

[image: Cover.jpg]

Security Monitoring with Wazuh

A hands-on guide to effective enterprise security using real-life use cases in Wazuh

Rajneesh Gupta

[image: Packt Logo]

Security Monitoring with Wazuh

Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Pavan Ramchandani

Publishing Product Manager: Khushboo Samkaria

Book Project Manager: Ashwin Kharwa

Senior Editor: Roshan Ravi Kumar

Technical Editor: Nithik Cheruvakodan

Copy Editor: Safis Editing

Indexer: Pratik Shirodkar

Production Designer: Shankar Kalbhor

Senior DevRel Marketing Coordinator: Marylou De Mello

First published: April 2024

Production reference: 1150324

Published by

Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-83763-215-2

www.packtpub.com

To my beloved wife, Ankita, who has been my unwavering support and the beacon of love in my life. To our wonderful son, Taneesh, whose innocence and curiosity remind me of the beauty of the world.

– Rajneesh Gupta

Foreword

The cybersecurity landscape is constantly evolving, and the need for effective and accessible security solutions has never been more critical. As the founder of Wazuh, I have been committed to developing an open-source security platform that meets the diverse needs of organizations worldwide. Our platform, Wazuh, has been designed to provide comprehensive security monitoring and has become a key tool for many in the industry.

In Security Monitoring with Wazuh, Rajneesh Gupta offers an in-depth look at how to leverage the full potential of Wazuh for enterprise security. The book is a valuable resource for anyone looking to understand and implement effective security monitoring practices. It offers practical insights and guidance on using Wazuh to protect against threats and ensure compliance with various security frameworks.

Wazuh’s open-source nature offers significant advantages in terms of quality and security. The platform benefits from continuous testing and enhancements by a broad community of users and developers, ensuring a high standard of quality. Additionally, the transparency of the source code fosters a security model based on openness. Unlike traditional closed-source approaches, this openness allows for more extensive code review and validation, resulting in a more robust and trustworthy solution.

Flexibility is another key benefit of Wazuh. Open-source software such as Wazuh offers the potential for companies to adapt the source code, create new features or integrate a solution into their security stack. In addition, Wazuh provides configuration flexibility, allowing users to tune the platform to meet their specific security requirements. This versatility enables organizations to effectively address their unique security challenges.

Additionally, cost-effectiveness enhances Wazuh’s appeal. The absence of software license fees and vendor lock-in democratizes access to advanced cybersecurity capabilities, making it accessible to a broader range of users. This accessibility not only supports the open-source community but also serves as a valuable educational resource.

I would like to express my appreciation to the Wazuh community for their ongoing contributions and support. Your dedication plays a crucial role in the continuous improvement of the platform.

I also commend Rajneesh for his efforts in creating this comprehensive guide. His work provides valuable insights and practical guidance for effectively using Wazuh to enhance security monitoring and response.

In conclusion, this book is a must-read for those seeking to fortify their security defenses. This book equips you with the knowledge needed to effectively deploy and utilize Wazuh, ensuring your organization remains resilient in the face of evolving cybersecurity threats.

Santiago Bassett

Founder and CEO of Wazuh

Contributors

About the author

With 11 years of experience, Rajneesh Gupta, a seasoned cybersecurity expert, specializes in open-source security, security monitoring, cloud security, security audit, and red-teaming exercises. Prior to this, he worked with Hewlett-Packard as security lead. A CISA-certified professional, he has played a pivotal role in building and automating Security Operation Centers (SOCs) for hundreds of businesses globally, conducting security audits, and guiding on frameworks and compliances.

Rajneesh is also passionate about mentoring, having helped numerous individuals kickstart their careers in cybersecurity. He is also the author of Hands-On with Cybersecurity and Blockchain, which is popular across both security and blockchain communities. Outside of work, Rajneesh enjoys spending time in hill stations and playing volleyball.

To my amazing wife – your unwavering support made writing this book possible. Your love, patience, and belief in me kept me going. Thank you for being my rock.

About the reviewers

Hasitha Upekshitha Karunarathna is a cybersecurity professional specializing in SOC services. With a focus on protecting digital environments, he has completed multiple successful projects in cybersecurity and SOC services. Known for his attention to detail and strategic approach, Hasitha is committed to enhancing cybersecurity resilience for a safer digital future.

I extend my gratitude to the global community of Wazuh SIEM professionals and novices for investing their precious time in delving into this book and acquiring these valuable skills. Thank you to all who have dedicated their time to read and engage with this content.

Jayaraman Manimaran is a seasoned security tester with over eight plus years of expertise in DevSecOps, penetration testing, red teaming, and purple teaming. Having navigated the complexities of testing as a service for diverse sectors, including banking, finance, and telecommunications, he brings a wealth of practical knowledge to the evaluation process. His commitment to knowledge dissemination is evident through his tech blogs, security research, and the publication of scripts aimed at simplifying the challenges faced by penetration testers. He holds certifications such as CARTP, CRTP, CRTA, eCPPT, CRT-ID, eWPT, CRT-COI, eJPT, and C|EH.

I extend my heartfelt gratitude to my family, particularly my supportive wife, for standing by me and understanding my demanding schedule. Special thanks to the author and Packt for the invaluable opportunity to contribute to this publication. Your support and understanding have made my role as a technical reviewer possible.

Table of Contents

Preface

Part 1: Threat Detection

1

Intrusion Detection System (IDS) Using Wazuh

What is an IDS?

Types of IDS

What is Suricata?

How organizations use Suricata as an IDS

Getting started with Wazuh and Suricata

The core components of Wazuh

Wazuh modules

Wazuh Administration

Installing the Wazuh server

Installing Wazuh agent

Installing Suricata on Ubuntu Server

Understanding Suricata rules

Suricata rule syntax

Network scanning probe attack and detection

Testing web-based attacks using DVWA

Lab setup

Setting up the victim server with DVWA

Test an SQL Injection attack

Test a reflected XSS attack

Testing NIDS with tmNIDS

Lab setup

Installing tmNIDS on Ubuntu Server

Testing for a malicious User-Agent

Testing for Tor connection

Testing everything at once

Summary

2

Malware Detection Using Wazuh

Types of malware

Wazuh capabilities for malware detection

Malware detection using FIM

Configuring and testing FIM on an Ubuntu machine

Detecting suspicious files in the PHP server using the FIM module

The CDB list

The workings of the CDB list

Setting up the Wazuh server

Configuring the Windows endpoint

Testing

Visualizing the alerts

VirusTotal integration

Set up VirusTotal account

Integrate VirusTotal with the Wazuh manager

Create a Wazuh rule on the Wazuh manager

Set up an FIM check on Ubuntu Server

Testing malware detection

Visualizing the alerts

Integrating Windows Defender logs

Getting started with Windows Defender logs

Setting up the Wazuh agent to collect Windows Defender logs

Testing for malware detection

Visualizing the alerts

Integrating Sysmon to detect fileless malware

How do fileless malware attacks work?

Requirement for the lab

Setting up Sysmon on a Windows machine

Configure the Wazuh agent to monitor Sysmon events

Configure the Wazuh manager

Testing

Visualizing the alerts

Summary

Part 2: Threat Intelligence, Automation, Incident Response, and Threat Hunting

3

Threat Intelligence and Analysis

What is threat intelligence?

Types of threat intelligence

How SOC analysts use threat intelligence

Automated threat intelligence

Designing automated threat intelligence

Understanding the workings of automated threat intelligence and analysis

Setting up TheHive and Cortex

Install Docker Compose

Prepare the YML script for the TheHive module

Launch and test

Create an organization and user on TheHive

Create an organization and user on Cortex

Setting up MISP

Fulfill the requirements

Install Docker and Docker Compose

Set up and Launch MISP

Add an organization and users

Add feeds

Integrating Wazuh with TheHive

Install TheHive Python script on the Wazuh manager

Create an integration Python script on the Wazuh manager

Create a Bash script on the Wazuh manager

Integrate the TheHive server in the Wazuh server configurations

Restart and test

Visualizing the alerts on TheHive

Integrating TheHive and Cortex with MISP

Integrate TheHive with Cortex

Integrate Cortex with MISP

Integrate TheHive with MISP

Use cases

Pre-requisites

Reviewing alert

Creating a case

Analyzing file observables

Analyzing network observables

Managing TTPs

Summary

4

Security Automation Using Shuffle

What is SOAR?

How a SOC analyst uses SOAR

Introduction to Shuffle

Setting up Shuffle SOAR

Retrieving Wazuh alerts

Integrating Wazuh with Shuffle

Retrieve Wazuh alerts for abnormal user login analysis

Retrieving Wazuh alerts for successful login analysis

Remotely managing Wazuh

Requirement

Managing Wazuh agents

Important Shuffle apps

Incident enrichment using TheHive

Malware analysis using YARA

Messaging and collaboration tools

Threat intelligence platforms

Endpoint protection/antivirus software

Summary

5

Incident Response with Wazuh

Introduction to incident response

Different methods of incident response process

Incident response automation

Wazuh active response

Active response scripts

Configuring active response

How Wazuh active response works

Blocking unauthorized SSH access

Lab setup

Setting up Wazuh active response

Testing

Visualizing alerts

Isolating a Windows machine post-infection

Requirement

VirusTotal integration

Setting up a Windows machine with a batch and PowerShell file

Active response block in the Wazuh manager

Testing

Blocking RDP brute-force attacks

Requirement

Setting up a Windows agent with an active response script

Setting up Wazuh Server with a brute-force attack rule and active response script

Testing

Visualizing the alerts

Summary

6

Threat Hunting with Wazuh

Proactive threat hunting with Wazuh

Threat-hunting methodologies

Threat-hunting steps

Proactive threat hunting with Wazuh

Log data analysis for threat hunting

Wazuh decoders

Building decoders

Creating Wazuh rules

Log data collection

Log data analysis

MITRE ATT&CK mapping

What is MITRE ATT&CK?

