutter.dev)

Flutter Widget Testing (John Wogu, medium.com)

A Deep Dive Into Widget Testing in Flutter (Deven Joshi, Flutter Community on medium.com)

Exercises

1. Write a widget test that populates the PaginatedDataTable with multiple

pages of data. (It doesn’t have to be good data, just give it a bunch of repeated rows.)

2. Write a widget test that scrolls to the bottom of the PaginatedDataTable, then clicks to the next page.

An e2e or end-to-end test (called an “integration test” in the Flutter documen-

tation) is the closest thing to testing your app by hand. It loads up your entire app and interacts with the elements on screen in a scripted way.

integration_test

The integration_test Pub package lets you run e2e tests on a physical device or simulator. Add it to your Pubspec.yaml file under dev_dependencies:

1

dev_dependencies:

2

flutter_test:

3

sdk: flutter

4

flutter_lints: ^2.0.0

5

flutter_launcher_icons: ^0.11.0

6

integration_test:

7

sdk: flutter

Now create a folder called integration_test at the project root. By putting

e2e tests in their own folder, you’ll be able to run unit tests and e2e tests separately.

You’ll want that flexibility because unit tests run a lot faster and can be run in a headless environment, like a CI pipeline, whereas integration tests are slow and

need some kind of device to run on.

You don’t have any e2e tests yet, but when you do, you’ll run them in the CLI:

Testing

231

1

flutter test integration_test

Don’t forget the server

The app doesn’t work without a server to send HTTP requests to. So make sure the

server is running (execute dart run in the course server/ folder).

You might wonder if you can fake or mock the response to HTTP requests

in your e2e tests. The answer is a firm “no.” It’s not possible. Your test code

and app code are walled off from each other because the app is running on a

different (virtual or physical) device, and the Flutter team isn’t interested in building infrastructure for this specifically. Your e2e tests have to be truly end-to-end.

For these tests, you’ll need to turn server security on by setting use_security

= true in dart_server.dart.

Testing login and profile page

Once again, mirror the folder structure in lib/. Create a folder called integra-

tion_test/pages/, then a file integration_test/pages/profile.page_-

test.dart. This test will look a lot like a widget test, too:

1

import 'package:flutter/material.dart';

2

import 'package:flutter_test/flutter_test.dart';

3

import 'package:integration_test/integration_test.dart';

4

import 'package:revenue_explorer/main.dart';

5

6

void main() {

7

IntegrationTestWidgetsFlutterBinding.ensureInitialized();

8

9

group("RevExProfilePage", () {

10

testWidgets("appears when the Profile icon is clicked", (tester) async {

11

await tester.pumpWidget(const MyApp());

12

await tester.pump(const Duration(seconds: 2));

13

14

final emailInput = find.byWidgetPredicate((widget) =>

15

widget is TextField &&

16

widget.keyboardType == TextInputType.emailAddress);

17

expect(emailInput, findsOneWidget);

18

19

await tester.enterText(emailInput, "jthorms@revenue.example.com"); 20

21

final passwordInput = find.byWidgetPredicate((widget) =>

Testing

232

22

widget is TextField &&

23

widget.keyboardType == TextInputType.visiblePassword);

24

expect(passwordInput, findsOneWidget);

25

26

await tester.enterText(passwordInput, "revenue");

27

await tester.pump(const Duration(seconds: 1));

28

29

final loginButton = find.widgetWithText(ElevatedButton, "Log In"); 30

await tester.tap(loginButton);

31

32

await tester.pumpAndSettle();

33

34

final profileButton = find.byTooltip("My Profile");

35

await tester.tap(profileButton);

36

37

await tester.pumpAndSettle();

38

39

expect(find.text("jthorms"), findsOneWidget);

40

});

41

});

42

}

The line IntegrationTestWidgetsFlutterBinding.ensureInitialized();

loads up the integration test package and prepares to deploy the app to a physical or simulated device—whichever device you currently have configured to use when

you run the app in debug mode.

As with the widget test, you’re using find methods to locate widgets and

expect methods to verify their existence. But you’re also using tester methods to interact with them: tester.tap taps on a widget, and tester.enterText types

text into a widget.

One important thing to note is that you can’t always use tester.pumpAndSettle().

For example, if you try to use it immediately after the initial tester.pumpWidget(const MyApp()), the test will hang for 10 minutes and then crash (10 minutes is the

default timeout for integration tests). This is because when you first open the

app, it attempts to fetch data from the /transaction API, so the Overview page

shows a CircularProgressIndicator while the request is waiting, and then when the API returns an HTTP 401 Unauthorized response, the login modal appears—but the

progress indicator keeps spinning in the background. pumpAndSettle() waits

until there are no more animation frames scheduled, which will never happen until you finish logging in and the progress indicator disappears. So, instead, you can use tester.pump() with a Duration, which renders a single frame and advances

the clock by the given amount. That way, the login modal can appear, and you can

proceed to fill it in.

