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Preface

The Espressif ESP32 is a remarkable device. It is low in cost but has many different subsystems that make it more powerful than you might at first think. You can use it for simple applications because it is cheap, but you can also use it for more sophisticated applications because it is capable.  For this book, the programming environment of choice is C using the Espressif IoT 

Development Framework, ESP-IDF. 

The use of C ensures that your programs are fast and efficient and the ESP-IDF lets you work with all of the versions of the ESP32 using the same code. 

It has the advantage over other approaches such as the Arduino library for the ESP32 of being targeted directly at just one platform. You can extend the language to C++, but for the sake of efficiency and simplicity all of the code in this book is in C. 

Many SDKs are very difficult to get started with, but not so the ESP-IDF if you use it with VS Code. Installation is simple and configuration is also easy. You can be developing a program within a few minutes of installing the necessary extension in VS Code. 

The purpose of the book is to reveal what you can do with the ESP32's GPIO 

lines together with widely used sensors, servos and motors and ADCs. After covering the GPIO, outputs and inputs, events and interrupts, it gives you hands-on experience of PWM (Pulse Width Modulation), PWM for Motor control, the SPI bus, the I2C bus and the 1-Wire bus, using the UARTs and of course WiFi. To round out, it covers direct access to the hardware, adding an SD Card reader, sleep states to save power, the RTC, RMT and touch sensors. 

It also devotes a chapter to FreeRTOS which takes us into the realm of asynchronous processing. 

The ESP32 has so many resources that a comprehensive account would fill a book twice this size. In order to make things fit in the space available it concentrates on things that are basic to getting started, avoiding “advanced” 

topics which generally lead the beginner into deep water far too quickly. 

Look elsewhere if you want to know about DMA, high-speed signal processing, ultra low-power and video interfacing. 

This book doesn’t teach you C or C++ in the sense of basic programming, but a knowledge of how to program in almost any language is all you really need.  All examples are written in a very simple style that avoids the use of idioms that are very “neat” but tend to obscure the meaning of the code.  You can easily refactor any of the examples and elaborate on them, you can even convert them into C++ classes that suit your particular purpose and programming style. 
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This is not a projects book, although there isn’t much left for you to do to round out the embryonic projects that are used as examples. Instead it is about understanding concepts and the acquisition of skills. The hope is that by the end of the book you will know how to tackle your own projects and get them safely to completion without wasting time in trial and error. 

My thanks are again due to Sue Gee and Kay Ewbank for their editorial input. Programming is the art of great precision, but English doesn’t come with a built-in linter. If errors remain please let me know. 

For the source code for the programs in this book, together with any updates or errata, links to resources including recommendations for obtaining electronic components, visit its dedicated page on the IO Press website: iopress.info. 

You can also contact me at harry.fairhead@i-programmer.info Harry Fairhead

October, 2024

4

Table of Contents 

Chapter 1

The ESP32 – Before We Begin

13

The ESP32 Family...........................................................................13

Development Boards.......................................................................14

Reset and Boot.................................................................................19

What To Expect................................................................................20

What Do You Need?.........................................................................21

Community......................................................................................23

Summary.........................................................................................24

Chapter 2

Getting Started

25

ESP-IDF............................................................................................25

Install VS Code................................................................................25

Installing IDF...................................................................................26

A First Project..................................................................................28

The Icons and Palette Commands..................................................33

Configuring The SDK......................................................................34

The Monitor.....................................................................................35

Debugging Using JTAG....................................................................37

Hints.................................................................................................42

Summary.........................................................................................44

Chapter 3

Getting Started With GPIO

45

ESP Pins...........................................................................................45

Basic GPIO Functions......................................................................49

Blinky...............................................................................................50

Adding A Toggle Function...............................................................52

Summary.........................................................................................54

Chapter 4

Simple Output

55

Basic GPIO Functions......................................................................55

How Fast?.........................................................................................56

Including Pauses..............................................................................58

Microsecond Timer.........................................................................60

Fixed Time Delay.............................................................................61

The Interrupt Problem....................................................................63

Phased Pulses..................................................................................64

Setting Multiple GPIO Lines...........................................................65

Summary.........................................................................................67

5

Chapter 5

Some Electronics

69

How to Think About Circuits.........................................................69

Electrical Drive Characteristics.......................................................71

Driving an LED................................................................................72

LED BJT Drive..................................................................................74

A BJT Example................................................................................75

MOSFET Driver...............................................................................78

MOSFET LED..................................................................................79

Setting Drive Type...........................................................................80

Setting Output Mode.......................................................................83

Drive.................................................................................................84

Basic Input Circuit - The Switch....................................................86

Debounce.........................................................................................87

The Potential Divider......................................................................88

Summary.........................................................................................90

Chapter 6

Simple Input

91

GPIO Input.......................................................................................91

Basic Input Functions......................................................................92

The Simple Button..........................................................................92

Press or Hold....................................................................................95

How Fast Can We Measure?............................................................96

The Finite State Machine................................................................99

FSM Button....................................................................................100

FSM Hold Button...........................................................................103

FSM Ring Counter.........................................................................104

Summary.......................................................................................108

6

Chapter 7

Advanced Input – Interrupts

109

Interrupts Considered Harmful?...................................................109

Interrupts.......................................................................................111

Shared GPIO Interrupts.................................................................111

Non-shared GPIO Interrupts.........................................................116

Measuring Pulse Width.................................................................118

Race Conditions and Starvation...................................................120

Using a Queue...............................................................................122

Timers............................................................................................124

A Microsecond Timer....................................................................126

Alarms............................................................................................127

Restrictions on ISRs......................................................................128

Responding to Input......................................................................130

Summary.......................................................................................131

Chapter 8

Pulse Width Modulation

133

Some Basic PWM Facts.................................................................133

ESP32 PWM...................................................................................134

Duty Cycle and Phase...................................................................137

Setting up the PWM......................................................................138

A First Example.............................................................................139

Changing the PWM.......................................................................142

Uses of PWM – Digital to Analog..................................................144

Frequency Modulation..................................................................147

Controlling an LED........................................................................148

Hardware Fade...............................................................................151

Phase..............................................................................................155

What Else Can You Use PWM For?...............................................157

Summary.......................................................................................158

7

Chapter 9

The Motor Control PWM

159

ESP32 MCPWM.............................................................................159

Setting up the MCPWM................................................................161

Setting Action................................................................................163

Controlling the Timer....................................................................164

A Simple example.........................................................................165

Using the Comparator...................................................................167

Duty Cycle.....................................................................................167

Two Comparators...........................................................................168

Symmetric PWM...........................................................................171

Sync and Phase..............................................................................172

A Complete Program.....................................................................174

Where Next?..................................................................................177

Summary.......................................................................................178

Chapter 10

Controlling Motors And Servos

179

DC Motor.......................................................................................179

Brushed Motors.............................................................................180

Unidirectional Brushed Motor......................................................182

Unidirectional PWM Motor Controller........................................184

Bidirectional Brushed Motor........................................................187

Bidirectional Motor Software........................................................190

Using A Single Full H-Bridge As Two Half H-Bridges.................193

Driving a Bridge as an Inverter.....................................................193

Controlling a Servo........................................................................196

Brushless DC Motors.....................................................................200

Stepper Motors..............................................................................202

Stepper Motor Driver....................................................................205

Stepper Motor Rotation – Using Timers.......................................211

Summary.......................................................................................217

8

Chapter 11

Getting Started With The SPI Bus

219

SPI Bus Basics...............................................................................219

ESP32 SPI Interfaces.....................................................................222

The SPI Functions.........................................................................222

A Loopback Example.....................................................................228

The MCP3008 SPI ADC.................................................................230

Connecting to the ESP32...............................................................232

Basic Configuration.......................................................................233

The Protocol..................................................................................233

Some Packaged Functions.............................................................236

How Fast?.......................................................................................238

Blocking and Interrupts................................................................238

Problems........................................................................................239

Summary.......................................................................................241

Chapter 12

Using Analog Sensors

243

ESP32 ADC....................................................................................243

Reading the ADC...........................................................................246

Calibrated Readings.......................................................................248

How Fast?.......................................................................................251

Digital to Analog............................................................................252

The Cosine Generator....................................................................255

Touch Sensors................................................................................256

Summary.......................................................................................262

Chapter 13

Using The I2C Bus

263

I2C Hardware Basics.....................................................................263

The ESP32 I2C...............................................................................265

The I2C Functions.........................................................................265

Slow Read Protocols......................................................................271

A Real Device.................................................................................271

A First Program..............................................................................273

The I2C Protocol In Action...........................................................275

Reading Temperature Data – Clock Stretching.............................275

Reading Temperature Data – Polling.............................................277

Processing the Data.......................................................................279

Reading Humidity.........................................................................280

Checksum Calculation..................................................................280

Complete Listing...........................................................................282

Summary.......................................................................................284

9

Chapter 14

One-Wire Protocols

285

The DHT22....................................................................................285

The Electronics..............................................................................287

The Protocol..................................................................................288

Decoding Using Sampling.............................................................294

RMT Universal Bit Acquisition....................................................295

Reading the DHT22 Using the RMT.............................................297

The 1-Wire Bus and the DS1820...................................................300

The Hardware................................................................................300

The DS18B20 Hardware................................................................301

The 1-Wire Protocol.......................................................................303

Match or Skip ROM......................................................................306

Computing the CRC.......................................................................308

Decoding Temperature..................................................................310

A Temperature Function...............................................................311

The Complete Program..................................................................311

Other Commands..........................................................................314

The S3 RGB LED NeoPixel............................................................316

A Simple RMT NeoPixel Driver....................................................320

Summary.......................................................................................323

Chapter 15

The Serial Port

325

Serial Protocol...............................................................................325

UART Hardware............................................................................327

Setting Up the UART.....................................................................328

Data Transfer.................................................................................329

Loopback Test................................................................................330

Serial Polling..................................................................................331

Buffers............................................................................................332

Timeouts........................................................................................338

Polling On Write............................................................................339

Flow Control..................................................................................339

Using a UART to Decode Data......................................................344

Summary.......................................................................................350

10

Chapter 16

Using WiFi

351

ESP32 Architecture.......................................................................351

The WiFi Stack..............................................................................352

Connecting to WiFi........................................................................352

A Practical Connect Function.......................................................355

Using esp_netif..............................................................................357

A Web Client..................................................................................358

The HTTP Client Component.......................................................362

HTTPS Client................................................................................363

Request Methods...........................................................................365

A Sensor Client..............................................................................366

The HTTP Server Component......................................................368

HTTPS Server Component............................................................370

Summary.......................................................................................375

Chapter 17

Direct To The Hardware

377

Registers.........................................................................................377

Blinky Revisited.............................................................................379

GPIO_REG.h..................................................................................380

Example 1 - Simultaneous Setting of GPIO Lines........................381

Example II – PWM LEDC Rollover...............................................383

Keeping Time.................................................................................385

Sleep..............................................................................................388

Wake Using ULP............................................................................393

Wake Using EXT0 and EXT1.........................................................393

Wake Using TouchPads.................................................................394

Watchdog Timer............................................................................395

Flash Memory................................................................................398

Creating Partitions – Adding FAT.................................................400

Non-Volatile Storage......................................................................402

The FAT File System.....................................................................403

External SD....................................................................................405

Digging Deeper..............................................................................409

Summary.......................................................................................410

11

Chapter 18

FreeRTOS For Task Management

411

What is FreeRTOS?........................................................................412

Scheduling and Tasks....................................................................412

The Standard Tasks.......................................................................415

A First Example.............................................................................416

The Timing Problem......................................................................418

Managing Tasks.............................................................................418

Race Conditions.............................................................................421

Locks..............................................................................................425

Queues...........................................................................................427

FreeRTOS Considered...................................................................429

Summary.......................................................................................431

12

Chapter 1

The ESP32 – Before We Begin

The ESP32 is a remarkable device. It is cheap enough to be used for tasks that were marginal for a microcontroller yet powerful enough to tackle tasks that until recently were too much for such a low-cost device. It has two cores, WiFi, Bluetooth and low-power consumption modes, together with a fast processor with enough memory to get most jobs done. It also has a great many built-in peripherals and interfaces such as the PWM, I2C, SPI, UART 

and ADC. It also has some novel peripherals such a motor controller PWM 

device,  a remote control subsystem, touch input, a sine wave generating DAC and an ultra low-power processor that can run while the main processors are in sleep mode. 

All of this makes the ESP32 suitable for very simple tasks such as a door or window open sensor or something much more sophisticated like a motor controller. 

The ESP32 Family

The ESP32 is designed by Espressif Systems, a Chinese company that gained reputation by its first processor, the ESP8266, which incorporated a WiFi subsystem in a very small, low-cost, package. The ESP8266 gained a loyal following from enthusiasts, but in the early days it was difficult to find out about the device because of the lack of English documentation. With the release of the ESP32 family these difficulties are behind us. Not only is there a lot of good documentation, there is an official SDK, the Espressif IOT 

Development Framework (ESP-IDF), which runs on Windows, Linux, and macOS and supports C and C++. Designed for building Internet of Things (IoT) applications, it provides Wi-Fi, Bluetooth, power management, and other system features. 

The ESP does suffer from the fact that there is no single reference implementation. With devices like those in the Arduino family and from Raspberry Pi there is a single source of product and information and this makes things simpler. However, most of the variation in the currently available ESP32 devices are minor and they are very compatible with one another. 
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The first thing to be clear about is that the ESP32 family is not based on the very common ARM processors. Currently ESP32 devices use either an Xtensa LX6 or LX7 processor or, less commonly, an open source RISC-V 

processor. As the ESP-IDF supports all of these processors, there is no difficulty in using any of them. However, most ESP32 development devices use the LX6. 

At the time of writing there are five commonly encountered ESP32 devices; the S series based on the LX6/7 processor and the C series using the RISC-V 

processor:

The S Series:

 ESP32      (2014) LX6 using dual core WiFi 4 and Bluetooth

 ESP32-S2 (2019) LX7 single core WiFi 4 only

 ESP32-S3 (2020) LX7 dual core WiFi 4 and Bluetooth

The C series:

 ESP32-C3 (2020) RISC-V WiFi 4

 ESP32-C6 (2021) RISC-V WiFi 6

The devices also differ in terms of memory configuration, GPIO lines and other features. Newer devices seem to be using the RISC processor in preference to the LX6/7. At the time of writing the ESP32 is the cheapest and most commonly encountered. However, the upgraded ES32 S3, which is considerably faster, is also readily available. The ESP32 and the ESP32 S3 

are both used as examples in this book. 

Development Boards

In most cases the development boards that you are likely to use are constructed using surface mount modules that contain the basic device. 

These take the form of the small silver box mounted on the development board. 
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It is this “silver box” which determines the characteristics of a development system. Manufacturers select a module and add some components to create a development board. It is also worth pointing out that you can buy the modules not mounted on a PCB and design them into your own electronics for a 100% custom ESP32. 

The main task of the development board is to convert the TTL serial port to a USB connector that provides power and a serial connection to the development machine. You can see a typical circuit diagram below: This is for the ESP32 DevKitC produced by Espressif and it is taken as the starting point for most other development boards. There is also an S3-based DevKitC. 

The key thing is that the development board generally adds very little to the ESP32 module used. That is, the main characteristics of the board are determined by the ESP32 module in use, but they can still differ in what GPIO lines are brought out to external pins and what additional hardware is provided – some provide an LED connected to GPIO 2. 
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When you buy a development board the first consideration is which module it uses. At the time of writing there are two main module families – WROOM

and WROVER. The main difference between them is that the WROVER 

family has a serial RAM device that is needed to support video devices. 

Other than this the two are identical. Nearly all development boards feature a WROOM or a WROOM S3 module and these come in a range with mostly minor differences. The most commonly encountered are:

Name

Flash Memory

ESP-WROOM-32

4 MB

ESP32-S3-WROOM-1

8 MB

ESP-WROOM-32-8M

8 MB

ESP-WROOM-32-16M

16 MB

While the ESP32 uses an LX6 dual-core processor,  the  S3  uses an LX7. 

There are other configurations that offer features for specific use cases. The 32U series, ESP-WROOM-32U etc, has an external U.FL (IPEX) connector for an external antenna rather than the internal PCB antenna and the HT series can withstand higher temperatures. Some very small development boards also make use of the ESP-Pico module which comes in a range of flash memory sizes. 

Development boards also differ in which GPIO lines are brought out to external connectors. 

A typical ESP32 is shown below:
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The S3 usually has two connectors, a UART and a USB, and usually has an addressable RGB LED connected to GPIO38: 

Smaller development boards generally bring out fewer GPIO lines to the outside world. For example:

There are usually two switches, boot loader and reset, and a power LED that can be a nuisance as you can’t turn it off without a soldering iron. A serial UART to USB chip is also usually included and this is often a CP2120 or a CH340. Some users claim that one is better than the other, but in practice they both work well. Most development boards use the same pinouts as the Espressif designed boards, but you will encounter minor variations and smaller form factors which expose fewer GPIO lines to the outside world. 

As already mentioned, you can also find development boards that don’t have a USB connector. These are generally powered directly via the power pins and are programmed using the UART serial interface without the help of the USB conversion. Working with this sort of board is slightly more difficult as you have to find a way to connect to the UART, but it works in exactly the same way once you have sorted out supplying power and making the serial connection. 
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What all this means is that, despite there being a confusing number of ESP32 development boards, they are all highly compatible and programmable in the same way. Apart from potential problems of differing amounts of memory and speed, a program written for one should run on another. The only exception to this rule is if the development board doesn’t make the GPIO line available for external use, but all of the standard size boards have the same set of external connections. 

The key points about the ESP32/S3 hardware that you are most likely to encounter in a development board:

 Dual-core LX6/LX7 processor, flexible clock running up to 240 MHz

 520KB of SRAM, and 4/8MB of on-board Flash memory

 USB 1.1 with device and host support

 Low-power sleep and dormant modes

 34/48 × multi-function GPIO pins 10/14 touch (capacitive) sensors

 4 × SPI, 2 × I2C, 3 × UART, 2 x I2S, CAN bus, 1/2 × 12-bit ADC, 2 x 8-bit DAC (ESP32 only) and 16 PWM outputs 

 Accelerated cryptographic hardware on-chip

 Separate low-power processor

Although it is early to be going into details, a diagram of the ESP32 pinouts will give you a good idea how versatile the device is:
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Notice that the lines that have in-pointing arrows are input only and the lines that are wavy are PWM compatible. Also notice the exclamation marks against GPIO6 to 11 indicating that these are not to be used as they form the interface to the flash memory. 

The ES32 S3 has a similar but different arrangement of pins and no input only pins:

There are also DevKitM variants which differ in a few pin positions. All of the diagrams in this book use the ESP32 and ESP32 S3 C development boards so make sure the development board you use has the same pin arrangement. 

Reset and Boot 

It is worth knowing what the two buttons that are part of almost every development board actually do and why you generally don’t need to make use of them.  As its name suggests, the reset/enable button resets the system and reboots it. If you press the boot button nothing happens until you press the reset/enable button when the system will enter “firmware download mode” and run the loader to allow new code to be downloaded via the serial port. 
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Once in download mode you have to use a utility such as esptool to download the code but an IDE like VS Code will also do the job, see the next chapter. The actual protocol used is documented, but usually you can ignore the details. 

The reset enable button is connected to the EN line on the module and reset/enable button is connected to GPIO0. This means that you cannot use GPIO0 for other purposes:

In practice, you rarely need to use the boot button to download code because most development boards use the standard configuration and connect the serial port’s DTR and RTS control lines to EN and GPIO0:

You can see that by toggling the serial control lines you can reset the system or set it into firmware upload mode. What this means is that you usually don’t have to press the buttons because the software you are using to upload or run code does the job for you. It is important to know this because if you use the serial port for other purposes you need to be careful about how the RTS and DTR lines are used, see Chapter 15 on the serial port for more. 

What To Expect 

There are no complete projects in this book – although some examples come very close and it is clear that some of them could be used together to create finished projects. The reason for this is that the focus is on learning how things work so that you can move on and do things that are non-standard. 
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What matters is that you can reason about what the processor is doing and how it interacts with the real world in real time. This is the big difference between desktop and embedded programming. In the desktop world you don’t really care much about when something happens, but when you are programming a physical system you care very much. 

This is a book about understanding general principles and making things work at the lowest possible level. When you are working directly with the hardware knowing what is happening matters. 

All of the examples are as basic as possible and the code is designed to be as easy to understand as possible. In most cases this means avoiding the use of constants that appear to come from nowhere and functions that make it difficult to see the basic steps. Also error handling is reduced to a bare minimum – simple programs look complicated if you add error handling code. Of course, there is no reason not to refactor these examples into something that looks more like production code and the effort in doing this is much less than getting the basic programs working in the first place. 

Rather than going through multiple possible configurations for a development environment, this book makes use of VS Code with the necessary extras to work with the ESP-IDF. You can select another approach if you want to but VS Code makes getting started very easy and quick. 

What Do You Need? 

Well – an ESP32 or an ESP32 S3 at least! In fact you probably are well advised to buy more than one just in case something goes wrong. The price that you have to pay for an ESP32 board varies according to the quantities you require. If buying single boards, the cheapest source is China with a single ESP32 board costing around $3 and an ESP32 S3 around $5, plus postage, of course. 

You also need a machine to run the software you need to create programs on, which can be downloaded into the ESP32 – the development machine. The good news is that you can use almost any desktop machine – PC, Mac or Linux system. 

As to additional hardware over and above the ESP32, you will need a solderless prototype board and some hookup wires, also known as Dupont wires. You will also need some LEDs, a selection of resistors, some 2N2222 

or other general purpose transistors and any of the sensors used in later chapters. See the Resources page for this book on the I/O Press website for links. 
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 A solderless prototype board and some Dupont wires

The ESP32 development board presents a particular problem for prototyping as it is too wide to fit on a standard board. There are some “slim” 

development boards that make a virtue out of being able to fit on a standard prototype board but a simple solution is to use two prototyping boards and plug one side into one board and the other into the other:

There is also an art to inserting and removing a large device such as the ESP32 from a prototype board. The trick is to use a plastic lever to slowly move each end of the device up from the board working evenly and slowly. 

While you don’t need to know how to solder, you will need to be able to hook up a circuit on a prototyping board. A multimeter (less than $10) is useful, but if you are serious about electronic projects, investing in a logic analyzer (less than $100) will repay itself in no time at all. You can get small analyzers that plug in via a USB port and use an application to show you what is happening. It is only with a multichannel logic analyzer that you have any hope of understanding what is happening. Without one and the slight skill involved in using it, you are essentially flying blind and left to just guess what might be wrong. 

 A Low Cost Logic Analyzer
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Finally, if you are even more serious, then a small oscilloscope is also worth investing in to check out the analog nature of the supposedly digital signals that microcontrollers put out. However, if you have to choose between these two instruments, the logic analyzer should be your first acquisition. 

It is worth noting that the ESP32 can generate signals that are too fast to be reliably detected by low-cost oscilloscopes and logic analyzers, which work at between 1MHz and 25MHz. This can mean that working with pulses much faster than 1µs can be difficult as you cannot rely on your instruments. There are reasonably priced 200MHz and 500MHz logic analyzers and one of these is certainly worthwhile if you are serious about hardware. It is worth knowing that both instruments can mislead you if you try to work with signals outside of the range that they can work with. 

It is also assumed that you are able to program in a C-like language – Java, C#, Python are all similar to C and, of course, so is C++. There isn’t space in this book to teach C programming, but the programs are easy enough to follow and any out-of-the-ordinary coding is explained. If you want to learn C in detail, see  Fundamental C: Getting Closer To The Machine, ISBN: 9781871962604. 

Community 

Because so many companies produce ESP32 boards there isn’t a single ESP32 community as there is for the Arduino or the Raspberry Pi.  Espressif runs a lively forum at:

https://www.esp32.com/index.php 

and this is a good place to ask questions and to see if there are already answers. There is also Stack Overflow, of course. 

On any forum, the quality of answers varies from misleading to excellent. 

Always make sure you evaluate what you are being advised in the light of what you know. Be kind and supportive of anyone offering an answer that indicates that they misunderstand your question. 

You also need to keep in mind that the advice is also usually offered from a biased point of view. Programmers experienced in C++ will often tell you a way to do something that isn’t as simple as a direct C solution. Electronics beginners will offer you solutions that are based on “off-the-shelf” modules, when a simple alternative solution is available, based on a few cheap components. On the other hand, electronics experts will often suggest developing custom hardware that could take months to get right when an off the shelf solution is cheap. Even when the advice you get is 100% correct, it still isn’t necessarily the right advice for you. 

As a rule, never follow any advice that you don’t understand. 
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Summary

● The ESP32 from Chinese manufacturer Espressif is a remarkably powerful device given its low cost and is ideal for building prototypes, one-offs and production devices. 

● C is an excellent choice to program the ESP32 in as it is simple and fast. 

● ESP-IDF, Espressif IoT Development Framework, supports C and, having been designed for building Internet of Things (IoT) 

applications, provides Wi-Fi, Bluetooth, power management, and other system features. 

● There appear to be so many different ESP32 development boards that it can be difficult to know where to start. However, there are only a small number of ESP32 modules which are used to create 

development boards and these differ only in small ways. 

● The original ESP32 is still available at a lower cost than its replacement ESP32 S3. 

● Start with a WROOM-32 EPS32 or ESP32 S3 development board with a full set of pins exposed. 

● You will need a pair of prototyping boards and some prototyping wires. 

● You also need a multimeter and preferably a logic analyzer. After these basic instruments you can add what you can afford. 

● If there is one piece of lab equipment you really should acquire it is a logic analyzer. Without it you are simply guessing at what is happening. 

● There is an active ESP32 community forum hosted by Espressif and if you get stuck it’s the place to ask for advice.  However, always evaluate any advice proffered and, in general, don’t accept it unless you understand it. 
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Chapter 2

Getting Started

The C language isn’t difficult but it is low-level and you need to adapt to using it to work with hardware. The software might be easy, but getting used to the ideas involved in working with hardware is another matter – you have to think a little differently. To put it simply, time matters. What this means will become clear in the rest of the book, but exactly when and in what order things happen are fundamental concerns to this sort of hardware programming, and this usually means needing the most efficient programming language possible – hence C is a perfect match. 

ESP-IDF

Espressif’s official SDK for the ESP32 is its IoT Development Framework ESP-IDF, which runs on Windows, Linux and macOS and supports C and C++ and is by far the best way to program the ESP32 in C. 

Starting to work with a new processor and its associated SDK is usually a time consuming and frustrating business. You generally have to set up a toolchain and make it work with the editor of your choice. This involves finding and installing a compiler and a build system. The fact that the compiler is usually one of the GCC family and the build system is usually based on CMake doesn’t mean that it will go smoothly just because you have experience with them. Each SDK generally has tweaked the compiler and the build system and this is something you have to learn and perhaps modify. 

It can be a steep learning curve, but the ESP-IDF is easy to install and even easier to use, as long as you use VS Code. It also supports Eclipse and you can, of course, use it with any development system you care to, but VS Code is used in the rest of this book and is highly recommended. 

Install VS Code

There are no prerequisites for getting started, all you need is a machine that will run VS Code.  If you don’t already use VS Code your first task is to install it. As its installation procedure changes very frequently, the best advice is to follow the current instructions on the website: https://code.visualstudio.com/. 

accepting all the defaults unless you have a good reason not to. 
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Once you have VS Code installed you need to add the C/C++ extensions: If you install the C/C++ Extension Pack you will be offered the other two C/C++ extensions as suggestions and get CMake and CMake Tools automatically. CMake is the best way to keep control of a large multi-file project, but you don’t need it for small single-file examples such as Hello World. If VS Code offers to configure CMake for you, select the option, Ignore CMake. The ESP-IDF uses CMake, but in such a way that you can mostly ignore it. 

Installing IDF

Once you have VS Code installed you can search for the ESP-IDF Extension: 26
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The extension doesn’t take long to install and you will see the ESP logo appear on the left sidebar:

Select it and the Welcome screen should appear. You can use this to install the SDK and at this stage the simplest thing to do is accept the Express setup, unless you have already installed it. 

If you select Express, another dialog box appears and lets you select the version of the SDK you want to install and the installation’s location. The defaults are usually acceptable. 
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When you click Install the entire SDK complete with tools, compiler, linker etc are downloaded and installed. This takes tens of minutes depending on the speed of your internet connection. 

When the installation is complete you will see a new page with options to create or import a project. You can use these or the equivalent menu items in the left hand extensions bar:

A First Project

To get started you need an ESP32 or ESP32 S3 (or any other model if you are happy about making any small modifications to the procedure). The simplest thing to do in the first case is to connect the development board to the development machine via a USB cable. If you are using an S3 

development board it doesn’t matter which USB connector you use, but the direct USB port is faster. 
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There are many ways to start a new project including taking an existing example and modifying it, but most of the time you will want to start with a minimal project. To do this first select the New Project Wizard and wait for it to load. 

When the New Project tab appears enter the name of the project and the directory to use. More difficult is selecting the development board. Unless you are using something different, select ESP-WROVER-KIT 3.3V. The other options mostly differ in how the board will be programmed. This, and the actual ESP32 used, can be changed later. If you have already connected the ESP32, then you should be able to select its COM port from the dropdown list. If it doesn’t appear then you probably need to install a USB-to-Serial driver on the host machine. 
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Next select the Choose Template button and, when the page appears, select the template-app option – there are many others that you can explore later: The template-app is an absolutely minimal project with no code in the main.c file. Click the Create Project app and use the File, Open Folder menu command to open the HelloWorld folder. Several subfolders are created automatically, but the only one of interest at the moment is main where you will find main.c, the C main program:
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Enter the following code into the file using the VS Code editor:

#include <stdio.h> 

void app_main(void)

{

printf("Hello World\n"); 

}

Now we need to build and run the program. Instead of the standard VS Code options, use the new ones provided by the IDF extension. 

First we need to set the target for the compiler, in our case either esp32 or esp32s3, but things work exactly the same for the other targets. 

Having selected the correct processor, the next step is to choose the flash and debug method.  As we haven’t set up debugging yet this is largely irrelevant – see later. Select any option:
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Now we are ready to build, flash and monitor our program. You can do this using the commands in the ESP-IDF extension’s menu bar:

The Build command will build the project for the target you have selected. 

The first time you build a program all of the files needed to make it work are compiled – this can take a long time. Typically a clean build can take more than 10 minutes, but subsequent builds will be much quicker as only the files that have changed are recompiled. 

You can then use the Flash command to install it into the target. At this point you will be asked how to flash the device:

The three options are:

  JTAG   Joint Test Action Group

 DFU

Device Firmware Update, only available on an S3

 UART  Universal Asynchronous Receiver/Transmitter

Select UART and the program should be downloaded to the ESP32 without a problem. 
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When the program is downloaded it is run at once, but we have no way to see the results as there is no terminal connected to the serial port. Rather than connect a serial terminal, the simplest thing to do is to run the Monitor program using the Monitor command. This will restart the program you just flashed and you should see:

I (304) main_task: Started on CPU0

I (314) main_task: Calling app_main()

Hello World

I (314) main_task: Returned from app_main()

There will also be a lot of messages before the Hello World. The SDK 

includes lots of logging messages, which are sometimes useful while you are creating a new app. You can turn the messages off in a production application. 

This completes your first application. You simply repeat these steps each time you start a new one. Notice that if you make a major change to the configuration, such as changing the target, then a clean build is performed and it will take longer. 

The Icons and Palette Commands

So far we have made use of the extension’s commands in the left sidebar, however, the status bar at the bottom of the window also has most of the actions and information you need:

In most cases you can set the quantity or run the task by clicking on the icon. For example, clicking on the target icon allows you to set the target. 

Notice that Build/Flash/Monitor is a compound command that will build the project, flash it and then let you see the result by running the monitor. 

The debug option doesn’t work unless you set up the development board to support it, see later. 
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The commands that are available via the ESP-IDF extension’s left sidebar and the status bar are just the most commonly used. A full list of commands can be found by opening the command palette using CTRL+SHIFT+P and typing “esp” to select commands beginning with ESP:

Configuring The SDK

Most of the time you can simply write your programs and run them as described above, but occasionally you need to change things. The ESP-IDF 

extension provides the SDK Configuration editor to allow you to change how things work. The only problem with using it is that there are far too many options to make finding what you are looking for easy. The best way of using it is to type a suitable keyword into the search box. For example, if you want to change the way the compiler is configured you can set the build using the dropdown list. 

If you type “compiler” into the search box you will find the same set of options. 
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An ESP-IDF project is made up of components. Each component can be compiled separately and has its own CMake files to specify how to do this. 

These files can be configured using the SDK Configuration Editor. Most of the time you don’t have to worry as the build system will include the standard components in its initial build. Most of the hardware peripherals such as SPI, PWM, GPIO etc have components that are automatically included in your project and can be configured using the SDK Configuration Editor. 

That is unlike most SDKs you can ignore the problem of configuring which aspects of the system you want to use. All of the standard components are included in the initial build and only the components you use are linked into your final executable. The only downside of this approach is the long first build time and the need to repeat a complete build if you change the configuration of the project. 

You can create your own components to extend the system using the Create ESP-IDF component command. This is usually not necessary unless you plan to distribute the new component to other users. There is a Component Registry and you can find and install components. To do this use VS Code’s Command Palette and find the command  ESP-IDF Show Component Registry. From this point you will be able to browse the available components and add any that you want to use to your project. 

It is also worth keeping in mind that the project starts from the main component. This is automatically added to the build as long as it is in the project directory/main. As all of the other components are added to it as dependencies the entire project is built along with it. You can change the name of the main component by changing the name of the folder it is stored in but then you have to specify in its CMake file all of the components you want to use. 

The Monitor

The standard way to interact with an ESP32 while it is running a program is to use the Monitor program. This is a Python app that implements a customized serial terminal. It receives and displays the many system messages that the ESP32 generates while running your app after a debug build. 

The most important thing to know about the Monitor program is that it restarts the ESP32 when it loads. This can be a surprise if you are capturing outputs using a logic analyzer, say. You will see the application run when it is first flashed and then it will restart when the Monitor runs. This is not a bug. 
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The Monitor will display and interpret log messages sent by the ESP32 via the serial port. This can be overwhelming when, for example, warning and error messages are generated from a loop. You can stop the output using one of the Monitor commands. 

To send a command to the Monitor you first have to press CTRL+T and then one of the standard commands:

 Shortcut

Command

CTRL+]

Exit the program

CTRL+T

Menu escape key, repeat to send CTRL+T

CTRL+]

Send the exit character to remote

CTRL+P

Reset target into bootloader to pause app via RTS and DTR lines CTRL+R

Reset target board via RTS

CTRL+F

Build and flash the project

CTRL+A (or A)

Build and flash the app only

CTRL+Y

Stop/resume log output printing on screen

CTRL+L

Stop/resume log output saved to file

CTRL+I (or I)

Stop/resume printing timestamps

CTRL+H (or H)

Display all keyboard shortcuts

CTRL+X (or X)

Exit the program

CTRL+C

Interrupt running application

You can turn off all logging using the SDK Configuration Editor: 36
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If you want to stop the Monitor resetting the ESP32 then there seems to be no easy way to modify the built-in command, but you can open an ESP-32 

terminal and enter the command:

idf.py monitor --no-reset -p COM3 

where you replace COM3 by the serial port that the ESP32 is connected to. 

A common error is that a command refuses to complete because the serial port is busy. This is usually because there is an open terminal still making use of it. The simplest way to solve the problem is to close all of the terminal windows:

Debugging Using JTAG

Setting up debugging for the ESP32 can be tricky as it involves using a JTAG 

(Joint Test Action Group) adapter. Some ESP32 development boards, including the ESP32 S3, have an inbuilt JTAG adapter which avoids having to use an adapter. This is a significant advantage as it avoids having to buy an external JTAG adapter and also frees up the four GPIO pins the external adapter requires. 

All ESP32 development boards support the JTAG bus, but it uses four GPIO 

lines and sometimes these are allocated to another purpose. In this case you cannot set up JTAG unless you disable whatever is using these pins. 

You don’t need to set up debugging to work with the examples in the following chapters and indeed many programmers rely on the use of the Monitor and log messages to debug their programs. You can leave tackling debugging until later, but it is well worth doing at some point as it will save you a lot of time in the long run. There are so many things that can go wrong there is a specific FAQ on the topic:

https://github.com/espressif/openocd-esp32/wiki/Troubleshooting-FAQ
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Your first problem is to select a JTAG adapter and there are many. The only important point is that the ESP32 does not support SWD (Serial Wire Debug) which is a modification of JTAG for ARM processors. However, the ESP32 

will work with an adapter that supports both JTAG and SWD. A safe and reasonably-priced choice is to use the ESP-Prog which is an Espressif-designed JTAG and serial port adapter:

This is available from a range of manufacturers at less than $20. It’s only downside is that it has features that you are unlikely to use. For example, it has a serial port which can be used to flash and monitor the ESP32 and it has a non-standard ribbon cable connector that isn’t usable with most development boards. It will also work with 3.3V which is the norm and 5V. 

Rather than try to make use of all of the features of ESP-Prog, it is easier to use the USB connection for Flash and Monitor,  on the development board. 

Another option is to use the JTAG adapter to flash the development board and the USB connection only for monitoring:
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Assuming you have an ESP-Prog board, connecting to the ESP32 is relatively easy. You have to connect four pins plus ground on the large JTAG connector to ESP32 GPIO lines:

ESP32 Pin

ESP32 S3 Pin JTAG Signal

MTDO / GPIO15

MTDO / GPIO40

TDO

MTDI / GPIO12

MTDI / GPIO41

TDI

MTCK / GPIO13

MTCK / GPIO39

TCK

MTMS / GPIO14

MTMS / GPIO42

TMS

Notice that the ESP32 S3 pin connections only apply if you activate them by burning an eFuse. Burning DIS_USB_JTAG eFuse will permanently disable the connection between USB_SERIAL_JTAG and the JTAG port of the ESP32-S3. 

Burning STRAP_JTAG_SEL eFuse will enable selection of the JTAG interface by a strapping pin, GPIO3. When this pin is set low, GPIO will be used and when it is high USB will be used.  In practice, it is better to use the internal JTAG USB port and leave the GPIO lines available for general use. 

The connections for an ESP32 DevC development board are:
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GPIO12 is a strapping pin that controls the voltage to the SPI Flashing port. 

If it is low at boot then 3.3V is used to flash. In principle the ESP-Prog should take care of this by using a delay to allow the ESP32 to start before it tries to connect but this sometimes goes wrong. What this means in practice is that you should connect GPIO12 to the ESP-Prog after it has booted or only connect the USB power to the ESP-Prog after connecting power to the ESP32. Alternatively you can disable the strapping pin by setting the flash voltage using:

espefuse.py set_flash_voltage 3.3V

Notice that this is an irreversible change. At the time of writing this cannot be achieved from the VS Code IDF Terminal. 

Once you have the ESP-Prog wired up and connected, your biggest problem is ensuring that the correct drivers are installed. Under Windows this can be done using the Zadig utility. Download this from https://zadig.akeo.ie/ and use it to set the drivers for the Dual RS232-HS device to be WinUSB. You only need to do this for Interface 0, but it is no disadvantage to do it for both as you can use the USB connection provided by the ESP32 as the serial port. 

To see all of the devices you have to select the Options, List All Devices. You need to reboot and check that the drivers have been changed. 

You can now use the debug command to set breakpoints and single-step through a program. 
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Notice that at the time of writing the restart command does not work. To rerun the program simply disconnect and use the debug command again. 

JTAG flashing works and can be faster than UART flashing. 

As already mentioned, the ESP32 S3 has a built-in JTAG adapter.  It connects using the USB C socket. In general all you have to do is connect both USB C 

sockets to the development machine:

The big problem with using the built-in JTAG is, once again, drivers for the USB ports. At the time of writing, the SDK doesn’t install the correct drivers for Windows. You need to make use of Zadig again to install drivers. The important one is JTAG/serial debug unit (Interface 2) which needs libusbK 

installing:

Interface 1 is just a standard serial USB port. 

Under Linux adding OpenOCD udev rules is required and is done by copying the udev rules file at 

https://github.com/espressif/openocd-esp32/blob/master/

contrib/60-openocd.rules

into the /etc/udev/rules.d directory. 
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With this change and a reboot you should be able to get JTAG debugging working, but at the time of writing there are some difficulties. The first is that you should use the COM port provided by the JTAG USB device. This makes it possible to flash and use the Monitor. If you want to use JTAG for flashing the ESP32 S3, you need to start OpenOCD before you select Flash as allowing the Flash command to open automatically fails. You can use the Debug command and it will allow you to single-step through a program and it will show you the values of locals etc. You cannot make use of the Restart command. Instead you have to disconnect from OpenOCD and use the Debug command again to rerun the program. 

If you want to see output from the debugging you have to open a Monitor Terminal before you start debugging. 

If the system gets into a mess and trying to run debug simply times out, then stop OpenOCD, reset the ESP32 S3 and allow the debug command to autoload OpenOCD. 

Hints

The VS Code ESP extension works well but there are some shortcuts and 

“resets” that you learn as you work with it and here are some to help you get up to speed:

 If you see error messages that something fails because the serial port cannot be accessed, the reason is usually that a terminal has it open. 

Simply close all of the terminals using the list on the right-hand side:

 Making changes to the target, and many other major changes to a program, causes the entire SDK to be recompiled. You can track its progress in the Built Task terminal window where you can see a count of components compiled/number of components
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 The ESP-IDF Terminal can be used to enter most of the SDK’s commands as it has the correct paths set. 

 You can do a lot of debugging using the Monitor, but it can be a problem in that it automatically restarts the program. To avoid this, use an ESP-IDF terminal and enter:

idf.py monitor --no-reset -p  port

where  port is replaced by the serial port used to connect to the ESP32. 

 You can see the output of a program while debugging by starting a Monitor before you start debugging. You can use the - -no-reset option to avoid having to run the program before debugging starts. 

 The Debug Step Over command doesn’t always work and you will have to single-step through any functions called. The solution is to place a breakpoint following the function. 

 If you find that breakpoints and single stepping are not working correctly, check to see if you have remembered to flash the current build to the device. It is possible to use updated source code with outdated machine code. 

 It is often useful to see an assembly listing of the current main program. The simplest way to do this is to start an ESP-IDF terminal and use the command:

xtensa-esp32-elf-gdb  path to .elf file

and then use the command:

disassemble /m  function

where  function is the name of the function you want disassembled. 
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Summary

● You can program the ESP32 from the command line or using the Eclipse IDE, but the easiest way to get started is to use VS Code and its ESP-IDF  Extension. 

● After installing VS Code, the IDF Extension and the ESP-IDF SDK 

you can quickly create a first program by simply connecting the development board to a development machine via USB. 

● Use the New Project wizard and the template-app to create an empty project whenever you are starting something new. 

● The IDF Extension adds lots of commands to VS Code, but most of the time you can access what you need either from the extension’s menu or the bottom bar. 

● The first time you compile a program it takes tens of minutes as the entire SDK is compiled. Subsequent compiles are faster because they only recompile what is necessary. Major changes to a project can trigger a complete recompile. 

● You can see the output of an application using the Monitor. 

● Often the Monitor is sufficient for simple debugging, but sooner or later you are going to need JTAG-based debugging. 

● For the ESP32 you need a JTAG adapter such as the ESP-Prog. The ESP32 S3 has an adapter built in and you only need to make a second USB connection. 

● The main problem with getting JTAG working is installing the correct drivers for the adapter. 
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Chapter 3

Getting Started With GPIO

In this chapter we take a look at the basic operations involved in using the ESP32’s General-Purpose Input/Output (GPIO) lines with an emphasis on output. We’ll consider questions such as how fast can you change a GPIO 

line, how do you generate pulses of a given duration and how can you change multiple lines in sync with each other? 

ESP Pins

The first thing to make ourselves familiar with is the layout and range of GPIO pins available on a typical development board – some development boards have fewer or differently arranged pins. Most development boards are based on the ESP32-DevKitC or the ESP32-S3-DevKitC but they sometimes have additional onboard LEDs or reduced GPIO pins. The pins are usually described on the PCB and you can use this to confirm that the development board you are using has a particular pin configuration. 

All of the pins have multiple uses, most of which we will explore in later chapters, but here we concentrate on their simplest use as GPIO lines. A GPIO line can be configured as an input or an output, but what is important even at this early stage is that you know that the ESP32 is a 3.3V device. 

This means that a GPIO line works with two voltages, 0V and 3.3V. If you try to use a GPIO line at a higher voltage then you risk damaging the ESP32. 

You can power the ESP32 via the USB port, which is the easiest way while you are developing software. You can also supply 5V via the 5V pin and it will be regulated down to 3.3V or you can connect a 3.3V supply to the 3.3V 

pin. You can only use a single method of powering the ESP32. 
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The ESP32 usually has 34 physically accessible GPIO lines in four groups: GPIO0 to GPIO19, GPIO21 to GPIO23, GPIO25 to GPIO27

and GPIO32 to GPIO39. 

Pins GPIO34 to GPIO39 are input only. 

Notice that GPIO37 and GPIO38 are not available on most development boards. The following GPIO lines are used for other purposes and should be avoided:

GPIO0

Used at boot to signal Firmware upload

GPIO1

Used for USB serial Tx

GPIO2 

Sometimes used to drive onboard LED 

GPIO3

Used for USB serial Rx

GPIO6-11

Shared with Flash memory SPI

GPIO16-17 Not available on WROVER modules SPI
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The ESP 32 S3 has 45 GPIO lines but also has 34 only physically accessible GPIO lines in two groups: 

GPIO0 to GPIO 21 and GPIO35 to GPIO48

All GPIO lines are input/output. 

You can see that while there is a lot of overlap, GPIO assignments and use in the ESP32 and ESP32 S3 are not the same. The following GPIO lines are used for other purposes and should be avoided:

GPIO0

Used at boot to signal Firmware upload

GPIO19-20 Used for USB connection

GPIO38-42 Not available on WROVER modules SPI

As is the case with most microprocessors, each GPIO line has multiple uses as you can see in the diagrams. You can select what mode a pin is used in and in this chapter we concentrate on using pins in the simplest GPIO mode. 

Even so, which pins you select for general-purpose use should take into account what other uses you might put pins to. 
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Another complication is that some pins are used when the ESP32 boots to set its state. Pins GPIO0, 2, 5, 12, 15 on the ESP32 and pins GPIO0, 3, 45, 46 

on the ESP32 S3  are “strapping pins” and if you use pullup or pulldown resistors to set their initial state you will change the behavior at boot time. 

Each of the strapping pins has an internal resistor that will pull it either high or low and hence supplies the default behavior. If the strapping pins are connected to anything then these weak resistors are overcome and you can set the pins to any initial state. Strapping pins are useful in that you can use them to set up the ESP32 but they are often a nuisance when you forget that they exist and accidentally set them. Notice that the state of the pins is sampled and saved when the system boots – after this you can use them as general GPIO lines without worry. 

Pins GPIO1, 3, 5, 14-15 are also used by the system at start up to send boot status data. This means that on booting up these pins change state rapidly and could trigger any devices connected to them, leading to difficult-to-find bugs. 

Another consideration is that if you plan to use JTAG debugging you need to avoid pins GPIO12-15 in the ESP32 which implement the JTAG protocol. 

You can disable the JTAG protocol by programming an eFuse but this isn’t generally a good idea. The EPS32 S3 uses GPIO39-42 for JTAG but this is normally disabled and you have to program an eFuse to turn it on. In most cases you are better using the built in JTAG adapter via the USB connector. 

In general with the ESP32 you can use pins GPIO4, 5, 13-33 for general I/O 

without restrictions and pins GPIO34-39 for input only. GPIO2 can also be used for general I/O if it isn’t connected to an onboard LED. 

For an ESP32 S3 you can usually use pins GPIO1, 2, 4-21, 38-44,47,48 

without worrying about strapping or other uses. 

Notice that the two ranges only overlap in GPIO13-33 range. 

It is also worth knowing at this early stage that there is a second set of GPIO 

lines referred to as RTC GPIO which use the same pins as the standard GPIO

lines, but are only active in deep-sleep or ultra low power mode. Their purpose is to allow the processor to control things while in low-power mode. 

You can ignore these additional lines for the moment and concentrate on using the standard GPIO lines. 

Each GPIO line can be used for a range of different things depending on what hardware it is connected to internally. Rather than providing a function which sets the connection directly, the API provides components which automatically set the GPIO up correctly to be used with these connections. For example, when you set up a PWM, Pulse Width Modulation, component you specify the GPIO line to use and the software sets up the internal connection, i.e. the GPIO mode, for you. 
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There is no standard notation for which physical pin to connect to, but if the development board is based on the or similar the two connectors on either side are called J2 and J3 or J1 and J3 and the pins are numbered sequentially: ESP32                                  ESP32 S3

Basic GPIO Functions

To use a GPIO line as a simple GPIO line, recall that they have many other more sophisticated uses, you can call the: 

gpio_reset_pin( id)

This sets the GPIO line specified by  id to a default setup in which pullup is enabled and input/output is disabled. A more sophisticated configuration function that can set the mode more precisely is discussed in the next chapter. 

Notice that  id is the GPIO number and not the hardware pin number. For example, 16 means GPIO16 and not “connector pin 16” but connector J3 pin 12 on an ESP32 and J1 pin 9 on an ESP32 S3. 

You can use either an integer number for the id or one of the enum members of the form:

GPIO_NUM_ n 

for pin n. 
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The gpio_reset_pin function sets the line up as a simple GPIO line, but we still need to configure it as an input or an output. 

gpio_set_direction( id,  mode)

where  mode is usually either GPIO_MODE_OUTPUT or GPIO_MODE_INPUT. There are other options and these are discussed later. 

Once you have the GPIO line set to output mode you can set the output level using:

gpio_set_level( id,  level)

where  level is 0 or 1 corresponding to a 0V or 3.3V output. 

Blinky

By tradition, the first IoT program you write is Blinky which flashes an LED. 

A program to flash an LED uses a general I/O line and an external LED. 

Some development boards have an LED already connected to GPIO2. With this in mind, let’s flash an LED connected to GPIO2 which will either use the onboard LED or an external LED you have connected. 

The ESP32 S3 has an addressable RGB LED connected to GPIO48. This is more complicated than a simple LED and not suitable for a first program. 

See Chapter 14 to discover how to use it. Connect an LED to GPIO2 in the case of ESP32 S3

Start a new project using the New Project Wizard, select the ESP-IDF board you are using, serial port and the template-app. 

Enter the program:

#include <stdio.h> 

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

void app_main(void)

{

gpio_reset_pin(2); 

gpio_set_direction(2, GPIO_MODE_OUTPUT); 

while (1) {

gpio_set_level(2, 0); 

vTaskDelay(1000 / portTICK_PERIOD_MS); 

gpio_set_level(2, 1); 

vTaskDelay(1000 / portTICK_PERIOD_MS); 

}

}

The program doesn’t use any constants in order to make what is happening clearer. It first initializes GPIO2 to a simple GPIO line and then to be an output and sets it repeatedly high and low with a pause of one second in between. The vTaskDelay function is a delay function provided by RTOS. 
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If the board you are using has an LED connected to GPIO2 you will see it flashing. If not and you want to connect an LED to see the "blinking" for real then this is easy enough, but you do need a current-limiting resistor to avoid the LED drawing more current than the GPIO line can supply and possibly damaging the chip. A 200Ω resistor is a good choice, see Chapter 5, where a better way to drive an LED is also discussed. 

ESP                                               ESP32 S3

How you build the circuit is up to you. You can use a prototyping board or just a pair of jumper wires. The short pin and/or the flat on the side of the case marks the negative connection on the LED – the one that goes to ground. 
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If you can't be bothered to go through the ritual of testing Blinky with a real LED, then just connect a logic analyzer to J3 Pin 15 and you will see pulses at 1-second intervals. 

Adding A Toggle Function 

As an example of something slightly more advanced, we can implement a toggle function which sets the line high if it is low and low if it is high. To do this we need to know the current state of the pin. One way of doing this is to create a static variable which stores the current state, but it is easier and more reliable to simply read the state from the GPIO line. The function: gpio_get_level( id)

returns the level of the specified pin with 1 for high and 0 for low.. If you set the pin’s mode to output then this function always returns 0. To read the current state it has to be configured to input/output mode. 

The function:

void gpio_toggle(gpio_num_t gpio_num){

int state = !gpio_get_level(gpio_num); 

gpio_set_level(gpio_num, state); 

}

sets a line high it if it is low and low if it is high. This form of the function shows how it works, but in practice you would probably write it in a more compact form:

void gpio_toggle(gpio_num_t gpio_num){

gpio_set_level(gpio_num, !gpio_get_level(gpio_num)); 

}
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With toggle it is even easier to implement Blinky: 

#include <stdio.h> 

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

void gpio_toggle(gpio_num_t gpio_num){

gpio_set_level(gpio_num, !gpio_get_level(gpio_num)); 

}

void app_main(void)

{

gpio_reset_pin(2); 

gpio_set_direction(2, GPIO_MODE_INPUT_OUTPUT); 

while (1) {

gpio_toggle(2); 

vTaskDelay(1000 / portTICK_PERIOD_MS); 



}

}

Notice that creating a “higher” level function like toggle brings its own problems. For example, what happens if the GPIO pin isn’t set to input/output mode? You can write the function to check that the GPIO mode is set correctly but this will make the toggle function more complex. In no time at all a small compact function grows to be a source of slowness. 

Writing real time software that interacts with hardware always has this balance of abstraction and robustness v simple speed of operation. Put simply you can do it fast or safe but usually not both. 
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Summary

● The ESP32 has 34 GPIO lines and the ESP32 S3 has 45 in total, but some are already used by the development board and. 

● The pin numbering used isn’t standardized, but using the GPIO 

numbers that the ESP32 module uses is a safe option. 

● The ESP32 GPIO lines are organized in four groups, GPIO0 to GPIO19, GPIO21 to GPIO23, GPIO25 to GPIO27 and GPIO32 to 

GPIO39. Pins GPIO34 to GPIO39 are input only. 

● The ESP32 S3 GPIO lines are organized in two groups GPIO0 to GPIO 21 and GPIO35 to GPIO48

● The ESP32 is a 3.3V device and the GPIO lines should not be used at a higher voltage. 

● The API provides the function to control a single GPIO line and its basic methods let you set the line high or low and to discover what it is currently set to. 

● A Blinky program is usually the first IoT program you write on a new machine. For the ESP32 you can easily arrange to make an externally connected LED blink on and off. 

● An externally connected LED needs a current-limiting resistor. 

● The ESP32 S3 has an RGB LED but it is complicated to use and not suitable for a first program. 

● It is easy to extend GPIO support to more complex functions. For example the toggle function but these are always compromises between speed and robustness. 
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Chapter 4

Simple Output

A GPIO line is either configured to be an input or an output. The electronics of working with inputs and outputs are discussed in the next chapter, but first we focus on the software side of the task of using GPIO lines in output mode. While it isn’t possible to ignore electronics entirely, keep in mind that more details are provided in Chapter 5. 

It is worth noting at this stage that output is easy. Your program chooses the time to change a line’s state and you can use the system timer to work out exactly when things should happen. The real problems only start to become apparent when you are trying to change the state of lines very fast or when they need to be changed synchronously. This raises the question of how fast the ESP32 can change a GPIO line and this is something we consider at this early stage because it puts constraints on what we can easily do. 

Basic GPIO Functions

We have already met the basic functions that let you work with a single GPIO line:

Method

Description

gpio_reset_pin( id)

Sets pin into GPIO mode with defaults

gpio_set_direction( id,  mode)

Sets the I/O direction

gpio_set_level( id,  level)

Sets the line to  level,  1 or 0, 

Using these methods is very straightforward, but notice that there is no way to set multiple lines in one operation. This can be a problem, something we’ll come to later. 

You can get a long way using just these functions. There are a few more that are useful, but they mainly relate to the configuration of the electronic properties of the GPIO line and are discussed in the next chapter. 
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How Fast? 

A fundamental question that you have to answer for any processor intended for use in embedded or IoT projects is, how fast can the GPIO lines work? 

Sometimes the answer isn't of too much concern because what you want to do only works relatively slowly. Any application that is happy with response times in the tens of millisecond region will generally work with almost any processor. However, if you want to implement custom protocols or anything that needs microsecond, or even nanosecond, responses, the question is much more important. 

It is fairly easy to find out how fast a single GPIO line can be used if you have a logic analyzer or oscilloscope. All you have to do is run the program:

#include <stdio.h> 

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

void app_main(void)

{

gpio_reset_pin(2); 

gpio_set_direction(2, GPIO_MODE_OUTPUT); 

while (1) {

gpio_set_level(2, 0); 

gpio_set_level(2, 1); 

}

}

If you run this program you will discover that the pulses are not evenly spaced. The up time for the ESP32 is 350ns, but the down time is 320ns: The ESP32 S3 is slightly faster with an up time of 324ns and a down time of 300ns. Compiling with debug turned off and optimizing for speed improves this slightly making both around 300ns respectively. Optimizing for speed makes little difference in this case but it does reduce the time difference between the up and down times. 
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To set the compiler target use the SDK Configuration Editor and search for Compiler:

The unevenness is due to the internal workings of the loop. The line is set to high and then the loop has to jump back to the start and this takes longer than the time to execute the body of the loop.  If you change the way that the code is specified, you are likely to see changes in timing. For example, if you swap the order that the GPIO line is set:

while (1) {

gpio_set_level(2, 1); 

gpio_set_level(2, 0); 

}

you will discover that the high time and the low time have swapped roles and now the output is low for longer than it is high. When you are working at this level of speed small differences in code matter. 

What if you want more equal pulses? The answer is that you have to include no-op instructions to increase the time in the part of the program that is running too fast. There is no no-op instruction in C, but incrementing an integer variable is usually compiled to a single short instruction. For example:

#include <stdio.h> 

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

void app_main(void)

{

gpio_reset_pin(2); 

gpio_set_direction(2, GPIO_MODE_OUTPUT); 

volatile int waste = 0; 

while (1) {

gpio_set_level(2, 0); 

waste++; 

gpio_set_level(2, 1); 

}

}
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This evens up the pulse widths to about 324ns high, 330ns low on an EPS32

S3. The volatile modifier is needed to stop the compiler from optimizing out an instruction that obviously does nothing. There are many times when the compiler optimizes programs under the assumption that running time is irrelevant other than to make it as small as possible – this is sometimes not what you want in the case of an IoT program. 

The speed is very good. Compare the 324ns pulse width to the 5.7 spu μ

lse 

width that is typically achievable using MicroPython. The C program is more than ten times faster. 

Including Pauses

To generate pulses of a known duration, we need to pause the program between state changes. In the Blinky programs we used vTaskDelay to slow things down, but without properly introducing it. 

Using vTaskDelay( ticks) gives a pause or “wait”  for the specified number of ticks. This function is supplied by RTOS and when you call it the running task is suspended for the specified number of ticks of the realtime clock. 

While the task is suspended other tasks have the opportunity to run so it doesn’t stop the processor from working. The problem with using vTaskDelay is that the size of the tick varies and it is always of the order of a millisecond or so. This means to set an exact time you have to know how long a tick lasts and the API provides the portTICK_PERIOD_MS. For example, the default for a basic ESP32 configuration is 10ms. To set the time delay in milliseconds, ms, we need to use:

vTaskDelay(ms/ portTICK_PERIOD_MS); 

Notice that the smallest delay we can set is portTICK_PERIOD_MS as ticks cannot be subdivided. If you delay for one tick on a system using 10ms as its tick period, you will find that the pulses are around 11.5ms. 

It is convenient, but not essential, to define a delay_ms function: void delay_ms(int t){

vTaskDelay(t / portTICK_PERIOD_MS); 

}

This leaves us with the problem of what to use to create delays in microseconds. Neither the API nor RTOS provide such a function. Oddly, one easy solution lies in the unistd.h header, which provides access to the POSIX API. This is supported to allow the ESP32 to support POSIX threads, but it also has an implementation of usleep. This uses a busy wait for times less than portTICK_PERIOD_MS and vTaskDelay for longer delays. In the same library is sleep(s) which uses usleep to delay for the specified number of seconds. Both of these functions are poorly documented, but are extensively used in the API. For example, to create microsecond pulses you could use; 58

#include <stdio.h> 

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

#include "esp_rom_sys.h" 

#include <unistd.h> 

void delay_us(int t){

usleep(t); 

}

void app_main(void)

{

gpio_reset_pin(2); 

gpio_set_direction(2, GPIO_MODE_OUTPUT); 

while (1) {

gpio_set_level(2, 0); 

delay_us(1); 

gpio_set_level(2, 1); 

delay_us(1); 

}

}

The actual delay produced is usually longer than specified, For example, specifying 1 spr

μ

oduces pulses of around 1.7 s

μ . Typically all times are about 

0.7μslonger than specified. 

The traditional way of introducing a busy wait (also known as a spin wait) is to simply use a time-wasting for loop which produces short wait times:

#include <stdio.h> 

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

#include "esp_rom_sys.h" 

void app_main(void)

{

gpio_reset_pin(2); 

gpio_set_direction(2, GPIO_MODE_OUTPUT); 

volatile int i=0; 

int n=2; 

while (1) {

gpio_set_level(2, 0); 

for(i=0;i<n;i++){}

gpio_set_level(2, 1); 

for(i=0;i<n;i++){}

}

}
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This generates pulses according to the setting of n: Time in µs Time in µs

n

ESP32

ESP32 S3

1

0.57

0.48

2

0.70

0.58

3

0.80

0.67

4

0.92

0.76

5

1.03

0.86

6

1.15

0.95

7

1.27

1.05

8

1.38

1.30

9

1.51

1.22

10

1.63

1.32

These figures are for the high time of the pulse and provide a ballpark figure of what you can expect. In any given application, you should repeat the measurement with the device you plan to use. 

Microsecond Timer

When generating or reading pulses it is often necessary to record the time with microsecond accuracy. The API provides a high-resolution timer as part of the standard POSIX time module. This is sophisticated enough to be used to find the current time and date, corrected for time zone if required. 

However, for this lower-level application we only need the number of microseconds that have passed since the machine was switched on. You can get the time in microseconds using:

#include <sys/time.h> 

struct timeval tv_now; 

gettimeofday(&tv_now, NULL); 

int64_t time_us = (int64_t)tv_now.tv_sec * 1000000L + 

(int64_t)tv_now.tv_usec; 

printf("Time %lld",time_us); 

Notice that the time is returned as a 64-bit value. 

You can package this into a function to make it easier to use: int64_t tick_us(){

struct timeval tv_now; 

gettimeofday(&tv_now, NULL); 

return (int64_t)tv_now.tv_sec * 1000000L +

(int64_t)tv_now.tv_usec; 

}
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The downside of using a function is the time to call the function and allocate the struct each time it is called. If you need very accurate timings avoid using a function wrapper. 

An alternative is to use GPTimer which is described in Chapter 7. This can be used to create an alternative tick_us function with the slight disadvantage that you have to call another function to start the timer. 

Fixed Time Delay 

A common problem is making sure that something happens after a fixed time delay when you have a variable amount of work to do during that time interval. Consider the program snippet:

gpio_set_level(pin, 1); 

for(int i=0;i<10;i++){}

delay_ms(1)

gpio_set_level(pin, 0); 

where the for loop is intended to stand in for doing some other work. The intention is that the GPIO line should be set high for 1ms, but clearly how long the line is actually set high depends on how long the loop takes. It is clear that it is going to be longer than 1ms. 

What is needed is a pause that takes into account the time that the loop uses up and simply delays the program for the remaining amount of time to make it up to 1ms. This is where the high-resolution timer given in the previous section proves useful. 

It is simpler to create some functions that can be reused, even if they are slower than using the timer directly:

int64_t tick_us(int64_t offset){

static struct timeval tv_now; 

gettimeofday(&tv_now, NULL); 

return (int64_t)tv_now.tv_sec * 1000000L +

(int64_t)tv_now.tv_usec +offset; 

}

void delay_until(int64_t t){

static struct timeval tv_now; 

do{

gettimeofday(&tv_now, NULL); 

}while(t> (int64_t)tv_now.tv_sec * 1000000L + 

(int64_t)tv_now.tv_usec); 

}

The tick_us function now has an offset which can be added to the current time to move it on by the given amount. The delay_until function simply blocks until the specified time, in microseconds, arrives. 
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Using these two functions we can now write a delay that waits for the specified time to be up:

#include <stdio.h> 

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

#include "esp_rom_sys.h" 

#include <sys/time.h> 

int64_t tick_us(int64_t offset){

static struct timeval tv_now; 

gettimeofday(&tv_now, NULL); 

return (int64_t)tv_now.tv_sec * 1000000L +

(int64_t)tv_now.tv_usec +offset; 

}

void delay_until(int64_t t){

static struct timeval tv_now; 

do{

gettimeofday(&tv_now, NULL); 

}while(t> (int64_t)tv_now.tv_sec * 1000000L +

(int64_t)tv_now.tv_usec); 

}

void app_main(void)

{

int pin=2; 

gpio_reset_pin(pin); 

gpio_set_direction(pin, GPIO_MODE_OUTPUT); 

volatile int i=0; 

int n=100; 

int64_t t=0; 

int64_t width=1000; 

while (1) {

t=tick_us(width); 

gpio_set_level(pin, 1); 

for(i=0;i<n;i++){}

delay_until(t); 



t=tick_us(width); 

gpio_set_level(pin, 0); 

for(i=0;i<n;i++){}

delay_until(t); 

} 

}

You can modify the value of n to simulate longer or shorter periods of work in the loop without altering the timing of the pulses. The times aren’t particularly accurate because of the overheads in calling the functions and getting the time. 

This is a very general technique and one that can often make difficult timing problems very simple. Also see xTaskDelayUntil in Chapter 18 which does the same job but in  portTICK_PERIOD_MS units. 
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The Interrupt Problem

The fact that we are using the ESP32 with a real-time operating system can cause problems if you are unaware of what is happening. Every portTICK_PERIOD_MS, usually around 10 ms, the operating system will interrupt the running task and possibly choose another to run. At the moment we are only running one task, but the OS still has to handle the fact that the second core is running the WiFi and other system requirements and so at the very least your task will be interrupted for typically 8  s μ every 

10 ms:

What this means is that any pulse train you attempt to generate will be stopped for around 8 se

μ very 10ms. How important this is depends on the 

pulse width.  For example, if you generate 10 sp

μ ulses using simple busy 

waits then every 10ms one of the pulses will be extended to 20us: You can’t solve this problem by turning off interrupts because this would mean that other parts of the system would stop working, WiFi for example. 

The only easy solution is to use the system timer to correct the pulse width after the interrupt. That is, if you use delay_until, introduced in the previous section, to time the pulses there will be no longer pulses included in the pulse train. Notice that this is only important when you cannot allow a pulse to be around 10 s 

μ longer every 10ms, i.e. it is only an issue for short 

pulses. 
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Phased Pulses

As a simple example of using the output functions, let’s try to write a short program that pulses two lines high and then low, out of phase. 

The simplest program to do this job is: 

#include <stdio.h> 

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

#include "esp_rom_sys.h" 

void app_main(void)

{



gpio_reset_pin(2); 

gpio_set_direction(2, GPIO_MODE_OUTPUT); 



gpio_reset_pin(4); 

gpio_set_direction(4, GPIO_MODE_OUTPUT); 

while (1) {          

gpio_set_level(2, 1); 

gpio_set_level(4, 0); 

gpio_set_level(2, 0); 

gpio_set_level(4, 1); 

} 

}

There is no delay in the loop so the pulses are produced at the fastest possible speed and when GPIO2 goes high GPIO4 goes low and vice versa. 

Using a logic analyzer reveals that the result isn't what you might expect: Although the intent is for both actions to occur at the same time, the top train switches on and the bottom train takes about half a pulse before it switches off. 
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The point is that it does take quite a long time to access and change the state of an output line. If we include a delay to increase the pulse width then the delay caused by accessing the GPIO lines in two separate actions isn't so obvious, but it is still there. There are applications where the switching speed is so low that the delay between switching doesn’t matter – flashing LEDs for instance. With a delay of around 5 µs you could flash a line of around 2000 LEDs before the lag between the first and the last became apparent. On the other hand, if you use out-of-phase pulses to control a motor, then the overlap when both GPIO lines were on would burn out the drivers quite quickly. Of course, any sensible, cautious, engineer wouldn't feed a motor control bridge from two independently generated pulse trains unless they were guaranteed not to switch both sides of the bridge on at the same time. 

Setting Multiple GPIO Lines

There is no way of using supplied SDK methods to change multiple GPIO 

lines at the same time, even though the hardware makes it possible. To do the job you need to write some code that accesses the hardware directly, see Chapter 19 for more details. In this chapter we simply present and make use of the function explained there:

#include "soc/gpio_reg.h" 

void gpio_set(int32_t value,int32_t mask){

int32_t *OutAdd=(int32_t*) GPIO_OUT_REG; 

*OutAdd= (*OutAdd & ~mask) | (value & mask); 

}

This works by directly accessing the GPIO registers. The function gpio_set uses a mask to determine which lines will be set and a value that gives the states to set them to. Any bits not set in the mask leave the corresponding GPIO line unchanged. 

It is easy to create a mask for any GPIO lines. For example, if you want to modify only lines GPIOn and GPIOm then the mask is:

mask = 1<<n | 1<<m

and so on if you have more lines to modify. 

The value can be constructed in the same way. If you want to set the lines to a and b then value is:

value = a<<n | b<<m

Notice that if the corresponding bit isn’t set in mask then the bit in value has no effect. That is, mask determines which bits you are going to modify and value determines what those bits are set to. 
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Making use of this we can write the previous program without lags as when value and mask are used to update the GPIO register all of the lines change at once:

#include <stdio.h> 

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

#include "esp_rom_sys.h" 

#include "soc/gpio_reg.h" 

void gpio_set(int32_t value,int32_t mask){

int32_t *OutAdd=(int32_t*) GPIO_OUT_REG; 

*OutAdd= (*OutAdd & ~mask) | (value & mask); 

}

void app_main(void)

{



gpio_reset_pin(2); 

gpio_set_direction(2, GPIO_MODE_OUTPUT); 

gpio_reset_pin(4); 

gpio_set_direction(4, GPIO_MODE_OUTPUT); 



int32_t mask = 1<<2 | 1<<4; 

int32_t value1= 0<<2| 1<<4; 

int32_t value2= 1<<2| 0<<4; 

while (1) {          

gpio_set(value1, mask); 

gpio_set(value2, mask); 

} 

}

As we are changing the same pins each time, we only need a single mask. 

The value, however, changes each time. If you run this program you will see an almost perfect pair of out-of-phase 0.2µs pulses:
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Summary 

● Output is easy because the program decides when to change the state of a line. Input is hard because you never know when an input line will change state. 

● GPIO lines can be set to act as inputs or outputs or both. 

● If a line is set to output it can be set high or low using the gpio_set_level function. 

● You can generate pulses as short as 320ns. 

● A delay can be introduced into a program using vTaskDelay, but this only works for times longer than portTICK_PERIOD_MS, which is typically 10ms. 

● An alternative is to use a busy wait loop which is simply a loop that keeps the CPU busy for an amount of time. It is easy to obtain an equation that gives the delay-per-loop repetition. 

● By using the POSIX gettimeofday you can read the time to the nearest microsecond. This can be used to time pulses shorter than 10ms. 

● Pulses with a fixed period can be produced using delay_until. 

● The running task is interrupted every 10ms for a minimum of 8μsYou can compensate for this using delay_until. 

● Producing pulses which are in accurately in phase is not possible using gpio_set_level as it only changes one GPIO line at a time. 

● If you access the hardware directly, you can change multiple lines in a single operation. 
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Chapter 5

Some Electronics

Now that we have looked at some simple I/O, it is worth spending a little time on the electronics of output and input. We cover the electronics of input before looking at how the software handles input because we need to understand some of the problems that the software has to deal with. 

First some basic electronics – how transistors can be used as switches. The approach is very simple, but it is enough for the simple circuits that digital electronics makes use of. It isn’t enough to design a high-quality audio amplifier or similar analog device, but it might be all you need. 

How to Think About Circuits

For a beginner electronics can seem very abstract, but that’s not how old hands think about it. Most understand what is going on in terms of a hydraulic model, even if they don’t admit it. The basic idea is that an electric current running in a wire is very much like a flow of water in a pipe. The source of the electricity plays the role of a pump and the wires, the pipe. 

The flow of electricity is measured in Amps and this is just the amount of electricity that flows per second. The flow is governed by how hard the pump is pumping, which is measured by voltage and how restrictive the pipe is, the resistance which is measured in Ohms. 
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It is true that when you are doing electronics you are basically doing plumbing with a fluid that you generally can’t see that flows in pipes called wires. 

The only difficult one of these three ideas is the idea of pumping force. We tend to think of a pump providing a flow at the location of the pump but there is something, “a pumping force” that keeps the water flowing around every part of the circuit. In your imagination you have to think of the water being forced ever onward at every point in the pipe. In particular when there is constriction in the pipe then you might need more pumping force to get the water through. In a sense the pump provides the total pressure available and this distributes itself around the circuit as needed to push the flow through each restriction. 

In electric circuits the pumping force is called EMF or ElectroMotive Force or just voltage. We also assume that the force needed to push electricity through wires is negligible and resistors are the only place that a voltage is needed to make the current flow. 

The relationship between these quantities is characterized by Ohm’s law: V=IR or I=V/R or R=V/I

where V is the voltage in Volts, I is the current in Amps and R is the resistance in Ohms. 

It is worth pointing out that we generally work in Volts (V) and milliamps (mA), one thousandth of an amp, in Ohm’s law and this automatically gives resistance in kilo-ohms (kΩ). 

You can see that if you increase the voltage, the flow, then the current increases. If you increase the resistance then the current decreases. Slightly more difficult is the idea that for a given resistance you need particular pumping force to achieve a given flow. If you know the actual flow and the resistance then you can work out the pumping force needed to get that flow. 