ATT&CK framework

Prioritizing the adversary’s techniques

Wazuh MITRE ATT&CK mapping

Threat hunting using Osquery

What is Osquery?

Installing Osquery

Integrating Osquery with Wazuh

Threat hunting with Osquery

Command monitoring

How does command monitoring work?

Monitoring the output of the netstat command on Linux

List of Linux commands for threat hunting and security investigations

Summary

Part 3: Compliance Management

7

Vulnerability Detection and Configuration Assessment

Introduction to vulnerability detection and security configuration management

Vulnerability Detector

How to set up vulnerability detection using Wazuh

Security configuration assessment

PCI DSS

What is PCI DSS compliance?

Requirements of PCI DSS compliance

Vulnerability detection use cases for PCI DSS

Security configuration assessment use cases for PCI DSS

NIST 800-53

What is the NIST 800-53 framework?

List of control families in the NIST 800-53 framework

Vulnerability detection use cases for NIST 800-53

SCA use cases for NIST 800-53

Use case

HIPAA

What is HIPAA compliance?

HIPAA security rules

Vulnerability Detector use cases

SCA use case

Summary

8

Appendix

Custom PowerShell rules

PowerShell event information

PowerShell error logs

PowerShell warning logs

PowerShell critical logs

Custom Wazuh rules for Auditd

Auditd syscall rule

Auditd path

Detecting a change in the user environment

Custom Wazuh rules for Kaspersky Endpoint Security

Kaspersky’s general rules

Rules to detect events when the Kaspersky agent restarts

Rules for quarantine alert

Custom Wazuh rules for Sysmon

Sysmon Event 1: Process Creation

Sysmon Event 2: Process changed a File Creation Time

Sysmon Event 3: Network Connection

Sysmon Event 7: Image loaded

Sysmon Event 10: Process Access

Sysmon Event 11: File Creation

Sysmon Event 12: Registry Event (Object create and delete)

Sysmon Event 13: Registry Event(Value Set)

Sysmon Event 14: Registry Event(Key and Value Rename)

Sysmon Event 15: File Creation StreamHash

Sysmon Event 17: Pipe Creation

Sysmon Event 18: Pipe Event

Sysmon Event 22: DNS Request

Summary

9

Glossary

Index

Other Books You May Enjoy

Preface

Hi there! Welcome to Security Monitoring Using Wazuh. In this book, we will explore the realm of security operations and management using Wazuh – an open source security platform that unifies Security Incident and Event Management (SIEM) and Extended Detection and Response (XDR) capabilities – to enhance threat detection, incident response, threat hunting, and compliance management within your organizations.

Wazuh combines powerful features such as intrusion detection, log analysis, file integrity monitoring, vulnerability detection, and security configuration assessment into a unified solution.

I will provide relevant information and guide you through the deployment of the Wazuh system, its integration with several third-party security tools, and practical use cases. My expertise in open source derives from two primary sources:

	A decade of experience in consulting and constructing open-source security solutions within enterprise networks

	Insights gleaned from podcasts, interviews, and discussions with industry experts

The demand for open-source security tools such as Wazuh is fueled by their affordability, community support, and flexibility, helping organizations to enhance threat detection, incident response, security monitoring, threat intelligence, and compliance management. Learning and gaining hands-on experience with tools such as Wazuh can significantly help aspirant security analysts or professionals in enhancing their skills in intrusion detection, log analysis, incident response, vulnerability management, and custom scripts, directly from a single platform. Engaging with open source communities helps you develop network opportunities and continuous learning, positioning you to become a valuable individual in the cybersecurity industry.

Who this book is for

Security analysts, SOC analysts, and security architects can gain practical insights into how to set up a Wazuh platform and leverage it to improve an organization’s security posture.

The three main target audiences for this book are as follows:

	Security engineers: For security engineers, this book offers comprehensive guidance on deploying and configuring Wazuh for intrusion detection, malware detection, security monitoring, and so on.

	Security architects: They will gain information on designing security infrastructure with Wazuh as a core component, enabling them to build a scalable and compliant security solution that effectively mitigates risk and delivers real-time alerts.

	SOC analyst: They will benefit from practical insights and real-world use cases on the Wazuh platform. They will learn to analyze security alerts, create custom Wazuh rules and decoders, and respond promptly to threats.

What this book covers

Chapter 1, Intrusion Detection System (IDS) Using Wazuh, provides fundamentals on IDSs and Suricata and its capabilities and features, installing Wazuh and setting up Suricata, utilizing Suricata in threat detection, handling network scanning probes, identifying Metasploit exploits, simulating web-based attacks with DVWA, and measuring NIDS effectiveness with tmNIDS.

Chapter 2, Malware Detection Using Wazuh, introduces you to malware, using FIM for detection, integrating VirusTotal for enhanced analysis, and integrating Windows Defender and Sysmon.

Chapter 3, Threat Intelligence and Analysis, discusses enhancing Wazuh capabilities by integrating threat intelligence and analysis tools such as MISP, TheHive, and Cortex. This chapter includes real-world examples of threat intelligence in a variety of contexts, as well as instructions on configuring and utilizing TheHive, Cortex, and MISP for cooperative threat analysis and response.

Chapter 4, Security Automation and Orchestration Using Shuffle, covers the integration of Security orchestration, Automation, and Response (SOAR) with the Wazuh platform that can be utilized to streamline and enhance incident response processes. The chapter focuses on the implementation of automated workflows, playbooks, and response actions using Wazuh and Shuffle.

Chapter 5, Incident Response with Wazuh, focuses on Wazuh’s Active response capability to remediate threats in real time, covering several practical use cases such as blocking brute-force attempts and automatically isolating Windows machines.

Chapter 6, Threat Hunting with Wazuh, delves into the methodology of proactive threat hunting using Wazuh, focusing on log analysis, attack mapping, Osquery utilization, and command monitoring.

Chapter 7, Vulnerability and Configuration Assessment, explores vulnerability and policy assessment using Wazuh. It will cover the important parts of finding vulnerabilities, monitoring configurations, and following standard compliance frameworks in a business. This chapter also covers the basics of vulnerability assessment and compliance standards such as PCI DSS, NIST 800-53, and HIPAA. It also provides ideas on how to use Wazuh’s features to make sure your organization follows all of its security rules and policies.

Chapter 8, Appendix delves into a list of custom Wazuh rules to enhance security monitoring. It explores the creation of custom PowerShell rules to detect suspicious activities within Windows environments. Additionally, the chapter discusses the implementation of custom Auditd rules for auditing Linux systems, bolstering defense against potential threats. Moreover, it provides insights into crafting custom Kaspersky endpoint security rules, enabling comprehensive threat detection and response. Finally, it covers custom Sysmon rules mapped to certain MITRE ATT&CK® techniques.

Chapter 9, Glossary, provides a comprehensive glossary covering key terms and concepts essential for understanding security monitoring and Wazuh functionality. From active response, which automates response actions, to Amazon EC2 instances and beyond, each entry offers concise explanations. Terms such as compliance, IDS, and vulnerability detection module are elucidated, aiding you in grasping crucial security concepts. Additionally, tools such as PowerShell, Docker, and YARA are defined, highlighting their significance in modern cybersecurity practices. This glossary serves as a valuable reference for both novice and experienced security professionals who are navigating the complex landscape of security monitoring and threat detection.

To get the most out of this book

You need to have a basic understanding of cybersecurity concepts such as malware, network scanning, web application attacks, and security compliance.

	
Software/hardware covered in the book

	
Operating system requirements

	
Wazuh OVA

	
Windows and Ubuntu Linux

	
Suricata IDS and Osquery

	

	
VirusTotal

	

Download the example code files

You can download the code mentioned in the book from the GitHub repository here: https://github.com/PacktPublishing/Security-Monitoring-using-Wazuh

We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

Disclaimer on images

This book contains many horizontally long screenshots. These screenshots provide readers with an overview of Wazuh's execution plans for various operations. As a result, the text in these images may appear small at 100% zoom. Additionally, you will be able to examine these plans more thoroughly in the output of Wazuh as you work through the examples.

Conventions used

There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Copy the curl command to download the Wazuh module and start the Wazuh agent service as mentioned in the following diagram.”

A block of code is set as follows:

<rule id="200101" level="1">
<if_sid>60009</if_sid>
<field name="win.system.providerName">^PowerShell$</field>
<mitre>
 When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

policy:
 id: "rdp_audit"
 file: "sca_rdp_audit.yml"
 name: "System audit for Windows based system"
 description: "Guidance for establishing a secure configuration for Unix based systems."
 Any command-line input or output is written as follows:

$ sudo systemctl restart wazuh-agent
 Bold: Indicates a new term, an important word, or words that you see on screen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “Suricata is an open-source network intrusion detection and prevention system (IDS/IPS).”