Testing

233

Once the “Log In” button has been tapped, you can go back to using pumpAnd-

Settle—the progress spinner will disappear when the /transaction call com-

pletes.

The final expectation of the test is that exactly one widget will have the text

“jthorms” and nothing else. This happens in the “Username: jthorms” section of the profile page. If that appears, the user/ API call succeeded.

On my machine, testing against an iPhone SE simulator, this test takes about 22

seconds to run. The three unit and widget tests, on the other hand, take about 3

seconds combined. This should give an idea of the cost of integration tests as well as their ideal role: there should be very few of them, and they should only test the most essential parts of the app.

Further reading

Cookbook: An introduction to integration testing (docs.flutter.dev)

Wrapping up

Great work! If you’ve made it this far, you know how to write Flutter apps that:

• Use a single codebase

• Deploy to iPhone, Android, and desktop computers

• Look great on screens of any size

• Are accessible to blind and vision-impaired users

• Communicate with any server that uses HTTP endpoints

• Use multiple kinds of layouts and interactive elements

• Display useful tables, charts, and graphs

• Include custom drawings and animations

• Are tested at the unit, widget, and end-to-end level

• Are incredibly fast and nearly indistinguishable from native apps

I hope you enjoyed this course. I’d love to hear from you if you found it helpful or if there’s anything you think could be improved. If you’re beginning your journey as a software developer, I’d also be happy to chat about your career and help with any concepts you’re struggling to understand. You can reach me via email or social media:

• Email: fluttercourse@isaaclyman.com

• LinkedIn: https://www.linkedin.com/in/isaaclymandotcom/

• Mastodon: @isaaclyman@toot.cafe

Good luck!

Exercises

1. Go build that app idea you’ve been thinking about.

Document Outline

	Table of Contents

	Introduction

	About this course

	Getting the most out of this course

	Further reading

	Getting Started

	Module 2

	What is Flutter?

	What is Dart?

	Further reading

	Hardware

	Software

	Verifying your setup

	flutter create

	Flutter project structure

	Further reading

	main.dart

	Development target setup

	Recommendations

	Seeing available targets

	Running in debug mode

	Running in release mode

	Running in profile mode

	Further reading

	What is pub.dev?

	Evaluating Pub packages

	Installing a package

	Using a package

	Further reading

	Android configuration

	iOS configuration

	Icons

	Further reading

	Version

	Build commands

	Distributing your app

	Further reading

	Creating A Seed App

	Module 3

	Dart overview

	Cheat sheet

	Inheritance

	Further reading

	Exercises

	The Widget Hierarchy

	What is a Widget?

	Types of Widgets

	Creating Widgets

	Further reading

	Exercises

	Why manage state?

	provider

	Further reading

	Why set up a theme?

	theme_provider

	Download updated files

	Further reading

	Exercises

	Why use a navigation library?

	go_router

	Download updated files

	Further reading

	What is the Scaffold?

	Setting it up

	Further reading

	The Profile Page

	Module 4

	Profile widget

	Widget keys

	Text

	Profile GoRoute

	AppBar and Scaffold refactoring

	AppBar actions

	Further reading

	Exercises

	The User object

	Futures

	The Client object

	Further reading

	Exercises

	FutureBuilder and StatefulWidget

	Further reading

	Exercises

	Column

	Expanded

	Padding

	Logical pixels

	Widget inspector

	Center

	Further reading

	Exercises

	Table

	Table column widths

	ExpansionPanelList and ExpansionPanel

	Number formatting

	Text.rich

	Exercises

	Choosing a scrolling widget

	ListView

	SingleChildScrollView

	Scrollbar

	Further reading

	Exercises

	How to think about layout

	RenderConstrainedBox object was given an infinite size during layout

	RenderFlex children have non-zero flex but incoming height constraints are unbounded