The following points should be obvious. The flow through a pipe has to be the same at each point in the pipe – otherwise water would backup or need to be introduced. The total pressure that the pump provides has to be distributed across each of the resistances in the pipe to ensure the same flow. These pressures have to add up to the total pressure that the pump provides. 

Slightly less obvious, but you can still understand them in terms of water flow, pressures add, currents add and resistances to flow in the same pipe add. 
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One of the main reasons for understanding electrical flow is that you can use Ohm’s law to avoid damaging things. As a current flows through a resistor it gets hot. The rule here is that the energy produced is proportional to VI. If you double the current, you double the heating effect. Most electronic devices have current limits beyond which they are liable to fail. One of the basic tasks in designing any electronic circuit is to work out what the current is and, if it is too high, add a resistor or lower the voltage to reduce it. To do this you need a good understanding of the hydraulic model and be able to use Ohm’s law. There are examples later in this chapter. 

It is also worth pointing out that there are devices which do not obey Ohm’s law – so-called non-Ohmic devices. These are the interesting elements in a circuit – LEDs, diodes, transistors and so on, but even these devices can be understood in terms of the flow of a fluid. 

This is a lightning introduction to electronics, pun intended, and there is much to learn and many mistakes to make, most of which result in blue smoke. 

Electrical Drive Characteristics

If you are not familiar with electronics, the important thing to understand is the relationship between voltage, current and resistance. Voltage is like pressure and it makes the electrons flow. The current is the size of the flow and the resistance is what it sounds like – a resistance to the flow. For a fixed resistor the current flowing increases in proportion to the voltage. As already stated the relationship between voltage current and resistance is summarized by Ohm’s law, V = IR  where V is the voltage in volts, I is the current in amps and R is the resistance in ohms. 

So we need to know what voltages are being worked with and how much current can flow. The most important thing to know about the ESP32 is that it works with two voltage levels – 0V and 3.3V.  Even though you can power most development boards from 5V there is a DC to DC chip that converts whatever you supply it with to 3.3V. It is theoretically possible to run the ESP32 digital portion at 1.8V and use 3.3V to run the analog portion of the chip, but the majority of development boards don’t make this available. 

If you have worked with other logic devices you might be more familiar with 0V and 5V as being the low and high levels. The ESP32 uses a lower output voltage to reduce its power consumption, which is good, but you need to keep in mind that you may have to use some electronics to change the 3.3V 

to other values. The same is true of inputs, which must not exceed 3.3V or you risk damaging the ESP32. 
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An important question is how much current the GPIO lines can handle without damaging the chip. This isn’t an easy question and at the time of writing the documentation isn’t clear on the matter. According to the documentation, each GPIO line can be set to “drive” up to 40mA. However, this doesn’t quite mean what you might think. This is not an upper limit on the supplied current, but a configuration that is needed to ensure that the output voltages of the GPIO line are within specification, even if you connect something that requires a lot of current – see later. 

According to the datasheet, while GPIO16 and GPIO17 are limited to 20mA the other GPIO lines can provide up to 40mA. This doesn’t mean, however, that you can use every GPIO line to supply the maximum current at the same time. The datasheet is very vague on what the actual maximum is, but it refers to reducing the current to half the maximum as the number of GPIO 

lines using that current increases. You also need to be aware of the fact the development board’s power supply is limited to 1200mA and the WiFi components can draw 200mA while transmitting. Clearly, if all 34 GPIO 

lines were drawing the maximum 40mA the total would be 1360mA which is well beyond what the power supply can source. This is an extreme and unlikely example, but it indicates that it is the total current draw subject to each line being less than 40mA is the important consideration. 

In practice, you need to work out the total current draw from all of the GPIO 

lines in a worst case and then consider if this is reasonable in terms of total power consumption. 

For reliable operation you need to stay away from the maximums. 

Driving an LED

One of the first things you need to know how to do is compute the value of a current-limiting resistor. For example, if you just connect an LED between a GPIO line and ground then no current will flow when the line is low and the LED is off, but when the line is high, at 3.3V, it is highly likely that the current will exceed the safe limit. In most cases nothing terrible will happen as the ESP32’s GPIO lines are rated very conservatively, but if you keep doing it eventually something will fail. The correct thing to do is to use a current-limiting resistor. Although this is an essential part of using an LED, it is also something you need to keep in mind when connecting any output device. You need to discover the voltage that the device needs and the current it uses and calculate a current-limiting resistor to make sure that is indeed the current it draws from the GPIO line. 

An LED is a non-linear electronic component – the voltage across it stays more or less the same irrespective of the current passing through the device. 

Compare this to a more normal linear, or “ohmic”, device where the current 72
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and voltage vary together according to Ohm’s law, V =IR, which means that if the current doubles, so does the voltage and vice versa. 

This is not how an LED behaves. It has a fairly constant voltage drop, irrespective of the current. (If you are curious about it, the relationship between current and voltage for an LED is exponential, meaning that big changes in the current hardly change the voltage across the LED.) When you use an LED you need to look up its forward voltage drop, about 1.7V to 2V 

for a red LED and about 3V for a blue LED, and the maximum current, usually 20mA for small LEDs. You don’t have to use the current specified, this is the maximum current and maximum brightness. To work out the current-limiting resistor you simply calculate the voltage across the resistor and then use Ohm’s law to give you the resistor you need for the current required. The LED determines the voltage and the resistor sets the current. 

A GPIO line supplies 3.3V and if you assume 1.6V as the forward voltage across the LED, that leaves 1.7V across the current-limiting resistor since voltage distributes itself across components connected in series. If we restrict the current to 8mA, which is very conservative, then the resistor we need is given by:

R = V/I = 1.7/8 = 0.212 

The result is in kilo-ohms, kΩ, because the current is in milli-amps, mA. So we need at least a 212Ω resistor. In practice, you can use a range of values as long as the resistor is around 200 ohms – the bigger the resistor the smaller the current, but the dimmer the LED. If you were using multiple GPIO lines then keeping the GPIO current down to 1 or 2mA would be better, but that would need a transistor. 

You need to do this sort of calculation when driving other types of output device. The steps are always the same. The 3.3V distributes itself across the output device and the resistor in some proportion and we know the maximum current – from these values we can compute the resistor needed to keep the actual current below this value. 
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LED BJT Drive

Often you need to reduce the current drawn from a GPIO line. The Bipolar Junction Transistor (BJT) may be relatively old technology, but it is a current amplifier, low in cost and easy to use. A BJT is a three-terminal device - 

base, emitter and collector - in which the current that flows through the emitter/collector is controlled by the current in the base: The diagram shows an NPN transistor, which is the most common. This diagram is a simplification in that, in reality, the current in the emitter is slightly larger than that in the collector because you have to add the current flowing in the base. In most cases you need just two additional facts. Firstly, the voltage on the base is approximately 0.6V, no matter how much current flows since the base is a diode, a non-linear device just like the LED in the previous section. 

Secondly, you need to multiply the current in the collector/emitter by the current gain of the transistor, specified as  hFE or ß (beta), a value you can look up for any transistor you want to use. While you are consulting the datasheets, you also need to check the maximum currents and voltages the device will tolerate. In most cases, the beta is between 50 and 200 and hence you can use a transistor to amplify the GPIO current by at least a factor of 50. 

Notice that, for the emitter/collector current to be non-zero, the base has to have a current flowing into it. If the base is connected to ground then the transistor is “cut off”, i.e. no current flows. What this means is that when the GPIO line is high the transistor is “on” and current is flowing and when the GPIO line is low the transistor is “off” and no current flows. This high-on/ 

low-off behavior is typical of an NPN transistor. 
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A PNP transistor works the other way round:

The 0.6V is between the base and the collector and the current flows out of the base. In this case to switch the transistor on you have to connect the base to ground. What this means is that the transistor is off when the GPIO 

line is high and on when it is low. 

This complementary behavior of NPN and PNP BJTs is very useful and means that we can use such transistors in pairs. It is also worth knowing that the diagram given above is usually drawn with 0V at the top of the diagram, i.e. flipped vertically, to make it look the same as the NPN diagram. 

You always need to make sure you know where the +V line is. 

A BJT Example

For a simple example we need to connect a standard LED to a GPIO line with a full 20mA drive. Given that all of the GPIO lines work at 3.3V and ideally only supply a few milliamps, we need a transistor to drive the LED which typically draws 20mA. 

You could use a Field Effect Transistor (FET) of some sort, but for this sort of application an old-fashioned BJT (Bipolar Junction Transistor) works very well and is cheap and available in a thru-hole mount, i.e. it comes with wires. Almost any general purpose NPN transistor will work, but the 2N2222

is very common. From its datasheet you can discover that the max collector current is 800mA and its hFE  is at least 50, which makes it suitable for driving a 20mA LED with a GPIO current of at most 20mA/50 = 0.4mA. 
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The circuit is simple but we need two current-limiting resistors: If you connected the base to the GPIO line directly then the current flowing in the base would be unrestricted – it would be similar to connecting the GPIO line to ground. R1 restricts the current to 0.39mA, which is very low and, assuming that the transistor has a minimum hFE of 50, this provides just short of 20mA to power it. 

The calculation is that the GPIO supplies 3.3V and the base has 0.6V across it so the voltage across R1 is 3.3 - 0.6V = 2.7V. To limit the current to 0.4mA would need a resistor of 2.7V/0.4mA = 6.7kΩ. The closest preferred value is 6.8kΩ, which gives a slightly smaller current. 

Without R2 the LED would draw a very large current and burn out. R2 limits the current to 20mA. Assuming a forward voltage drop of 1.6V and a current of 20mA the resistor is given by (3.3-1.6)V/20mA = 85Ω. In practice, we could use anything in the range 82Ω to 100Ω. 

The calculation just given assumes that the voltage between the collector and emitter is zero, but of course in practice it isn’t. Ignoring this results in a current less than 20mA, which is erring on the safe side. The datasheet indicates that the collector emitter voltage is less than 200mV. 
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The point is that you rarely make exact calculations for circuits such as this, you simply arrive at acceptable and safe operating conditions. Also notice that the transistor could be connected to a higher supply voltage than the 3.3V shown. Transistors are not just amplifiers, they are level shifters. You can also use the same design to drive something that needs a higher voltage. 

For example, to drive a 5V dip relay, which needs 10mA to activate it, you would use something like:

Notice that in this case the transistor isn’t needed to increase the drive current – the GPIO line could provide the 10mA directly. Its purpose is to change the voltage from 3.3V to 5V. The same idea works with any larger voltage. 

If you are using the 2N2222 then the pinouts are:

As always, the positive terminal on the LED is the long pin. 
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MOSFET Driver

There are many who think that the FET (Field Effect Transistor) or more precisely the MOSFET (Metal Oxide Semiconductor FET) is the perfect amplification device and we should ignore BJTs. They are simpler to understand and use, but it can be more difficult to find one with the characteristics you require. 

Like the BJT, a MOSFET has three terminals called the gate, drain and source. The current that you want to control flows between the source and drain and it is controlled by the gate. This is analogous to the BJT’s base, collector and emitter, but the difference is that it is the voltage on the gate that controls the current between the source and drain. 

The gate is essentially a high resistance input and very little current flows in it. This makes it an ideal way to connect a GPIO line to a device that needs more current or a different voltage. When the gate voltage is low the source drain current is very small. When the gate voltage reaches the threshold voltage VGS(th), which is different for different MOSFETs, the source drain current starts to increase exponentially.  Basically, when the gate is connected to 0V or below VGS(th) the MOSFET is off and when it is above VGS(th) the MOSFET starts to turn on. Don’t think of VGS(th) as the gate voltage that the MOSFET turns on, but as the voltage below which it is turned off. 

The problem is that the gate voltage to turn a typical MOSFET fully on is in the region of 10V. Special “logic” MOSFETs need a gate voltage around 5V to fully turn on and this makes the 3.3V at which the ESP32’s GPIO lines work a problem. The datasheets usually give the fully on resistance and the minimum gate voltage that produces it, usually listed as Drain-Source On-State Resistance.  For digital work this is a more important parameter than the gate threshold voltage. 

You can deal with this problem in one of two ways – ignore it or find a MOSFET with a very small VGS(th). In practice MOSFETs with thresholds low enough to work at 3.3V are hard to find and when you do find them they are generally only available as surface-mount. Ignoring the problem sometimes works if you can tolerate the MOSFET not being fully on. If the current is kept low then, even though the MOSFET might have a resistance of a few ohms, the power loss and voltage drop may be acceptable. 

What MOSFETs are useful for is in connecting higher voltages to a GPIO line used as an input – see later. 

Also notice that this discussion has been in terms of an N-channel MOSFET. 

A P-channel works in the same way, but with all polarities reversed. It is cut off when the gate is at the positive voltage and on when the gate is grounded. This is exactly the same as the NPN versus PNP behavior for the BJT. 
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MOSFET LED

A BJT is the easiest way to drive an LED, but as an example of using a common MOSFET we can arrange to drive one using a 2N7000, a low-cost, N-channel device available in a standard TO92 form factor suitable for experimentation:

Its datasheet states that it has a VGS(th) typically 2V, but it could be as low as 0.8V or as high as 3V. Given we are trying to work with a gate voltage of 3.3V

you can see that in the worst case this is hardly going to work – the device will only just turn on. The best you can do is to buy a batch of 2N7000 and measure their VGS(th) to weed out any that are too high. This said, in practice the circuit given below does generally work. 

Assuming a VGS(th) of 2V and a current of 20mA for the LED the datasheet gives a rough value of 6Ω for the on resistance with a gate voltage of 3V. The calculation for the current-limiting resistor is the same as in the BJT case and the final circuit is:
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Notice that we don’t need a current-limiting resistor for the GPIO line as the gate connection is high impedance and doesn’t draw much current. In practice, it is usually a good idea to include a current-limiting resistor in the GPIO line if you plan to switch it on and off rapidly. The problem is that the gate looks like a capacitor and fast changes in voltage can produce high currents. Notice that there are likely to be devices labeled 2N7000 that will not work in this circuit due to the threshold gate voltage being too high, but encountering one is rare. 

A logic-level MOSFET like the IRLZ44 has a resistance of 0.028Ω at 5V 

compared to the 2N2222’s of 6Ω. It also has a VGS(th) guaranteed to be between 1V and 2V. It would therefore be a better candidate for this circuit. 


Setting Drive Type

The GPIO output can be configured into one of a number of modes, but the most important is pull-up/down. Before we get to the code to do the job it is worth spending a moment explaining the three basic output modes, push-pull, pull-up and pull-down. 

Push-Pull Mode

In push-pull mode two transistors of opposite polarity, one PNP and one NPN, are used:

The circuit behaves like the two-switch equivalent shown on the right. Only one of the transistors, or switches, is "closed" at any time. If the input is high then Q1 is saturated and the output is connected to ground - exactly as if S1 

was closed. If the input is low then Q2 is saturated and it is as if S2 was closed and the output is connected to 3.3V. You can see that this pushes the output line high with the same "force" as it pulls it low. This is the standard configuration for a GPIO output. 
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Pull-Up Mode

In pull-up mode one of the transistors is replaced by a resistor: In this case the circuit is equivalent to having a single switch. When the switch is closed, the output line is connected to ground and hence driven low. When the switch is open, the output line is pulled high by the resistor. 

You can see that in this case the degree of pull-down is greater than the pullup, where the current is limited by the resistor. The advantage of this mode is that it can be used in an AND configuration. If multiple GPIO or other lines are connected to the output, then any one of them being low will pull the output line low. Only when all of them are off does the resistor succeed in pulling the line high. This is used, for example, in a serial bus configuration like the I2C bus. 

Pull-Down Mode

Finally the pull-down mode, which is the best mode for driving general loads, motors, LEDs, etc, is exactly the same as the pull-up, only now the resistor is used to pull the output line low. 

The line is held high by the transistor and pulled low by the resistor only when all the switches are open. Putting this the other way round, the line is high if any one switch is closed. This is the OR version of the shared bus idea. 
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Open Collector

There is one final output configuration – open collector or, when referring to a MOSFET, open drain. The idea is simple, you don’t connect the collector or the drain to anything at all – you simply use it as the output: There is no pull-up resistor, but you can supply one as an external pull-up if needed. You can also drive a device that needs a current flow through it rather than just a voltage – a coil is the standard example. However, a GPIO 

line usually cannot supply enough current for such devices. 

The real use of the open collector arrangement is to implement a shared data line:

In this case two inputs control one output. If the first transistor is on then the output is low, irrespective of the state of the second transistor. The same is true if the second transistor is on. If you work through the possible combinations we have:

Input 1

Input 2

Output

Off

Off

High

Off

On

Low

On

Off

Low

On

On

Low
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You might recognize this as the truth table for an OR gate. This is exactly what an open collector output used in this way implements. Early integrated circuits referred to as Resistor Transistor Logic or RTL implemented logic in this way. This was soon replaced by Transistor Transistor Logic or TTL 

because transistors are easier to implement in an integrated circuit. 

In IoT applications, open collector connections are used to allow any number of devices to share a line. If all of the devices are configured to be open collectors then any one of them can pull the line low. In most cases only one device will be active and sending data at any one time. 

Setting Output Mode

The mode of a GPIO line is set by configuring the electronics which connects it to the outside world, the PAD. You can configure the PAD 

irrespective of what the GPIO line is being used for. 

The functions to set a GPIO line’s pull configuration are:

gpio_pullup_en( id)

gpio_pullup_dis( id)

gpio_pulldown_en( id)

gpio_pulldown_dis( id)

Each function enables or disables the pull mode. 

You can also set the mode using:

gpio_set_pull_mode( id,  pull)

where  pull is one of:

GPIO_PULLUP_ONLY

GPIO_PULLDOWN_ONLY

GPIO_PULLUP_PULLDOWN

GPIO_FLOATING

You can enable both resistors simultaneously with PULLUP_PULLDOWN or neither with FLOATING. 

The pull-up/down resistor is 45kΩ. 
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To control the mode, including open collector/drain mode, you need to use: gpio_set_direction( id,  mode)

where  mode is one of:

GPIO_MODE_DISABLE

GPIO_MODE_INPUT

GPIO_MODE_OUTPUT

GPIO_MODE_OUTPUT_OD

GPIO_MODE_INPUT_OUTPUT_OD

GPIO_MODE_INPUT_OUTPUT

and OD stands for Open Drain. . If you select INPUT or OUTPUT then the PAD is configured to be only input or output but in INPUT_OUTPUT mode the PAD is bidirectional and you can read the current state of the line as well as setting it. 

There is also an overall configuration function which can set multiple GPIO 

lines and PADs in one call:

gpio_config(pGPIOConfig)

The parameter is a pointer to a GPIOConfig struct containing:

 pin_bit_mask  

Identifies the GPIO lines to be affected

 mode    

GPIO mode as listed above

 pull_up_en    

Either GPIO_PULLUP_DISABLE or 

GPIO_PULLUP_ENABLE 

 pull_down_en   

Either GPIO_PULLDOWN_DISABLE or 

GPIO_PULLDOWN_ENABLE 

 intr_type  

GPIO interrupt type, see Chapter 7

Not all of the ESP32’s GPIO lines can be used in output mode. GPIO34-39 

are input only and do not have pull-up/pull-down resistors. All of the ESP32

S3’s GPIO lines are input/output capable. 

Drive

The output drive strength isn’t to do with how much current the GPIO line can source, it is about the voltage output at different currents. It is the effective output resistance. This is a sophisticated idea, but it is easy to understand if you think of it as being similar to the current-limiting resistor in an LED circuit. 

All outputs have a limited ability to supply current at a given voltage. If an output is at 3.3V with no current, i.e. no connection, then as the current it supplies increases the voltage will drop. Think of this as being similar to the pressure in a pipe which is at a maximum when the tap is off and falls as the tap is opened. 
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To model this you have to add a resistor to the circuit which corresponds to the internal resistance of the current source:

The GPIO Drive Out is internal to the device and any load you are trying to drive is connected between GPIO Pin and Gnd Pin. Now consider what the voltage is if the load draws 10mA. Using Ohm’s law we have the voltage drop across the internal resistor as 130 x 10 = 1300 mV = 1.3V. This means that the 3.3V theoretically output by the GPIO line is reduced to 3.3-1.3=2V. 

Does this matter? It all depends on what the load is and what effect the reduction to 2V has on its operation. Notice, however, that it makes our calculation of current-limiting resistors for loads such as LED more complicated. 

If the internal resistance of a GPIO line is a problem, you can change it using the function: 

gpio_set_drive_capability( id,  strength)

where  strength is one of:

GPIO_DRIVE_CAP_0: 5mA / 130Ω

GPIO_DRIVE_CAP_1: 10mA / 60Ω

GPIO_DRIVE_CAP_2: 20mA / 30Ω (default strength if not configured) GPIO_DRIVE_CAP_3: 40mA / 15Ω

Notice the default is for an internal resistance of 30Ω and hence the voltage drop when drawing a current of 10mA is 30 x 10 = 300mV = 0.3V  making the output voltage on the load 3V, which isn’t as bad as our initial calculation with GPIO_DRIVE_CAP_0 set. 

The currents listed aren’t the maximum allowable current draw. Instead they are approximately the maximum safe current to draw if you want the output voltage to be high enough for another 3.3V device to recognize the output as a 1 – about 2.7V. That is, if the load draws more than the specified current, the voltage falls below 2.7V and isn’t guaranteed to be recognized as logic 1 

by another 3.3V device. 

You can find the currently set drive using:

gpio_get_drive_capability(id ,  pstrength)

where pstrength is a pointer to a gpio_drive_cap_t variable. 
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Basic Input Circuit - The Switch

It is time to turn our attention to the electrical characteristics of GPIO lines as inputs. One of the most common input circuits is the switch or button. 

Many beginners make the mistake of wiring a GPIO line to a switch something like:

The problem with this is that, if the switch is pressed, the GPIO line is connected to ground and will read as zero. The question is, what does it read when the switch is open? A GPIO line configured as an input without pullup or pull-down enabled has a very high resistance. The maximum current and input line will draw is 50nA. As it isn’t connected to any particular voltage, the voltage on it varies due to the static it picks up. The jargon is that the unconnected line is “floating”. When the switch is open the line is floating and if you read it the result, zero or one, depends on whatever noise it has picked up. 

The correct way to do the job is to tie the input line either high or low when the switch is open using a resistor. A pull-up arrangement would be something like:

The value of the resistor used isn’t critical. It simply pulls the GPIO line high when the switch isn't pressed. When it is pressed a current of a little more than 0.3mA flows in the resistor. If this is too much, increase the resistance to 100kΩ or even more - but notice that the higher the resistor value the noisier the input to the GPIO and the more it is susceptible to RF 

interference. This gives a zero when the switch is pressed. 
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If you want a switch that pulls the line high instead of low, reverse the logic by swapping the positions of the resistor and the switch in the diagram to create a pull-down:

This gives a one when the switch is pressed. 

The good news is that the ESP32 defaults to an input configuration with a pull-down resistor of around 45kΩ which means you can connect a switch directly to a default GPIO line of 3.3V and it will give a 1 when the switch is pressed. 

Debounce

Although the switch is the simplest input device, it is very difficult to get right. When a user clicks a switch of any sort, the action isn't clean - the switch bounces. What this means is that the logic level on the GPIO line goes high then low and high again and bounces between the two until it settles down. There are electronic ways of debouncing switches, but software does the job much better. All you have to do is insert a delay of a millisecond or so after detecting a switch press and read the line again - if it is still low then record a switch press. Similarly, when the switch is released, read the state twice with a delay. You can vary the delay to modify the perceived characteristics of the switch. 

A more sophisticated algorithm is based on the idea of integration to debounce a switch. All you have to do is read the state multiple times, every few milliseconds say, and keep a running sum of values. If you sum say ten values each time then a total of between 6 and 10 can be taken as an indication that the switch is high. A total less than this indicates that the switch is low. You can think of this as a majority vote in the time period for the switch being high or low. 
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The Potential Divider

If you have an input that is outside of the range of 0V to 3.3V then you can reduce it using a simple potential divider. In the diagram, V is the input from the external logic and Vout is the connection to the GPIO input line: Vout = V*R2/(R1+R2)

You can spend a lot of time on working out good values of R1 and R2. For loads that take a lot of current you need R1+R2 to be small and divided in the same ratio as the voltages. For example, for a 5V device R1=18KΩ or 20KΩ 

and R2=33KΩ work well to drop the voltage to 3.3V. 

A simpler approach that works for a 5V signal is to notice that the ratio R1:R2 has to be the same as (5-3.3):3.3, i.e. the voltage divides itself across the resistors in proportion to their value, which is roughly 1:2. What this means is that you can take any resistor and use it for R1 and use two of the same value in series for R2 and the Vout will be 3.3V. 

The problem with a resistive divider is that it can round off fast pulses due to the small capacitive effects. This usually isn't a problem, but if it is then the solution is to use a FET or a BJT as an active buffer: 
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Notice that this is an inverting buffer, the output is low when the input is high, but you can usually ignore this and simply correct it in software, i.e. 

read a 1 as a low state and a 0 as a high state. The role of R1 is to make sure the FET is off when the 5V signal is absent and R2 limits the current in the FET to about 0.3mA. In most cases you should try the simple voltage divider and only move to an active buffer if it doesn't work. 

This very basic look at electronics isn’t all that you need to know, but it is enough for you to see some of the problems and find some answers. In general, this sort of electronics is all about making sure that voltages and currents are within limits. As switching speeds increase you have additional problems, which are mainly concerned with making sure that your circuits aren’t slowing things down. This is where things get more subtle. 
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Summary

● You can get a long way with only a small understanding of electronics, but you do need to know enough to protect the ESP32 

and things you connect to it. 

● The maximum current from any GPIO line should be less than 40mA. 

● All of the GPIO lines work at 3.3V and you should avoid directly connecting any other voltage. 

● You can drive an LED directly from a GPIO line. 

● Calculating a current-limiting resistor always follows the same steps: find the current in the device, find the voltage across the device and work out the resistor that supplies that current when the remainder of the voltage is applied to it. 

● For any load you connect to a GPIO output, you generally need a current-limiting resistor. 

● In many cases you need a transistor, a BJT, to increase the current supplied by the GPIO line. 

● To use a BJT you need a current-limiting resistor in the base and generally one in the collector. 

● MOSFETs are popular alternatives to BJTs, but it is difficult to find a MOSFET that works reliably at 3.3V. 

● GPIO output lines can be set to active push-pull mode, where a transistor is used to pull the line high or low, or passive pull-up or pull-down mode, where one transistor is used and a resistor pulls the line high or low when the transistor is inactive. 

● GPIO lines have built-in pull-up and pull-down resistors which can be selected or disabled under software control. 

● When used as inputs, GPIO lines have a very high resistance and in most cases you need pull-up or pull-down resistors to stop the line floating.  The built-in pull-up or pull-down resistors can be used in input mode. 

● Mechanical input devices have to be debounced to stop spurious input. 

● If you need to connect an input to something bigger than 3.3V then you need a potential divider to reduce the voltage back to 3.3V. You can also use a transistor. 
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Chapter 6

Simple Input

There is no doubt that input is more difficult than output. When you need to drive a line high or low you are in command of when it happens, but input is in the hands of the outside world. If your program isn't ready to read the input, or if it reads it at the wrong time, then things just don't work. What is worse, you have no idea what your program is doing relative to the event you are trying to capture. Welcome to the world of input. 

In this chapter we look at the simplest approach to input – the polling loop. 

This may be simple, but it is a good way to approach many tasks. In Chapter 7 we’ll look at a sophisticated alternative – interrupts. 

GPIO Input

GPIO input is a much more difficult problem than output from the point of view of measurement and verification. For output at least you can see the change in the signal on a logic analyzer and know the exact time that it occurred. This makes it possible to track down timing problems and fine tune things with good accuracy. 

Input on the other hand is "silent" and unobservable. When did you read the status of the line? Usually the timing of the read is with respect to some other action that the device has taken. For example, you read the input line 20 µs after setting the output line high. But how do you know when the input line changed state during that 20 microseconds? The simple answer is in most cases you don’t. 

In some applications the times are long and/or unimportant, but in some they are critical and so we need some strategies for monitoring and controlling read events. The usual rule of thumb is to assume that it takes as long to read a GPIO line as it does to set it. This means we can use the delay mechanisms that we looked at with regard to output for input as well. 

One common and very useful trick when you are trying to get the timing of input correct is to substitute an output command to a spare GPIO line and monitor it with a logic analyzer. Place the output instruction just before the input instruction and where you see the line change on the logic analyzer should be close to the time that the input would be read in the unmodified program. You can use this to debug and fine-tune and then remove the output statement. 
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Basic Input Functions

To read the current level of a GPIO line use: 

gpio_get_level( id)

which returns an int corresponding to the state of the line, 0 if it is low or 1 

if it is high. 

The GPIO line has to be set to input using gpio_set_direction.  If the PAD 

is  configured for output the function returns 0. If it is configured for input or input and output the function returns the current state of the line. 

Once set to input, the GPIO line has high impedance so it won’t take very much current, no matter what you connect it to. However, notice that the ESP32 uses 3.3V logic and you should not exceed this value on an input line. For a full discussion of how to work with input, see the previous chapter. 

This is all there is to using a GPIO line as an input, apart from the details of the electronics and the small matter of interrupts. 

As introduced in the previous chapter, you can also set the internal pull-up or pull-down resistors on any of the functions given in the previous chapter. 

Notice that pull-up/down resistors also work and are useful in input mode and, as previously stated. have a value around 45kΩ. 

The Simple Button

One of the most common input circuits is the switch or button. If you want an external button you can use any GPIO line and the circuit explained in the previous chapter. That is, the switch has to have either a pull-up or pulldown resistor provided by you or a built-in one enabled using software. 

The simplest switch input program using an internal pull-up is:

#include <stdio.h> 

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

void delay_ms(int t) {

vTaskDelay(t / portTICK_PERIOD_MS); 

}

92

[image: Image 74]

[image: Image 75]

void app_main(void)

{

gpio_reset_pin(2); 

gpio_set_direction(2, GPIO_MODE_OUTPUT); 

gpio_reset_pin(4); 

gpio_set_direction(4, GPIO_MODE_INPUT); 

gpio_pullup_en(4); 

while (1) {

if (gpio_get_level(4)) {

gpio_set_level(2, 1); 

}

else {

gpio_set_level(2, 0); 

delay_ms(500); 

}

}

}

As the internal pull-up resistor is used, the switch can be connected to the line and ground without any external resistors:

The program simply tests for the line to be pulled high by the switch not being closed and then sets GPIO2 high. If GPIO2 is connected, the on-board LED will light up while it is not pressed. Notice GPIO4 goes low when the switch is pressed. 

If you change gpio_pullup_en to gpio_pulldown_en, the way the switch has to be connected becomes:
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The program still works, but now GPIO4 is high when the switch is pressed and hence the LED is on when the switch is pressed, which is the behavior that the user most likely expects. 

Should you use an internal or external resistor? The answer is that it mostly doesn’t matter as long as there is a resistor included in your circuit. So if you use None make sure there is an external resistor. The only problem with using an internal resistor is the possibility that the software fails to set the pull-up/down mode and leaves the input floating. Also notice that this switch input is not debounced. The simplest way to do this is include a time delay in the loop before the line is sampled again. 

If you want to respond to a button press, that is a press event and a release event, then you have to test for a double transition:

#include <stdio.h> 

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

void delay_ms(int t) {

vTaskDelay(t / portTICK_PERIOD_MS); 

}

void app_main(void)

{

gpio_reset_pin(2); 

gpio_set_direction(2, GPIO_MODE_OUTPUT); 

gpio_reset_pin(4); 

gpio_set_direction(4, GPIO_MODE_INPUT); 

gpio_pulldown_en(4); 

while (1) {

while (gpio_get_level(4) == 0) {}; 

delay_ms(10); 

while (gpio_get_level(4) == 1) {}; 

gpio_set_level(2, 1); 

delay_ms(1000); 

gpio_set_level(2, 0); 

}

}

In this case you really do need the debounce delays if you want to avoid responding twice to what the user perceives as a single press. Notice that this is using a pull-down configuration so the LED comes on for one second if the button is pressed and released. The program works by waiting while the button reads 0, then it waits while the button reads 1. This corresponds to a press and release. Notice that we need a delay between the two while loops to allow the button’s signal to settle. Without it the program would turn the LED on when the button was pressed and not wait for the button to 94

be released. The reason is that when you press the button the voltage level will go high, but there will be short duration transients that take the line low again and fool the program into thinking that you have released the button. 

A 10-millisecond delay is probably the smallest delay that produces a button-press that feels as if it works. In practice, you would have to tune the delay to suit the button mechanism in use and the number of times you can allow the button to be pressed in one second. 

Press or Hold

We can carry on elaborating on how to respond to a button. For example, most users have grown accustomed to the idea that holding a button down for a longer time than a press makes something different happen. To distinguish between a press and a hold all you need to do is time the difference between line down and line up:

#include <stdio.h> 

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

#include <sys/time.h> 

void delay_ms(int t) {

vTaskDelay(t / portTICK_PERIOD_MS); 

}

int64_t tick_ms(int64_t offset) {

static struct timeval tv_now; 

gettimeofday(&tv_now, NULL); 

return (int64_t)tv_now.tv_sec * 1000L + 

(int64_t)tv_now.tv_usec / 1000L + offset; 

}

void app_main(void)

{

gpio_reset_pin(2); 

gpio_set_direction(2, GPIO_MODE_OUTPUT); 

gpio_reset_pin(4); 

gpio_set_direction(4, GPIO_MODE_INPUT); 

gpio_pulldown_en(4); 

gpio_set_level(2, 0); 
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uint64_t t; 

while (1) {

while (gpio_get_level(4) == 0) {}; 

t = tick_ms(2000); 

delay_ms(10); 

while (gpio_get_level(4) == 1) {}

if (tick_ms(0) < t) {

gpio_set_level(2, 1); 

delay_ms(1000); 

gpio_set_level(2, 0); 

}

else {

for (int i = 0;i < 10; i++) {

gpio_set_level(2, 1); 

delay_ms(1000); 

gpio_set_level(2, 0); 

delay_ms(1000); 

}

}

}

}

In this case holding the button for 2 seconds registers a “hold”, causing the LED to flash 10 times, and anything less is a “push” and the LED flashes just once. Notice the 10 ms debounce pause between the test for no-press and press. We also make use of a delay_ms function, which is a small modification to the delay_us function given earlier. 

One of the problems with all of these sample programs is that they wait for the button to be pressed or held and this makes it difficult for them to do anything else.  You have to include whatever else your program needs to do within the loop that waits for the button – the polling loop. You can do this in an ad hoc way, but the best approach is to implement a finite state machine, see later. 

How Fast Can We Measure? 

Buttons are one form of input, but often we want to read data from a GPIO 

line driven by an electronic device and decode the data. This usually means measuring the width of the pulses and this raises the question of how fast can we accept input? 
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The simplest way to find out how quickly we can take a measurement is to perform a pulse width measurement. Applying a square wave to GPIO4 we can measure the time that the pulse is high using:

#include <stdio.h> 

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

#include <sys/time.h> 

void delay_ms(int t) {

vTaskDelay(t / portTICK_PERIOD_MS); 

}

int64_t tick_us(int64_t offset) {

static struct timeval tv_now; 

gettimeofday(&tv_now, NULL); 

return (int64_t)tv_now.tv_sec * 1000000L +

(int64_t)tv_now.tv_usec + offset; 

}

void app_main(void)

{

gpio_reset_pin(4); 

gpio_set_direction(4, GPIO_MODE_INPUT); 

uint64_t t; 

while (1) {

while (gpio_get_level(4) == 1) {}; 

while (gpio_get_level(4) == 0) {}; 

t = tick_us(0); 

while (gpio_get_level(4) == 1) {}; 

t = tick_us(0) - t; 

printf("%llu\n", t); 

fflush(stdout); 

delay_ms(1000); 

}

} 

This might look a little strange at first. The inner while loops are responsible for getting us to the right point in the waveform. First we loop until the line goes low, then we loop until it goes high again and finally measure how long before it goes low. You might think that we simply have to wait for it to go high and then measure how long till it goes low, but this misses the possibility that the signal might be part way through a high period when we first measure it. 
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If you run this program and apply a square wave of a known frequency to GPIO4 you will see values printed that correspond to the pulse width in microseconds. If you increase the frequency you should see the value change in step until the program cannot keep up with the input when the time suddenly jumps to values that are too large as pulses are missed. 

This can be measured down to around 20 µs with a very poor accuracy after this. The reason is mainly due to the time it takes to obtain a time reading. 

To remedy this, change the main program to:

void app_main(void)

{

gpio_reset_pin(4); 

gpio_set_direction(4, GPIO_MODE_INPUT); 

uint64_t t; 

while (1) {

while (gpio_get_level(4) == 1) {}; 

while (gpio_get_level(4) == 0) {}; 

t =0; 

while (gpio_get_level(4) == 1) {

t++; 

}; 

printf("%llu\n", t); 

fflush(stdout); 

delay_ms(1000); 

}

}

Now we are simply counting the number of repeats of the while loop, which is a much faster operation. Of course, we have to scale the counts to get an accurate time, but it now works reasonably reliably down to 1us with a count of 2 to 3 repeats. To convert the count to microseconds, multiply by 3. 

Notice that, in either case, if you try measuring pulse widths much shorter than the lower limit that works, you will get results that look like longer pulses are being applied. The reason is simply that the ESP32 will miss the first transition to zero, but will detect a second or third or later transition. 

This is the digital equivalent of the aliasing effect found in the Fourier Transform of general signal processing. 
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The Finite State Machine 

If your project requires a complex set of input and output lines then you need an organizing principle to save you from the complexity. When you first start writing IoT programs that respond to the outside world you quickly discover that all of your programs take a similar form: while(True):

   wait for some input lines

   process the input data

   write some output lines

   wait for some input lines

   read some more input lines

   write some output lines

For most programmers this is a slightly disturbing discovery because programs are not supposed to consist of infinite loops, but IoT programs nearly always, in principle if not in practice, take the form of an apparently infinite polling loop. A second, and more important, aspect is that the way in which reading and writing GPIO lines is related can be so complex that it can be difficult to see exactly when any particular line is read and when it is written. 

It is natural to try to find implementations that make this simpler. In most cases programmers discover or invent the idea of the event or, better, the interrupt.  In this case when something happens in the outside world a function is automatically called to deal with it and the relation between the external state and the system’s response is seemingly well-defined. Of course, in practice it isn’t, as you have to deal with what happens when multiple events or interrupts occur at the same, or very nearly the same, time. 

Often more sophisticated approaches are used to try and handle more external changes of state in a given time. Somehow the infinite polling loop is seen as wasteful. What is the CPU doing if it spends all its time looping round waiting for something to happen? Of course, if it has nothing better to do then it isn’t a waste. In fact, IoT devices are often dedicated to just getting one job done so the “polling is wasteful” meme, so prevalent in the rest of computing, is completely unjustified. 

What is more, the polling loop is usually the way to get the greatest throughput. If a processor can handle X external state changes per second and respond to these with Y external state changes per second, then moving to an event- or interrupt-based implementation reduces both X and Y. In short, if a processor cannot do the job using a polling loop then it cannot do the job. This is not to say that there aren’t advantages to events and interrupts – there are, but they don’t increase throughput. 
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So how should you organize a polling loop so that what it does is self-evident by looking at the code? There are many answers to this according to the system being implemented and there are no “pure” theoretical answers that solve all problems, but the finite state machine, or FSM, is a model that every IoT programmer should know. 

A finite state machine is a very simple program. At any given time the machine/program has a record of the current state, S. At a regular interval the external world provides an input, I, which changes the state from S to S’ 

and produces an output O. That’s all there is to a finite state machine. There are variations on the definition of the FSM but this one, called a Mealy machine because its outputs depend on both its state and the input, is the most suitable for IoT programming. 

You can design an FSM with the help of a diagram. In the FSM shown there are three states 1, 2 and 3 and, if you are in state 1, an input of A moves the system to state 2 and an input of B moves it into state 3. 

Your program simply needs to take the form of a polling loop that implements a finite state machine. It reads the input lines as I and uses this and the current state S to determine the new state S’ and the output O. There is some overhead in using this organization, but it is usually worth it. 

Notice that this organization implies that you read input once, make changes once and set outputs once in the loop. If you fix the time that the polling loop takes then you know the characteristic time for any changes to the system. 

FSM Button

As an example, let’s implement the simple button given earlier in the chapter. The first version used multiple loops to wait for changes in the state of the input line. 
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The finite state version uses only a single polling loop:

#include <stdio.h> 

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

#include <sys/time.h> 

int64_t tick_us(int64_t offset) {

static struct timeval tv_now; 

gettimeofday(&tv_now, NULL); 

return (int64_t)tv_now.tv_sec * 1000000L +

(int64_t)tv_now.tv_usec + offset; 

}

void delay_until(int64_t t) {

static struct timeval tv_now; 

do {

gettimeofday(&tv_now, NULL); 

} while (t > (int64_t)tv_now.tv_sec * 1000000L +

(int64_t)tv_now.tv_usec); 

}

void app_main(void)

{

gpio_reset_pin(4); 

gpio_set_direction(4, GPIO_MODE_INPUT); 

gpio_pulldown_en(4); 

uint64_t t; 

int s = 0; 

int i; 

int count = 0; 

while (true)

{

i = gpio_get_level(4); 

t = tick_us(100 * 1000); 

switch (s) {

case 0: //button not pushed

if (i) {

s = 1; 

count++; 

printf("Button Push %d \n\r", count); 

}

break; 

case 1: //Button pushed

if (!i) {

s = 0; 

}

break; 

default:

s = 0; 

}

delay_until(t); 

}

}
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This looks more complicated than the original, and there are more lines of code, but it is much easier to extend to more complex situations. In this case we have only two states, s = 0 for button not pushed and s = 1 for button pushed. Ideally, the states that we use shouldn’t refer to inputs or outputs, but to the overall state of the system. For example, if you were using a ESP32

to control a nuclear reactor you might use a state “CoreMeltdown” in preference to “TempSensorOverLimit”. States should be about the consequence of the inputs and the outputs should be the consequence of the current state. 

In the example above the inputs and output are too simple to give rise to an abstract concept of “state”. Even if you were to change the state labels to 

“LEDOn” or “LEDOff” they are directly related to the state of a single output line. 

The key idea, however, is that the states indicate the state of the system at the time of the input. That is,  s = 0 (button not pushed) is the state when the system reads in a low on the GPIO line (recall the line is pulled low so pushing the button makes it go high).  You can see at the start of the polling loop we read the input line and store its value in the variable i. Next, a case statement is used to process the input depending on the current state. You can see that if s = 0, i.e. button not pushed, then the state moves to s = 1, i.e. button pushed, and a message is printed giving the number of times the button has been pressed as a simple action. In general, the action could be setting a GPIO line high or doing anything that is appropriate for the new state. Notice that actions occur on state changes. 

If the state is in s = 1, i.e. button pushed, then the input has to be 0 for anything to happen. In this case the state changes to s = 0 and any actions that are needed to take the system from state 1 to state 0 are performed, none in this case. Finally, if the state is anything other than 0 or 1, we set it to 0 as something is wrong. 

Notice that the polling loop is set up so that the whole thing repeats every 100ms. The time is taken at the start of the loop and after everything has been processed we wait for 100ms to be up.  What this means is that, no matter how long the processing in the loop takes, as long as it takes less than 100ms, the loop will repeat every 100ms. 

This is a very simple finite state machine polling loop. In practice, there is usually a set of ifs that deals with each current state, but there is often another set of if statements within each state case to deal with what happens according to different inputs. An alternative way of designing a finite state machine loop is to use a lookup table, indexed by state and input, which gives you the new state and the actions. 
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FSM Hold Button

As a slightly more complicated example of using the FSM approach, let’s implement a button with hold. You might think that a button with hold has three states – button not pushed, button pushed and button held. You can implement it in this way, but there is an argument that there are still only two states – not pushed and pushed. The held state is better implemented as extra input data to the state, i.e. the time the button has been in the pressed state. Remember, the output of a FSM depends on the state and the input and in this case the input is the line level and the time pressed:

#include <stdio.h> 

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

#include <sys/time.h> 

#include <unistd.h> 

void delay_us(int t) {

usleep(t); 

}

int64_t tick_us(int64_t offset) {

static struct timeval tv_now; 

gettimeofday(&tv_now, NULL); 

return (int64_t)tv_now.tv_sec * 1000000L +  

(int64_t)tv_now.tv_usec + offset; 

}

void delay_until(int64_t t) {

static struct timeval tv_now; 

do {

gettimeofday(&tv_now, NULL); 

} while (t > (int64_t)tv_now.tv_sec * 1000000L + 

(int64_t)tv_now.tv_usec); 

}

void app_main(void)

{

gpio_reset_pin(4); 

gpio_set_direction(4, GPIO_MODE_INPUT); 

gpio_pulldown_en(4); 

uint64_t t; 

uint64_t tpush, twait; 

int s = 0, i; 

while (true) {

i = gpio_get_level(4); 

t = tick_us(0); 
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    switch (s) {

case 0: //button not pushed

if (i) {

s = 1; 

tpush = t; 

}

break; 

case 1: //Button pushed

if (!i) {

s = 0; 

if ((t - tpush) > 2000000) {

printf("Button held \n\r"); 

}

else {

printf("Button pushed \n\r"); 

}

fflush(stdout); 

}

break; 

default:

s = 0; 

}

delay_until(t + 100 * 10000); 

}

}

It is clear that you can’t know the time the button has been pressed until it is released, so the actions are now all in the button-pushed state. While the button is in the pushed state it can be released and we can compute the time it has been pressed and modify the action accordingly. 

FSM Ring Counter

Another very common input configuration is the ring counter. A ring counter moves on to a new output each time it receives an input and repeats when it reaches the last output of the set. For example, if you have three output lines connected to three LEDs, then initially LED 0 is on, when the user presses the button, LED 1 is on and the rest off, the next user press moves on to LED 2 on and another press turns LED 0 on. You can see that as the user keeps pressing the button the LEDs go on and off in a repeating sequence. 

A common implementation of a ring counter has a state for each button press and release for each LED being on. For three LEDs this means six states and this has a number of disadvantages. A better idea is to have just two states, button pressed and button released and use a press counter as an additional input value. This means that what happens when you enter the button-pressed state depends on the value in the counter. 
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We also change from using the measurement of the button as pressed or released and move to considering an “edge” signal. Generally we need inputs that indicate an event localized in time. Button “pressed” and button 

“released” are events that are extended in time but “press” and “release” are localized to small time intervals that can be thought of as single time measurements. In general we prefer “edge” signals because these indicate when something has changed. 

Implementing this is fairly easy:

#include <stdio.h> 

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

#include <sys/time.h> 

int64_t tick_us(int64_t offset) {

static struct timeval tv_now; 

gettimeofday(&tv_now, NULL); 

return (int64_t)tv_now.tv_sec * 1000000L + 

(int64_t)tv_now.tv_usec + offset; 

}

void delay_until(int64_t t) {

static struct timeval tv_now; 

do {

gettimeofday(&tv_now, NULL); 

} while (t > (int64_t)tv_now.tv_sec * 1000000L +

(int64_t)tv_now.tv_usec); 

}

void app_main(void)

{

gpio_reset_pin(4); 

gpio_set_direction(4, GPIO_MODE_INPUT); 

gpio_pulldown_en(4); 

gpio_reset_pin(2); 

gpio_set_direction(2, GPIO_MODE_OUTPUT); 

gpio_reset_pin(16); 

gpio_set_direction(16, GPIO_MODE_OUTPUT); 

gpio_reset_pin(17); 

gpio_set_direction(17, GPIO_MODE_OUTPUT); 

uint64_t t; 

int edge; 

int buttonNow; 

int s = 0; 
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  int buttonState = gpio_get_level(4); 

gpio_set_level(2, 0); 

gpio_set_level(16, 1); 

gpio_set_level(17, 0); 

while (true)

{

t = tick_us(0); 

buttonNow = gpio_get_level(4); 

edge = buttonState - buttonNow; 

buttonState = buttonNow; 

switch (s) {

case 0:

if (edge == 1) {

s = 1; 

gpio_set_level(2, 0); 

gpio_set_level(16, 1); 

gpio_set_level(17, 0); 

}

break; 

case 1:

if (edge == 1) {

s = 2; 

gpio_set_level(2, 0); 

gpio_set_level(16, 0); 

gpio_set_level(17, 1); 

}

break; 

case 2:

if (edge == 1) {

s = 0; 

gpio_set_level(2, 1); 

gpio_set_level(16, 0); 

gpio_set_level(17, 0); 

}

break; 

default:

s = 0; 

}

delay_until(t + 100 * 10000); 

}

}

First we set up the GPIO lines for input and output and set the outputs so that LED 0 is on, i.e. s = 0. Next we start the polling loop. Inside the loop there is a switch statement that manages three states. At the start of the loop the difference between the current button value and its previous value are used to calculate edge, which is 1 only when the button has changed from pressed, 1, to released, 0. That is, edge = 1 only on a down-going edge. If the 106

button has just been pressed then the state is moved on to the next state, 0→1, 1→2 and 2→0, and the LEDs are set to the appropriate values. 

You might wonder why all three LEDs are set and not just the two that are changing? There are a number of reasons including that it is easier to see what is happening from the code and it makes sure that all of the LEDs are in the state you intend. Notice that the polling loop is set up to repeat every 100ms so providing debouncing and a predictable service time. If you try this out you will find that the LEDs light up sequentially on each button press. 

Like many more advanced methods, the FSM approach can make things seem more complicated in simple examples, but it repays the effort as soon as things get more complicated. A polling loop with tens of states and lots of input and outline lines to manage becomes impossible to maintain without some organizing principle. 
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Summary

● Input is hard because things happen at any time, irrespective of what your program might be doing. 

● You can call the gpio_get_level function at any time to discover the state of a GPIO line – the problem is when and how often to call it. 

● You can choose between external or internal pull-up/down resistors. 

● Mechanical input devices such as buttons have to be debounced. 

● The power of software is that it can enhance a simple device. A simple button is either pushed or released, but you can use this to generate a third “held” state. 

● Using a polling loop you can handle inputs as short as a few tens of microseconds. 

● Most IoT programs are best written as a polling loop. 

● The Finite State Machine (FSM) is one way of organizing a complex polling loop so that inputs are tested and outputs are set once for each time through the loop. 

● Ideally the states of a FSM should not be simple statements of the inputs or outputs that determine the state, but for simple systems this can be difficult to achieve. 

● It can be difficult to work out what constitutes the events of a FSM. 

Ideally they should be localized in time so that they indicate the moment that something happens. 
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Chapter 7

Advanced Input – Interrupts

When you start to work with multiple inputs that mean a range of different things, input really becomes a challenge. You can control much of the complexity using finite state machines and similar organizational principles, but sooner or later you are going to have to deal with the problem of input when your program isn’t ready for it. Sudden urgent unexpected input is the most difficult to deal with and when in this situation it is natural to think of the interrupt because this is the essence of urgency. However, things are much more complicated than they seem at first and so we need to consider when and where it is appropriate to give up polling for an event and change to responding to an interrupt. 

Interrupts Considered Harmful? 

An interrupt is a hardware mechanism that stops the computer doing whatever it is currently doing and makes it transfer its attention to running an interrupt handler. You can think of an interrupt as an event flag that, when set, interrupts the current program to run the assigned interrupt handler. Using interrupts means the outside world decides when the computer should pay attention to input and there is no need for a polling loop. 

Most hardware people think that interrupts are the solution to everything and polling is inelegant and only to be used when you can’t use an interrupt. 

This is far from the reality.  There is a general feeling that real-time programming and interrupts go together and if you are not using an interrupt you are probably doing something wrong. In fact, the truth is that if you are using an interrupt you are probably doing something wrong. So much so that some organizations are convinced that interrupts are so dangerous that they are banned from being used at all. 

Interrupts are only really useful when you have a low-frequency condition that needs to be dealt with on a high-priority basis. The reason is that polling for an event that rarely occurs is a time waster and treating the rare event using an interrupt makes reasonable sense. Interrupts can simplify the logic of your program, but rarely does using an interrupt speed things up because the overhead involved in interrupt handling is usually quite high. 
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If you have a polling loop that takes 100ms to poll all inputs and there is an input that demands attention in under 60ms,., 

then clearly the polling loop is not going to be good enough. Using an interrupt allows the high-priority event to interrupt the polling loop and be processed in less than 100ms. However, if this happens very often the polling loop will cease to work as intended. An alternative is to simply make the polling loop check the input twice per loop. 

For a more real-world example, suppose you want to react to a doorbell push button. You could write a polling loop that simply checks the button status repeatedly and forever, or you could write an interrupt service routine (ISR) to respond to the doorbell. The processor would be free to get on with other things until the doorbell was pushed when it would stop what it was doing and transfer its attention to the ISR. 

How good a design this is depends on how much the doorbell has to interact with the rest of the program and how many doorbell pushes you are expecting. It takes time to respond to the doorbell push and then the ISR has to run to completion - what is going to happen if another doorbell push happens while the first push is still being processed? Some processors have provision for forming a queue of interrupts, but that doesn't help with the fact that the process can only handle one interrupt at a time. Of course, the same is true of a polling loop, but if you can't handle the throughput of events with a polling loop, you can't handle it using an interrupt either, because interrupts add the time to transfer to the ISR and back again. 

Finally, before you dismiss the idea of having a processor do nothing but ask repeatedly "is the doorbell pressed", consider what else it has to do. If the answer is "not much" then a polling loop might well be your simplest option. 

Also, if the processor has multiple cores, then the fastest way of dealing with any external event is to use one of the cores in a fast polling loop. This can be considered to be a software emulation of a hardware interrupt – not to be confused with a software interrupt or trap, which is a hardware interrupt triggered by software. 

If you are going to use interrupts to service input then a good design is to use the interrupt handler to feed an event queue. This at least lowers the chance that input will be missed. 

Despite their attraction, interrupts are usually a poor choice for anything other than low-frequency events that need to be dealt with quickly. 
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Interrupts

The ESP32 supports 32 distinct interrupts, but only 26 can be associated with GPIO lines – the others are used internally or for timers. The ESP32 

uses a flexible system where the interrupt hardware isn’t enough to provide one interrupt per each possible interrupt source. This means that the 32 

interrupts each with a fixed priority have to be shared among the sources and this in turn means you have to allocate an interrupt to a source. This is usually done using the esp_intr_alloc() call, but the GPIO lines have their own dedicated interrupt allocation and management functions. This need to allocate interrupts to sources is different from other hardware where interrupts are hardwired to possible sources. 

In general, interrupts can be shared between multiple interrupt sources, but in this case interrupts can only be level-based. Edge-triggered interrupts cannot be shared. However, GPIO lines have software that makes it look as if they can. That is, GPIO lines use software to go beyond what you might expect from the raw hardware. 

There is also the issue of dealing with more than two cores. By default, the interrupt functions register and work with the core that they are running on. 

This means we can more or less ignore the issue as long as we don’t explicitly register an interrupt with a particular core. In this chapter all interrupts are set by tasks running on the App core and are serviced by tasks running on the App core. 

Shared GPIO Interrupts

The simplest and fastest form of interrupt to use with GPIO lines is a single shared interrupt. This raises the question of which GPIO line is the source of the interrupt but in practice this is usually not a problem. 

To use a shared interrupt with the GPIO lines you have to register an Interrupt Service Routine, ISR, with a particular interrupt: gpio_isr_register(ISR, parg, intr_alloc_flags, phandle)

where ISR is a function with the signature:

void IRS(void *arg)

The parg parameter is a pointer to the arg passed to the IRS. 
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The intr_alloc_flags specify the type of interrupt you want to be allocated to the ISR and it has to be a combination of:

ESP_INTR_FLAG_LEVEL1

ESP_INTR_FLAG_LEVEL2

ESP_INTR_FLAG_LEVEL3

ESP_INTR_FLAG_LEVEL4

ESP_INTR_FLAG_LEVEL5 

ESP_INTR_FLAG_LEVEL6 

ESP_INTR_FLAG_NMI   

ESP_INTR_FLAG_SHARED 

ESP_INTR_FLAG_EDGE  

ESP_INTR_FLAG_IRAM 

ESP_INTR_FLAG_INTRDISABLED

ESP_INTR_FLAG_LOWMED   

ESP_INTR_FLAG_HIGH 

ESP_INTR_FLAG_LEVELMASK 

The first flags select the priority of the interrupt that is required. The LOWMED 

flag combines priorities 1,2 and 3 and these can be used from C. The HIGH 

flag combines priorities 4,5,6 and NMI and these need assembly language to handle them fast enough. The SHARED flag asks for an interrupt that can be shared and EDGE asks for an interrupt that can respond to an edge event. 

The flags are ORed together to select multiple options. 

When you use gpio_isr_register the SHARED flag is selected as the default. 

The final parameter, phandle, if not NULL, is returned as a pointer to the interrupt handle and can be used for advanced applications. 

Notice that interrupts are a limited resource and it is possible that the register function will fail and return with an error. 

Once you have setup the shared interrupt you can enable and configure multiple GPIO lines to act as interrupt sources. You first have to select the interrupt type:

gpio_set_intr_type(id, type)

The types of event that can trigger an interrupt are:

GPIO_INTR_DISABLE    Disable GPIO interrupt

GPIO_INTR_POSEDGE 

Rising edge

GPIO_INTR_NEGEDGE 

Falling edge

GPIO_INTR_ANYEDGE 

Both rising and falling edge

GPIO_INTR_LOW_LEVEL  Input low level trigger

GPIO_INTR_HIGH_LEVEL Input high level trigger

In most cases edge events are the most useful. 
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With the interrupt type setup you can now use: gpio_intr_enable(id)

gpio_intr_disable(id)

to enable and disable the interrupt source. Disabling the interrupt also clears any interrupt that has happened. 

The simplest example of this is when you enable only one GPIO line as an interrupt source. This reduces the shared interrupt to a single line interrupt:

#include <stdio.h> 

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

void  ISR(void* arg) {

gpio_intr_disable(4); 

gpio_set_level(2, !gpio_get_level(2)); 

gpio_intr_enable(4); 

}

void app_main(void)

{

gpio_isr_register(ISR, NULL, ESP_INTR_FLAG_LOWMED, NULL); 

gpio_reset_pin(2); 

gpio_set_direction(2, GPIO_MODE_INPUT_OUTPUT); 

gpio_reset_pin(4); 

gpio_set_direction(4, GPIO_MODE_INPUT); 

gpio_intr_disable(4); 

gpio_set_intr_type(4, GPIO_INTR_ANYEDGE); 

gpio_intr_enable(4); 

}

This simple example sets up GPIO 2 as an output and GPIO 4 as an input with an edge-triggered interrupt. The first function call registers the ISR 

function with a low-priority interrupt. The ISR function simply toggles the state of GPIO 2. If you run the program and apply a pulse train to GPIO 4 

you will see a copy of the pulse train output on GPIO 2 with a variable phase, in-phase for a while then 180 degree out-of-phase. You may also be surprised that the ISR function is called even when the program has ended. 

Notice the main program is not an infinite loop and it ends. The ISR is stored in Flash RAM and the interrupt hardware calls it even when there is no main program running. If you don’t want this behavior, you need to disable interrupts when your main program ends. 
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You can configure and enable interrupts on multiple GPIO lines – the problem is knowing which one caused the interrupt. For example, consider the following modification to the previous main program:

void  ISR(void* arg) {

gpio_intr_disable(16); 

gpio_intr_disable(4); 

gpio_set_level(2, !gpio_get_level(2)); 

gpio_intr_enable(16); 

gpio_intr_enable(4); 

}

void app_main(void)

{

gpio_isr_register(ISR, NULL, ESP_INTR_FLAG_LOWMED | 

ESP_INTR_FLAG_EDGE, NULL); 

gpio_reset_pin(2); 

gpio_set_direction(2, GPIO_MODE_INPUT_OUTPUT); 

gpio_reset_pin(4); 

gpio_set_direction(4, GPIO_MODE_INPUT); 

gpio_intr_disable(4); 

gpio_set_intr_type(4, GPIO_INTR_ANYEDGE); 

gpio_reset_pin(16); 

gpio_set_direction(16, GPIO_MODE_INPUT); 

gpio_intr_disable(16); 

gpio_set_intr_type(16, GPIO_INTR_ANYEDGE); 

gpio_intr_enable(4); 

gpio_intr_enable(16); 

}

If you try this out you will find that now GPIO 2 is toggled in response to rising or falling edges on GPIO 4 or GPIO 16. In this case we don’t care which GPIO line caused the interrupt as the action of the ISR is the same. 

Which GPIO Line Interrupted? 

The problem with shared interrupts is working out which GPIO line actually caused the interrupt. Of course, the machine knows which GPIO line caused the interrupt because this is recorded in the GPIO status register. 

Unfortunately, the API doesn’t include a function to read the status register, but it is easy to create one:

#include "soc/gpio_reg.h" 

int32_t getIRQStatus() {

return *(int*)GPIO_STATUS_REG; 

}

114

How this works is explained in Chapter 18 and for the moment we can just make use of it. It returns a 32-bit value with bits set for each GPIO line that caused an interrupt. Disabling an interrupt clears its status bit in the register and so we have to get the status before disabling interrupts. For example to toggle GPIO 2 only when GPIO 16 is the source of the interrupt, you might use something like:

#include <stdio.h> 

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

#include "soc/gpio_reg.h" 

int32_t getIRQStatus() {

return *(int*)GPIO_STATUS_REG; 

}

void  ISR(void* arg) {

int32_t intStatus = getIRQStatus(); 

gpio_intr_disable(16); 

gpio_intr_disable(4); 

int32_t mask = 1 << 16; 

if (intStatus & mask)gpio_set_level(2, !gpio_get_level(2)); gpio_intr_enable(16); 

gpio_intr_enable(4); 

}

void app_main(void)

{

gpio_isr_register(ISR, NULL, ESP_INTR_FLAG_LOWMED |

ESP_INTR_FLAG_EDGE, NULL); 

gpio_reset_pin(2); 

gpio_set_direction(2, GPIO_MODE_INPUT_OUTPUT); 

gpio_reset_pin(4); 

gpio_set_direction(4, GPIO_MODE_INPUT); 

gpio_intr_disable(4); 

gpio_set_intr_type(4, GPIO_INTR_ANYEDGE); 

gpio_reset_pin(16); 

gpio_set_direction(16, GPIO_MODE_INPUT); 

gpio_intr_disable(16); 

gpio_set_intr_type(16, GPIO_INTR_ANYEDGE); 

gpio_intr_enable(4); 

gpio_intr_enable(16); 

}

Notice the use of a bit mask to determine that GPIO 16 is the source of the interrupt. You can use this technique to customize the response to a GPIO 

interrupt depending on which GPIO line caused it. 
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How Fast Is A Shared Interrupt? 

You can estimate the fastest repeat rate that an interrupt handler can deal with by simply measuring the delay between the interrupt occurring and the first response to it. For example, in our earlier program the ISR function simply toggled the state of GPIO 2. We can easily measure the time difference between the edge applied to GPIO 4 and how long it takes before GPIO changes state:

You can see that the response time, latency, is roughly 2.8 s μ for the ESP32 

S3 and about 3 s 

μ for the ESP32. This isn’t the raw interrupt response time because it includes the time to toggle the GPIO output, but the work involved is so minimal as to represent the smallest task an interrupt routine could carry out. Given the interrupt routine takes at least 3 s μ to complete, it 

clearly cannot respond again during this time and this makes the maximum repeat rate greater than 3 s. 

μ  Experimentally the ISR misses pulses soon after 

70kHz or 7 s 

μ which is roughly the largest repeat rate for ISRs that do very little work. In practice, the maximum repeat rate is likely to be much less. 

Note that if an interrupt occurs during an interrupt then it is simply lost – 

there is no default interrupt queue. 

Non-shared GPIO Interrupts

As well as the shared interrupt approach, the API also offers a per-GPIO-line interrupt facility, but this is just a software wrapper for a shared interrupt. 

To enable the non-shared approach you first have to install the wrapper: gpio_install_isr_service(intr_alloc_flags)

This allocates a single interrupt and sets its ISR to the interrupt service software. You can uninstall the service if you finish using it with: gpio_uninstall_isr_service()
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Once the service is running you can add individual ISRs to any GPIO lines you care and also remove them:

gpio_isr_handler_add(id, ISR, parg)

gpio_isr_handler_remove(id)

Each ISR that you add is only called when its GPIO line is the source of an interrupt. For example, we can arrange for an interrupt on GPIO 4 to set GPIO 2 high and an interrupt on GPIO 16 to set GPIO 2 low:

#include <stdio.h> 

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

void  ISR4(void* arg) {

gpio_intr_disable(16); 

gpio_intr_disable(4); 

gpio_set_level(2, 1); 

gpio_intr_enable(16); 

gpio_intr_enable(4); 

}

void  ISR16(void* arg) {

gpio_intr_disable(4); 

gpio_intr_disable(16); 

gpio_set_level(2, 0); 

gpio_intr_enable(16); 

gpio_intr_enable(4); 

}

void app_main(void)

{

gpio_install_isr_service(ESP_INTR_FLAG_LOWMED |

ESP_INTR_FLAG_EDGE); 

gpio_reset_pin(2); 

gpio_set_direction(2, GPIO_MODE_INPUT_OUTPUT); 

gpio_reset_pin(4); 

gpio_set_direction(4, GPIO_MODE_INPUT); 

gpio_intr_disable(4); 

gpio_set_intr_type(4, GPIO_INTR_ANYEDGE); 

gpio_isr_handler_add(4, ISR4, NULL); 

gpio_reset_pin(16); 

gpio_set_direction(16, GPIO_MODE_INPUT); 

gpio_intr_disable(16); 

gpio_set_intr_type(16, GPIO_INTR_ANYEDGE); 

gpio_isr_handler_add(16, ISR16, NULL); 

gpio_intr_enable(4); 

gpio_intr_enable(16); 

while (true) {}; 

}
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If you try this out you will find that GPIO 2 is set high or low depending on the source of the interrupt. Notice that it is important which order you disable interrupts in the ISRs. You should disable sources that did not cause the interrupt first. 

How Fast is a Non-shared Interrupt? 

The service uses a single interrupt and maintains a list of ISRs that have been added. When the interrupt occurs it makes use of the status register to work out which ISRs to call. How long it takes to service an interrupt therefore depends on how many ISRs there are to keep track of and call. 

With a single ISR in the queue the response time goes up from 7 s μ to about 

10μs

In most cases the non-shared interrupt is easier to use and almost as fast as the shared interrupt approach. What matters more is how long any interrupt routine takes to complete. 

Measuring Pulse Width

In Chapter 6 we saw how to use polling to measure pulse widths. You can do the same job with interrupts – simply detect a rising and then a falling edge. 

In general, it is nearly always a good idea to get the ISR to set the value of a few state variables and then return as soon as possible. This approach reduces the ISR to a minimum and makes the program work faster and more reliably, for example:

#include <stdio.h> 

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

#include <sys/time.h> 

int64_t tick_us(int64_t offset) {

static struct timeval tv_now; 

gettimeofday(&tv_now, NULL); 

return (int64_t)tv_now.tv_sec * 1000000L + 

(int64_t)tv_now.tv_usec + offset; 

}

void delay_ms(int t) {

vTaskDelay(t / portTICK_PERIOD_MS); 

}

int64_t t = 0; 

int state = 0; 
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void  ISR(void* arg) {

gpio_intr_disable(4); 

t = tick_us(-t); 

state++; 

gpio_set_level(2, !gpio_get_level(2)); 

gpio_intr_enable(4); 

}

void app_main(void)

{

gpio_isr_register(ISR, NULL, ESP_INTR_FLAG_LOWMED, NULL); 



gpio_reset_pin(2); 

gpio_set_direction(2, GPIO_MODE_INPUT_OUTPUT); 

gpio_reset_pin(4); 

gpio_set_direction(4, GPIO_MODE_INPUT); 

gpio_intr_disable(4); 

gpio_set_intr_type(4, GPIO_INTR_ANYEDGE); 

gpio_intr_enable(4); 



while (true) {

while (state != 2) {}; 

gpio_intr_disable(4); 

printf("time = %lld, %d\n", t, state); 

fflush(stdout); 

state = 0; 

t = 0; 

delay_ms(1000); 

gpio_intr_enable(4); 

}

}

The main program simply tests the state variable and waits for state to equal 2. This means that the interrupt routine has been called twice – the first time it records the time and the second time it records the time difference. Following this the interrupt is disabled, the result printed and then enabled after a one-second pause. 

If you try this out, you will find that the pulse measurements are reasonably accurate down to 25μs, after which the next edge is missed and the second falling is detected. This compares reasonably with the 20μs a direct polling approach can provide. 
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Race Conditions and Starvation

Implementing an ISR is a step into the complex world of asynchronous programs and if this is something of interest see  Applying C for the IoT 

 Under Linux and POSIX,    ISBN:978-1871962611. The biggest new problem that asynchronicity introduces is the possibility of race conditions. A race condition occurs when two sections of code modify a shared resource in such an uncontrolled way that the final outcome depends on the timing of the code execution. Race conditions are particularly difficult to debug because they look random and the tendency is to think that they are due to faulty hardware and, worse, an intermittent fault. Race conditions are covered in general terms in Chapter 17 in the context of Free RTOS tasks but they also occur when you use interrupts. 

It is difficult to provide a clear and simple example of a race condition for the ESP32 because real time programming is inherently difficult to test. 

Consider the problem of setting a char array to either all ones or all zeros. In an ideal world this data structure would always be in either one of the two states – the setting would be atomic and not interruptible. The following program uses an interrupt on GPIO4 to set a byte array to all zeros and a while loop in the main program to set it to all ones:

#include <stdio.h> 

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

char data[3]; 

void  ISR(void* arg) {

gpio_intr_disable(4); 

for (int i = 0;i < 3;i++) data[i] = 0; 

gpio_intr_enable(4);}

void app_main(void)

{

gpio_isr_register(ISR, NULL, ESP_INTR_FLAG_LOWMED, NULL); 

gpio_reset_pin(4); 

gpio_set_direction(4, GPIO_MODE_INPUT); 

gpio_intr_disable(4); 

gpio_set_intr_type(4, GPIO_INTR_ANYEDGE); 

gpio_intr_enable(4); 

while (true) {

for (int i = 0;i < 3;i++) data[i] = 0xFF; 

if (data[0] != data[1] || data[1] != data[2] 

|| data[2] != data[0]) break; 

}

printf("%d %d %d", data[0], data[1], data[2]); 

}
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If you run this program you will discover that the byte array is often in a state that is a mix of the two states with values at 0 and 255. This occurs frequently, even with interrupts occurring at ten per second. What happens is that the for loop starts to set the byte array to all ones a byte at a time. If an interrupt occurs during this process then the bytes affected are set to zeros and when the loop restarts only the remaining bytes are set to ones. 

Small changes to the way that the program is organized can alter the rate of race conditions occurring. For example, changing the for loop for a direct assignment:

data[0]=0xff;data[1]=0xff;data[2]=0xff; 

virtually eliminates the errors  because of the small time between each assignment – but they still happen. 

The point is that while interrupt routines share the data that is in scope for other functions in the program, they access them asynchronously and as such things are more complicated than you might expect. 

If you don’t want the array to be in an inconsistent state then you need to disable the ISR while the main thread is using it:

gpio_intr_disable(4); 

for (int i = 0;i < 3;i++) data[i] = 0xFF; 

if (data[0] != data[1] || data[1] != data[2] || 

data[2] != data[0]) break; 

gpio_intr_enable(4); 

This now works and you never see an inconsistent state for the byte array but now the ISR hardly ever gets to run. It only gets called once per while loop iteration and this severely limits its responsiveness. 

This is an example of “starvation” where one process hogs the CPU for so much of the time that other processes fail to make much progress. In this case it is the ISR that is slowed down but a CPU-hogging ISR can slow the main program down in exactly the same way. 

In practice you could also use a lock to stop asynchronous access to any shared resource, but in this case the problem is what the interrupt routine should do when it finds access to the shared resource blocked – it can’t just wait because that would cause deadlock. 

The solution to the problem is to arrange to use resources that can be safely used in a lock free way. 
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Using a Queue

Raw interrupts are a problem because if the ISR takes any time to process the interrupt then subsequent interrupts stand a chance of being missed. If the process is handed off to another routine then we have the same problem if an interrupt occurs while one is being processed. To avoid losing interrupts we can use a queue and a suitable data structure is provided by RTOS, Real-Time Operating System. The RTOS queue is a First In, First Out (FIFO) queue that is threadsafe – that is it can be written and read by multiple threads, including interrupts, without worrying about race conditions or locks. 

There are a lot of different functions that allow you to work with the queue but the main ones are:



qhandle = xQueueCreate( n,  size))

Creates a queue with  n slots each capable of storing  size bytes. 

The function returns a handle to the queue created or NULL if not possible. 



xQueueSendToBackFromISR(qhandle, pdata, NULL); 

Adds the data referenced by pdata at the back of the queue 

referenced by qhandle. You can add data to the back or the front of the queue. Returns an error if the queue is full. 



xQueueReceive(qhandle, pdata, delay)

Reads an item from the front of the queue into the variable referenced by pdata. The delay parameter gives the number of ticks to wait for data. The call blocks until there is data to read or until the delay is up. Setting delay to 0 results in the call returning at once. 

The return value is true if the data has been read. 

There is much more to RTOS queues, see Chapter 17, but this is enough to start using them. A typical use is to store a timestamp that records when an interrupt happens:

#include <stdio.h> 

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

#include <sys/time.h> 

int64_t tick_us(int64_t offset)

{

static struct timeval tv_now; 

gettimeofday(&tv_now, NULL); 

return (int64_t)tv_now.tv_sec * 1000000L +

(int64_t)tv_now.tv_usec + offset; 

}
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int64_t t = 0; 

static QueueHandle_t gpio_evt_queue = NULL; 

void ISR(void *arg)

{

gpio_intr_disable(4); 

t = tick_us(0); 

xQueueSendToBackFromISR(gpio_evt_queue, &t, NULL); 

gpio_intr_enable(4); 

}

void app_main(void)

{

gpio_evt_queue = xQueueCreate(10, sizeof(int32_t)); 

gpio_isr_register(ISR, NULL, ESP_INTR_FLAG_LOWMED, NULL); 

gpio_reset_pin(4); 

gpio_set_direction(4, GPIO_MODE_INPUT); 

gpio_intr_disable(4); 

gpio_set_intr_type(4, GPIO_INTR_ANYEDGE); 

gpio_intr_enable(4); 

int64_t time; 

while (true)

{

if (xQueueReceive(gpio_evt_queue, &time, portMAX_DELAY))

{

printf("time = %lld\n", time); 

fflush(stdout); 

}

}

}

You can see that we create a global variable to store the qhandle so that both the ISR function and the main program can access it. The main program then creates a queue and simply loops forever trying to read data from it. The portMAX_DELAY sets the longest delay possible. It is also possible to suspend the calling program and allow other tasks to run until data is available. 