Tips or important notes

Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts

Once you’ve read Security Monitoring with Wazuh, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

Follow these simple steps to get the benefits:

	Scan the QR code or visit the link below

[image: Download a free PDF copy of this book QR Code]

https://packt.link/free-ebook/9781837632152

	Submit your proof of purchase

	That’s it! We’ll send your free PDF and other benefits to your email directly

Part 1:Threat Detection

In this part, we will focus on utilizing Wazuh for effective threat detection. You will learn to set up an intrusion detection system (IDS) to discover suspicious traffic. In addition to that, you will also learn the architecture, components, and core capabilities of the Wazuh platform. You will learn about several capabilities of Wazuh to detect malware with some practical use cases.

This part includes the following chapters:

	Chapter 1, Intrusion Detection System (IDS) Using Wazuh

	Chapter 2, Malware Detection Using Wazuh

1

Intrusion Detection System (IDS) Using Wazuh

Organizations of all sizes are increasingly concerned about protecting their digital landscape. With technology growing and digital systems becoming more important, cyber threats are escalating rapidly. Organizations must take a proactive approach toward cybersecurity and deploy mechanisms and appropriate visibility controls that not only prevent but also detect threats or intrusions. The main goal of prevention techniques is to keep threats from getting into a network or system. Like deploying perimeter security solutions such as firewalls, intrusion prevention system (IPS) infrastructure, visibility and control, and, most importantly, endpoint protection and insider threats. They intend to put up barriers that make it impossible for bad people to get in or execute any cyber-attacks.

Detection techniques, along with preventive measures, involve keeping an eye on systems all the time for any signs of compromise or strange behavior and taking the required steps to mitigate the execution of reported malicious activity/behavior. One of the popular tools for this purpose is an intrusion detection system (IDS). Wazuh can help organizations detect potential threats or ongoing attacks, and an IDS also allows a security team to enable the early detection of possible breaches or suspicious activity, and, as a result, the security team can quickly respond to mitigate potential damage. Wazuh is a popular IDS result, which works on various levels including host-level visibility along with the capability to collect, aggregate, index, and analyze logs from various sources at a perimeter and infrastructure level; it also offers end-user activity monitoring solutions and protection. It provides a ton of features, including log collection. In addition to log collection, it has various inbuilt modules including vulnerability management, file integrity, malware detection, automated incident response, and various external integrations. Another open source popular IDS/IPS solution is Suricata, which works on a network level that helps the security team detect anomalous network behavior. In this book, we get hands-on with Wazuh capabilities and features, however, in this chapter, our focus will be on integrating Suricata IDS/IPS with Wazuh. This will help us detect any network anomalous behavior.

In this chapter, we will learn the following:

	What is an IDS?

	Configuring an IDS on Ubuntu and Windows Server

	Getting started with Wazuh and Suricata

	Detecting network scanning probes

	Testing web-based attacks with Damn Vulnerable Web Application (DVWA).

	Testing a network-based IDS (NIDS) using tmNIDS

What is an IDS?

An IDS works by monitoring network traffic, system logs, and other relevant information to identify and analyze patterns and signatures associated with known threats or abnormal behavior. The primary goal of an IDS is to detect and alert security administrators about potential threats or breaches. When an IDS identifies suspicious behavior or patterns, it generates an alert, notifying the security team to take appropriate action.

Types of IDS

There are two main types of IDS: NIDS and host-based IDS (HIDS). The main difference between a NIDS and a HIDS is the monitoring scope and types of activities they detect. Have a look at the following table to look at the differences:

	
	
NIDS

	
HIDS

	
Scope

	
It works at the network level, monitoring the data going to and from different devices to look for abnormal behaviors or events that might indicate an intrusion.

	
It is installed directly on the host’s and monitor’s log files, system calls, file integrity, and other host-specific files for any unusual activities.

	
Location

	
Functions at one or more central places in a network’s infrastructure to monitor and analyze traffic going through those points.

	
Operates locally on individual hosts or devices, keeping an eye on actions that are unique to that machine.

	
Detection focus

	
A NIDS detects network attacks and anomalies. It can detect port scans, DoS attacks, intrusion attempts, and other network infrastructure threats.

	
A HIDS monitors host activity. It detects unauthorized access, file system changes, critical system file modifications, and suspicious processes or behaviors that may indicate a compromised host.

	
Popular tools

	
Suricata, Snort

	
Wazuh, OSSEC

Table 1.1 – NIDS versus HIDS

In the following diagram, you can see that a NIDS is installed to monitor network traffic while an HIDS monitors individual devices.

[image: Figure 1.1 – NIDS versus HIDS]

Figure 1.1 – NIDS versus HIDS

What is Suricata?

Suricata is an open-source network intrusion detection and prevention system (IDS/IPS). It is intended to monitor network traffic and detect a variety of threats, including malware, intrusion attempts, and network anomalies. Using a rule-based language, Suricata analyzes network packets in real time, allowing it to identify and respond to suspicious or malicious activities. The non-profit organization OISF (Open Information Security Foundation) owns and develops Suricata.

Suricata can also be deployed as an IPS in order to detect and block malicious traffic to the organization. Although IPS deployment might sound like the obvious option, unfortunately, it isn’t that friendly; it often blocks legitimate traffic as well if they aren’t configured properly. And yes, this is why the detection approach is sometimes better than the prevention approach.

You can download Suricata from the following link: https://suricata.io/download/.

There are multiple use cases of Suricata IDS; some of the important use cases are as follows:

	Network traffic monitoring: Suricata analyzes real-time network traffic for threats and anomalies. Organizations need to smartly deploy Suricata at various points in the network to analyze both incoming and outgoing traffic. This use case can help us detect malware, Distributed Denial of Service (DDoS) attacks, port scans, reconnaissance data exfiltration, and so on.

	Signature and anomaly detection: Suricata detects known attack patterns or signatures by checking network traffic against a library of rules and patterns that have already been set up. In this chapter, we will use the Suricata ruleset created by the Emerging Threats (ET) community. This ruleset can help us detect known malware, viruses, web-based attacks (SQL Injection, cross-site scripting attacks, etc.), known network attack signatures, and so on.

	Protocol analysis: Suricata can deeply examine many different network technologies, such as HTTP, DNS, and TLS. This helps us to discover anomalous behaviors of protocols, such as unusual HTTP requests, DNS tunneling, and unexpected SSL/TLS handshakes.

	Logging and alerting: Suricata keeps logs and sends out alerts when it detects possible threats. These alerts can be used to get security teams to act right away, or they can be added to security information and event management (SIEM) systems so that they can be analyzed further and linked to other security events. Wazuh, Splunk, Elastic, and all the popular SIEM solutions support integration with the Suricata IDS.

Let’s learn about the deployment methods of the Suricata IDS.

How organizations use Suricata as an IDS

There are several ways to deploy the Suricata IDS and some of the important and popular deployment methods are explained in the following:

	Inline deployment at network perimeter: Suricata sits between the external internet connection and the internal network, actively monitoring and scrutinizing network traffic in real time. It can be deployed as a physical appliance or as a virtual machine (VM). The network traffic passes through Suricata, which analyzes the packets and acts based on the criteria that have been defined.

[image: Figure 1.2 – Inline deployment at network perimeter]

Figure 1.2 – Inline deployment at network perimeter

	Internal network monitoring: Suricata sensors are strategically located within the internal network in order to capture network traffic between segments or departments. These sensors could be physical or virtual devices. They analyze the captured traffic and transmit alerts or records to a centralized management system for additional analysis and response. As you can see in the following diagram, the sensors will export the data to a centralized server.

[image: Figure 1.3 – Internal network monitoring]

Figure 1.3 – Internal network monitoring

	Cloud environment monitoring: Suricata can be deployed as virtual appliances or containers in AWS and Azure cloud environments. It is installed within the cloud infrastructure and monitors network traffic within virtual networks and between cloud resources. The captured traffic is transmitted to a central analysis system for response detection.

[image: Figure 1.4 – Cloud security monitoring (AWS)]

Figure 1.4 – Cloud security monitoring (AWS)

	Network tap deployment: Suricata is used in conjunction with network taps or port mirroring. Taps are strategically located at key network nodes to capture a copy of network traffic, which is then sent to Suricata for analysis. This deployment ensures accurate and comprehensive network activity visibility.

[image: Figure 1.5 – Network tap deployment]

Figure 1.5 – Network tap deployment

We have learned about the different Suricata deployment methods. In the next section, we will learn about Wazuh, its core components and deployment methods, and then we will learn how to install Suricata IDS on Ubuntu Server.

Getting started with Wazuh and Suricata

Wazuh is an open-source security monitoring platform that provides extended detection and response (XDR) and SIEM functionality. Wazuh’s capabilities include log analysis, intrusion detection, vulnerability detection, and real-time alerting, helping organizations enhance their security posture and respond to threats effectively. In this section, we will first get a basic understanding of the Wazuh platform and its core components and deployment methods, and then we will set up the Wazuh agent and connect with the Wazuh platform. Next, we will set up a Suricata IDS and integrate it with the Wazuh agent. Some of the main points we will explore are as follows:

	Core components of Wazuh

	Wazuh deployment options

	Wazuh core features

	Wazuh modules

	Wazuh administration

	Installing the Wazuh server

	Installing the Wazuh agent

	Installing Suricata on Ubuntu Server

	Setting up Windows Server with Suricata

The core components of Wazuh

Wazuh provides a centralized platform for monitoring and managing security events across the organization’s IT infrastructure. Wazuh collects, analyzes, and connects log data from different sources, such as endpoints, network devices, firewalls, proxy servers, and cloud instances. Once the logs are collected, Wazuh provides several capabilities to the security team such as file integrity monitoring, malware detection, vulnerability detection, command monitoring, system inventory, threat hunting, security configuration assessment, and incident response. The Wazuh solution is made up of three main parts: the Wazuh server, the Wazuh indexer, and the Wazuh dashboard. The Wazuh agent is installed on the endpoints that need to be monitored.