	Vertical viewport was given unbounded height

	BoxConstraints forces an infinite height

	Flutter is not the web

	A final piece of advice

	Further reading

	TextButton, OutlinedButton, and ElevatedButton

	Styling buttons

	MaterialStateProperty

	Drop shadow

	Download profile.page.dart

	Further reading

	Exercises

	Accessibility

	Module 5

	Testing on iOS Simulator

	Checking accessibility

	Further reading

	Installing TalkBack on the emulator

	Checking accessibility

	Further reading

	Tooltip

	Semantic and label

	Semantics

	ExcludeSemantics

	MergeSemantics

	Summary

	Further reading

	Exercises

	Storage and HTTP

	Module 6

	Local data storage solutions

	Using shared_preferences

	Further reading

	Exercises

	HTTP setup

	Sending an HTTP request

	Further reading

	Exercises

	Securing the server

	Login HTTP methods

	The login overlay

	TextField and TextEditingController

	Handling authorization failures

	Managing cookies

	Logging out

	Further reading

	Exercises

	Creating a state object

	Adding a provider

	Consuming state

	Error: setState() or markNeedsBuild() called during build

	Unloading state on logout

	Exercises

	Tables and Charts

	Module 7

	Overview page

	Fetching data

	DataTable and PaginatedDataTable

	Sorting DataTables

	Further reading

	Exercises

	The page and route

	Lifting transactions into state

	Filtering transactions

	fl_chart

	Line chart

	Pie chart (purchasers)

	Pie chart (products)

	Showing the right charts

	Further reading

	Exercises

	Animations

	Module 8

	AnimatedSwitcher

	AnimatedDefaultTextStyle

	Other animations and transitions

	Further reading

	Exercises

	Preparing for a new sort icon

	CustomPaint

	Further reading

	Exercises

	TweenAnimationBuilder

	AnimationController, SingleTickerProviderStateMixin, and Tween

	TweenSequence and Interval

	Further reading

	Exercises

	Testing

	Module 9

	flutter_test

	Unit tests

	Further reading

	Exercises

	testWidgets

	Rendering more frames

	Assertions

	Further reading

	Exercises

	integration_test

	Don't forget the server

	Testing login and profile page

	Further reading

	Wrapping up

	Exercises

index-105_1.png
revenue_explorer [X] revenue_explorer

Apprentice to the Senior

) . . Accountant's Office
Apprentice to the Senior Accountant's Office

Username: jthorms

Username: jthorms jthorms@revenue.

T Email:
Email: jthorms@revenue.example.com example.com

Phone: 1-800-867-5309 Phone: 1-800-867-5309

Profile Footer Profile Footer

index-99_1.png
o0 revenue_explorer

Profile Footer

index-113_1.png
revenue_explorer

Apprentice to the Senior Accountant's
Office

Username: jthorms
Email: jthorms@revenue.example.com
Phone: 1-800-867-5309

Contract Size: 1000000.0
Contact Email: alice2@client2.example.com
Contact Phone: 1-800-867-5309 ext. 40

Profile Footer

Contract Size: 1000000.0
Contact Email: alice2@client2.example.com
Contact Phone: 1-800-867-5309 ext. 40

Profile Footer

revenue_explorer

Apprentice to the Senior Accountant's Office

Username: jthorms
Email: jthorms@revenue.example.com
Phone: 1-800-867-5309

index-26_1.png

index-110_1.png
o0 revenue_explorer

J. Thormsby

Apprentice to the Senior Accountant's
Office

Username: jthorms
Email: jthorms@revenue.example.com
Phone: 1-800-867-5309

Client 1

Profile Footer

index-25_1.png
.’ Android Studio File Edit View Navigate Code Refactor Build Run Tools VCS Window Help

Tasks & Contexts >

IDE Scripting Console
Generate JavaDoc...

sl Create Command-line Launcher...

XML Actions >
Markdown Converter >
JShell Console...

K Kotlin >
Cling >

¥, SDK Manager
s Resource Manager

i= Troubleshoot Device Connections
GO App Links Assistant
Firebase

= Layout Inspector
AGP Upgrade Assistant...
% Flutter >

index-132_1.png
Carrier 2

=
) ‘”Ji §/

J. Thormsby

Apprentice to the Senior Accountant's Office

Username: jthorms
Email: jthorms@revenue.example.com
Phone: 1-800-867-5309

index-29_1.png
00 B isaaclyman — isaaclyman®@lsaacs-Air — ~ — -zsh — 99x24

[(base) » ~ flutter devices
3 connected devices:

iPhone 13 Pro Max (mobile) e @4BFBC75-1CD2-4CF9-9F54-C93E34164838 e ios .
com.apple.CoreSimulator.SimRuntime.i0S-16-1 (simulator)

macOS (desktop) e macos e darwin-armé4 e macOS 13.0.1
22A400 darwin-arm

Chrome (web) e chrome e web-javascript e Google Chrome
108.0.5359.94

(base) - ~ I

index-131_1.png
Carrier 2

=
) ‘”Ji §/

J. Thormsby

Apprentice to the Senior Accountant's Office

Username: jthorms
Email: jthorms@revenue.example.com
Phone: 1-800-867-5309

Contract Size: $1,000,000.00
Contact Email: alicel@clientl.example.com
Contact Phone: 1-800-867-5309 ext. 40

index-27_1.png
|. [] Emulator |
‘Emulator: [L Pixel 5 API 33 < O& —

Vo4 Mo mAD

Gmail Photos YouTube

©®o *

index-154_1.png
Y X) iPhone 8 Plus - i0S 16.2
i) {u]