When a timestamp is retrieved, it is printed. 

If you try this out you will find that you still reach a maximum number of interrupts that can be handled. The use of a queue doesn’t increase the number of interrupts that can be handled. All it does is to ensure that if a burst of interrupts occurs then none will be lost. In this case the queue has space for ten timestamps and hence can deal with a burst of ten timestamps, any more and interrupts will be lost. 
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Timers

A very common use of interrupts is to run a function after a delay or run one regularly, every so often. The ESP32 typically has four hardware timers that can be used to do just this. The General Purpose Timer, GPTimer, is very flexible and easy to understand once you have seen a simple example. It can be used as a timer and generate events or interrupts on a one-shot or periodic basis. Depending on the ESP32 you are using you can have two or four timers, but their use is identical. 

Each timer can be configured using the gptimer_config_t struct. clk_src, which selects the source clock for the timer, usually:

GPTIMER_CLK_SRC_DEFAULT

and takes several parameters:

 direction 

Sets the counting direction of the timer:

GPTIMER_COUNT_DOWN

GPTIMER_COUNT_UP

 resolution_hz  

Sets the resolution of the internal counter. 

The timer ticks at the specified frequency. 

 intr_priority 

Sets the priority of the timer interrupt 

with 0 as the default. 

 intr_shared 

Sets whether or not the timer interrupt 

source is shared 

By default the timer is fed by the APB_Clock running at 80MHz via a 16-bit prescaler. This means that the clock can be between  1221Hz and 40MHz or roughly 0.8ms to 40 s 

μ per tick. 

To create a timer you initalize a gptimer_config_t struct and then call: gptimer_new_timer(pconfig, phtimer)

where pconfig is a pointer to the struct and phtimer is the returned reference to the timer handle. 

The timer will set the resolution to the nearest value that can be obtained using the prescaler. You can find the actual resolution using: gptimer_get_resolution(htimer, presolution)

There are four functions which control the state of the timer: gptimer_enable(htimer)

gptimer_disable(htimer)

gptimer_start(htimer)

gptimer_stop(htimer)

enable and disable setup and release the resources that the timer uses. 

Once it is enabled you can start and stop it counting and when it is stopped you can disable it. When the timer is restarted it is set to zero and the count starts again. 
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You can set or get the current count using: gptimer_set_raw_count(htimer, value)

gptimer_get_raw_count(htimer, pvalue)

When you have finished with a timer it should be stopped, disabled and then deleted with:

gptimer_del_timer(htimer)

This is all you need to know to use a timer to perform a count:

#include <stdio.h> 

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

#include "driver/gptimer.h" 

void app_main(void)

{

gptimer_config_t timer_config = {

.clk_src = GPTIMER_CLK_SRC_DEFAULT, 

.direction = GPTIMER_COUNT_UP, 

.resolution_hz = 1221, 

}; 

gptimer_handle_t gptimer = NULL; 

gptimer_new_timer(&timer_config, &gptimer); 

gptimer_enable(gptimer); 

gptimer_start(gptimer); 

uint64_t count = 0; 

do {

gptimer_get_raw_count(gptimer,&count); 

} while (count < 1000); 

printf("Time up %lld\n",count); 

gptimer_stop(gptimer); 

gptimer_disable(gptimer); 

gptimer_del_timer(gptimer); 

}

The timer is set up with the lowest resolution, 1221Hz, and after creating, enabling and starting it, count is monitored until it reaches 1000 when the program stops the timer, disables it and deletes it. If you wanted to time another so many ticks you could start the timer again, which resets count, before stopping, disabling and deleting gptimer. 
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A Microsecond Timer

As an example of using the timers we can construct a replacement for the tick_us function given earlier using a timer:

#include <stdio.h> 

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

#include "driver/gptimer.h" 

gptimer_handle_t tick_us_start(void) {

gptimer_config_t timer_config = {

.clk_src = GPTIMER_CLK_SRC_DEFAULT, 

.direction = GPTIMER_COUNT_UP, 

.resolution_hz = 1000000, 

}; 

gptimer_handle_t gptimer_us = NULL; 

gptimer_new_timer(&timer_config, &gptimer_us); 

gptimer_enable(gptimer_us); 

gptimer_start(gptimer_us); 

return gptimer_us; 

}

int64_t tick_us(gptimer_handle_t gptimer_us, int64_t offset) {

uint64_t count; 

gptimer_get_raw_count(gptimer_us, &count); 

return count + offset; 

}

void app_main(void)

{

gptimer_handle_t gptimer_us = tick_us_start(); 

int64_t tick = tick_us(gptimer_us, 1000000); 

while (tick_us(gptimer_us, 0) < tick) {}; 

printf("time up %lld\n", tick_us(gptimer_us, 0)); 

}

The tick_us_start function sets the timer up and starts it running. It returns a handle to the timer which has to be used in calls to the tick_us function. This simply returns the number of ticks adding in the offset. The main program uses both functions to create a one-second delay and then prints the current count. 

The advantage of this method is that it is fast and simple. The disadvantage is that you have to remember to start the timer and there is the possibility that no timer will be available. A function to disable and delete the timer is also a good idea for a production program. 
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Alarms

The timer can also act as an alarm – triggering when the count limit is reached. The alarm can be set up as a one-shot or a periodic alarm.  To turn a counting timer into an alarm you use:

gptimer_set_alarm_action(htimer, pconfig)

where pconfig is a pointer to a gptimer_alarm_config_t struct containing:

 alarm_count

Alarm target count value

 reload_count    

Alarm reload count value

 flags.auto_reload_on_alarm 

true or false

To register a callback when the alarm is raised use:

gptimer_register_event_callbacks(htimer,pcbs,pdata)

where pcbs is a pointer to a callback struct which has just one field: on_alarm   set to ISR to be used as the callback. 

The callback has the same general form of an ISR with some additional details:

bool  ISR(gptimer_handle_t gptimer, 

const gptimer_alarm_event_data_t *edata, 

void* user_data)

The system passes the timer handle that caused the interrupt along with some user data and timer data. The timer gptimer_alarm_event_data_t is a struct with two fields:

 count_value     Current value of the count 

 alarm_value     Current value of the alarm

The callback should return true if the system can schedule a higher priority task when it finishes. In general, you should allow the system to deal with tasks after an event. 

As an example, this program toggles a GPIO line about once per second:

#include <stdio.h> 

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

#include "driver/gptimer.h" 

bool  ISR(gptimer_handle_t gptimer, 

const gptimer_alarm_event_data_t* edata, 

void* user_data) {

gpio_set_level(2, !gpio_get_level(2)); 

return true; 

}
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void app_main(void)

{

gpio_set_direction(2, GPIO_MODE_INPUT_OUTPUT); 

gpio_reset_pin(2); 

gpio_set_direction(2, GPIO_MODE_INPUT_OUTPUT); 

gptimer_handle_t gptimer = NULL; 

gptimer_config_t timer_config = {

.clk_src = GPTIMER_CLK_SRC_DEFAULT, 

.direction = GPTIMER_COUNT_UP, 

.resolution_hz = 1221, 

}; 

gptimer_new_timer(&timer_config, &gptimer); 

gptimer_alarm_config_t alarm_config = {

.flags.auto_reload_on_alarm = true, 

.alarm_count = 1000, 

.reload_count = 0 }; 

gptimer_set_alarm_action(gptimer, &alarm_config); 

gptimer_event_callbacks_t cbs = {

.on_alarm = ISR, 

}; 

gptimer_register_event_callbacks(gptimer, &cbs, NULL); 

gptimer_enable(gptimer); 

gptimer_start(gptimer); 

while (true) {}; 

}

As you can see, the biggest problem in using a timer are the details of its configuration. When used as an alarm it has to be set up first as a timer, then as an alarm and then the callback has to be set. All of this has to be done before the timer is enabled. It is important to remember that the timer callback is an interrupt service routine and it runs in an interrupt context. 

Restrictions on ISRs

The most important restriction on an IRS is that it has to be short and fast. If an ISR does a lot of processing, it blocks the handling of other interrupts until it has finished. What this means is that an IRS should never wait for a lock or data in a queue or anything else. If this is necessary, the IRS should arrange for another task to do the job and, after handing over to this task, it should return, ready for the next interrupt. 

128

There is also the issue of what functions an ISR can make use of while it is active. Most C library functions, such as printf, should not be used. The reason is that they are not “threadsafe”. For example, some other part of the program might be calling printf when an interrupt occurs that then results in printf being called again. Many of the standard functions also acquire locks on resources and will cause the ISR to block indefinitely. 

Some functions are explicitly stated as able to be called in an interrupt handler. For example, the following timer functions:



gptimer_start()



gptimer_stop()



gptimer_get_raw_count()



gptimer_set_raw_count()



gptimer_get_captured_count()



gptimer_set_alarm_action()

are all listed as being threadsafe and so can run under an ISR context. 

FreeRTOS functions are not threadsafe by default and you need to check before you assume a function is threadsafe. In particular there are special versions with ISR in their names that are safe to be called from an ISR even if they are already in use by another task. For example, 

xQueueSendToBackFromISR, which was used in the queue example, is safe to be used in an ISR, but other queue functions without ISR in their names are not. 

At the time of writing, it can be difficult to find out if a function is threadsafe or not and in general it is best to avoid using any doubtful functions in an ISR. The best solution is for the ISR to use a safe-to-share data structure such as a queue to pass the processing onto another FreeRTOS

task. The basic idea is to start deferred handler task and have the ISR wake the task with one of:



xTaskResumeFromISR()



xTaskNotifyFromISR()



vTaskNotifyGiveFromISR()

Notice that the deferred handler task can itself be interrupted while working on a previous interrupt and it is important to make sure that interrupt data is held in a queue or similar for future processing. See Chapter 17 for more details on Free RTOS and tasks. 

Another consideration is where the ISR is running. The ESP32 has flash memory which is used to hold the program code, but flash memory is slow and so there is a cache to speed things up. The problem is that ISRs need to be fast and there is always the possibility that the appropriate ISR isn’t in the cache when an interrupt occurs and has to be loaded from flash. The ESP32 

has typically 200Kbytes of fast instruction RAM IRAM. 
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You can ask for any function to be stored in IRAM using the IRAM_ATTR 

macro: 

void IRAM_ATTR gpio_isr_handler(void* arg)

This not only speeds things up a little, it also means that there aren’t problems with the function if the cache is disabled, due to a Flash write for example. 

It is general advice that ISRs should be placed in IRAM but this brings with it some complications. In principle, any function in IRAM should use Data RAM DRAM for its constant data and strings:

const static DRAM_ATTR uint8_t INDEX_DATA[] = { 45, 33, 12, 0 }; const static char *MSG = DRAM_STR("I am a string stored in RAM"); In practice, the increase in speed is negligible, undetectable even, unless there is something strange about the way the cache is used. 

Responding to Input

This look at methods of dealing with the problems of input isn’t exhaustive -

there are always new ways of doing things, but it does cover the most general ways of implementing input. As already mentioned, the problem with input is that you don’t know when it is going to happen. What generally matters is speed of response. 

For low-frequency inputs, interrupts are worthwhile. They can leave your program free to get on with other tasks and simplify its overall structure. For high-frequency inputs that need to be serviced regularly, a polling loop is still the best option for maximum throughput. How quickly you can respond to an input depends on how long the polling loop is and how many times you test for it per loop. 

If you do make extensive use of interrupts, then you need to adopt a more sophisticated approach using a shared queue and a task to process it. This allows the interrupt rate to exceed the maximum for short periods of time, using the capacity of the queue to store the data for processing. 
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Summary

● The ESP32 supports 32 distinct interrupts, but only 26 can be associated with GPIO lines. The others are used internally or for timers. 

● The simplest and fastest form of interrupt to use with GPIO lines is a single shared interrupt. 

● The problem with shared interrupts is working out which GPIO line actually caused the interrupt. Of course, the machine knows which GPIO line caused the interrupt because this is recorded in the GPIO 

status register. 

● The response time, latency, is roughly 3 s

μ for GPIO interrupts 

● As well as the shared interrupt approach, the API also offers a per GPIO line interrupt facility but this is just a software wrapper for a shared interrupt. 

● Race conditions can occur if the update of shared resources isn’t atomic. You can make an update atomic by disabling interrupts. 

● The RTOS queue is a First In First Out (FIFO) queue that is threadsafe – that is it can be written and read by multiple threads, including interrupts, without worrying about race conditions or locks. 

● The general-purpose GPTimers are very flexible and can be used to time and generate events or interrupts on a one-shot or periodic basis. 

● ISRs need to be carefully crafted to get the best out of the system and are subject to a number of restrictions. 
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Chapter 8

Pulse Width Modulation

One way around the problem of getting a fast response from a microcontroller is to move the problem away from the processor. In the case of the ESP32 there are some built-in devices that can use GPIO lines to implement protocols without the CPU being involved. In this chapter we take a close look at the use of Pulse Width Modulation (PWM) including generating sound, driving LEDs and servos. 

When performing their most basic function, i.e. output, the GPIO lines can be set high or low by the processor. How fast they can be set high or low depends on the speed of the processor. 

Using the GPIO line in its Pulse Width Modulation (PWM) mode you can generate pulse trains up to 40 MHz. The reason for the increase in speed is that the GPIO is connected to a pulse generator and, once set to generate pulses of a specific type, the pulse generator just gets on with it without needing any intervention from the GPIO line or the processor. In fact, the pulse output will continue after your program has ended. Of course, even though the PWM line can generate very fast pulses, usually what you want to do is change the nature of the pulses and this is a slower process involving the processor. 

Some Basic PWM Facts

There are some facts worth getting clear right from the start, although  their full significance will only become clear as we progress. 

First, what is PWM? The simple answer is that a pulse width modulated signal has pulses that repeat at a fixed rate, say one pulse every millisecond, but the width of the pulse can be changed. There are two basic things to specify about the pulse train that is generated, its repetition rate and the width of each pulse. Usually the repetition rate is set as a simple repeat period and the width of each pulse is specified as a percentage of the repeat period, referred to as the duty cycle. So, for example, a 1ms repeat and a 50% duty cycle specifies a 1ms period, which is high for 50% of the time, i.e. a pulse width of 0.5ms. The two extremes are 100% duty cycle, i.e. the line is always high, and 0% duty cycle, i.e. the line is always low. 
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Notice it is the duty cycle that carries the information in PWM and not the frequency. What this means is that, in general, you select a repeat rate and stick to it and what you change as the program runs is the duty cycle. 

In many cases PWM is implemented using special PWM-generator hardware that is either built into the processor chip or provided by an external chip. 

The processor simply sets the repeat rate by writing to a register and then changing the duty cycle by writing to another register. This provides the ideal sort of PWM with no load on the processor and glitch-free operation. 

You can even buy add-on boards that will provide additional channels of PWM without adding to the load on the processor. 

The alternative to dedicated PWM hardware is to implement it in software. 

You can work out how to do this quite easily. All you need is a timing loop to set the line high at the desired repetition rate and then set it low again according to the duty cycle. You can implement this using either interrupts or a polling loop and in more advanced ways, such as using a DMA (Direct Memory Access) channel. 

ESP32 PWM 

The ESP32 has two PWM hardware implementations. One is intended for use in motor control and has extra features such as a dead zone and auto-braking. The second, LEDC, is specifically designed to drive LEDs with facilities such as auto-dimming plus more exotic features. 

A PWM generator can be assigned to any GPIO pin. The number of PWM 

generators an ESP32 has depends on its exact model. They come in two groups – fast and slow. The fast type has the auto-dimming features and is able to smoothly change frequency and duty cycle. The slow type lacks these features and it is up to software to change its frequency and duty cycle.  Each group also has a set number of timers which determine how many different frequencies can be generated and a given number of channels. 
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The EP32 has two groups, one fast and one slow, of PWM with eight channels in each group. The ESP32-S2 only has one fast group, but is otherwise identical. The ESP32-C3, which is RISC based, is the same as the ESP32-S2, but with only six channels. All ESP32 devices have four timers in each group, meaning you can set four different frequencies. 

Notice that a single timer can be shared by more than one channel and any timer can be assigned to any channel. 

The difference between the high-speed and low-speed channels isn’t as important as you might think. Both can work with an 80MHz clock, but the low-speed channels can also work with an 8MHz clock:

APB_CLK

80 MHz

High / Low

REF_TICK

Dynamic Frequency Scaling 

1 MHz

High / Low

compatible

Dynamic Frequency Scaling 

RC_FAST_CLK

~ 8 

Low

compatible, 

MHz

Light sleep compatible

Another difference is that the high-speed channels will change the timer at the end of a count, so generating a glitch-free signal whereas a low-speed channel will change as soon as software instructs it to. 
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The structure of the hardware is very simple. The timer is simply a 20-bit counter driven from the clock signal reduced in frequency by a divider.  The reference pulses from the timer are passed to the channel hardware which has a pair of comparators which trigger when the count reaches set values. 

The high-level comparator triggers when the count reaches a value and sets the output high and the low-level comparator triggers when the count reaches a second value and sets the output low:

What happens is that the timer starts off at zero and counts up to the hpoint value when the output goes high. It then carries on counting until it reaches the lpoint value when the output is set low. The output remains low until the timer rolls over and the process repeats:

The frequency of the PWM signal is set by the rollover, which depends on the number of bits used in the counter, i.e. between 1 and 20, and the clock frequency. The number of bits used in the counter is related to the resolution with which the duty cycle can be set. For example, if the counter was set to 2

bits the count would be 00, 01, 10 and 11 with rollover at 11. Clearly now you can only set the comparators to the four values which means in theory you could produce a 0%, 50%, 75% or 100% duty cycle. 
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For this reason the number of bits used in the counter is specified as duty_resolution and

 clock frequency

PWM frequency =   divider×2 dutyresolutionbits

For example, if the clock frequency is 80MHz and the divider is set to 2 the input pulses to the controller are 40MHz. If the duty resolution is set to 8 bits then 28 is 256 and hence the PWM frequency is 156.25kHz and the duty cycle can be set to any of 256 different ratios. 

Notice that there is more than one way to obtain a given PWM frequency corresponding to different clock frequencies and duty resolutions. In general, you want to select the clock frequency that gives the highest duty resolution. There is a helper function:

duty_res = ledc_find_suitable_duty_resolution(

src_clk_freq, timer_freq)

which will find the maximum duty cycle resolution for any given clock and PWM frequency. 

Duty Cycle and Phase

The software lets you set the duty cycle resolution in terms of the number of bits, the duty cycle as a count and hpoint as a count. This makes it slightly difficult to see what is going on and in particular why you might want to set hpoint at all. Suppose you select duty_res to be 8 bits, that makes the timer roll over at 28-1= 255 and if you set the hpoint to 0 then the output goes high as soon as the timer starts counting. If you set the duty cycle to 127, then  lpoint, computed as  hpoint+duty cycle is 127. The result is the output goes high at count=0, goes low at count=127 and goes high at the rollover after 255. This is an output with a 50% duty cycle. 
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Now consider what happens if you set hpoint to 127. Now when the count starts the output stays low until the count reaches 127. The lpoint, again computed as hpoint+duty cycle is now 127+127, i.e. 254, which means the output goes low right at the end of the count, just before the rollover. 

You can see that moving the hpoint has not affected the duty cycle, but has changed where the pulse starts going high. That is, hpoint sets the phase. If you set hpoint too close to the overflow, the lpoint that completes the pulse will be in the next clock cycle. That is, the position of lpoint is given by: lpoint = (duty cycle + hpoint) mod  overflow count

This means you can change the phase from zero to 360 degrees. Notice that PWM channels always start from a low state and this means if hpoint isn’t 0 

the very first low may be longer than the following pulses. You can see an example of this later. 

Setting up the PWM

Setting up a PWM source has two steps, configuring a timer and then configuring a channel. For the former you can use: 

ledc_timer_config(ptimer_conf)

where ptimer_config is a pointer to a struct, timer_config, with the following fields:

 speed_mode    

One of:

LEDC_HIGH_SPEED_MODE

LEDC_LOW_SPEED_MODE



LEDC_SPEED_MODE_MAX



duty_resolution    

Either LEDC_TIMER_n_BIT, where n is 1 to 20 



or LEDC_TIMER_BIT_MAX

 timer_num  



Number between 0 and LEDC_TIMER_MAX-1

 freq_hz  

Timer frequency in Hz
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 clk_cfg  

Source clock, one of:



LEDC_REF_TICK (1MHz)



LEDC_APB_CLK (80MHz) 




LEDC_SCLK (8MHz)



LEDC_AUTO_CLK auto select

 deconfigure  If true deconfigure the timer, pausing the timer first Once you have a timer setup the next step is to configure a channel using: ledc_channel_config(pchan_conf)

where pchan_conf is a pointer to a struct with the following fields:

 gpio_num  

GPIO line to use for the output

 speed_mode 

One of:

LEDC_HIGH_SPEED_MODE

LEDC_LOW_SPEED_MODE

 channel  

A number between 0 and LEDC_CHANNEL_MAX-1

 intr_type  

Fade interrupt enable or disable

 timer_sel  

Timer source for channel (0 - LEDC_TIMER_MAX-1)

 duty  

Range of settings is [0, (2**duty_resolution)]

 hpoint  

Range is [0, (2**duty_resolution)-1]

 flags.output_invert Enable (1) or disable (0) GPIO output A First Example

Setting up a PWM is very simple in theory, but there are a lot of settings in the two structs involved in the configuration. The simplest example is just to generate a PWM signal on a single GPIO line. First we set up the timer: void app_main(void)

{

ledc_timer_config_t ledc_timer = {

.speed_mode = LEDC_LOW_SPEED_MODE, 

.timer_num = 0, 

.duty_resolution = LEDC_TIMER_13_BIT, 

.freq_hz = 4000, 

.clk_cfg =  LEDC_APB_CLK

}; 

This selects low-speed timer 0 and sets its counter to 13-bit mode, which counts up to 8,191 before overflowing. The specification of a frequency of 4000Hz and a clock of 80MHz, makes the divider set to 20,000. 
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Next we set up the channel:

ledc_channel_config_t ledc_channel = {

.speed_mode = LEDC_LOW_SPEED_MODE, 

.channel = 0, 

.timer_sel = 0, 

.intr_type = LEDC_INTR_DISABLE, 

.gpio_num = 2, 

.duty = 4096, 

.hpoint = 0

}; 

Again we select a low-speed controller channel 0 and connect it to timer 0 

using timer_sel and GPIO 2 with interrupts disabled. The duty is set to 4096, which is roughly half 8191 and so the duty cycle is 50%. The hpoint is set to 0 so the high edge of the output occurs when the timer starts. 

To start the PWM on GPIO 2 we need only two function calls: ledc_timer_config(&ledc_timer); 

ledc_channel_config(&ledc_channel); 

The complete program is:

#include <stdio.h> 

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

#include "driver/ledc.h" 

void app_main(void)

{

ledc_timer_config_t ledc_timer = {

.speed_mode = LEDC_LOW_SPEED_MODE, 

.timer_num = 0, 

.duty_resolution = LEDC_TIMER_13_BIT, 

.freq_hz = 4000, 

.clk_cfg = LEDC_APB_CLK

}; 

ledc_timer_config(&ledc_timer); 

ledc_channel_config_t ledc_channel = {

.speed_mode = LEDC_LOW_SPEED_MODE, 

.channel = 0, 

.timer_sel = 0, 

.intr_type = LEDC_INTR_DISABLE, 

.gpio_num = 2, 

.duty = 4096, 

.hpoint = 0

}; 

ledc_channel_config(&ledc_channel); 

}
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The result is as you would expect:

It is usually simpler to put the configuration details into a function which sets all of the defaults. It is possible to change most of the configuration later. For example:

void PWMconfigLow(int gpio, int chan, int timer, int res, 

int freq, float duty) { 

ledc_timer_config_t ledc_timer = {

.speed_mode = LEDC_LOW_SPEED_MODE, 

.clk_cfg = LEDC_APB_CLK

}; 

ledc_timer.timer_num = timer; 

ledc_timer.duty_resolution = res; 

ledc_timer.freq_hz = freq; 

ledc_channel_config_t ledc_channel = {

.speed_mode = LEDC_LOW_SPEED_MODE, 

.hpoint = 0, 

.intr_type = LEDC_INTR_DISABLE, 

}; 

ledc_channel.channel = chan; 

ledc_channel.timer_sel = timer; 

ledc_channel.gpio_num = gpio; 

ledc_channel.duty =((float)(2<<(res-1)))*duty; 

ledc_timer_config(&ledc_timer); 

ledc_channel_config(&ledc_channel); 

}

This function lets you set the timer, channel, frequency, and resolution in the usual way. The only innovation is to allow the duty cycle to be set as a fraction. So for a 50% duty cycle, you would specify 0.5. 
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Changing the PWM

There are a great many functions which can be used to change the operation of the PWM hardware after it has been configured. The first acts on the channel. 



ledc_stop(speed_mode,  channel,  idle_level)

Stops the specified channel, setting the output to  idle_level,  0 or 1

There are three that act on the timer:

 ledc_timer_pause(speed_mode, timer_sel)

Pauses the timer’s count

 ledc_timer_resume(speed_mode, timer_sel)

Resumes the timer’s count

 ledc_timer_rst(speed_mode, timer_sel)

Resets the timer’s count to start again from zero

You can also change the clock divider, duty resolution and the choice of clock using:



ledc_timer_set(speed_mode, timer_sel, clock_divider, 

duty_resolution, clk_src)

To work with the PWM’s frequency you can use:

 ledc_set_freq(speed_mode, timer_num, freq_hz)

Changes the frequency

 freq=ledc_get_freq(speed_mode,  timer_num)

Changes the frequency at the next timer rollover

In most cases it is the duty cycle of the PWM output you need to change and this can be done with the help of the following functions:



ledc_set_duty(speed_mode, channel,  duty)



ledc_update_duty(speed_mode, channel)



duty=ledc_get_duty(speed_mode, channel)

The set_duty function doesn’t actually change the duty cycle; we need to call update_duty to enforce the change which happens at the next timer restart. 

If you want to change the hpoint you can use:



ledc_set_duty_with_hpoint(speed_mode, channel, duty, hpoint)



hpoint=ledc_get_hpoint(speed_mode, channel)

The functions to update the duty cycle are not threadsafe and should not be used in different tasks at the same time. For concurrent tasks use the alternative threadsafe function:



ledc_set_duty_and_update(speed_mode, channel, duty, hpoint) 142

As an example of changing the duty cycle, this small function changes it in terms of a percentage:

void changeDutyLow(int chan,  int res, float duty) {

ledc_set_duty(LEDC_LOW_SPEED_MODE, chan, 

((float)(2 << (res - 1))) * duty); 

ledc_update_duty(LEDC_LOW_SPEED_MODE, chan); 

}

For example to use this to modulate the duty cycle:

#include <stdio.h> 

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

#include "esp_rom_sys.h" 

#include "driver/ledc.h" 

#include <unistd.h> 

void delay_us(int t) {

usleep(t); 

}

void PWMconfigLow(int gpio, int chan, int timer, int res, 

int freq, float duty) {

ledc_timer_config_t ledc_timer = {

.speed_mode = LEDC_LOW_SPEED_MODE, 

.clk_cfg = LEDC_APB_CLK

}; 

ledc_timer.timer_num = timer; 

ledc_timer.duty_resolution = res; 

ledc_timer.freq_hz = freq; 

ledc_channel_config_t ledc_channel = {

.speed_mode = LEDC_LOW_SPEED_MODE, 

.hpoint = 0, 

.intr_type = LEDC_INTR_DISABLE, 

}; 

ledc_channel.channel = chan; 

ledc_channel.timer_sel = timer; 

ledc_channel.gpio_num = gpio; 

ledc_channel.duty = ((float)(2 << (res - 1))) * duty; ledc_timer_config(&ledc_timer); 

ledc_channel_config(&ledc_channel); 

}

void changeDutyLow(int chan,  int res, float duty) {

ledc_set_duty(LEDC_LOW_SPEED_MODE, chan, 

((float)(2 << (res - 1))) * duty); 

ledc_update_duty(LEDC_LOW_SPEED_MODE, chan); 

}
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void app_main(void)

{

PWMconfigLow(2, 0, 3, 13, 4000, 0.25); 

while (true) {

delay_us(1000); 

changeDutyLow(0, 13,0.5); 

delay_us(1000); 

changeDutyLow(0, 13,0.25); 

} 

}

Notice that the changeDutyLow function needs to know the resolution to convert the fractional duty cycle into a count. If you try this out you will see the duty cycle change every millisecond:

There are two functions which can be used to change the configuration of the channel:

 ledc_bind_channel_timer(speed_mode, channel, timer_sel)

Swaps a channel to another timer

 ledc_set_pin(id, speed_mode, channel)

Routes the output of the PWM onto another GPIO line

Notice that this adds the new pin to the pin selected during the setup and that you can have the same PWM signal on more than one GPIO line. 

Uses of PWM – Digital to Analog

What sorts of things do you use PWM for? There are lots of very clever uses for PWM. However, there are two applications which account for most PWM

applications - voltage or power modulation and signaling to servos. 

The amount of power delivered to a device by a pulse train is proportional to the duty cycle. A pulse train that has a 50% duty cycle is delivering current to the load only 50% of the time and this is irrespective of the pulse repetition rate. So the duty cycle controls the power, but the period still matters in many situations because you want to avoid any flashing or other effects. A higher frequency smooths out the power flow at any duty cycle. 
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If you add a low-pass filter to the output of a PWM signal then what you get is a voltage that is proportional to the duty cycle. This can be looked at in many different ways, but again it is the result of the amount of power delivered by a PWM signal. You can also think of it as using the filter to remove the high-frequency components of the signal, leaving only the slower components due to the modulation of the duty cycle. 

How fast you can work depends on the duty cycle resolution. If you work with 8-bit resolution your D-to-A conversion will have 256 steps, which at 3.3V gives a potential resolution of 3.3/256 or about 13mV. This is often good enough. If you understand the previous section on duty cycle resolution this means that the PWM frequency has to 125000000//256 to give a wrap of 256. 

The PWM output in this configuration mimics the workings of an 8-bit D-to-A converter. 

To demonstrate the sort of approach that you can take to D-to-A conversion, the following program creates a sine wave. To do this we need to compute the duty cycle for 256 points in a complete cycle. We could do this each time a value is needed, but to make the program fast enough we have to compute the entire 256 points and store them in an array. Notice that the ESP32 S2 

doesn’t have floating-point arithmetic implemented in hardware, but the original ESP32 and the S3 do support hardware floating point although it isn’t very fast. 

The program is:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "esp_rom_sys.h" 

#include <sys/time.h> 

#include "driver/ledc.h" 

#include "math.h" 

#include <unistd.h> 

void delay_us(int t) {

usleep(t); 

}

void PWMconfigLow(int gpio, int chan, int timer, int res, 

int freq, float duty) {

ledc_timer_config_t ledc_timer = {

.speed_mode = LEDC_LOW_SPEED_MODE, 

.clk_cfg = LEDC_APB_CLK

}; 

ledc_timer.timer_num = timer; 

ledc_timer.duty_resolution = res; 

ledc_timer.freq_hz = freq; 
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  ledc_channel_config_t ledc_channel = {

.speed_mode = LEDC_LOW_SPEED_MODE, 

.hpoint = 0, 

.intr_type = LEDC_INTR_DISABLE, 

}; 

ledc_channel.channel = chan; 

ledc_channel.timer_sel = timer; 

ledc_channel.gpio_num = gpio; 

ledc_channel.duty = ((float)(2 << (res - 1))) * duty; ledc_timer_config(&ledc_timer); 

ledc_channel_config(&ledc_channel); 

}

uint8_t wave[256]; 

void app_main(void)

{

for (int i = 0; i < 256; i++)

{

wave[i] = (uint8_t)((128.0 + 

sinf((float)i * 2.0 * 3.14159 / 255.0) * 128.0) ); 



}

int f=60000; 

int t=(1*1000*1000)/f; 

PWMconfigLow(2, 0, 0, 8, f, 0.25); 

fflush(stdout); 

while (true)

{

for(int i=0; i<256; i++){

ledc_set_duty(LEDC_LOW_SPEED_MODE, 0, wave[i]); 

ledc_update_duty(LEDC_LOW_SPEED_MODE, 0); 

delay_us(t); 

}

} 

}

The 8-bit duty cycle values needed are computed and stored in the wave array. Then the PWM is set up with a frequency that will provide 256 levels of duty cycle. Finally, a for loop is used to set the duty cycle from the array. To make it work we need to perform an update roughly every timer overflow and this is done automatically using the delay_us. The waveform repeats after around 5ms, which makes the frequency around 200Hz. 
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To see the analog waveform, we need to put the digital output into a low-pass filter. A simple resistor and capacitor work reasonably well: The filter's cutoff is around 33kHz and might be a little on the high side for this low-frequency, 200Hz, output, but it produces a reasonable waveform: You can use this technique to create a sine wave, or any other waveform you need, but for high-quality audio you need a higher sampling rate. This is also the highest 256 level sine wave that you can produce by this method. 

Any faster and the update loop cannot update the duty cycle fast enough and pulses are missed. A better approach would be to use an interrupt or a timer read to make the update each time it rolled over, but the API doesn’t provide an interrupt on rollover nor a getTimerCount function. A timer count function is created in Chapter 17 which makes this problem much easier to solve. 

Frequency Modulation

Using PWM to create musical tones, and sound effects in general, is a well-explored area which is too wide to cover in this book. In most cases we choose to vary the duty cycle at a fixed sample rate, but an alternative is to leave the duty cycle fixed at, say, 50% and modulate the frequency. You can use this approach to create simple musical tones and scales. 
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As the frequency of middle C is 281.6Hz, to generate middle C you could use:

PWMconfigLow(2, 0, 0, 13, 281.6, 0.5); 

The resulting output is a square wave with a measured frequency of 281.00Hz which isn't particularly nice to listen to. You can improve it by feeding it through a simple low-pass filter like the one used above for waveform synthesis. You can look up the frequencies for other notes and use a table to generate them. 

Controlling an LED

You can also use PWM to generate physical quantities such as the brightness of an LED or the rotation rate of a DC motor. The only differences required by these applications are to do with the voltage and current you need and the way the duty cycle relates to whatever the physical effect is. In other words, if you want to change some effect by 50%, how much do you need to change the duty cycle? For example, how do we "dim” an LED? 

The simplest example is to drive the on-board LED using a PWM signal:

#include <stdio.h> 

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

#include "esp_rom_sys.h" 

#include <sys/time.h> 

#include "driver/ledc.h" 

void delay_ms(int t) {

vTaskDelay(t / portTICK_PERIOD_MS); 

}

void PWMconfigLow(int gpio, int chan, int timer, int res, int freq, float duty) {

ledc_timer_config_t ledc_timer = {

.speed_mode = LEDC_LOW_SPEED_MODE, 

.clk_cfg = LEDC_APB_CLK

}; 

ledc_timer.timer_num = timer; 

ledc_timer.duty_resolution = res; 

ledc_timer.freq_hz = freq; 

ledc_channel_config_t ledc_channel = {

.speed_mode = LEDC_LOW_SPEED_MODE, 

.hpoint = 0, 

.intr_type = LEDC_INTR_DISABLE, 

}; 
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  ledc_channel.channel = chan; 

ledc_channel.timer_sel = timer; 

ledc_channel.gpio_num = gpio; 

ledc_channel.duty = ((float)(2 << (res - 1))) * duty; ledc_timer_config(&ledc_timer); 

ledc_channel_config(&ledc_channel); 

}

void app_main(void)

{

while (true)

{

PWMconfigLow(2, 0, 0, 8, 2000, 0.5); 

for (int d = 0; d <= 256; d++)

{

ledc_set_duty(LEDC_LOW_SPEED_MODE, 0, d); 

ledc_update_duty(LEDC_LOW_SPEED_MODE, 0); 

delay_ms(10); 

}

}

}

If you try this out you will see the LED slowly increase in brightness, but it seems to be a longer time at maximum brightness than at any other value. 

This is a consequence of the non-linear relationship between duty cycle and perceived brightness. 

By changing the duty cycle of the PWM pulse train you can set the amount of power delivered to an LED, or any other device, and hence change its brightness. If you use a 50% duty cycle, the LED is on 50% of the time and this makes it look as if it is half as bright. However, this is not the end of the story as humans don’t respond to physical brightness in a linear way. The Weber-Fechner law gives the general relationship between perceived intensity and physical stimulus as logarithmic. 

In the case of an LED, the connection between duty cycle and brightness is a complicated matter, but the simplest approach uses the fact that the perceived brightness is roughly proportional to the cube root of the physical brightness. The exact equations, published as CIE 1931, are: L= 903.3 ∙ (Y / Yn)   

(Y/ Yn) ≤ 0.008856

L= 116 ∙ (Y / Yn)1/3 – 16   

(Y/ Yn) > 0.008856

where L is the perceived brightness and Y / Yn is a measure of physical brightness. While the exact relationship is complicated, in most cases a roughly cubic law, obtained by inverting the CIE relationship, can be used: d=kb3

where b is the perceived brightness and d is the duty cycle. The constant k depends on the LED. 
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The graph above shows the general characteristic of the relationship for a duty cycle of 0 to 100% on the y-axis and arbitrary, 0 to 100, perceived brightness units on the x-axis. 

As the LED when powered by a PWM signal is either full on or full off, there is no effect in the change in LED light output with current - the LED is always run at the same current.  What all of this means is that if you want an LED to fade in a linear fashion you need to change the duty cycle in a nonlinear fashion. Intuitively it means that changes when the duty cycle is small produce bigger changes in brightness than when the duty cycle is large. 

A program to implement cubic dimming can be created by simply changing the set_duty call in the previous program:

ledc_set_duty(LEDC_LOW_SPEED_MODE, 0, d*d*d/255/255); 

If you try this out you should notice that the LED changes brightness more evenly across its range. 

In most cases it is irrelevant exactly how linear the response of the LED is, a rough approximation looks as smooth to the human eye. You can even get away with using a square law to dim the LED. The only exception is when you are trying to drive LEDs to create a gray-level or color display when color calibration is another level of accuracy. 

There is also the question of what frequency we should use. Clearly it has to be fast enough not to be seen as flickering and this generally means it has to be greater than 80Hz, the upper limit for human flicker fusion, but, because of the strobe effect, flickering becomes more visible with moving objects. 

The faster the LED switches on and off, the less flicker should be visible, but before you select frequencies in the high kHz range it is worth knowing that an LED has a minimum time to turn on and so frequencies at low kHz work best. 
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If you want to dim something other than the on-board LED, you will often need a driver to increase the brightness. For a simple example, consider connecting a standard LED to the PWM line using the BJT driver circuit introduced in Chapter 5. 

Hardware Fade

The PWM hardware has the ability to implement a fade in hardware. The lowest-level function that controls this is:

ledc_set_fade(speed_mode, channel, duty, fade_direction, 

step_num, duty_cycle_num,  duty_scale)

Its parameters are as follows:

 duty           

Sets the initial duty cycle

 fade_direction  

One of:

LEDC_DUTY_DIR_DECREASE 

LEDC_DUTY_DIR_INCREASE

 step_num 

Number of duty cycles the fade persists

 duty_cycle_num  

Number of duty cycles duty is held for

 duty_scale 



Amount that duty cycle duty changes by

While the function seems simple, it is difficult to work out what values these parameters should take to create a particular fade effect. The problem is exacerbated by the fact that the entire fade is computed in terms of the rollover time of the controller. For example, suppose step_num is set to 25, duty_cycle_num is set to 10 and duty_scale is set to 20. If the fade_direction is set to LEDC_DUTY_DIR_INCREASE and duty, the initial duty cycle is 0 then the output starts at 0 for ten timer rollovers It then increases by 20 and remains constant for ten more timer rollovers. This repeats for 25 

total increments, i.e. 250 rollovers. 
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So, if the frequency is 2000Hz, the rollover time is 1/2000 seconds or 0.5ms, then each increase of 20 in the duty cycle takes ten rollovers, i.e. 5ms. That is, the fade increases the duty cycle by 20 every 5ms.  As there are a total of 25 increment steps, the entire fade takes 25×5ms=125ms and the final duty cycle is 250. 

The time, in seconds, of the fade depends on the frequency, f, measured in Hertz:

hold time = duty_cycle_num/f s 

total fade time  = number of steps × hold time 



=  step_num × duty_cycle_num/f s

The duty cycle starts at duty and ends at step_num × duty_scale. 

Unfortunately these are meaningless unless you know the duty resolution: duty

start duty % = 

×100

2 dutyresolutionbits

 dutyscale× stepnum

end duty % =

×100

2 dutyresolutionbits

So our example with a 10-bit resolution fades up from 0% to 20×25 ×100 = 48.8%

210

Usually we want to design a fade from a start percentage duty to a final percentage duty over a specified time. For example, to fade from 0% to 100%

in 2550 ms, the same as our earlier software fade example, we need first to decide on the size of duty step and duty_scale = 1 seems reasonable, and to match the previous example we need 255 steps each taking 10ms. So: f = 255/10 = 2.55kHz

and

duty_cycle_num = 10x 2.55 = 25

As the duty scale is 1 and we need to get to 100% duty cycle in 255 steps, it is clear that the duty resolution has to be 255 steps, i.e 8 duty resolution bits. If we use some other resolution the duty scale would have to be changed. 

Putting all this together we can get a hardware fade for about 2.5 seconds using:

PWMconfigLow(2, 0, 0, 8, 2550, 0); 

ledc_set_fade(LEDC_LOW_SPEED_MODE, 0, 0, LEDC_DUTY_DIR_INCREASE, 255, 25, 1); 
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Notice that as it is hardware-based, this works even if the program comes to an end. 

If you want to handle an interrupt at the end of the fade you need to enable it in the channel config struct:

.intr_type = LEDC_INTR_FADE_END, 

You also have to register an ISR; 

ledc_isr_register(ISR, pdata, speed_mode ,pinteruptHandle)

You can work with set_fade, but it lacks a number of facilities including no way to disable the interrupt for example or reset the fade. A much easier approach is to build around this basic function to set fades in a more natural way. To use this system you first have to install it using: ledc_fade_func_install(intr_alloc_flags)

ledc_fade_func_uninstall(void)

remembering to uninstall it when you have finished using it. 

You can set the fade parameters using a range of different functions designed to make things easier. Once set you can start the fade using: ledc_fade_start(speed_mode, channel, fade_mode)

where fade_mode is one of: 

LEDC_FADE_NO_WAIT 

LEDC_FADE_WAIT_DONE

If you select NO_WAIT the start returns at once otherwise it blocks until the fade is complete. 

The slightly higher level fade setting functions work either in terms of elapsed time or steps taken. The simplest are:

ledc_set_fade_with_time(speed_mode, channel, 

target_duty, fade_time_ms)

ledc_set_fade_with_step(speed_mode, channel, 

target_duty, scale, cycle_num)

where scale is the duty cycle increment.  There are also versions of these functions which automatically call start and are threadsafe: ledc_set_fade_time_and_start(speed_mode, channel, 

target_duty, max_fade_time_ms,fade_mode)

ledc_set_fade_step_and_start(speed_mode, channel, 

target_duty, scale, cycle_num, fade_mode)

The time-based functions start at the current duty cycle and move it towards the target duty in the time specified. The step-based functions start at the current duty cycle and add or subtract scale for the specified number of cycles. 
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For example, to dim and brighten an LED with a 1-second duration:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "driver/ledc.h" 

void PWMconfigLow(int gpio, int chan, int timer, int res, int freq, float duty) {

ledc_timer_config_t ledc_timer = {

.speed_mode = LEDC_LOW_SPEED_MODE, 

.clk_cfg = LEDC_APB_CLK

}; 

ledc_timer.timer_num = timer; 

ledc_timer.duty_resolution = res; 

ledc_timer.freq_hz = freq; 

ledc_channel_config_t ledc_channel = {

.speed_mode = LEDC_LOW_SPEED_MODE, 

.hpoint = 0, 

.intr_type = LEDC_INTR_DISABLE, 

}; 

ledc_channel.channel = chan; 

ledc_channel.timer_sel = timer; 

ledc_channel.gpio_num = gpio; 

ledc_channel.duty = ((float)(2 << (res - 1))) * duty; ledc_timer.deconfigure = false; 

ledc_timer_config(&ledc_timer); 

ledc_channel_config(&ledc_channel); 

}

void app_main(void)

{

PWMconfigLow(2, 0, 0, 8, 2550, 0); 

ledc_fade_func_install(LEDC_INTR_DISABLE); 

while (true) {

ledc_set_fade_with_time(LEDC_LOW_SPEED_MODE, 0, 255, 1000); ledc_fade_start(LEDC_LOW_SPEED_MODE, 0, LEDC_FADE_WAIT_DONE); ledc_set_fade_with_time(LEDC_LOW_SPEED_MODE, 0, 0, 1000); 

ledc_fade_start(LEDC_LOW_SPEED_MODE, 0, LEDC_FADE_WAIT_DONE); 

}

}

The frequency is 2550Hz and the target duty cycle starting from 0 is 255 and this is to be reached in 1000ms. That makes each hold time 1/255s or ten cycles at 2550Hz. The total time to fade in and out is two seconds. 
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To see the step-based versions of the functions in action change the while loop to read:

while (true) {

ledc_set_fade_with_step(LEDC_LOW_SPEED_MODE, 0, 255,1,10); 

ledc_fade_start(LEDC_LOW_SPEED_MODE, 0, LEDC_FADE_WAIT_DONE); ledc_set_fade_with_step(LEDC_LOW_SPEED_MODE, 0, 0,1,1-); 

ledc_fade_start(LEDC_LOW_SPEED_MODE, 0, LEDC_FADE_WAIT_DONE); 

}

In this case we have a target of 255 starting from 0 and an increment of 1 

every 10 cycles with the same 2550Hz. As the increment occurs on after 10  

cycle it takes 255*10/2550s to reach 255 i.e. a 1 second fade. The total time to fade in and out is two seconds. 

As well as using steps or time to set the fade characteristics,.you can also register a callback which is an ISR called when the fade completes: ledc_cb_register(speed_mode,channel, ISR)

Phase

Phase only becomes important when you are generating more than one PWM signal. As explained earlier, setting hpoint moves the position within the waveform of the rising edge. The two important functions that control hpoint are:



ledc_set_duty_with_hpoint(speed_mode, channel, duty, hpoint)



hpoint=ledc_get_hpoint(speed_mode, channel)

As with setting duty, the problem is that hpoint has to be set in terms of the resolution. To set a percentage phase shift you need to use: hpoint= 2 dutyresolution bits×  percentage phase shift/100

For example, working with 8-bit resolution, a 50% phase shift needs: hpoint = 256 × 0.5 = 128. 

It is easy to write a function that lets you set duty and phase as fractions: void changeDutyPhaseLow(int chan, int res, float duty, float phase)

{

ledc_set_duty_with_hpoint(LEDC_LOW_SPEED_MODE, chan, 

((float)(2 << (res - 1))) * duty, 

((float)(2 << (res - 1))) * phase); 

ledc_update_duty(LEDC_LOW_SPEED_MODE, chan); 

}
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A complete program that generates two PWM outputs with the same frequency but different phase using the function is:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "driver/ledc.h" 

void PWMconfigLow(int gpio, int chan, int timer, int res, int freq, float duty) {

ledc_timer_config_t ledc_timer = {

.speed_mode = LEDC_LOW_SPEED_MODE, 

.clk_cfg = LEDC_APB_CLK

}; 

ledc_timer.timer_num = timer; 

ledc_timer.duty_resolution = res; 

ledc_timer.freq_hz = freq; 

ledc_channel_config_t ledc_channel = {

.speed_mode = LEDC_LOW_SPEED_MODE, 

.hpoint = 0, 

.intr_type = LEDC_INTR_DISABLE, 

}; 

ledc_channel.channel = chan; 

ledc_channel.timer_sel = timer; 

ledc_channel.gpio_num = gpio; 

ledc_channel.duty = ((float)(2 << (res - 1))) * duty; ledc_timer.deconfigure = false; 

ledc_timer_config(&ledc_timer); 

ledc_channel_config(&ledc_channel); 

}

void changeDutyPhaseLow(int chan, int res, float duty, float phase)

{

ledc_set_duty_with_hpoint(LEDC_LOW_SPEED_MODE, chan, 

((float)(2 << (res - 1))) * duty, 

((float)(2 << (res - 1))) * phase); 

ledc_update_duty(LEDC_LOW_SPEED_MODE, chan); 

}

void app_main(void)

{

PWMconfigLow(2, 0, 0, 8, 2550, 0.5); 

PWMconfigLow(4, 1, 0, 8, 2550, 0.5); 

changeDutyPhaseLow(1, 8, 0.5, 0.25); 

}

156

[image: Image 90]

Notice that the two GPIO pins use the same timer, 0, but different controllers, 0 and 1. The phase and duty are set in the controller, not the timer. If you run this program the result is two pulse trains out of phase by 25%:

What Else Can You Use PWM For? 

PWM lines are incredibly versatile and it is always worth asking the question "could I use PWM?" when you are considering almost any problem. 

The ESP32’s PWM generator is particularly versatile. 

The LED example suggests how you can use PWM as a power controller. You can extend this idea to a computer-controlled switch-mode power supply. 

All you need is a capacitor to smooth out the voltage and perhaps a transformer to change the voltage. You can also use PWM to control the speed of a DC motor and, by adding a simple bridge circuit, you can control its direction and speed. 

Finally, you can use a PWM signal as a modulated carrier for data communications. For example, most infrared controllers make use of a 38kHz carrier, which is roughly a 26µs pulse. This is switched on and off for 1ms and this is well within the range that the PWM can manage. So all you have to do is replace the red LED in the previous circuit with an infrared LED and you have the start of a remote control, or data transmission, link. Of course the RMT hardware also does this job and it does it better. 

One big area of use is in controlling motors, and servo motors in particular, and this is the subject of the next chapter. 
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Summary 

 PWM, Pulse Width Modulation, has a fixed repetition rate but a variable duty cycle, i.e. the amount of time the signal is high or low changes. 

 PWM can be generated by software simply by changing the state of a GPIO line correctly, but it can also be generated in hardware so relieving the processor of some work. 

 As well as being a way of signaling, PWM can also be used to vary the amount of power or voltage transferred. The higher the duty cycle, the more power/voltage. 

 The ESP32 has 16 hardware PWM generators and the ESP32 S3 has 8. These can be used with any of the GPIO lines capable of output. 

 There are only four timers per 8 PWM generator block which determine the frequency that the PWM lines work at. A single timer can be connected to multiple controllers. 

 The higher the frequency of the PWM the lower the duty cycle resolution. 

 You can modify the frequency and duty cycle of a running PWM 

generator. 

 PWM can be used to implement digital-to-analog conversion simply by varying the duty cycle.  You can dim an LED in the same way. 

 The PWM controllers can be set to auto fade an LED by varying the duty cycle. 

 By adjusting hpoint you can generate a signal with a fixed phase relationship to another signal. 
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Chapter 9

The Motor Control PWM

The motor control pulse width modulation facility, MCPWM, is much more flexible than the LED pulse width modulation covered in the previous chapter, but this makes it harder to get started with. It has many features that you probably don’t want to use at first and it can be difficult to understand its basic operation. To make things easier, we can ignore many of the more advanced modules in the MCPWM and only work with the minimum needed to get started. 

Many of the simpler things that the MCPWM can do can also be done using the LED PWM system. Indeed, if you want hardware fade then the LED 

PWM is your only choice. The MCPWM has a lot of special features that make it possible to generate multiple PWM signals with fairly complex phase relationships which are needed to drive motors and for general signaling. It also provides facilities to synchronize PWM with outside sources, react to error states by braking the motor and inserting deadtime into multiphase PWM to drive bridge circuits. 

ESP32 MCPWM

At first you only need to concentrate on the basic structure of a MCPWM 

configured to produce a simple PWM signal:

159

[image: Image 92]

There are two complete MCPWM systems and each one has three timers and three operators each controlling two outputs, A and B, making a total of three pairs of outputs. Each pair works with the same timer and so runs at the same frequency, but they can differ in duty cycle and phase. The operator contains all of the additional modules that can change the output, including a single comparator. 

The timer is the core of the system and it counts down or up or alternately up and down. It can generate events when it reaches zero or its high value. 

The comparator associated with the generator can raise an event when the count reaches a set value. The generators can change the state of either output on the basis of the events received from the timer or the comparator. 

For example, the generator could be set up to toggle one of the outputs each time the timer count reached zero and this would produce a basic PWM 

signal, or it could set one line high on a zero event and low on a max count event. 

There are three types of timer event:

 MCPWM_TIMER_EVENT_EMPTY 

Timer counts to zero 

 MCPWM_TIMER_EVENT_FULL  

Timer counts to peak 

 MCPWM_TIMER_EVENT_INVALID Should never happen

There is also a comparator event:

 MCPWM_CMPR_ETM_EVENT_EQUAL Timer equals the threshold value In response to an event the generator can perform any of four actions:

 MCPWM_GEN_ACTION_KEEP    

Keep the same level

 MCPWM_GEN_ACTION_LOW      

Force to low level

 MCPWM_GEN_ACTION_HIGH    

Force to high level

 MCPWM_GEN_ACTION_TOGGLE  

Toggle level
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You can see that there are multiple ways of generating a signal. For example, you could set two timer events and toggle the output on zero and peak, or you could set a single timer event and set the output high on zero and a comparator event to set the output low when the count is reached, and so on. The important point to notice is that, while you have a choice how to generate a given PWM signal, exactly how you do it alters its phase relationship with other generated PWM signals. This can seem complicated so initially we will focus on generating a single PWM signal without worrying about phase issues. 

Setting up the MCPWM

To build a basic MCPWM system we need a timer and an operator. 

First, to create a timer we use: 

mcpwm_new_timer(pconfig, ptimerhandle)

where pconfig points to mcpwm_timer_config_t, a struct containing:

 group_id   

MCPWM group number, 0 or 1

 clk_src   

Clock source usually  MCPWM_TIMER_CLK_SRC_DEFAULT 

running at 80MHz

 resolution_hz Counter resolution in Hz  

 count_mode   One of:

MCPWM_TIMER_COUNT_MODE_PAUSE 

MCPWM_TIMER_COUNT_MODE_UP

MCPWM_TIMER_COUNT_MODE_DOWN

MCPWM_TIMER_COUNT_MODE_UP_DOWN

 period_ticks Number of ticks in a period

 intr_priority 0 = low priority

 update_period_on_empty  When timer counts to zero

 uint32_t update_period_on_sync  On sync event

The key facts are that resolution_hz sets the time for a single counter increment as 1/resolution_hz in seconds and period_ticks sets the time to count from 0 to rollover. For example, setting resolution_hz to 1000000 

makes one tick take 1μs and hence setting  period_ticks to 20000 makes the time to rollover 20000 s 

μ or 20ms, i.e. the PWM frequency is 50Hz. The 

counter starts at 0 and rolls over at 200000. Given that the default clock is 80MHz, the divider will be automatically set to 4000. 
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So, to set up a timer for a 50Hz PWM signal: mcpwm_timer_config_t timer_config = {

.group_id = 0, 

.clk_src = MCPWM_TIMER_CLK_SRC_DEFAULT, 

.resolution_hz = 1000000, 

.period_ticks = 20000, 

.count_mode = MCPWM_TIMER_COUNT_MODE_UP, 

}; 

mcpwm_timer_handle_t timer = NULL; 

mcpwm_new_timer(&timer_config, &timer); 

After the timer we need to create an operator:

mcpwm_new_operator(pconfig, poper)

where pconfig points to mcpwm_operator_config_t ,a struct with fields:

 group_id  

MCPWM group number, 0 or 1. 

 intr_priority  

0 = low priority

 update_gen_action_on_tez    Update generator action on timer zero

 update_gen_action_on_tep:   Update generator action on timer peak

 update_gen_action_on_sync  Update generator action on sync event

 update_dead_time_on_tez      Update deadtime on timer zero 

 update_dead_time_on_tep      Update deadtime on timer peak

 update_dead_time_on_sync    Update deadtime on sync event You can ignore the update fields for the moment as they only control when software-applied updates are acted on. 

A simple operator that can be used with the timer is:

mcpwm_operator_config_t operator_config = {

.group_id = 0, 

}; 



mcpwm_oper_handle_t oper = NULL; 

mcpwm_new_operator(&operator_config, &oper); 

Now that we have an operator and a timer we can connect them together using:

mcpwm_operator_connect_timer(oper, timer)

The operator contains other modules to generate a PWM signal, but all we need for a simple single PWM signal is a generator that connects the PWM 

signal to a GPIO line. 
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A new generator can be created using:

mcpwm_new_generator(handle_t oper, pconfig, pret_gen)

where pconfig points to mcpwm_generator_config_t, a struct with fields:

 gen_gpio_num  GPIO line used to output the PWM signal

 invert_pwm     Invert the PWM signal

 io_loop_back  For debug/test

 io_od_mode    GPIO in open-drain mode

 pull_up     

Use pull up 

 pull_down  

Use pull down

A simple generator to connect to GPIO line 2 is:  

mcpwm_generator_config_t generator_config = {

.gen_gpio_num = 2, 

}; 

mcpwm_gen_handle_t generator = NULL; 

mcpwm_new_generator(oper, &generator_config, &generator); Now we have a minimal MCPWM system configured and ready to be used. 

Setting Action

Having “wired up” a timer and an operator and connected this to a GPIO 

line, we can configure it to produce a PWM signal. The idea here is that you can now specify what actions the generator should take when events occur. 

As already explained, there are two types of events, timer events and comparator events. As we haven’t, as yet, configured a comparator we only have timer events and there are only two such events – when the timer reaches zero, tez and when it reaches its peak count, tep. 

You can set an action on a timer event using:

mcpwm_generator_set_action_on_timer_event(gen, ev_act)

where ev_act is a mcpwm_gen_timer_event_action_t struct:

 direction One of:

MCPWM_TIMER_DIRECTION_UP

MCPWM_TIMER_DIRECTION_DOWN



event    One of:

MCPWM_TIMER_EVENT_EMPTY

MCPWM_TIMER_EVENT_FULL

MCPWM_TIMER_EVENT_INVALID

 action      One of:

MCPWM_GEN_ACTION_KEEP

MCPWM_GEN_ACTION_LOW

MCPWM_GEN_ACTION_HIGH

MCPWM_GEN_ACTION_TOGGLE
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You can set up two generators, corresponding to the A and B outputs, per operator. 

As we only have a timer we can only set two possible events, timer empty or full. We could set the output high on one and low on the other, but that would produce a very short pulse as the time to go from full to empty is one tick. The only reasonable action is to toggle the output on one of the timer events:

mcpwm_gen_timer_event_action_t event_action = {

.direction = MCPWM_TIMER_DIRECTION_UP, 

.event = MCPWM_TIMER_EVENT_EMPTY, 

.action = MCPWM_GEN_ACTION_TOGGLE

}; 

mcpwm_generator_set_action_on_timer_event(generator, 

event_action); 

There is a macro that simplifies specifying an event and action: MCPWM_GEN_TIMER_EVENT_ACTION( dir,  ev,  act) Using this we can rewrite the previous code as:

mcpwm_generator_set_action_on_timer_event(generator, 

MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, 

MCPWM_TIMER_EVENT_FULL, MCPWM_GEN_ACTION_TOGGLE)); 

There are similar functions and macros for setting comparator events and actions. 

As well as responding to events, the generator can also force a change in output at any time via the function:

mcpwm_generator_set_force_level(generator,  level,  hold_on) which immediately sets the output to  level. If hold_on is true then the level is held until it is released by calling the function with hold_on false. 

Controlling the Timer

We now have a PWM setup that is ready to generate a signal. To do this all we need is to finish configuring the timer and enable it. 

The first thing we have to do is set how the time is reloaded at the end of each period:

mcpwm_timer_start_stop(timer, command)
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where command is one of: 

 MCPWM_TIMER_STOP_EMPTY Timer stops when reaches zero

 MCPWM_TIMER_STOP_FULL   Timer stops when reaches peak

 MCPWM_TIMER_START_NO_STOP Timer runs continuously

 MCPWM_TIMER_START_STOP_EMPTY Timer starts and stops at zero

 MCPWM_TIMER_START_STOP_FULL  Timer starts and stops at peak Once you have set its restart behavior, you can start and stop the timer using software:



mcpwm_timer_enable(timer)



mcpwm_timer_disable(timer)

If you have finished using the timer you can delete it:



mcpwm_del_timer(timer)

You can also change the timer’s period:



mcpwm_timer_set_period(timer, period_ticks)

This is the same as setting period_ticks in the struct when you first set up the Timer. Notice that when the update is actually performed depends on the setting of:

 update_period_on_empty  When timer counts to zero

 uint32_t update_period_on_sync On sync event

A Simple example

Now we can put this all together and create a program that generates a 25Hz signal on GPIO 2:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "driver/mcpwm_prelude.h" 

void app_main(void)

{

mcpwm_timer_handle_t timer = NULL; 

mcpwm_timer_config_t timer_config = {

.group_id = 0, 

.clk_src = MCPWM_TIMER_CLK_SRC_DEFAULT, 

.resolution_hz = 1000000, 

.period_ticks = 20000, 

.count_mode = MCPWM_TIMER_COUNT_MODE_UP, 

}; 

mcpwm_new_timer(&timer_config, &timer); 
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mcpwm_oper_handle_t oper = NULL; 

mcpwm_operator_config_t operator_config = {

.group_id = 0, 

}; 

mcpwm_new_operator(&operator_config, &oper); 

mcpwm_operator_connect_timer(oper, timer); 

mcpwm_gen_handle_t generator = NULL; 

mcpwm_generator_config_t generator_config = {

.gen_gpio_num = 2, 

}; 

mcpwm_new_generator(oper, &generator_config, &generator); mcpwm_gen_timer_event_action_t event_action = {

.direction = MCPWM_TIMER_DIRECTION_UP, 

.event = MCPWM_TIMER_EVENT_EMPTY, 

.action = MCPWM_GEN_ACTION_TOGGLE

}; 

mcpwm_generator_set_action_on_timer_event(generator, 

MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, 

MCPWM_TIMER_EVENT_FULL, MCPWM_GEN_ACTION_TOGGLE)); 

mcpwm_timer_enable(timer); 

mcpwm_timer_start_stop(timer, MCPWM_TIMER_START_NO_STOP); 

}

If you try this program out you will see a 25Hz 50% duty cycle signal. 

Each edge marks where the timer counter reaches peak value. Thus the timer repeat rate is 50Hz, but the pulse repeat rate is 25Hz. 
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Using the Comparator

Although our simple example works, there is no way to change the duty cycle. To do this we need to introduce a comparator into the operator.  To create a new comparator:

mcpwm_new_comparator(oper, pconfig, pret_cmpr)

where pconfig points to mcpwm_comparator_config_t, a struct containing:

 intr_priority  

0 selects an interrupt with low priority

 update_cmp_on_tez    Compares value when timer equals zero 

 update_cmp_on_tep  Compares value when timer equals peak 

 update_cmp_on_sync  Compares value on sync event

As you can see, the comparator is initialized in a state that simply defines when it will update in response to a call to:

mcpwm_comparator_set_compare_value(cmpr,  cmp_ticks)

Now that we have a comparator we can set a comparator event and an action for the generator:

mcpwm_generator_set_action_on_compare_event(generator, ev_act) where ev_act is a mcpwm_gen_compare_event_action_t struct:

 direction    Timer direction

 comparator   Comparator handle

 action    

Timer action

You can use two comparators per operator module. 

Duty Cycle

With a comparator you can now set two events enabling you to vary the duty cycle. The simplest thing to do is set the output high when the timer is zero and set the output low when the comparator event occurs:

mcpwm_cmpr_handle_t comparator = NULL; 

mcpwm_comparator_config_t comparator_config = {

.flags.update_cmp_on_tez = true, 

}; 

mcpwm_new_comparator(oper, &comparator_config, &comparator); mcpwm_comparator_set_compare_value(comparator,10000); 

mcpwm_generator_set_action_on_timer_event(generator, 

MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, 

MCPWM_TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_HIGH)); 

mcpwm_generator_set_action_on_compare_event(generator, 

MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, 

comparator, MCPWM_GEN_ACTION_LOW)); 

mcpwm_timer_enable(timer); 

mcpwm_timer_start_stop(timer, MCPWM_TIMER_START_NO_STOP); 

The complete program listing can be found on the book’s website at www.iopress.info. 
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You can see that we create a comparator and set its compare_value to 10,000 

which is half the timer period of 20,000 thus the duty cycle should be 50%. 

The two events are now: 

MCPWM_TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_HIGH

and the action is:

comparator, MCPWM_GEN_ACTION_LOW)); 

These cause the output to go high at the start of the timer period and then low halfway through. If you substitute them in the end of the previous program, the output is a 50Hz signal with a 50% duty cycle: In most cases you will want to set up a comparator and use it to set the duty cycle. 

Two Comparators

It is easy to set up any given duty cycle, it is more difficult to work with phase. There are two ways of setting phase, you can use the sync facility or you can arrange events to generate the phase. However, there are only four events that you can use and only two of these are flexible enough to provide the freedom to set the duty cycle and phase. Let’s look at how to generate two PWM signals with a simple phase relationship using two comparators. 

The first problem we have to solve is driving two GPIO lines. This needs an additional generator within the controller:

mcpwm_generator_config_t generator_config = {

.gen_gpio_num = 2, 

}; 

mcpwm_gen_handle_t generatorA = NULL; 

mcpwm_new_generator(oper, &generator_config, &generatorA); generator_config.gen_gpio_num = 4; 

mcpwm_gen_handle_t generatorB = NULL; 

mcpwm_new_generator(oper, &generator_config, &generatorB); This sets up two generators, one on GPIO 2 and one on GPIO 4. You can only set up two generators per operator. 
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Next we need two comparators:

mcpwm_cmpr_handle_t comparatorA = NULL; 

mcpwm_new_comparator(oper, &comparator_config, &comparatorA); mcpwm_cmpr_handle_t comparatorB = NULL; 

mcpwm_new_comparator(oper, &comparator_config, &comparatorB); We can set the first to 10000 and the second to 5000:  

mcpwm_comparator_set_compare_value(comparatorA, 10000); 

mcpwm_comparator_set_compare_value(comparatorB, 5000); 

Now we can set up suitable events and actions, but we only have two pairs of possible events, comparators A or B and timer empty or full. We can move the comparator events, but we cannot move the timer events. 

What this means is that we can set one signal to have any duty cycle and phase with respect to the second signal, but the second can only have a 50%

duty cycle or it must have one edge in common with the first signal. For example, one possibility is to use the comparator events in a single output: In this case the edges of PWMA can be placed anywhere in the timer period, but PWMB can only toggle its edges on timer zero (tez) and peak (tep) and so it has a fixed 50% duty cycle. Notice that PWMA is twice the frequency of PWMB. 

An alternative is to use one of the comparator events in different outputs: 169
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In this case the waveforms have the same frequency and are in phase, but the duty cycles of each can be independently varied. For example, assuming the timer is set to count up:

mcpwm_generator_set_action_on_timer_event(generatorA, 

MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, 

MCPWM_TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_HIGH)); 

mcpwm_generator_set_action_on_compare_event(generatorA, 

MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, 

comparatorA, MCPWM_GEN_ACTION_LOW)); 

mcpwm_generator_set_action_on_timer_event(generatorB, 

MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, 

MCPWM_TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_HIGH)); 

mcpwm_generator_set_action_on_compare_event(generatorB, 

MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, 

comparatorB, MCPWM_GEN_ACTION_LOW)); 



The complete program listing can be found on the book’s website at www.iopress.info. 

This produces:

The pulses are of the same frequency and are in phase, but they have different duty cycles. 

There are simple variations on these arrangements, for example you can swap empty for full for the timer and invert the output to obtain a 180-degree phase shift, but essentially this is all you can do without an additional control. 
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Symmetric PWM

The timer can count up or count down or it can count up followed by counting down. As events distinguish between counting up and counting down this effectively doubles the number of events we have. This sounds as if it should be possible to create two signals with any duty cycle and phase, but this overlooks the fact that the comparator events are symmetrical about the changeover from counting up to counting down:

The fact that they are symmetrical is often important as many signaling and control systems sample the waveform in the middle of its cycle. To implement symmetric PWM first configure the timer into up/down mode: mcpwm_timer_config_t timer_config = {

.group_id = 0, 

.clk_src = MCPWM_TIMER_CLK_SRC_DEFAULT, 

.resolution_hz = 1000000, 

.period_ticks = 20000, 

.count_mode = MCPWM_TIMER_COUNT_MODE_UP_DOWN, 

}; 

Next configure the comparators and the actions:

mcpwm_comparator_set_compare_value(comparatorA, 5000); 

mcpwm_comparator_set_compare_value(comparatorB, 9000); 

mcpwm_generator_set_action_on_compare_event(generatorA, 

MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, 

comparatorA, MCPWM_GEN_ACTION_HIGH)); 

mcpwm_generator_set_action_on_compare_event(generatorA, 

MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_DOWN, 

comparatorA, MCPWM_GEN_ACTION_LOW)); 

mcpwm_generator_set_action_on_compare_event(generatorB, 

MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, 

comparatorB, MCPWM_GEN_ACTION_HIGH)); 

mcpwm_generator_set_action_on_compare_event(generatorB, 

MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_DOWN, 

comparatorB, MCPWM_GEN_ACTION_LOW)); 

The complete program listing can be found on the book’s website at www.iopress.info. 
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This produces symmetric outputs with the same frequency, but with different duty cycles:

Sync and Phase

To produce a pair of signals with a given duty cycle and phase relationship we need to use more than one timer. The idea is that we program two timers and two operators to create identical PWM signals on two different GPIO 

pins. To create a phase relationship between the two signals we need to set one of the timer’s counters ahead by a specified amount when the other timer starts its count. The two timers will then cycle locked together, but out of phase by the given amount. 

First, we need to create a sync source and there are two possible alternatives, another timer event or a GPIO event. 

The timer sync event can be set to occur on any of the standard timer events: mcpwm_new_timer_sync_src(timer, pconfig, pret_sync)

where pconfig points to mcpwm_timer_sync_src_config_t,  containing:

 timer_event  

Generates the sync signal

 propagate_input_sync  

Routes to sync output

A GPIO sync event can be set to occur on either a rising or a falling edge on a given GPIO line:

mcpwm_new_gpio_sync_src(pconfig,pret_sync)

172

where pconfig points to mcpwm_gpio_sync_src_config_t,  containing:

 group_id   

MCPWM group number, 0 or 1

 gpio_num  

GPIO used by sync source

 active_neg   false when sync is on positive edge 

true when sync is on negative edge

 io_loop_back   For debug/test

 pull_up  

true for pull up 

 pull_down  

true  for pull down

Notice that you don’t have to configure the GPIO line. 

Once you have a sync source you can connect it to a timer and set whatever value is to be loaded into the timer when the sync event occurs: mcpwm_timer_set_phase_on_sync(timer, pconfig)

where pconfig points to mcpwm_timer_sync_phase_config_t, containing:

 sync_src    

Sync event source

 count_value    Value to be loaded into the timer



direction 

Direction of count. One of:

MCPWM_TIMER_DIRECTION_UP 

MCPWM_TIMER_DIRECTION_DOWN

Suppose we have timer1, timer2, oper1, oper2, generator1, generator2, comparator1 and comparator2 all set up identically but one set working with GPIO 2 and the other GPIO 4. The events and actions are also set up identically, going high on timer empty and low on the comparator event. 

If we simply started them running the result would be two identical PWM 

waveforms with a small arbitrary phase difference due to the different times the timers were started. However, if we set up a sync source, we can set any phase difference we require:

mcpwm_timer_sync_src_config_t syncconfig = {

.timer_event = MCPWM_TIMER_EVENT_EMPTY, 

}; 

mcpwm_sync_handle_t sync = NULL; 

mcpwm_new_timer_sync_src(timer1, &syncconfig, &sync); mcpwm_timer_sync_phase_config_t phase = {

.count_value = 4000, 

.direction = MCPWM_TIMER_DIRECTION_UP, 

.sync_src = sync

}; 

mcpwm_timer_set_phase_on_sync(timer2, &phase); 

You can see that we have set up the sync event to occur when timer1 is empty. When this occurs, timer2 is loaded with a count of 4000 which puts it ahead of timer1 by 4000 ticks and, if a tick is 1 s, 

μ  the phase shift is 4ms. 
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If you try this program out you will find that you have two identical waveforms with a phase difference of about 4ms:

Notice that the phase shifting only works if the two PWM signals have the same frequency, although they can differ in duty cycle. The complete program that generates these signals is given in the next section. 

A Complete Program

Putting all this together we can list a very general PWM program. First it makes sense to abstract all of the initialization needed to use MCPWM into functions. In this case it also makes sense to make the functions as specific as possible to avoid large numbers of parameters that hardly ever change. 