The Wazuh server

This central component is also used to manage the agents and analyze the data received from them:

	It collects logs from several sources such as hosts, network devices, firewalls, proxy servers, and syslog servers.

	Normalizes and standardizes collected logs and events into a uniform format for analysis and correlation. It utilizes the Wazuh decoder to parse logs to display the logs in a uniform format.

	The Wazuh server is capable of integrating logs from several data sources such as syslog, Windows event logs, Windows Sysmon, Docker logs, Palo Alto firewall logs, and Check Point firewall logs.

	The Wazuh server also provides an API for interaction, allowing remote servers or systems to interact and query, for example, the number of active Wazuh agents, vulnerability information, Wazuh rule verification, and so on.

The Wazuh indexer

It is responsible for indexing and storing alerts generated by the Wazuh server:

	The Wazuh indexer stores alerts sent by the Wazuh server and acts as a primary repository

	It’s made to handle a lot of security alerts, making sure that storage and indexing work well as the system grows

Note

Indexing is the process of arranging and arranging data to enable effective and quick retrieval. It involves creating a data structure called an index.

	The Wazuh indexer provides robust search features that make it possible to quickly and thoroughly search through saved alerts using particular criteria or patterns

	The Wazuh indexer uses four index patterns to store the data:	wazuh-alerts-*: This is the index pattern for alerts generated by the Wazuh server
	wazuharchives-*: This is the index pattern for all events sent to the Wazuh server
	wazuh-monitoring-*: This pattern is for monitoring the status of Wazuh agents
	wazuh-statistics-*: This is used for statistical information about the Wazuh server

The Wazuh dashboard

The Wazuh dashboard is a web interface that allows you to perform visualization and analysis. It also allows you to create rules, monitor events, monitor regulatory compliances (such as PCI DSS, GDPR, CIS, HIPPA, and NIST 800-53), detect vulnerable applications, and much more.

Wazuh agents

Wazuh agents are installed on endpoints such as servers, desktops, laptops, cloud compute instances, or VMs. Wazuh utilizes the OSSEC HIDS module to collect all the endpoint events.

Note

OSSEC is a popular and open-source host-based IDS (HIDS). It is a powerful correlation and analysis module that integrates log analysis, file integrity monitoring, Windows registry monitoring, centralized policy enforcement, rootkit detection, real-time alerting, and active response. It can be installed on most operating systems (OSs) such as Linux, OpenBSD, FreeBSD, MacOS and Windows.Wazuh deployment options

Wazuh is known for its ability to fully monitor security and detect threats. It also has several flexible deployment options. Depending on your requirement, you can deploy Wazuh in an on-premises server, cloud, Docker container, Kubernetes, or another environment. For a production environment, Wazuh core components (i.e., the Wazuh server, the Wazuh indexer, and the Wazuh dashboard) should be installed in cluster mode. Cluster mode deployment involves setting up more than one Wazuh server node to work collectively. By spreading the work and duties among several nodes in the cluster, this configuration aims to improve speed, scalability, and resilience. Let’s cover some important deployment options:

	Servers: Putting Wazuh on dedicated servers gives you more power and lets you make changes that work with your system. You can utilize on-premises servers or cloud instances. Remember, you need multiple server instances to deploy Wazuh in cluster mode.

	VM image: Wazuh gives you an Open Virtual Appliance (OVA) formatted VM image that is already set up. This can be imported straight into VirtualBox or any other virtualization software that works with OVA files. This is good for a lab purpose only. You can use this deployment option to test all the scenarios mentioned in this book. Download the OVA file from here: https://documentation.wazuh.com/current/deployment-options/virtual-machine/virtual-machine.html.

	Docker container: Docker is an open platform for building and running applications inside an isolated software container. Docker containers are the best way to quickly and easily set up Wazuh components in independent environments. This option is commonly used for testing, development, or situations where setup and takedown need to be done quickly. You can download the Docker image from the link here: https://hub.docker.com/u/wazuh.

	Deployment on Kubernetes: Kubernetes is an open-source container orchestration platform. You can opt for this method when managing large-scale deployment with multiple containers. This method gives you higher scalability, automated deployment, and resource optimization. You can check out the Wazuh Kubernetes repository at the following link: https://github.com/wazuh/wazuh-kubernetes.

If you want to test all the use cases throughout the book, I suggest you use the Wazuh VM deployment option by downloading the OVA file; however, for the production-level deployment, you can choose any of the remaining options. The Wazuh community has done a brilliant job in documenting the installation guide. You can refer to this link for step-by-step assistance: https://documentation.wazuh.com/current/installation-guide/index.html.

Wazuh modules

Wazuh has a set of modules that work together to help organizations handle security events, find threats, make sure they are following the rules, and keep their systems and data safe. Once you access the Wazuh manager, the topmost option is Modules. By default, you can find multiple modules categorized under four sections as mentioned in the following diagram:

[image: Figure 1.6 – Default Wazuh modules]

Figure 1.6 – Default Wazuh modules

Let us look into each of those four sections in detail:

	Security information management: This consists of the Security Events and Integrity Monitoring module. Security alerts will be triggered and displayed based on predefined Wazuh rules for identified security events. The Integrity Monitoring module monitors any unauthorized changes to critical system files and directories.

	Threat detection and response: By default, this section has two modules: Vulnerabilities and MITRE ATT&CK®. However, you can also add Osquery, VirusTotal, and more. The Vulnerabilities module identifies, and tracks known vulnerabilities in the systems or software. The MITRE ATT&CK module maps detected threats or incidents to the MITRE ATT&CK framework.

Note

ATT&CK stands for adversarial tactics, techniques, and common knowledge. MITRE is a government-funded research organization based in Bedford, MA, and McLean, VA. MITRE ATT&CK is a framework that helps organizations with attacker’s tactics, techniques, and procedures to test their security controls.

	Auditing and Policy Monitoring: This section consists of three modules: the Policy Monitoring module, the System Auditing module, and the Security configuration assessment module.	The Policy Monitoring module monitors the systems to make sure security policies are properly established.
	The System Auditing module tracks and audits use activities including use login attempts, file access, and privilege changes in the endpoint.
	The Security configuration assessment module is a very popular feature that checks system configurations against best practices or predefined security standards. Wazuh utilizes the CIS benchmark for most of the security configuration checks.

Note

The Center for Internet Security (CIS) benchmarks are a set of best practices that are known around the world and are based on consensus. They are meant to help security professionals set up and manage their cybersecurity defenses.

	Regulatory Compliance: This section consists of multiple modules including PCI DSS compliance, GDPR, HIPPA, NIST 800-53, and TSC modules. Wazuh rules are created and tagged with some of these compliances. When any of those rules get triggered, we see the alerts. This is how we can align security compliances with Wazuh.

Next, let’s talk about the Wazuh Administration, where we will discuss some core features of the Wazuh manager.

Wazuh Administration

Under the Management section of the Wazuh dashboard, we have the Administration section. As you can see in the following diagram, the Administration section includes capabilities such as Rules, Decoders, CDB lists, Groups, and Configuration.

[image: Figure 1.7 – Wazuh administration]

Figure 1.7 – Wazuh administration

All the features mentioned under the Administration tab play a pivotal role in ensuring the effectiveness of the Wazuh platform for real-time monitoring and threat detection. We will understand each of these features as explained in the following sections.

Decoders

Decoders are responsible for reading incoming log entries, pulling out the important information, and putting them into a standard format that the Wazuh system can easily understand and analyze. Raw log entries can be in different formats, such as syslog, JSON, XML, or custom text formats. The job of the decoder is to figure out how these logs are put together and pull out meaningful fields and values. There are many pre-built decoders in Wazuh such as the syslog decoder, OpenSSH decoder, Suricata decoder, and the Cisco ASA decoder. To understand what decoders are and how they work, let us look at how logs from the Barracuda Web Application Firewall (WAF) are processed:

<decoder name="barracuda-svf1">
 <parent>barracuda-svf-email</parent>
 <prematch>^\S+[\S+]|</prematch>
 <prematch>^\S+</prematch>
 <regex>^\S+[(\S+)] (\d+-\w+-\w+) \d+ \d+ |</regex>
 <regex>^(\S+) (\d+-\w+-\w+) \d+ \d+ </regex>
 <order>srcip, id</order>
</decoder>
 Let’s break down the parts of this Wazuh decoder:

	decoder name: This indicates the name of the decoder.

	parent: This gives us the name of the parent decoder. The parent decoder will be processed before the child decoders.

	prematch: This is like a condition that must match to apply the decoder. It uses regular expressions to look for a match.

	regex: This represents the regular expression to extract data. In the preceding decoder, we have two regex instances.

	order: This indicates the list of fields in which the extracted information or value will be stored.

Decoders have many more configuration options available to them. Visit the Decoders Syntax page (https://documentation.wazuh.com/current/user-manual/ruleset/ruleset-xml-syntax/decoders.html) in the Wazuh documentation to see all of the available options.