Carrier & 4:43 PM

Flutter Demo Home Page

Please log in to continue

bob@example.com

index-30_1.png

index-136_1.png
eoe Emulator

Emulator: [}, Pixel 5 API 33 O

OO0 00 <« 0o 8 @D

4:31 &

& TalkBack

lalkBack provides spoken teedback so that you can
use your device without looking at the screen. TalkBack
can be helpful for people who have difficulty seeing the
screen.

Use TalkBack

TalkBack shortcut
Accessibility button

Settings

®

How to use TalkBack

« Swipe right or left to move between items
« Double-tap to activate an item

+ Drag 2 fingers 10 9@ Hm—

index-29_2.png
@ EXPLORER

\ OPEN EDITORS
000 X % main.dart lib
\ REVENUE_EXPLORER
> .dart_tool
> .idea

@ > android
> ios

v lib

I

main.dart — revenue_explorer

N main.dart X

lib > ™ main.dart > ...

30 }

O e 31
32 class MyHomePage extends StatefulWidget {
33 const MyHomePage({super.key, required thi
34
35 // This widget is the home page of your a
36 // that it has a State object (defined be
37 // how it looks.

cover_image.jpg
Line-of-
Business Mobile
Apps with
Flutter and
Dart

Ari Lerner

index-97_1.png
icc

Tool Windows >
Appearance >
Quick Definition _Space
Show Siblings

Quick Type Definition

Recent Files ®E
Recently Changed Files

Recent Locations S HE
Recent Changes X¢C
[3* Compare with Clipboard

Quick Switch Scheme... 3
Bidi Text Base Direction >

//flutter.github.io/assets-for-api-di
//flutter.github.io/assets-for-api-di

//flutter.github.io/assets-for-api-di
//flutter.aithub.io/assets-for-ani-d|

ment target versions is 10.13 to 13.1]
pt build phase 'Run Script' will be
the script phase, or configure it to

)

/code/revenue explorer/macos/Pods/Pods.xcodeproi: warnina:

©- Commit %0 pesf

M Project # 1 sskio

M Bookmarks 2

Q Find %3

» Run ¥4

Debug ®5

© Problems #6

== Structure ¥ 7

© Services # 8

P Version Control ®9

[Z Emulator

@ Profiler

& App Inspection

& Build Variants

© Dart Analysis

[J Device File Explorer

(D Device Manager =
uveA

@) Event Log

di
% Flutter Outline d_g
;aia
Flutter Performance
& Hierarchy
3 Layout Inspector
= Logcat m pi
se Resource Manager 5 sl
Terminal XF12 | .
kine
i= TODO
The mac0S

index-96_2.png

index-98_1.png
L

>, 42 %m0 QON

Flutter Inspector [J macOS (desktop) &

O bl A g M
Widget Tree Q C Layout Explorer Widget Details Tree
v == >callol -
v [] Padding o
—— Cro.. —p =
v (@ FutureBui... S | N
v BN 1 Total Flex ...
v |=| Expande H
v
@ _Profile I
w=103.0;
@Dret |) (0.0<=w<=361.0)
v @ _ProfileF *
 Tade

e amantAr " (N armmA (A Rit) rran~e " o 1™\

o

aUIINO JBNNIH N

90UBWLIOMA] JaNN| AN

a)|

index-39_1.jpg

index-77_1.png
revenue_explorer

Profile

Profile page works!

index-49_1.jpg
void main() {
runApp(Widget)

Widget

Widget

Widget

Widget

Widget Widget Widget

Widget Widget Widget

Widget

index-95_1.png
revenue_explorer

Profile Content

Profile Footer

index-88_1.png

index-96_1.png
Building macOS application...
Syncing files to device mac0S... 86ms

Flutter run key commands.

r Hot reload. & & &

R Hot restart.

h List all available interactive commands.

d Detach (terminate "flutter run" but leave application running).
¢ Clear the screen

q Quit (terminate the application on the device).

f» Running with sound null safety [a

An Observatory debugger and profiler on macOS is available at: http:/ Follow link (emd + click) LvfjM=/
The Flutter DevTools debugger and profiler on macOS is available at: http://127.0.0.1:9101?uri=http://127.0.0.1:57273/LJ9PvqIvfiM=/

index-95_2.png
........