#include "driver/mcpwm_prelude.h" 

mcpwm_timer_handle_t makeTimer(uint32_t res, uint32_t periodTicks) 

{

mcpwm_timer_handle_t timer = NULL; 

mcpwm_timer_config_t timer_config = {

.group_id = 0, 

.clk_src = MCPWM_TIMER_CLK_SRC_DEFAULT, 

.resolution_hz = res, 

.period_ticks = periodTicks, 

.count_mode = MCPWM_TIMER_COUNT_MODE_UP, 

}; 

mcpwm_new_timer(&timer_config, &timer); 

return timer; 

}

mcpwm_oper_handle_t makeOper() {

mcpwm_oper_handle_t oper = NULL; 

mcpwm_operator_config_t operator_config = {

.group_id = 0, 

}; 

mcpwm_new_operator(&operator_config, &oper); 

return oper; 

}
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mcpwm_gen_handle_t makeGen(mcpwm_oper_handle_t oper, int gpio) {

mcpwm_generator_config_t generator_config = {

.gen_gpio_num = gpio

}; 

mcpwm_gen_handle_t generator = NULL; 

mcpwm_new_generator(oper, &generator_config, &generator); return generator; 

}

mcpwm_cmpr_handle_t makeComp(mcpwm_oper_handle_t oper) {

mcpwm_comparator_config_t comparator_config = {

.flags.update_cmp_on_tez = true, }; 

mcpwm_cmpr_handle_t comparator = NULL; 

mcpwm_new_comparator(oper, &comparator_config, &comparator); return comparator; 

}

void setPhaseTep(mcpwm_timer_handle_t SourceTimer, 

mcpwm_timer_handle_t PhasedTimer, uint32_t phaseticks){

mcpwm_timer_sync_src_config_t syncconfig = {

.timer_event = MCPWM_TIMER_EVENT_EMPTY, 

}; 

mcpwm_sync_handle_t sync = NULL; 

mcpwm_new_timer_sync_src(SourceTimer, &syncconfig, &sync); mcpwm_timer_sync_phase_config_t phase = {

.count_value = phaseticks, 

.direction = MCPWM_TIMER_DIRECTION_UP, 

.sync_src = sync

}; 

mcpwm_timer_set_phase_on_sync(PhasedTimer, &phase); 

}

As a help with a rapid development and experimentation you can create the functions that will be needed and put them into a single header file to be used by including the header into the program. This is not the way to work in the long term when you should separate out the function definitions from their implementations, leaving the function definitions in a header and putting implementation into a C file, but it works well when you are still modifying the functions and want them out of the way when you are working with the main program. 

You can see that we have a function suitable for creating each of the MCPWM modules with most of the parameters set to defaults. You can add additional parameters as needed. 
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If these functions are saved in a header file called MCPWM.h then a main program that implements the phase shift in the last section is:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "driver/mcpwm_prelude.h" 

#include "MCPWM.h" 

void app_main(void)

{

mcpwm_timer_handle_t timer1 = makeTimer(1000000, 20000); 

mcpwm_timer_handle_t timer2 = makeTimer(1000000, 20000); 

mcpwm_oper_handle_t oper1 = makeOper(); 

mcpwm_oper_handle_t oper2 = makeOper(); 

mcpwm_operator_connect_timer(oper1, timer1); 

mcpwm_operator_connect_timer(oper2, timer2); 

mcpwm_gen_handle_t generator1 = makeGen(oper1, 2); 

mcpwm_gen_handle_t generator2 = makeGen(oper2, 4); 

mcpwm_cmpr_handle_t comparator1 = makeComp(oper1); 

mcpwm_cmpr_handle_t comparator2 = makeComp(oper2); 

mcpwm_comparator_set_compare_value(comparator1, 9000); 

mcpwm_comparator_set_compare_value(comparator2, 9000); 

setPhaseTep(timer1, timer2, 4000); 

mcpwm_generator_set_action_on_timer_event(generator1, 

MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, 

MCPWM_TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_HIGH)); 

mcpwm_generator_set_action_on_compare_event(generator1, 

MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, 

comparator1, MCPWM_GEN_ACTION_LOW)); 

mcpwm_generator_set_action_on_timer_event(generator2, 

MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, 

MCPWM_TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_HIGH)); 

mcpwm_generator_set_action_on_compare_event(generator2, 

MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, 

comparator2, MCPWM_GEN_ACTION_LOW)); 

mcpwm_timer_enable(timer1); 

mcpwm_timer_start_stop(timer1, MCPWM_TIMER_START_NO_STOP); 

mcpwm_timer_enable(timer2); 

mcpwm_timer_start_stop(timer2, MCPWM_TIMER_START_NO_STOP); 

}
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Where Next? 

In this chapter we have covered the basic operation of the MCPWM, but it has some additional features that are less commonly used. For example, you can use the PWM signal to modulate a carrier wave to allow it to be transmitted over systems that are not DC-connected. There is a brake module which can be used to put a motor into a safe state if an error condition is detected, a capture module which can be used to measure the frequency of rotation of a motor and a deadtime generator which inserts delays into the signal to avoid two signals being high at the same time. All of these modules follow the basic pattern of the other MCPWM modules and are easy enough to understand. You can find examples of their use in the sample programs included with the API. In particular there are examples of controlling a DC and a brushless DC motor complete with speed regulation. 
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Summary

● The Motor Control PWM MCPWM system is designed to generate PWM signals with complicated phase and duty cycle relationships. 

● There are two MCPWM systems each with six PWM outputs. 

● It includes features designed to be used with motor control – 

braking, fault handling and speed control. 

● To be as flexible as it needs to be it has a large number of independently programmable components that are initially difficult to master. 

● The key components are the timer, the operator, the comparator and the generator. 

● There are three timers and operators in each MCPWM. 

● The timers are counters that generate events when they are at zero or rollover. 

● The generator changes the PWM signal state depending on events from the timer or comparator. 

● You can generate PWM signals by setting the timer to control the basic frequency, the comparator levels to control the duty cycle. 

● Using two comparators you can generate pulses with a symmetric relationship. 

● You can generate signals with a phase relationship by synchronizing multiple timers with an offset. 

● To make the use of the MCPWM easier it is a good idea to write functions that set up components with reasonable defaults for the application. 
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Chapter 10

Controlling Motors And Servos

Controlling motors is an obvious use for the ESP32, but it is important to understand the different types of motor that you can use and exactly how to control them using PWM. In addition to PWM control, we also look at the very useful stepper motor, which doesn’t make use of PWM. 

The ESP32 has a PWM generator which is specifically targeted at motor control. It includes the ability to set deadtime, synchronize PWM output with external events and detect faults. It also has a simpler PWM generator aimed at controlling LEDs. Despite its name, it can be used for motor control even though it doesn’t have the advanced features of the MCPWM. 

The simplest division among types of motor is AC and DC. AC motors are generally large and powerful and run from mains voltage. As they are more difficult to work with, and they work at mains voltage, these aren’t used much in IoT applications. DC motors generally work on lower voltage and are much more suitable for the IoT. In this chapter we will only look at DC 

motors and how they work thanks to pulse width modulation. The parts used are listed in the Resources section of the book’s webpage at www.iopress.info. 

DC Motor

There are two big classes of DC motor – brushed and brushless. All motors work by using a set of fixed magnets, the stator, and a set of rotating magnets, the rotor. The important idea is that a motor generates a “push” 

that rotates the shaft by the forces between the magnet that makes up the stator and the magnet that makes up the rotor. The stronger these magnets are, the stronger the push and the more torque (turning force) the motor can produce. To keep the motor turning, one of the two magnetic fields has to change to keep the rotor being attracted to a new position. 
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DC motors differ in how they create the magnetism in each component, either using a permanent magnet or an electromagnet. 

This means there are four possible arrangements:

1

2

3

4

Stator

Permanent

Permanent

Electromagnet

Electromagnet

Rotor

Permanent

Electromagnet

Permanent

Electromagnet

Type 

Can’t work

Brushed DC

Brushless DC

Series or shunt

Arrangement 1 can’t produce a motor because there is no easy way of changing the magnetic field. Arrangement 4 produces the biggest and most powerful DC motors used in trains, cars and so on. Arrangement 2, brushed DC, is the most commonly encountered form of “small” DC motor. However, arrangement 3, Brushless DC, is becoming increasingly popular. 

Different arrangements produce motors which have different torque characteristics, i.e. how hard they are to stop at any given speed. Some types of motor are typically low torque at any speed, i.e. they spin fast but are easy to stop. 

Low torque motors are often used with gearboxes, which reduce the speed and increase the torque. The big problem with gearboxes, apart from extra cost, is backlash. The gears don’t mesh perfectly and this looseness means that you can turn the input shaft and at first the output shaft won’t move. 

Only when the slack in the gears has been taken up will the output shaft move. This makes a geared motor less useful for precise positioning, although there are ways to improve on this using feedback and clever programming. 

Brushed Motors

To energize the electromagnets, a brushed motor supplies current to the armature via a split ring or commutator and brushes. As the rotor rotates, the current in the coil is reversed and it is always attracted to the other pole of the magnet. 

180

[image: Image 102]

[image: Image 103]

The only problem with this arrangement is that, as the brushes rub on the slip ring as the armature rotates, they wear out and cause sparks and hence RF interference. The quality of a brushed motor depends very much on the design of the brushes and the commutator. 

Very small, cheap, brushed DC motors, of the sort in the picture below, tend to have brushes that cannot be changed and when they wear out the motor has to be replaced. They also tend to have very low torque and high speed. 

This usually means that they have to be used with a gearbox. If you overload a brushed motor then the tendency is to demagnetize the stator magnets. 

The cheapest devices are basically toys. 

Higher quality brushed motors are available and they also come in a variety of form factors. For example, the 775 motor is 66.7 by 42mm with a 5mm shaft: 

Even these motors tend not to have user-serviceable brushes, but they tend to last a long time due to better construction. 
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Unidirectional Brushed Motor

A brushed motor can be powered by simply connecting it to a DC supply. 

Reversing the DC supply reverses the direction of the motor. The speed is simply proportional to the applied voltage. If all you want is a unidirectional control then all you need is a PWM driver that can supply the necessary current and voltage. 

A single transistor solution is workable as long as you include a diode to allow the energy stored in the windings to discharge when the motor is rotating, but not under power:

This circuit is simple and will work with motor voltages up to 40V and motor currents up to 5A continuous, 8A peak. The only small point to note is that the TIP120 is a Darlington pair, i.e. it is two transistors in the same case, and as such the base voltage drop is twice the usual 0.6V, i.e. 1.2V, and this has to be taken into account when calculating the current-limiting resistor. 

It is sometimes said that the TIP120 and similar are inefficient power controllers because, comprising two transistors, they have twice the emitter-collector voltage you would expect, which means they dissipate more power than necessary. 
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If you are running a motor from a battery you might want to use a MOSFET, but, as described earlier, 3.3V is low to switch a MOSFET on and off.  One solution is to use a BJT to increase the voltage applied to the gate: The BJT connects the gate to 12V. As the IRFZ44NPBF has a threshold voltage between 2V and 4V, devices should work at 5V and sometimes at 3.3V without the help of the BJT, but providing 12V ensures that the MOSFET is fully on. One problem with the circuit is that the use of the BJT 

inverts the signal. When the GPIO line is high the BJT is on and the MOSFET is off and vice versa. In other words, GPIO line high switches the motor off and low switches it on. This MOSFET can work with voltages up to 50V and currents of 40A. The 2N2222 can only work at 30V, or 40V in the case of the 2N2222A. 

A third approach to controlling a unidirectional motor is to use half an H-bridge. Why this is so-called, and why you might want to do it, will become apparent in the next section on bidirectional motors. Half an H-bridge makes use of two complementary devices, either an NPN and a PNP BJT or an N- and P-type MOSFET. 
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For example:

If the GPIO line is high then Q1 is on and Q2 off and the motor runs. If the GPIO line is low then Q1 is off and Q2 is on and the motor is braked – it has a resistance to rotating because of the back electromotive force (EMF) generated when the rotor turns. You probably need a BJT to feed the MOSFETs as selected. 

Unidirectional PWM Motor Controller

A function to control the speed of a unidirectional motor is very simple. The speed is set by the duty cycle – the only parameter you have to choose in addition is the frequency. If you want an optimal controller then setting the frequency is a difficult task. Higher speeds make the motor run faster and quieter – but too high a frequency and the motor loses power and the driving transistor or MOSFET becomes hot and less efficient. The determining factor is the inductance of the motor’s coil and any other components connected to it such as capacitors. In practice, PWM frequencies from 100Hz to 20kHz are commonly used, but in most cases 1kHz to 2kHz is a good choice. 

To use the MCPWM it makes sense to create a function that will make a simple PWM configuration that implements a very basic PWM signal with a specified frequency and duty cycle:

typedef struct{

mcpwm_timer_handle_t timer; 

mcpwm_oper_handle_t oper; 

mcpwm_gen_handle_t generator1; 

mcpwm_cmpr_handle_t comparator1; 

}PWM; 
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PWM makePWM(int gpio, uint32_t res, uint32_t ticksperiod, uint32_t duty) {

PWM pwm; 

pwm.timer = makeTimer(res, ticksperiod); 

pwm.oper = makeOper(); 

mcpwm_operator_connect_timer(pwm.oper, pwm.timer); 

pwm.generator1 = makeGen(pwm.oper, gpio); 

pwm.comparator1 = makeComp(pwm.oper); 

mcpwm_comparator_set_compare_value(pwm.comparator1, duty); 

mcpwm_generator_set_action_on_timer_event(pwm.generator1, 

MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, 

MCPWM_TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_HIGH)); 

mcpwm_generator_set_action_on_compare_event(pwm.generator1, MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, 

pwm.comparator1, MCPWM_GEN_ACTION_LOW)); 

mcpwm_timer_enable(pwm.timer); 

mcpwm_timer_start_stop(pwm.timer, MCPWM_TIMER_START_NO_STOP); return pwm; 

}

Details of how to configure the MCPWM are given in the previous chapter. 

The call

makePWM(gpio,res,ticksperiod,duty)

returns a PWM struct that references all of the parts of the MCPWM system that outputs on the specified GPIO line with the given resolution, period and duty. Notice that the actions are to go high on timer empty and low on the comparator event, which makes it ideal for generating a fixed frequency with an adjustable duty cycle. As the comparator is returned, other functions can change the duty cycle. The function makes use of the MCPWM.h header file introduced at the end of the previous chapter. 

Now that we have a PWM source, how should we implement code to make motor control easy? A good pattern, which has many of the advantages of object-oriented programming, is to create a struct which has fields that represent the state of the entity. You can make use of C++ classes if you want to, but the approach using structs is almost as good and is more efficient. For example, to implement a unidirectional motor we can create a Motor struct:

typedef struct

{

PWM pwm; 

uint32_t gpio; 

uint32_t duty; 

uint32_t freq; 

uint32_t resolution; 

float speed; 

} Motor; 
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You can see that this has all of the information needed to define the current state of a motor. All we need now are some functions to modify the fields and implement the changes to the state. 

First, we need a function to create an “instance” of the Motor struct: Motor makeUniMotor(int32_t gpio) {

int32_t res = 1000000; 

int32_t freq = 500; 

Motor motor; 

motor.gpio = gpio; 

motor.pwm = makePWM(gpio, res, freq, 0); 

motor.freq = freq; 

motor.speed = 0; 

motor.duty = 0; 

return motor; 

}

We make use of the makePWM function given earlier and store the PWM in a field so that the duty cycle can be changed by another function. 

Now we need a function to set the speed:

void setUniMotorSpeed(Motor motor, float speed) {

motor.speed = speed; 

motor.duty = speed * (float)(motor.freq); 

mcpwm_comparator_set_compare_value(motor.pwm.comparator1, 

motor.duty); 

}

Turning the motor off is a matter of setting speed to zero. A main program to run the motor is:

void app_main(void)

{

Motor motor = makeUniMotor(2); 

setUniMotorSpeed(motor, 0.1); 

}

The complete program listing can be found on the book’s website at www.iopress.info. 

You can create other Motor structs that work on other GPIO lines but notice that they all use a separate timer. If you want to share timers you need to modify the makeUniMotor function. 

186

[image: Image 107]

[image: Image 108]

Bidirectional Brushed Motor

If you want bidirectional control then you need to use an H-bridge: It is easy to see how this works. If Q1 and Q4 are the only MOSFETs on the motor, + is connected to 12V and – to ground. The motor runs in the forward direction. If Q2 and Q3 are the only MOSFETs on the motor, + is connected to ground and  – is connected to 12V. The motor runs in the reverse direction.  Of course, if none or any single one is on the motor is off. 

If Q1 and Q3, or Q2 and Q4, are on then the motor is braked as its windings are shorted out and the back EMF acts as a brake. 

You can arrange to drive the four MOSFETs using four GPIO lines - just make sure that they switch on and off in the correct order. To make the bridge easier to drive, you can add a NOT gate to each pair so that you switch Q1/Q2 and Q3/ Q4 to opposite states. 
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An alternative design is to use complementary MOSFETs:

In this configuration, the first GPIO line drives the motor forward and the second drives it in reverse. The effect of setting the two lines is: Forward

Reverse

Motor

Low

Low

Off

Low

High

Reverse

High

Low

Forward

High

High

Braked

You can also drive the GPIO lines for Forward/Reverse with a PWM signal and control the motor’s speed as well as direction. If you use the MOSFETs shown in the diagram then you would also need a BJT to increase the drive voltage to each MOSFET, as in the unidirectional case. You also need to include diodes to deal with potential reverse voltage on each of the MOSFETs. The most important thing about an H-bridge is that Q1/Q2 and Q3/Q4 should never be on together – this would short circuit the power supply. 

If working with four power BJTs or MOSFETs is more than you want to tackle, the good news is that there are chips that implement two H-bridges per device. You can also buy low-cost ready-made modules with one or more H-bridges. One of the most used devices is the L298 Dual H-bridge which works up to 46V and total DC current of 4A. 
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The block diagram of one of the two H-bridges shows exactly how it works: You can see that the bridge is made up of four BJTs and there are logic gates to allow IN1 and IN2 to select the appropriate pairs of devices. The only extras are AND gates and that the ENA (enable) line is used to switch all of the transistors off. The line shown as SENSE A can be used to detect the speed or load of the motor, but is rarely used. 

A typical module based on the L298 can be seen below. 

It is easier to describe how to use this sort of module with a single motor. 

The motor is connected to OUT1 and OUT2. Three GPIO lines are connected to ENA, IN1 and IN2. ENA is an enable line, which has to be high for the motor to run at all. IN1 and IN2 play the role of direction control lines – 

which one is forward and which is reverse depends on which way round you connect the motor. Putting a PWM signal onto ENA controls the speed of the motor and this allows IN1 and IN2 to be simple digital outputs. 
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Notice that the power connector shows 5V and 12V supplies, but most of these modules have a voltage regulator which will reduce the 12V to 5V. 

In this case you don’t have to supply a 5V connection. If you want to use more than 12V then the regulator has to be disconnected and you need to arrange for a separate 5V supply – check with the module’s documentation. 

Notice that the transistors in the H-bridge have around a 2V drop, so using 12V results in just 10V being applied to the motor. 

Another very popular H-bridge device is the SN754410 driver. This is suitable for smaller, lower-powered, motors and has two complete H-bridges. 

It can supply up to 1A per driver and work from 4.5 to 36V.  It has the same set of control lines as the L298, i.e. each motor has a forward/reverse control line and an enable line. You don’t have to use the enable line - it can be connected to +5V to allow PWM to be applied on the forward/reverse lines. 

Bidirectional Motor Software 

Depending on the way the bridge is implemented, software control uses either a single GPIO line for a PWM signal or one or two lines for direction. 

The most common way to do things is to provide two GPIO lines, each carrying the same PWM signal. 

We can easily extend the Motor struct and its functions to work with a bidirectional motor. The only real difference is that now we have to use two GPIO lines. For forward we activate the first GPIO line and for reverse we activate the second. 
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The struct has to be extended to include fields for both GPIO lines, a pair or PWM systems and a direction indicator:

typedef struct

{

PWM pwm; 

PWM pwm2; 

uint32_t gpio; 

uint32_t gpio2; 

uint32_t duty; 

uint32_t freq; 

uint32_t resolution; 

float speed; 

bool forward; 

} Motor; 

The makeBiMotor function simply uses the makePWM function twice: Motor makeBiMotor(int32_t gpio1,int32_t gpio2) {

int32_t res = 1000000; 

int32_t freq = 500; 

Motor motor; 

motor.gpio = gpio1; 

motor.gpio2 = gpio2; 

motor.pwm = makePWM(gpio1, res, freq, 0); 

motor.pwm2 = makePWM(gpio2, res, freq, 0); 

motor.freq = freq; 

motor.speed = 0; 

motor.duty = 0; 

motor.forward=true; 

return motor; 

}

The function that sets the speed now also has to set the direction: void setBiMotorSpeedDirection(Motor motor, float speed, 

bool forward) {

motor.speed = speed; 

motor.duty = speed * (float)(motor.freq); 

motor.forward=forward; 

if(forward){

mcpwm_comparator_set_compare_value(motor.pwm2.comparator1,0); mcpwm_comparator_set_compare_value(motor.pwm.comparator1, 

motor.duty); 

}else{

mcpwm_comparator_set_compare_value(motor.pwm.comparator1, 0); mcpwm_comparator_set_compare_value(motor.pwm2.comparator1, 

motor.duty); 

}

} 
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Notice that we need to switch the currently on PWM signal off before we switch the alternative PWM on to avoid having both on at the same time. 

A main program to create a bidirectional motor and set it going in reverse is: void app_main(void)

{

Motor motor = makeBiMotor(2,4); 

setBiMotorSpeedDirection(motor, 0.1,false); 

}

The complete program listing can be found on the book’s website at www.iopress.info. 

This is a very basic set of functions, you can add others to improve motor control according to how sophisticated you want it to be. For example, a brake function would set both lines high for brake mode, or you could introduce limits on how fast the speed can be changed. There are also problems of how to change direction – if you simply put the motor into reverse it will generate a large back emf which could damage the drive electronics. A much better idea is to take the motor’s speed down to zero before reversing its direction. Motor control is a big topic. 

There are H-bridges that use two lines to control Phase and Enable (PWM). 

These map to the usual Forward, Reverse and Enable as shown below: The disadvantage of this arrangement is that you cannot set Forward and Reverse to put the motor into brake mode. If you do have this sort of controller, anything based on the MAX14870/2 for example, then you can modify the functions to use a single PWM line and one standard GPIO line for speed and direction. 
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Using A Single Full H-Bridge As Two Half H-Bridges

It is easy to think of an H-bridge as being only for bidirectional control, but each full bridge is composed of two half bridges and this means a typical dual full H-bridge can control four unidirectional motors:

In this case Forward is now MotorM1 speed control and Reverse is now MotorM2 speed control. Any enable line has to be set high to allow the two motors to be controlled. You can make use of this arrangement with the unidirectional software given earlier. 

Driving a Bridge as an Inverter

From the hardware point of view the simplest bridge makes use of four identical devices. For example, using  MOSFETs:
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When running a motor you can use two PWM signals, one applied to Q1 and Q4 and one applied to Q2 and Q3. The condition that we need to avoid is to have Q1 and Q2 or Q3 and Q4 on at the same time. This would short the power supply and cause very large currents to flow in the MOSFETs.  When driving a motor, making sure that a short circuit doesn’t occur is easy because changing direction is a slow event and we can hold one of the PWM

signals low while driving the other and set both low before switching the alternate PWM on. In short, we don’t need to worry about the phase of the two PWM signals. However, the bridge circuit is also used as an inverter to change DC into AC and in this case switching times are more important. 

The idea is that both sides of the bridge are driven by a PWM signal that turns the pairs of MOSFETs on and off at each cycle, reversing the flow through the load very rapidly. This creates an AC signal, usually at around 50Hz. To do this we need to generate two PWM signals with a 180-degree phase relationship. Generating 180-degree phase relationships is easy, but notice we have another condition. We need to avoid having the ontime for the pair of MOSFETs to overlap. The solution is to insert a deadtime, that is an intentional pause when both PWM signals are low. 

The MCPWM has a deadtime module which makes implementing an inverter much easier. You can add a deadtime to any generator using: mcpwm_generator_set_dead_time(in_generator, out_generator, pconfig) where in_generator is the generator you want to modify with a deadtime and out_generator is the modified generator – which can be the same as the in_generator. 

The pconfig parameter points to mcpwm_dead_time_config_t comprising:

 posedge_delay_ticks  Delay time applied to rising edge

 negedge_delay_ticks  Delay time applied to falling edge

 invert_output

Invert the output i.e. 180 degree phase shift

The only problem is working out how to set the deadtime to give you the result you need. In this case we need to add another generator to the operator and configure it to have a negative edge deadtime. 

First, we take an existing generator set up to create 50Hz 50% duty cycle pulses:

void makeDCAC(int32_t gpio1, int32_t gpio2) {

int32_t res = 1000000; 

int32_t freq = 20000; 

PWM pwm = makePWM(gpio1, res, freq, 10000); 

Next, we need to add an additional generator:

pwm.generator2 = makeGen(pwm.oper, gpio2); 
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Now we can set a deadtime: 

int deadtime=200; 

mcpwm_dead_time_config_t dtconfig = {

.posedge_delay_ticks = deadtime, 

.negedge_delay_ticks = 0, 

.flags.invert_output = false

}; 

mcpwm_generator_set_dead_time(pwm.generator1, 

pwm.generator1, &dtconfig); 

This deadtime specification has to be applied to generator1 as it delays its start. Notice that the in_generator is the same as the out_generator. Now generator1 starts its rising edge later by the deadtime. 

Finally, we need to add the deadtime specification to generator2 and invert it so that it is 180 degrees out of phase:

dtconfig.posedge_delay_ticks = 0; 

dtconfig.negedge_delay_ticks = deadtime; 

dtconfig.flags.invert_output = true; 

mcpwm_generator_set_dead_time(pwm.generator1, pwm.generator2, 

&dtconfig); 

}

The complete program listing can be found on the book’s website at www.iopress.info. 

Notice that now the in_generator is different from the out_generator. This means that generator1 is copied to generator2 and then its deadtime is applied to the negative edge. The output is also inverted and this completes the construction of two PWM signals with deadtime:

Notice that in the illustration the deadtime has been set to a very large value so that it can be seen. In most cases a time of around 10 s μ is more than 

enough to allow the MOSFETs to turn off and has almost no effect on the waveform. 

195

[image: Image 118]

If you were to try this out with a transformer as the load you would find that it worked but the waveform would be far from a pure sine wave. There are much better ways of converting DC to AC with outputs that are more like a pure sine wave, but this is simple. 

Controlling a Servo

Hobby servos, of the sort used in radio control models, are very cheap and easy to use and they connect via a standard PWM protocol. Servos are not drive motors, but positioning motors. That is, they don’t rotate at a set speed, they move to a specified angle or position. 

A servo is a motor, usually a brushed DC motor, with a feedback sensor for position, usually a simple variable resistor (potentiometer) connected to the shaft. The output is usually via a set of gears which reduces the rotation rate and increases the torque. The motor turns the gears, and hence the shaft, until the potentiometer reaches the desired setting and hence the shaft has the required angle/position. 

A basic servo has just three connections, ground, a power line and a signal line. The colors used vary, but the power line is usually red, ground is usually black or brown and the signal line is white, yellow or orange. If a standard J-connector is fitted then the wire nearest the notch, pin 3, is Signal,  the middle wire, pin 2, is 5V and outer wire, pin 1, is Ground. 

The power wire has to be connected to a 5V supply capable of providing enough current to run the motor - anything up to 500mA or more depending on the servo. The good news is that the servo’s signal line generally needs very little current, although it does, in theory, need to be switched between 0V and 5V using a PWM signal. 
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You can assume that the signal line needs to be driven as a voltage load and so the appropriate way to drive the servo is:

You can assume that the signal line needs to be driven as a voltage load and so the appropriate way to drive the servo is with the + line connected to an external 5V power supply. However, resistor R1 can be a lot larger than 10K 

for most servos - 47K often works. The 5.6K resistor limits the base current to slightly less than 0.5mA. Notice, however, that if you are using a single BJT driver, like the one shown above, the input is inverted. 

While this is the correct way to drive a servo, in nearly all cases you can drive the servo signal line directly from the 3.3V GPIO line with a 1K 

resistor to limit the current if anything goes wrong with the servo. Some servos will even work with their motor connected to 3.3V, but at much reduced torque. 

Now all we have to do is set the PWM line to produce 20ms pulses with pulse widths ranging from 0.5ms to 2.5ms – i.e. a duty cycle of 2.5 to 12.5%. 

We could use a Servo struct to record the details of the servo but the existing PWM struct has all of the fields we need:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "driver/mcpwm_prelude.h" 

#include "MCPWM.h" 

void delay_ms(int t) {

vTaskDelay(t / portTICK_PERIOD_MS); 

}
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typedef struct {

mcpwm_timer_handle_t timer; 

mcpwm_oper_handle_t oper; 

mcpwm_gen_handle_t generator1; 

mcpwm_gen_handle_t generator2; 

mcpwm_cmpr_handle_t comparator1; 

int32_t freq; 

}PWM; 

PWM makePWM(int gpio, uint32_t res, uint32_t ticksperiod, 

uint32_t duty) {

PWM pwm; 

pwm.timer = makeTimer(res, ticksperiod); 

pwm.oper = makeOper(); 

mcpwm_operator_connect_timer(pwm.oper, pwm.timer); 

pwm.generator1 = makeGen(pwm.oper, gpio); 

pwm.comparator1 = makeComp(pwm.oper); 

mcpwm_comparator_set_compare_value(pwm.comparator1, duty); 

mcpwm_generator_set_action_on_timer_event(pwm.generator1, 

MCPWM_GEN_TIMER_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, 

MCPWM_TIMER_EVENT_EMPTY, MCPWM_GEN_ACTION_HIGH)); 

mcpwm_generator_set_action_on_compare_event(pwm.generator1, MCPWM_GEN_COMPARE_EVENT_ACTION(MCPWM_TIMER_DIRECTION_UP, 

pwm.comparator1, MCPWM_GEN_ACTION_LOW)); 

mcpwm_timer_enable(pwm.timer); 

mcpwm_timer_start_stop(pwm.timer, MCPWM_TIMER_START_NO_STOP); return pwm; 

}

PWM makeServo(int gpio) {

int32_t res = 1000000; 

int32_t freq = 20000; 

return  makePWM(gpio, res, freq, 500); 

}

void setAngle(PWM pwm, float angle) {

int32_t max = 2500; 

int32_t min = 500; 

int32_t  duty = (float)(max - min) * angle + min; 

mcpwm_comparator_set_compare_value(pwm.comparator1, duty); 

}
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void app_main(void)

{

PWM pwm = makeServo(2); 

setAngle(pwm, 1.0); 

delay_ms(100); 

fflush(stdout); 

setAngle(pwm, 0.5); 

delay_ms(100); 

setAngle(pwm, 0.0); 

}

Notice that we set the frequency to 50Hz. If you want to work with a non-standard servo you can change this or make it settable. The setAngle function sets the position in terms of percentages. That is, setAngle(.5) sets the servo to the middle of its range.  This assumes that the servo has a standard positioning range and most don’t. In practice to get the best out of a servo, you need to calibrate each servo and discover what range of movement is supported. The main program creates a Servo object on GPIO 2

and then moves the servo to its maximum, middle and minimum positions. 

If you run the program using the transistor circuit given earlier, you will discover that the servo does nothing at all, apart perhaps from vibrating. The reason is that the transistor voltage driver is an inverter. When the PWM line is high, the transistor is fully on and the servo's pulse line is effectively grounded. When the PWM line is low, the transistor is fully off and the servo's pulse line is pulled high by the resistor.  The solution is to invert the duty cycle from 2.5% to 12.5% to 100-2.5% to 100-12.5%:

void setAngle(PWM pwm, float angle) {

int32_t max = 20000-500; 

int32_t min = 20000-2500; 

int32_t duty = (float)(max - min) * angle + min; 

mcpwm_comparator_set_compare_value(pwm.comparator1, duty); 

}

It is worth mentioning that servos make good low-cost DC motors, complete with gearboxes. All you have to do is open the servo, unsolder the motor from the control circuits and solder two wires to the motor. If you want to use the forward/reverse electronics you can remove the end stops on the gearbox, usually on the large gear wheel, and replace the potentiometer with a pair of equal value resistors, 2.2kΩ, say. 
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Brushless DC Motors

Brushless DC motors are more expensive than brushed DC motors, but they are superior in many ways. They don’t fail because of commutator or brush wear and need no maintenance. They provide maximum rotational torque at all points of the rotation and generally provide more power for the same size and weight. They can also be controlled more precisely. The only negative points are their higher cost and slightly more complex operation. In practice, it is usually sufficient to use a brushed DC motor unless you really need something extra. 

A brushless DC motor is basically a brushed motor turned inside out – the stator is a set of electromagnets and the rotor is a set of permanent magnets. 

In some designs the permanent magnets are inside the stator in the manner of a brushed motor, an inrunner, and sometimes the magnets are outside of the stator, an outrunner. 

 An inrunner – the permanent magnets form the rotor 

 and the coils are switched to attract. 

 An outrunner – the permanent magnets are on the

  outside of the stator and the whole cover rotates. 
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A brushless motor works in exactly the same way as a brushed motor. As the coils are stationary there is no need for a mechanical commutator, but there is still need for commutation – the coils have to be switched on in sequence to create a rotating magnetic field which pulls the rotor around with it.  This means that you have to implement an electronic commutator, which is another name for a brushless DC motor. 

An electronic commutator has to sense the position of the rotor and change the magnetic field generated by the stator to keep the rotor moving. 

Brushless motors differ in the number of magnets they have and the number of phases. The most common is a three-phase motor as these are used in radio control modeling. Essentially you need at least a driver for each of the phases and a GPIO line to generate the signal. In practice, you need two drivers for each phase and they have to be driven from a dual supply so that the magnetic field can be positive, zero or negative. 

This would be possible to do with software, but it isn’t easy and a more reasonable alternative is to buy a ready-built controller. There are two types of brushless motor,  with Hall effect sensors and without. The former are more expensive, but easier to control because the electronics always knows where the rotor is and can apply the correct drive. The ones without sensors are controlled by measuring the back EMF from the motor and this is much harder. Most of the lower-cost speed controllers need motors with Hall sensors. 

The ESP32 MCPWM system has everything needed to implement a brushless motor controller using Hall sensors, including an example program in the documentation, which is worth reading if you want to know more.  It is also worth saying that driving a brushless motor is very like driving a stepper motor, see the next section. 

The radio control community has taken to using three-phase brushless motors and this has resulted in a range of motors and controllers at reasonable prices intended as high-power, high-speed, unidirectional motors for use in quadcopters and model planes. If you can live with their limitations they provide a good way to couple the ESP32 to a brushless motor. In this case all you need is a three-phase brushless motor of the sort used in RC modeling and an ESC (Electronic Speed Controller) of the sort shown below:
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The three leads on the left go to the three phases of the motor and the red and black leads on the right go to a power supply, often a LiPo battery.  The small three-wire connector in the middle is a standard servo connector and you can use it exactly as if the brushless motor was a servo, with a few exceptions. The first is that pin 2 supplies 5V rather than accepts it. Don’t connect this to anything unless you want a 5V supply. The second problem is that ESCs are intelligent. When you first apply power they beep and can be programmed into different modes by changing the PWM signal from Max to Min. Also, to use an ESC you have to arm it. This is to avoid radio control modelers from being injured by motors that start unexpectedly when the power is applied. The most common arming sequence is for the ESC to beep when power is applied. You then have to set the PWM to Min, when the ESC

will beep again. After a few moments you will have control of the motor. 

The need for an arming procedure should alert you to the fact that these model motors are very powerful. Don’t try working with one loose on the bench as it will move fast if switched on and at the very least make a twisted mess of your wires. Most importantly of all, don’t run a motor with anything attached to it until you have everything under control. 

Stepper Motors

There is one sort of brushless motor that is easy to use and low cost, the stepper motor. This differs from a standard brushless motor in that it isn’t designed for continuous high-speed rotation. A stepper motor has an arrangement of magnets and coils such that powering some of the coils holds the rotor in a particular position. Changing which coils are activated makes the rotor turn until it is aligned with the coils and stops moving. Thus the stepper motor moves the rotor in discrete steps. This makes driving it much simpler, but note it doesn’t use PWM for speed control. 

Stepper motors have no brushes and so don’t wear out as fast as brushed motors. They also have roughly the same torque at any speed and can be used at low speeds without a gearbox. They can remain in a fixed position for a long time without burning out, as DC motors would. Unlike a servo, however, if a stepper motor is mechanically forced to a new position, it will not return to its original position when released. The only disadvantage of a stepper motor is that the continuous rotation produced by repeated stepping can make the motor vibrate. 

Stepper motors vary in the size of step they use – typically 1.8 degrees giving 200 steps per rotation, although gearing can be used to reduce the step size. 

Another big difference is that the rotor is made up either of permanent magnets or soft iron. The first type is called a Permanent Magnet or PM 

stepper and the second is called a Variable Reluctance or VR and they differ in how you drive them with PM steppers being easier to understand. There 202
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are also hybrid steppers which share the good characteristics of both PM and VR stepper motors. These are more expensive and are generally only used where accuracy of positioning is important. They also differ in the number of phases, i.e. independent banks of coils, they have. 

The diagram below shows a two-phase PM motor with Phase 1 activated: If Phase two is activated, the rotor turns through 90 degrees. This is the simplest stepper motor you can make. 

A typical stepper motor will have many more coils than four, but they are usually connected into two or three phases. 

Another big difference is bipolar versus unipolar. A bipolar motor is like the one shown in the diagram. To generate a north pole the current has to flow in the opposite direction to when you want to create a south pole. This means you have to drive each bank of coils with a bidirectional driver, e.g. 

an H-bridge. A unipolar motor has two windings, one in each direction, and both windings can be driven by a unidirectional driver – one giving a north pole and the other a south pole. Notice that a unipolar motor has twice the number of coils to drive and the switching sequence is slightly different. 

A two-phase bipolar motor with Phases A and B would switch on in the sequence: 

A → B →  A-   

→ B-    

→ A etc 

where the minus sign means the current flows the other way. 
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A two-phase unipolar motor has two coils per phase, A1, A2 and B1, B2 

with the 1 and 2 windings creating opposite magnetic fields for the same current flow. Now the sequence is: 

A1 → B1 → A2   

→ B2   

→ A1 etc 

and all the coils are driven in the same direction. 

Switching single phases fully on and off in sequence makes the motor make repeated steps. You can also switch on more than one phase at a time to generate micro-steps. For example, in our two-phase example, switching on two phases makes the rotor settle between the two, so producing a half micro-step:

The driving sequence for a two-phase bipolar motor is:

A → AB  B

→    

→ BA-   

→ A- → A- B-   

→ B-   

→ AB-   

→ A

with minus indicating that the coil is energized in the opposite direction, giving a total of eight, rather than four, steps. 

You can even vary the current through the coils and move the rotor to intermediate positions. At the extreme limit you can vary the current sinusoidally and produce a smooth rotation. Micro-stepping is smoother and can eliminate buzzing. For high accuracy positioning, micro-stepping is a poor performer under load. 
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Stepper Motor Driver

How best to drive a stepper motor using an ESP32? There are some specialized chips that work with unipolar and bipolar stepper motors. 

However, you can easily control a bipolar stepper motor using one the H-bridges described in the section on directional motor control. 

For example, using complementary MOSFETS:

You can use a dual H-bridge module in the same way if you don’t want to build it from scratch. The motor has to be a bipolar two-phase motor, often called a four-wire stepper motor.  You can see that for this arrangement you need four GPIO lines, A, A-, B and B-. 

What about driving the dual H-bridge using software? You need four GPIO 

lines and you need to pulse them in a specific phase to make the motor rotate. The first question to answer is how to specify the four GPIO lines to be used. As we will see, there is a big advantage and simplification in using a block of four consecutive lines. The reason is that we can easily set the bits corresponding to these lines in a mask and so set them in a single operation. 

In this case we simply record the number of the numerically lowest GPIO 

line, GPIOn, and assume that a block of four GPIO lines are allocated in the order: 

GPIOn → A,  GPIOn+1   

→  B,  GPIOn+2   

→ A-  and  GPIOn+3   

→ B-  
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As before, we use a struct to record the current state of the motor: typedef struct

{

uint gpio; 

uint speed; 

bool forward; 

uint32_t gpiomask; 

uint phase; 

} StepperBi; 

We also need an array that specifies the states of the four lines at each position of the motor. It is more efficient to create an array of masks needed to set the lines correctly:

uint32_t stepTable[8] = 

(uint32_t[8]){0x8, 0xC, 0x4, 0x6, 0x2, 0x3, 0x1, 0x9}; 

/*

{1, 0, 0, 0}, 

{1, 1, 0, 0}, 

{0, 1, 0, 0}, 

{0, 1, 1, 0}, 

{0, 0, 1, 0}, 

{0, 0, 1, 1}, 

{0, 0, 0, 1}, 

{1, 0, 0, 1}

*/

You can see that the array is just the hex value corresponding to the binary representation of which line is high and which is low in each state. The bits correspond to the GPIO lines such that the low order bits control the lowest numbered GPIO line. So for example, if we use GPIO 16 as the first GPIO 

line the four lines are GPIO 16, GPIO 17, GPIO 18 and GPIO 19 and the first element of stepTable sets just GPIO 19 to high.   You can see that if GPIO 19

is A, GPIO 18 is B, GPIO 17 is A- and GPIO 16 is B- and stepping through the stepTable gives the sequence given earlier:

A → AB → B → BA- → A- → A-B- → B- → AB- → A
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We need a function to initialize the GPIO lines and the struct: void StepperBiInit(StepperBi *s, int gpio)

{

s->gpio = gpio; 

for (int i = 0; i < 4; i++){

gpio_reset_pin((s->gpio) + i); 

gpio_set_direction((s->gpio) + i, GPIO_MODE_OUTPUT); 

}

s->gpiomask = 0x0F << gpio; 

volatile uint32_t mask = stepTable[0] << gpio; 

gpio_set(mask,s->gpiomask); 

s->phase = 0; 

s->speed = 0; 

s->forward = true; 

}

This sets up the four GPIO lines to output and creates the mask needed to select them. It also places the stepper into state zero and initializes phase, speed and direction. It makes use of the gpio_set(mask,value) function introduced in Chapter 4 to set multiple line at the same time. 

Now all we need are some methods to set and work with the phase: void setPhase(StepperBi* s, int p)

{

uint32_t mask = stepTable[p] << (s->gpio); 

gpio_set(mask, s->gpiomask); 

}

void stepForward(StepperBi* s)

{

s->phase = (s->phase + 1) % 8; 

setPhase(s, s->phase); 

}

void stepReverse(StepperBi* s)

{

s->phase = (s->phase - 1) % 8; 

setPhase(s, s->phase); 

}

The setPhase function uses the gpio_set function given earlier to change only the GPIO lines we are using to the bit pattern in the stepTable for the specified phase.  The stepForward and stepReverse simply move down or up in the phase table, making sure to go back to the start when the end is reached. This is what the modulus operator, %, does for us. Here we use mod 8 and phase follows the sequence 0,1,2,3,4,5,6,7,0,1 and so on. 
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You can use a full step table if you want to as long as you remember to work in mod 4 rather than 8:

self.stepSeq =[0x1,0x2,0x4,0x8]

# [

#            [0, 0, 0, 1], 

#            [0, 0, 1, 0], 

#            [0, 1, 0, 0], 

#            [1, 0, 0, 0], 

#        ]

Of course, these are identical to the even elements of the half step table so we can achieve the same result by using that table and increasing the increment by 2 instead of 1:

def stepForward(self):

self.phase=(self.phase+2) % 8        

self.setPhase(self.phase)



def stepReverse(self):

self.phase=(self.phase-2) % 8

self.setPhase(self.phase)

Putting all this together, we can write a program that rotates the stepper at a constant speed:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "driver/gpio.h" 

#include "soc/gpio_reg.h" 

#include <unistd.h> 

void gpio_set(int32_t value, int32_t mask) {

int32_t* OutAdd = (int32_t*)GPIO_OUT_REG; 

*OutAdd = (*OutAdd & ~mask) | (value & mask);; 

}

void delay_us(int t) {

usleep(t); 

}

typedef struct

{

int gpio; 

int speed; 

bool forward; 

uint32_t gpiomask; 

int phase; 

} StepperBi; 
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uint32_t stepTable[8] = (uint32_t[8]){ 0x8, 0xC, 0x4, 0x6, 0x2, 0x3, 0x1, 0x9 }; 

/*

{1, 0, 0, 0}, 

{1, 1, 0, 0}, 

{0, 1, 0, 0}, 

{0, 1, 1, 0}, 

{0, 0, 1, 0}, 

{0, 0, 1, 1}, 

{0, 0, 0, 1}, 

{1, 0, 0, 1}

*/

void StepperBiInit(StepperBi* s, int gpio)

{

s->gpio = gpio; 

for (int i = 0; i < 4; i++) {

gpio_reset_pin((s->gpio) + i); 

gpio_set_direction((s->gpio) + i, GPIO_MODE_OUTPUT); 

}

s->gpiomask = 0x0F << gpio; 

volatile uint32_t mask = stepTable[0] << gpio; 

gpio_set(mask, s->gpiomask); 

s->phase = 0; 

s->speed = 0; 

s->forward = true; 

}

void setPhase(StepperBi* s, int p)

{

uint32_t mask = stepTable[p] << (s->gpio); 

gpio_set(mask, s->gpiomask); 

}

void stepForward(StepperBi* s)

{

s->phase = (s->phase + 1) % 8; 

setPhase(s, s->phase); 

}

void stepReverse(StepperBi* s)

{

s->phase = (s->phase - 1) % 8; 

setPhase(s, s->phase); 

}

void rotate(StepperBi* s, bool dir, int speed)

{

s->forward = dir; 

s->speed = speed; 

}
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void app_main(void)

{

StepperBi s1; 

StepperBiInit(&s1, 15); 

while (true)

{

stepForward(&s1); 

delay_us(1000); 

}

}

To try either version of the program you need an H-bridge connected so that GPIO 16 is A, GPIO 17 is B, GPIO 18 is A- and GPIO 19 is B-. The maximum stepping speed, i.e. with no timer delay, is such that a 200-step motor, i.e. 

400 half steps, will rotate in roughly 400*0.5 us= 0.0002 s, i.e. 300,000rpm, which is much too fast for a stepper motor. In practice include delays to slow things down to a few hundred rpm. A 1ms delay gives a rotation speed of 150 rpm which is a good starting speed. 

If you are using one of the many dual H-bridge modules then the wiring is as shown below:

Notice that you have to connect the ground of the power supply and the ESP32’s ground together. It is also a good idea to use a power supply with a current trip when first trying things out. 
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The logic analyzer reveals that the switching times are acceptably accurate: Stepper Motor Rotation – Using Timers

Most of the time you use a stepper motor to move to a given position by executing an exact number of steps. If you do want to make a stepper motor rotate then you need to arrange to step at a regular rate. The simplest way to do this is to use a timer interrupt. 

To make the motor rotate on its own we need a timer interrupt handler: bool step(gptimer_handle_t gptimer, const 

gptimer_alarm_event_data_t* edata, void* user_data)

{

StepperBi* s = (StepperBi*)(user_data); 

if (s->forward)

{

stepForward(s); 

}

else

{

stepReverse(s); 

}

return false; 

}
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You can see that this function simply steps the motor forward or backward depending on the setting of the forward attribute. 

To make this work we need a function to set up the timer and its interrupt: void rotate(StepperBi* s, bool dir, int speed)

{

static gptimer_handle_t  gptimer = NULL; 

if (gptimer == NULL) {

gptimer_config_t timer_config = {

.clk_src = GPTIMER_CLK_SRC_DEFAULT, 

.direction = GPTIMER_COUNT_UP, 

.resolution_hz = 1000000, 

}; 

gptimer_new_timer(&timer_config, &gptimer); 

gptimer_alarm_config_t alarm_config = {

.flags.auto_reload_on_alarm = true, 

.alarm_count = 1000, 

.reload_count = 0 }; 

gptimer_set_alarm_action(gptimer, &alarm_config); 

gptimer_event_callbacks_t cbs = {

.on_alarm = step, 

}; 

gptimer_register_event_callbacks(gptimer, &cbs, (void*)s); gptimer_enable(gptimer); 

gptimer_start(gptimer); 

}; 

s->forward = dir; 

if (speed == 0)

{

gptimer_stop(gptimer); 

gptimer_disable(gptimer); 

gptimer_del_timer(gptimer); 

gptimer = NULL; 

s->speed = 0; 

return; 

}

gptimer_alarm_config_t alarm_config = {

.flags.auto_reload_on_alarm = true, 

.alarm_count = 2000, 

.reload_count = 0 }; 

alarm_config.alarm_count = speed / 150.0 * 1000.0; 

s->speed = speed; 

gptimer_set_alarm_action(gptimer, &alarm_config); 

}

The speed is specified in rpm assuming that the clock is 1000,000Hz. Notice that we have to deal with a speed of zero differently by removing the timer. 

We also have to check that there isn’t already a timer allocated – if there is we just use it. 
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A main program to rotate the motor for 100ms at 150rpm and then stop it for another 100ms is:

void app_main(void)

{

StepperBi s1; 

StepperBiInit(&s1, 16); 

while (true)

{

rotate(&s1, true, 150); 

delay_ms(100); 

rotate(&s1, true, 00); 

delay_ms(100); 

}

}

Notice that when the motor is stopped the phase is still active and so the motor holds its position under power:

You can elaborate on this basic scheme to include more complex controls on the motor’s behavior, including things like allowing it to freewheel and selecting full or half stepping. 

The complete program, including the timer interrupt handling, is:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "driver/gpio.h" 

#include "soc/gpio_reg.h" 

#include <unistd.h> 

#include "driver/gptimer.h" 
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void gpio_set(int32_t value, int32_t mask) {

int32_t* OutAdd = (int32_t*)GPIO_OUT_REG; 

*OutAdd = (*OutAdd & ~mask) | (value & mask);; 

}

void delay_ms(int t) {

vTaskDelay(t / portTICK_PERIOD_MS); 

}

void delay_us(int t) {

usleep(t); 

}

typedef struct

{

int gpio; 

int speed; 

bool forward; 

uint32_t gpiomask; 

int phase; 

} StepperBi; 

uint32_t stepTable[8] = (uint32_t[8]){ 0x8, 0xC, 0x4, 0x6, 0x2, 0x3, 0x1, 0x9 }; 

/*

{1, 0, 0, 0}, 

{1, 1, 0, 0}, 

{0, 1, 0, 0}, 

{0, 1, 1, 0}, 

{0, 0, 1, 0}, 

{0, 0, 1, 1}, 

{0, 0, 0, 1}, 

{1, 0, 0, 1}

*/

void StepperBiInit(StepperBi* s, int gpio)

{

s->gpio = gpio; 

for (int i = 0; i < 4; i++) {

gpio_reset_pin((s->gpio) + i); 

gpio_set_direction((s->gpio) + i, GPIO_MODE_OUTPUT); 

}

s->gpiomask = 0x0F << gpio; 

volatile uint32_t mask = stepTable[0] << gpio; 

gpio_set(mask, s->gpiomask); 

s->phase = 0; 

s->speed = 0; 

s->forward = true; 

}
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void setPhase(StepperBi* s, int p)

{

uint32_t mask = stepTable[p] << (s->gpio); 

gpio_set(mask, s->gpiomask); 

}

void stepForward(StepperBi* s)

{

s->phase = (s->phase + 1) % 8; 

setPhase(s, s->phase); 

}

void stepReverse(StepperBi* s)

{

s->phase = (s->phase - 1) % 8; 

setPhase(s, s->phase); 

}

bool step(gptimer_handle_t gptimer, const 

gptimer_alarm_event_data_t* edata, void* user_data)

{

StepperBi* s = (StepperBi*)(user_data); 

if (s->forward)

{

stepForward(s); 

}

else

{

stepReverse(s); 

}

return false; 

}

void rotate(StepperBi* s, bool dir, int speed)

{

static gptimer_handle_t  gptimer = NULL; 

if (gptimer == NULL) {

gptimer_config_t timer_config = {

.clk_src = GPTIMER_CLK_SRC_DEFAULT, 

.direction = GPTIMER_COUNT_UP, 

.resolution_hz = 1000000, 

}; 

gptimer_new_timer(&timer_config, &gptimer); 

gptimer_alarm_config_t alarm_config = {

.flags.auto_reload_on_alarm = true, 

.alarm_count = 1000, 

.reload_count = 0 }; 

gptimer_set_alarm_action(gptimer, &alarm_config); 

gptimer_event_callbacks_t cbs = {

.on_alarm = step, 

}; 
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    gptimer_register_event_callbacks(gptimer, &cbs, (void*)s); gptimer_enable(gptimer); 

gptimer_start(gptimer); 

}; 

s->forward = dir; 

if (speed == 0)

{

gptimer_stop(gptimer); 

gptimer_disable(gptimer); 

gptimer_del_timer(gptimer); 

gptimer = NULL; 

s->speed = 0; 

return; 

}

gptimer_alarm_config_t alarm_config = {

.flags.auto_reload_on_alarm = true, 

.alarm_count = 2000, 

.reload_count = 0 }; 

alarm_config.alarm_count = speed / 150.0 * 1000.0; 

s->speed = speed; 

gptimer_set_alarm_action(gptimer, &alarm_config); 

}

void app_main(void)

{

StepperBi s1; 

StepperBiInit(&s1, 15); 

while (true)

{

rotate(&s1, true, 150); 

delay_ms(100); 

rotate(&s1, true, 00); 

delay_ms(100); 

}

}
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Summary

● There are a number of different types of electric motor, but DC 

brushed or brushless motors are the most used in the IoT. 

● Brushed motors can be speed controlled using a single transistor driver and a PWM signal. 

● For bidirectional control you need an H-bridge. In this case you need two PWM signals. 

● You can also use an H-bridge to generate AC from DC. In this case you also need to add deadtime to the out-of-phase signals. 

● Servo motors set their position in response to the duty cycle of a PWM signal. 

● Brushless DC motors are very powerful and best controlled using off-the-shelf electronic modules. They are very powerful and thus dangerous if used incorrectly. They can be driven using a simple PWM signal. 

● Stepper motors are a special case of a Brushless DC motor. They move in discrete steps in response to energizing different coils. 

● A unipolar motor has coils that can be driven in the same direction for every step. A bipolar motor has coils that need to be driven in reverse for some steps. 

● Bipolar motors need two H-bridges to operate and four GPIO lines. 

● You can easily create a stepper motor driver using four GPIO lines. 
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Chapter 11

Getting Started With The SPI Bus

The Serial Peripheral Interface (SPI) bus can be something of a problem because it doesn't have a well-defined standard that every device conforms to. Even so, if you only want to work with one specific device it is usually easy to find a configuration that works - as long as you understand what the possibilities are. 

SPI Bus Basics

The SPI bus is commonly encountered as it is used to connect all sorts of devices from LCD displays, through realtime clocks to A-to-D converters (ADCs), but as different companies have implemented it in different ways, you have to work harder to implement it in any particular case. However, it does usually work, which is a surprise for a bus with no standard, or clear, specification. 

The reason it can be made to work is that you can specify a range of different operating modes, frequencies and polarities. This makes the bus slightly more complicated to use, but generally it is a matter of looking up how the device you are trying to work with implements the SPI bus and then getting the ESP32 to work in the same way. 

The SPI bus is odd in another way - it does not use bidirectional serial connections. There is a data line for the data to go from the master to the slave and a separate data line from the slave back to the master. That is, instead of a single data line that changes its transfer direction, there is one for data going out and one for data coming in. It is also worth knowing that the drive on the SPI bus is push-pull and not open-collector/drain. This provides higher speed and more noise protection as the bus is driven in both directions. 

In the configuration most used for the ESP32, there is a single master and, at most, two slaves. The signal lines are:

 MOSI (Master Output Slave Input), i.e. data to the slave

 MISO (Master Input Slave Output), i.e. data to the master

 SCLK (Serial Clock), which is always generated by the master 219
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In general, there can also be any number of SS (Slave Select), CE (Chip Enable) or CS (Chip Select) lines, which are usually set low to select which slave is being addressed. Notice that unlike other buses, I2C for example, there are no SPI commands or addresses, only bytes of data. However, slave devices do interpret some of the data as commands to do something or send some particular data. 

There are two other modes of operation of the SPI interface – bidirectional and LoSSI mode. The bidirectional mode simply uses a single data line, MIMO, for both input and output. The direction of the line is determined by writing a command to the slave. LoSSI mode is used to communicate with sophisticated peripherals such as LCD panels. Both of these are  beyond the scope of this chapter as are the quad and octal modes that work with 4 and 8

data lines respectively. However, once you know how standard mode works, the others are simple variations. In this chapter we concentrate on the basic workings of SPI. 

The data transfer on the SPI bus is  slightly odd. What happens is that the master pulls one of the chip selects low, which activates a slave. Then the master toggles the clock SCLK and both the master and the slave send a single bit on their respective data lines. After eight clock pulses, a byte has been transferred from the master to the slave and from the slave to the master. You can think of this as being implemented as a circular buffer, although it doesn't have to be. 
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This full-duplex data transfer is often hidden by the software and the protocol used. For example, there is a read function that reads data from the slave and sends zeros or data that is ignored by the slave. Similarly, there is a write function that sends valid data, but ignores whatever the slave sends. 

The transfer is typically in groups of eight bits, usually most significant bit first, but this isn't always the case. In general, as long as the master supplies clock pulses, data is transferred. You can also opt for a half duplex approach where the master first transmits and then the slave sends data back. 

Notice this circular buffer arrangement allows for slaves to be daisy-chained with the output of one going to the input of the next. This makes the entire chain one big circular shift register. This can make it possible to have multiple devices with only a single chip select, but it also means any commands sent to the slaves are received by each one in turn. For example, you could send a convert command to each ADC in turn and receive back results from each one. 

The final odd thing about the SPI bus is that there are four modes which define the relationship between the data timing and the clock pulse. The clock can be either active high or low, which is referred to as clock polarity (CPOL), and data can be sampled on the rising or falling edge of the clock, which is clock phase (CPHA). 

All combinations of these two possibilities gives the four modes: SPI

Clock Polarity

Clock Phase

Characteristics 

Mode*

CPOL

CPHA

Clock active high data output on 

0

0

0

falling edge and sampled on rising

Clock active high data output on 

1

0

1

rising edge and sampled on falling

0

Clock active low data output on 

2

1

falling edge and sampled on rising

Clock active low data output on 

3

1

1

rising edge and sampled on falling

*The way that the SPI modes are labeled is common but not universal. 

There is often a problem trying to work out what mode a slave device uses. 

The clock polarity is usually easy and the clock phase can sometimes be worked out from the data transfer timing diagrams bearing in mind that if the first clock transition at the start of a data bit CPHA is a 1 and if it is in the middle of a data bit CPHA is a 0. 

So to configure the SPI bus to work with a particular slave device: 1. Select the clock frequency - anything from 125MHz to 3.8kHz 2. Determine the CS polarity - active high or low

3. Set the clock mode Mode0 thru Mode3
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ESP32 SPI Interfaces

The ESP32 has four SPI controllers. SPI0 is used internally for memory access and isn’t available. SPI1 can act as a master and is usually allocated to SRAM interfacing. Because of this you are restricted to using SPI2 and SPI3 

which can act as master or slave. 

To add to the confusion in the case of the ESP32 SPI2 and SPI3 are also called HSPI  and VSPI terms that are sometimes used for the ESP32 S3. The SPI pins can be connected to any GPIO pins; there is a speed advantage for the ESP32 in allowing them to work with their default pins. The reason is that the SPI hardware is connected directly to the defaults but goes via a multiplexer to other GPIO lines. As a result the default pins work at higher frequencies. The default pins can work up to 80MHz but a general GPIO line can only work at 40MHz. This isn’t true for the ESP32 S3. 

 

Default ESP32 GPIO Pins

SPI2 HSPI 

SPI3 VSPI 

id=SPI2_HOST

id=SPI3_HOST

SCLK

14

18

MOSI

13

23

MISO

12

19

For a full SPI interface you need to use one pin for MISO, one for MOSI and one for SCLK. The chip select lines are not really part of the SPI hardware implementation. To make use of them you have to treat them like standard GPIO lines and set them high and low to select the device under program control. What this means is that you can use as many of these lines with any SPI interface as you need. The API does this and many other things for you. 

In practice you can allow the API to control the chip select lines. 

The SPI Functions

The API abstracts the SPI hardware to make it easier to use and easier to customize to different implementations. In this chapter we are only considering using the ESP32 as a master and using it as a slave is easier. 

Using SPI has three parts. It starts with the configuration of the basic bus properties, GPIO lines to use etc. The configuration then needs to be set up to communicate with a particular slave device – frequency, mode of operation, etc. The third configuration is at the level of individual transactions, i.e. how to exchange data. This differs from the way most SPI APIs approach the problem with a single configure, everything once approach. The ESP32’s approach is a little more difficult to get started with, but it is very flexible. 
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Configure The Bus

There are two functions concerned with configuring the bus for use either as master or slave:



spi_bus_initialize(host_id, pbus_config, dma_chan)



spi_bus_free(host_id)

The host_id specifies the SPI hardware to use, i.e. either SPI2_HOST or SPI3_HOST. The dma_chan sets up the DMA, Dynamic Memory Access, to be used or you can set it to SPI_DMA_DISABLED if you want to transfer the data under direct program control.  pbus_configpoints to spi_bus_config_t a struct in which most fields are concerned with which GPIO pins to use. Set them to -1 for any not used:

 mosi_io_num

GPIO pin for Master Out Slave 

 miso_io_num

GPIO pin for Master In Slave Out

 sclk_io_num    

GPIO pin for SPI Clock

 quadwp_io_num

GPIO pin for WP (Write Protect)

 quadhd_io_num

GPIO pin for HD (Hold) signal

 data0_io_num 

 data1_io_num 

 data2_io_num 

 data3_io_num 

 data4_io_num 

 data5_io_num 

 data6_io_num 

 data7_io_num 

If you want to use a conventional SPI three wire bus then set quadwp_io_num and quadhd_io_num to -1 and ignore the other data lines. You can also set four or eight data lines to implement expanded versions of SPI – QPI, four data lines and OPI, eight data lines. 

The other fields are:

 max_transfer_sz

Maximum transfer size, in bytes 

Defaults to 4092 

 flags    

OR-ed value of any of SPICOMMON_BUSFLAG_* 

 isr_cpu_id   

Selects cpu core to register SPI ISR. 

 int intr_flags

Configure interrupts
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A typical SPI configuration using the ESP32 default GPIO lines, SPI2, no interrupt handling and no DMA is:

spi_bus_config_t busConfig = {

.sclk_io_num = 14, 

.mosi_io_num = 13, 

.miso_io_num = 12, 

.quadwp_io_num = -1, 

.quadhd_io_num = -1, 

}; 

spi_bus_initialize(SPI2_HOST, &busConfig, SPI_DMA_DISABLED); Device Configuration

Different devices that you connect to the SPI bus need different configurations for clock frequency, mode etc. To configure the connection for a particular device use:

spi_bus_add_device(host_id, pdev_config, phandle)

Although this is called “adddevice” it really is only configuring the bus. The host_id is just the number of the SPI hardware to use, i.e. either SPI2_HOST 

or SPI3_HOST and it is assumed that it is already configured to use particular GPIO lines, phandle is a pointer to the configured SPI hardware and pdev_config is a pointer to spi_device_interface_config_t, a struct that has four fields relating to the clock and how it is used:

 clock_speed_hz

SPI clock speed in Hz

 clock_source  

SPI_CLK_SRC_DEFAULT by default

 duty_cycle_pos  

Duty cycle of positive clock default is 0

equivalent to 128 = 50%/50% duty

 mode   

A pair of (CPOL, CPHA) values:

0: (0, 0)

1: (0, 1)

2: (1, 0)

3: (1, 1)

There are some SPI_MASTER_FREQ_* macros that can be used to set standard SPI frequencies. Notice that as the clock divider is integer only actual frequencies may be different from what you attempt to set. 

There is also a fine-tuning parameter for the way the clock and MISO signal interact:

 input_delay_ns  

Maximum data-valid time of slave 

This specifies the time required between SCLK and MISO valid, including the possible clock delay from slave to master. The driver uses this value to give an extra delay before MISO is ready on the line. It should be set to 0 

unless there is a need for it, which is usually only at high frequency (over 8MHz). 
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The API adds some additional structure to the SPI protocol. In principle, the master and slave exchange unstructured data, but in practice most SPI interactions take a standard form of command followed by an address with a specific number of packing or dummy bits between the two. If you simply want data as bytes that you control the structure of then set the next three fields to 0:

 command_bits Bits sent in command phase (0-16)

 address_bits Bits sent in address phase (0-64)

 dummy_bits Number of dummy bits between address and data phase You can also fine tune the number of transactions that can be queued waiting be sent:

 queue_size 

Transaction queue size

Although the hardware does not implement CS, Chip Select, lines the API does:

 spics_io_num     CS GPIO pin for this device, or -1 if not used

 cs_ena_pretrans   SPI bit-cycles, 0 to 16, the cs should be activated prior to transmission. 

 cs_ena_posttrans SPI bit-cycles, 0 to 16, the cs should stay active after the transmission

The GPIO line used by the CS is a standard GPIO line configured and used by the API. 

You can use a buffer for received and transmitted data or you can opt to use the 4-byte buffer supplied as part of the transaction struct as the data store. 

As many SPI devices work in short transactions for a few bytes, it is common to use the transaction struct:



SPI_TRANS_USE_RXDATA    

Receive member of spi_transaction_t into rx_data instead of into memory at rx_buffer

 SPI_TRANS_USE_TXDATA 

Transmit tx_data member of spi_transaction_t instead of data at tx_buffer 

There are also two possible callbacks, but if they take any significant time then the data exchange might not work:

 pre_cb  

Callback before a transmission is started

 post_cb  

Callback after a transmission has completed
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Finally the Flags field is the Bitwise OR of a large set of possible macros starting SPI_DEVICE.*  which control the exact way the data is transmitted and how the GPIO lines are used: 

 SPI_DEVICE_TXBIT_LSBFIRST

Transmit LSB first instead of the default MSB first

 SPI_DEVICE_RXBIT_LSBFIRST 

Receive LSB first instead of the default MSB first

 SPI_DEVICE_BIT_LSBFIRST 

Transmit and receive LSB first

 SPI_DEVICE_3WIRE

Use MOSI for both sending and receiving data

 SPI_DEVICE_POSITIVE_CS 

Make CS positive 

 SPI_DEVICE_CLK_AS_CS

Output clock on CS line if CS is active

 SPI_DEVICE_HALFDUPLEX  

Transmit data before receiving it

 SPI_DEVICE_NO_DUMMY  

Disable automatic insertion of dummy bits in half-duplex mode 

 SPI_DEVICE_NO_RETURN_RESULT 

use post_cb, a callback to notify the end of transaction

A typical configuration for a simple SPI device would be:

spi_device_interface_config_t masterConfig = {

.command_bits = 0, 

.address_bits = 0, 

.dummy_bits = 0, 

.mode = 0, 

.queue_size = 10, 

.clock_speed_hz = SPI_MASTER_FREQ_8M, 

.spics_io_num = 15, 

}; 

spi_device_handle_t SPI = NULL; 

spi_bus_add_device(SPI2_HOST, &masterConfig, &SPI); Data Transfer 

Because of the way the SPI bus uses a full-duplex transfer, things are a little different from other buses when it comes to implementing functions to transfer data. You can also choose to work in polling mode or interrupt mode, but these only differ in how they wait for a transaction to complete. 

226

The easiest to use polling transfer function is: spi_device_polling_transmit(devhandle, ptrans_desc)

where devhandle is an SPI device setup earlier and ptrans_desc is a pointer to spi_transaction_t, a struct which defines the nature of the transaction and the data involved. It has nine fields that control the data:

 cmd 

Command data, number of bits set in command_bits

of spi_device_interface_config_t

 addr 

Address data,  set in the address_bits

of spi_device_interface_config_t

 ptx_buffer   Pointer to transmit buffer, or NULL for no MOSI phase

 tx_data[4]    If SPI_TRANS_USE_TXDATA is set, data set here is sent directly from this variable

 prx_buffer   Pointer to receive buffer, or NULL for no MISO phase

 rx_data[4] 

If SPI_TRANS_USE_RXDATA is set, data is received 

directly to this variable

 length  

Total data length, in bits. 

 rxlength 

Total data length received, 0 denotes same as length

If you are not using the API to help with formatting the data into command, address and other data, then you can ignore the cmd and addr fields and set their size to zero in the device configuration. 

You can use either the 4-byte fields tx_data and rx_data for the data, or you can set pointers to your own buffers. Using the tx_data and rx_data variables is slightly faster. You also have to set the total length of the data in the variables or the buffers in length. For full duplex the rxlength is always the same as the length. 

Which method, buffers or struct fields, is used is set by the flags field:

 flags  

Bitwise OR of:

SPI_TRANS_USE_RXDATA  

Use rx_data member instead of prx_buffer

SPI_TRANS_USE_TXDATA  

Use tx_data member instead ptx_buffer

SPI_TRANS_CS_KEEP_ACTIVE 

Keep CS active after data transfer

There is also a little-used field, puser, which is a pointer to a user-defined variable such as a transaction ID. 
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There are a number of options to set multi-line data transfer which can be ignored if you are using a basic SPI connection. Four set the mode:

 SPI_TRANS_MODE_DIO 

Transmit/receive data in 2-bit mode

 SPI_TRANS_MODE_QIO 

Transmit/receive data in 4-bit mode

 SPI_TRANS_MODE_OCT 

Transmit/receive data in 8-bit mode

 SPI_TRANS_MODE_DIOQIO_ADDR Transmit address in mode select Another two ensure that the same pair of data lines are used across phases. 

In their absence only one data line is used. 

 SPI_TRANS_MULTILINE_CMD 

The data lines used at command phase



is the same as data phase 

 SPI_TRANS_MULTILINE_ADDR  The data lines used at address phase is the same as data phase 

There is also a set of options to control the number of bits used for commands and addresses. While these can usually be ignored, they are:

 SPI_TRANS_VARIABLE_CMD 

Use the command_bits in spi_transaction_ext_t 

 SPI_TRANS_VARIABLE_ADDR 

Use the address_bits in spi_transaction_ext_t 

 SPI_TRANS_VARIABLE_DUMMY 

Use the dummy_bits in spi_transaction_ext_t 

The spi_device_polling_transmit function is blocking and only returns after all of the data have been sent. In full duplex mode the received data will also be waiting for you in the rx_data field or in the buffer you set up. 

For example, a simple transaction is:

spi_transaction_t transConfig = {

.length = 8 * 4, 

.flags = SPI_TRANS_USE_RXDATA | SPI_TRANS_USE_TXDATA, 

.tx_data = {0xAA,0xAA,0xAA,0xAA}, 

}; 

spi_device_polling_transmit(SPI, &transConfig); 

In this case it is assumed that no command or address data is sent and no external buffers are used. 

Notice that there is no read SPI function as all SPI transfers are controlled by the master and to receive data the master simply sends null bytes while reading the data provided by the slave. 
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A Loopback Example

Because of the way that data is transferred on the SPI bus, it is very easy to test that everything is working without having to add any components. All you have to do is connect MOSI to MISO so that anything sent is also received in a loopback mode. 

First we have to select which pins to use and, as this is fairly arbitrary at this stage, we might as well use:

SPI2   MISO

GPIO 12

MOSI

GPIO 13

SCLK

GPIO 14



CS

GPIO 15

First, connect GPIO12 to GPIO13 using a jumper wire and start a new project. 

The program is very simple. First we set up the bus to use the GPIO lines listed. Then we set up the device to not use command, address or dummy bits. We are using 8-bit data and SPI mode 0. Finally we send some data and receive it without using a buffer:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "driver/spi_common.h" 

#include "driver/spi_master.h" 

void app_main(void)

{

spi_bus_config_t busConfig = {

.sclk_io_num = 14, 

.mosi_io_num = 13, 

.miso_io_num = 12, 

.quadwp_io_num = -1, 

.quadhd_io_num = -1, 

}; 

spi_bus_initialize(SPI2_HOST, &busConfig, SPI_DMA_DISABLED); 229
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spi_device_interface_config_t masterConfig = {

.command_bits = 0, 

.address_bits = 0, 

.dummy_bits = 0, 

.mode = 0, 

.queue_size = 10, 

.clock_speed_hz = SPI_MASTER_FREQ_8M, 

.spics_io_num = 15, 

}; 

spi_device_handle_t SPI = NULL; 

spi_bus_add_device(SPI2_HOST, &masterConfig, &SPI); spi_transaction_t transConfig = {

.length = 8 * 4, 

.flags = SPI_TRANS_USE_RXDATA | SPI_TRANS_USE_TXDATA, 

.tx_data = {0xAA,0xAA,0xAA,0xAA}, 

}; 

spi_device_polling_transmit(SPI, &transConfig); 

printf("received %X %X %X %X\n", transConfig.rx_data[0], transConfig.rx_data[1], transConfig.rx_data[2], 

transConfig.rx_data[3]); 

}

The hex value AA is useful in testing because it generates the bit sequence 10101010, which is easy to see on a logic analyzer. 

If you run the program and don't get any data received back then the most likely reason is that you have connected the wrong two pins or not connected them at all. 

If you connect a logic analyzer to the three GPIO lines involved you will see the data transfer: 

Notice that the clock is active high and the data is valid on its rising edge. 
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The MCP3008 SPI ADC

An alternative to using the ESP32’s built-in ADC is to use an external chip. 

The MCP3000 family is a low-cost versatile SPI-based set of A-to-D 

converters.  Although the MCP3008, with eight analog inputs at 10-bit precision, and the MCP3004, with four analog inputs at 10-bit precision, are the best known, there are other devices in the family, including ones with 12-bit and 13-bit precision and differential inputs, at around the same sort of cost, $1 to $2. In this chapter the MCP3008 is used because it is readily available and provides a good performance at low cost, but the other devices in the family work in the same way and could be easily substituted. 

The MCP3008 is available in a number of different packages but the standard 16-pin PDIP is the easiest to work with using a prototyping board. 