Rules

Wazuh rules help the system detect attacks in the early stages, such as intrusions, software misuse, configuration issues, application errors, malware, rootkits, system anomalies, and security policy violations. Wazuh comes with several pre-built rules and decoders but also allows you to add custom rules. Let’s take a sample Wazuh rule:

<rule id="200101" level="1">
 <if_sid>60009</if_sid>
 <field name="win.system.providerName">^PowerShell$</field>
 <mitre>
 <id>T1086</id>
 </mitre>
 <options>no_full_log</options>
 <group>windows_powershell,</group>
 <description>Powershell Information EventLog</description>
 </rule>
 Let’s break this code down:

	rule id: This represents the unique identifier for the Wazuh rule.

	level: The rule’s classification level ranges between 0 and 15. According to the rule categories page (https://documentation.wazuh.com/current/user-manual/ruleset/rules-classification.html) in the Wazuh documentation, each number indicates a distinct value and severity.

	if_sid: This specifies the ID of another rule (in our case, it’s 60009), which triggers the current rule. The “if” condition is considered as the “parent” rule that must be checked first.

	field name: This specifies the name of the field extracted from the decoder. The value is matched by a regular expression. In this case, we are looking for the field name win.system.providerName with a value of PowerShell.

	group: This is used to organize the Wazuh rules. It contains the list of categories that the rules belong to. We have organized our rule in the windows_powershell group.

There are tons of other options available for Wazuh rules. I would suggest you check out the Rules Syntax page at the following link: https://documentation.wazuh.com/current/user-manual/ruleset/ruleset-xml-syntax/rules.html) in the Wazuh documentation.

CDB lists

The Constant Database (CDB) list enables the categorization and management of IP addresses and domains based on their characteristics. These lists can include known malicious IP addresses, suspicious domains, trusted IP addresses, whitelisted domains, and more. Admins maintain these lists by adding or removing entries based on reputation or risk levels. To learn more about CDB lists, you can visit the official Wazuh documentation for CDB lists: https://documentation.wazuh.com/current/user-manual/ruleset/cdb-list.html.

Groups

Agents can be grouped based on their OS or functionalities using groups; for example, all Windows agents can be grouped under a single group named Windows Agents. This is helpful when you want to push configuration changes from the Wazuh manager to all Windows agents at once. This becomes a simple and single-step solution. To learn more about grouping agents, you can visit the official Wazuh documentation here: https://documentation.wazuh.com/current/user-manual/agents/grouping-agents.html.

Configuration

This helps security teams to fine-tune Wazuh’s main configurations such as cluster configuration, alert and output management, log data analysis, cloud security, vulnerabilities, inventory data, active response, commands, Docker listeners, and monitoring (Amazon S3, Azure logs, Google Cloud, GitHub, Office 365, etc.). All these features can even be customized from the command-line option as well. You need to locate the ossec.conf file in your Wazuh manager or Wazuh agent at the /var/ossec/etc directory.

Now, let’s start deploying our Wazuh agent on the Ubuntu machine and then we will install Suricata on the same machine.

Installing the Wazuh server

The Wazuh server is the central component of the Wazuh security platform. It consists of two important elements: the Wazuh manager and Filebeat. The Wazuh manager collects and analyzes data from the Wazuh agents and triggers alerts when it detects any threats. Filebeat forwards alerts and events to the Wazuh indexer. The Wazuh server can be installed in multiple ways, however, I’d recommend the multi-node cluster method for a production environment and the VM method for a lab environment. You can follow the guidelines for both methods in the following sections.

For a production environment

To set up Wazuh in the production environment, it is recommended to deploy the Wazuh server and Wazuh indexer on different hosts. This helps you handle traffic from a large number of endpoints and also to achieve high availability. The step-by-step guide to install the Wazuh server along with the indexer and dashboard is mentioned here: https://documentation.wazuh.com/current/installation-guide/index.html.

For a lab environment

You can use the Wazuh VM OVA file for a lab environment as it is easy to deploy. All the Wazuh components including the Wazuh server, indexer, and dashboard are unified. To install Wazuh using an OVA file, follow these steps:

	Download the OVA file: Start by downloading the Wazuh OVA file from the official Wazuh website: https://documentation.wazuh.com/current/deployment-options/virtual-machine/virtual-machine.html.

	Import the OVA file: Use your favorite virtualization platform (e.g., VMware Workstation, VirtualBox, etc.) and import the downloaded OVA file.

	Configure VM settings: Before powering on the VM, adjust the VM settings as needed:	CPU cores: 4
	RAM: 8 GB
	Storage: 50 GB

	Access the Wazuh web interface: You can start the VM. Next, open the Web browser using the VM IP address and enter the default username and password as shown in the diagram.

[image: Figure 1.8 – Accessing the Wazuh web interface]

Figure 1.8 – Accessing the Wazuh web interface

You need to enter the following:

	Username: admin

	Password: admin

Installing Wazuh agent

A Wazuh agent is compatible with multiple OSs. Once a Wazuh agent is installed, it will communicate with the Wazuh server, pushing information and system logs in real-time using an encrypted channel.

Installing a Wazuh agent on Ubuntu Server

To deploy a Wazuh agent on the Ubuntu Server, you need to install the agent and configure the deployment variables. To get started with installation, you need to log in to your Wazuh dashboard, navigate to Agents, click on Deploy an agent and then follow these steps:

	Select an OS, version, and architecture: As mentioned in the following diagram, navigate to the LINUX box and choose DEB amd64 for AMD architecture or DEB aarch64 for ARM architecture.

[image: Figure 1.9 – Deploying a new agent]

Figure 1.9 – Deploying a new agent

	Enter the server address and other optional settings: Enter the Wazuh server address and agent name and select the group. Please make sure your desired agent group is created before you add any new agent.

[image: Figure 1.10 – Choosing a server address and optional settings]

 Figure 1.10 – Choosing a server address and optional settings

Let’s break down what we’ve inputted:

	192.168.29.32: This is the IP address of the Wazuh server

	ubu-serv: This indicates the name of the Wazuh agent

	default: It represents the Wazuh agent group

	Download the package and enable the service: Copy the curl command to download the Wazuh module and start the Wazuh agent service as mentioned in the following diagram.

[image: Figure 1.11 – Retrieving the commands to download and install a Wazuh agent]

 Figure 1.11 – Retrieving the commands to download and install a Wazuh agent

Note

Make sure that there are no firewall rules blocking communication between the agent and the Wazuh manager. The agent should be able to communicate with the manager over the configured port (the default is 1514/514 for syslog).

Finally, you can verify whether the agent is connected and activated by logging in to the Wazuh manager and navigating to Agents.

[image: Figure 1.12 – Visualizing Wazuh agents]

Figure 1.12 – Visualizing Wazuh agents

As you can see in the preceding diagram, the ubu-serv-03 agent is connected with the following:

	ID: 006

	IP address: 192.168.29.172

	Group(s): default

	Operating system: Ubuntu 22.04

	Status: active

Now, let’s install the Wazuh agent on Windows Server. The process will be the same for the Windows desktop, too.

Installing a Wazuh agent on Windows Server

You can monitor real-time events from Windows Server or a desktop on the Wazuh server by using the command line interface (CLI) or graphical user interface (GUI). To get started with installation, you need to log in to your Wazuh dashboard, navigate to Agents, click on Deploy an agent and then follow these steps:

	Select an OS, version, and architecture: As shown in the following diagram, navigate to the WINDOWS box, choose the MSI 32/64 bits package, and then enter the Wazuh server IP address.

[image: Figure 1.13 – Selecting the Windows package for the Wazuh agent]

Figure 1.13 – Selecting the Windows package for the Wazuh agent

	Enter the server address and other optional settings: Enter the Wazuh server address and agent name and select the group. Please make sure your desired agent group is created before you add any new agent.

[image: Figure 1.14 – Entering the server address and optional settings]

 Figure 1.14 – Entering the server address and optional settings

	Download the package and enable the service: Copy the PowerShell command to download the Wazuh module and start the Wazuh agent service as shown in the following diagram. The following command needs to be entered on a Windows PowerShell terminal.

[image: Figure 1.15 – Retrieving the commands to download and install the Wazuh agent on a Windows machine]

Figure 1.15 – Retrieving the commands to download and install the Wazuh agent on a Windows machine

Finally, you can verify whether the agent is connected and activated by logging in to the Wazuh manager and navigating to Agents.

[image: Figure 1.16 – Visualizing Wazuh agents installed on a Windows machine]

Figure 1.16 – Visualizing Wazuh agents installed on a Windows machine

As you can see in the preceding diagram, the WIN-AGNT agent is connected with the following:

	ID: 004

	IP address: 192.168.29.77

	Group(s): default

	Operating system: Microsoft Windows Server 2019 Datacenter Evaluation 10.0.17763.737

	Status: active

We have successfully learned how to deploy Wazuh agents on both the Ubuntu Server and Windows Server. In the next section, we will learn how to set up a Suricata IDS on Ubuntu Server.

Installing Suricata on Ubuntu Server

With the ability to detect malicious or suspicious activities in real time, Suricata is an NSM tool, which has the potential to work as an IPS/IDS. Its goal is to stop intrusion, malware, and other types of malicious attempts from taking advantage of a network. In this section, we will learn how to install Suricata on Ubuntu server. Let’s first learn about the prerequisites.