index-33_1.jpg
url_launcher 6.1.7

Published 17 days ag; @ flutter.dev (Jhuil safety)

SDK | FLUTTER PLATFORM | ANDROID 10S LINUX MACOS WEB WINDOWS

Readme Changelog Example Installing Versions Scores

il larimA~AalhhAar

index-31_1.png
revenue_explorer

You have pushed the button this many times:

1

index-35_2.jpg
2.3K

2345 140 100*

LIKES PUB POINTS = POPULARITY

| T O L PR

index-35_1.jpg
firebase core 2.4.0

Published 2 days ago * & firebase.google.com

Null safety

B PLATFORM | ANDROID 10S MACOS WEB

Readme Changelog Example Installing Versions Scores

index-1_1.jpg
- e o ' = e

-
LT “1

lINE 0F lUSIN[SS MDBI[E APPS

. wuH [\TER AND/DART

%R

,3

;
4 ¥
y > ‘ .‘
’ 2 o~ y
ey = A
d 7 "TH [= 3
o4 “ = - o = .
s e
ﬁ .
‘
r
-
b'-\ .
-
b -
L]

-
oe_'
9 :
y . /
L]

3

) newline

11111

index-16_1.png
AN L

Dart O 79ms

Dart language support and debu...
% Dart Code s

Flutter D 3ms

Flutter support and debugger for...
% Dart Code s

index-2_1.png

index-20_1.png
00 main.dart — revenue_explorer D 08 |

@ EXPLORER N main.dart X Py
\ OPEN EDITORS lib > ™ main.dart > ...
/() X % main.dart lib 27 home: const MyHomePage(title: 'Flutte
\ REVENUE_EXPLORER OLE O & 28); // MaterialApp
29 }
gp > .dart_tool 30 }
> .idea 31
,> > android 32 class MyHomePage extends StatefulWidget {
& > ios 33 const MyHomePage({super.key, required thi
v lib i R
BD |l‘ nd 35 // This widget is the home page of your a
TEITEE 36 // that it has a State object (defined be
> linux 37 // how it looks.
A > macos 38
> test 39 // This class is the configuration for th.
/ S web 40 // case the title) provided by the parent
(4 X 41 // used by the build method of the State.
> windows 42 // always marked "final".
@ .gitignore 43
= .metadata 44 final String title;
I analysis_options.yaml 45
_ lock 46 @override
= pubspec.loc 47 State<MyHomePage> createState() => _MyHom
I' pubspec.yaml| 48 }
® README.md 49
> revenue_explorer.iml 50 class _MyHomePageState extends State<MyHome
51 int _counter = 0;
52
53 void _incrementCounter() {
54 setState(() { —
55 // This call to setState tells the Fl
56 // changed in this State, which cause
57 // so that the display can reflect th
58 // _counter without calling setState(
59 // called again, and so nothing would
> OUTLINE 60 _counter++;

> TIMELINE 61 b
'{% 62 |}
> DEPENDENCIES

index-18_1.png
/. o0 B isaaclyman — isaaclyman®@Isaacs-Air — ~ — -zsh — 80x24

Last login: Mon Dec 5 ©9:25:48 on ttys@e5

[(base) » ~ flutter doctor

Doctor summary (to see all details, run flutter doctor -v):

[v] Flutter (Channel stable, 3.3.9, on macOS 13.0.1 22A400 darwin-arm, locale
en-US)

[v] Android toolchain - develop for Android devices (Android SDK version 33.0.0)

[v] Xcode — develop for iOS and macOS (Xcode 14.1)

[v] Chrome - develop for the web

[v] Android Studio (version 2021.3)

[v] VS Code (version 1.73.1)

[v] VS Code (version 1.71.2)

[v] Connected device (2 available)

[v] HTTP Host Availability

* No issues found!
(base) » ~ I

index-23_2.png
.’ Simulator File Edit Device I/O Features Debug Window Help

Open Simulator >

code

GPU Selection >

index-23_1.png
Xcode File Edit View Find Navigate Editor Product Debug Source Control Window

About Xcode
Xcode Extensions...

Settings...
Behaviors >

Xcode Server...

Open Developer Tool & [“] Instruments

@ Accessibility Inspector

Hide Xcode '
: @ FileMerge
Hide Others
W Create ML
@ Reality Composer \\7
Quit Xcode
More Developer Tools... /1

Welcome to Xcode

Version 14.1 (14B47b)

index-24_1.png
o000 iPhone 13 Pro Max - iOS 16.1
a fu]