You can buy it from the usual sources including Amazon, see Resources on this book’s webpage. Its pinouts are fairly self-explanatory: You can see that the analog inputs are on the left and the power and SPI bus connections are on the right.  The conversion accuracy is claimed as 10 bits, but how many of these bits correspond to reality and how many are noise depends on how you design the layout of the circuit. 

You need to take great care if you need high accuracy. For example, you will notice that there are two voltage inputs, VDD and VREF. VDD is the supply voltage that runs the chip and VREF is the reference voltage that is used to compare the input voltage. Obviously, if you want highest accuracy, VREF, which has to be lower than or equal to VDD, should be set by an accurate low-noise voltage source. However, in most applications VREF and VDD are simply connected together and the usual, low- quality, supply voltage is used as the reference. If this isn't good enough then you can use anything from a Zener diode to a precision voltage reference chip such as the TL431. 

At the very least, however, you should add a 1µF capacitor to ground connected to the VDD pin and the VREF pin. 
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The MC3000 family is based on the same type of ADC as the ESP32’s built-in device, see the next chapter and, like it, is a successive approximation converter. 

You can see that successive approximation fits in well with a serial bus as each bit can be obtained in the time needed to transmit the previous bit. 

However, the conversion is relatively slow and a sample-and-hold circuit has to be used to keep the input to the converter stage fixed. The sample-and-hold takes the form of a 20pF capacitor and a switch. The only reason you need to know about this is that the conversion has to be completed in a time that is short compared to the discharge time of the capacitor. So, for accuracy, there is a minimum SPI clock rate as well as a maximum. 

Also, to charge the capacitor quickly enough for it to follow a changing voltage, it needs to be connected to a low-impedance source. In most cases this isn't a problem, but if it is you need to include an op amp. If you are using an op amp buffer then you might as well implement an anti-aliasing filter to remove frequencies from the signal that are too fast for the ADC to respond to. How all this works takes us into the realm of analog electronics and signal processing and well beyond the core subject matter of this book. 

You can also use the A-to-D channels in pairs, i.e. in differential mode, to measure the voltage difference between them. For example, in differential mode you measure the difference between CH0 and CH1, i.e. what you measure is CH1-CH0. In most cases, you want to use all eight channels in single-ended mode. In principle, you can take 200k samples per second, but only at the upper limit of the supply voltage, i.e. VDD=5V, falling to 75k samples per second at its lower limit of VDD=2.7V. 

The SPI clock limits are a maximum of 3.6MHz at 5V and 1.35MHz at 2.7V. 

The clock can go slower, but because of the problem with the sample-and-hold mentioned earlier, it shouldn't go below 10kHz. How fast we can take samples is discussed later in this chapter. 
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Connecting to the ESP32

The connection from the MCP3008 to the ESP’s SPI bus is very simple and can be seen in the diagram below. 

ESP32 & ESP32 S3

MCP3008

GPIO12  MISO

Pin 12

GPIO15 Chip Select 

Pin 10

GPIO14 SCLK

Pin 13

GPIO13 MOSI

Pin 11

3.3v 

Pins 15 and 16

GND 

Pins 14 and 9

The only additional component that is recommended is a 1µF capacitor connected between pins 15 and 16 to ground, which is mounted as close to the chip as possible. As discussed in the previous section, you might want a separate voltage reference for pin 15 rather than just using the 3.3V supply. 

Basic Configuration

Now we come to the configuration of the SPI bus: a clock frequency of 500kHz seems a reasonable starting point. 

From the datasheet, the chip select has to be active low and, by default, data is sent most significant bit first for both the master and the slave. The only puzzle is what mode to use? This is listed in the datasheet as mode 0 0 

with clock active high or mode 1 1 with clock active low. For simplicity we will use mode 0 0. 
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We now have enough information to initialize the slave: spi_bus_config_t busConfig = {

.sclk_io_num = 14, 

.mosi_io_num = 13, 

.miso_io_num = 12, 

.quadwp_io_num = -1, 

.quadhd_io_num = -1, 

}; 

spi_bus_initialize(SPI2_HOST, &busConfig, SPI_DMA_DISABLED); spi_device_interface_config_t masterConfig = {

.command_bits = 0, 

.address_bits = 0, 

.dummy_bits = 0, 

.mode = 0, 

.queue_size = 10, 

.clock_speed_hz = 500000, 

.spics_io_num = 15, 

}; 

spi_device_handle_t SPI = NULL; 

spi_bus_add_device(SPI2_HOST, &masterConfig, &SPI); The Protocol

Now we have the SPI initialized and ready to transfer data, but what data do we transfer? As already discussed in the previous chapter, the SPI bus doesn't have any standard commands or addressing structure. Each device responds to data sent in different ways and sends data back in different ways. You simply have to read the datasheet to find out what the commands and responses are. 

Reading the datasheet might be initially confusing because it says that you have to send five bits to the slave - a start bit, a bit that selects its operating mode single or differential, and a 3-bit channel number. The operating mode is 1 for single-ended and 0 for differential. 

So to read Channel 3, i.e. 011, in single-ended mode you would send the slave:

11011xxx

where an x can take either value. In response, the slave holds its output in a high impedance state until the sixth clock pulse, then sends a zero bit on the seventh, followed by bit 9 of the data on the eighth clock pulse. 

That is, the slave sends back:

xxxxxx0b9

where x means indeterminate and b9 means bit 9. 
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The remaining nine bits are sent back in response to the next nine clock pulses. This means you have to transfer three bytes to get all ten bits of data. 

All this makes reading the data in 8-bit chunks confusing. 

The datasheet suggests a different way of doing the job that delivers the data more neatly packed into three bytes by sending a single byte: 00000001

At the same time, the slave transfers random data, which is ignored. The final 1 is treated as the start bit. If you now transfer a second byte with the most significant bit indicating single or differential mode, then a 3-bit channel address and the remaining bits set to 0, the slave will respond with a null and the top two bits of the conversion. 

Now all you have to do to get the final eight bits of data is to read a third byte:

This way you get two neat bytes containing the data with all the low-order bits in their correct positions. 

Using this information we can now write some instructions that read a given channel. For example, to read Channel 0 we first send a byte set to 0x01 as the start bit and ignore the byte the slave transfers. Next we send 0x80 to select single-ended and Channel 0 and keep the byte the slave sends back as the two high-order bits. Finally, we send a zero byte (0x00) so that we get the low-order bits from the slave:

transConfig.tx_data[0] = 0x01; 

transConfig.tx_data[1] = 0x80; 

transConfig.tx_data[2] = 0x00; 

transConfig.length = 8 * 3; 

spi_device_polling_transmit(SPI, &transConfig); 

Notice you cannot send the three bytes one at a time using 

polling_transmit because that results in the CS line being deactivated between the transfer of each byte. 

To get the data out of rx_data we need to do some bit manipulation: int data =  (transConfig.rx_data[1] & 0x03) << 8 |

transConfig.rx_data[2]; 

The first part of the expression extracts the low three bits from the first byte the slave sent and, as these are the most significant bits, they are shifted up eight places. The rest of the bits are then ORed with them to give the full 10-bit result. 
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To convert to volts we use:

float volts=data*3.3/1023.0; 

assuming that VREF is 3.3V. 

In a real application you would also need to convert the voltage to some other quantity, like temperature or light level. 

If you connect a logic analyzer to the SPI bus you will see both the commands and the response:

The complete program is:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "driver/spi_common.h" 

#include "driver/spi_master.h" 

void app_main(void)

{

spi_bus_config_t busConfig = {

.sclk_io_num = 14, 

.mosi_io_num = 13, 

.miso_io_num = 12, 

.quadwp_io_num = -1, 

.quadhd_io_num = -1, 

}; 

spi_bus_initialize(SPI2_HOST, &busConfig, SPI_DMA_DISABLED); 236

  spi_device_interface_config_t masterConfig = {

.command_bits = 0, 

.address_bits = 0, 

.dummy_bits = 0, 

.mode = 0, 

.queue_size = 10, 

.clock_speed_hz = 500000, 

.spics_io_num = 15, 

}; 

spi_device_handle_t SPI = NULL; 

spi_bus_add_device(SPI2_HOST, &masterConfig, &SPI); spi_transaction_t transConfig = {

.flags = SPI_TRANS_USE_RXDATA | SPI_TRANS_USE_TXDATA, 

}; 

transConfig.tx_data[0] = 0x01; 

transConfig.tx_data[1] = 0x80; 

transConfig.tx_data[2] = 0x00; 

transConfig.length = 8 * 3; 

while (true) {

spi_device_polling_transmit(SPI, &transConfig); 

printf("received %X %X %X %X\n", transConfig.rx_data[0], transConfig.rx_data[1], transConfig.rx_data[2], 

transConfig.rx_data[3]); 

int data = (transConfig.rx_data[1] & 0x03) << 8 |

transConfig.rx_data[2]; 

float volts = data * 3.3 / 1023.0; 

printf("%f\n", volts); 

fflush(stdout); 

vTaskDelay(1000 / portTICK_PERIOD_MS); 

}

}

Some Packaged Functions

This all works, but it would be good to have a function that read the ADC on a specified channel: 

float readADC(spi_device_handle_t SPI, uint8_t chan)

{

spi_transaction_t transConfig = {

.flags = SPI_TRANS_USE_RXDATA | SPI_TRANS_USE_TXDATA, 

}; 

transConfig.tx_data[0] = 0x01; 

transConfig.tx_data[1] = (0x08 | chan) << 4; 

transConfig.tx_data[2] = 0x00; 

transConfig.length = 8 * 3; 

spi_device_polling_transmit(SPI, &transConfig); 

int data = (transConfig.rx_data[1] & 0x03) << 8 |

transConfig.rx_data[2]; 

float volts = data * 3.3 / 1023.0; 

return volts; 

}
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Notice that this only works if the SPI bus has been initialized and set up correctly. An initialization function is something like:

spi_device_handle_t SPI_init()

{

spi_bus_config_t busConfig = {

.sclk_io_num = 14, 

.mosi_io_num = 13, 

.miso_io_num = 12, 

.quadwp_io_num = -1, 

.quadhd_io_num = -1, 

}; 

spi_bus_initialize(SPI2_HOST, &busConfig, SPI_DMA_DISABLED); spi_device_interface_config_t masterConfig = {

.command_bits = 0, 

.address_bits = 0, 

.dummy_bits = 0, 

.mode = 0, 

.queue_size = 10, 

.clock_speed_hz = 500000, 

.spics_io_num = 15, 

}; 

spi_device_handle_t SPI = NULL; 

spi_bus_add_device(SPI2_HOST, &masterConfig, &SPI); return SPI; 

}

With these two functions, the main program is very simple:

void app_main(void)

{

spi_device_handle_t SPI = SPI_init(); 

while (true) {

float volts = readADC(SPI, 0); 

printf("%f\n", volts); 

fflush(stdout); 

vTaskDelay(1000 / portTICK_PERIOD_MS); 

}

}
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How Fast? 

Once you have the basic facilities working, the next question is always how fast does something work. In this case we need to know what sort of data rates we can achieve using this ADC. The simplest way of finding this out is to use the fastest read loop for a channel:

void app_main(void)

{

spi_device_handle_t SPI = SPI_init(); 

while (true) {

float volts = readADC(SPI, 0); 

}

}

With the clock of 500 kHz the sampling rate is measured to be 12kHz. This is perfectly reasonable as it takes at least 24 clock pulses to read the data. 

Most of the time in the loop is due to the 24 clock pulses, so there is little to be gained from optimization. 

Increasing the clock rate to 1MHz pushes the sampling rate to 38kHz, which is just fast enough to digitize audio, as long as you don't waste too much time in the loop in processing. This is about as fast as the device can work at 3.3V. 

Also notice that as the clock rate goes up, you have to ensure that the voltage source is increasingly low-impedance to allow the sample-and-hold to charge in a short time. 

Blocking and Interrupts

The function spi_device_polling_transmit that we have been using is simple and works in most situations. It is in fact equivalent to calling: spi_device_polling_start(devhandle, ptrans_desc, ticks_to_wait) spi_device_polling_end(devhandle,ticks_to_wait)

The advantage of making the two calls is that you can do some work between the two calls. That is, the polling_start routine will wait until there is space in the queue, but it will return as soon as the transaction is placed in the queue. The polling_end function blocks until the transaction is complete and removed from the queue. For example:

spi_device_polling_start(SPI, &transConfig, portMAX_DELAY); printf("work"); 

fflush(stdout); 

spi_device_polling_end(SPI, portMAX_DELAY); 

239

Both functions wait using busy waits and do not yield to another task. 

Transactions can only be added to the queue for one device at a time, and you will need to wait for each to complete before adding another. 

Interrupt transactions are used in more or less the same way, but they use interrupts to monitor the queue so freeing the system to run another task during the wait. You can also add multiple transactions to the queue and wait for them to complete. The simplest function to use is: spi_device_transmit(devhandle, ptrans_desc)

This works in the same way as spi_device_polling_transmit, it adds the transaction to the queue and then blocks until it is complete, but it uses interrupts to wait so freeing the system to run another task. 

The spi_device_transmit function calls two slightly lower-level functions similar to the polling functions:

spi_device_queue_trans(devhandle, ptrans_desc, ticks_to_wait) spi_device_get_trans_result(devhandle, pptrans_desc, ticks_to_wait) The first function adds the transaction to the queue and waits if there isn’t enough space. The second waits until the transaction is complete and then returns the results in pptrans_desc, which is a pointer to a pointer, i.e. a handle.  For example:

spi_device_queue_trans(SPI, &transConfig, portMAX_DELAY); printf("work"); 

fflush(stdout); 

spi_transaction_t *transConfigResult=&transConfig; 

spi_device_get_trans_result(SPI, &transConfigResult, 

portMAX_DELAY); 

int data = (transConfigResult->rx_data[1] & 0x03) << 8 |

transConfigResult->rx_data[2]; 

In this case we do some work between submitting the transaction and waiting for the result. 

Problems

The SPI bus is often a real headache because of the lack of a definitive standard, but in most cases you can make it work. The first problem is in discovering the characteristics of the slave device you want to work with. In general, this is solved by a careful reading of the datasheet or perhaps some trial and error. In most cases a good logic analyzer is what you need to see how the signals are interacting.  Problems generally occur when you are pushing the clock speed ever higher. Fast SPI generally needs DMA to transfer the data and this is another complexity. 

If you are working with a single slave then generally things work once you have the SPI bus configuration set correctly. Things are more difficult when 240

there are multiple devices on the same bus. The API’s approach of allowing you to define individual devices as configurations of the SPI makes it easier to attempt to share the bus, but there are still problems. Typically you will find SPI devices that don't switch off properly when they are not being addressed. In principle, all SPI devices should present high impedance outputs (i.e. tri-state buffers) when not being addressed, but some don't. If you encounter a problem you need to check that the selected slave is able to control the MISO line properly. 

241

Summary 

● The SPI bus is often problematic because there is no SPI standard. 

Unlike other serial buses, it makes use of unidirectional connections. 

● The data lines are MOSI (master output slave input) and MISO 

(master input slave output). In addition, there is a clock line, output from master, and a number of select lines that you have to drive under program control. 

● Data is transferred from the master to the slave and from the slave to the master on each clock pulse, arranged as a circular buffer. 

● The ESP32 has two usable SPI devices which can work with almost any of the GPIO lines. 

● You can test the SPI bus using a simple loopback connection. 

● Working with a single slave is usually fairly easy, working with multiple slaves can be more of a problem. 

● Making SPI work with any particular device has four steps: 1. Connect the device to the SPI pins by identifying pinouts and discovering what chip selects are supported. 

2. Configure the SPI bus to work with the device - mostly a matter of clock speed and mode. 

3. Identify the commands that you need to send to the device to get it to do something and what data it sends back as a 

response. 

4. Work out the relationship between the raw reading, the 

voltage and the quantity the voltage represents. 

● The MCP3000 range of ADCs is very easy to use via SPI. 

● You can read data from an MCP3000 at rates as fast as 20kHz. 

● The simplest way to work with SPI is to use a blocking call or polling but you can also use interrupts. 
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Chapter 12

Using Analog Sensors

The ESP32 has a wide range of analog capabilities. It has two A-to-D 

converters (ADCs) and two D-to-A converters (DACs) connected to specific GPIO pins. In addition, it has a set of capacitive input lines which can be used as touch sensors. 

ESP32 ADC

The ESP32 has two 12-bit onboard ADCs, ADC1 supports 8 channels in the ESP32 and 10 channels in the ESP S3 and ADC2 supports 10 channels.  The only problem is that the WiFi uses one of the two channels, ADC2, and hence its use is best avoided unless you turn WiFi off or use it only when the WiFi is inactive. 

The GPIO lines that can be used by the ADC are fixed. In the case of the ESP32 ADC 1 can use GPIO32 to 39 and ADC 2 can use GPIO 0, 2, 4, 12-15 

and 25-27. In practice not all of these lines can be used. Of the 8 ADC1 

channels only 6 are available on development boards. So even though the hardware seems to offer 18 ADC inputs, this is actually reduced to six that are easy to use. The ESP32 S3 generally offers all of the ADC channels for use. In this case ADC2 occupies GPIO11 to GPIO20. 

In most cases it is better to use ADC1:

Channel

ESP GPIO

ESP S3 GPIO

ADC1_CH0 

GPIO 36

GPIO1

ADC1_CH1  

GPIO2

ADC1_CH2  

GPIO3

ADC1_CH3  

GPIO 39

GPIO4

ADC1_CH4

GPIO 32

GPIO5

ADC1_CH5  

GPIO 33

GPIO6

ADC1_CH6 

GPIO 34

GPIO7

ADC1_CH7

GPIO 35

GPIO8

ADC1_CH8  

GPIO9

ADC1_CH9

GPIO10
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In the ESP32 GPIO 36 and 39 were used to read the built-in Hall sensor, but support for this has been removed in the latest version of the SDK and from the ESP32 S3. 

The ADC is a successive approximation converter. You don't need to know how it works to use it, but it isn't difficult to understand. The input voltage is compared to a standard voltage, VREF.  First a voltage equal to VREF/2 is generated and the input voltage is compared to this. If it is lower then the most significant bit is a 0 and if it is equal or greater then the most significant bit is a 1. At the next step the voltage generated is VREF/2+VREF/4 

and the comparison is repeated to generate the next bit. Successive approximation converters are easy to build, but they are slow. 

The ESP32 ADC uses a reference voltage that is generated on-chip and varies between 1000mV and 1200mV. Since 2018, ESP32 chips have their reference voltage burned into the eFuse memory and this makes calibration a matter of reading the value and using it to correct the result. The easiest way to discover if the device you are using has calibration data is to use espefuse.py which is installed along with esptool.py and can be used to read and write the eFuse memory. This is a non-volatile write-once memory that you can use to record small amounts of configuration data, but it is better to avoid using it  as there is no easy-to-use interface. It can also damage the ESP32 if you change the wrong bits as once set to 1 a bit cannot be changed back to 0. To discover the calibration data use: python C:\Users\ username\esp\v5.3.1\esp-idf\components\ esptool_py\esptool\espefuse.py -p COM4 adc_info

replacing COM4 with the serial port that the ESP32 is connected to. If no calibration data is available you will see:

ADC VRef calibration: None (1100mV nominal)

and the best you can do is assume the middle value for the reference voltage. 

If there is calibration data you will see a single point calibration: ADC VRef calibration: 1149mV

and you might also see a two-point calibration for each channel: ADC readings stored in efuse BLK3:

ADC1 Low reading  (150mV): 306

ADC1 High reading (850mV): 3153

ADC2 Low reading  (150mV): 389

ADC2 High reading (850mV): 3206

The calibration value is stored as a 5-bit sign-magnitude value in increments of seven and as an offset from 1100, which is the middle of the range. 
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A more recent ESP32 such as the S3 should give you a four point calibration:

ADC1:

INIT_CODE_ATTEN0 =  -44

INIT_CODE_ATTEN1 =  -16

INIT_CODE_ATTEN2 =  100

INIT_CODE_ATTEN3 =  -8

CAL_VOL_ATTEN0   =  428

CAL_VOL_ATTEN1   =  440

CAL_VOL_ATTEN2   =  384

CAL_VOL_ATTEN3   =  444

This can be used to fit a correction curve. 

The calibration can be used by the API to get a more accurate result, see later. 

The response is non-linear near zero and the reference voltage: In practice, voltages less than 100mV read as zero. 

In addition to calibration problems, the ADC is also sensitive to noise. You can reduce this by adding a 100nF capacitor across the input line and by averaging multiple readings:
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The ADC can be set to do conversions continuously, reading each of the selected inputs and it can work in low-power mode at a lower frequency. 

Alternatively, you can simply start a conversion on a given input when you need the data. 

Reading the ADC

The simplest way of using the ADC is to perform a single read of a single input under software control. Before making use of it, you have to initialize the hardware:

adc_oneshot_new_unit(pinit_config, pret_unit)

where pret_unit is a pointer to a handle to the ADC and pinint_config is a pointer to adc_oneshot_unit_init_cfg_t, a struct with three fields:



unit_id   

ADC unit, either ADC_UNIT_1 or ADC_UNIT_2

 clk_src 

Clock source, one of:

ADC_DIGI_CLK_SRC_PLL_F160M

ADC_DIGI_CLK_SRC_APLL

ADC_DIGI_CLK_SRC_DEFAULT



ulp_mode 

Ultra Low Power mode, usually set to: 

ADC_ULP_MODE_DISABLE

So, to initialize ADC 1:

adc_oneshot_unit_handle_t adc1_handle; 

adc_oneshot_unit_init_cfg_t init_config1 = {

.unit_id = ADC_UNIT_1, 

.ulp_mode = ADC_ULP_MODE_DISABLE, 

}; 

adc_oneshot_new_unit(&init_config1, &adc1_handle); 

When you are finished using the ADC you can free its software resources using:

adc_oneshot_del_unit(handle)

Next you have to configure the channel you want to use:

adc_oneshot_config_channel(handle,channel,pconfig)

where pconfig is a pointer to adc_oneshot_chan_cfg_t, a struct containing:



atten   

Attenuation, given by ADC_ATTEN_DB_a

where a is one of 0, 2_5, 6, or 12

 bitwidth 

Conversion result bits given by either:

ADC_BITWIDTH_n where n is 9 to 13 or 

ADC_BITWIDTH_DEFAULT
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Once you have selected the input you are going to read, you can start a conversion and get the result using:

adc_oneshot_read(handle, chan, pdata)

which returns the raw reading of the ADC. The result is in the range 0 to 4095 for 12-bit resolution. 

The raw readings generally have to be scaled to turn them into physically meaningful values and they are not corrected by any calibration data available. 

So, to read raw data from ADC1 channel 6:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "hal/adc_types.h" 

#include "esp_adc/adc_oneshot.h" 

void app_main(void)

{

adc_oneshot_unit_handle_t adc1_handle; 

adc_oneshot_unit_init_cfg_t init_config1 = {

.unit_id = ADC_UNIT_1, 

.ulp_mode = ADC_ULP_MODE_DISABLE, 

}; 

adc_oneshot_new_unit(&init_config1, &adc1_handle); 

adc_oneshot_chan_cfg_t config = {

.bitwidth = ADC_BITWIDTH_DEFAULT, 

}; 

adc_oneshot_config_channel(adc1_handle, ADC_CHANNEL_6, &config); int data; 

while (true) {

adc_oneshot_read(adc1_handle, ADC_CHANNEL_6, &data); 

printf("%d\n", data); 

fflush(stdout); 

vTaskDelay(1000 / portTICK_PERIOD_MS); 

}

}
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Calibrated Readings

Getting the raw data like this is often sufficiently accurate for the purpose in hand and it is fast and simple. However, if you need the analog measurement to be as accurate as possible you can use the calibration data stored in the eFuse memory. Depending on the type of calibration data available, the system can provide a simple linear calibration or a curve. In most cases only linear calibration is available for the ESP32 but the ESP32 

S3 supports a curve. 

To find out what calibration form is available you can use:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "hal/adc_types.h" 


#include "esp_adc/adc_oneshot.h" 

#include "esp_adc/adc_cali.h" 

#include "esp_adc/adc_cali_scheme.h" 

void app_main(void)

{

adc_cali_scheme_ver_t scheme_mask; 

adc_cali_check_scheme(&scheme_mask); 

if (scheme_mask & ADC_CALI_SCHEME_VER_CURVE_FITTING)

{

printf("Curve Fit %d\n", scheme_mask); 

}

else

{

if (scheme_mask & ADC_CALI_SCHEME_VER_LINE_FITTING)

{

printf("Line Fit %d\n", scheme_mask); 

}

}

}

It is also possible that no calibration data is available and scheme_mask will be 0, which is a condition not tested for in the above code. In this case the best you can do is to set the reference voltage default_vref. 

If you can use one of the calibration schemes then you first need to create the scheme using:

adc_cali_create_scheme_line_fitting(pconfig, pcal_handle)

or

adc_cali_create_scheme_curve_fitting(pconfig, pcal_handle)
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Both make use of pconfig, a pointer to a adc_cali_line_fitting_config_t or a  adc_cali_curve_fitting_config_t  struct:

 unit_id  

ADC unit – one of ADC_UNIT_1 or ADC_UNIT_2      

 atten   

Attenuation, given by ADC_ATTEN_DB_a

where a is one of 0, 2_5, 6, or 12



bitwidth 

Conversion result bits, given by either:



ADC_BITWIDTH_n where n is 9 to 13 or 

ADC_BITWIDTH_DEFAULT

 default_vref  Set vref if no calibration data is available The voltage range that the ADC works with depends on the attenuation:

 ADC.ATTN_0DB 

No attenuation (100mV - 950mV)

 ADC.ATTN_2_5DB

2.5dB attenuation 

(100mV - 1250mV)

 ADC.ATTN_6DB 

6dB attenuation

(150mV - 1750mV)

 ADC.ATTN_11DB 

11dB attenuation 

(150mV - 2450mV)

Once you have set up a calibration scheme you can use either a call to adc_oneshot_read to get the raw value and then:

adc_cali_raw_to_voltage(pcal_handle, raw, pvoltage)

where raw is the raw reading and pvoltage is a pointer to the result of the calibration in millivolts. Or you can do the job in one struct: adc_oneshot_get_calibrated_result(adc1_handle, pcal_handle, chan, pvoltage)

For example:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "hal/adc_types.h" 

#include "esp_adc/adc_oneshot.h" 

#include "esp_adc/adc_cali.h" 

#include "esp_adc/adc_cali_scheme.h" 

void app_main(void)

{

adc_oneshot_unit_handle_t adc1_handle; 

adc_oneshot_unit_init_cfg_t init_config1 = {

.unit_id = ADC_UNIT_1, 

.ulp_mode = ADC_ULP_MODE_DISABLE, 

}; 

adc_oneshot_new_unit(&init_config1, &adc1_handle); 

adc_oneshot_chan_cfg_t config = {

.bitwidth = ADC_BITWIDTH_12, 

.atten = ADC_ATTEN_DB_0}; 

adc_oneshot_config_channel(adc1_handle, 

ADC_CHANNEL_6, &config); 
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    adc_cali_curve_fitting_config_t calfit = {

.unit_id = ADC_UNIT_1, 

.atten = ADC_ATTEN_DB_0, 

.bitwidth = ADC_BITWIDTH_12}; 

adc_cali_handle_t cali_handle; 

adc_cali_create_scheme_curve_fitting(&calfit, &cali_handle); int data; 

while (true)

{

adc_oneshot_get_calibrated_result(adc1_handle, cali_handle, ADC_CHANNEL_6, &data); 

printf("data cal %d  mV\n", data); 

fflush(stdout); 

vTaskDelay(1000 / portTICK_PERIOD_MS); 

}

}

This returns a result automatically calibrated and converted to mV. If you are using an ESP32 you most probably want to change the function calls that reference curve to line that is:

adc_cali_line_fitting_config_t calfit = {

.unit_id = ADC_UNIT_1, 

.atten = ADC_ATTEN_DB_0, 

.bitwidth = ADC_BITWIDTH_12

}; 

and

adc_cali_create_scheme_line_fitting(&calfit, &cali_handle); If you connect the input to ground you will see:

data cal 75  mV

which indicates that the nonlinear portion of the input between zero and 75mV is measured as 75mV. 

The absolute maximum input voltage to the ADC is 3.6V, but using such a high voltage risks damaging the ESP32. In practice, keep the input voltage below 3.3V. 
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How Fast? 

It is easy to get  a rough estimate of how fast each of the read methods are. 

All we need is to use the microsecond timer function given earlier:

#include "driver/gptimer.h" 

gptimer_handle_t tick_us_start(void) {

gptimer_config_t timer_config = {

.clk_src = GPTIMER_CLK_SRC_DEFAULT, 

.direction = GPTIMER_COUNT_UP, 

.resolution_hz = 1000000, 

}; 

gptimer_handle_t gptimer_us = NULL; 

gptimer_new_timer(&timer_config, &gptimer_us); 

gptimer_enable(gptimer_us); 

gptimer_start(gptimer_us); 

return gptimer_us; 

}

int64_t tick_us(gptimer_handle_t gptimer_us, int64_t offset) {

uint64_t count; 

gptimer_get_raw_count(gptimer_us, &count); 

return count + offset; 

}

and we need to modify the loop in the main program to read; gptimer_handle_t timer = tick_us_start(); 

int data; 

int64_t t = tick_us(timer, 0); 

for (int i = 0;i < 100000;i++) {

adc_oneshot_read(adc1_handle, ADC_CHANNEL_6, &data); 

}

t = tick_us(timer, 0) - t; 

printf("t=%lld \n", t/100000); 

The raw reads take about 35 s 

μ on an ESP32 S3 and 45 s 

μ on an ESP32. and 

the calibrated function takes about 3 s 

μ longer, which puts the maximum 

sampling rate at about 20kHz. Reducing the accuracy to 9 bits reduces the time taken by about 1 s

μ . 
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Digital to Analog

The ESP32 has two 8-bit Digital-to-Analog Converters, DACs. The ESP32 S3 

doesn’t have any DACs and so this section only applies to the ESP32. If you need to use a DAC with the ESP32 S3 you can use a PWM signal or you can add an MCP4725 12-Bit DAC  using I2C or one of the many SPI DAC chips. 

The ESP32 provides two DAC outputs. These are connected to GPIO25 

(GPIO17 ESP32S2) DAC channel 0 and GPIO26 (GPIO 18 ESP3S2) DAC 

channel 1 and this cannot be changed. 

The DACs can be used in one-shot mode, run continuously fed by DMA and with the help of a cosine wave generator. 

Setting up one of the DACs in single shot mode is very easy. Set up a DAC 

channel with:

dac_oneshot_new_channel(poneshot_cfg, pDAC_handle)

where  poneshot_cfg is a pointer to dac_oneshot_config_t  which has only a single field:



chan_id  

Either DAC_CHAN_0 or DAC_CHAN_1

There is also a delete DAC channel function:

dac_oneshot_del_channel(pDAC_handle)

To write an 8-bit value to the DAC use:

dac_oneshot_output_voltage(dpDAC_handle ,value)

The output voltage is given by:

output voltage = data * 3.3 / 256 V

assuming that the reference voltage is 3.3V. 

For example, to generate a ramp output you can use something like:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "driver/dac_oneshot.h" 

void app_main(void)

{

dac_oneshot_config_t oneshot_cfg = {

.chan_id = DAC_CHAN_1

}; 

dac_oneshot_handle_t DAC_handle; 

dac_oneshot_new_channel(&oneshot_cfg, &DAC_handle); uint8_t value = 0; 

while (true) {

dac_oneshot_output_voltage(DAC_handle, value); 

value++; 

}

}
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which produces:

The frequency is 950Hz which is surprisingly low, but it is using the full 256

steps of resolution. You can double the frequency by halving the resolution and so on. How high a frequency you can generate depends on how much distortion you can tolerate. 

For example, to use a step size of 8, change the loop to read: uint8_t value = 0; 

while (true) {

dac_oneshot_output_voltage(DAC_handle, value); 

value +=32; 

}

produces:

The frequency is roughly 30kHz, but the steps are clearly visible and some filtering would be required to improve the waveform. 

If you want other waveforms then the standard technique is to compute a table with 256 values to write to the DAC. 
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For example, to generate a sine wave you could use:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "driver/dac_oneshot.h" 

#include "math.h" 

uint8_t wave[256]; 

void app_main(void)

{

for (int i = 0; i < 256; i++)

{

wave[i] = (uint8_t)((128.0 + 127 * sinf((float)i

* 2.0 * 3.14159 / 255.0))); 

}

dac_oneshot_config_t oneshot_cfg = {

.chan_id = DAC_CHAN_1

}; 

dac_oneshot_handle_t DAC_handle; 

dac_oneshot_new_channel(&oneshot_cfg, &DAC_handle); while (true) {

for (int i = 0;i < 256;i++) {

dac_oneshot_output_voltage(DAC_handle, wave[i]); 

}

}

}

This creates a reasonable wave form, but at only 930Hz:
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The Cosine Generator

The ESP32’s DAC has a sine wave generator in hardware. There is only one sine wave generator for both DACs, but each one can set its own scale, offset and phase. It can generate good sine waves up to 200kHz and even higher if you can tolerate a lower quality waveform. 

To create a cosine DAC:

dac_cosine_new_channel(pcos_cfg, pcos_handle)

where pcos_cfg is a pointer to dac_cosine_config_t , a struct containing:

 chan_id   

DAC channel id, either DAC_CHAN_0 or DAC_CHAN_1

 freq_hz   

Frequency in Hz 

 clk_src    

Defaults to DAC_COSINE_CLK_SRC_DEFAULT 

 atten 

Attenuation given by  DAC_COSINE_ATTEN_DB_n 

where n is 0 (full), 6 (½) 12 (¼) or 18(1/8) 

 phase  

Either DAC_COSINE_PHASE_0 or _180 

 offset  

DC offset of cosine wave 

 force_set_freq 

Sets the frequency in use 

Notice that the phase shift also shifts the offset, which is generally undesirable. 

Once we have these functions we can make use of the sine wave generator: dac_cosine_start(coshandle)

dac_cosine_stop(coshandle)

Each DAC has to run at the same frequency, but you can set scale, offset and phase separately. For example:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "driver/dac_oneshot.h" 

#include "driver/dac_cosine.h" 

void app_main(void)

{

dac_cosine_config_t cos_cfg={

.chan_id = DAC_CHAN_0, 

.freq_hz=100000, 

.offset = 0, 

.phase = DAC_COSINE_PHASE_0, 

.atten = DAC_COSINE_ATTEN_DEFAULT, 

}; 

dac_cosine_handle_t cos_handle0; 

dac_cosine_new_channel(&cos_cfg, &cos_handle0); 

cos_cfg.chan_id=DAC_CHAN_1; 

cos_cfg.phase=DAC_COSINE_PHASE_180; 

dac_cosine_handle_t cos_handle1; 

dac_cosine_new_channel(&cos_cfg, &cos_handle1); 

dac_cosine_start( cos_handle0); 

dac_cosine_start( cos_handle1); 

}
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This produces two sine waves which are 180 degrees out-of-phase. 

Touch Sensors

The ESP32 has the advantage of providing touch sensors, whereas with other devices you usually need to implement your own externally. The original ESP32 approach to the problem has been superseded by that used in the ESP32 S2 and S3. The new approach is more robust and capable however it still needs careful adjustment to make work reliably. In this chapter we outline the basics. 

The ESP32 has ten channels and the ESP32 S3 has 14 channels of touch sense. 
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To use a GPIO line as a touch sensor you simply have to construct a touchpad:

Notice that the user doesn’t actually touch the electrode. The protective cover insulates the finger from the GPIO line and hence it is safe and more reliable. The principle is that when a finger, or any part of the body, is placed near the protective cover it forms the second plate of a capacitor and hence the total capacitance changes, usually by increasing. The ESP32 

measures the capacitance of the touchpad. 

Many projects mistake the touch sensors for resistivity sensors and the metal plate is exposed and the user is expected to actually make a connection with it. This usually works, but it isn’t the correct method and it loses many of the advantages of a capacitive touch system. To use touch sensors correctly you don’t actually touch the metal part of any wire from the GPIO line. 

The capacitance of the sensor is measured by the ESP32 applying a varying voltage. The time to charge and discharge the capacitor depends on the size of the capacitor and a count of pulses in a given time gives an indication of whether a user is touching the sensor or not. The only real problem in using a touch sensor is knowing what the touch/no touch threshold is. This varies according to the design and implementation of the touchpad. It depends on the size of the electrode and the nature and thickness of the covering. 
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The biggest problem in using the touch sensors is finding a suitable configuration that works with the physical sensor you have constructed. The problem is that a given physical sensor will have an intrinsic capacitance that depends on its construction and the amount that it is changed by human presence also depends on its construction. So you have no idea what sort of capacitance indicates no human touch and how much this changes when it is touched. There is also the issue of how much noise the device is susceptible to and this depends on its construction and its location. 

You basically have to tune the system with the real hardware and real people using it. To do this you need to know the parameters you can vary. The basic idea is that the system estimates the capacitance of the sensor by timing how long it takes to charge and discharge. The larger capacitance, the longer it takes to charge and discharge. Rather than time the event, the system simply repeats the charge/discharge cycle and counts how many times this happens in a fixed amount of time. You can vary how long the cycle goes on for, the voltages that the charge/discharge cycles between and the speed of charge/discharge. 

It can be difficult to see how these relate to the quality of the measurement. 

The longer the measuring time the less noise in the system, but the slower it is to react to a real change. The voltage range can affect the accuracy of a reading by restricting the switching points to places where the voltage is changing rapidly rather than slowly. Finally the speed, or slope, sets how sensitive the system is to changes in capacitance. High charge rates make the system more stable, but use more current. Add to all of this the fact that there is a filtering system that can be applied to the readings to reduce the noise even further and you can see that finding an optimum setup is very difficult. 

To make matters more complicated the ESP32 S3, and the S2, implement touch sensors in a different way. The ESP32 counts how many charge/discharge cycles occur in a fixed time. The ESP32 S3 counts the time that a fixed number of charge/discharge cycles take to complete. This means that on an ESP32 the result decreases as the capacitance increases but on the S3 the result increases. This also results in the need for two slightly different sets of functions used to work with the touch sensors. 
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To discover the values to use as a threshold for touch/no touch you can use a simple program that displays the current count. For the ESP32 this is:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "driver/touch_sensor.h" 

void app_main(void)

{

touch_pad_init(); 

touch_pad_set_voltage(TOUCH_HVOLT_2V4, 

TOUCH_LVOLT_0V5, TOUCH_HVOLT_ATTEN_1V); 

touch_pad_config(TOUCH_PAD_NUM5, 0); 

uint16_t touch_value=0; 

while (true) {

touch_pad_read(TOUCH_PAD_NUM5, &touch_value); 

printf("val_touch_gpio12 = %d \n", touch_value); 

vTaskDelay(1000 / portTICK_PERIOD_MS); 

}

}

For the ESP32 S3:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "driver/touch_sensor.h" 

void app_main(void)

{

touch_pad_init(); 

touch_pad_config(TOUCH_PAD_NUM5); 

touch_pad_set_fsm_mode(TOUCH_FSM_MODE_SW); 

uint32_t touch_value = 0; 

while (true)

{

touch_pad_sw_start(); 

touch_pad_read_raw_data(TOUCH_PAD_NUM5, &touch_value); 

printf("val_touch_gpio5 = %ld \n", touch_value); 

vTaskDelay(1000 / portTICK_PERIOD_MS); 

}

}

Construct a touchpad, connect it to the GPIO line and see what readings you get when it is touched and when it is left alone. Hopefully these will be well enough separated for you to pick a threshold that gives reliable operation. If you plan to use a touchpad in a device that you deploy, you should also include a regular check on the value of the touchpad when not touched and use this to set a baseline for the threshold. 

Once you have established a threshold that marks the difference between touched and not touched, you can use this to make the touch sensor 259

generate an interrupt or return a 0/1 indicator. For example, if the threshold is determined to be 800 you set this using:

touch_pad_set_thresh(TOUCH_PAD_NUM5, 800)

and read the status using:

uint32_t status =touch_pad_get_status(); 

touch_pad_clear_status(); 

If the status is used to trigger an interrupt you don’t need to manually clear it. The status has bit n set if TOUCH_PAD_NUMn is lower than the threshold. 

For example, for the ESP32 using an interrupt to toggle GPIO2:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "driver/touch_sensor.h" 

#include "driver/gpio.h" 

void  ISR(void* arg) {

gpio_set_level(2, !gpio_get_level(2)); 

}

void app_main(void)

{

gpio_reset_pin(2); 

gpio_set_direction(2, GPIO_MODE_INPUT_OUTPUT); 

touch_pad_init(); 

touch_pad_set_voltage(TOUCH_HVOLT_2V4, TOUCH_LVOLT_0V5, 

TOUCH_HVOLT_ATTEN_1V); 

touch_pad_config(TOUCH_PAD_NUM5, 800); 

touch_pad_set_trigger_mode(TOUCH_TRIGGER_BELOW); 

touch_pad_isr_register(ISR, NULL); 

touch_pad_intr_enable(); 

uint16_t touch_value = 0; 

while (true) {

uint32_t status = touch_pad_get_status(); 

touch_pad_read(TOUCH_PAD_NUM5, &touch_value); 

printf("val_touch_gpio12 = %d \n", touch_value); 

printf("status = %ld\n", status); 

vTaskDelay(1000 / portTICK_PERIOD_MS); 

}

}

You can use the get_status function within the ISR to discover which touchpad triggered the interrupt. 
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The ESP32 S3 works in a slightly different way. In this case you need to allow the system to read the touch sensor at a regular interval rather than under software control:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "driver/touch_sensor.h" 

#include "driver/gpio.h" 

void ISR(void *arg)

{

gpio_set_level(2, !gpio_get_level(2)); 

touch_pad_clear_status(); 

}

void app_main(void)

{

gpio_reset_pin(2); 

gpio_set_direction(2, GPIO_MODE_INPUT_OUTPUT); 

touch_pad_init(); 

touch_pad_config(TOUCH_PAD_NUM5); 

touch_pad_set_thresh(TOUCH_PAD_NUM5, 30000); 

touch_pad_set_channel_mask(1 << 5); 

touch_pad_isr_register(ISR, NULL, TOUCH_PAD_INTR_MASK_ALL); touch_pad_intr_enable(TOUCH_PAD_INTR_MASK_ACTIVE); 

touch_pad_set_fsm_mode(TOUCH_FSM_MODE_TIMER); 

touch_pad_fsm_start(); 

}

In this case the interrupt routine toggles GPIO2 and you can see the resulting signal when the touchpad is touched four times:

There is much more to using the touch sensors. For example you can work with groups of sensors and apply a digital filter to smooth out the signal to provide a good user interaction. The touch sensors can also be used to wake up the ESP32,  see Chapter 18. 
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Summary

● The ESP32 has two 12-bit ADCs, but only one is available for general use and it provides six easy-to-use channels in the ESP32 and eight in the ESP32 S3. 

● Reading the ADC can by done by an a number of modes but one-shot mode is the easiest to get started with. 

● The calibration voltage is available as a value stored in the eFuse memory. The calibration API makes use of this to correct the measurement. 

● The raw and calibrated functions take roughly the same time. 

● The ESP32 has two 8-bit ADC channels which use GPIO25 and GPIO26. The ESP32 S3 doesn’t have any ADC channels. 

● Using ESP32 one-shot mode you can generate a variety of wave forms at 930Hz or higher, depending on resolution. 

● The ESP32 ADC cosine wave generator can work at much higher frequencies 200kHz and more. 

● There are also ten touch sensors on the ESP32 and 12 on the ESP32 

S3. These are capacitive sensors and do not require human contact with the GPIO line. 

● The ESP32 S3 uses a slightly different approach to the touch sensors and is not software compatible with the ESP32. 

● The problem in using the touch sensor is knowing the threshold and you need to establish this  for any given setup and ensure that filtering is used to reduce false readings. 
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Chapter 13

Using The I2C Bus

The I2C,  standing for I-Squared-C or Inter IC, bus is one of the most useful ways of connecting moderately sophisticated sensors and peripherals to any processor. The only problem is that it can seem like a nightmarish confusion of hardware, low-level interaction and high-level software. There are few general introductions to the subject because at first sight every I2C device is different, but there are shared principles that can help you work out how to connect and talk to a new device. 

The I2C bus is a serial bus that can be used to connect multiple devices to a controller. It is a simple bus that uses two active wires: one for data and one for a clock. Despite there being lots of problems in using the I2C bus, because it isn't well standardized and devices can conflict and generally do things in their own way, it is still commonly used and too useful to ignore. 

The big problem in getting started with the I2C bus is that you will find it described at many different levels of detail, from the physical bus characteristics and protocol to the details of individual devices. It can be difficult to relate all of this together and produce a working project. In fact, you only need to know the general workings of the I2C bus, some general features of the protocol, and know the addresses and commands used by any particular device. 

To explain and illustrate these ideas we really do have to work with a particular device to make things concrete. However, the basic stages of getting things to work, the steps, the testing and verification, are more or less the same irrespective of the device. 

I2C Hardware Basics 

The I2C bus is very simple from the hardware point of view. It has just two signal lines, SDA and SCL, the data and clock lines respectively. Each of these lines is pulled up by a suitable resistor to the supply line at whatever voltage the devices are working - 3.3V and 5V are common choices. The size of the pull-up resistors isn't critical, but 4.7K is typical as shown in the circuit diagram. 
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You simply connect the SDA and SCL pins of each of the devices to the pullup resistors. Of course, if any of the devices have built-in pull-up resistors you can omit the external resistors. More of a problem is if multiple devices each have pull-ups. In this case you need to disable all but one. 

The I2C bus is an open collector bus. This means that it is actively pulled down by a transistor set to on. When the transistor is off, however, the bus returns to the high voltage state via the pull-up resistor. The advantage of this approach is that multiple devices can pull the bus low at the same time. 

That is, an open collector bus is low when one or more devices pulls it low and high when none of the devices is active. 

The SCL line provides a clock which is used to set the speed of data transfer, one data bit is presented on the SDA line for each pulse on the SCL line. In all cases, the master drives the clock line to control how fast bits are transferred. The slave can, however, hold the clock line low if it needs to slow down the data transfer. In most cases the I2C bus has a single master device, the ESP32 in our case, which drives the clock and invites the slaves to receive or transmit data. Multiple masters are possible, but this is advanced and usually not necessary. 

All you really need to know is that all communication usually occurs in 8-bit packets. The master sends a packet, an address frame, which contains the address of the slave it wants to interact with. Every slave has to have a unique address, which is usually 7 bits, but it can be 10 bits, and the ESP32 does support this in hardware. In the rest of this chapter we will use 7-bit addressing because it is commonly supported. 

One of the problems in using the I2C bus is that manufacturers often use the same address, or the same set of selectable addresses, and this can make using particular combinations of devices on the same bus difficult or impossible. 

The 7-bit address is set as the high-order 7 bits in the byte and this can be confusing as an address that is stated as 0x40 in the datasheet results in 0x80

being sent to the device. The low-order bit of the address signals a write or a 264
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read operation depending on whether it is a 0 or a 1 respectively. After sending an address frame it then sends or receives data frames back from the slave. There are also special signals used to mark the start and end of an exchange of packets, but the library functions take care of these. 

This is really all you need to know about I2C in general to get started, but it is worth finding out more of the details as you need them. You almost certainly will need them as you debug I2C programs. 

The clock (SCL) and data (SDA) lines rest high. The master signals a Start bit, S in the diagram below, by pulling the SDA line down. The clock is then pulled low by the master, during which time the SDA line can change state. 

The bit is read in the middle of the following high period of the clock pulse, B1, B2 and so on in the diagram. This continues until the last bit has been sent when the data line is allowed to rise while the clock is high, so sending a stoP bit, P in the diagram. Notice that when data is being transmitted the data line doesn’t change while the clock is high. Any change in the data line when the clock is high sends a start or a stop bit - clock high coupled with a falling data line produces a start bit and clock high with a rising data line produces a stop bit:

The clock speed was originally set at 100kHz, standard mode, but then increased to 400kHz in fast mode. In practice, devices usually specify a maximum clock speed that they will work with. 

The ESP32 I2C 

The ESP32 has two I2C controllers, I2C0 and I2C1,  that can work as a master or a slave. The connections from both controllers can be routed to different pins and in this sense there are no defaults despite what some pinout diagrams suggest. To use one of the controllers you have to select a pair of GPIO lines to act as SDA and SCL. 

Both host and slave modes are supported as is fast mode. 

The I2C Functions

There are I2C functions for initialization, configuration and for writing and reading. Notice that the I2C support in ESP-IDF changed in version 5 and the original library of functions, while still available, is deprecated and marked 265

for removal in a future version. The new library can be used in synchronous mode, where functions wait for completion before returning, or asynchronous, where the functions place the transactions in a queue and results are handled by callbacks. In this chapter we only deal with synchronous transactions so as to focus on the I2C protocol itself. 

Let’s look at each group in turn. 

Initialization

The constructor lets you set up a I2C object ready to use:

i2c_new_master_bus(pbus_config, pbus_handle)

The pbus_config parameter is a pointer to i2c_master_bus_config_t, a struct with the following fields:



i2c_port   

Either I2C_NUM_0 or I2C_NUM_1

 sda_io_num

SDA signal, pulled-up internally

 scl_io_num

SCL signal, pulled-up internally



clk_source

Clock source, I2C_CLK_SRC_APB

 glitch_ignore_cnt 

Narrower pulses are ignored, 

typical value is 7 raw clock cycles 

 int intr_priority 

0=default priority 

 trans_queue_depth  

Only valid in asynchronous transaction

 enable_internal_pullup Either 0 to disable or 1 to enable To stop using I2C hardware use the i2c_del_master_bus(pbus_handle) function. 

Device Configuration

Different devices that you connect to the I2C bus need different configurations for clock frequency, mode, etc. To configure the connection for a particular device use:

i2c_master_bus_add_device(pbus_handle, pdev_config, pdev_handle) where pdev_config points to i2c_device_config_t, a struct comprising:

 dev_addr_length  

Either I2C_ADDR_BIT_LEN_7 or

I2C_ADDR_BIT_LEN_10 

 device_address 

I2C device raw address

 scl_speed_hz  

SCL line frequency

 scl_wait_us  

Timeout value in microseconds

 disable_ack_check 

If true API does not return an error on NAK 

To remove a device use:

i2c_master_bus_rm_device(devhandle)
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Write

The fundamental write function is:

i2c_master_transmit(devhandle, pwrite_buffer, write_size, 

xfer_timeout_ms)

where devhandle supplies the address of the device and the data to be sent is stored in the write buffer. It is important to note that the 7-bit address has to be shifted into the topmost bits and the first bit has to be zeroed for a write operation. So, when you write to a device with an address of 0x40, you will see 0x80 on a logic analyzer, i.e. 0x40<<1. After the address frame, as many data frames are sent as stored in the write buffer referenced by pwrite_buffer. 

The usual write transaction is:

START|ADDR|ACK|DATA0|ACK|

DATA1|ACK|

.... 

DATAn|ACK|STOP    

Notice that it is the slave that sends the ACK bit and, if the data is not received correctly, it can send NAK instead. Also notice that there is a single STOP bit at the end of the transaction. 

Notice that multi-byte transfer is quite different from sending single bytes one at a time:

START| ADDR |ACK|DATA0|ACK|STOP

START| ADDR |ACK|DATA1|ACK|STOP

... 

START| ADDR |ACK|DATAn|ACK|STOP

Notice that there are now multiple ADDR frames sent, as well as multiple START and STOP bits. What this means in practice is that you have to look at a device's datasheet and send however many bytes it needs as a single operation. You cannot rely on being able to send the same number of bytes broken into chunks. 

Writing To A Register

A very standard interaction between master and slave is writing data to a register.  This isn't anything special and, as far as the I2C bus is concerned, you are simply writing raw data. However, datasheets and users tend to think in terms of reading and writing internal storage locations, i.e. registers in the device. In fact, many devices have lots of internal storage, indeed some I2C devices, for example I2C EPROMS, are nothing but internal storage. 
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In this case a standard transaction to write to a register is: 1. Send address frame

2. Send a data frame with the command to select the register 3. Send a data frame containing the byte, or word, to be written to the register 

So, for example, you might use:

uint8_t buf[10] = {register,data}; 

i2c_master_transmit(dev_handle, buf, 2, 1000); 

Notice the command that has to be sent depends on the device and you have to look it up in its datasheet. Also notice that there is a single start and stop bit at the beginning and end of the transaction. 

Read

The read function is similar to the write function:

i2c_master_receive(dev_handle, pread_buffer,read_size, 

xfer_timeout_ms)

The read_size parameter is not the size of the buffer, but the number of bytes to be read from the slave. 

This sends an address frame and then reads as many bytes from the slave as specified by the size of the buf. As in the case of a write operation, the address supplied is shifted up one bit and the lower-order bit is set to 1 to indicate a read operation. So, if the current slave is at address 0x40, the read sends a read address of 0x81. This is important to remember if you are viewing the transaction on a logic analyzer. 

The read transaction is:

START|ADDR|ACK|DATA0|ACK|

|DATA1|ACK|

|DATA2|ACK|

... 

|DATAn|NAK|STOP

The master sends the address frame and the slave sends the ACK after the address to acknowledge that it has been received and it is ready to send data. 

Then, the slave sends bytes, one at a time, and the master sends ACK in response to each byte. Finally, the master sends a NAK to indicate that the last byte has been read and then a STOP bit.  That is, the master controls how many bytes are transferred. 

As in the case of the write functions, a block transfer of n bytes is different from transferring n bytes one at a time. 
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Reading A Register

Like writing to a register, reading from a register is a very standard operation, but it is slightly more complicated in that you need both a write and a read operation. That is, to read a register you need a write operation to send the address of the register to the device and then a read operation to get the data that the device sends as the contents of the register. 

So, for example, you would use something like:

uint8_t buf[100] = { register}; 

i2c_master_transmit(dev_handle, buf, 1, 1000); 

i2c_master_receive(dev_handle, buf, n,1000); 

Where n is the number of bytes to read. 

If the register sends multiple bytes then you can usually read these one after another as a block transfer without sending an address frame each time. 

Notice that we don’t suppress the stop bit between the read and the write to make it a single transaction. 

In theory, and mostly in practice, a register read of this sort can work with a stop-start separating the write and the read operation, which is what you get if you use separate write and read function calls without suppressing the stop bit. That is, the transfer sequence is:

START|ADDR|ACK|REGADDR|ACK|STOP|

START|ADDR|ACK|DATA1|ACK|

|DATA2|ACK|

... 

|DATAn|NAK|STOP

If you look at the end of the write and the start of the read using a logic analyzer, you will see that there is a stop and start bit between them. 

For some devices this is a problem. A stop bit is a signal that another transaction can start and this might allow another master to take over the bus. To avoid this some devices demand a repeated start bit between the write and the read and no stop bit. This is referred to as a “repeated start bit” 

or a “restart” transaction. 
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The sequence for a repeated start bit register read is:

START|ADDR|ACK|REGADDR|ACK|

START|ADDR|ACK|DATA0|ACK|

|DATA1|ACK|

... 

|DATAn|NAK|STOP

Notice that there is only one STOP. 

In theory, either form of transaction should work, but in practice you will find that some slave devices state that they need a repeated start bit and no stop bits in continued transactions. In this case you need to be careful how you send and receive data. 

To not send a STOP between write and read you can use:

i2c_master_transmit_receive(dev_handle, pwrite_buffer, write_size, pread_buffer,read_size, xfer_timeout_ms)

The read and write buffers can be the same array and the sizes are the number of bytes to be transmitted or received. For example, to read a register from a device that requires repeated start bits but no stop bit you would use: uint8_t buf[100] = {register}; 

i2c_master_transmit_receive(dev_handle, buf, 1, 1000, buf, n,1000); You can see in the logic analyzer display that there is now just a single start bit between the write and the read. 

Very few devices need a repeated start transaction. The documentation mentions the MLX90620 IR array, but this is hardly a common peripheral. In practice, it usually doesn't make any difference if you send a stop bit in the middle of a write/read transaction, but you need to know about it just in case. 
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Slow Read Protocols

The I2C clock is mostly controlled by the master and this raises the question of how we cope with the speed that a slave can or cannot respond to a request for data. 

There are two broad approaches to waiting for data on the I2C bus. The first is simply to request the data and then perform reads in a polling loop. If the device isn't ready with the data, then it sends a data frame with a NAK bit set. 

In this case the read function throws an exception rather than returns the number of bytes read. So all we have to do is test for an error response with a try/catch. Of course, the polling loop doesn't have to be "tight". The response time is often long enough to do other things and you can use the I2C bus to work with other slave devices while the one you activated gets on with getting the data you requested. All you have to do is to remember to read its data at some later time. 

The second way is to allow the slave to hold the clock line low after the master has released it – so called “clock stretching”. In most cases the master will simply wait before moving on to the next frame while the clock line is held low. This is very simple and it means you don't have to implement a polling loop, but also notice that your program is frozen until the slave releases the clock line. 

Many devices implement both types of slow read protocol and you can use whichever suits your application. However, the ESP32 has a number of problems with slow reads, no matter how you decide to implement it. 

A Real Device

Using an I2C device has two problems - the physical connection between master and slave and figuring out what the software has to do to make it work. Here we’ll work with the HTU21D/Si7021 and the information in its datasheet to make a working temperature humidity sensor using the I2C 

functions we’ve just met. 
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First the hardware. The HTU21D Humidity and Temperature sensor is one of the easiest of I2C devices to use. It’s only problem is that it is only available as a surface-mount package. To overcome this you could solder some wires onto the pads or buy a general breakout board. However, it is much simpler to buy the HTU21D breakout board because this has easy connections and built-in pull-up resistors. The HTU21D has been replaced by the Si7021, which is more robust than the original and works in the same way, but the HTU21D is still available from many sources. 

If you decide to work with some other I2C device you can still follow the steps given, modifying what you do to suit it. In particular, if you select a device that only works at 5V you might need a level converter. 

You can use a prototype board to make the connections and this makes it easier to connect other instruments such as a logic analyzer. Given that the pinouts vary according to the exact make of the device, you need to compare the suggested wiring with the breakout board you are actually using. 

ESP32

HTU21

SDA GPIO16  SDA/DA

SCK GPIO15

SCL/CL

3.3v 

VCC/VIN/+

GND

GND/-
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A First Program 

After wiring up any I2C device, the first question that needs to be answered is, does it work? Unfortunately for most complex devices finding out if it works is a multi-step process. Our first program aims to read some data back from the HTU21D, any data will do. 

If you look at the datasheet you will find that the device address is 0x40 and that it supports the following commands/registers:

Command 

Code 

Comment 

Trigger Temperature Measurement

0xE3  Hold master

Trigger Humidity Measurement

0xE5  Hold master

Trigger Temperature Measurement

0xF3  No Hold master

Trigger Humidity Measurement 

0xF5  No Hold master

Write user register

0xE6 



Read user register

0xE7 



Soft Reset

0xFE 



The easiest of these to get started with is the Read user register command. 

The user register gives the current setup of the device and can be used to set the resolution of the measurement. 

Notice that the codes that you send to the device can be considered as addresses or commands. In this case you can think of sending 0xE7 as a command to read the register or the read address of the register, it makes no difference. In most cases, the term “command” is used when sending the code makes the device do something, and the term “address” is used when it simply makes the device read or write specific data. 

To read the user register we have to write a byte containing 0xE7 and then read the byte the device sends back. This involves sending an address frame, a data frame, and then another address frame and reading a data frame. The device seems to be happy if you send a stop bit between each transaction or just a new start bit. 

A program to read the user register is fairly easy to put together. The address of the device is 0x40, so its write address is 0x80 and its read address is 0x81. Recall that bus addresses are shifted one bit to the left and the base address is the write address and the read address is base address+1. 
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As the I2C functions adjust the address as needed, we simply use 0x40 as the device's address, but it does affect what you see if you sample the data being exchanged:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "driver/i2c_master.h" 

void app_main(void)

{

i2c_master_bus_config_t i2cBus = {

.i2c_port = I2C_NUM_0, 

.scl_io_num = 15, 

.sda_io_num = 16, 

.clk_source = I2C_CLK_SRC_DEFAULT, 

.glitch_ignore_cnt = 7, 

.flags.enable_internal_pullup = true

}; 

i2c_master_bus_handle_t bus_handle; 

i2c_new_master_bus(&i2cBus, &bus_handle); 

i2c_device_config_t i2cdev = {

.dev_addr_length = I2C_ADDR_BIT_LEN_7, 

.device_address = 0x40, 

.scl_speed_hz = 100000, 

.scl_wait_us = 10

}; 

i2c_master_dev_handle_t dev_handle; 

i2c_master_bus_add_device(bus_handle, &i2cdev, &dev_handle); uint8_t buf[10] = { 0xE7 }; 

i2c_master_transmit(dev_handle, buf, 1, 1000); 

i2c_master_receive(dev_handle, buf, 1, 100); 

printf("User Register = %X \r\n", buf[0]); 

}

This sends the address frame 0x80 and then the data byte 0xE7 to select the user register. Next it sends an address frame 0x81 to read the data. You might have to remove the line that sets the internal pullups to make your version of the breakout board work. 

If you run the program you will see: 

User Register = 2

This is the default value of the register and it corresponds to a resolution of 12 bits and 14 bits for the humidity and temperature respectively and a supply voltage greater than 2.25V. 
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The I2C Protocol In Action

If you have a logic analyzer that can interpret the I2C protocol connected, what you will see is:

You can see that the write_byte function sends an address packet set to the device's 7-bit address 0x40 as the high-order bits with the low-order bit set to zero to indicate a write, i.e 0x80. After this you get a data packet sent containing 0xE7, the address of the register. After 160 microseconds it sends the address frame again, only this time with the low-order bit set to one to indicate a read.  The gap between the operations is rather long and it slows things down. It then receives back a single byte of data from the device, 0x02. Also notice the start and stop bits at the end of each data byte. 

This all demonstrates that the external device is working properly and we can move on to getting some data of interest. 

Reading Temperature Data – Clock Stretching

Now we come to reading one of the two quantities that the device measures, temperature. If you look back at the command table you will see that there are two possible commands for reading the temperature: 

Command 

Code 

Comment 

Trigger Temperature Measurement

0xE3  Hold master

Trigger Temperature Measurement

0xF3  No Hold master

What is the difference between Hold master and No Hold master?  As already mentioned, the device cannot read the temperature instantaneously. 

To cope with this the master can either opt to be held waiting for the data, i.e. Hold master, or released to do something else and poll for the data until it is ready, i.e No Hold master. 

The Hold master option works by allowing the device to stretch the clock pulse by holding the line low after the master has released it. In this mode, the master will wait until the device releases the line. Not all masters support this mode, but the ESP32 does and in theory this makes it the simpler option. To read the temperature using the Hold master mode you simply send 0xE3 and then read three bytes. 
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The simplest program that should work is:

uint8_t buf[10] = { 0xE3 }; 

i2c_master_transmit(dev_handle, buf, 1, 1000); 

i2c_master_receive(dev_handle, buf, 3, 9); 

uint8_t msb = buf[0]; 

uint8_t lsb = buf[1]; 

uint8_t check = buf[2]; 

printf("msb %d \n lsb %d \n checksum %d \n",msb, lsb, check); fflush(stdout); 

This is to be placed in the main program after the bus and device have been configured. 

If you try it out on an ESP32 then you will find that the program fails with a timeout error, but the I2C is still busy and you cannot use it for another operation. The timeout set in the receive call is tuned to allow the function to return. If the timeout occurs due to the hardware then the function never returns and you still cannot use the bus. 

The problem is that the ESP32 doesn’t wait long enough for the clock stretching to complete.  The reason that it times out is that the physical units used for the timeout are very small, the number of 80MHz clock pulses set by a 20-bit number. So a maximum timeout of 0xFFFFF is equivalent to about 13ms, which is nowhere near the 40ms needed by the device. So the ESP32 

does support clock stretching, but only if it is less than around 13ms. 

What is also unacceptable about the ESP32 is the way that once an error occurs you cannot continue using the I2C bus. The only solution is to reset the device and the bus:

uint8_t buf[10] = { 0xE3 }; 

i2c_master_transmit(dev_handle, buf, 1, 1000); 

esp_err_t err = i2c_master_receive(dev_handle, buf, 3, 9); 

if (err != ESP_OK) {}

i2c_master_bus_rm_device(dev_handle); 

i2c_del_master_bus(bus_handle); 

i2c_new_master_bus(&i2cBus, &bus_handle); 

i2c_master_bus_add_device(bus_handle, &i2cdev, &dev_handle); 

}

At the end of the if statement you can use the bus again. This is very crude, but there seems to be no other way of resetting the bus after an error. 

The ESP32 S3 has a different way of setting the clock stretching timeout, which in theory should work and almost does. If you try the same program out on an S3, you will discover that it times out after 20ms and nothing changes it. This is a bug that has been fixed in the 5.3 branch of the SDK but not the current release. 
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Reading Temperature Data – Polling

As clock stretching doesn’t work for the HTU21D on the ESP32, let’s consider the alternative of polling. Unfortunately there is a problem in using I2C in polling mode as well. The basic idea in polling mode is that the master keeps trying to read the data from the slave but the slave responds with a NAK to indicate that data isn’t ready. 

The problem is that the ESP32 doesn’t interpret the NAK to mean “give up this attempt to read” instead it waits for another timeout period to give the slave time to try again. What is more, once the error has occurred you cannot take control of the I2C bus without a complete reset. 

For example:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "driver/i2c_master.h" 

void app_main(void)

{

i2c_master_bus_config_t i2cBus = {

.i2c_port = I2C_NUM_0, 

.scl_io_num = 15, 

.sda_io_num = 16, 

.clk_source = I2C_CLK_SRC_DEFAULT, 

.glitch_ignore_cnt = 7, 

.flags.enable_internal_pullup = true

}; 

i2c_master_bus_handle_t bus_handle; 

i2c_new_master_bus(&i2cBus, &bus_handle); 

i2c_device_config_t i2cdev = {

.dev_addr_length = I2C_ADDR_BIT_LEN_7, 

.device_address = 0x40, 

.scl_speed_hz = 100000, 

.scl_wait_us = 10

}; 

i2c_master_dev_handle_t dev_handle; 

i2c_master_bus_add_device(bus_handle, &i2cdev, &dev_handle); uint8_t buf[10] = { 0xF3 }; 

i2c_master_transmit(dev_handle, buf, 1, 100); 

esp_err_t err; 
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do {

err = i2c_master_receive(dev_handle, buf, 3, 100); 

if (err != ESP_OK) {

i2c_master_bus_rm_device(dev_handle); 

i2c_del_master_bus(bus_handle); 

i2c_new_master_bus(&i2cBus, &bus_handle); 

i2c_master_bus_add_device(bus_handle, &i2cdev, &dev_handle); 

}; 

} while (err != ESP_OK); 

uint8_t msb = buf[0]; 

uint8_t lsb = buf[1]; 

uint8_t check = buf[2]; 

printf("msb %d \n lsb %d \n checksum %d \n", msb, lsb, check); fflush(stdout); 



}

This works, but it takes so long to reset the bus that we might as well just wait 50ms for the data to be ready. 

The ESP32 S3 implements the NAK properly, it reports an error, but doesn’t try to restart the operation. As a result the following works and is reasonably fast:

uint8_t buf[10] = { 0xF3 }; 

i2c_master_transmit(dev_handle, buf, 1, 100); 

esp_err_t err; 

do {



err = i2c_master_receive(dev_handle, buf, 3, 100); 

vTaskDelay(10 / portTICK_PERIOD_MS); 

} while (err != ESP_OK); 

If you try this out you will see the attempted reads and some spurious clock signals. The final successful read is about 47ms after the first polling read: 278

One solution to the problem of the ESP32 hardware not implementing polling correctly is to simply send the commands and then sleep for 50ms before reading the data. If the device is working correctly then the data should be available after this time and can be read without polling or clock stretching. For example:

uint8_t buf[10] = { 0xF3 }; 

i2c_master_transmit(dev_handle, buf, 1, 100); 

vTaskDelay(50 / portTICK_PERIOD_MS); 

i2c_master_receive(dev_handle, buf, 3, 100); 

uint8_t msb = buf[0]; 

uint8_t lsb = buf[1]; 

uint8_t check = buf[2]; 

printf("msb %d \n lsb %d \n checksum %d \n", msb, lsb, check); fflush(stdout); 

Processing the Data

Our next task isn't really directly related to the problem of using the I2C bus, but it is a very typical next step. The device returns the data in three bytes, but the way that this data relates to the temperature isn't simple. 

If you read the datasheet you will discover that the temperature data is the 14-bit value that results from putting together the most and least significant bytes and zeroing the bottom two bits. The bottom two bits are used as status bits, bit zero currently isn't used and bit one is a 1 if the data is a humidity measurement and a 0 if it is a temperature measurement. 

To put the two bytes together we use:

unsigned int data16=((unsigned int) msb << 8) | 

(unsigned int) (lsb & 0xFC); 

This zeros the bottom two bits, shifts the msb up eight bits and ORs the two together. The result is a 16-bit temperature value with the bottom two bits zeroed. Now we have a raw temperature value, but we still have to convert it to standard units. The datasheet gives the formula:

Temperature in °C= -46.85 + 175.72 * data16 / 216

The only problem in implementing this is working out 216. You can work out 2x with the expression 1<<x, i.e. shift 1 x places to the right. 

This gives:

float temp = (float)(-46.85 +(175.72 * data16 /(float)(1<<16))); As 216 is a constant that works out to 65536 it is more efficient to write: float temp = (float)(-46.85 +(175.72 * data16 /(float)65536)); Now all we have to do is print the temperature:

printf("Temperature %f C \n\r", temp); 

The full listing is at the end of this chapter. 
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Reading Humidity

Reading the humidity is just a little more of the same. As polling and clock stretching aren’t reliable, we can simply wait for a time that gives the device the opportunity to have data ready to read.  We write the 0xF5 once to the slave, wait and then read the 3-byte response. If anything goes wrong we need to reset the bus as shown earlier, but for simplicity this step is not included in the example. 

Once we have the data, the formula to convert the 16-bit value to percentage humidity is:

RH= -6 + 125 * data16 / 216

Putting all this together, and reusing some variables from the previous parts of the program, we have:

buf[0] = 0xF5; 

i2c_master_transmit(dev_handle, buf, 1, 100); 

vTaskDelay(50 / portTICK_PERIOD_MS); 

i2c_master_receive(dev_handle, buf, 3, 100); 

msb = buf[0]; 

lsb = buf[1]; 

check = buf[2]; 

printf("msb %d \n\r lsb %d \n\r checksum %d \n\r", msb, lsb, check); 

data16 = ((unsigned int)msb << 8) | (unsigned int)(lsb & 0xFC); float hum = -6 + (125.0 * (float)data16) / 65536; 

printf("Humidity %f %% \n\r", hum); 

Checksum Calculation

Although computing a cyclic redundancy checksum, CRC, isn't specific to I2C, it is another common task. The datasheet explains that the polynomial used is:

X8+X5+X4+1

Once you have this information you can work out the divisor by writing a binary number with a one in each location corresponding to a power of X in the polynomial. In this case the 8th, 5th, 4th and 1st bit. Hence the divisor is: 

0x0131

What you do next is roughly the same for all CRCs. First, you put the data that was used to compute the checksum together with the checksum value as the low-order bits:

uint32_t data32 = ((uint32_t)msb << 16)|

((uint32_t) lsb <<8) |  (uint32_t) check; 
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Now you have three bytes, i.e 24 bits, in a 32-bit variable. Next you adjust the divisor so that its most significant non-zero bit aligns with the most significant bit of the three bytes. As this divisor has a 1 at bit eight, it needs to be shifted 15 places to the right to move it to be the 24th bit: uint32_t divisor = ((uint32_t) 0x0131) <<15; 

Now that you have both the data and the divisor aligned, you step through the topmost 16 bits, i.e. you don't process the low-order 8 bits which hold the received checksum. For each bit you check to see if it is a 1. If it is you replace the data with the data XOR divisor. In either case you shift the divisor one place to the right:

for (int i = 0; i < 16; i++){

if( data32 & (uint32_t)1<<(23 - i))data32 =data32 ^ divisor; divisor=divisor >> 1; 

}; 

When the loop ends, if there was no error, the data32 should be zeroed and the received checksum is correct and as computed on the data received. 

A complete function to compute the checksum, with some optimization, is: uint8_t crcCheck(uint8_t msb, uint8_t lsb, uint8_t check){

uint32_t data32 = ((uint32_t)msb << 16)|((uint32_t) lsb <<8)|

(uint32_t) check; 

uint32_t divisor = 0x988000; 

for (int i = 0 ; i < 16 ; i++){

if( data32 & (uint32_t)1<<(23 - i) ) data32 ^= divisor; divisor>>= 1; 

}; 

return (uint8_t) data32; 

}

It is rare to get a CRC error on an I2C bus unless it is overloaded or subject to a lot of noise. 
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Complete Listing

The complete program for reading temperature and humidity, including checksum, is:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "driver/i2c_master.h" 

uint8_t crcCheck(uint8_t msb, uint8_t lsb, uint8_t check) {

uint32_t data32 = ((uint32_t)msb << 16) | ((uint32_t)lsb << 8) |

(uint32_t)check; 

uint32_t divisor = 0x988000; 

for (int i = 0; i < 16; i++) {

if (data32 & (uint32_t)1 << (23 - i)) data32 ^= divisor; divisor >>= 1; 

}; 

return (uint8_t)data32; 

}

void app_main(void)

{

i2c_master_bus_config_t i2cBus = {

.i2c_port = I2C_NUM_0, 

.scl_io_num = 15, 

.sda_io_num = 16, 

.clk_source = I2C_CLK_SRC_DEFAULT, 

.glitch_ignore_cnt = 7, 

.flags.enable_internal_pullup = true

}; 

i2c_master_bus_handle_t bus_handle; 

i2c_new_master_bus(&i2cBus, &bus_handle); 

i2c_device_config_t i2cdev = {

.dev_addr_length = I2C_ADDR_BIT_LEN_7, 

.device_address = 0x40, 

.scl_speed_hz = 100000, 

.scl_wait_us = 10

}; 

i2c_master_dev_handle_t dev_handle; 

i2c_master_bus_add_device(bus_handle, &i2cdev, &dev_handle); uint8_t buf[10] = { 0xF3 }; 

i2c_master_transmit(dev_handle, buf, 1, 100); 

vTaskDelay(50 / portTICK_PERIOD_MS); 

i2c_master_receive(dev_handle, buf, 3, 100); 

uint8_t msb = buf[0]; 

uint8_t lsb = buf[1]; 

uint8_t check = buf[2]; 
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  unsigned int data16 = ((unsigned int)msb << 8) | 

(unsigned int)(lsb & 0xFC); 

float temp = (float)(-46.85 + (175.72 * data16 / (float)65536)); printf("Temperature %f C \n\r", temp); 

printf("crc = %d\n\r", crcCheck(msb, lsb, check)); buf[0] = 0xF5; 

i2c_master_transmit(dev_handle, buf, 1, 100); 

vTaskDelay(50 / portTICK_PERIOD_MS); 

i2c_master_receive(dev_handle, buf, 3, 100); 

msb = buf[0]; 

lsb = buf[1]; 

check = buf[2]; 

data16 = ((unsigned int)msb << 8) | (unsigned int)(lsb & 0xFC); float hum = -6 + (125.0 * (float)data16) / 65536; 

printf("Humidity %f %% \n\r", hum); 

printf("crc = %d\n\r", crcCheck(msb, lsb, check)); 

}

Of course, this is just the start. Once you have the device working and supplying data, it is time to write your code in the form of functions that return the temperature and the humidity and generally make the whole thing more useful and easier to maintain. This is often how this sort of programming goes. First you write a lot of inline code so that it works as fast as it can, then you move blocks of code to functions to make the program more elegant and easy to maintain, checking at each refactoring that it all still works. 