Prerequisites

To install Suricata IDS on Ubuntu Server, the prerequisites are as follows:

	You will need to have Ubuntu Server installed (version 20.04 or higher)

	Sudo Privileges

Installation

This process involves the installation of Suricata packages using the apt-get command line tool and then we need to install the free and open source Suricata rules created by the ET community. The rules within the ET ruleset cover a broad spectrum of threat categories, including malware, exploits, policy violations, anomalies, botnets, and so on. To complete the installation, follow these steps:

	Install Suricata: Log in to the terminal on Ubuntu Server and install the Suricata IDS package with the following commands:
sudo add-apt-repository ppa:oisf/suricata-stable
sudo apt-get update
sudo apt-get install suricata –y

 	Install the ET ruleset: Install the ET ruleset. The ET Suricata ruleset comprises a compilation of rules created for the Suricata IDS. We are required to store all the rules in the /etc/suricata/rules directory:
cd /tmp/ && curl -LO https://rules.emergingthreats.net/open/suricata-6.0.8/emerging.rules.tar.gz
sudo tar -xvzf emerging.rules.tar.gz && sudo mv rules/*.rules /etc/suricata/rules/
sudo chmod 640 /etc/suricata/rules/*.rules

Note

If the rule directory is not present, you can create one by using the mkdir /etc/suricata/ rules and then you can enter the previously mentioned commands.

	Modify the Suricata configuration: In order to fine-tune Suricata configuration, it is required to change the default setting under the Suricata configuration file located at /etc/suricata/suricata.yaml:
HOME_NET: "<AGENT_IP>"
EXTERNAL_NET: "any"
default-rule-path: /etc/suricata/rules
rule-files:
- "*.rules"
Linux high speed capture support
af-packet:
 - interface: eth01
Let’s break down this code further:
	HOME_NET: This is a variable that needs to be set with the agent IP address.
	EXTERNAL_NET: This variable needs to be set with "any" to ensure Suricata will monitor the traffic from any external IP address.
	default-rule-path: This is set to our Suricata rule path.
	af-packet: This is a packet capture method used to capture network traffic directory from a network interface card (NIC). You can check your current NIC by using the ifconfig command and updating the af-packet settings.

 	Restart the Suricata service: In order for configuration changes to take effect, we are required to restart the Suricata service using the following command:
$ sudo systemctl restart suricata

 	Integrate with Wazuh: In order for the Wazuh agent to monitor and collect Suricata traffic, we need to specify the Suricata log file location under the Wazuh agent ossec config file located at /var/ossec/etc/ossec.conf. Suricata stores all the logs at /var/log/suricata/eve.json. You are required to mention this file under the <location> tag in the ossec.conf file:
<ossec_config>
 <localfile>
 <log_format>json</log_format>
 <location>/var/log/suricata/eve.json</location>
 </localfile>
</ossec_config>

 	Restart the Wazuh agent service: For the current changes to take effect, you need to restart the Wazuh agent services using the following command:
$ sudo systemctl restart wazuh-agent

This completes Suricata’s integration with Wazuh. The Suricata IDS has been installed on Ubuntu Server along with the ET ruleset. Your endpoints are ready to trigger alerts if any malicious traffic is matched against any of the ET rulesets. Before getting into some practical use cases, let’s first get a basic understanding of Suricata rules and how to create one.

Understanding Suricata rules

Suricata is powerful when you have a set of powerful rules. Although there are thousands of Suricata rule templates available online, it is still important to learn how to create a custom Suricata rule from scratch. In this section, we’ll learn basic Suricata rule syntax and some common use cases with attack and defense.

Suricata rule syntax

Suricata uses rules to detect different network events, and when certain conditions are met, it can be set up to do things such as alert or block.

Here’s an overview of the Suricata rule syntax:

action proto src_ip src_port -> dest_ip dest_port (msg:"Alert message"; content:"string"; sid:12345;)
 Let’s break this code down:

	action: This says what should be done when the rule is true. It can be alert to send an alert, drop to stop the traffic, or any of the other actions that are supported.

	proto: This shows what kind of traffic is being matched, such as tcp, udp, and icmp.

	src_ip: This is the source IP address or range of source IP addresses. This is where the traffic comes from.

	src_port: This is the port or range of ports where the traffic is coming from.

	dest_ip: This is the IP address or range of IP addresses where the traffic is going.

	dest_port: This is the port or range of ports where the traffic is going.

	msg: The message that will be shown as an alert when the rule is true.

	content: This is an optional field that checks the packet payload for a certain string or content.

Now, based on our current Suricata configuration, we have the $HOME_NET and $EXTERNAL_NET network variables. Let’s get an understanding of an example rule to detect an SSH connection:

alert tcp $EXTERNAL_NET any -> $HOME_NET 22 (msg:"SSH connection detected"; flow:to_server,established; content:"SSH-2.0-OpenSSH"; sid:100001;)
 Let’s break this down:

	alert: The rule specifies that an alert should be generated if the specified conditions are met.

	tcp: This refers to Transmission Communication Protocol (TCP) based traffic.

	$EXTERNAL_NET any -> $HOME_NET 22: The traffic flow is defined by directing traffic from any external network IP address ($EXTERNAL_NET) to any home or local network IP ($HOME_NET) on port 22 (SSH).

	(msg:"SSH connection detected";): This specifies a detailed message to be added to the alert. It indicates that the rule has identified an SSH connection in this instance.

	flow:to_server,established: This defines the direction of the traffic that initiates the rule. It is looking for established connections between the server (home network) and the server (external network). This portion of the rule prevents initial connection attempts from generating alerts.

	content:"SSH-2.0-OpenSSH: This part looks at the payload of the packet for a particular string ("SSH-2.0-OpenSSH"). It searches the traffic payload for this specific string, which signifies the utilization of the OpenSSH protocol and the SSH protocol in general.

	sid:100001: It is a unique identifier for a particular rule.

Now that we’ve learned how to create some basic Suricata rules, let’s go through some Suricata IDS use cases with the Wazuh platform.

Network scanning probe attack and detection

Network scanning is the initial stage of most hacking exercises, and the most powerful tool used for this purpose is none other than the Nmap scanner. Nmap is a free and open source Linux command-line tool. Nmap helps us to scan any host to discover opened ports, software versions, OSs, and so on. It is used by security professionals for security testing, network exploration, and vulnerability detection. Threat actors also perform network scanning to discover any open ports, software versions, or vulnerability packages. In this section, we will initiate network scanning probes using the Nmap tool against our Wazuh agent (running Suricata services). The ET ruleset already consists of rules to detect Nmap-based scanning probes. We will verify it using this attack scenario.

We will be following the points in these sections:

	Lab setup

	Attack simulation

	Visualize on the Wazuh manager

Lab setup

In this mini lab setup, we need three parts: an attacker machine (Kali Linux or Ubuntu), an Ubuntu machine or Windows machine with the Wazuh agent installed on it, and finally, our Wazuh server. If you use a Kali Linux machine, Nmap is preinstalled; however, if you use an Ubuntu machine, you can install the Nmap package using the sudo apt-get install nmap command.

[image: Figure 1.17 – Lab setup of network scanning probe detection using Nmap]

Figure 1.17 – Lab setup of network scanning probe detection using Nmap

Attack simulation

If you are using Kali Linux or Ubuntu as an attacker machine, you can open the terminal and enter the nmap command using the -sS keyword for an SYN scan and -Pn to skip host discovery. The Nmap SYN scan is a half-open scan that works by sending a TCP SYN packet to the target machine (the Wazuh agent). If the port is open, the target device responds with a SYN-ACK (synchronize-acknowledgment) packet. However, if the port is closed, the device may respond with an RST (reset) packet, which means the port is not open. In this testing, we will run two types of scan: first to check for open ports using -sS and second, to check for software version using -sV (version scan):

nmap -sS -Pn 10.0.2.5. // Port Scanning
nmap -sS -sV -Pn 10.0.2.5 // Version Scanning
 Once you run the preceding command, you will learn what all the ports are open and second, what version of the package is installed on the target machine. Let’s look at the output of the Nmap port scan command:

nmap -sS -Pn 10.0.2.5
Starting Nmap 7.94 (https://nmap.org) at 2023-12-10 02:53 IST
Nmap scan report for 10.0.2.5
Host is up (0.0037s latency).
Not shown: 998 closed tcp ports (reset)
PORT STATE SERVICE
22/tcp open ssh
80/tcp open http
Nmap done: 1 IP address (1 host up) scanned in 1.45 seconds
 As you can see, STATE of port 22/tcp and 80/tcp are open. Now, let’s look at the output of the Nmap version check command:

nmap -sV -Pn 10.0.2.5
Starting Nmap 7.94 (https://nmap.org) at 2023-12-10 02:59 IST
Nmap scan report for 10.0.2.5
Host is up (0.0024s latency).
Not shown: 998 closed tcp ports (reset)
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 8.9p1 Ubuntu 3ubuntu0.3 (Ubuntu Linux; protocol 2.0)
80/tcp open http Apache httpd 2.4.52 ((Ubuntu))
Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel
Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 7.59 seconds
 From the output, you can see from the VERSION column that the target is running two software packages: OpenSSH 8.9 and Apache with version 2.4.52.

Visualize on the Wazuh dashboard

To visualize the Suricata alerts, log in to the Wazuh manager and navigate to Security events. Next, select the agent. You will find the security alert shown in the following diagram.