Not all devices used standard bus protocols. In Chapter 14 we’ll look at a custom serial protocol that we have to implement for ourselves. 
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Summary

● The I2C bus is simple yet flexible and is one of the most commonly encountered ways of connecting devices. 

● The I2C bus uses two wires – a data line and a clock. 

● The ESP32 has two I2C controllers, I2C0 and I2C1,  both of which can work as a master or a slave each of which can be connected to a pair of GPIO lines. 

● The I2C protocol isn’t standardized and you have to take account of variations in the way devices implement it. 

● There are single-byte transfer operations and multi-byte transfers which differ in when a stop bit is sent. 

● The low-level protocol can be made slightly more high-level by thinking of it as a single write/read a register operation. 

● Sometimes a device cannot respond immediately and needs to keep the master waiting for data. There are two ways to do this, polling and clock stretching. 

● The ESP32 implements clock stretching, but it has a very short timeout, 13ms, that is often too short to work. The ESP32 S3 should work, but doesn’t because currently its timeout is fixed at 20ms. This should be fixed in future updates of the SDK. 

● The ESP32 doesn’t implement polling correctly because it doesn’t abort the read when it first receives a NAK but only after a one-second timeout.  The ESP32 S3 treats the NAK correctly and polling works. 

● The HTU21D is a simple I2C device, but getting it working involves using polling with the hardware I2C or clock stretching. If you are using an ESP32 S3 then polling works. Alternatively just waiting for 40ms before reading works in all cases. 

● The ESP32 has a problem with resetting the bus after an error. 

● Computing a checksum is an involved, but common, operation. 
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Chapter 14

One-Wire Protocols 

In this chapter we make use of all the ideas introduced in earlier chapters to create a raw interface with the low-cost DHT11/22 temperature and humidity sensor and the 1-Wire bus device, the DS18B20.  Both devices make good examples of how to use “bit-banging” to create a direct interface with a device. 

The DHT22

The DHT22 used in this project is a more accurate version of the DHT11 The software will work with both versions and also with the AM2302, which is equivalent to the DHT22. 

Model AM2302/DHT22

Power supply 3.3-5.5V DC

Output signal digital signal via 1-wire bus 

Sensing element Polymer humidity capacitor

Operating range

humidity 0-100%RH; 

temperature -40~80Celsius

Accuracy

humidity +-2%RH(Max +-5%RH); 

temperature +-0.5Celsius

Resolution or sensitivity

humidity 0.1%RH; 

temperature 0.1Celsius

Repeatability

humidity +-1%RH; 

temperature +-0.2Celsius
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The device will work at 3.3V and it makes use of a one-wire open collector-style bus, which makes it very easy to make the physical connection to the ESP32, however, the “one-wire bus” used isn't standard and is only used by this family of devices. 

The pinouts are:

1. 

VDD

2. 

SDA serial data

3. 

Not used

4. 

GND

and the standard way of connecting the device is:

Although the recommended pull-up resistor is 1K, a higher value, typically 4.7K works better and even larger will work. 
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The Electronics

All you have to do is select a suitable GPIO line – any of those you are not already using will do. In our example GPIO2 is used because it is physically close to GND and 3.3V connections. Exactly how you build the circuit is a matter of preference. The basic layout can be seen below ESP32 on the left, ESP32 S3 on the right. 

ESP32/S3

DHT22

3.3V OUT 

VDD  pin 1

GPIO2 

SDA serial data pin 2

GND 

GND pin 4

It is very easy to create this circuit using a prototyping board and some jumper wires. You can also put the resistor close to the DHT22 to make a sensor package connected to the ESP32 using three cables. 
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The Protocol

The serial protocol used by the DHT22 is fairly simple:

1. The host pulls the line low for between 0.8ms and 29ms, usually around 1ms. This is a request for data from the host to the DHT22. 

2. It then releases the bus which is pulled high by the resistor. 

3. After between 20µs and 200µs, usually 30µs, the device starts to send data by pulling the line down for around 80µs and then lets it float high for another 80µs. This is a “start” bit sent by the DHT22. 

4. Next 40 bits of data are sent using a 70µs high for a 1 and a 26µs high for a 0 with the high pulses separated by around 50µs low periods. 

What we have to do is pull the line low for 1ms or so to start the device sending data and this is very easy. Then we have to wait for the device to pull the line down and let it pull up again for about 160µs and then read the time that the line is high or low 40 times. 

A 1 corresponds to 70µs and a 0 corresponds to 26 to 28µs. This is within the range of pulse measurements that can be achieved using standard library functions. There is also a 50µs low period between each data bit and this can be used to do some limited processing. The time between falling edge transitions is therefore 120µs for a 1 and 76µs for a 0. 

When trying to work out how to decode a new protocol it often helps to try to answer the question, “how can I tell the difference between a 0 and a 1?” 

If you have a logic analyzer it can help to look at the waveform and see how you work it out manually. In this case, despite the complex-looking timing diagram, the difference comes down to a short versus a long pulse! 

With the hardware shown on the previous page connected to the ESP32, the first thing that we need to do is establish that the system is working. The simplest way to do this is to pull the line down for 1ms and see if the device responds with a stream of pulses. These can be seen on a logic analyzer or an oscilloscope, both are indispensable tools. If you don't have access to 288
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either tool then you will just have to skip to the next stage and see if you can read in some data. The simplest code that will do the job is: void delay_us(int t) {

usleep(t); 

}

void app_main(void)

{

gpio_reset_pin(2); 

gpio_set_direction(2, GPIO_MODE_OUTPUT); 

gpio_set_level(2, 1); 

delay_us(1000); 

gpio_set_level(2, 0); 

delay_us(1000); 

gpio_set_direction(2, GPIO_MODE_INPUT); 

Setting the line initially high, to ensure that it is configured as an output, we then set it low, wait for around 1ms and then change its direction to input and so allow the line to be pulled high. There is no need to set the line’s pull-up mode because the ESP32 is the only device driving the line until it releases the line by changing its direction to input. When a line is in input mode it is high impedance and this is why we need an external pull-up resistor in the circuit. 

As long as the circuit has been correctly assembled and you have a working device, you should see something like:

Reading the Data

With preliminary flight checks complete, it is time to read the 40-bit data stream.  However, we have a problem in that we can’t know how long it takes to convert a GPIO line from output to input. This means that we don’t know where we are in the pulse train when the initial pulse is over. The standard solution is to use another GPIO line to signal where we are by toggling the line at the point in the program you want to identify on the logic analyzer plot. For example, we can wait for the low that the device sends before the start bit and then wait for the start bit:

while (gpio_get_level(2) == 1) {}; 

while (gpio_get_level(2) == 0) {}; 

while (gpio_get_level(2) == 1) {}; 

The first while waits for a falling edge, the second for a rising edge and the third a falling edge. 
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If you look at the diagram of the protocol you should be able to see that we are now at the start of the first data bit. Next we can start to read in the data. 

A total of 40 bits, i.e. 5 bytes, is difficult to work with in standard variable types. A good compromise is to read in the first 32 bits into a 32-bit unsigned integer and then read the final byte into a byte variable. The reason is that the fifth byte is a checksum, so we have separated out the data and the checksum, but there are many different ways to organize this task. 

First we read the 32 data bits:

int64_t t2; 

uint32_t data = 0; 

int64_t t1 = tick_us(timer, 0); 

for (int i = 0; i < 32; i++)

{

while (gpio_get_level(2) == 0) {}; 

while (gpio_get_level(2) == 1) {}; 

t2 = tick_us(timer, 0); 

data = data << 1; 

data = data | ((t2 - t1) > 100); 

t1 = t2; 

}

You can see the general idea is to simply find the time between falling edges and then treat anything bigger than 100 µs as a 1. In practice, the measured times between falling edges is around 80 µs for a 0 and 120 µs and 100 is a threshold halfway between the two. The bits are shifted into the variable data so that the first byte transmitted is the high-order byte. 

Next we need to read the checksum byte:

uint8_t checksum = 0; 

for (int i = 0; i < 8; i++)

{

while (gpio_get_level(2) == 0) {}; 

while (gpio_get_level(2) == 1) {}; 

t2 = tick_us(timer, 0); 

checksum = checksum << 1; 

checksum = checksum | ((t2 - t1) > 100); 

t1 = t2; 

}

This works in the same way. At the end of this we have 32 data bits in data and eight checksum bits in checksum and all we have to do is process the data to get the temperature and humidity. 
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Extracting the Data

You can process the data without unpacking it into individual bytes, but it is easier to see what is happening if we do:

uint8_t byte1 = (data >> 24 & 0xFF); 

uint8_t byte2 = (data >> 16 & 0xFF); 

uint8_t byte3 = (data >> 8 & 0xFF); 

uint8_t byte4 = (data & 0xFF); 

The first two bytes are the humidity measurement and the second two the temperature. The checksum is just the sum of the first four bytes reduced to eight bits and we can test it using:

printf("Checksum %X %X\n",checksum,(byte1+byte2+byte3+byte4)&0xFF); If you don’t want to unpack the data then you can use:

printf("Checksum %X %X\n", checksum, ((data & 0xFF) + 

(data >> 8 & 0xFF) + (data >> 16 & 0xFF) + 

(data >> 24 & 0xFF)) & 0xFF); 

If the two values are different, there has been a transmission error.  The addition of the bytes is done as a full integer and then it is reduced back to a single byte by the AND operation. If there is a checksum error, the simplest thing to do is get another reading from the device. Notice, however, that you shouldn't read the device more than once every two seconds. 

The humidity and temperature data are also easy to reconstruct as they are transmitted high byte first and 10 times the actual value. 

Extracting the humidity data is easy:

float humidity = (float)((byte1 <<8)| byte2) / 10.0; 

printf("Humidity= %f %%\n", humidity); 

The temperature data is slightly more difficult in that the topmost bit is used to indicate a negative temperature. This means we have to test for the most significant bit and flip the sign of the temperature if it is set: float temperature; 

int neg = byte3 & 0x80; 

byte3 = byte3 & 0x7F; 

temperature = (float)(byte3 << 8 | byte4) / 10.0; 

if (neg > 0)

temperature = -temperature; 

printf("Temperature= %f C\n", temperature); 

This completes the data processing. 
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The complete program is:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "driver/gpio.h" 

#include "driver/gptimer.h" 

#include <unistd.h> 

void delay_us(int t)

{

usleep(t); 

}

gptimer_handle_t tick_us_start(void) {

gptimer_config_t timer_config = {

.clk_src = GPTIMER_CLK_SRC_DEFAULT, 

.direction = GPTIMER_COUNT_UP, 

.resolution_hz = 1000000, 

}; 

gptimer_handle_t gptimer_us = NULL; 

gptimer_new_timer(&timer_config, &gptimer_us); 

gptimer_enable(gptimer_us); 

gptimer_start(gptimer_us); 

return gptimer_us; 

}

int64_t tick_us(gptimer_handle_t gptimer_us, int64_t offset) {

uint64_t count; 

gptimer_get_raw_count(gptimer_us, &count); 

return count + offset; 

}

void app_main(void)

{

gptimer_handle_t timer = tick_us_start(); 

gpio_reset_pin(2); 

gpio_set_direction(2, GPIO_MODE_OUTPUT); 

gpio_set_level(2, 1); 

delay_us(1000); 

gpio_set_level(2, 0); 

delay_us(1000); 

gpio_set_direction(2, GPIO_MODE_INPUT); 

while (gpio_get_level(2) == 1)

{

}; 

while (gpio_get_level(2) == 0)

{

}; 

while (gpio_get_level(2) == 1)

{

}; 
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    int64_t t2; 

uint32_t data = 0; 

int64_t t1 = tick_us(timer, 0); 

for (int i = 0; i < 32; i++)

{

while (gpio_get_level(2) == 0)

{

}; 

while (gpio_get_level(2) == 1)

{

}; 

t2 = tick_us(timer, 0); 

data = data << 1; 

data = data | ((t2 - t1) > 100); 

t1 = t2; 

}

uint8_t checksum = 0; 

for (int i = 0; i < 8; i++)

{

while (gpio_get_level(2) == 0)

{

}; 

while (gpio_get_level(2) == 1)

{

}; 

t2 = tick_us(timer, 0); 

checksum = checksum << 1; 

checksum = checksum | ((t2 - t1) > 100); 

t1 = t2; 

}

printf("data %ld\n", data); 

uint8_t byte1 = (data >> 24 & 0xFF); 

uint8_t byte2 = (data >> 16 & 0xFF); 

uint8_t byte3 = (data >> 8 & 0xFF); 

uint8_t byte4 = (data & 0xFF); 

printf("Checksum %X %X\n", checksum, 

(byte1 + byte2 + byte3 + byte4) & 0xFF); 

float humidity = (float)((byte1 << 8) | byte2) / 10.0; printf("Humidity= %f %%\n", humidity); 

float temperature; 

int neg = byte3 & 0x80; 

byte3 = byte3 & 0x7F; 

temperature = (float)(byte3 << 8 | byte4) / 10.0; 

if (neg > 0)

temperature = -temperature; 

printf("Temperature= %f C\n", temperature); 

}
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Decoding Using Sampling

A simpler alternative way for decoding the data is to ignore the fact that it is the width of each bit’s frame that defines a zero, a short frame, or a one a long frame. Instead notice that if you sample at a suitable fixed time from the rising edge of a pulse then you will get a 0 in a zero frame and a 1 in a one frame:

You can see the sampling times from the pulses on the lower trace of the logic analyzer and the fact that you do indeed get a 0 in a zero frame and a 1 

in a one frame.  You can also see that the time to sample from the rising edge is constant, even if the sampling period varies. 

Using this decoding approach the two data loops can be written: uint32_t data = 0; 

for (int i = 0; i < 32; i++)

{

while (gpio_get_level(2) == 0) {}; 

delay_us(50); 

data = data << 1; 

data = data | gpio_get_level(2); 

while (gpio_get_level(2) == 1) {}; 

}

uint8_t checksum = 0; 

for (int i = 0; i < 8; i++)

{

while (gpio_get_level(2) == 0) {}; 

delay_us(50); 

checksum = checksum << 1; 

checksum = checksum | gpio_get_level(2); 

while (gpio_get_level(2) == 1) {}; 

}

The complete program is listed on the book’s web page at www.iopress.info. 
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The delay of 50us is close to optimal based on a logic analyzer trace. 

RMT Universal Bit Acquisition

The RMT Remote Control Transceiver was designed to implement a serial protocol for infrared and ultrasonic remote controllers. This may seem like a very niche application, but it is covered here as it has to be programmable to create and read arbitrary bit streams. The way that it does this is to simply record how long a pulse stream is high and low. It accepts and returns an array of structs of the form:

typedef struct {

struct {

uint16_t duration0 : 15; /*!< Duration of level0 */

uint16_t level0 : 1;     /*!< Level of the first part */

uint16_t duration1 : 15; /*!< Duration of level1 */

uint16_t level1 : 1;     /*!< Level of the second part */

}; 

} rmt_symbol_word_t; 

Each element of the array has two 16-bit fields with the low bit giving the state of the line, high or low, and the top 15 bits giving how long, in RMT 

clock ticks, it has been in that state. You can see that you could set up an array that would specify that the line was high for so long, then low for so long, then high for so long and so on. Similarly, if the RMT receives a bit stream it will convert it into how long the line was high, then how long low, how long high and so on. The RMT can be used to produce any bit stream and it can record the details of any input bit stream. This makes it a good way to capture the bit stream from a DHT22. 

We can set up a receive channel or a transmit channel and in this case the transmission is so simple we can continue to use a GPIO line to do the job so we only need a receive channel. To create a receive channel we need to use: rmt_new_rx_channel(prmtrxconfig, prmtrxHandle)
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where prmtrxconfig points to rmt_rx_channel_config_t , a struct comprising:

 gpio_num  

GPIO line 

 clk_src  

Clock source, one of :    

RMT_CLK_SRC_APB 

RMT_CLK_SRC_RC_FAST

RMT_CLK_SRC_XTAL

RMT_CLK_SRC_DEFAULT

 resolution_hz   

Clock resolution, in Hz

 mem_block_symbols   Size of memory block used to store symbols

 flags.invert_in  

Invert the incoming signal

 flags.with_dma 

Use DMA

 flags.io_loop_back  For debug/test

 intr_priority  

If 0 use low-priority interrupt. 

So to create a new receive channel:

rmt_rx_channel_config_t rmtrxconfig = {

.gpio_num = 2, 

.resolution_hz = 1000000, 

.mem_block_symbols = 100, 

.clk_src = RMT_CLK_SRC_DEFAULT, 

.flags.invert_in = false, 

.flags.with_dma = false, 

}; 

rmt_channel_handle_t rmtrxHandle; 

rmt_new_rx_channel(&rmtrxconfig, &rmtrxHandle); 

Now you can next enable the channel and start receiving data: rmt_receive(prmtrxHandle, pbuffer, buffer_size, preceive_config) where preceive_config is a pointer to rmt_receive_config_t, a struct with two fields that determine the limits for the pulse length in nanoseconds:

 signal_range_min_ns 

Pulses smaller than this are ignored, 

 signal_range_max_ns 

Any pulses longer than this are treated as a stop symbol. 

The minimum value has to be smaller than 255*clock resolution. 

For example, to start to receive a pulse train:

rmt_receive_config_t receive_config = {

.signal_range_min_ns = 2000, 

.signal_range_max_ns = 900000

}; 

rmt_receive(rmtrxHandle, raw_symbols, sizeof(raw_symbols), 

&receive_config); 

Any pulses shorter than 2us are ignored and a pulse greater than 900us stops the receive operation. 
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The only complication is that the receive function returns at once and the receive operation runs as an interrupt routine. When the receive is complete the on_recv_done callback is run. You can register the callback using: rmt_rx_register_event_callbacks(rmtrxHandle, pcbs, puser_data) where  pcbs is a rmt_rx_event_callbacks_t struct with the single field,on_recv_done, which is invoked when the receiving transaction completes. 

The signature of the callback is:

bool done_callback(rmtrxHandle, pedata, puser_data)

where pedata is a pointer to the event data and puser_data is a pointer to the user data. 

We want to keep the processing of the data in the same function that called the receive function, the main function in this case. To do this we can make use of FreeRTOS to suspend the main function after the call to receive and then the callback can resume the main function when the data is ready. This converts the receive function into a blocking call, but one that allows the processor to get on with other jobs. This is the more primitive implementation of the Promise or async and await facilities available in other languages. 

To pause the main program we need to first get its task handle in order to suspend it: 

TaskHandle_t taskhandle = xTaskGetCurrentTaskHandle(); 

vTaskSuspend(taskhandle); 

The callback is passed the taskhandle as user data and then uses it to restart the main program:

bool rmtrxDone(rmt_channel_handle_t channel, 

const rmt_rx_done_event_data_t* edata, void* user_data) {

xTaskResumeFromISR(*(TaskHandle_t*)user_data); 

return true; 

}

Reading the DHT22 Using the RMT

Putting all this together it is fairly easy to use the RMT to read the bitstream from the DHT22. Processing it is only slightly more difficult as the high pulses are around 26us for a zero and 74us for a one making 50us a reasonable cutoff. The program first sets up the RMT to be ready to receive the bitstream and then processes it by scanning the high times and converting them into zero and ones. As there is plenty of time to process the data, it is split up into bytes at the very start. 
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The final part of the program is the same as before:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "driver/gpio.h" 

#include "driver/rmt_rx.h" 

#include <unistd.h> 

TaskHandle_t taskhandle; 

void delay_us(int t) {

usleep(t); 

}

bool rmtrxDone(rmt_channel_handle_t channel, 

const rmt_rx_done_event_data_t* edata, void* user_data) {

xTaskResumeFromISR(*(TaskHandle_t*)user_data); 

return true; 

}

rmt_symbol_word_t raw_symbols[100]; 

void app_main(void)

{

rmt_rx_channel_config_t rmtrxconfig = {

.gpio_num = 2, 

.resolution_hz = 1000000, 

.mem_block_symbols = 100, 

.clk_src = RMT_CLK_SRC_DEFAULT, 

.flags.invert_in = false, 

.flags.with_dma = false, 

}; 

rmt_channel_handle_t rmtrxHandle; 

rmt_new_rx_channel(&rmtrxconfig, &rmtrxHandle); 



rmt_rx_event_callbacks_t cbs = {

.on_recv_done = rmtrxDone

}; 

taskhandle = xTaskGetCurrentTaskHandle(); 

rmt_rx_register_event_callbacks(rmtrxHandle, &cbs, &taskhandle); rmt_enable(rmtrxHandle); 

rmt_receive_config_t receive_config = {

.signal_range_min_ns = 2000, 

.signal_range_max_ns = 900000, 

}; 
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while (true) {

gpio_reset_pin(2); 

gpio_set_direction(2, GPIO_MODE_OUTPUT); 

gpio_set_level(2, 1); 

delay_us(1000); 

gpio_set_level(2, 0); 

delay_us(1000); 

gpio_set_direction(2, GPIO_MODE_INPUT); 

while (gpio_get_level(2) == 1) {}; 

while (gpio_get_level(2) == 0) {}; 

while (gpio_get_level(2) == 1) {}; 

rmt_receive(rmtrxHandle, raw_symbols, sizeof(raw_symbols), 

&receive_config); 

vTaskSuspend(taskhandle); 

uint8_t byte1 = 0; 

uint8_t byte2 = 0; 

uint8_t byte3 = 0; 

uint8_t byte4 = 0; 

uint8_t checksum = 0; 

for (int i = 0;i < 40;i = i + 1) {

switch (i / 8) {

case 0:

byte1 = byte1 << 1; 

byte1 = byte1 | (raw_symbols[i].duration0 > 50); 

break; 

case 1:

byte2 = byte2 << 1; 

byte2 = byte2 | (raw_symbols[i].duration0 > 50); 

break; 

case 2:

byte3 = byte3 << 1; 

byte3 = byte3 | (raw_symbols[i].duration0 > 50); 

break; 

case 3:

byte4 = byte4 << 1; 

byte4 = byte4 | (raw_symbols[i].duration0 > 50); 

break; 

case 4:

checksum = checksum << 1; 

checksum = checksum | (raw_symbols[i].duration0 > 50); 

break; 

}

}
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printf("Checksum %X %X\n", checksum, 

(byte1 + byte2 + byte3 + byte4) & 0xFF); 

float humidity = (float)((byte1 << 8) | byte2) / 10.0; printf("Humidity= %f %%\n", humidity); 

float temperature; 

int neg = byte3 & 0x80; 

byte3 = byte3 & 0x7F; 

temperature = (float)(byte3 << 8 | byte4) / 10.0; 

if (neg > 0)

temperature = -temperature; 

printf("Temperature= %f C\n", temperature); 

delay_us(1000000); 

}

}

The 1-Wire Bus and the DS1820

The 1-Wire bus  is a proprietary bus, but it has a lot in common with the I2C

and SPI buses. It defines a general bus protocol that can be used with a range of different devices.  There are many useful devices you can connect to it, including the iButton security devices, memory, data loggers, fuel gauges and more. However, probably the most popular of all 1-Wire devices is the DS18B20 temperature sensor - it is small, very cheap and very easy to use. This chapter shows you how to work with it, but first let's deal with the general techniques needed to work with the 1-Wire bus. 

The Hardware

One-wire devices are very simple and only use a single wire to transmit data: The 1-Wire device can pull the bus low using its Tx line and can read the line using its Rx line. The reason for the pull-up resistor is that both the bus master and the slave can pull the bus low and it will stay low until they both release the bus. 

The device can even be powered from the bus line by drawing sufficient current through the pullup resistor, so-called parasitic mode. Low-power devices work well in parasitic mode, but some devices have such a heavy current draw that the master has to provide a way to connect them to the power line, referred to as strong pullup. In practice, parasitic mode can be difficult to make work reliably for high-power devices. 
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In normal-powered mode there are just three connections – V, usually 3.3V 

for the ESP32, Ground and Data. The pullup resistor varies according to the device, but anything from 2.2K to 4.7kΩ works. The longer the bus, the lower the pullup resistor has to be to reduce “ringing”. There can be multiple devices on the bus and each one has a unique 64-bit lasered ROM 

code, which can be used as an address to select the active devices. 

The DS18B20 Hardware

The most popular 1-Wire device is the DS18B20. It is available in a number of formats, but the most common makes it look just like a standard BJT 

(Bipolar Junction Transistor) which can sometimes be a problem when you are trying to find one. You can also get them made up into waterproof sensors complete with cable. 

No matter how packaged, they will work at 3.3V or 5V. 

The basic specification of the DS18B20 is:

•

Measures temperatures from -55°C to +125°C (-67°F to +257°F) 

•

±0.5°C accuracy from -10°C to +85°C 

•

Thermometer resolution is user-selectable from 9 to 12 bits 

•

Converts temperature to 12-bit digital word in 750ms (max)

It can also be powered from the data line, allowing the bus to operate with only two wires, data and ground. However, this parasitic power mode is difficult to make work reliably and is best avoided in an initial design. 

There are also the original DS1820 and the DS18S20, which too are best avoided in new applications. 
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To supply the DS18B20 with enough power during a conversion, the host has to connect it directly to the data line by providing a "strong pullup", essentially replicating a transistor. In normal-powered mode there are just three connections:

Ground needs to be connected to the system ground, VDD to 3.3V and DQ to the pull-up resistor of an open collector bus. 

While you can have multiple devices on the same bus, for simplicity it is better to start off with a single device until you know that everything is working. 

You can build the circuit in a variety of ways. You can solder the resistor to the temperature sensor and then use some longer wires with clips to connect to the ESP32. 

ESP32                                                   ESP32 S3               

302

[image: Image 173]

[image: Image 174]

The 1-Wire Protocol 

Every transaction with a 1-wire device starts with an initialization handshake. This is simply a low pulse that lasts at least 480µs, a pause of 15µs to 60µs follows and then any and all of the devices on the bus pull the line low for 60µs to 240µs. The suggested timings set the line low for 480µs and read the line after 70µs followed by a pause of 410µs. 

This is fairly easy to implement:

int presence(int pin){

gpio_reset_pin(pin); 

gpio_set_direction(pin, GPIO_MODE_INPUT_OUTPUT_OD); 

gpio_set_level(pin, 1); 

delay_us(1000); 

gpio_set_level(pin, 0); 

delay_us(480); 

gpio_set_level(pin, 1); 

delay_us(70); 

int res=gpio_get_level(pin); 

delay_us(410); 

return  res; 

}

The timings in this case are not critical as long as the line is read while it is held low by the slaves, which is never less than 60µs and is typically as much as 100µs. Notice that the line is set to open drain and input/output. 

When it is set high other devices on the bus can still pull it low and the GPIO line can be read. 

If you try this partial program and have a logic analyzer with a 1-wire protocol analyzer you will see something like:

Seeing a presence pulse is the simplest and quickest way to be sure that your hardware is working. 
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Our next task is to implement the sending of some data bits to the device. 

The 1-Wire bus has a very simple data protocol. All bits are sent using a minimum of 60 µs for a read/write slot. Each slot must be separated from the next by a minimum of 1 µs. 

The good news is that timing is only critical within each slot. You can send the first bit in a slot and then take your time before you send the next bit as the device will wait for you. This means you only have to worry about timing within the functions that read and write individual bits. 

To send a 0 you have to hold the line low for most of the slot. To send a 1 

you have to hold the line low for just between 1µs and 15µs and leave the line high for the rest of the slot. 

As the only time critical operations are the actual setting of the line low and then back to high, there is no need to worry too much about the speed of operation of the entire function so we might as well combine writing 0 and 1

into a single writeBit function:

void writeBit(uint8_t pin, int b)

{

int delay1, delay2; 

if (b == 1)

{

delay1 = 6; 

delay2 = 64; 

}

else

{

delay1 = 60; 

delay2 = 10; 

}

gpio_set_level(pin, 0); 

delay_us(delay1); 

gpio_set_dir(pin, GPIO_IN); 

delay_us(delay2); 

}

The code at the start of the function simply increases the time between slots slightly. 
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You can see a zero followed by two ones in the following logic analyzer trace:

You can use this function to write an 8-bit byte:

void writeByte(uint8_t pin, int byte) {

for ( int i = 0; i < 8; i++) {

if (byte & 1) {

writeBit(pin, 1); 

}

else {

writeBit(pin, 0); 

}

byte = byte >> 1; 

}

}

We already know how the master sends a 1 and a 0. The protocol for the slave device is exactly the same, except that the master still provides the slot’s starting pulse. That is, the master starts a 60 µs slot by pulling the bus down for at least 1 µs. Then the slave device either holds the line down for a further 15 µs minimum or it simply allows the line to float high. See below for the exact timings:

So all we have to do to read bits is to pull the line down for more than 1 µs and then sample the bus after pausing long enough for the line to be pulled up or held low. The datasheet gives 6 µs for the master's pulse and a 9 µs pause. 
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In practice, a final delay of 8 µs seems to work best and allows for the time to change the line's direction: 

uint8_t readBit(uint8_t pin)

{

gpio_set_level(pin, 0); 

delay_us(2); 

gpio_set_level(pin, 1); 

delay_us(5); 

uint8_t b = gpio_get_level(pin); 

delay_us(60); 

return b; 

}

The start of the slot pulse is just less than 3µs. 

You can use the readBit function to implement reading a byte: int readByte(uint8_t pin) {

int byte = 0; 

for(int i = 0; i < 8; i++) {

byte = byte | readBit(pin) << i; 

}; 

return byte; 

}

Match or Skip ROM

After discovering that there is at least one device connected to the bus, the master has to issue a ROM command. In many cases the ROM command used first will be the Search ROM command, which enumerates the 64-bit codes of all of the devices on the bus. After collecting all of these codes, the master can use Match ROM commands with a specific 64-bit code to select the device the master wants to talk to.  Having to find and use the ROM 

codes is often a nuisance and unnecessary if you only have a single device of a known type connected to the bus.  If there is only one device then we can use the Skip ROM command, 0xCC, to tell all the devices, i.e. the only device, on the bus to be active.  It is a good and easy exercise to create a class that will read a single device and this also demonstrates how to read the temperature. 

The steps to read the temperature from the only DS18B20 connected to the bus are: 

1. Send a reset

2. Send a Skip ROM, 0xCC, command

3. Send a Convert, 0x44, command 

4. Wait for the temperature to be read

5. Send a Read Scratchpad, 0xBE, command and then read the nine bytes that the device returns
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The Convert command, 0x44, starts the DS18B20 making a temperature measurement. Depending on the resolution selected, this can take as long as 750ms. How the device tells the master that the measurement has completed depends on the mode in which it is operating, but using an external power line, i.e. not using parasitic mode, the device sends a 0 bit in response to a bit read until it is completed, when it sends a 1. 

This is how 1-Wire devices that need time to get data ready slow down the master until they are ready. 

The master can read a single bit as often as it likes and the slave will respond with a 0 bit until it is ready with the data. As we already have a readBit method, this is easy. The software polls for the completion by reading the bus until it gets a 1 bit:

int convert(uint8_t pin)

{

writeByte(pin, 0x44); 

int i; 

for (i = 0; i < 500; i++)

{

delay_us(10000); 

if (readBit(pin) == 1)

break; 

}

return i; 

}

You can, of course, test the return value to check that the result has been obtained. If the convert returns 500 then the loop times out. When the function returns, the new temperature measurement is stored in the device's scratchpad memory and now all we have to do is read it. 

The scratchpad memory has nine bytes of storage in total and does things like control the accuracy of conversion and provide status information. 

In our simple example the only two bytes of any interest are the first two, which hold the result of a temperature conversion. However, as we are going to check the CRC for error detection, we need to read all nine bytes. 
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All we have to do is issue a Read Scratchpad, 0xBE, command and then read the nine bytes that the device returns. To send the new command we have to issue a new initialization pulse and a Skip ROM, 0xCC, command followed by a Read Scratchpad command, 0xBE: 

presence(pin); 

writeByte(pin, 0xCC); 

writeByte(pin, 0xBE); 

Now the data is ready to read. 

uint8_t data[9]; 

for (int i = 0; i < 9; i++) {

data[i] = readByte(pin); 

}

We can read all nine bytes of it or just the first two that we are interested in. 

The device will keep track of which bytes have been read. If you come back later and read more bytes you will continue the read from where you left off. 

If you issue another initialization pulse then the device aborts the data transmission. 

Computing the CRC

We have already encountered the idea and implementation of a  CRC (Cyclic Redundancy Checksum) in Chapter 13. The 1-Wire bus uses the same CRC 

for all its devices and therefore we need to implement it just once. This is perhaps not in the most efficient way, but it will work. For low data rate applications high efficiency isn't needed and you can make use of a direct implementation.  The 1-Wire datasheet specifies the CRC used in 1-wire devices as a shift register as well as a polynomial equation: However, this is equivalent to a generator polynomial that defines the CRC 

as it is simply the hardware implementation of the calculation. 

In this case it is:

X8 + X5 + X4 + 1

The first question to answer is, what is the connection between binary values, polynomials and shift-registers? The answer is that you can treat a binary number as the coefficients of a polynomial, for example 101 is 1*X2+0*X+1. Each bit position corresponds to a power of X. 
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Using this notation creates a very simple relationship between multiplying by X and a left-shift. 

For example: 

(1*X2 + 0*X+ 1)*X = 1*X3 + 0*X2 + 1X + 0 

corresponds to:

101 <<1 == 1010

You can see that this extends to multiplying one polynomial by another and even polynomial division, all accomplished by shifting and XOR (eXclusive OR). 

The CRC is the remainder when you divide the polynomial that represents the data by the generator polynomial. The computation of the remainder is what the shift register specified on the datasheet does.  The fact that the division can be implemented so simply in hardware is what makes this sort of CRC computation so common. All the hardware has to do is zero the shift register and feed the data into it. When all the data has been shifted in, what is left in the shift register is the CRC, i.e. the remainder. 

To check the data you have received, all you have to do is run it through the shift register again and compare the computed CRC with the one received. A better trick is also to run the received CRC through the shift register. If there have been no errors, this will result in 0. 

You can look into the theory of CRCs, bit sequences and polynomials further, it is interesting and practically useful, but we now know everything we need to if we want to implement the CRC used by1-Wire devices. All we have to do is implement the shift register in software. 

From the diagram, what we have to do is take each bit of the input data and XOR it with the least significant bit of the current shift register. If the input bit is 0, the XORs in the shift register don't have any effect and the CRC just has to be moved one bit to the right. If the input bit is 1, we have to XOR the bits at positions 3 and 4 with 1 and put a 1 in at position 7 to simulate shifting a 1 into the register, i.e. XOR the shift register with 10001100. 

So the algorithm for a single byte is:

for (int j = 0; j < 8; j++) {

temp = (crc ^ databyte) & 0x01; 

crc >>= 1; 

if (temp)



crc ^= 0x8C; 

databyte>>= 1; 

}

}

First we XOR the data with the current CRC and extract the low-order bit into temp. Then we right-shift the CRC by one place. If the low-order result stored in temp was a 1, we have to XOR the CRC with 0x8C to simulate the 309

XORs in the shift register and shift in a 1 at the most significant bit. Then shift the data one place right and repeat for the next data bit. 

With this worked out, we can now write a crc8 function that computes the CRC for the entire eight bytes of data:

uint8_t crc8(uint8_t *data, uint8_t len) {

uint8_t temp; 

uint8_t databyte; 

uint8_t crc = 0; 

for (int i = 0; i < len; i++) {

databyte = data[i]; 

for (int j = 0; j < 8; j++) {

temp = (crc ^ databyte) & 0x01; 

crc >>= 1; 

if (temp)

crc ^= 0x8C; 

databyte >>= 1; 

}

}

return crc; 

}

With this in place we can now check the CRC of any data a 1-Wire bus device sends us. 

Decoding Temperature

To obtain the temperature measurement we need to work with the first two bytes, which are the least and most significant bytes of the 12-bit temperature reading:

int t1 = data[0]; 

int t2 = data[1]; 

t1 holds the low-order bits and t2 the high-order bits. 

All we now have to do is to put the two bytes together as a 16-bit two’s complement integer. As the ESP32 supports a 16-bit int type, we can do this very easily:

int16_t temp1 = (t2 << 8 | t1); 

Notice that this only works because int16_t really is a 16-bit integer. If you were to use:

int temp1= (t2<<8 | t1); 

temp1 would be correct for positive temperatures, but it would give the wrong answer for negative values because the sign bit isn't propagated into the top 16 bits. If you want to use a 32-bit integer, you will have to propagate the sign bit manually:

if(t2 & 0x80) temp1=temp1 | 0xFFFF0000; 
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Finally, we have to convert the temperature to a scaled floating-point value. 

As the returned data gives the temperature in centigrade with the low-order four bits giving the fractional part, it has to be scaled by a factor of 1/16: float temp = (float) temp1 / 16; 

Now we can print the CRC and the temperature:

printf("CRC %hho \n\r ", crc); 

printf("temperature = %f C \n", temp); 

A Temperature Function

Packaging all of this into a single function is easy:

float getTemperature(uint8_t pin) {

if (presence(pin) == 1) return -1000; 

writeByte(pin, 0xCC); 

if (convert(pin) == 500) return -3000; 

presence(pin); 

writeByte(pin, 0xCC); 

writeByte(pin, 0xBE); 

uint8_t data[9]; 

for (int i = 0; i < 9; i++) {

data[i] = readByte(pin); 

}

uint8_t crc = crc8(data, 9); 

if (crc != 0) return -2000; 

int t1 = data[0]; 

int t2 = data[1]; 

int16_t temp1 = (t2 << 8 | t1); 

float temp = (float)temp1 / 16; 

return temp; 

}

Notice that the function returns -1000 if there is no device, -2000 if there is a CRC error and -3000 if the device fails to provide data. These values are outside the range of temperatures that can be measured. 

The Complete Program

The complete program to read and display the temperature is:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "driver/gpio.h" 

#include <unistd.h> 

void delay_us(int t) {

usleep(t); 

}
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uint8_t readBit(uint8_t pin)

{

gpio_set_level(pin, 0); 

delay_us(2); 

gpio_set_level(pin, 1); 

delay_us(5); 

uint8_t b = gpio_get_level(pin); 

delay_us(60); 

return b; 

}

void writeBit(uint8_t pin, int b)

{

int delay1, delay2; 

if (b == 1)

{

delay1 = 6; 

delay2 = 64; 

}

else

{

delay1 = 60; 

delay2 = 10; 

}

gpio_set_level(pin, 0); 

delay_us(delay1); 

gpio_set_level(pin, 1); 

delay_us(delay2); 

}

int readByte(uint8_t pin) {

int byte = 0; 

for (int i = 0; i < 8; i++) {

byte = byte | readBit(pin) << i; 

}; 

return byte; 

}

void writeByte(uint8_t pin, int byte) {

for (int i = 0; i < 8; i++) {

if (byte & 1) {

writeBit(pin, 1); 

}

else {

writeBit(pin, 0); 

}

byte = byte >> 1; 

}

}
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int presence(int pin) {

gpio_reset_pin(pin); 

gpio_set_direction(pin, GPIO_MODE_INPUT_OUTPUT_OD); 

gpio_set_level(pin, 1); 

delay_us(1000); 

gpio_set_level(pin, 0); 

delay_us(480); 

gpio_set_level(pin, 1); 

delay_us(70); 

int res = gpio_get_level(pin); 

delay_us(410); 

return res; 

}

int convert(uint8_t pin)

{

writeByte(pin, 0x44); 

int i; 

for (i = 0; i < 500; i++)

{

delay_us(10000); 

if (readBit(pin) == 1)

break; 

}

return i; 

}

uint8_t crc8(uint8_t* data, uint8_t len)

{

uint8_t temp; 

uint8_t databyte; 

uint8_t crc = 0; 

for (int i = 0; i < len; i++)

{

databyte = data[i]; 

for (int j = 0; j < 8; j++)

{

temp = (crc ^ databyte) & 0x01; 

crc >>= 1; 

if (temp)

crc ^= 0x8C; 

databyte >>= 1; 

}

}

return crc; 

}

313

float getTemperature(uint8_t pin) {

if (presence(pin) == 1) return -1000; 

writeByte(pin, 0xCC); 

if (convert(pin) == 500) return -3000; 

presence(pin); 

writeByte(pin, 0xCC); 

writeByte(pin, 0xBE); 

uint8_t data[9]; 

for (int i = 0; i < 9; i++) {

data[i] = readByte(pin); 

}

uint8_t crc = crc8(data, 9); 

if (crc != 0) return -2000; 

int t1 = data[0]; 

int t2 = data[1]; 

int16_t temp1 = (t2 << 8 | t1); 

float temp = (float)temp1 / 16; 

return temp; 

}

void app_main(void)

{

while (true) {

float temp = getTemperature(2); 

printf("temperature=%f\n", temp); 

delay_us(1000000); 

}

}

Other Commands

As well as the commands that we have used to read the temperature, the DS18B20 supports a range of other commands. Two commands  concerned with when there are more devices on the bus are  Search ROM, 0xF0, which is used to scan the bus to discover what devices are connected and Match ROM, 0x55, which is used to select a particular device. 

You can also read the unique 64-bit code of a device using the Read ROM 

command, 0x33. In this case, the slave transmits eight bytes, consisting  of a single-byte device family code, 0x28 for the DS18B20, six bytes of serial number and a single CRC byte. Notice that the first byte of the ID identifies the type of the device. For example, a DS18B20 starts with 0x10. 

There is also a select_rom method which will select a device according to its ID. This uses a MatchROM command to select the device and following this all data transfer is between the selected device and the controller until the next reset. 
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As well as the Read ScratchPad command, 0xBE, that we used to read the temperature, there is also a Write ScratchPad command, 0x4E. 

The format of the scratchpad is:

The first two bytes are the temperature that we have already used. The only writable entries are bytes 2, 3 and 4.  The Write ScratchPad command transfers three bytes to these locations. Notice that  if there is a transmission error, there is no CRC and no error response. The datasheet suggests that you read the scratchpad after writing it to check that you have been successful in setting the three bytes. 

The third byte written to the scratchpad is to the configuration register: Essentially the only thing you can change is the resolution of the temperature measurement. 

Configuration

Resolution

Time

Register

0x1F

9 bits

93ms

0x3F

10 bits

175ms

0x5F

11 bits

375ms

0x7F

12 bits

750ms

The time quoted is the maximum for a conversion at the given precision. 

You can see that the only real advantage of decreasing precision is to make the conversion faster. The default is 0x7F and 12 bits of precision. 

The first two bytes of the write scratchpad set a high and low temperature alarm. This feature isn’t much used, but you can set two temperatures that will trigger the device into alarm mode. Notice you only set the top eight bits of the threshold temperatures. This is easy enough, but the alarm status is set with every read so if the temperature goes outside the set bounds and then back in the alarm is cleared. Notice that you have to use the device’s ROM code even if it is the only device on the bus. 
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The second problem is that, to discover which devices are in alarm mode, you have to use the Alarm Search command, 0xEC. This works like the Search ROM command, but the only devices that respond are the ones with an alarm state. The alarm feature might be useful if you have a lot of devices and simply want to detect an out-of-band temperature. You could set up multiple devices with appropriate temperature limits and then simply repeatedly scan the bus for devices with alarms set. 

You may notice that the scratchpad also has an EEPROM memory connected. You can transfer the three bytes of the scratchpad to the EEPROM using Copy Scratchpad, 0x48, and transfer them back using the Recall EEPROM command, 0xB8. You can use this to make the settings nonvolatile. 

Finally there is the Read Power Supply command, 0xB4. If the master reads the bus after issuing this command, a 0 indicates that there are parasitic powered devices on the bus. If there are such devices the master has to run the bus in such a way that they are powered correctly. 

Many one-wire buses can be implemented using a UART. As long as the bit cell is a fixed size, it will work. You can see an example of reading a DS18B20 in Chapter 15. 

The S3 RGB LED NeoPixel

A very simple one-wire protocol is used with the NeoPixel style of lighting strip. What follows is applicable to a general NeoPixel array, but it is specific to the RGB LED built-in to most ESP32 S3 development boards. 

The task is to make use of the RGB LED that is standard on an ESP32 S3. 

This is an addressable LED in the WS2812 family and you can run this program on an ESP32 by connecting a WS2312 “NeoPixel” device to a GPIO 

line. In simple terms, the timing requirements are such that the ESP32 is only just fast enough to cope. 

In the most general case you can daisy-chain NeoPixels to produce linear strips of LEDs:

316

[image: Image 183]

[image: Image 184]

[image: Image 185]

To set an LED to a color you have to send a 24-bit value on the data line using a coding:

The data line rests low and a 0 is sent with a high time of 350ns and a 1 is sent with a high time of 700ns and a total pulse width of 1.25 s μ , all timings 

are ±150ns. The RET code is just a minimum low time between groups of 24-bit signals. If you have multiple LEDs daisy chained you can control each one individually by sending groups of 24 bits at a time. Each LED consumes 24 bits of the signal and passes the remaining bits on to the next LED in the chain. In this way each LED in the chain gets its own 24 bits specifying the color. The LEDs process the stream of bits until the line is held low for at least 50 s, 

μ  i.e. the RET code. At this point all of the LEDs transfer the data to a latch and display the specified color. The format used to set the color is: As already mentioned, you can connect a NeoPixel device to any GPIO line to act as the data line, but the ESP32 S3 has a single NeoPixel connected to either GPIO38 or GPIO48 depending on the development board. Some boards also have a solder pad next to the LED that has to be connected before the LED can be used. You can connect them with a small blob of solder:
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There are examples of driving the NeoPixel, but they use either assembler or the RMT peripheral, However, the ESP32 S3 is just fast enough to be able to create the pulse times within the specified range:

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

void writeGRB(int pin, int GRB)

{

int mask = 0x800000; 

volatile int duty = 0; 

for (int j = 0; j < 24; j++)

{

gpio_set_level(pin, 1); 

if ((GRB & mask))

{

for (volatile int i = 0; i < 3; i++)

{

}

duty = 0; 

duty = 0; 

gpio_set_level(pin, 0); 

duty++; 

duty = 0; 

duty = 0; 

duty = 0; 

}

else

{

duty = 0; 

gpio_set_level(pin, 0); 

for (volatile int i = 0; i < 5; i++)

{

}

}

mask = mask >> 1; 

}

vTaskDelay(60 / portTICK_PERIOD_MS); 

}

void app_main(void)

{

int pin = 48; 

gpio_reset_pin(pin); 

gpio_set_direction(pin, GPIO_MODE_OUTPUT); 

gpio_set_level(pin, 0); 

vTaskDelay(10 / portTICK_PERIOD_MS); 

int color = 0x0000FF; 

writeGRB(pin, color); 
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    vTaskDelay(1000 / portTICK_PERIOD_MS); color = 0x00FF00; 

writeGRB(pin, color); 

vTaskDelay(1000 / portTICK_PERIOD_MS); 

color = 0xFF0000; 

writeGRB(pin, color); 

vTaskDelay(1000 / portTICK_PERIOD_MS); 

}

All of the work is done by the writeGRB function which uses time-wasting instructions to set the pulse times as near as possible to the specification. 

Setting a variable to zero is usually the smallest time delay you can create and incrementing a variable takes longer. The code was manually tuned by sending the signal to another GPIO line and using a logic analyzer to adjust the timings. 

If you try this out then, on an ESP32 S3, the timings are 350ns, 720ns and 1.23μs for zero high time, one high time and the total time respectively. 

These are within the permitted error. 

The same approach works with an ESP32 with a NeoPixel connected to a GPIO line but as it is slightly slower the for loop’s timing has to be modified: for (int j = 0; j < 24; j++)

{

gpio_set_level(pin, 1); 

if ((GRB & mask))

{

for (volatile int i = 0; i < 2; i++)

{

}

duty = 0; 

gpio_set_level(pin, 0); 

duty = 0; 

duty = 0; 

duty = 0; 

duty = 0; 

}

else

{

gpio_set_level(pin, 0); 

for (volatile int i = 0; i < 3; i++)

{

}

duty = 0; 

}

With these changes, the timings are 370ns, 690ns and 1.22 sf μ or a T0H, T1H 

and the total time respectively. These are within the permitted error. 
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A Simple RMT NeoPixel Driver

We have already seen how the RMT can be used to capture and decode bit streams, it is also easy to use it to generate bit streams. RMT transmission works in much the same way as reception with a few obvious differences. 

The data structures are the same – the data takes the form of specifying the level and duration in clock pulses for each pulse. You need to create a tx_channel using:

rmt_new_tx_channel(pconfig, pchan)

where pconfig is a pointer to a rmt_tx_channel_config_t struct with the following fields:

 gpio_num

GPIO to use

 clk_src 

Clock source 

 resolution_hz 

Channel clock resolution, in Hz

 mem_block_symbols 

Size of memory block used in DMA

or just as a buffer

 trans_queue_depth

Depth of internal transfer queue. 

 intr_priority

Interrupt priority

 invert_out

Invert channel signal

 with_dma

Use DMA

 io_loop_back

For testing

 io_od_mode

GPIO as open-drain mode

So to setup a transmit channel with a 100ns clock:

int pin = 48; 

rmt_channel_handle_t led_chan = NULL; 

rmt_tx_channel_config_t tx_chan_config = {

.clk_src = RMT_CLK_SRC_DEFAULT, 

.gpio_num = pin, 

.mem_block_symbols = 64, 

.resolution_hz = 10000000, 

.trans_queue_depth = 4, 

.flags.with_dma = false, 

}; 

rmt_new_tx_channel(&tx_chan_config, &led_chan); 

One complication is that the transmit channel works asynchronously and you have to supply an encoder which takes your data and converts it into RMT format. We could create an encoder to convert RGB values into RMT 

values, but for simplicity we create a standard function that does the job and use the copy encoder which simply copies the RMT values to the driver. 
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The complete program to set the onboard NeoPixel LED is; 

#include "freertos/FreeRTOS.h" 

#include "driver/rmt_tx.h" 

void convertGRB(int GRB, rmt_symbol_word_t *rawdata)

{

int mask = 0x800000; 

for (int j = 0; j < 24; j++)

{

if ((GRB & mask))

{

rawdata[j].level0 = 1; 

rawdata[j].duration0 = 7; 

rawdata[j].level1 = 0; 

rawdata[j].duration1 = 12 - 7; 

}

else

{

rawdata[j].level0 = 1; 

rawdata[j].duration0 = 3; 

rawdata[j].level1 = 0; 

rawdata[j].duration1 = 12 - 3; 

}

mask = mask >> 1; 

}

}

rmt_symbol_word_t raw_symbols[100]; 

void app_main(void)

{

int pin = 48; 

rmt_channel_handle_t led_chan = NULL; 

rmt_tx_channel_config_t tx_chan_config = {

.clk_src = RMT_CLK_SRC_DEFAULT, 

.gpio_num = pin, 

.mem_block_symbols = 64, 

.resolution_hz = 10000000, 

.trans_queue_depth = 4, 

.flags.with_dma = false, 

}; 

rmt_new_tx_channel(&tx_chan_config, &led_chan); 

rmt_copy_encoder_config_t config = {}; 

rmt_encoder_handle_t encoder = NULL; 

rmt_new_copy_encoder(&config, &encoder); 

rmt_enable(led_chan); 

rmt_transmit_config_t txconf = {.loop_count = 1}; 

int color = 0x00FFFF; 

convertGRB(color, raw_symbols); 

rmt_transmit(led_chan, encoder, raw_symbols, 

24 * sizeof(rmt_symbol_word_t), &txconf); 

rmt_tx_wait_all_done(led_chan, 10000); 

}
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The convertGRB function takes a 32-bit GRB value and encodes it as a rmt_symbol_word_t array. Each element stores the state of the line, high or low, and how long the line is to be high or low in tenths of a microsecond. 

This is as fast a clock as we can use and it results in 0 pulses with a high time of 300ns and 1 pulses with a high time of 700ns and a total width of 1200ns, which is within the tolerance of the specification. 

You can use this as the basis for a more general NeoPixel function. To drive more than one pixel at a time, all you need to do is increase the number of bits to a multiple of 24 and make sure that you leave at least 50 s μ between 

each setting. 
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Summary

● The DHT22 is a low-cost temperature and humidity sensor. It uses a custom single wire bus which is not compatible with the well known 1-Wire bus. Its asynchronous protocol is easy to implement directly. 

● An alternative to direct software implementation is to use the RMT 

device to receive and decode the bitstream

● The 1-Wire bus is a proprietary, but widely-used, bus. It is simple and very capable. As its name suggests, it makes use of a single data wire and usually a power supply and ground. 

● Implementing the 1-Wire protocol is mostly a matter of getting the timing right. 

● There are three types of interaction: presence pulse, which simply asks any connected devices to reply and make themselves known, read and write. 

● The 1-Wire protocol is easier to implement than you might think because each bit is sent as a “slot” and while timing is critical within the slot, how fast slots are sent isn’t and the master is in control of when this happens. 

● The DS18B20 temperature sensor is one of the most commonly encountered 1-Wire bus devices. It is small, low-cost and you can use multiple devices on a single bus. 

● After a convert command is sent to the device, it can take 750ms before a reading is ready. To test for data ready you have to poll on a single bit. Reading a zero means data not ready and reading a one means data ready. When the data is ready, you can read the 

scratchpad memory where the data is stored. 

● The DS18B20 has other commands that can be used to set 

temperature alarms etc, but these are rarely used. 

● The ESP32 S3 is just fast enough to control its onboard RGB LED via direct GPIO output. 

● The RMT is useful in transmit mode as a way of generating a pulse stream and it can be used to control a NeoPixel array. 
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Chapter 15

The Serial Port

The serial port is one of the oldest of ways of connecting devices together, but it is still useful as it provides a reasonably fast communication channel that can be used over a longer distance than most other connections, such as USB. Today, however, its most common and important use is in making connections with small computers and simple peripherals. It can also be used as a custom signal decoder, see later. 

Serial Protocol

The serial protocol is very simple. It has to be because it was invented in the days when it was generated using electromechanical components, motors and the like. It was invented to make early teletype machines work and hence you will find abbreviations such as TTY used in connection with it. 

As the electronic device used for serial communication is called a Universal Asynchronous Receiver/Transmitter, the term UART is also often used to refer to the protocol. 

The earliest standards are V24 and RS232. Notice, however, that early serial communications worked between plus and minus 24V and later ones between plus and minus 12V. Today's serial communications work at logic, or TTL, levels of 0V to 5V or 0V to 3.3V. This voltage difference is a problem we will return to later. What matters is that, irrespective of the voltage, the protocol is always the same. 

For the moment let's concentrate on the protocol. As already mentioned, it’s simple. The line rests high and represents a zero. When the device starts to transmit it first pulls the line low to generate a start bit. The width of this start bit sets the transmission speed as all bits are the same width as the start bit. After the start bit there are a variable number, usually seven or eight, data bits, an optional single parity bit, and finally one or two stop bits. 

Originally the purpose of the start bit was to allow the motors etc to get started and allow the receiving end to perform any timing corrections. The stop bits were similarly there to give time for the motors to come back to their rest position. In the early days the protocol was used at very slow speeds; 300 baud, i.e. roughly 300 bits per second, was considered fast enough. 
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Today the protocol is much the same, but there is little need for multiple stop bits and communication is often so reliable that parity bits are dispensed with. Transmission speeds are also higher, typically 9600 or 115200 baud. 

To specify what exact protocol is in use, you will often encounter a short form notation. For example, 9600 baud, 8 data bits, no parity, one stop bit, will be written as 9600 8n1. Here you can see the letter 0 (01101111 or 0x6F) transmitted using 8n1: 

Notice that the signal is sent least significant bit first. The first low is the start bit, then the eight dots show the ideal sampling positions for the receiver. The basic decoding algorithm for receiving serial data is to detect the start of the start bit and then sample the line at the center of each bit time. Notice that the final high on the right is the stop bit. Notice also that the sampling points can be put to use on custom protocols. As long as the data is transmitted in fixed time “cells” indicated by a start bit, you can use a serial port to read individual bits – see later. 

For a serial connection to work, it is essential that the transmitter and the receiver are set to the same speed, data bits and parity. Serial interfaces most often fail because they are not working with the same settings. A logic analyzer with a serial decoder option is an essential piece of equipment if you are going to do anything complicated with serial interfacing. 

What is a baud? Baud rate refers to the basic bit time. That is, 300 baud has a start bit that is 1/300s wide. This means that for 9600 baud a bit is 1/9600 

wide or roughly 104µs and at 115200 baud a bit is 1/115200 or roughly 8.6µs. Notice that baud rate doesn't equate to the speed of sending data because of the overhead in stop, start and perhaps parity bits to include in the calculation. 
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UART Hardware

A simple serial interface has a transmit pin, Tx, and a receive pin, Rx. That is, a full serial interface uses two wires for two-way communications. 

Typically you connect the Tx pin on one device to the Rx pin on the other and vice versa. The only problem is that some manufacturers label the pins by what they should be connected to not what they are and then you have to connect Rx to Rx and Tx to Tx.  If you are in any doubt you need to check with a meter, logic probe or oscilloscope which pin is which. 

In addition to the Tx and Rx pins, a full serial interface also has a lot of control lines. Most of these were designed to help with old-fashioned teleprinters and they are not often used. For example, RTS - Request To Send is a line that is used to ask permission to send data from the device at the other end of the connection, CTS - Clear To Send is a line that indicates that it is okay to send data and so on. Usually these are set by the hardware automatically when the receive buffer is full or empty. 

You can use RTS and CTS as a hardware flow control. There is also a standard software flow control involving sending XON and XOFF characters to start and stop the transmission of data. For most connections between modern devices you can ignore these additional lines and just send and receive data. If you need to interface to something that implements a complex serial interface you are going to have to look up the details and hand-craft a program to interact with it. 

The ESP32 has three UARTs which can be used with any GPIO lines that support input and output but there are default assignments: UART0

UART1

UART2

Tx

1

10

17

Rx

3

9

16

On most development boards you cannot use UART1 without changing the default pin allocations as GPIO9 and GPIO10 are generally used to interface flash memory. Also notice that UART0 is mapped to the USB port by default, but if you don’t want to use it while your program is running you can use it as a general UART. 

Each UART shares a hardware-implemented 1024-byte buffer which by default is allocated as 128 bytes to a receive and transmit FIFO (first in, first out) for each UART. 

There is a problem with making the connection to the ESP32’s Rx and Tx pins in that devices work at different voltages. PC-based serial ports usually use +13V to -13V and all RS232-compliant ports use a + to - voltage swing, which is completely incompatible with most microprocessors which work at 5V or 3.3V. 
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If you want to connect the ESP32 to a PC or other standard device then you need to use a TTL-to-RS232 level converter. In this case it is easier to use the PC's USB port as a serial interface with a USB-to-TTL level converter. All you have to do is plug the USB port into the PC, install a driver and start to transmit data. Remember when you connect the ESP32 to another device, that Tx goes to the other device's Rx and Rx goes to the other device's Tx pin. Also remember that the signaling voltage is 0V to 3.3V. 

Setting Up the UART

The documentation suggests that the first thing to do is configure the interface and then load the driver but in practice it seems to be better to load the driver first:

uart_driver_install(uart_num, rx_buffer_size, tx_buffer_size, queue_size, puart_queue, intr_alloc_flags)

The UART has a hardware FIFO buffer but it is small and it is usual to allocate memory as a ring buffer to store the data, see later. The uart_queue can be specified to store events that occur while the UART is being used. In most cases you can ignore this and set the pointer puart_queue to NULL. 

There are two other functions that relate to the driver:



esp_err_t uart_driver_delete(uart_num)

 bool uart_is_driver_installed(uart_num)

To use a UART you have to configure it using:

uart_param_config(uart_num, puart_config)

where uart_num is either UART_NUM_0, UART_NUM_1 or UART_NUM_2 and puart_config points to uart_config_t, a struct containing:

 baud_rate  

UART baud rate

 data_bits   

Number of data bits

 parity   

One of:

UART_PARITY_DISABLE 

UART_PARITY_EVEN

UART_PARITY_ODD

 stop_bits 

Number of stop bits



flow_ctrl  

One of:  

UART_HW_FLOWCTRL_DISABLE 

UART_HW_FLOWCTRL_RTS 

UART_HW_FLOWCTRL_CTS 

UART_HW_FLOWCTRL_CTS_RTS

 rx_flow_ctrl_thresh  UART HW RTS threshold



source_clk  

One of:

UART_SCLK_APB 

UART_SCLK_REF_TICK 

UART_SCLK_DEFAULT
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As well as the configuration function there are functions that let you set individual parameters:



uart_set_baudrate()



uart_set_word_length()



uart_set_parity() 



uart_set_stop_bits()



uart_set_hw_flow_ctrl() 

There are also get versions of each of these and:



uart_get_sclk_freq

As well as setting the characteristics of the serial communications, you also have to select the GPIO lines to use:

uart_set_pin(uart_num, tx, rx, rts, cts)

where tx, rx, rts and cts are the GPIO numbers to use for each function with -1 set if the pin isn’t in use. 

The signal on any pin can also be inverted:

uart_set_line_inverse(uart_num, inverse_mask)

where the inverse_mask is the OR any of:



UART_SIGNAL_INV_DISABLE



UART_SIGNAL_IRDA_TX_INV 



UART_SIGNAL_IRDA_RX_INV  



UART_SIGNAL_RXD_INV



UART_SIGNAL_CTS_INV



UART_SIGNAL_DSR_INV



UART_SIGNAL_TXD_INV



UART_SIGNAL_RTS_INV



UART_SIGNAL_DTR_INV  

There are some more advanced parameters which are described in detail later. 

Data Transfer

After you have set up the UART you can start sending and receiving data using methods. 

There is a single write function:

uart_write_bytes(uart_num, pbuf, num)

This writes the data in referenced by pbuf as specified by num bytes. If tx_buffer_size is set to 0, this function blocks until all of the data has been sent. Otherwise the function returns after all of the data has been copied into  tx_buffer. Notice that this means that the function could return well before all of the data have actually been transmitted. The tx_buffer is 329

slowly processed by the UART ISR until it too is empty. The function returns the number of bytes sent to the Tx buffer or -1 if there is an error. The function uart_write_bytes_with_break sends data and then sends the special break character so that the line is held down for longer than a single character time. 

The single read function is:

uart_read_bytes(uart_num, pbuf, num, ticks_to_wait)

This reads a maximum of num bytes from the UART buffer and will wait ticks_to_wait FreeRTOS ticks, usually 10ms per tick. 

There is also a function which can flush the Rx buffer, which is a common requirement before starting a fresh transaction:

uart_flush(uart_num)

Loopback Test

If you connect GPIO1 to GPIO2 we can use these pins to perform some loopback tests that demonstrate how things work. Alternatively you can use: uart_set_loop_back(uart_num, loop_back_en)

which connects Tx to Rx for testing. Actually using a physical wire between two GPIO lines is more realistic and this is what we use to test the UART in the following program:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include <unistd.h> 

#include "driver/uart.h" 

void delay_us(int t) {

usleep(t); 

}

void app_main(void)

{

uart_driver_install(UART_NUM_2, 1024, 1024, 0, NULL, 0); 

uart_config_t uart_config = {

.baud_rate = 9600, 

.data_bits = UART_DATA_8_BITS, 

.parity = UART_PARITY_DISABLE, 

.stop_bits = UART_STOP_BITS_1, 

.flow_ctrl = UART_HW_FLOWCTRL_DISABLE, 

.source_clk = UART_SCLK_DEFAULT

}; 

uart_param_config(UART_NUM_2, &uart_config); 

uart_set_pin(UART_NUM_2, 1, 2, -1, -1); 
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  char SendData[] = "Hello World"; uart_flush(UART_NUM_2); 

uart_write_bytes(UART_NUM_2, SendData, sizeof(SendData)); 

char RecData[100]; 

int n = uart_read_bytes(UART_NUM_2, RecData, 

sizeof(SendData), 3); 

RecData[n + 1] = 0; 

printf("%s\n", RecData); 

printf("%d    %d\n", n, sizeof(SendData)); 

}

The uart_flush clears out any spurious characters in the Rx buffer before we send some real data. If you try to use the driver too soon after installation you can expect to encounter some receive errors. 

If you try this out without the 30ms wait in the read function you will find that it doesn’t work. The reason is that the write method stores the data in a buffer and returns almost at once and the data is sent by the UART later, which at 9600 baud takes around 13.5ms. The problem is that the read function tries to read the data even before the first character has arrived. 

This is another example of input being harder than output. To send data via a serial port you simply write the data to the buffer and wait while it is sent. 

To read data from a serial port you need to know when to read it. 

There are a number of ways around this problem and which one you use depends on the agreed protocol between the transmitter and the receiver. As the UART has buffers, it is ready to receive data at any time without the intervention of the program and, as long as the buffer doesn’t fill up, you can delay reading until you are ready to process the data. You might think that given the transmitted data only takes 13.5ms, we only need a delay that long to get the data. In fact, you need a delay of at least 24ms and its length depends on when the data is transferred to the Rx buffer. 

Instead of inserting an estimated delay we can arrange to poll for the data using the UART’s ring buffers rather than its FIFO buffers. 

Serial Polling

The key method in implementing UART polling is:

uart_get_buffered_data_len(uart_num, pnum)

which returns the number of characters in the Rx ring buffer waiting to be read. 

There is also:

uart_get_tx_buffer_free_size(uart_num,pnum)

which returns the number of bytes that are free in the Rx ring buffer in. 
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It is easy to see that you can use the uart_get_buffered_data_len function to write polling loops which test to see if there is anything to read. For example, to create a blocking read:

char uart_read(uart_port_t uart_num) {

size_t num; 

do {

uart_get_buffered_data_len(uart_num, &num); 

} while (num == 0); 

char byte; 

uart_read_bytes(UART_NUM_2, &byte, 1, 0); 

return byte; 

}

This waits forever for there to be at least one byte in the ring buffer and then reads it and returns it. The advantage this offers is that you can do other work within the while loop and check that reading hasn’t been waiting too long. That is, you can easily extend it to include a timeout. However, there are still problems with this blocking function. It waits for data to be ready to read, but how can you know that all of the data that you are expecting has been read? 

There are three general solutions to this problem:

1. Work in fixed sized blocks so that everything that is exchanged between transmitter and receiver has the same number of bytes. If you want to send something smaller then you need to pad the block with null bytes. Of course, this only works if you can identify a code to use as a null byte. 

2. Use a terminator such as a line feed or a carriage return. This is what the readline method is for. Again you have to have a suitable code to use as a terminator. 

3. Rely on timing to tell you when a transmission is complete. This is typically how interactions with users take place if they are not line-oriented. The algorithm is – wait till the first character arrives, keep waiting for additional characters until an inter-byte timeout is up. 

The idea is that a transmission is a continuous flow of bytes separated by a maximum time interval. 

Buffers

If you read the specifications for the ESP32’s UART you will discover that it has a 1-�kbyte buffer shared between the three UARTs in 128-byte blocks. 

The documentation suggests that the buffer size can be varied, but in practice the driver does not implement this and each of the UARTs gets a 128-byte buffer for its Rx and Tx channels. 
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What is more difficult to discover is that the UART driver implements a ring buffer for both Rx and Tx channels in addition to the 128-byte FIFO buffer implemented by the hardware. You can change the size of this software buffer and, in general, this is all you need to do because the 128-byte FIFO 

buffer is serviced by a regular interrupt and shouldn’t fill up unless the ring buffer does so first. 

The read and write functions transfer data directly to and from the ring buffer which in turn transfers data to the FIFO buffer as space or data become available. This all works transparently as long as the data doesn’t overflow the buffers. If it does then the result might not be what you expect due to the way the two buffers interact. 

The write method is only effectively non-blocking if there is space in the ring buffer for it to write its data and return. If the ring buffer is full the write method blocks and waits for space to become free. 

Notice that data written to the Tx FIFO is transmitted out at a steady rate determined by the baud rate irrespective of whether there is anything receiving that data – i.e. by default there is no flow control. What this means is that the Tx ring buffer is filled at the rate that the program can submit data and the Tx FIFO buffer empties at the baud rate which is much slower. 

For the Rx buffers things are the other way round – the FIFO buffer fills at the baud rate and is transferred to the ring buffer at a much higher rate. 

Clearly in any given situation the size of the buffers matters. This all sounds complicated, but it is easier to understand after a few extreme examples. 

First consider what happens when the Tx ring buffer is too small for the amount of data being sent, but the Rx buffer is more than big enough:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "driver/uart.h" 

#include "driver/gptimer.h" 

gptimer_handle_t tick_us_start(void) {

gptimer_config_t timer_config = {

.clk_src = GPTIMER_CLK_SRC_DEFAULT, 

.direction = GPTIMER_COUNT_UP, 

.resolution_hz = 1000000, 

}; 

gptimer_handle_t gptimer_us = NULL; 

gptimer_new_timer(&timer_config, &gptimer_us); 

gptimer_enable(gptimer_us); 

gptimer_start(gptimer_us); 

return gptimer_us; 

}
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int64_t tick_us(gptimer_handle_t gptimer_us, int64_t offset) {

uint64_t count; 

gptimer_get_raw_count(gptimer_us, &count); 

return count + offset; 

}

void app_main(void)

{

uart_driver_install(UART_NUM_2, 1024, 256, 0, NULL, 0); 

uart_config_t uart_config = {

.baud_rate = 9600, 

.data_bits = UART_DATA_8_BITS, 

.parity = UART_PARITY_DISABLE, 

.stop_bits = UART_STOP_BITS_1, 

.flow_ctrl = UART_HW_FLOWCTRL_DISABLE, 

.source_clk = UART_SCLK_DEFAULT

}; 

uart_param_config(UART_NUM_2, &uart_config); 

uart_set_pin(UART_NUM_2, 1, 2, -1, -1); 



int n = 252; 

char SendData[n]; 

for (int i = 0;i < n;i++) {

SendData[i] = 'A'; 

}

SendData[n - 1] = 0; 

gptimer_handle_t th = tick_us_start(); 

int64_t t = tick_us(th, 0); 

uart_flush(UART_NUM_2); 

uart_write_bytes(UART_NUM_2, SendData, sizeof(SendData)); 

printf("t= %f\n", (tick_us(th, 0) - t) / 1000.0); 

}

The Tx ring buffer is 256 bytes and the Rx ring buffer is 1024 bytes. If you send only 252 characters then the buffer just copes and the write takes around 0.136us. If you increase this to 253 characters then the write has to wait for the buffer to be free and takes 50.65ms. Notice that the Rx buffer is large enough to store all of the data sent and, as long as you leave a long enough delay before reading the data or arranging polling, no data is lost. For example, if you send 1000 bytes the time to write goes up to 788.68ms and the time to send the data at 9600 baud is around 1 second. Remember, the write returns as soon as it has written its last byte to the buffer, but the buffer still has around 250 bytes to send at this point. 
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So, if we wait around 300ms, all of the data should be in the receive buffer and you will see all of the data printed:

int n = 1000; 

char SendData[n]; 

for (int i = 0;i < n;i++) {

SendData[i] = 'A'; 

}

SendData[n - 1] = 0; 

gptimer_handle_t th = tick_us_start(); 

int64_t t = tick_us(th, 0); 

uart_flush(UART_NUM_2); 

uart_write_bytes(UART_NUM_2, SendData, sizeof(SendData)); 

printf("t= %f\n", (tick_us(th, 0) - t) / 1000.0); char RecData[2000]; 

int nr = uart_read_bytes(UART_NUM_2, RecData, 

sizeof(RecData), 300 / portTICK_PERIOD_MS); 

RecData[nr + 1] = 0; 

printf("%s\n", &RecData[1]); 

printf("%d    %d\n", nr, sizeof(SendData)); 

For this to work, you might have to increase the size of the main program’s stack. Use menuconfig to make this change:

Now consider what happens if the receive buffer is too small. If we arrange to send 1000 bytes with a large enough Tx buffer, then the write returns in about 0.18 ms and the data then takes just over a second to be transmitted. 