[image: Figure 1.18 – Visualizing network scanning probes on the Wazuh dashboard]

Figure 1.18 – Visualizing network scanning probes on the Wazuh dashboard

You can also apply a filter with rule.group: suricata.

[image: Figure 1.19 – Visualizing network scanning probes using a Suricata filter]

Figure 1.19 – Visualizing network scanning probes using a Suricata filter

Let’s expand one of the alerts, as shown in the following.

[image: Figure 1.20 – The ET SCAN Potential SSH Scan OUTBOUND alert]

Figure 1.20 – The ET SCAN Potential SSH Scan OUTBOUND alert

Let’s break some of the following down:

	data.alert.signature: This field talks about the ET SCAN Potential SSH Scan OUTBOUND Suricata rule that detected this abnormal traffic. ET represents the ET ruleset.

	data.dest_ip: This gives us the victim IP address.

	data.src_ip: This gives us the attacker IP address.

	data.alert.action: This field indicates the action taken by Wazuh in response to a detected security event.

	alerts.severity: This field represents the severity level assigned to the security event by Wazuh.

So, this was the simple use case of how Suricata can detect the network scanning probes and how Wazuh visualizes it on the dashboard. In the next section, we will learn how to detect web-based attacks on our intentionally vulnerable application DVWA.

Testing web-based attacks using DVWA

As per a CDNetworks report, around 45.127 billion web applications were detected and blocked throughout 2022, which is an increase of 96.35% compared to 2021 (https://www.cdnetworks.com/news/state-of-waap-2022/). Attacks on web applications have become so common that they are now the main cause of data breaches. Some of the most common types of web application attacks include cross-site scripting (XSS), DDoS, cross-site request forgery (CSRF), XML External Entity (XXE), and SQL Injection. Suricata with the ET ruleset can detect such attacks by dissecting packet payloads and scrutinizing HTTP/HTTPS protocol headers for anomalies or abnormal traffic patterns. In this section, we will utilize an intentionally infected web application, DVWA. DVWA is a PHP-based application and is popular among penetration testers and ethical hackers as it helps them get hands-on with security vulnerability and exploitation. We will cover these points in the following subsections:

	Lab setup

	Setting up the victim server with DVWA

	Test an SQL Injection attack

	Test a reflected XSS attack

Lab setup

In this lab setup, we need four parts: an attacker machine (Kali Linux or Ubuntu), a victim server (DVWA running on a Debian server), a TAP server (Wazuh and Suricata agents on Ubuntu), and a Wazuh server. The lab design is in the following figure:

[image: Figure 1.21 – The lab setup for detecting web-based attacks using Suricata]

Figure 1.21 – The lab setup for detecting web-based attacks using Suricata

Let’s break this down further:

	The attacker machine is Kali Linux, but you can use any other machine.

	The DVWA application has been installed on a Debian-based server.

	Ubuntu Server deployed in promiscuous mode (a network setting) and running a Suricata IDS and Wazuh agent. Promiscuous mode allows the network adapter to intercept and read all the network traffic that it receives.

	The Wazuh server is deployed as a VM.

Setting up the victim server with DVWA

We will be installing a DVWA application on a Debian-based Linux distribution. You can download it from the following link: https://www.debian.org/distrib/. Our DVWA application has some dependencies such as php, an apache2 web server, and a MySQL database:

	Let’s first install all of them with the following command:
sudo apt -y install apache2 mariadb-server php php-mysqli php-gd libapache2-mod-php

 	Next, prepare the database:	We need to run the initial database setup:sudo mysql_secure_installation

	Type yes and then create a user and set its privileges:CREATE USER 'dvwa'@'localhost' IDENTIFIED BY 'password'; GRANT ALL PRIVILEGES ON dvwa.* TO 'dvwa'@'localhost' IDENTIFIED BY 'password';

	Next, install the DVWA application. The DVWA source code is available on GitHub. You can enter the following command under /var/www/html:
cd /var/www/html
sudo git clone <https://github.com/digininja/DVWA.git>
sudo chown -R www-data:www-data /var/www/html/*

 	Let’s configure the PHP file. For this, go to the /var/www/html/config directory. You will find the config.inc.php.dist file. Just make a copy of this file:
cp /var/www/html/config/config.inc.php.dist /var/www/html/config/config.inc.php

 	Update the database information under the config.inc.php file. Change the db_user to dvwa and db_password to password.

	Start the mysql service:
systemctl start mysql or service mysql start

 	Update the php file and go to /etc/php/x.x/apache2/ to open the php.ini file.

	Search for allow_url_include and set to On.

	Launch DVWA.

	Open DVWA with http://localhost/DVWA/setup.php and then reset the database.

	Now, log in to DVWA with the default credentials:
username: admin
password: password

This completes our DVWA application installation. Next, we can start testing the DVWA application from Kali Linux against SQL Injection and XSS as explained in the next section.

Test an SQL Injection attack

SQL Injection, or SQLi, is a type of cyberattack in which malicious SQL code is injected into an application. This lets the attacker extract or modify the contents of the database. This attack modifies the database by tricking the program into running SQL commands that weren’t intended to be run. In order to test the DVWA application against SQL Injection vulnerability, we need to insert our malicious payload into the HTTP request itself:

http://<DVWA_IP_ADDRESS>/DVWA/vulnerabilities/sqli/?id=a' UNION SELECT "Hello","Hello Again";-- -&Submit=Submit
 Let’s break this down:

	UNION SELECT "Hello","Hello Again": The UNION SELECT statement is used to combine the results of two or more SELECT queries into a single result set. In this case, the attacker wants to add their own information to the query result. "Hello" and "Hello Again" are the text information that the attacker wants to inject into the query result.

	-- -: This is a comment in SQL. Everything following this on the same line is considered a comment and ignored by the SQL processor.

	&Submit=Submit: This part suggests that the query could be part of a form submission where the Submit parameter is sent with the Submit value.

Now, let’s check on our Wazuh dashboard for the relevant security alerts.

[image: Figure 1.22 – Visualizing SQL Injection alerts]

Figure 1.22 – Visualizing SQL Injection alerts

As you expand the individual security alert, you will see detailed information about the alert, the Suricata ET rule, and the category as shown in the following figure:

[image: Figure 1.23 – Suricata alert for SQL Injection on the Wazuh dashboard]

Figure 1.23 – Suricata alert for SQL Injection on the Wazuh dashboard

Let’s break this down:

	Suricata: Alert - ET WEB_SERVER Possible SQL Injection Attempt UNION SELECT: This represents the security alert name

	data.alert.category Web Application Attack: This shows the category of the rule as specified in the Suricata ET ruleset

	Data.alert.metadata.tag: SQL_Injection: This shows the metadata of the Suricata ET ruleset for web application attacks

As we scroll down the alert information even further, we will see more information, as shown in the following figure.

[image: Figure 1.24 – Detailed information of a Suricata alert for SQL Injection]

Figure 1.24 – Detailed information of a Suricata alert for SQL Injection

Let’s break this down:

	data.http.http.user_agent: This represents the browser information from where the attack has been attempted

	data.http.url: /DVWA/vulnerabilities/sqli/?id=a%27%20UNION%20SELECT%20%22text1%22,%22text2%22;--%20-&Submit=Submit: This represents a URL query string for the DVWA, specifically targeting a SQL Injection vulnerability.

Now, we have learned about how to detect SQL Injection attacks using a Suricata IDS and visualize them on a Wazuh dashboard. In the next section, we will test our DVWA application for XSS vulnerabilities. We will later detect and visualize them on a Wazuh dashboard.

Test a reflected XSS attack

XSS is a type of code injection attack that targets websites and sends malicious scripts to a user’s web browser to execute. In a reflected XSS attack, the attacker inserts malicious script into a website or app, which is subsequently reflected onto the user’s browser from the web server. This kind of attack is possible when a user inputs information into the application, and the application reflects it back to the user without enough sanitization or validation. To test if our intentionally vulnerable application, DVWA, for a reflected XSS attack, we can submit a piece of JavaScript code and verify whether it is reflecting the data back to our browser.

You can open the DVWA application and navigate to the XSS (Reflected) tab. Next, enter a sample JavaScript code as written here:

<script>alert("Hello");</script>
 Let’s break this down:

	<script> tag: This indicates a piece of JavaScript code that should be executed by the browser

	Alert("Hello"): This is a function that tells the browser to display a pop-up box with the Hello text when the script is executed

You can enter the JavaScript code and click on the Submit button as shown in the following diagram.

[image: Figure 1.25 – Initiating a reflected XSS attack on DVWA]

Figure 1.25 – Initiating a reflected XSS attack on DVWA

The DVWA application doesn’t have a sanitization check for user inputs, making it vulnerable to reflected XSS attacks. As a result, we will see the Hello text reflected back to our browser as shown in the following diagram.

[image: Figure 1.26 – Visualizing reflected XSS on DVWA]

Figure 1.26 – Visualizing reflected XSS on DVWA

So, the attack was successful. Let’s visualize the alert on the Wazuh dashboard. Navigate to Security Alerts and select the agent.

[image: Figure 1.27 – Suricata alert against an XSS attack]

 Figure 1.27 – Suricata alert against an XSS attack

Let’s break this down:

	Security Alert – ET WEB_SERVER Script tag in URI Cross Site Scripting Attempt: This represents the security alert name and signature name.

	data.alert.category Web Application Attack: This represents the category of the alert based on the Suricata ET ruleset.

	data.alert.metadata.tag Cross_Site_Scripting, XSS: This represents the metadata of the security alerts. In our case, it’s Cross_Site_Scripting and XSS.