With an Rx buffer of 512 bytes only 613 bytes are ever received:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include <string.h> 

#include <unistd.h> 

#include "driver/uart.h" 

#include "driver/gptimer.h" 
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gptimer_handle_t tick_us_start(void) {

gptimer_config_t timer_config = {

.clk_src = GPTIMER_CLK_SRC_DEFAULT, 

.direction = GPTIMER_COUNT_UP, 

.resolution_hz = 1000000, 

}; 

gptimer_handle_t gptimer_us = NULL; 

gptimer_new_timer(&timer_config, &gptimer_us); 

gptimer_enable(gptimer_us); 

gptimer_start(gptimer_us); 

return gptimer_us; 

}

int64_t tick_us(gptimer_handle_t gptimer_us, int64_t offset) {

uint64_t count; 

gptimer_get_raw_count(gptimer_us, &count); 

return count + offset; 

}

void delay_us(int t) {

usleep(t); 

}

void app_main(void)

{

uart_driver_install(UART_NUM_2, 512, 1024 * 2, 0, NULL, 0); uart_config_t uart_config = {

.baud_rate = 9600, 

.data_bits = UART_DATA_8_BITS, 

.parity = UART_PARITY_DISABLE, 

.stop_bits = UART_STOP_BITS_1, 

.flow_ctrl = UART_HW_FLOWCTRL_DISABLE, 

.source_clk = UART_SCLK_DEFAULT

}; 

uart_param_config(UART_NUM_2, &uart_config); 

uart_set_pin(UART_NUM_2, 1, 2, -1, -1); 

int n = 1000; 

char SendData[n]; 

for (int i = 0;i < n;i++) {

SendData[i] = 'A' + i / 40; 

}

SendData[n - 1] = 0; 
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  gptimer_handle_t th = tick_us_start(); 

int64_t t = tick_us(th, 0); 

uart_flush(UART_NUM_2); 

uart_write_bytes(UART_NUM_2, SendData, sizeof(SendData)); 

printf("t= %f\n", (tick_us(th, 0) - t) / 1000.0); delay_us(2000 * 1000); 

char RecData[2000]; 

int nr = uart_read_bytes(UART_NUM_2, RecData, sizeof(RecData), 300 / portTICK_PERIOD_MS); 

RecData[nr + 1] = 0; 

printf("%s\n", &RecData[1]); 

printf("%d    %d\n", nr, sizeof(SendData)); 

uart_driver_delete(UART_NUM_2); 

}

The extra 100 or so bytes are presumably due to the hardware-provided 128-byte FIFO buffer. The program prints blocks of AAA, BBB and so on and if you look at the display you will find that it is alphabetical until OOO and then it jumps to YYY, That is, the end of the transmitted data has overwritten the middle of the sequence with the end. The reason is the way that the ring buffer interacts with the FIFO buffer. When the ring buffer is full it refuses more data but the FIFO buffer continues to receive data and when the transmission is complete the ring buffer has the first part of the transmission and the FIFO buffer has the last part. 

To summarize:

● Data is not lost when buffers fill up during writing and all that happens is that the write method will take longer to complete. 

● Data is lost when buffers fill up while receiving data and the lost data isn’t necessarily at the end of the transmission. 

● The statement that data isn’t lost when writing data has occasional exceptions, but none that are repeatable. 

If you want to avoid problems with serial data, make sure that the Rx buffer is large enough not to fill up, and read data from it often. The size of the Tx buffer is less critical, but it can slow your program down. 

If you want to work without the ring buffer the function:

int uart_tx_chars(uart_num,pbuffer, len)

will write directly to the Tx FIFO and return when it is full with the number of bytes written. To make this work you need to set the size of the Rx and Tx ring buffers to zero. 
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Timeouts

From the previous section you should be able to see that the usual way that a transmitter and receiver interact is that the transmitter, after perhaps a longish silence, “decides” to send some data. This is usually sent as a block and, as long as the transmitter isn’t overloaded, each character follows the next with minimum delay. What this means is that, from the receiver’s point of view, there might be a long wait before being able to start reading data, but after that there should be only a short interval between each character. If the receiver finds itself waiting for a long time for the next character then the chances are the transmitter has finished sending a block of data. 

Thus there are two sorts of timeout we need to specify. An initial timeout, which is how long to wait before the first character is received, and an inter-character timeout, which is the maximum time the receiver should wait between characters before concluding that in all probability the transmitter has finished. 

The timeout int in the read function is the time that the function will wait to see if there is a new character in the buffer. That is, when you call uart_read_bytes it will read characters into the buffer until either the buffer is full or no new characters have been received for the specified timeout. 

It is easy to create a function that works in a more complex way: int uart_read_chars(uart_port_t uart_num,char *buf,int length, int timeout, int timeout_char) {

int nr=uart_read_bytes(uart_num, buf, 1, 

timeout / portTICK_PERIOD_MS); 

if (nr==0) return 0; 

nr=uart_read_bytes(uart_num, &buf[1], length-1, 

timeout_char / portTICK_PERIOD_MS); 

return nr; 

}

The first read only waits for timout ms and either times out or reads a single character. If it times out it returns a 0 to indicate that no characters were read. If it doesn’t time out it tries to read as many characters as the buffer can hold waiting for up to timeout_char between characters. 

The time to wait for the first character is usually set by a combination of how much time the receiver can devote to waiting in a polling loop and how often the transmitter sends data. The inter-character time is usually low if the transmitter manages to keep the Rx FIFO buffer topped up. It should be set to less than the characteristic time between data blocks from the transmitter. 
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Polling On Write

Writing data to the UART is much simpler than reading it. Data is written to the Tx ring buffer as fast as it can be and the only thing that can go wrong is having to wait because it is full. If so then the call to the write method will block until there is space to accept all of the data.  If your program has nothing else to do while the transmission is underway, there is no problem. 

If, however, your program has to service a polling loop doing a range of other things, then it can be a big problem. 

The function:

uart_get_tx_buffer_free_size(uart_num, psize)

will store the amount of free space in the Tx ring buffer in the variable pointed to by psize. 

You can use this to decide when to send additional data. 

Alternatively you can use:

uart_wait_tx_done(uart_num, ticks_to_wait)

which blocks until the Tx FIFO buffer is empty. 

Flow Control

The problem of buffers filling up is usually dealt with by flow control, i.e. 

signaling whether or not it is okay to send more data. The ESP32 supports both software and hardware flow control. The difference is that under software flow of control the program has to set the control lines, but hardware control sets them automatically based on the state of the buffers. 

Hardware flow control is based on two control lines, Request To Send (RTS) and Clear To Send (CTS). For the ESP32, RTS is an output and CTS is an input and you can configure any suitable GPIO line to act as either.  Exactly how the RTS and CTS lines are actually used depends on what you are connecting to and what control lines it has. 
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A lot of the jargon and procedures involved have their origins back in the days of the mechanical teletype and the non-digital phone system. What matters today is to know that the RTS line is low when there is space in the ESP32’s Rx FIFO buffer and high when it is full to a specified level – usually 80% or 90% of the buffer capacity. What this means is that the transmitter can use this to determine if it is “clear to send” data to the receiver. That is, if RTS is low you can send data and if RTS is high you should stop sending data. This is exactly what happens if you connect the RTS line to the CTS 

line. That is, if the CTS line is low the ESP32 will send any data in its Tx FIFO buffer and if the CTS line is high it will hold the data in the Tx FIFO 

buffer. 

What this means is if you have two ESP32-like devices, traditionally referred to as DTE, Data Terminal Equipment, then you can connect them together to implement flow control on TX and RX using:

The only complication is that some devices are regarded as DCE, Data Communication Equipment, which are always connected to a DTE and these have their RTS and CTS line labels swapped over. This allows the connections to be specified as “connect RTS to RTS and CTS to CTS”. In practice, you need to make sure that RTS is an output connected to line marked CTS, which is an input on the other device, or to a line marked RTS, which is also an input on the other device. 

As the ESP32 is acting as both DCE1 and DCE2, to test flow control we can simply connect the RTS line on the ESP32 to the CTS line on the ESP32. In the examples given below, it is assumed that GPIO4 is RTS and GPIO5 is CTS and they are connected together in loopback mode. 

The biggest complication in using flow control with the ESP32 is that the RTS signal is linked to the Rx FIFO buffer and not the Rx ring buffer. What this means is that the ESP32 will send a signal to stop the transmission when its FIFO buffer is full, even though there might be lots of space in the ring buffer. Another complication is that data is transferred to the Rx Ring buffer, which has to be at least as big as the FIFO buffer, usually 128 bytes, and the FIFO buffer starts sending data at once. This means that the RX 

FIFO buffer is emptying as incoming data is trying to fill it. This means that the number of bytes it can receive before reaching the threshold is more than you might have guessed. 
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You can see that this is the case in the following example:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include <unistd.h> 

#include "driver/uart.h" 

#include "driver/gptimer.h" 

gptimer_handle_t tick_us_start(void) {

gptimer_config_t timer_config = {

.clk_src = GPTIMER_CLK_SRC_DEFAULT, 

.direction = GPTIMER_COUNT_UP, 

.resolution_hz = 1000000, 

}; 

gptimer_handle_t gptimer_us = NULL; 

gptimer_new_timer(&timer_config, &gptimer_us); 

gptimer_enable(gptimer_us); 

gptimer_start(gptimer_us); 

return gptimer_us; 

}

int64_t tick_us(gptimer_handle_t gptimer_us, int64_t offset) {

uint64_t count; 

gptimer_get_raw_count(gptimer_us, &count); 

return count + offset; 

}

void delay_us(int t) {

usleep(t); 

}

void app_main(void)

{

uart_driver_install(UART_NUM_2, 256, 2000, 0, NULL, 0); 

uart_config_t uart_config = {

.baud_rate = 9600, 

.data_bits = UART_DATA_8_BITS, 

.parity = UART_PARITY_DISABLE, 

.stop_bits = UART_STOP_BITS_1, 

.flow_ctrl = UART_HW_FLOWCTRL_CTS_RTS, 

.rx_flow_ctrl_thresh = 50, 

.source_clk = UART_SCLK_DEFAULT

}; 

uart_param_config(UART_NUM_2, &uart_config); 

uart_set_pin(UART_NUM_2, 1, 2, 4, 5); 
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  int n = 1000; 

char SendData[n]; 

for (int i = 0;i < n;i++) {

SendData[i] = 'A' + i / 40; 

}

SendData[n - 1] = 0; 

gptimer_handle_t th = tick_us_start(); 

int64_t t = tick_us(th, 0); 

uart_flush(UART_NUM_2); 

uart_write_bytes(UART_NUM_2, SendData, sizeof(SendData)); 

printf("t= %f\n", (tick_us(th, 0) - t) / 1000.0); fflush(stdout); 



delay_us(1000 * 1000); 

char RecData[2000]; 

int nr = 0; 

int nt = 0; 

do {

nt = uart_read_bytes(UART_NUM_2, &RecData[nr], 

sizeof(RecData) - nr, 50 / portTICK_PERIOD_MS); 

nr = nr + nt; 

printf("%d    %d\n", nt, nr); 

} while (nt != 0); 

RecData[nr + 1] = 0; 

printf("%s\n", &RecData[1]); 

printf("%d    %d\n", nr, sizeof(SendData)); 

uart_driver_delete(UART_NUM_2); 

}

This program sets up the UART to use flow control on GPIO4 and GPIO5. It then sends 1000 bytes and attempts to read them back in. The while loop reads new data until 1000 bytes have been received.  Notice that we have set a Tx ring buffer large enough to take all of the data to be transmitted. This is important because, in a loopback configuration, if the data could not be sent at once the program would stall at the write method, waiting forever for the ESP32 to read data in after its Rx FIFO buffer was full and it had set RTS to low to halt transmission. With all of the data stored in the ring buffer, the program can continue to try to read the data back in. This is not a consideration when the transmitter and receiver are different devices running different programs. In this case, the transmitter can just wait till the receiver has read enough to clear its Rx FIFO buffer. 

Also notice that the way that the FIFO and ring buffers interact complicates the picture. The data from the FIFO buffer is transferred to the ring buffer, which has to fill before the FIFO buffer fills and sets RTS low. The result is that the data is received in an initial block of 350 bytes rather than 128 
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bytes. When the RX FIFO is full, defined by the 50-byte 

rx_flow_ctrl_thresh field, the transmission from the TX FIFO stops emptying, but it too is kept topped up from the TX ring buffer and so, as soon as the RTS line returns high, it starts sending data again. In this way all of the data is sent. 

You can see the pattern of start/stop transmission on the logic analyzer: The top trace is the Tx line and the bottom trace is the CTS line. The long gap is the delay before the program starts to read the data. The first seven blocks are sent from the Tx FIFO to the Rx FIFO and then to the Rx ring buffer. Then the Rx ring buffer fills and no more data can be transferred out of the Rx FIFO and so the CTS line is held high, halting the transmission. 

Then, after the 1-second delay, the program starts reading the data and the Rx FIFO has space which allows the Tx FIFO to send data and refill from the Tx ring buffer. This continues until all of the data in the Tx ring buffer has been sent. 

If you change the configuration to:

.flow_ctrl = UART_HW_FLOWCTRL_DISABLE, 

and run the program again you will discover that the transmission occurs in one block and you do lose data as the Rx ring buffer isn’t large enough. 

You can discover more about the way flow control works using the loopback configuration, but keep in mind that the fact that the same machine is doing the sending and receiving makes things a little different. For example, as already mentioned, if you drop the size of the Tx ring buffer down below the amount of data to be sent the program will hang – this doesn’t happen if the data is being transmitted by another device. 

343

[image: Image 190]

Using a UART to Decode Data

As an exercise in using a UART to decode a general serial protocol, we can implement the temperature-reading function given in Chapter 14 to read the DS18B20 one-wire device. This is worthwhile as it provides access to the device using hardware. 

The first thing we have to do is deal with the electronics. The default configuration of the UART TX pin seems to work reliably with a pullup. If you are unhappy about this you can use a transistor buffer to act as an open drain output. 

The basic idea is that we can use the UART to send an initial stop pulse which pulls the line down. After this we can send data on the line for a write or just allow the DS18B20 to pull the line low. Of course, we have to get the timing right. Let’s start with the presence/reset pulse. 

If we use a speed of 9600 baud, the start bit pulls the line down for 104.2µs, the next four zero bits holds the line low for 502µs and then the final four one bits allow it to be pulled up. If there is a device connected to the line, it will pull the line down for a few microseconds. The serial port will read the line at the same time it is being written as the Rx is connected to the Tx. 

The Tx sends 0xF0, and you might expect this to be what is received. If there is no device connected then RX will receive 0xF0, but if there is an active device connected the line will be pulled down for some part of the last four bits. As the low-order bits are sent first, this causes the RX to receive something like 0xE0, 0xD0, and so on, i.e. some of the four high-order bits are zeroed by the device pulling the line low. You can use this to detect the device. 

Assuming that the serial line is set to 9600 baud, the presence/reset pulse can be implemented as a function to perform this task:
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int presence(uart_port_t uart_num) {

uart_set_baudrate(uart_num, 9600); 

char byte = 0xF0; 

uart_write_bytes(uart_num, &byte, 1); 

delay_us(1000); 

uart_read_bytes(uart_num, &byte, 1, 30 / portTICK_PERIOD_MS); uart_set_baudrate(uart_num, 115200); 

if (byte == 0xF0)  return -1; 

return 0; 

}

To read and write a single bit we need to increase the baud rate to 115200. In this case the start bit, which acts as the initial pulse to read or write a single bit, lasts 8.7µs. 

To write a zero we simply write 0x00, which holds the line low for eight bits, about 78µs. To write a one we let the line be pulled up after the start bit, which leaves it high for 78µs. To make things slightly faster, we can deal with a single byte at a time:
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To do this programatically:

void writeByte(uart_port_t uart_num, int byte) {

char buf[8]; 

for (int i = 0;i < 8;i++) {

if ((byte & 1) == 1) {

buf[i] = 0xFF; 

}

else {

buf[i] = 0x00; 

}

byte = byte >> 1; 

}; 

uart_write_bytes(uart_num, buf, 8); 

delay_us(1000); 

uart_read_bytes(uart_num, buf, 8, 30 / portTICK_PERIOD_MS); 

}

We have to remember to read the bytes back in otherwise they would still be in the Rx buffer. It is also necessary to wait for the data to be sent. 

Reading a bit works in the same way. If you write 0xFF then the line is allowed to be pulled high and the remote device can pull it low for a zero or let it remain high to signal a one. That is, if you write 0xFF and read back 0xFF then you have read a one:
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That is:

char readByte(uart_port_t uart_num) {

char buf[8]; 

for (int i = 0;i < 8;i++) {

buf[i] = 0xFF; 

}

uart_write_bytes(uart_num, buf, 8); 

delay_us(1000); 

uart_read_bytes(uart_num, buf, 8, 30 / portTICK_PERIOD_MS); char result = 0; 

for (int i = 0;i < 8;i++) {

result = result >> 1; 

if (buf[i] == 0xFF)  result = result | 0x80; 

}

return result; 

}

Again we can read in a whole byte rather than a bit at a time. With these modified readByte and writeByte functions we can use the program developed in Chapter 13 to read the device. The only modifications are to change the parameter that specifies the GPIO line to be used to one that specifies the UART being used and the need to open and set the line’s baud rate. 

The complete program is:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include <unistd.h> 

#include "driver/uart.h" 

void delay_us(int t) {

usleep(t); 

}

char uart_read(uart_port_t uart_num) {

size_t num; 

do {

uart_get_buffered_data_len(uart_num, &num); 

} while (num == 0); 

char byte; 

uart_read_bytes(UART_NUM_2, &byte, 1, 0); 

return byte; 

}
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int uart_read_chars(uart_port_t uart_num, char* buf, int length, int timeout, int timeout_char) {

int nr = uart_read_bytes(uart_num, buf, 1, 

timeout / portTICK_PERIOD_MS); 

if (nr == 0) return 0; 

nr = uart_read_bytes(uart_num, &buf[1], length - 1, 

timeout_char / portTICK_PERIOD_MS); 

return nr; 

}

int presence(uart_port_t uart_num) {

uart_set_baudrate(uart_num, 9600); 

char byte = 0xF0; 

uart_write_bytes(uart_num, &byte, 1); 

delay_us(1000); 

uart_read_bytes(uart_num, &byte, 1, 30 / portTICK_PERIOD_MS); uart_set_baudrate(uart_num, 115200); 

if (byte == 0xF0)  return -1; 

return 0; 

}

void writeByte(uart_port_t uart_num, int byte) {

char buf[8]; 

for (int i = 0;i < 8;i++) {

if ((byte & 1) == 1) {

buf[i] = 0xFF; 

}

else {

buf[i] = 0x00; 

}

byte = byte >> 1; 

}; 

uart_write_bytes(uart_num, buf, 8); 

delay_us(1000); 

uart_read_bytes(uart_num, buf, 8, 30 / portTICK_PERIOD_MS); 

}

char readByte(uart_port_t uart_num) {

char buf[8]; 

for (int i = 0;i < 8;i++) {

buf[i] = 0xFF; 

}

uart_write_bytes(uart_num, buf, 8); 

delay_us(1000); 

uart_read_bytes(uart_num, buf, 8, 30 / portTICK_PERIOD_MS); char result = 0; 

for (int i = 0;i < 8;i++) {

result = result >> 1; 

if (buf[i] == 0xFF)  result = result | 0x80; 

}

return result; 

}
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void app_main(void)

{

uart_driver_install(UART_NUM_2, 256, 2000, 0, NULL, 0); 

uart_config_t uart_config = {

.baud_rate = 9600, 

.data_bits = UART_DATA_8_BITS, 


.parity = UART_PARITY_DISABLE, 

.stop_bits = UART_STOP_BITS_1, 

.flow_ctrl = UART_HW_FLOWCTRL_DISABLE, 

.rx_flow_ctrl_thresh = 50, 

.source_clk = UART_SCLK_DEFAULT

}; 

uart_param_config(UART_NUM_2, &uart_config); 

uart_set_pin(UART_NUM_2, 1, 2, -1, -1); 

uart_flush(UART_NUM_2); 

printf("%d\n", presence(UART_NUM_2)); 

presence(UART_NUM_2); 

writeByte(UART_NUM_2, 0xCC); 

writeByte(UART_NUM_2, 0x44); 

delay_us(1000 * 1000); 

presence(UART_NUM_2); 

writeByte(UART_NUM_2, 0xCC); 

writeByte(UART_NUM_2, 0xBE); 

char data[9]; 

for (int i = 0;i < 9;i++) {

data[i] = readByte(UART_NUM_2); 

}

int t1 = data[0]; 

int t2 = data[1]; 

int temp1 = (t2 << 8 | t1); 

if (t2 & 0x80)  temp1 = temp1 | 0xFFFF0000; 

float temp = temp1 / 16.0; 

printf("temp =%f\n", temp); 

uart_driver_delete(UART_NUM_2); 

}

You can use the readByte and writeByte functions within other one-wire functions with minor modifications. 

You can use the UART approach whenever a signaling protocol uses an initial start bit to signal that the data bits that follow use a fixed size “cell”. 

However, you cannot use the UART approach with the DHT22 temperature and humidity sensor because, although it sends each bit with a start bit, the time to the next start bit varies. 
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Summary

● The serial port is one of the oldest ways of connecting devices together, but it is still very much in use. 

● The serial protocol is asynchronous, but simple. A start bit gives the timing for the entire exchange. 

● Many of the control lines once used with telephone equipment are mostly ignored in computer use and the original ±12V signaling has been mostly replaced by 5V and even 3.3V signaling. 

● The standard hardware that implements a serial connection is usually called a UART. 

● The ESP32 contains three UARTs, one of which is used for the USB 

serial connection. Each UART has a 128-element FIFO send and receive buffer and a resizable ring buffer. 

● The API provides functions for initializing and sending and receiving data. 

● You can use the read and write functions to send and receive byte buffers of data to and from the ring buffer. 

● The write method is blocking but as it writes to the ring buffer it returns at once as long as there is free space. Also as the write method waits for space in the ring buffer, data is never lost in transmission. 

● As the read method relies on the ring buffer, data can be lost if it fills up. 

● If the ring buffer does fill up then the order of the received data might not be what you expect because the FIFO keeps receiving data. 

● The ESP32 supports simple flow control using the RTS and CTS 

lines, but exactly how these work is complicated by the use of the FIFO and ring buffers. 

● You can use a UART to implement a range of serial data protocols that uses a fixed data cell time. 
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Chapter 16

Using WiFi

The ESP32 comes complete with a radio capable of 2.4GHz WiFi and Bluetooth. Most of the time you can ignore the technical details as  there are easy-to-use functions which enable you to connect to a WiFi network and exchange data. In this chapter we look at the basics and how to create and use a WiFi connection. The libraries involved are many and extensive due to the need to cover a wide range of different protocols. A consequence is that there is no way to cover all of them in a reasonable space. This chapter is about getting started and understanding the basic structure of the WiFi and IP infrastructures. When you understand this the rest of the API becomes much easier to understand. The topic of Bluetooth is omitted as it is so varied that it deserves a book to itself. 

ESP32 Architecture

You don’t really need to know anything about the ESP32’s WiFi hardware to make use of it. Indeed there is very little information available apart from how to use the WiFi drivers in the C development kit. The ESP32 usually has two processor cores, which are used to run the WiFi and applications simultaneously. This means that WiFi has little impact on the running of your application. The two cores, CPU 0 and CPU 1, are the Protocol CPU 

(PRO_CPU) and Application CPU (APP_CPU) respectively. The PRO_CPU 

processor handles the WiFi, Bluetooth and other internal peripherals like SPI, I2C, ADC etc. The APP_CPU runs the application code, including your programs. 
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As well as the radio, the ESP32 also supports four cryptographic accelerators to make the implementation of HTTPS (Hypertext Transfer Protocol Secure) and TLS (Transport Layer Security)  in general more efficient. 

The WiFi Stack

The ESP32 has additional libraries to make it possible to work with the WiFi hardware without having to work at the level of the hardware. 

The esp_wifi library provides high-level functions mostly concerned with setting up the WiFi and making connections. 

The esp_netif is a set of wrapper functions around the open source LwIP 

(Lightweight IP)  stack. In principle this is capable of using other IP stacks, and this is the advantage of using it rather than LwIP directly, but currently it only works with LwIP. 

The WiFi hardware needs periodic attention and this is managed via Free RTOS tasks and using the one core for WiFi operations and the other for applications as described earlier. 

To be clear, you use esp_wifi to establish the connection with the AP 

(Access Point) and esp_netif to use that connection as an IP connection to a Netif (Network interface). In particular esp_netif is responsible for acquiring an IP address via DHCP or manually assigning one, DNS and SNTP. Once you have an esp_netif you can use it to find out the IP address and configure other details of the IP connection. With esp_netif you can start to use the IP interface via the standard sockets API which is part of LwIP or whatever IP stack esp_netif is wrapping at the time. 

What all this means is that using the WiFi interface as an IP interface has three general stages:

1. Connect to a WiFi AP using esp_wifi

2. Set up esp_netif which uses the WiFi connection

3. Use esp_netif to send and receive IP packets using sockets Connecting to WiFi

Making a WiFi connection can be complicated but you can make it much simpler by accepting a default setup which works with most APs. Of course, you can set the ESP32 to work as an AP, but to understand the WiFi component it is easier to start with Station STA mode and connect to an existing AP.  This is also the most common configuration. 

This is also where we first meet the event handler. This is a component designed to allow different IDF components to communicate using events, even if they are running in different tasks on different CPUs. We have to setup the event handler before we create the WiFi infrastructure as it and the 352

esp_netif object use it to communicate state changes to the rest of the software. The WiFi component also makes use of the NVS (None Volatile Storage) API to store details of its connection. 

Notice that there are two parts to getting the WiFi connected – we have to set up the software environment and then we have to configure this to make a connection to a real AP. Once the connection is made, we are also going to want to use esp_netif  to obtain an IP address using DHCP. What all this means is that we need to start our WiFi connection with:

nvs_flash_init(); 

esp_netif_init(); 

esp_event_loop_create_default(); 

We also need to register an event handler for events generated by the esp_wifi and esp_netif

esp_event_handler_register(WIFI_EVENT, ESP_EVENT_ANY_ID, 

wifi_event_handler, NULL); 

esp_event_handler_register(IP_EVENT, IP_EVENT_STA_GOT_IP, 

wifi_event_handler, NULL); 

The wifi_event_handler is a function that we will come back to, but essentially its job is to keep track of how the connection is progressing. 

Next we have to set up esp_wifi and associate it with esp_netif: wifi_init_config_t wificonfig = WIFI_INIT_CONFIG_DEFAULT(); esp_wifi_init(&wificonfig); 

esp_netif_t* netif = esp_netif_create_default_wifi_sta(); 

If you don’t create an esp_netif struct to associate with the wifi_sta, you can connect to the AP, but there will be no DHCP client to get an IP address from and no way to use the connection as an IP connection. 

Now that we have all of the infrastructure set up, it is time to configure the connection between the ESP32 and the AP. To do this we need to set the ssid and password and often the authentication modes that are supported: wifi_config_t staconf = {

.sta = {

.ssid = "  AP Name", 

.password = "  password", 

.threshold.authmode = WIFI_AUTH_WPA_PSK, 

}

}; 

esp_wifi_set_mode(WIFI_MODE_STA); 

esp_wifi_set_config(WIFI_IF_STA, &staconf); 

esp_wifi_set_country_code("  cc", false); 
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where authmode has to be set to any of:

WIFI_AUTH_OPEN 

WIFI_AUTH_WEP

WIFI_AUTH_WPA_PSK        

WIFI_AUTH_WPA2_PSK

WIFI_AUTH_WPA_WPA2_PSK

WIFI_AUTH_ENTERPRISE

WIFI_AUTH_WPA2_ENTERPRISE 

WIFI_AUTH_WPA3_PSK

WIFI_AUTH_WPA2_WPA3_PSK

WIFI_AUTH_WAPI_PSK

WIFI_AUTH_OWE

WIFI_AUTH_WPA3_ENT_192

In general, you have to set authmode to make a connection. If you get it wrong you will see a repeated lost connection report. You don’t have to set the country of operation, but if you don’t the number of channels that can be used is restricted. 

At this point, the software is all set up and the WiFi is configured to connect to the API. We now have to start the WiFi and make the connection: esp_wifi_start(); 

esp_wifi_connect(); 

If we put all this together then the esp_wifi_connect function returns immediately and the attempted WiFi connection proceeds as part of another task, mostly on another core. To keep track of what is going on we need to implement the event handler we registered at the start:

int retry_num = 0; 

static void wifi_event_handler(void* event_handler_arg, 

esp_event_base_t event_base, int32_t event_id, void* event_data) {

switch (event_id) {

case WIFI_EVENT_STA_START:

printf("WIFI CONNECTING....\n"); 

break; 

case WIFI_EVENT_STA_CONNECTED:

printf("WiFi CONNECTED\n"); 

break; 

case WIFI_EVENT_STA_DISCONNECTED:

printf("WiFi lost connection\n"); 

if (retry_num < 5) { 

esp_wifi_connect(); 

retry_num++; 

printf("Retrying to Connect...\n"); 

}

break; 

case IP_EVENT_STA_GOT_IP:

printf("Wifi got IP...\n\n"); 

break; 

}

}
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If you run the program you will see the main program end and messages from the event handler will be displayed as the Wifi connects. 

From here you can add additional features to the connection procedure. In general, anything to do with the configuration of the WiFi connection will be found in esp_wifi and anything to do with the IP configuration or use is in esp_netif. 

A Practical Connect Function

Connecting to WiFi is a standard operation and it makes sense to package it in a function. The status of the WiFi connection is communicated to the calling program via a shared static variable. 

To make the following examples easier to work with, it is reasonable to put the connect functions into a header file wificonnect.h:

int retry_num = 0; 

int wifiStatus = 1000; 

static void wifi_event_handler(void* event_handler_arg, 

esp_event_base_t event_base, int32_t event_id, void* event_data) {

switch (event_id) {

case WIFI_EVENT_STA_START:

wifiStatus = 1001; 

break; 

case WIFI_EVENT_STA_CONNECTED:

wifiStatus = 1002; 

break; 

case WIFI_EVENT_STA_DISCONNECTED:

if (retry_num < 5) {

esp_wifi_connect(); 

retry_num++; 

wifiStatus = 1001; 

}

break; 

case IP_EVENT_STA_GOT_IP:        

wifiStatus = 1010; 

break; 

}

}
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void wifiConnect(char* country, char* ssid, char* password) {

nvs_flash_init(); 

esp_netif_init(); 

esp_event_loop_create_default(); 

esp_event_handler_register(WIFI_EVENT, ESP_EVENT_ANY_ID, 

wifi_event_handler, NULL); 

esp_event_handler_register(IP_EVENT, IP_EVENT_STA_GOT_IP, 

wifi_event_handler, NULL); 

wifi_init_config_t wificonfig = WIFI_INIT_CONFIG_DEFAULT(); esp_wifi_init(&wificonfig); 

esp_netif_create_default_wifi_sta(); 

wifi_config_t staconf = {

.sta = {

.threshold.authmode = WIFI_AUTH_WPA_PSK

}

}; 

strcpy((char*)staconf.sta.ssid, ssid); 

strcpy((char*)staconf.sta.password, password); 

esp_wifi_set_mode(WIFI_MODE_STA); 

esp_wifi_set_config(WIFI_IF_STA, &staconf); 

esp_wifi_set_country_code(country, false); 

esp_wifi_start(); 

esp_wifi_connect(); 

}

Using the functions connection becomes easy:

#include "esp_wifi.h" 

#include "string.h" 

#include "nvs_flash.h" 

#include "wificonnect.h" 

void app_main(void)

{    

wifiConnect("  CO", "  ssid", "  password"); while (wifiStatus != 1010) {

vTaskDelay(10 / portTICK_PERIOD_MS); 

}; 

 //use WiFi connection

}

You can clearly customize the connection to include parameters to control the IP address, host name and authentication type. Also notice that the use of a status variable allows the wifiConnect function to return at once, but we can still wait in the main program for the connection to be made. The vTaskDelay in the while loop allows other tasks to run while waiting. 

In the rest of this chapter it is assumed that the connection function is available as a header file. 
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Using  esp_netif

Once the WiFi connection has been made, most of the details of the IP 

connection are handled by esp_netif and are implemented by LwIP.  The WiFi driver provides the connection but it is the esp_netif component that supplies the IP setup – IP address, netmask, gateway, host name, etc. 

As an example of making use of it, we can add some calls to the setup function to discover the IP address that has been assigned. 

When the WiFi connection is set up you can retrieve the default netif struct and a struct that gives the IP information:

esp_netif_t* netif = esp_netif_get_default_netif(); 

esp_netif_ip_info_t ip_info; 

esp_netif_get_ip_info(netif, &ip_info); 

a struct, esp_netif_ip_info_t, is created which contains the details of the default connection. Three fields give the details of the IP connection:

 ip 

IPV4 address 

 netmask 

IPV4 netmask 

 gw 

IPV4 address of gateway

You can use these directly and there are functions which convert the raw address into alternative formats. In particular,  ip4addr_ntoa converts a 32-bit integer representation into the more usual dotted triplet form. For example:

char bufIP[20]; 

printf("IP:%s\n",esp_ip4addr_ntoa(&(ip_info.ip),bufIP, 20)); printf("Mask:%s\n",esp_ip4addr_ntoa(&(ip_info.netmask),bufIP, 20)); printf("Gateway:%s\n",esp_ip4addr_ntoa(&(ip_info.gw),bufIP, 20)); displays:

IP: 192.168.253.46 

Mask: 255.255.255.0

Gateway: 192.168.253.1

You can also get the current host name, by default espressif, using: const char *hostName; 

esp_netif_get_hostname(netif,&hostName); 

printf("Host Name: %s\n", hostName ); 

You can use netif_set_hostname to set the host name, but you have to be careful to do it after setting client mode and before the connect: esp_netif_set_hostname(esp_netif_get_default_netif(),"MyESP"); In principle this should work, but in practice you have to put it in the event handler after the IP address has been acquired:

case IP_EVENT_STA_GOT_IP:

esp_netif_set_hostname(esp_netif_get_default_netif(),"MyESP32S3"); wifiStatus = 1010; 

break; 

You can add a new parameter to the setup function to set the host name. 
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A Web Client

Now that we have a WiFi connection we can start using it. The ESP32 makes use of the standard sockets interface to transfer data over an IP link. This works in terms of general IP packets, but usually we want to customize the packets to carry a particular protocol. In this case, a web client using HTTP, is required.  It has to be admitted that a web client isn't as common a requirement as a web server, but it is simpler and illustrates most of the points of using sockets to implement an HTTP packet using a TCP/IP 

transaction. 

The first thing we have to do is create a socket and the TCP needed for an HTTP transaction:

int sockfd = socket(AF_INET, SOCK_STREAM, 0); 

AF_INET defines the transaction as an internet connection and SOCK_STREAM 

means a two way communication – in this case TCP/IP. 

To allow this to work you have to add:

#include “socket.h” 

Next we need to get the address of the server we want to connect to. For the web this would usually be done using a DNS lookup on a domain name. To make things simple we will skip the lookup and use a known IP address, example.com, which is a domain name provided for use by examples. You can find its address by pinging it and, at the time of writing, it was hosted at: 93.184.215.14

This could change so check before concluding that "nothing works". 

There are three fields in the address structure: 

struct sockaddr_in addr; 

sin_family is just set to:

addr.sin_family = AF_INET; 

to indicate an internet IPv4 address. The next field is the port number of the IP address, but you can't simply use addr.sin_port = 80;  because the bit order used on the Internet isn't the same as used on most processors. 

Instead, you have to use a utility function that will ensure the correct bit order:

addr.sin_port = htons(80); 

The function name stands for “host to network short” and there are other similarly named functions. 

The actual address is defined in the in_addr field. This is a struct with only one field that you need to know about, s_addr, a 32-bit representation of an 358

IP address. The format is fairly simple. Regard the 32-bit value as four bytes with each byte coding one value of the "dotted" IP address. 

That is, if the IP address is w.x.y.z then w, x, y and z are the bytes of s_addr. 

For example, the IP address of example.com is 93.184.215.14 and converting each value into its byte equivalent in hex gives 5d.b8.d7.0E, which would be the hex value we have to store in s_addr if it wasn't for the fact that the bytes are stored in reverse order. So, the hex equivalent of the IP address is 0x0Ed7b85d and this is used to initialize the address struct: addr.sin_addr.s_addr = 0x0Ed7b85d; 

With the address worked out and safely stored we can now make the connection:

connect(sockfd, &addr, sizeof (addr)); 

This will return 0 if it successfully connects and we do need to test for this condition. You will also get a type warning because the pointer to the addr structure isn't as defined in the function. In fact there are many variations on the addr structure which you could pass and it is the standard idiom to cast them to the function's pointer type:

connect(sockfd, (struct sockaddr *) &addr, sizeof (addr) Finally we need to check for an error:

if(connect(sockfd, (struct sockaddr *) &addr, sizeof(addr))<0) return; 

As long as there is no error we can start to send and receive data. 

But what data? The answer is that it all depends on the protocol you are using. There is nothing about a socket that tells you what to send. It is a completely general I/O mechanism. You can send anything, but if you don't send what the server is expecting, you won’t get very far. 

The web uses the HTTP protocol and this is essentially a set of text headers that tell the server what to do, and a set of headers that the server sends back to tell you what it has done. 

The most basic transaction the client can have with the server is to send a GET request for the server to send a particular file. 

Thus the simplest header is:

char header[] = "GET /index.html HTTP/1.1\r\n\r\n"; which is a request for the server to send index.html. 

However, in most cases we need one more header, HOST, which gives the domain name of the server. Why do we need to do this? Simply because HTTP says you should and many websites are hosted by a single server at 359

the same IP address. Which website the server retrieves the file from is governed by the domain name you specify in the HOST header. 

This means that the simplest set of headers we can send the server is: char header[] = "GET /index.html HTTP/1.1\r\n

HOST:example.com\r\n\r\n"; 

which corresponds to the headers:

GET /index.html HTTP/1.1

HOST:example.com

An HTTP request always ends with a blank line. If you don't send the blank line then you will get no response from most servers. In addition the HOST 

header has to have the domain name with no additional syntax - no slashes and no http: or similar. 

With the headers defined we can send our first HTTP request using write as if the socket was just another file to write data to:

int n = write(sockfd, header, strlen(header)); 

and, of course, to use the strlen function we need to add: 

#include <string.h> 

The server receives the HTTP request and should respond by sending the data corresponding to the file specified, i.e. index.html. We can read the response just as if the socket was a file:

char buffer[2048]; 

n = read(sockfd, buffer, 2048); 

printf("%s", buffer); 

You can make this more complicated by checking the number of bytes read and reading more if the buffer is full, but this is a simple and direct way to get the HTML. 

In fact, you get more than the HTML as you get the entire HTTP response including the response headers:

HTTP/1.1 200 OK

Accept-Ranges: bytes

Age: 483961

Cache-Control: max-age=604800

Content-Type: text/html; charset=UTF-8

Date: Wed, 14 Aug 2024 08:49:49 GMT

Etag: "3147526947+gzip" 

Expires: Wed, 21 Aug 2024 08:49:49 GMT

Last-Modified: Thu, 17 Oct 2019 07:18:26 GMT

Server: ECAcc (nyd/D169)

Vary: Accept-Encoding

X-Cache: HIT

Content-Length: 1256

<!doctype html> 

<html> 

and so on... 
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Notice the blank line marking the end of the header and signaling that the data payload follows. 

The complete program is:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "esp_wifi.h" 

#include "nvs_flash.h" 

#include "esp_event.h" 

#include "esp_netif.h" 

#include "string.h" 

#include "socket.h" 

#include "wificonnect.h" 

void app_main(void)

{  

wifiConnect("  CO", "  ssid", "  password"); while (wifiStatus != 1010) {

vTaskDelay(10 / portTICK_PERIOD_MS); 

}; 

int sockfd = socket(AF_INET, SOCK_STREAM, 0); 

struct sockaddr_in addr;addr.sin_family = AF_INET; 

addr.sin_port = htons(80); 

addr.sin_addr.s_addr = 0x0Ed7b85d; 

if (connect(sockfd, (struct sockaddr*)&addr, 

sizeof(addr)) < 0)return; 

char header[] = "GET /index.html HTTP/1.1\r\n

Host:example.com\r\n\r\n"; 

int n = write(sockfd, header, strlen(header)); 

char buffer[2048]; 

n = read(sockfd, buffer, 2048); 

buffer[n] = 0; 

printf("%s\n", buffer); 

}

To make this work you may have to increase the size of the main task stack to 6000 bytes using the configuration editor:

Of course, we can do much better than this simple example. For one thing, each socket operation needs to be checked for errors. Here we only check for the most likely error, that the server refused the connection. 
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The HTTP Client Component

We could continue to use sockets to implement a more sophisticated web client and even a web server but a web client and a server are available as components within the API. The client supports both HTTP and HTTPS 

requests, but it is easier to get things working without the complications of security. 

There are only two important HTTP client functions. The first is an initialization function:

esp_http_client_handle_t httphandle = 

esp_http_client_init(phttpconfig); 

which sets up the HTTP protocol to use as specified in the struct esp_http_client_config_t referenced by phttpconfig. There are a lot of fields that you can set to control the way that the client behaves but a minimal set for connecting to http://example.com is:

esp_http_client_config_t httpconfig = {

.url = "http://example.com", 

.method = HTTP_METHOD_GET, 

.event_handler = http_event_handler, 

.buffer_size = DEFAULT_HTTP_BUF_SIZE, 

.buffer_size_tx = DEFAULT_HTTP_BUF_SIZE, 

.user_data = httpdata, 

}; 

esp_http_client_handle_t httphandle = 

esp_http_client_init(&httpconfig); 

The HTTP method is GET and we need to set up an event handler to respond to the stages in the HTTP transaction. To get the transaction started we need to use:

esp_http_client_perform(httphandle); 

by default this blocks until the transaction is complete. However, to get any results we need to create an event handler. The key event to deal with is the reception of data, HTTP_EVENT_ON_DATA. The event struct passed to the handler includes the fields:

 event_id 

Cause of the event

 client           HTTP client handle

 pdata       

Pointer to the data

 data_len     

Length of data

 puser_data    Pointer to user data

 pheader_key     Pointer to the header key

 pheader_value  Pointer to the header value
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Essentially, when the HTTP_EVENT_ON_DATA event occurs the data field has the data sent from the server. The only problem is that the complete HTML 

page may be sent in more than one chunk and we have to put it together into a single char array. To get the data back to the main program we can pass a pointer to a char array as user data:

case HTTP_EVENT_ON_DATA:

printf("HTTP_EVENT_ON_DATA, len=%d\n", evt->data_len); if (!esp_http_client_is_chunked_response(evt->client)) {

char *buf = (char*)(evt->user_data); 

memcpy(buf+pos, evt->data, evt->data_len); 

pos+ = evt->data_len; 

buf[pos] = NULL; 

}

break

You can see that we are using the static variable pos to keep track of where the data should be stored in the buffer. Notice that we add NULL to the end of the buffer to make sure that we have a C string. 

The HTTP client component also has functions that let you open the connection and then read a stream of data from the server. If you want to reuse a connection you don’t have to use esp_http_client_init again. It is much more efficient to use the range of set and get functions for the parameters of the transaction such as the URL and reuse the http handle. 

HTTPS Client

Rather than finish the HTTP client, it is more practical to extend it to handle HTTPS. This is easy because we can make use of the certificates supplied with the API. To start an HTTPS transaction we need to add some fields to the configuration:

esp_http_client_config_t httpconfig = {

.url = "https://example.com", 

.method = HTTP_METHOD_GET, 

.event_handler = http_event_handler, 

.buffer_size = DEFAULT_HTTP_BUF_SIZE, 

.buffer_size_tx = DEFAULT_HTTP_BUF_SIZE, 

.user_data = httpdata, 

.transport_type = HTTP_TRANSPORT_OVER_SSL, 

.crt_bundle_attach = esp_crt_bundle_attach, 

}; 

To use the certificate bundle you need to add 

#include "esp_crt_bundle.h" 

With this change the connection is a reasonably secure HTTPS connection. 
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The complete program is:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "esp_wifi.h" 

#include "nvs_flash.h" 

#include "esp_event.h" 

#include "esp_netif.h" 

#include "string.h" 

#include "esp_http_client.h" 

#include "wificonnect.h" 

#include "esp_crt_bundle.h" 

esp_err_t http_event_handler(esp_http_client_event_t* evt)

{

static int pos = 0; 

switch (evt->event_id) {

case HTTP_EVENT_ERROR:

printf("HTTP_EVENT_ERROR\n"); 

break; 

case HTTP_EVENT_ON_CONNECTED:

printf("HTTP_EVENT_ON_CONNECTED\n"); 

break; 

case HTTP_EVENT_HEADER_SENT:

printf("HTTP_EVENT_HEADER_SENT\n"); 

break; 

case HTTP_EVENT_ON_HEADER:

printf("HTTP_EVENT_ON_HEADER\n"); 

printf("header = %s , %s\n", evt→header_key, 

evt->header_value); 

break; 

case HTTP_EVENT_ON_DATA:

printf("HTTP_EVENT_ON_DATA, len=%d\n", evt->data_len); if (!esp_http_client_is_chunked_response(evt->client)) {

printf("%.*s", evt->data_len, (char*)evt->data); char* buf = (char*)(evt->user_data); 

memcpy(buf + pos, evt->data, evt->data_len); 

pos += evt->data_len; 

buf[pos] = 0; 

}

break; 

case HTTP_EVENT_ON_FINISH:

printf("HTTP_EVENT_ON_FINISH\n"); 

pos = 0; 

break; 

case HTTP_EVENT_DISCONNECTED:

printf("HTTP_EVENT_DISCONNECTED\n"); 

break; 

default:

}

return ESP_OK; 

}
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char httpdata[2000]; 

void app_main(void)

{

wifiConnect("  CO", "  ssid", "  password"); while (wifiStatus != 1010) {

vTaskDelay(10 / portTICK_PERIOD_MS); 

}; 

esp_http_client_config_t httpconfig = {

.url = "https://example.com", 

.method = HTTP_METHOD_GET, 

.event_handler = http_event_handler, 

.buffer_size = DEFAULT_HTTP_BUF_SIZE, 

.buffer_size_tx = DEFAULT_HTTP_BUF_SIZE, 

.user_data = httpdata, 

.transport_type = HTTP_TRANSPORT_OVER_SSL, 

.crt_bundle_attach = esp_crt_bundle_attach, 

}; 

esp_http_client_handle_t httphandle =

esp_http_client_init(&httpconfig); 

esp_http_client_perform(httphandle); 

printf("len data= %d\n", strlen(httpdata)); 

printf("html \n %s\n ", httpdata); 

}

The event handler also prints the headers that the server returns. If you run the program you should see all of the HTML from the website. 

Request Methods

HTTP supports a number of request methods which transfer data. Usually these are described in terms of what they do to resources hosted by a web server, but from our point of view what matters is what happens to the data. 

The HTTP request methods available are:

GET

Transfers data from server to client

HEAD

Transfers HTTP headers for the equivalent GET request

PUT

Transfers data from the client to the server

POST

Transfers data from the client to the server

PATCH

Transfers data from the client to the server

DELETE

Specifies that the data on the server should be deleted

OPTIONS

Transfers data from the client to the server
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If you know about HTTP request methods you will find the above list disconcerting. If you don’t know about HTTP requests then you will be wondering why there are so many requests that transfer data from the client to the server? The answer is that in the HTTP model the server stores the master copy of the resource – usually a file or a database entry. The client can request a copy of the resource using GET and then ask the server to modify the resource using the other requests. For example, the PUT request sends a new copy of the resource for the server to use, i.e. it replaces the old copy. POST does the same thing, but PUT should be idempotent which means if you repeat it the result is as if you had done it just once. With POST you are allowed side effects. For example, PUT 1 might just store 1 

but POST 1 might increment a count. 

Another example is where you send some text to the server to save under a supplied file name. For this you should use a PUT as repeating the request with the same text changes nothing. If, on the other hand, you supply text to the server and allow it to assign a name and store it then you should use a POST as you get a new file each time you send the data, even if it is the same. 

Similarly the PATCH request should be used by the client to request that that server makes a change to part of an existing resource. Exactly how the change is specified depends on the server. Usually a key value scheme is used, but this isn’t part of the specification. 

Notice that all of these interpretations of the HTTP request methods are 

“optional” in the sense that it is up to you and the server you are using to interpret them and implement them. If you write your own server, or server application, then you can treat POST as if it was PUT and vice versa. Also notice that the only difference between client and server is which one initiates the transaction. A client always contacts a server, but once the connection is made data can be transferred in either direction – a GET sends data to the client and a PUT sends data to the server. 

A Sensor Client

The standard approach to implementing a sensor device that makes its readings available to other devices is to implement a web server or a custom protocol on the ESP32 that allows other devices to connect. A simpler solution is to implement an HTTP client and allow the sensor device to send data to a server, using PUT or POST, which other devices can then connect to as required. 
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The main program only needs minor modification. The method needs to be changed to PUT and the server is specified using its IP address, path and port. Notice that the path is supplied to the server but it can be ignored. The data to be sent to the server is specified using the client_set_post_field function:

esp_http_client_set_post_field(httphandle, "20.5", 3); Notice that despite being called post_field, it is used as the source of data for all methods that send data to the server. 

The main program is; 

char httpdata[2000]; 

void app_main(void)

{

wifiConnect("  CO", "  ssid", "  password"); while (wifiStatus != 1010) {

vTaskDelay(10 / portTICK_PERIOD_MS); 

}; 

esp_http_client_config_t httpconfig = {

.host = "192.168.253.75", 

.path = "/test", 

.port = 8080, 

.method = HTTP_METHOD_PUT, 

.event_handler = http_event_handler, 

.buffer_size = DEFAULT_HTTP_BUF_SIZE, 

.buffer_size_tx = DEFAULT_HTTP_BUF_SIZE, 

.user_data = httpdata, 

.transport_type = HTTP_TRANSPORT_OVER_TCP

}; 

esp_http_client_handle_t httphandle =

esp_http_client_init(&httpconfig); 

esp_http_client_set_post_field(httphandle, "20.5", 3); esp_http_client_perform(httphandle); 

printf("html \n %s\n ", httpdata); 

}

The server simply has to respond to the PUT request and convert the bytes to a string and then a float. 

367

A Python program that acts as a basic server is simple: from http.server import HTTPServer, BaseHTTPRequestHandler

from io import BytesIO

class SimpleHTTPRequestHandler(BaseHTTPRequestHandler):



def log_message(self,*args, **kwargs):

pass

def do_PUT(self):

content_length = int(self.headers['Content-Length'])

body = self.rfile.read(content_length)

bodyString= body.decode(encoding="utf-8")

temp=float(bodyString)

print(temp)

self.send_response(200)

self.end_headers()

httpd = HTTPServer(('', 8080), SimpleHTTPRequestHandler)

httpd.serve_forever()

As before, it is simple enough to convert the server and the client to HTTPS. 

You can appreciate that this architecture works well if you can allocate a simple device to act as a server that everything else can connect to. 

The HTTP Server Component

As well as an HTTP client component, there is a server component which is very easy to use. All you have to do is specify handlers for each request method and the path to the resource. For example, to handle basic GET 

requests all you need is:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "esp_wifi.h" 

#include "nvs_flash.h" 

#include "esp_event.h" 

#include "esp_netif.h" 

#include "string.h" 

#include "wificonnect.h" 

#include "esp_http_server.h" 

esp_err_t get_handler(httpd_req_t* req)

{

const char resp[] = "Temperature is 20.3"; 

httpd_resp_send(req, resp, HTTPD_RESP_USE_STRLEN); 

return ESP_OK; 

}
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void app_main(void)

{

wifiConnect("  CO", "  ssid", "  password"); while (wifiStatus != 1010) {

vTaskDelay(10 / portTICK_PERIOD_MS); 

}; 

httpd_config_t config = HTTPD_DEFAULT_CONFIG(); 

httpd_handle_t server = NULL; 

httpd_uri_t uri_get = {

.uri = "/temp", 

.method = HTTP_GET, 

.handler = get_handler, 

.user_ctx = NULL

}; 

if (httpd_start(&server, &config) == ESP_OK) {

httpd_register_uri_handler(server, &uri_get); 

}

You can see that the GET handler is defined to respond to /temp and call get_handler, which simply sends some text back in response to the request, when the event occurs. You can register multiple handlers for each request method with different URLs. For example:

httpd_config_t config = HTTPD_DEFAULT_CONFIG(); 

httpd_handle_t server = NULL; 

httpd_uri_t uri_get = {

.uri = "/temp", 

.method = HTTP_GET, 

.handler = get_handlertemp, 

.user_ctx = NULL

}; 



if (httpd_start(&server,&config) == ESP_OK) {

httpd_register_uri_handler(server, &uri_get); 

uri_get.uri="/hum"; 

uri_get.handler=get_handlerhum; 

httpd_register_uri_handler(server, &uri_get); 

}

This registers two handlers one for /temp returning the temperature and one for /hum returning the humidity. 

The server takes care of listening for the client to connect, checking the request method and the URL and calling the handler. Notice that all of the headers are taken care of by the server. 

When you have finished with the server use:

httpd_stop(handle)
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The server runs as a separate task and runs even after the main program has ended. There are also functions that let you customize the response and access and modify the headers. 

A full program using the HTTP server can be found on the book’s website www.iopress.info. 

HTTPS Server Component

If you need secure HTTPS transactions the simplest way to get things working is to use the HTTPS server component. This adds SSL encryption on top of the existing HTTP server component. So, what you know about the HTTP server is still useful and all you really have to do is supply and configure a certificate. 

The HTTPS server component is not included by default and the first thing you have to do is to use Menu Config to enable it:

You also need to increase the maximum header size to 1024:

The next problem is getting a certificate, which can be an involved process. 

Even popular free certificate-issuing sites like Let’s Encrypt require proof that you own the domain that the certificate applies to. To do this you have to write code which generates a new key pair and then either create a specific DNS record or store a file on the website. This is easy enough for production purposes, but not so easy when you are in the process of creating a program. 

The usual solution is to create a self-signed certificate. If the operating system has OpenSSL installed, and most versions of Linux do, then you can create a key and certificate pair using:

openssl req -newkey rsa:2048 -nodes -keyout iopress.key -x509

-days 365 -out  iopress.crt

changing  iopress to the name of your server. You will be asked a set of questions for information that is included in the certificate. How you answer these questions only modifies what the user sees if they ask to inspect the certificate so you can simply accept the defaults. 
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The openssl command creates two files, a .key file and a .crt file, which need to be processed to create strings that can be used in a C program. There are many ways to get a simple certificate into a program, but the most direct way is to quote it as a string literal. It is very easy to write a standard Python program to do the job of converting the contents of the files to a C literal string complete with variable declaration:

with open("iopress.key", 'rb') as f:

lines = f.readlines()

lines=b'"'.join(lines)

lines=lines.decode("ascii")

lines=lines.replace("\n",'\\n"\n')

print("static const unsigned char key[]="+'"', lines+";") with open("iopress.crt", 'rb') as f:

lines = f.readlines()

lines=b'"'.join(lines)

lines=lines.decode("ascii")

lines=lines.replace("\n",'\\n"\n')

print("static const unsigned char cert[]="+'"', lines+";") If you run this program, with the names of the .key and .crt files corrected to apply to the certificate you have generated, then it will read in each file, add quotes and line endings to create a multi-line C string literal: static const unsigned char key[]=" -----BEGIN PRIVATE KEY-----\n" 

"MIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQC5zxoZHid/tAtR\n" 

... 

"EVzn7XZ781QWSSBer5/vcQM=\n" 

"-----END PRIVATE KEY-----\n" 

; 

static const unsigned char cert[]=" -----BEGIN CERTIFICATE-----\n" 

"MIIDazCCAlOgAwIBAgIUA+lvUf9wMrNvaz9DuKnfx4TCoeQwDQYJKoZIhvcNAQEL\n" 

... 

"mjqAoUl1y8um2Iw5ko0N\n" 

"-----END CERTIFICATE-----\n" 

; 

where the multiple lines of text that make up each literal have been omitted to save space. 

You can simply copy and paste these two blocks to get the certificate you have generated into the program. 
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Once we have the certificates in the program the rest is fairly straightforward in that we simply have to set up the server. 

void app_main(void)

{

wifiConnect("  CO", "  ssid", "  password"); while (wifiStatus != 1010) {

vTaskDelay(10 / portTICK_PERIOD_MS); 

}; 



static const unsigned char cert[] = "-----BEGIN CERTIFICATE-----\n" 

"MIIDazCCAlOgAwIBAgIUA+lvUf9wMrNvaz9DuKnfx4TCoeQwDQYJKoZIhvcNAQE\n" 

... 

"mjqAoUl1y8um2Iw5ko0N\n" 

"-----END CERTIFICATE-----\n" 

; 

static const unsigned char key[] = " -----BEGIN PRIVATE KEY-----\n" 

"MIIEvQIBADANBgkqhkiGw0BAQEFAASCBKcwggSjAgEAAoIBAQC5zxoZHid/tAtR\n" 

... 

"EVzn7XZ781QWSSBer5/vcQM=\n" 

"-----END PRIVATE KEY-----\n" 

; 

httpd_ssl_config_t config = HTTPD_SSL_CONFIG_DEFAULT(); 

config.servercert = cert; 

config.servercert_len = sizeof(cert); 

config.prvtkey_pem = key; 

config.prvtkey_len = sizeof(key); 

httpd_handle_t server = NULL; 

httpd_uri_t uri_get = {

.uri = "/temp", 

.method = HTTP_GET, 

.handler = get_handlertemp, 

.user_ctx = NULL

}; 

if (httpd_ssl_start(&server, &config) == ESP_OK) {

httpd_register_uri_handler(server, &uri_get); 

uri_get.uri = "/hum"; 

uri_get.handler = get_handlerhum; 

httpd_register_uri_handler(server, &uri_get); 

}

}
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The only difference is that we now use an SSL configuration struct and set the additional fields to reference the new certificate and its key. The server is set up to serve two pages /temp and /hum and these are unchanged from the previous HTTP server. 

As usual, the setup function has been omitted from the listing and the certificate strings have been truncated to save space. If you want to see what the full program looks like, the listing is on this book’s page at www.iopress.info, along with all the other substantial programs. 

If you try this program  you will find that connecting with a browser using https://  ip of server  causes a security warning to pop-up due to the use of a self-signed certificate. This is what you will see  using Chrome. 

Messages like this are because browsers don’t trust self-signed certificates. 

However, if you allow the page to download it will use SSL encryption. To do this click on Advanced and then confirm that you want to proceed. You can force a browser to accept the certificate by adding it to its trusted root certification authorities tab. However, for most testing purposes this isn’t necessary. If you have a valid certificate and key for a particular web server you can substitute it for the self-signed certificates. 
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It is worth saying that making an SSL connection is not fast. The ESP32 is being asked to do significant computation to implement the cryptography and the handshake process is involved and hence time-consuming. You will also see a number of exceptions caused by the client aborting the connection due to the self-signed certificate, which is perfectly normal. Firefox is a much more friendly browser to use when testing SSL connections. Chrome tends to want to lock things down as soon as it detects a problem with the certificate. 

Also notice that a browser will generally attempt to negotiate the cryptographic protocol to exchange keys. If the server or the client don’t support the proposed method then an error is reported at the server and a different protocol is tried. As a result it can take some time to make a SSL 

connection and you will see errors similar to: 

W (68737) httpd: httpd_server: error accepting new connection I (68737) esp_https_server: performing session handshake

E (69467) esp-tls-mbedtls: mbedtls_ssl_handshake returned -0x7780

E (69467) esp_https_server: esp_tls_create_server_session failed E (69467) httpd: httpd_accept_conn: session creation failed As long as everything works out and a connection is finally made you can ignore these errors. 
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Summary

● Connecting to a WiFi network is a matter of using  esp_wifi configured as a station to connect to an access point

● Once you have a connection and an IP address you can use esp_netif to send and receive packets using the standard sockets interface. 

● Implementing error handling for a WiFi connection can be 

challenging. 

● An HTTP client can both send and receive data to the server depending on the request it makes. 

● You can create a client or a server using sockets or the supplied client and server components

● The most common request is GET which accepts data from the server. 

● Both POST and PUT can be used to send data to the server. 

● The only difference between a client and server is that a client can only make a connection, a server can accept a connection. 

● It is possible to avoid having to implement a server on the ESP32 by allowing a client to connect to a server running on another machine and send its data using a PUT or POST request. 

● The HTTP client component is easy use but in most cases you are going to want to use the HTTPS component which doesn’t need a custom certificate to work. 

● The HTTPS server works in roughly the same way as the HTTP 

server but you need to supply suitable certificates. 
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Chapter 17

Direct To The Hardware

The SDK provides functions to let you access most of the hardware features of the ESP32 by way of memory-mapped registers. They are very simple wrappers around the basic mechanism of working with the hardware. You might think that bypassing the SDK and doing the job directly via hardware access would be attractive by virtue of being more efficient – it isn’t. The SDK is such a light wrapper over the hardware that there is very little point in trying to gain the few fractions of a microsecond that direct access provides. The obvious reason for knowing how to use memory-mapped registers is for situations where the SDK doesn’t provide a function that does what you want. Perhaps a better reason is just to know how things work! 

In this chapter we take a look at how the ESP32 presents its hardware for you to use and how to access it via basic software. 

Registers

Some processors have special ways of connecting devices, but the ESP32’s processor uses the more common memory-mapping approach. In this, each external device is represented by a set of memory locations or “registers” 

that control it. Each bit in the register controls some aspect of the way the device behaves. Groups of bits also can be interpreted as short integers which set operating values or modes. 

How do you access a register? Simply by storing the values in it or by assigning its value to a variable. This is nothing new in C. The big difference is that you now have to refer not to a memory location provided by the system, but to a fixed address provided by the documentation. You still use a pointer, but one that is initialized by a constant or literal. 

The only difficult part is in working out the address you need to use and the value that sets or resets the bits you need to modify. For example, if you look in the documentation for the ESP32 you will find that the GPIO registers start at address 0x3FF44000. However, if you look up the starting address for the ESP32 S3, you will find that they start at 0x60004000. You cannot assume that all versions of the ESP32 have the same memory map, but you can assume that the main the registers mostly work in the same way. The registers are defined by the offset from their starting address or an absolute address. 
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For the ESP32, the start of the table of GPIO registers is: Name

Description

Address

Access

GPIO_OUT_REG 

GPIO 0-31 output register 

0x3FF44004

R/W

GPIO_OUT_W1TS_REG 

GPIO 0-31 output register_W1TS

0x3FF44008

WO 

GPIO_OUT_W1TC_REG

GPIO 0-31 output register_W1TC

0x3FF4400C

WO 

This gives an offset of 0x4, 0x8 and 0xC for each register. This is also true for the ESP32 S3, but the offsets are relative to 0x60004000 giving addresses of 0x60004004, 0x60004008 and 0x6000400C respectively. 

The three registers control the GPIOs in output mode. How the GPIO line gets into output mode is a matter of using other registers described later in the table, but if we assume that the GPIO line is fully configured in output mode then these three registers control the state of GPIO0 to GPIO31. There are three similar registers for GPIO32 to GPIO39. 

The big problem in making use of this information is that the “Description” 

part of the table is cryptic and often incomplete. You almost have to know what sorts of things the register is used for before it makes any sense. The first register is simple – if you write a 1 to bit n then GPIOn will be set active, usually high voltage, and if you write a 0 to bit n then the line is deactivated, usually low voltage.  The other two registers are slightly more difficult to understand due to the use of W1TS and W1TC – which stand for Write One To Set and Write One To Clear. Once you know this, it is obvious that the first register is a bit-set register and the second a bit-clear register. 

That is, if you write a 1 to bit n using the W1TS register then GPIOn will be set active, but if you write it using the W1TC register, GPIOn will be deactivated. 

You might wonder why we need three registers to control the GPIO lines? It is true that you don’t need anything beyond the first, but the other two make things easier. By writing a bit pattern to GPIO_OUT_REG you set or reset all of the GPIO lines depending on whether there is a 1 or a 0 at bit n. If you only want to change a subset of lines, then you have to read the current state of the lines, notice whether GPIO_OUT_REG has read or write access, and then modify just the bits corresponding to the lines you want to change. This isn’t difficult, but you can avoid having to do this by using GPIO_OUT_W1TS_REG 

with a bit pattern that sets just the lines that correspond to a 1 or GPIO_OUT_W1TC_REG which resets the same lines. 

This becomes easier to understand after an example. 
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Blinky Revisited

Now we can re-write Blinky yet again, but this time using direct access to the GPIO registers. 

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "driver/gpio.h" 

void app_main(void)

{

uint32_t* GPIObase = (uint32_t*)0x60004000;//EP32 S3

//uint32_t* GPIObase = (uint32_t*)0x3FF44000; //ESP32

gpio_reset_pin(2); 

gpio_set_direction(2, GPIO_MODE_OUTPUT); 

uint32_t* GPIOSet = GPIObase + 8 / 4; 

uint32_t* GPIOClear = GPIObase + 0xC / 4; 

uint32_t mask = 1 << 2; 

while (true) {

*GPIOSet = mask; 

vTaskDelay(1000 / portTICK_PERIOD_MS); 

*GPIOClear = mask; 

vTaskDelay(1000 / portTICK_PERIOD_MS); 

}

}

This program uses the standard function to set the GPIO line to output.  If you think that this is cheating, it is an exercise in setting the line correctly using the GPIO control register. 

The GPIOBase address has to be set correctly for the processor we are running the program on. Notice that as we are using pointers to uint32_t pointer arithmetic works in multiples of 4 hence to move the address on by 4 we just add 1 and in general to set an offset of x we add x/4. 

To toggle GPIO2 we make use of the set and clear registers and a mask that has bit 2 set to 1. Notice that 1<<  n is a bit pattern with bit  n set to 1. 

Alternatively you could use:

mask = 0x02

Once we have the mask, the loop simply stores it in the set and clear register alternately. Notice that as only bit 2 is a 1 this only changes the state of GPIO2. 
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This raises the question of how fast is this direct manipulation of the GPIO 

line’s state? 

Changing the  loop to read:

while (true) {

*GPIOSet = mask; 

*GPIOClear = mask; 

}

reveals that the fastest pulses are 60ns, i.e. 8.3MHz. This is about six times faster than using the SDK and more than 30 times faster than using MicroPython. 

GPIO_REG.h

The need to adjust addresses depending on which version of the ESP32 is being used is a nuisance, but it can be avoided. The header file gpio_reg.h contains definitions for many of the hardware registers adjusted for the device in use. For example:

#define GPIO_OUT_W1TS_REG   

#define GPIO_OUT_W1TC_REG      

give the correct address for the registers accounting for the target device. 

This allows you to write code that works on any device. For example, the Blinky program can be written:

#include <stdio.h> 

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

#include "soc/gpio_reg.h" 

void app_main(void)

{

gpio_reset_pin(2); 

gpio_set_direction(2, GPIO_MODE_OUTPUT); 

uint32_t mask = 1 << 2; 

while (true) {

*(int32_t*)GPIO_OUT_W1TS_REG = mask; 

vTaskDelay(1000 / portTICK_PERIOD_MS); 

*(int32_t*)GPIO_OUT_W1TC_REG = mask; 

vTaskDelay(1000 / portTICK_PERIOD_MS); 

}

}

This should work on any model of ESP32 without changes, but it would have to be recompiled with an appropriate target set. The only downside of this approach is that gpio_reg.h is still under development and hence may change. 
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Example 1 - Simultaneous Setting of GPIO Lines The SDK only provides functions to change single GPIO lines at a time, but it is very easy to create functions that set multiple lines at a time. A set function simply writes the mask to the GPIO_OUT_W1TS_REG register: void gpio_setgroup(uint32_t mask) {

*(int32_t*)GPIO_OUT_W1TS_REG = mask; 

}

A clear function is just as easy and writes to the GPIO_OUT_W1TC_REG register: void gpio_cleargroup(uint32_t mask) {

*(int32_t*)GPIO_OUT_W1TC_REG = mask; 

}

As before, only the set bits in the mask are affected. 

While these two functions operate on single GPIO lines, you often want to select a set of bits and set or clear them in one operation, for example, when you want to change two or more GPIO lines in phase, i.e. all high or all low, you can use: 

gpio_setgroup(0x3)

gpio_cleargroup(0x3)

This operates on the bottom two bits and so  toggles GPIO0 and GPIO1, with both turning on and off at exactly the same time. 

Now consider how to set GPIO0 high when GPIO1 is low.  What we need is a function that will set any group of GPIO lines to 0 or 1 at the same time: void gpio_value_mask(int32_t value, int32_t mask) {

*(int32_t*)GPIO_OUT_REG  = (*(int32_t*)GPIO_OUT_REG & ~mask) |

(value & mask);; 

}

The mask gives the GPIO lines that need to be changed, i.e. it determines the group and the value gives the state they are to be set to. For example, if mask is 0111 and value is 0100 and the low four bits of the register are 1010 then reg & ~mask is 1000, value & mask is 0100 and finally reg | value is 1100. 

You can see that bits 0 to 3 have been set to 100 and bit 4 has been unchanged. 
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The trick to working out how to do this is to construct one mask to set the bits that need to be set and another to unset the bits that need to be unset. If a bit is to be set, it needs a 1 in the mask and a 1 in the data and the mask to set bits is:

setmask = mask & data

If a bit is to be unset it needs a 1 in the mask and 0 in the data, so the mask to reset bits is:

resetmask = mask & ~data

Applying both to the value gives the required result:

(value | setmask) & ~(resetmask) =

(value | (mask & data)) & ~(mask & ~ data)

which, after simplification, is:

value & ~mask | mask & data

Using this it is easy to create a function to do the job. 

As demonstrated in Chapter 4, the value, mask function can be used to set GPIO lines simultaneously: 

#include <stdio.h> 

#include "driver/gpio.h" 

#include "freertos/FreeRTOS.h" 

#include "soc/gpio_reg.h" 

void gpio_value_mask(int32_t value, int32_t mask) {

*(int32_t*)GPIO_OUT_REG  = (*(int32_t*)GPIO_OUT_REG & ~mask) |

(value & mask); 

}

void app_main(void)

{

gpio_reset_pin(2); 

gpio_set_direction(2, GPIO_MODE_OUTPUT); 

gpio_reset_pin(4); 

gpio_set_direction(4, GPIO_MODE_OUTPUT); 

uint32_t mask = (1 << 2) | (1 << 4); 

uint32_t value1=(1 << 2); 

uint32_t value2=(1 << 4); 

while (true) {

gpio_value_mask(value1,mask); 

gpio_value_mask(value2,mask); 

} 

}
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As we are changing the same pins each time, we only need a single mask. 

The value, however, changes each time. If you run this program you will see an almost perfect pair of out-of-phase 188ns pulses

Example II – PWM LEDC Rollover

In Chapter 4 it was explained that the LEDC PWM generator uses a timer rollover event to determine when the next pulse is about to be generated. 

This could be useful in many situations, however, at the time of writing, the SDK doesn’t provide any functions to access the timer count or set up an interrupt for overflow. This is another case where working directly with the hardware is your only choice. In this case the hardware differs between the ESP32 and the ESP32 S3 and there is no header file to smooth out the differences and they go beyond a simple change in base address. 

The reason for this is that the ESP32 has fast and slow PWM generation whereas the ESP32 S3 has only the slow PWM. Apart from this the hardware works in the same way and the register configuration is very similar if you allow for the fact that half of the registers are missing in the EPS32 S3 due to there being only one PWM block. 

The timer counter register is read-only and located at:

ESP32 Counter 

ESP32 S3 Counter

Low-speed timer 0  

0x3FF59164 

0x600190A4

Low-speed timer 1

0x3FF5916C 

0x600190AC

Low-speed timer 2

0x3FF59174 

0x600190B4

Low-speed timer 3

0x3FF5917C 

0x600190BC

You can see that the address agree in the final hex value but this isn’t particular useful to express as base address plus offset. 
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Once we know the address we can easily read the register using a function: int32_t gettimercount(int timer) {

int32_t *base=(int32_t*)0x600190A4; //ESP32 S3

//int32_t *base=(int32_t*)0x3FF59164 ; //ESP32

return *(base+timer*2); 

}

This works, as long as you set the base variable correctly for the current target. In a production case you would most likely define a macro to implement conditional compilation. The problem with using gettimercount is that you cannot rely on getting an exact value. For example, if you wanted to do something at the rollover point then in principle you need to test for the count to be zero:

if(gettimercount(0)==0)  do something

The problem is that the rollover could be missed if you sample at the wrong time. A better idea is to test for something close to zero: if(gettimercount(0)<10)  do something

Now you are guaranteed to detect rollover if you sample within 10 clock pules of it. However, we have a new problem. If you sample too fast you could trigger the action more than once at each rollover. 

A better solution is to use the rollover interrupt. This is supported in hardware but not by the API. You could write a function that triggered an interrupt and use an interrupt handler to perform the action but it is often easier and safer to simply use the interrupt as an event recorder. The LEDC_INT_RAW_REG has status bits that are set even if the interrupt in question isn’t enabled. So you could read this register and check the relevant interrupt bit to discover if a rollover has just occurred with a lower danger of missing it and, as long as you reset the interrupt no danger of acting on it more than once. The relevant addresses are:

ESP32  

ESP32 S3 

LEDC_INT_RAW_REG 

0x3FF59180

0x600190C0

LEDC_INT_CLR_REG 

0x3FF5918C

0x600190CC

Using this information we can write a simple function that returns true if a rollover has just occurred:

bool isrollover(int timer) {

int32_t *base=(int32_t*)0x600190C0; //ESP32 S3

//int32_t *base=(int32_t*)0x3FF59180; //ESP32

bool value = *((int32_t*)base) & 1<<timer; 

*((int32_t*)base+3) = 1<<timer; 

return value; 

}
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As an example of how this might be used, consider the sine wave generator developed in Chapter 8. In principle what we wanted to do was update the duty cycle following each rollover. The best that we could do without a function like isrollover is to choose an update frequency that matched the PWM frequency. Using isrollover we can ensure that the update occurs after each rollover. The modified main program is:

uint8_t wave[256]; 

void app_main(void)

{

gpio_reset_pin(4); 

gpio_set_direction(4, GPIO_MODE_OUTPUT); 

gpio_set_level(4, 0); 

for (int i = 0; i < 256; i++)

{

wave[i] = (uint8_t)((128.0 + sinf((float)i * 2.0 *

3.14159 / 255.0) * 128.0)); 

}

int f = 60000; 

PWMconfigLow(2, 0, 0, 8, f, 0.25); 

while (true)

{

for (int i = 0; i < 256; i++) {

ledc_set_duty(LEDC_LOW_SPEED_MODE, 0, wave[i]); 

ledc_update_duty(LEDC_LOW_SPEED_MODE, 0); 

while (!isrollover(0)) {}; 

}

}

}

Keeping Time

The ESP32 has a built-in Real Time Clock, RTC which, while not having a battery backup, can be kept accurate using the SNTP module to retrieve the time from the Internet.  This allows you to look up the time from an NTP 

(Network Time Protocol) server and to use it to set the RTC. 

#include "esp_netif_sntp.h" 

esp_sntp_config_t config=

ESP_NETIF_SNTP_DEFAULT_CONFIG("pool.ntp.org"); 

esp_netif_sntp_init(&config); 

if (esp_netif_sntp_sync_wait(pdMS_TO_TICKS(10000)) != ESP_OK) {

printf("Failed to update system time within 10s timeout"); 

} 

The host that you set should be one of the many NTP pool servers.  A pool server has a list of time servers that it issues in response to a DNS request so as to spread the load. 
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For example, if you query pool.ntp.org or time.nist.gov then a different SNTP server is returned each time on a round robin basis so that the load is spread between the servers in the pool. 

The RTC works with the standard Posix C time and date functions defined in sys/time.h

gettimeofday(ptv, ptz); 

settimeofday(ptv,ptz); 

where ptv is a pointer to a struct timeval:

struct timeval {

time_t      tv_sec;     /* seconds */

suseconds_t tv_usec;    /* microseconds */

}

and ptz is a pointer to a struct timezone which is deprecated and should be set to NULL. 

You can convert the number of seconds into a more useful form using struct timeval t; 

gettimeofday(&t, NULL); 

struct tm *tm= gmtime(&(t.tv_sec)); 

printf("date = %d\n", tm->tm_wday); 

The struct tm has the following fields:

 tm_sec  

Seconds [0, 59]

 tm_min   

Minutes   [0, 59]

 tm_hour 

Hour [0, 23] 

 tm_mday 

Day of the month [1, 31] 

 tm_mon   

Month [0, 11]  (January = 0) 

 tm_year 

Year minus 1900 

 tm_wday  

Day of the week  [0, 6]   (Sunday = 0) 

 tm_yday  

Day of the year  [0, 365] (Jan/01 = 0)

 tm_isdst   

Daylight savings flag

In principle you can set the time zone using:

setenv("TZ", "UTC+1", 1); 

tzset(); 

where the offset can be positive, i.e. moving West, or negative, i.e. moving East. For example:

struct timeval t; 

gettimeofday(&t, NULL); 

setenv("TZ", "UTC-1", 1); 

tzset(); 

struct tm* tm = localtime(&(t.tv_sec)); 

printf("hour = %d\n", tm->tm_hour); 

printf("min = %d\n", tm->tm_min); 

As UTC-1 adds one hour to the UTC time this moves East. 
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The function mktime(&tm) returns a time_t value giving the number of seconds since the epoch. 

If you need a data/time string then strftime is the function you need to use: strftime(string, max, format, tm)

where string is a C string with space for max characters, format is a string that specifies how the struct tm should be formatted. The possible range of format specifiers is too large to list here, but a common one is the RFC2822-date format :

struct tm* tm = localtime(&(t.tv_sec)); 

char date[100]; 

strftime(date,100,"%a, %d %b %Y %T",tm); 

printf("date = %s\n", date); 



displays:

date = Tue, 20 Aug 2024 17:46:37

Commonly encountered low-level functions include:

 time() 

Returns number of seconds since 00:00, Jan 1 1970 UTC 

 clock()     

Returns number of seconds since the program started



difftime(t1,t2)

Returns the difference between two time_t values as

a double without overflow

Other functions are supported but they are considered obsolete. 

There is also a low-power memory associated with the RTC which can be used to store data while the processor is in deep sleep mode, see the next section. 
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Sleep

An important feature of the ESP32 is that it has a low-power sleep mode which make it suitable for battery operation. This is a big subject and can become very complicated, but no look at the ESP32 would be complete without an insight into its power-saving modes. 

The ESP32 has a complete low-power system based on the RTC. When the machine is put into sleep mode the processors and all of the power-hungry peripherals are off and only the RTC is running. That is, the RTC is the core of the reduced power system of the ESP32 and many of its features are prefixed with “RTC”. 

There are five standard functions which put the ESP32 to sleep:



esp_light_sleep_start()



esp_deep_sleep_start()



esp_deep_sleep_try_to_start()



esp_deep_sleep( wakeuptime)



esp_deep_sleep_try( wakeuptime)

where  wakeuptime is the maximum number of microseconds the machine will sleep for. That is, if it isn’t woken up by some other event, it will wake up after  wakeuptime us. The try versions of the functions will return if the wake up condition is already satisfied. The other functions initiate sleep indefinitely. 
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You can select what systems are powered down using: esp_sleep_pd_config( domain,  option)

where  domain is one of:

 ESP_PD_DOMAIN_RTC_PERIPH

Peripherals including RTC IO, sensors and ULP co-processor

 ESP_PD_DOMAIN_RTC_SLOW_MEM   

RTC slow memory

 ESP_PD_DOMAIN_RTC_FAST_MEM

RTC fast memory

 ESP_PD_DOMAIN_XTAL 

Crystal oscillator

 ESP_PD_DOMAIN_RC_FAST

Internal Fast oscillator

 ESP_PD_DOMAIN_VDDSDIO

Power supply voltage rail, VDD-SDIO 

 ESP_PD_DOMAIN_MODEM

WiFi, Bluetooth

and  option is one of:

 ESP_PD_OPTION_OFF    Power down in sleep mode. 

 ESP_PD_OPTION_ON     Keep on during sleep mode. 

 ESP_PD_OPTION_AUTO  Keep on if needed by a wake up option There are a range of wake-up functions but the simplest is: esp_sleep_enable_timer_wakeup( wakeuptime)

which will wake from light or deep sleep after  wakeuptime us. 

The difference between deep and light sleep is that in deepsleep the contents of main memory is lost and this has a big effect on the way programs behave. 

In lightsleep the radio is switched off but the CPU is in standby. Power consumption in lightsleep is around 800 A

μ  and it takes around 1ms to 

wake up. 

In deepsleep the CPU is powered down and all state information is lost. 

Power consumption can be anywhere between 10-150 A

μ  depending on what

other peripherals are in use and wake up time is around 1ms. These figures should be compared to the 250mA to 800mA that the devices uses while active and using its radio. 

There are also more ad-hoc ways of saving power by reducing the CPU clock rate and shutting down peripherals. These can reduce power, but they also reduce performance and need to be carefully tuned. 

You can use the light-sleep mode to pause a program. The state of the program is preserved as the memory is preserved during light sleep. This 389

means that you can use lightsleep to pause polling loops etc. Deep-sleep mode on the other hand does not preserve main memory, which means that when it ends the machine essentially reboots. Two examples will make the difference clear. 

First lightsleep can be used to pause a polling loop:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "esp_sleep.h" 

void app_main(void)

{

esp_sleep_enable_timer_wakeup(1000000); 

for (int i = 0; i < 10; i++) {

printf("starting sleep %d \n", i); 

fflush(stdout); 

esp_light_sleep_start(); 

printf("back from sleep %d \n", i); 

fflush(stdout); 

}

}

If you run this program you will see the for loop pause while the machine is in light-sleep mode for one second. The for loop continues after the sleep without loss of data. In this sense lightsleep works in the same way as the much used sleep function, but it switches off the radio hardware during the sleep period. 

deepsleep doesn’t restart your program like lightsleep. Instead it causes the system to be reloaded and hence your program to be run just as if the machine had been just turned on. For example:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "esp_sleep.h" 

void app_main(void)

{

esp_sleep_enable_timer_wakeup(1000000); 

for (int i = 0; i < 10; i++) {

printf("starting sleep %d \n", i); 

fflush(stdout); 

esp_deep_sleep_start(); 

printf("back from sleep %d \n", i); 

fflush(stdout); 

}

}

If you run this you will see starting sleep 0 and then the system goes into deep sleep for 1 second After 1 second the ESP32 restarts and you will see a 390

message that the machine is starting and you will see starting sleep 0 

again. The for loop never gets beyond the first printf because the machine is restarted each time. 

If all of the data is lost after a deep sleep, how can this be useful? In most cases you need to keep some state data when the program restarts. The RTC 

has a 2KB memory which is maintained during deep sleep. You can store data in it using either RTC_IRAM_ATTR for read/write data or RTC_RODATA_ATTR 

for read-only data. The RTC supports fast and slow memory, each with advantages and disadvantages. In this simple instance we can let the system choose where to store the data. 

To keep the state between deep sleeps you have to save it in the RTC 

memory before entering deep sleep mode and you have to restore it when the program starts. This sounds easy, but it is surprisingly difficult. The reason is that you are effectively having to restore the entire state of the program after a complete restart. 

For example, how can you restore the state of the simple for loop given as a light sleep example? It seems that the only state is the value of the loop index i and this should be stored in RTC memory, but this doesn’t take account of the fact that restarting the program will reinitialize it to 0. You might think that simply avoiding initializing it is the answer: static RTC_DATA_ATTR int i = 0; 

void app_main(void)

{

esp_sleep_enable_timer_wakeup(1000000); 

for (; i < 10; i++) {

printf("starting sleep %d \n", i); 

fflush(stdout); 

esp_deep_sleep_start(); 

printf("back from sleep %d \n", i); 

fflush(stdout); 

} 

If you try this you will discover that it is still stuck on a value of 0. The reason is obviously that the for loop doesn’t increment the index until the loop reaches the end and hence the index is still 0 when the deep sleep starts and hence when the program restarts. 
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It is clear that we have to increment the index before going into deep sleep: static RTC_DATA_ATTR int i=0; 

void app_main(void)

{

esp_sleep_enable_timer_wakeup(1000000); 



for (i++; i < 10;) {

printf("starting sleep %d \n", i); 

fflush(stdout); 

esp_deep_sleep_start(); 

printf("back from sleep %d \n", i); 

fflush(stdout); 

}

}

Now the for loop increments the index at the start and we do see starting sleep 1, to starting sleep 9 but we never see back from sleep. The reason is again obvious – the program goes into deep sleep before the second message it displayed and it resumes a the start of the for loop and so never reaches the second half of the loop. 

It is very difficult to restart a for loop when a program is restarted without the use of features that are non-standard C. The only option is to build the program so that it can save its state and restart correctly. In practice, what this means is that deep sleep is really only easy to use when a program implements a task that completes before the deep sleep state is entered. 

When the machine wakes up the program gets to run again from the beginning with the exception of any state data that has been stored in the RTC memory. 

Notice that this also means that you have to restore the hardware state as well as the software state. In particular there is the problem of what to do about WiFi. You need to check that there is a WiFi connection and restore it if there isn’t one. 

There is also the ability to run a function, the deep sleep wake stub, before the main program starts. This can be used to decide if it is worth running the main program or to make preparations for running. In most cases this isn’t necessary. 

Implementing a good deep sleep program is difficult because in principle you need an extended exception handling facility that will restore, not only the program’s state, but the hardware’s state. Such a facility doesn’t exist. 
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Wake Using ULP 

We have already seen that the ESP32 can wake after a set time, but there are also other events that can wake it up before this time is up.  You can set the touch inputs to wake the device or some of the GPIO lines and a third way of waking up the ESP32 is to use the ULP (Ultra Low Power)  processor. This is a very simple processor that uses very little power and can be programmed to use peripherals such as the I2C, SPI or any GPIO line while the main processor is sleeping. It can also wake the processor when a condition is satisfied. The ULP processor provides a way to monitor and collect data while the main processor is sleeping and this is very useful. Deep sleep consumes 10 A

μ  without the ULP processor. Adding the ULP typically 

requires an additional 100 A

μ .  Unfortunately it has to be programmed using 

a simple assembler rather than C and its use is beyond the scope of this book. 

Wake Using EXT0 and EXT1

There are two external wake-up signals, EXT0 and EXT1. The only difference between them is that EXT0 will wake the device based on the state of a single GPIO line whereas EXT1 can monitor multiple GPIO lines: esp_sleep_enable_ext0_wakeup(gpio_num, level)

esp_sleep_enable_ext1_wakeup_io(io_mask, level_mode)

There are corresponding disable functions

The first will wake up the processor when the GPIO line transitions to the specified level. The second does the same thing, but you can specify a set of GPIO lines via the io_mask and a set of levels via the bits in level_mode, one for each GPIO line. The GPIO lines that you can use vary according the model of ESP32: 

Model

GPIO

ESP32

0, 2, 4, 12-15, 25-27, 32-39

ESP32-S2

0-21

ESP32-S3

0-21

ESP32-C6

0-7

ESP32-H2

7-14

This works with deepsleep or lightsleep. 
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For example:

esp_sleep_enable_ext0_wakeup(2, 1); 

for (int i; i < 10; i++) {

printf("starting sleep %d \n", i); 

fflush(stdout); 

esp_light_sleep_start(); 

printf("back from sleep %d \n", i); 

fflush(stdout); 

}

This pauses the for loop in a light sleep state until GPIO2 goes high. 

This is simple enough, but there are some subtle points. The GPIO lines that wake up the device from sleep are part of the RTC low-power domain. These RTC GPIO lines are separate from the standard GPIO lines and are used to conserve power while in sleep mode. Not all of the standard GPIO lines have RTC GPIO equivalents. What this means is that you can only use GPIO lines that are listed in connection with deep sleep as these are the only ones duplicated as RTC GPIO hardware and hence the only ones connected to the RTC. 

When entering a deep sleep state any pullup/down resistors are maintained. 

This can result in wasted power so setting pull to None just before entering sleep is a good idea. In general, RTC GPIO-capable pins retain their state. 

However, non-RTC GPIO lines are disconnected and to keep their state you need to  use the hold parameter in the Pin constructor. However, notice that setting hold to True also stops any change in configuration being applied until hold is set to False. You can also set all of the non-RTC GPIO lines to hold using:

esp32.gpio_deep_sleep_hold(True)

Wake Using TouchPads

You can also use any of the TouchPads , see Chapter 12, to wake the ESP32: esp_sleep_enable_touchpad_wakeup(void)

If any of the touch inputs exceed the set threshold they are considered 

“touched” and the device wakes up. 

You can find out which pad caused the wake up using:

pad = esp_sleep_get_touchpad_wakeup_status()
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The system can also wake up on events from the WiFi, Bluetooth and UART 

and you can find out what woke the system using:

esp_sleep_get_wakeup_cause

which returns one of:



ESP_SLEEP_WAKEUP_UNDEFINED



ESP_SLEEP_WAKEUP_EXT0



ESP_SLEEP_WAKEUP_EXT1



ESP_SLEEP_WAKEUP_TIMER



ESP_SLEEP_WAKEUP_TOUCHPAD



ESP_SLEEP_WAKEUP_ULP



ESP_SLEEP_WAKEUP_GPIO



ESP_SLEEP_WAKEUP_UART



ESP_SLEEP_WAKEUP_WIFI



ESP_SLEEP_WAKEUP_COCPU



ESP_SLEEP_WAKEUP_COCPU_TRAP_TRIG



ESP_SLEEP_WAKEUP_BT

Watchdog Timer

One piece of hardware that we haven’t yet considered is the watchdog timer. 

This is a very simple idea and once you have encountered it there are few problems in using it. A standard problem for any IoT device is how to cope with a system crash – caused by software or hardware. Clearly you need to protect your system from crashes as much as possible, but despite precautions bad things still happen. 

What should your system do if it crashes? 

The usual, but not universal, answer is that it should restart and try to pick up where it left off. This is what a watchdog timer is all about. It has to be a very reliable piece of hardware, preferably implemented separately from the main system and, if possible powered separately. In practice, most processors have a watchdog timer built in, which makes them easy to implement, but not as robust as you might like. The watchdog timer simply counts down at a steady rate and when it reaches zero it applies a hardware reset signal to the main processor. The application software sets the countdown time and before this interval is up it resets the timer. Resetting the timer is an “I’m alive and well” signal that stops the system from being restarted. If the application has crashed then the timer will not be reset and the system will restart. 
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There are at least three watchdog timers, the S3 for example has an additional watchdog. 

The RWDT and MWDT1 watchdog timers are used during the boot process to recover from errors and the MWDT1 is used as an interrupt watchdog to make sure that interrupt routines do not take too long to complete. 

The MWDT0 watchdog is used to implement the Task watchdog, which is the one that mostly concerns us. This is used by default by FreeRTOS to detect any task that runs for too long by monitoring the idle task, but you can configure it to monitor any tasks or disable it entirely. You can set its initial configuration using the Configuration Editor:

The default behavior is to print a warning and backtrace and then continue running the app. 
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You can also configure the watchdog timer at run time:

 esp_task_wdt_init(pconfig)

 esp_task_wdt_reconfigure(pconfig)



esp_task_wdt_deinit()

where pconfig is a pointer to esp_task_wdt_config_t, a struct with three fields:

 timeout_ms   

Timeout in milliseconds

 idle_core_mask   

Bitmask of the core idle task to monitor

 trigger_panic  

If true causes a panic

The reconfigure function will only work if the watchdog has been initialized and the deinit function also unsubscribes any tasks or users. 

For an overall test that your program is running testing the idle task is usually sufficient, but you can also monitor individual tasks:

 esp_task_wdt_add(task_handle) 

 esp_task_wdt_delete(task_handle) 

 esp_task_wdt_reset() 

Each task added must call the reset function within the watchdog’s timeout period. Any one task not doing this triggers the timeout. 

An alternative way of managing timeouts at a finer level than tasks is to add users:

 esp_task_wdt_add_user(puser_name, puser_handle) 

 esp_task_wdt_delete_user(user_handle) 

 esp_task_wdt_reset_user(user_handle) 

The add_user function returns a user handle which has to be used to delete or reset the user. If any user fails to reset the watchdog in the required time then a timeout occurs. 

You can customize what happens with a user timeout by defining the: esp_task_wdt_isr_user_handler()

You are limited to what you can do in the handler as it is an interrupt handler. As a simple example consider the following program:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "esp_task_wdt.h" 

void app_main(void)

{

esp_task_wdt_user_handle_t uhandle; 

esp_task_wdt_add_user("TestWD", &uhandle); 

while (true) {

esp_task_wdt_reset_user(uhandle); 

vTaskDelay(10/ portTICK_PERIOD_MS);    }

}
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It registers a user TestWD with the watchdog and then enters an infinite loop which pauses for 10 milliseconds and resets the watchdog for the registered user. When you run the program nothing much happens! This is because it resets the watchdog timer for the registered user and the 10 millisecond delay allows RTOS to gain control and so the event watchdog for the CPU is reset. If you remove the call:

esp_task_wdt_reset_user(uhandle); 

then you will see an error message on the monitor every 5 seconds: 0x4200a2a7: task_wdt_timeout_handling at …

On the other hand if you remove the vTaskDelay line the whole program is restarted even though you are resetting the user watchdog timer. The reason is simply that the event watchdog is still running for the CPU and the loop doesn’t allow Free RTOS to run at all. 

Implementing watchdog handling is very similar to working with deep sleep states in that you really need to restart the task or user action that caused the timeout. This also generally involves some sort of exception handling and perhaps even restoring hardware to a previous state, which is always difficult. 

It is worth knowing that C has an exception handling mechanism in the form of the longjmp function. To know more about it, see Dive 17 of  Deep C 

 Dives: Adventures in C, ISBN: 9781871962215. 

Flash Memory

There are a number of different objects and methods that allow you to work with the ESP32’s built-in flash memory, non-volatile computer storage that can be electrically erased and reprogrammed. You can also easily add external removable flash memory in the form of an SD card reader. 

Flash memory is treated much like a disk drive in that you can create and use partitions. There are some very low-level functions that can create and modify partitions. Flash memory is divided up into partitions for different uses. There are two general types of partition:

ESP_PARTITION_TYPE_APP

ESP_PARTITION_TYPE_DATA

These roughly correspond to programs and data. 
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You can find out what partitions are present in your ESP32 using:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "esp_partition.h" 

void app_main(void){

esp_partition_iterator_t partit = 

esp_partition_find(ESP_PARTITION_TYPE_DATA, 

ESP_PARTITION_SUBTYPE_ANY, NULL); 

while (partit != NULL) {

const esp_partition_t* part = esp_partition_get(partit); 

printf("DATA label= %s Address= %lX  size = %ld \n", part->label, part->address, part->size); 

partit = esp_partition_next(partit); 

}; 

esp_partition_iterator_release(partit); 

printf("\n"); 

partit = esp_partition_find(ESP_PARTITION_TYPE_APP, 


ESP_PARTITION_SUBTYPE_ANY, NULL); 

while (partit != NULL) {

const esp_partition_t* part = esp_partition_get(partit); 

printf("APP label= %s Address= %lX  size = %ld \n", part->label, part->address, part->size); 

partit = esp_partition_next(partit); 

}; 

esp_partition_iterator_release(partit); 

return; 

}

Typically you will see:

DATA label= nvs Address= 9000  size = 24576 

DATA label= phy_init Address= F000  size = 4096

APP label= factory Address= 10000  size = 1048576

The APP partition, factory, stores your current program. The DATA partition nvs, hosts the Non Volatile Storage system. 

To work with a partition you create a Partition struct using: part = esp_partition_find_first(type, subtype, id)

where id is the label of the block. 
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For example, to work with the nvs partition you could use: part = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, 

ESP_PARTITION_SUBTYPE_ANY,"nvs")

followed by the functions:



esp_partition_read(&part, offset, buf, size)



esp_partition_write(&part, offset, buf, size)



esp_partition_erase_range(&part, offset, size)

The read and write use the partition from the specified offset and either read or write data into the buffer. You have to erase the same region of the flash. 

Notice that you work with a raw partition in terms of bytes offset from the start of the partition – there are no files. 

You probably only need to get involved in partition management if you want to use OTA (Over The Air) updates. This involves creating a flash layout that has two partitions ota_0 and ota_1 which can be used to store a complete version of your app. The OTA update works by downloading the new version of your app to the free OTA partition. Exactly how to implement this is beyond the scope of this book. 

You can use the read/write blocks methods to load and store data, but you would have to keep track of which blocks were in use. This is usually the task of a file system and the API supports the FAT (File Allocation Table) filing system. 

Creating Partitions – Adding FAT

If you are familiar with the way that hard disk partitions work on desktop machines you may think that they are something that are set up when you first install the disk and they remain the same for the rest of its life – unless something odd happens. Partitions are installed on flash memory whenever a new application is flashed. The partition table, which is also located on flash memory, is updated when you install a program. As such flash partition tables can be easily changed. The only problem is that there are a number of different ways to do this. As we are using VS Code the easiest is to stick with its facilities. 
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If you want to change the partition table the first thing to do is to use the ESP-IDF Configuration Manager and access the Partition Table: You can select one of the standard configurations or a custom table which is defined by a CSV file with a name you can specify. 

Once you have saved this configuration you can open the Command Palette in VS Code and enter or find the command ESP-IDF: Open Partition Table Editor UI. This opens a new tab ready for you to enter the details of the partitions:

You can see that all you have to do is select the type, sub type and then enter the offset and size. The offsets are usually such that each partition starts where the previous ends. Starting at 0x9000 is standard and allows space for the boot loader. 

In this case the partitions are set up as for a default configuration with no OTA partitions and one new FAT partition of 1MBytes. If you run the previous partition listing program, after saving the file, you will see: DATA label= nvs Address= 9000  size = 24576

DATA label= phy_init Address= F000  size = 4096

DATA label= FAT Address= 110000  size = 1048576

APP label= factory Address= 10000  size = 1048576
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You may also have to set the size of the flash memory using the ESP-IDF 

Configuration Manager:

Non-Volatile Storage

To make it even easier to use flash storage for saving state, the ESP32 

implements Non-Volatile Storage, NVS, something we have already encountered as part of setting up WiFi in Chapter 16. This isn’t anything new in the sense you could just write a file with the same data, but NVS, which is usually provided by the partition called nvs, is easier to use as it provides key/value storage.  Keys have to be unique and are ASCII strings no larger than 15 characters and values are either integers, binary blobs or strings. 

Start with:

nvs_open( namespace, open_mode, pout_handle)

You can think of  namespace as a sort of file name and if it doesn’t already exist it is created. The open_mode parameter is one of NVS_READONLY or NVS_READWRITE and pout_handle is a pointer to a returned handle. This works with the partition named nvs. You can use any partition as a nonvolatile storage using nvs_open_from_partition. 

You save key integer value-pairs using:



nvs_set_i8(handle,key,value)



nvs_set_i16(handle,key,value)



nvs_set_i32(handle,key,value)



nvs_set_i64(handle,key,value)

and there are similar functions for unsigned values replacing i with u and a set of load functions with set replaced by get. 

You can save a string using:

nvs_set_str (handle, key, str); 

and a blob using:

nvs_set_blob(handle, key, pbuf,length); 

where pbuf is a pointer to a void buffer. There are corresponding get functions. 
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Finally:

nvs_erase_key(handle,key); 

erases a key-value pair and

nvs_erase_all(handle)

erases all key-value pairs in the namespace. 

It is important to notice that any setting of key-value pairs is postponed until you use:

nvs_commit(handle)

For example, to save and retrieve a simple value from a new namespace:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "nvs_flash.h" 

void app_main(void)

{

nvs_flash_init(); 

nvs_handle_t my_handle; 

nvs_open("localstorage", NVS_READWRITE, &my_handle); char key[] = "mykey"; 

int32_t myvalue = 42; 

int32_t myretrievedvalue; 

nvs_set_i32(my_handle, key, myvalue); 

nvs_commit(my_handle); 

nvs_get_i32(my_handle, key, &myretrievedvalue); 

printf("%ld\n", myretrievedvalue); 

return; 

}

Notice that the NVS namespace is called localstorage and we can have other namespaces if we need to. The storage persists over program and processor restarts. 

The FAT File System

For storage, the ESP32 supports a traditional FAT (File Allocation Table) system. You can create a FAT file system on any available partition, such as the one created in the section on creating partitions. The actual structure of file system support is quite complicated, but if you start at the topmost level it is fairly easy to use. The FAT system is implemented by the fatfs open source library as the fatfs component. You can use this directly, but it is easier to use it wrapped by the VFS (Virtual File System). The VFS can be used to integrate any file system with the standard C library functions such as fopen, fprintf and so on. Even if you plan to do complicated low-level file operations, it is still easier to get started with VFS FAT. 
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To use the VFS FAT system all you have to do is include the esp_vfs_fat.h header and use the esp_vfs_fat_spiflash_mount_rw_wl utility function to make the FAT partition ready to use. This registers the FAT partition, registers the FAT driver and then attempts to mount the partition. If it doesn’t succeed, you can opt to format the partition ready for use and then remount. You can perform each of these steps explicitly using fatfs and VFS function calls. 

The mount function is:

esp_vfs_fat_spiflash_mount_rw_wl(basepath, partitionname, 

pmountconfig, &wl_handle); 

where basepath is the root of the file system and you can assign any meaningful name, partitionname is the name of the partition you have created and pmountconfig is a pointer to esp_vfs_fat_mount_config_t, a struct with the fields:

 format_if_mount_failed  

If true, format and retry mount

 max_files               

Maximum number of open files 

 allocation_unit_size    

must be a power of 2

 disk_status_check_enable  Only applies to SD cards

Once the partition has been mounted you can use the standard C file functions to work with files. 

For example:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "esp_vfs_fat.h" 

static wl_handle_t s_wl_handle = WL_INVALID_HANDLE; 

void app_main(void)

{

const esp_vfs_fat_mount_config_t mount_config = {

.max_files = 4, 

.format_if_mount_failed = true, 

.allocation_unit_size = CONFIG_WL_SECTOR_SIZE, 

}; 

esp_err_t err = esp_vfs_fat_spiflash_mount_rw_wl("/spiflash", 

"FAT", &mount_config, &s_wl_handle); 

if (err != ESP_OK) {

printf("%X\n",err); 

return; 

}



FILE *f = fopen("/spiflash/hello.txt", "wb"); fprintf(f, "Hello world"); 

fclose(f); 
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char buf[25]; 

f = fopen("/spiflash/hello.txt", "rb"); fgets(buf,sizeof(buf),f); 

fclose(f); 

printf("%s\n",buf); 

return; 

}

This uses data partition with the subtype fat and the name FAT – use the partition editor as described earlier. 

If you try this out you will discover that there is a new file called Hello.txt and you should see its contents displayed. 

External SD 

Although the ESP32 generally doesn’t have an SD card reader, it is fairly easy to add one. Add-on SD card readers are available to order at very reasonable prices, see the Resources section of the book’s webpage for stockists. 

The only problem is that most have zero documentation or specification and they lack a card-detect and a write-protect pin. Connection to the ESP32 is fairly easy via one of the two SPI buses. The only complication is that most of the devices need a 5V supply. They work at 3.3V logic levels and so can be directly connected to the ESP32 and have an onboard voltage regulator to reduce the supply to 3.3V. Most claim to work if powered from 3.3V, but this depends on the regulator used and some fail or become unreliable. The ESP32 has a suitable 5V supply pin and in most cases this is the VCC 

connection to use. The ESP32 S3 often cannot supply enough 5V current to operate a card reader. 

As we have already discussed, there are four SPI interfaces, but two are dedicated to SD use and it is easier to use one of the remaining two, i.e. SPI2

HSPI or SPI3 VSPI. The following pin assignments work with the ESP32 or the ESP32 S3 as should any other reasonable selection: 

SCK

18

CS

5

MISO

4

MOSI

15
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You can use any GPIO line for any of the SPI signals, but in the case of the ESP32 the default assignments are faster.  The connections are as shown below:

The ESP32 has enough power to supply 5V to most card adapters, but the ESP32 S3 generally hasn’t and you need to provide a separate 5V supply unless the adapter works at 3.3V. If the software reports a timeout and the SD card is good and the wiring correct then the most likely reason is an inadequate power supply. If the software reports a CRC error then the connecting cables are too long and you need to reduce the clock speed. 

Once you have this wired up you need an SD card, freshly formatted using FAT, and a single partition, which is what you get if you use a new, just out of the packet, formatted SD card.  If the card isn’t new, then partition and 406

format it in another machine. You can partition and format cards using the ESP32, but getting started is easier with a pre-formatted card. Make sure the card is correctly inserted before moving on to the software. 

The SPI SD card system uses four layers of abstraction: the SPI bus; the SPI device or host; the slot, i.e. the card reader; and the card, i.e. the SD card in the slot. You can work with these entities each at their own level, set up the SPI device, slot and then mount the card in the usual way, but the ESP-IDF 

provides a single function:

esp_vfs_fat_sdspi_mount(mountpoint, phost_config, pslot_config, pmount_config, pcard); 

where phost_config  refers to sdmmc_host_t, a struct which has a large number of fields and can be initialized to the most common configuration using:

sdspi_device_config_t slot_config = SDSPI_DEVICE_CONFIG_DEFAULT(); The only two fields that you generally have to modify are:

 gpio_cs     

Sets the GPIO pin to use as CS

 host_id      

SPI interface to use, usually 2 or 3

pslot_config is a pointer to a  sdspi_device_config_t struct that can be initialized using:

sdspi_device_config_t slot_config = SDSPI_DEVICE_CONFIG_DEFAULT(); It has the following fields:

 host_id        

SPI interface to use usually 2 or 3

 gpio_cs        

GPIO to use as CS

 gpio_cd        

GPIO to use for card detect 

 gpio_wp; 

GPIO to use for write protect

 gpio_int         

GPIO to use as interrupt line

 gpio_wp_polarity 

true=wp high, false wp=low

Any pins that are not used can be set to GPIO_NUM_NC

Finally, pmount_config is just a pointer to a 

esp_vfs_fat_sdmmc_mount_config_t struct which is identical to a esp_vfs_fat_mount_config_t struct described earlier. The result is a handle to an SD card returned in card and this can be used to perform standard operations on the card. To work with files on the card you can simply use the standard C file operations using the mount pointer to open the file. 
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Putting this all together gives the full program:

#include <string.h> 

#include "esp_vfs_fat.h" 

#include "sdmmc_cmd.h" 

void app_main(void)

{

spi_bus_config_t bus_cfg = {

.mosi_io_num = 15, 

.miso_io_num = 4, 

.sclk_io_num = 18, 

.quadwp_io_num = -1, 

.quadhd_io_num = -1, 

.max_transfer_sz = 4000, 

}; 

sdmmc_host_t host_config = SDSPI_HOST_DEFAULT(); 

host_config.max_freq_khz = 400; 

sdspi_device_config_t slot_config =

SDSPI_DEVICE_CONFIG_DEFAULT(); 

slot_config.gpio_cs = 5; 

slot_config.host_id = host_config.slot; 

esp_vfs_fat_sdmmc_mount_config_t mount_config = {

.format_if_mount_failed = false, 

.max_files = 5, 

.allocation_unit_size = 16 * 1024

}; 

spi_bus_initialize(host_config.slot, &bus_cfg, 

SDSPI_DEFAULT_DMA); 

sdmmc_card_t* card; 

esp_err_t  err = esp_vfs_fat_sdspi_mount("/sdcard", 

&host_config, &slot_config, &mount_config, &card); if (err != ESP_OK) {

printf("%d", err); 

}

sdmmc_card_print_info(stdout, card); 

FILE *f = fopen("/sdcard/hello.txt", "w"); fprintf(f, "Hello World"); 

fclose(f); 

char buf[25]; 

f = fopen("/sdcard/hello.txt", "rb"); 

fgets(buf,sizeof(buf),f); 

fclose(f); 

printf("%s\n",buf); 

return; 

}
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To prove that things are working the program prints the details of the card and then creates and reads a file. 

The SPI bus has to be initialized before calling esp_vfs_fat_sdspi_mount. 

The clock speed is set in the lines:

sdmmc_host_t host_config = SDSPI_HOST_DEFAULT(); 

host_config.max_freq_khz = 400; 

Starting with a frequency of 400kHz is good because this the frequency of the initial probe, irrespective of what frequency you set for the rest of the transaction. If the card reader doesn’t work at this frequency it is unlikely to work at all. Once you have the setup working, you can adjust the frequency to see how high the reader will go. 

Digging Deeper

There is much more to explore about the ESP32 hardware, but you now should have the confidence to read the datasheet to find out how the registers control things. The biggest difficulty is finding the register that contains the bits that reflect the status of, or that control, whatever it is you are interested in. Once you have found this out, the only remaining problem is in working out how to set or clear the bits you need to work with without changing other bits. 

It also has to be said that hardware documentation at this level is often incomplete due to assumptions the writer makes about what you should already know. In such a circumstance your best approach is the experimental method. Work out the simplest program you can think of to verify that you understand what the hardware does.  And if you are wrong always check the addresses and bits you are changing before concluding that things work differently from the documentation. 
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Summary

● All of the ESP32’s peripherals, including the GPIO lines, are controlled by registers. These are special memory locations that you write and read to configure and use the hardware. 

● Exactly where the registers are positioned in the address space is usually given in the documentation as a base address used for all of the similar registers and an offset that has to be added to the base to get the address of a particular register. 

● With knowledge of how things work, you can add functions that are missing from the ESP-IDF. 

● You can also use features of peripherals that are not supported, such as changing GPIO lines at the same time or detecting when the PWM 

timer wraps. 

● There is a Real Time Clock, RTC, that you can set using SNTP. 

● If you want to use the ESP32 with a battery source then you need to work with power-saving modes. 

● Low-power modes are implemented as part of the RTC. Some GPIO 

lines have low-power counterparts the RTC GPIO. 

● Light sleep is easy to work with because it saves the current state of the system and you can restart your program from where it entered light sleep. 

● Deep sleep saves more power, but the CPU is switched off and the system loses track of its state. The entire system is restarted when it wakes up and your program has to restore its state. 

● The system can be woken up either by a set time, a change in RTC 

GPIO lines or a touch input. 

● The watchdog timer can be used to make your program reliable. 

● You can work with the ESP32’s internal flash memory as partitions. 

You can install file systems onto partitions and then work with files. 

● The NVS file system allows you to save key value pairs to the internal flash memory. 

● If you add an external SD card reader, you can work with an SD card using the same techniques as used for the internal flash memory. 
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Chapter 18

FreeRTOS For Task Management

So far we have been able to mostly ignore the fact that the ESP32 uses a simple operating system to implement a degree of parallel processing in the dual-core ESP32 models. If you have access to two cores then it is possible to run two programs at the same time, which is true parallelism. Even if the ESP32 module you are using has only a single core it is still possible to run multiple tasks, but only one task runs at any given moment. If you start from first principles then managing a program that is made up of multiple tasks is difficult. This is where the Free Real Time Operating System, FreeRTOS, comes into the picture. It provides a standard way of creating and managing tasks and determining which core runs any given task. 

You may be surprised that we have left this topic until the very end. The reason is that, for most of the time, you can ignore the issues of running multiple tasks and using more than one core. The default situation is that one core is used for applications and the other manages the WiFi. This is very computation intensive and, if data isn’t to be lost, needs attention in real time. As a result, from the application programmer’s point of view, the dual-core ESP32 looks a lot like a single-core machine with a separate processor dedicated to running the WiFi. An application runs on the APP_CPU and any interrupt handlers or other asynchronous code that could potentially be run on another core, is run on the same core. In this sense you can mostly ignore the second core and just be pleased that it provides you with WiFi without disturbing the running of your own program. 

When you are trying to find out how the basic hardware of the ESP32 works, it is best to keep things as simple as possible and ignore the possibility of using tasks, apart from the need to implement interrupt handlers. Later you can expand things to include multiple tasks and even to using more than one core. Notice that, while this might be a more powerful way to construct applications, it is more complex and hence more difficult to get right and much more difficult to debug. 
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What is FreeRTOS? 

FreeRTOS is an open source project to make a realtime operating system available on a wide range of processors. The basic FreeRTOS is a single-core operating system aimed at making running multiple tasks easier. The version of FreeRTOS used by the ESP32 is ESP-IDF FreeRTOS and this has been extended to work with two cores to utilize Symmetric Multi-Processing (SMP), a technique where multiple processors work together to execute tasks simultaneously. This is the version of FreeRTOS that is available as a component in ESP-IDF and the one currently used in all ESP32 programs. 

As well as FreeRTOS and ESP-IDF FreeRTOS there is also Amazon SMP 

FreeRTOS, which has been extended to support as many cores as you need i.e. N-core SMP. At the time of writing this is being ported to ESP-IDF, but its status is experimental and so best avoided until it becomes stable. 

The bottom line is that you should use ESP-IDF FreeRTOS unless there is a good reason to experiment. The good news is that the basic operation and API of all FreeRTOS versions is more or less identical and you should find moving between them easy. It is worth learning ESP-IDF FreeRTOS because the skill generalizes. 

From this point on the use of FreeRTOS should be taken to mean ESP-IDF 

FreeRTOS, but differences are few. 

Scheduling and Tasks

FreeRTOS works in terms of tasks. A task is a function that can be run as if it was a “main” program in its own right. That is, a task is like a function call, but it doesn’t block its creator until it has finished. Tasks never return and are generally written as infinite loops. Tasks can be destroyed via FreeRTOS. 

Creating a FreeRTOS program is all about creating and managing tasks. 

The basic FreeRTOS call to create a task is:

xTaskCreate(pTaskFunction, pName, StackDepth, pParameters, 

Priority, pTaskHandle)

Its parameters are:

 pTaskFunction   Function to run as the task 

 pName                Name used to identify the task to the programmer

 StackDepth      Stack size in bytes

 pParameters   Pointer to parameters to be passed to the task

 Priority

Scheduling priority of the task

 pTaskHandle        Pointer to a task handle for managing the task 412

The function looks like an interrupt handler, for example: TaskFunction(void *arg)

The stack size should be set to be large enough to store all of the local variables that are created by the task or by any functions it calls. You can find out how close you are to running out of stack memory using uxTaskGetStackHighWaterMark, which reports the smallest free stack space since the task started running. 

The memory needed for the task is allocated by FreeRTOS. If you want to control this then you can use xTaskCreateStatic() and supply pointers to memory to be used by FreeRTOS. In most situations you don’t need to do this. 

If there are two cores then the created task will run on either core and can even swap which core it is running on. In the jargon, the task is said to have no core affinity. Usually we do want to assign a core affinity to a task as we generally want it to run on the Application CPU, known as APP_CPU or CPU1 and not interfere with the working of WiFi/Bluetooth on the Protocol CPU, PRO_CPU or CPU0. To assign a task to a particular core we can use: xTaskCreatePinnedToCore( pTaskFunction, pcName, 

StackDepth,pParameters,Priority, pTaskHandle, CoreID)

which is the same as xTaskCreate but with an extra CoreID parameter which is 0 for CPU 0 or 1 for CPU 1. 

A task can be in one of four states: Running, Ready (to run), Blocked or Suspended. The difference between Blocked and Suspended is that a task that is Blocked is waiting on something that the system can supply, such as the time being up for a task that has called vTaskDelay. The system can change the status of a task from Blocked to Running on its own. A task can change its state to Suspended by calling vTaskDelay and also becomes Suspended by another task calling vTaskSuspend in which case it can only be returned to the Ready state by another task calling vTaskResume. 

On a single-core machine there can be only one Running task rather than two on a dual-core machine. Tasks are stored in a list which the scheduler has access to. The system is configured so that every  portTICK_PERIOD_MS 

milliseconds there is a timer interrupt that runs the scheduler. This causes the currently running task to change state to Ready and the scheduler examines the list of Ready task and runs the one with the highest priority. If there are multiple tasks with the same priority then they each get their turn to run in a round robin fashion. 
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This is a very simple scheduler, but there are a few things to notice. The first is that a task doesn’t have any choice about giving up control if the system selects another task to run. That is, FreeRTOS is a priority-based preemptive scheduler. Also notice that if there are tasks that are ready to run with a higher priority, then lower-priority tasks don’t get a look in. 

So how do lower-priority tasks ever get to run? The answer is that tasks of any priority are not always in a Ready state. If a task is waiting for input, then it will be Blocked and hence not ready to run. If a task has suspended itself using a vTaskDelay(t / portTICK_PERIOD_MS) then it is not ready to run until the time is up. If it has been suspended by itself or another task then it will not be ready to run until another task causes it to resume. For all these reasons, it may well be that there are no tasks of a given priority in the Ready state. In this case the scheduler looks for the highest-priority task that is ready to run. 

To summarize:

● Every task has a fixed priority assigned when it is created. 

● The scheduler gets to run whenever the current task leaves the running state, either because it is suspended or is blocked. If this doesn’t happened for  portTICK_PERIOD_MS milliseconds, then the running task is interrupted and the scheduler runs. 

● When the scheduler runs, it first examines all tasks suspended for a time and if that time is up they are marked as Ready. 

● The scheduler then looks for the task in the Ready state with the highest priority. If there is more than one then the tasks are run in turn, i.e. in round robin fashion. 

This is a very simple scheduling algorithm and it has the advantage that you can mostly work out what is going to happen. However, the picture is slightly complicated by the fact that tasks can have core affinities. If two high-priority tasks both want to run on the same core, then one of them will run and the other will have to wait while a lower-priority task runs on the other core. Similarly, round robin selection among tasks of equal priority has also to take account of the tasks’ core affinities. 

414

The Standard Tasks

Working with the scheduling algorithm would be easy if there were only the tasks you created in the system. There are, however, five standard tasks that the system starts before your program is loaded:

Task Name

Description

Affinity

Priority

An idle task (IDLEx) is created 

Idle Tasks 

for (and pinned to) each core x. 

Core x

0

(IDLEx)

The idle task also resets the 

watchdog timer

FreeRTOS 

FreeRTOS will create the Timer  

CONFIG_FREERT

Timer Task  Task if any FreeTOS Timer APIs 

Core 0

OS_TIMER_TAS

(Tmr Svc)

are called

K_PRIORITY

Main Task 

Task that simply calls app_main.  CONFIG_ESP_MAI 1

(main)

This task will self delete when 

N_TASK_AFFINITY

app_main returns

IPC Tasks 

IPC tasks are used to implement 

(ipcx)

the Inter-processor Call (IPC) 

Core x

24

feature

ESP Timer 

ESP-IDF creates the ESP Timer 

Task 

Task used to process ESP Timer 

Core 0

22

(esp_timer) callbacks

These tasks aren’t running all of the time, but the priorities that you assign to the tasks that you create can stop them running at all. 

You may have been wondering why all ESP32 programs start with app_main and not the usual C/C++ main? The reason is that FreeRTOS is the first program to start and it usually lets you start your “main” task using vTaskStartScheduler(). In this sense there is no “main” program under FreeRTOS, just tasks. ESP-IDF FreeRTOS does things slightly differently and calls the function void app_main(void) from the main task, which it starts automatically. The idea is that app_main then creates any additional tasks your app may require and returns when it is finished. Notice that app_main returning doesn’t mark the end of your program as it may leave other tasks that it created still running, but it does delete main, the Main Task. Notice that this implies that app_main runs at priority 1, which allows all of the standard tasks to run with the exception of IDLEx, the Idle Task. 
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A First Example

Creating a task is easy. It is how tasks behave when running together that is harder. As a simple example, consider running two tasks on the same core at the same priority. The first task sets a GPIO line high and the second sets it low. This allows you to use a logic analyzer to see when each task is running:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

#include "driver/gpio.h" 

void task1(void* arg) {

for (;;) {

gpio_set_level(2, 1); 

}

}

void task2(void* arg) {

for (;;) {

gpio_set_level(2, 0); 

}

}

void app_main(void)

{

gpio_reset_pin(2); 

gpio_set_direction(2, GPIO_MODE_OUTPUT); 

TaskHandle_t th1; 

xTaskCreatePinnedToCore(task1, "task1", 2048, 

NULL, 0, &th1, 1); 

TaskHandle_t th2; 

xTaskCreatePinnedToCore(task2, "task2", 2048, 

NULL, 0, &th2, 1); 

}

You can see that both tasks are run on CPU 1 at priority 0. If you try this out you will see:
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As there are two tasks with the same priority you may expect each to run for half of the time, but it is clear that this isn’t the case. task1 appears to run for two time slots but task2 runs for only one. The reason for this apparent anomaly is that at priority 0 there are three tasks – the two we created and the Idle Task. So what happens is that task 1 starts running for one time slot. Then the idle task gets to run and this leaves the GPIO line high, even though task 1 is suspended. Then the idle task is preempted at the end of the time slot and task 2 starts running. 

If you change the priority of the tasks to 1 then you do see the tasks running for an equal time as promised but now the idle task doesn’t get to run at all and the result is a watchdog timer timeout: 

E (135306) task_wdt: Task watchdog got triggered. The following tasks/users did not reset the watchdog in time:

E (135306) task_wdt:  - IDLE1 (CPU 1)

E (135306) task_wdt: Tasks currently running:

E (135306) task_wdt: CPU 0: IDLE0

E (135306) task_wdt: CPU 1: task2

E (135306) task_wdt: Print CPU 1 backtrace

What is the solution to this? It all depends on how you are designing your system and whether or not you actually want a watchdog timer to act on your behalf. The simplest solution is to disable the watchdog timer on CPU 1

using the ESP-IDF Configuration Manager. 

You can turn the watchdog timer off in the Idle Task, but if you do you have to make sure that it doesn’t run in this state:

void task1(void* arg) {

TaskHandle_t IT= xTaskGetIdleTaskHandle(); 

esp_task_wdt_delete(IT); 

for (;;) {

gpio_set_level(2, 1); 

}

}

With this modification to the task, you can run it at priority 1 and you won’t trigger a watchdog timeout. When you are ready to allow the Idle Task to run again, you have to reinstall the Watchdog Timer. 

The Idle Task is responsible for freeing the kernel-allocated memory from tasks that have been deleted. It is therefore important that the Idle Task is not starved of microcontroller processing time if your application makes any calls to vTaskDelete. Memory allocated by the task code is not automatically freed, and should be freed before the task is deleted. 
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The Timing Problem

In many cases a better solution is to adjust the watchdog’s timeout period or feed the watchdog from the task that is keeping control of the core. In practice, real applications do need a watchdog timer to restart them after a crash. 

This issue with the imposed watchdog timer is typical of the way you have to compromise when any operating system is involved with a processor that has to interface with the external world. Without an operating system, you can write a program that has exact timing. This is usually more difficult, but you can program in assurances such as the output will always have a 50% 

duty cycle. As soon as you use an operating system, writing a system becomes easier, but making any guarantees about timing is much more difficult, if not impossible. In the previous example, we had two tasks of equal priority and in theory this should produce a 50% duty cycle but due to the fact that the Idle Task also needs a time slot the results are not 50%. 

What should you do to force the scheduling to be what you want? The Idle Task resets the watchdog, but it also does garbage collection of the memory freed by deleting tasks. Even if you decide that the watchdog timer isn’t needed, you still need to allow the Idle Task to run occasionally to ensure system stability. Then there are the tasks with a higher priority that every now and then become ready to run and are run at the next time slot. Timing in an RTOS is difficult. 

As long as you are generating outputs or servicing inputs that can tolerate delays and disruption in the tens of milliseconds, then there is no problem. 

You can impose stricter timing limits, but only for short bursts of time because you are going to have to allow the system tasks to run at some point. 

Also notice that, as well as FreeRTOS interrupts every time slot, you also have to contend with interrupts from other sources. 

Managing Tasks

There are some simple functions that allow you to manage tasks:



vTaskSuspend(TaskToSuspend)



vTaskResume(TaskToResume)



xTaskResumeFromISR(TaskToResume)



vTaskDelete(TaskToDelete)



vTaskSuspendAll()



xTaskResumeAll()

where all of the parameters are task handles. A task that is suspended remains suspended until another task resumes it. Notice that you need a special function to resume a task from an interrupt handler.   The 418

SuspendAll function stops all tasks except for the one that called it, but leaves interrupt handlers free to operate. 

Tasks run forever unless they are deleted. Deleting a task safely is subject to a range of conditions. Basically, make sure that a task that is about to be deleted has freed all of its allocated memory and resources such as spinlocks.  The internally-used memory is freed by the Idle Task when it next runs. You can also delete a Suspended task from another task. A task can self-delete, assuming it has cleaned up its resources using: vTaskDelete(Null)

There are a range of functions that will get or set information about tasks:



uxTaskPriorityGet(TaskHandle)



uxTaskPriorityGetFromISR(TaskHandle)



vTaskPrioritySet(TaskHandle,NewPriority)



eTaskState eTaskGetState(TaskHandle)



string = pcTaskGetName(TaskHandle)



TaskHandle = xTaskGetHandle(pcNameToQuery)



TaskHandle = xTaskGetCurrentTaskHandle()



TaskHandle = xTaskGetIdleTaskHandle()



uxTaskGetStackHighWaterMark(TaskHandle)



uxTaskGetStackHighWaterMark2(TaskHandle)



vTaskGetInfo(TaskHandle, pTaskStatus, 

GetFreeStackSpace,State)

The getInfo function is the one that returns most information as a TaskStatus struct in the following fields:

 Handle  

Handle of the task

 pcTaskName                    Points to the task's name

 XtaskNumber                    Number unique to the task

 eCurrentState                 State of the current task, returns one of: eRunning, eReady, eBlocked, 

eSuspended,   eDeleted, eInvalid

 uxCurrentPriority          Priority at which the task is running

 uxBasePriority                Not used

 ulRunTimeCounter            Total run time allocated to the task so far

 pxStackBase                    Points to lowest address of the task's stack

 UsStackHighWaterMark     Smallest amount of free stack while the task has been running

 XcoreID  

Core affinity 0, 1, or tskNO_AFFINITY 

Notice that the stack high water mark takes a long time to compute. If you don’t want it, set GetFreeStackSpace to false. 

419

[image: Image 209]

To use some of these functions you have to configure the project to activate them. For example, to use the getInfo function you have to set configUSE_TRACE_FACILITY  to 1:

A simple example to discover how generous our allocation of a 2kByte stack is: 

TaskHandle_t th1; 

xTaskCreatePinnedToCore(task1, "task1", 2048, NULL, 1, &th1, 1); vTaskDelay(1000 / portTICK_PERIOD_MS); 

TaskStatus_t TaskStatus; 

vTaskGetInfo(th1, &TaskStatus, true,true); 

printf("%ld\n",TaskStatus.usStackHighWaterMark); 

This prints 1240, which means that at most 808 bytes are used by the stack, suggesting it could be made smaller. 

There are some functions concerned with tasks and time:



ticks = xTaskGetTickCount()



ticks = xTaskGetTickCountFromISR()



vTaskDelay(TicksToDelay)



xTaskDelayUntil(pPreviousWakeTime, TimeIncrement)



xTaskAbortDelay(TaskHandle)

We have been using vTaskDelay to introduce delays into programs from our early examples, but now you can appreciate that it simply puts the task into a Blocked state and the operating system changes it back to Ready when the time is up. The TaskDelayUntil function is similar to delay_until given in Chapter 4. The big difference is that all times are in terms of ticks. The task is resumed when the tick count gets to:

pPreviousWakeTime + TimeIncrement. 

So, to generate an initial delay of n time slots you would use: TickType_t xLastWakeTime = xTaskGetTickCount (); 

xTaskDelayUntil( &xLastWakeTime, n ); 

The clever part is that xTaskDelayUntil stores the current tick count, when it is called, in xLastWakeTime, which means the next time you call it you get a delay of n time slots, irrespective of exactly when the next call occurs. In 420

other words, a set of xTaskDelayUntil calls will result in the task being woken up again after n time slots, irrespective of how long it runs before calling the function again. 

There are some functions that are helpful if you are trying to debug tasks and they are described in the documentation. 

Race Conditions

There is a fundamental problem with tasks and asynchronous/parallel programming in general. The problem is that tasks share the same memory space and indeed the two cores share the same memory space. This is convenient in one sense as it makes communication between tasks very easy, but it also makes it dangerous. The problem is that an operation that one task is performing can be interrupted by another task performing an operation of its own. As long as the tasks are using different areas of memory, there is no problem. If they are working with the same area of memory then things can be less safe. We have already encountered the problem in Chapter 7 in connection with interrupt service routines, but it is worth exploring further. 

The most basic race condition is sometimes called “tearing”. If a memory access is not “atomic”, i.e. it can be split by another operation, then you may not retrieve a sensible value. For example, suppose memory reads are atomic in byte access and you want to read two bytes. If the memory location is 0xFFFF and task one starts to read it then the first byte it gets is 0xFF. If task two now writes 0x0000 to the memory location and task one reads the second byte it now has 0xFF00, which is not the original value and not the value written by task two. It is as if the final value is the result of tearing up the original and new value and putting them together. 

Tearing does not occur with 32-bit or less access as memory is always accessed in 32-bit chunks as an atomic operation. However, you might expect tearing to occur with a 64-bit integer as two 32-bit accesses are required. Tearing does occur, but it can be difficult to capture it in action. 
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For example:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

uint64_t flag1 = 0; 

uint64_t flag2 = 0; 

void task1(void* arg) {

for (;;) {

flag1 = 0xFFFFFFFFFFFFFFFF; 

flag2 = 0xFFFFFFFFFFFFFFFF; 

if (flag1 != flag2) {

printf("task 1 %llX   %llX\n", flag1, flag2); 

fflush(stdout); 

}

}

}

void task2(void* arg) {

for (;;) {

flag1 = 0x0; 

flag2 = 0x0; 

if (flag1 != flag2) {

printf("task 2 %llX   %llX\n", flag1, flag1); 

fflush(stdout); 

}

}

}

void app_main(void)

{

TaskHandle_t th1; 

xTaskCreatePinnedToCore(task1, "task1", 4048, NULL, 0, &th1, 1); 

TaskHandle_t th2; 

xTaskCreatePinnedToCore(task2, "task2", 4048, NULL, 0, &th2, 0); 

}

If you run this with the compiler setting “debug without optimization” then you will find output like:

task 2 FFFFFFFF   FFFFFFFF

task 2 FFFFFFFF00000000   FFFFFFFF00000000

task 1 FFFFFFFF00000000   FFFFFFFFFFFFFFFF

task 2 FFFFFFFFFFFFFFFF   FFFFFFFFFFFFFFFF

You can see that we have values that should not occur and sometimes that are identical which means the if statement shouldn’t have evaluated to true. The only interpretation is that the values are being changed in the middle of the comparison by the other thread. In addition, updates to the values are sometimes complete when the printf displays their values, in which case they are identical, but wrong in the context of the task doing the 422
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printing. Or the update is incomplete and we see torn values with all ones in one half of the value and all zeros in the other. Notice that this behavior disappears if you compile the program with optimizations selected. 

If we permit a simultaneous read, update, write of a shared resource then we have a natural race hazard.  For example, if task 1 is adding one to a memory location, it does so by retrieving the value, adding one and storing the result back in the location. The problem occurs if, for example, task 1 is interrupted after reading the location and before it has stored the result back. The operating system can start task 2, which could add one to the same location. Of course, as task 1 hasn’t saved the result of adding one back in the location both tasks increment the same initial value and when both complete the addition the location has only been incremented by one, not by two as it should have been. The problem is even worse if task 1 and task 2 

are running on different cores. Then task 1 doesn’t even have to be interrupted by the operating system as task 2 can access that same location any time it likes with the same result. If both cores try to access the same memory location at the same time then the hardware serializes the access and one core accesses before the other. 

To illustrate the idea of a race condition:

This is clearly a problem because if both tasks had added one to 42 the answer should be 44. 

This is a race condition in which the value stored in the memory location depends on which task gets to write it first. The order of access matters to the outcome. Such problems are very difficult to debug because they occur erratically depending on timing and this makes them look like some sort of hardware problem. A race condition can make a repeated calculation give a different result each time. As the bug depends on timing, it can be difficult to reproduce reliably and it is usually the case that the problem vanishes when the program is run in a debugger due to the slower execution rate. 
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So shared variables are dangerous, but not all shared variables are as dangerous. The reason is that some operations are “atomic” and cannot be divided into separate steps and interrupted by another task. For example, a machine-level memory access is atomic as the operating system cannot be interrupted in the middle of a memory access. 

It can be difficult to work out exactly what operations are atomic as it depends, not only on the processor, but on the compiler as well. For example, if you write x++ is this atomic and is it different from writing x=x+1?  It depends on whether or not the processor has an atomic increment operator. If not, both involve retrieving a memory location into a register, incrementing the register and storing the result back into the memory location and this is clearly not atomic unless extra steps are taken to make it atomic. 

As an example of how simple things can go wrong the following program creates two tasks that increment an in-common 64-bit variable. The reason for using a 64-bit variable is that the ESP32 uses a 32-bit processor and this means that accessing a 64-bit value requires two memory accesses which is clearly not atomic:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

int64_t count = 0; 

void task1(void* arg) {

for (int i = 0;i < 0xFFFFF; i++) {

count = count + 1; 

}

for (;;) {

}

}

void task2(void* arg) {

for (int i = 0;i < 0xFFFFF; i++) {

count = count + 1; 

}

for (;;) {

}

}

void app_main(void)

{

TaskHandle_t th1; 

xTaskCreatePinnedToCore(task1, "task1", 2048, NULL, 0, &th1, 1); TaskHandle_t th2; 

xTaskCreatePinnedToCore(task2, "task2", 2048, NULL, 0, &th2, 0); vTaskDelay(4000 / portTICK_PERIOD_MS); 

printf("%llX\n", count); 

}
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The delay is included to give ample time for both tasks to complete. If you run this program you will discover that you don’t get the same answer twice. 

Typically, you might see:

1493E1

17DEFD

14A630

182307

and so on. If you re-run the program, but with the tasks on the same core, then you get some repeated results due to the more deterministic nature of the way the tasks are run. 

It can be confusing to find a deterministic program apparently producing different results each time it is run and it does feel as though a hardware problem should be responsible – but it is 100% code. 

If you replace the 64-bit counter with a 32-bit counter then, with the default compiler settings, you don’t see any race conditions. However, if you split the increment into two statements:

temp = count + 1; 

count = temp; 

and compile without optimization, you do get a race condition. If you compile with optimization the use of the temp variable is removed and you don’t get a race condition. 

You can see from all of this that working out what is safe and what is not is very difficult and a small change in the way an algorithm is expressed or a change to the compiler’s optimization level can result in a race hazard where there was none. 

Locks

The solution to race hazards is to use locks to restrict access to a resource to a single task at a time. If a task needs to read, update and write a shared resource, then the resource should be locked from before the read to after the write. In the case of there  only being a single core then we could ensure that access to a shared resource was exclusive to the task by simply turning off interrupts. If there are no interrupts, then the task cannot be interrupted! 

However, as there are two cores, this isn’t enough as another task could try to access the same resource at the same time. 
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To cope with managing two cores we have to add a spinlock to the mix by way of modified critical region functions:

taskENTER_CRITICAL(pspinlock) 

taskEXIT_CRITICAL(pspinlock) 

where pspinlock is a portMUX_TYPE spinlock allocated statically or dynamically. There are also ISR versions of the ENTER and EXIT routines. 

If CPU 0 locks a resource with a spinlock then interrupts are disabled. When CPU 1 tries to access the same resource it has to lock the same spinlock, but as CPU 0 already has it locked, it has to wait in a tight loop until it is free. 

Notice that there is nothing stopping CPU 1 accessing the resource without trying to lock it. This is a purely cooperative locking scheme.  Also notice that while waiting on a lock the core in question does no useful work. For this reason, critical sections should be kept as short as possible and certainly should not call any long-running blocking functions. 

To protect the counting program from race conditions you could replace the two tasks with:

static portMUX_TYPE my_spinlock = portMUX_INITIALIZER_UNLOCKED; void task1(void* arg) {

for (int i = 0;i < 0xFFFFF; i++) {

taskENTER_CRITICAL(&my_spinlock); 

count = count + 1; 

taskEXIT_CRITICAL(&my_spinlock); 

}

for (;;) {

}

}

void task2(void* arg) {

for (int i = 0;i < 0xFFFFF; i++) {

taskENTER_CRITICAL(&my_spinlock); 

count = count + 1; 

taskEXIT_CRITICAL(&my_spinlock); 

}

for (;;) {

}

}

With these changes we get the correct result, 1F FFFE, repeatedly. 

The cost of using locks is both the potential wasted time when the locked-out core simply waits, and the overhead in locking and unlocking access to a shared resource. Even so, locking is usually the only way to make a program reliable. 
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Queues

Tasks can communicate with each other via shared memory as long as they make use of locks to avoid race conditions. The situation is more complicated if a task is producing lots of data that is intended to be processed by other tasks. This is the producer-consumer dilemma and, in general, there can be multiple producer tasks and multiple consumer tasks. 

The generally accepted solution to this problem is to use a shared queue of some sort. A queue is simply a data structure that can accept data to be stored until it is read. Queues differ in where they allow you to add data, at the front or back of the queue, and where they allow you to read data, again the front or back of the queue. 

There are a number of different shared buffers provided by FreeRTOS and by the ESP-IDF extension, but the simplest and most useful is xQueue, which technically is closer to being a deque as you can add new items at the front or the back, but only remove items from the front. Notice that this means it is safe from race conditions by design and no further locking is needed. 

To create an xQueue you can either allocate the memory statically or on the heap:

xQueueCreate(NumberOfItems, ItemSize)

xQueueCreateStatic(NumberOfItems, ItemSize, 

pQueueStorage, pQueueBuffer)

Both return QueueHandle to be used in subsequent functions. In the case of Create the queue is created on the heap. If you want to create it in static storage you need to pass pointers to two blocks of memory:

StaticQueue_t QueueStorage; 

uint8_t QueueBuffer[ NumberOfItems * ItemSize ]; 

You can also delete an xQueue:

vQueueDelete(QueueHandle)

Once you have an xQueue you can add items to it and retrieve items: xQueueSendToFront(QueueHandle, pItem, TicksToWait)

xQueueSendToBack(QueueHandle, pItemTo, TicksToWait)

and there are FromISR versions of these functions. If TicksToWait is 0 then the functions return at once, even if the queue is full. Otherwise the functions wait for the specified time see if the queue has space. All items are stored and retrieved by value. If you want to work with references, you have to explicitly store a pointer. Notice that if you add items to the back of the queue you have a FIFO (First In First Out) queue and if you add items to the front of the queue you have a LIFO (Last In First Out) queue also known as a stack. 
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There are two functions that can be used to retrieve items: xQueueReceive(QueueHandle, pBuffer, TicksToWait)

xQueuePeek(QueueHandle, pBuffer, TicksToWait)

The difference is that Receive removes the item from the queue and Peek doesn’t. Also notice that both functions will block until TicksToWait times out. This means that the task is in a pending state and no processor time is wasted waiting for input.  If you want to wait on multiple queues then use a queueset which blocks until one of the queues in the set has data ready to read. 

There are two functions that tell you about the state of the queue: number=uxQueueSpacesAvailable(QueueHandle)

number= uxQueueMessagesWaiting(QueueHandle)

As an xQueue is safe from race conditions, there is even an advantage to be had to sharing one in place of a single variable that you would have to protect with a critical section. To make this easier there is: xQueueOverwrite(QueueHandle, pItem)

which will overwrite the current item at the head of the queue. Notice that it does not protect you against a read, modify, write race condition. 

As a very simple example, consider having one task, task1, that writes data to the queue and a second task, task2, that reads it:

#include <stdio.h> 

#include "freertos/FreeRTOS.h" 

QueueHandle_t q; 

int64_t count = 0; 

void task1(void* arg) {

for (;;) {

xQueueSendToBack(q, &count, 2); 

count++; 

vTaskDelay(1); 

}

}

void task2(void* arg) {

int64_t data; 

for (;;) {

xQueueReceive(q, &data, 20); 

printf("%llX %d\n", data,uxQueueSpacesAvailable(q)); 

}

}
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void app_main(void)

{

q = xQueueCreate(100, sizeof(int64_t)); 

TaskHandle_t th1; 

xTaskCreatePinnedToCore(task1, "task1", 2048, NULL, 0, &th1, 1); 

TaskHandle_t th2; 

xTaskCreatePinnedToCore(task2, "task2", 4048, NULL, 0, &th2, 0); 

}

If you run the program you will see that the reading task, task2, keeps up with task1, the writing task, and the queue is always empty after the read. 

This is how it has to be in that, if the rate of writing were faster than the rate of reading, then the queue would fill up and overflow. 

A queue isn’t magic and cannot increase the throughput of a system. All it can do is smooth out the flow to make the average write rate equal the average read rate. That is, a queue only works if the average read and write rates are the same and the burst rate is less than the size of the queue. 

FreeRTOS Considered

There are many features of FreeRTOS still to explore. If you know about asynchronous programming you will be able to find the standard locks – 

mutex and semaphore. There are also additional features such as event groups and direct task events, message, stream and ring buffers and so on. 

This chapter has introduced the basics of creating and managing tasks and allowing them to communicate. In most cases this is all you need as complex asynchronous architectures are best avoided in IoT applications. 

Tasks are, in general, a useful extra, but they are dangerous and can be overused. There is a commonly encountered design methodology which creates a task for every action in the program – a task to read each sensor, a task to process the data from each sensor, a task to react to the data and a task to control each actuator. This design allows a loosely-coupled set of tasks to function as an application and sometimes it works – but it relies on the available processors having lots of spare processing power. The idea is that if a task needs attention a core should be free to run it in a very short time. This implies that the cores are engaged in running the idle task most of the time. If this is not the case then a pending task will have to wait until a core is free. 

Things are even more complicated when there are multiple cores and tasks with a range of priorities. It is usual to assign I/O tasks high priorities so that they can run as soon as they are in a Ready state. Notice, however, that as 429

the time slot on an ESP32 is 10ms, even urgent tasks have to wait this long and interrupt service routines have a much shorter latency, typically 10us. 

As long as there is a lot of spare processing power, an asynchronous design is simple and mostly works. However, any system that uses events is subject to the occasional exceptional condition due to the variability in the external world. So, a queue that has been happily receiving data without overflowing can be overrun by a rarely encountered conjunction of data sources. 

Similarly, a sensor that has taken 1ms to service can suddenly slow to a halt and refuse to supply data for 20ms due to noise and so on. 

In an asynchronous system it is difficult to provide guarantees of service time, even in a lightly loaded system. 

Sometimes this doesn’t matter as the user will simply wait an unnoticeably longer time for the system to respond. In other, mission-critical situations, it is crucial that service times are within a known interval. In such cases, a polling loop hosted by a single task is the best approach. 
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Summary

● FreeRTOS is an open source project to make a realtime operating system available on a wide range of processors. 

● The version of FreeRTOS used by the ESP32 is ESP-IDF FreeRTOS 

and this has been extended to work with two cores to utilize Symmetric Multi-Processing (SMP). 

● FreeRTOS works in terms of tasks. A task is a function that can be run as if it was a “main” program in its own right. Tasks never return and are generally written as infinite loops. 

● Each task has a priority and tasks get to run on a processor according to their priority. 

● At each tick the scheduler stops the current task and selects the task with the highest priority to run next from the available tasks. 

● Tasks with equal priority take equal turns to run. 

● As well as the custom tasks a program creates, there are some standard tasks created by the system. 

● A range of functions allow you to control how tasks are run. 

● The problem with multi-tasking is the danger of creating race conditions where the outcome of a computation depends on the order in which tasks are run. 

● To avoid race conditions you have to use locks to restrict access to shared resources. 

● An alternative to using locks is to use safe data structures such as xQueue to allow tasks to interact and pass data to each other. 
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Programming the ESP32 in MicroPython

ISBN: 978-1871962826

Although MicroPython is slower than C, most of the time 

this doesn’t matter and it is much easier to use. It is based on Python 3 and is fully object-oriented. 

The purpose of the book is to reveal what you can do with 

the ESP's GPIO lines together with widely used sensors, 

servos and motors and ADCs. It covers PWM (Pulse Width 

Modulation), the SPI bus, the I2C bus and the 1-Wire bus, 

direct access to the hardware, adding an SD Card reader, 

sleep states to save power, the RTC, RMT and touch 

sensors, not to mention how to use WiFi. 

Programming The Raspberry Pi Pico/W 

In C, 2nd Edition

ISBN: 978-1871962796 

This book explains the many reasons for wanting to use C 

with the Pico, not least of which is the fact that it is much faster. This makes it ideal for serious experimentation and delving into parts of the hardware that are otherwise 

inaccessible. Using C is the way to get the maximum from 

the Pico and to really understand how it works. 

Master the Raspberry Pi Pico 

ISBN: 978-1871962819

There is far too much to the Pico to cover in a 

single book and this follow-on volume takes your 

Pico C programming to the next level. Chapters are

devoted to more advanced PIO programming, 

using the second core and many of the more 

advanced hardware features such as DMA, 

watchdog timer and saving power. For the Pico W 

it covers TLS/HTTPS connections, access point 

mode, other protocols and using FreeRTOS. 
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Raspberry Pi IoT In C, 3rd Edition

ISBN:  978-1871962840

This book takes a practical approach to understanding 

electronic circuits and datasheets and translating this to 

code, specifically using the C programming language. The 

main reason for choosing C is speed, a crucial factor when 

you are writing programs to communicate with the outside 

world. If you are familiar with another programming 

language, C shouldn't be hard to pick up. This third edition has been brought up-to-date and focuses mainly on the Pi 

4, Pi5 and the Pi Zero. 

Raspberry Pi IoT in C With Linux Drivers, 

2nd  Edition

ISBN:  978-1871962857

This second edition has been updated and expanded to 

cover the Raspberry Pi 5 and the Raspberry Pi Zero W/2W. 

There are Linux drivers for many off-the-shelf IoT devices 

and they provide a very easy-to-use, high-level way of 

working. The big problem is that there is very little 

documentation to help you get started. This book explains 

the principles so that you can tackle new devices. 

Micro:bit IoT In C, 2nd  Edition 

ISBN: 978-1871962673

The second edition of this book covers V2, the revised 

version of the micro:bit.  The other important change is 

that it now uses the highly popular VS Code for offline 

development and let’s you get started the easy way by 

providing downloadable templates for both V1 and V2 of 

the micro:bit. 

The micro:bit lacks WiFi connectivity but using a low-cost 

device we enable a connection to the Internet via its serial port which allows it to become a server. The book rounds 

out with a new chapter on the micro:bit’s radio and the 

V2’s sound capabilities
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Fundamental C: Getting Closer To The 

Machine  

ISBN: 978-1871962604 

For beginners, the book covers installing an IDE and GCC 

before writing a Hello World program and then presents the

fundamental building blocks of any program - variables, 

assignment and expressions, flow of control using 

conditionals and loops. 

When programming in C you need to think about the way 

data is represented, and this book emphasizes the idea of 

modifying how a bit pattern is treated using type punning 

and unions and tackles the topic of undefined behavior, 

which is ignored in many books on C. 

Applying C For The IoT With Linux

ISBN: 978-1871962611

If you are using C to write low-level code using small 

Single Board Computers (SBCs) that run Linux, or if you do

any coding in C that interacts with the hardware, this book brings together low-level, hardware-oriented and often 

hardware-specific information. 

It starts by looking at how programs work with user-mode 

Linux. When working with hardware, arithmetic cannot be 

ignored, so separate chapters are devoted to integer,  fixed-point and floating-point arithmetic. It goes on to the pseudo file system, memory-mapped files and sockets as a general-purpose way of communicating over networks and similar 

infrastructure. It continues by looking at multitasking, 

locking, using mutex and condition variables, and 

scheduling.  It rounds out with a short look at how to mix 

assembler with C. 

Deep C Dives: Adventures in C

ISBN: 978-1871962888

This book provides in-depth exploration of the essence of 

C, identifying the strengths of its distinctive traits. This reveals that C has a very special place among the 

programming languages of today as a powerful and 

versatile option for low-level programming, something that 

is often overlooked in books written by programmers who 

would really rather be using a higher-level language. To 

emphasize the way in which chapters of this book focus on 

specific topics, they are referred to as “dives”, something that also implies a deep examination of the subject. 
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