In this section, we have successfully launched the SQL Injection and reflected XSS on the intentionally vulnerable application called DVWA. Finally, we were able to detect the attacks using Suricata ET rules and visualize them on the Wazuh dashboard.

In the next section, we will emulate multiple attacks on an Ubuntu machine using the tmNIDS project and visualize it on the Wazuh manager.

Testing NIDS with tmNIDS

tmNIDS is a GitHub project maintained by 3CoreSec. tmNIDS is a simple framework designed for testing the detection capabilities of NIDS such as Suricata and Snort. The tests inside tmNIDS are designed to align with rulesets compatible with the ET community. The ET community builds and shares Suricata rules to detect a wide range of attacks such as web-based attacks, network attacks, and DDoS attacks. In this section, we will learn to simulate attacks using tmNIDS and we will visualize them on the Wazuh dashboard. We will cover these points in the following subsections:

	Lab setup

	Installing tmNIDS on Ubuntu Server

	Testing for a malicious User-Agent

	Testing for a Tor connection

	Test everything at once

Lab setup

In this lab setup, we have two devices: Ubuntu Server running the Wazuh agent, Suricata IDS, and tmNIDS, and second, the Wazuh server installed using a VM OVA file. The lab design is in the following figure.

[image: Figure 1.28 – Lab set for testing Suricata IDS rules using tmNIDS]

 Figure 1.28 – Lab set for testing Suricata IDS rules using tmNIDS

Installing tmNIDS on Ubuntu Server

The source code of the tmNIDS project is published on GitHub (https://github.com/3CORESec/testmynids.org). To install tmNIDS, we can run a curl command to download the packages:

curl –sSL https://raw.githubusercontent.com/3CORESec/testmynids.org/master/tmNIDS> -o /tmp/tmNIDS && chmod +x /tmp/tmNIDS && /tmp/tmNIDS
 Let’s break this down:

	curl: This is a utility tool that initiates a request to download data from the specific URL.

	-sSL: Here, -s stands for showing progress without any output. The S flag will show errors if curl encounters any problem during the request and the L flag represents redirection.

	-o /tmp/tmNIDS: This informs curl to save downloaded files as tmNIDS in the /tmp directory.

	chmod +x /tmp/tmNIDS: It changes the file permissions of the downloaded file to executable.

Once the package has been executed, you will see a list of 12 tests for Suricata IDS as in the following diagram.

[image: Figure 1.29 – Visualizing tmNIDS detection tester]

Figure 1.29 – Visualizing tmNIDS detection tester

So, now that our tmNIDS is ready, we can start testing our Ubuntu Server (running Suricata IDS) against multiple attacks as explained in the next sections.

Testing for a malicious User-Agent

In this scenario, we will execute test 3 from the tmNIDS tests, which is HTTP Malware User-Agent. For every HTTP request, there is a User-Agent header that describes the user’s browser, device, and OS. When an HTTP web browser sends a request to a web server, it inserts this header to identify itself to the server. The User-Agent string usually contains information such as the browser’s name and version, OS, device type, and sometimes extra data such as rendering engine details. If you take a closer look at the HTTP header using Google developer mode, you will find the User-Agent information:

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.45 Safari/537.36
 This User-Agent string says that the browser is running on a Windows 10 64-bit system, using the Chrome browser (version 96.0.4664.45) with rendering engines associated with both WebKit (Safari) and Gecko (Firefox).

To test the Ubuntu Server (running Suricata IDS) against HTTP Malware User-Agent test, enter 3 on the tmNIDS prompt.

[image: Figure 1.30 – Choosing option 3 from the tmNIDS detection tester]

Figure 1.30 – Choosing option 3 from the tmNIDS detection tester

Now, let’s visualize the alerts on the Wazuh dashboard. You can navigate to the Security Alerts module and select the endpoint. You can find the alerts as shown in the following diagram.

[image: Figure 1.31 – Suricata alert against a suspicious User-Agent]

Figure 1.31 – Suricata alert against a suspicious User-Agent

Let’s break some of the following down:

	Suricata: Alert – ET POLICY GNU/LINUX APT User-Agent Outbound likely to package management: This represents the Security alerts name and signature

	data.alert.category : Not Suspicious Traffic: This represents the category of the ET ruleset category

	data.alert.signature : ET POLICY GNU/Linux APT User-Agent Outbound likely related to package management: This suggests potential APT-related outbound network activity, possibly tied to package management.

After successfully testing HTTP Malicious User-Agent and visualizing alerts on the Wazuh dashboard, we will test the Tor connection in the next section.

Testing for Tor connection

In this scenario, we will execute test 5, which is Tor. Tor is a decentralized, anonymous network that users can use to browse the internet privately and safely. However, it is often used by hackers, malicious actors, and cybercriminals who access the dark web and sell stolen data and illegal goods online. Its anonymity features can keep attackers’ identities secret, making it hard for the government to track their actions and hence, it is important for every organization to block any traffic from Tor services. The most popular Tor application is Tor Browser. When anyone accesses any website through the Tor Browser, it goes through proxy nodes, making it difficult for anyone to intercept. From a cybersecurity point of view, we can build a list of IP addresses of such nodes and eventually block them, or block Tor-based applications based on their signatures.

To test this scenario, go back to the tmNIDS prompt and enter 5. The Tor attack will be executed on our Ubuntu Server running Suricata IDS.

[image: Figure 1.32 – Choosing option 5 from the tmNIDS detection tester]

Figure 1.32 – Choosing option 5 from the tmNIDS detection tester

To visualize the alert, navigate to the Security Alerts module of Wazuh and check for the relevant alerts shown in the following diagram.

[image: Figure 1.33 – Suricata alert against Tor hidden traffic]

Figure 1.33 – Suricata alert against Tor hidden traffic

Both have been detected by the Suricata ET ruleset. There are two rule descriptions:

	Suricata: Alert - ET POLICY DNS Query for TOR Hidden Domain .onion Accessible Via TOR

	Suricata: Alert - ET MALWARE Cryptowall .onion Proxy Domain

We have successfully tested the Tor .onion DNS response test and visualized the alerts on the Wazuh manager. In the next section, we will run all the tests at once and visualize the alerts.

Testing everything at once

Now, this is like a non-stop rifle. You basically launch all the tests at once. To start, type 11 under the tmNIDS tests prompt and monitor the events on the Wazuh manager.

[image: Figure 1.34 – Suricata alerts against all the tmNIDS tests]

Figure 1.34 – Suricata alerts against all the tmNIDS tests

As you can see, we have received alerts against all the tests listed in the tmNIDS detection tester. This shows that our Suricata IDS along with the ET ruleset are effective against attacks launched by the tmNIDS project.

Summary

In this chapter, we learned about Wazuh and its integration with the Suricata IDS to effectively detect anomalous traffic behavior. We started by exploring the Suricata IDS and its deployment method. We then covered the setup of Wazuh, the configuration of Suricata rules, and practical threat detection using DVWA. We then learned about testing Suricata rulesets using a tmNIDS tester.

In the next chapter, we will learn about the different malware detection capabilities of the Wazuh platform. We will also explore third-party integration for the purpose of detecting advanced malware files and signatures.

2

Malware Detection Using Wazuh

Malware is short for malicious software, and it is installed on a computer without the user’s permission. Attackers can use malware to encrypt, steal computer data, or spy on system activity. Malware detection is a process of monitoring and analyzing computer systems and networks for the presence of malicious software and files. Security products detect malware by matching the signature of known malware samples and also by monitoring anomalous behavior. However, some malware can evade detection using multiple techniques once it enters the system. Wazuh utilizes a wide range of approaches to address and counter those techniques to detect malicious files and suspicious activities. In this chapter, we will learn about different Wazuh modules to detect malicious files and integrate some third-party tools to enhance its detection capabilities.

In this chapter, we’ll cover the following topics:

	Types of malware

	Wazuh’s capabilities for malware detection

	Malware detection using file integrity monitoring (FIM)

	VirusTotal Integration

	The CDB list

	Integrating Windows Defender logs

	Integrating System Monitor (Sysmon) to detect fileless malware

Note

In this chapter, we will utilize a real malware sample for testing; please make sure your system is running in isolation or in a controlled environment.

Types of malware

Malware can take many forms, each with its own distinct capabilities and objectives. Some common types of malware include the following:

	Viruses: Malware that attaches itself to legitimate files and programs and spreads by infecting other files. Viruses can cause damage by corrupting or destroying data. Examples include ILOVEYOU, Mydoom, and Anna Kournikova.

	Worms: Malware that copies itself and spreads through networks by taking advantage of security holes to infect other connected systems. Examples include Blaster, Mydoom, and Slammer.

	Trojans: Malicious software that looks like legitimate files or programs. Once installed, Trojans can let cybercriminals in without permission, which can lead to data theft, espionage, or more damage. Examples are Zeus (designed to steal financial information such as credit or debit cards), SpyEye (targets online banking information), and Poison Ivy (controls the victim machine remotely).

	Ransomware: Malware that encrypts the data of a victim, making it impossible to access until a ransom is paid to the attackers. Businesses and people can suffer a lot from ransomware attacks. Examples include Locky, WannaCry, and Ryuk.

	Spyware: Malware that is designed to covertly monitor and collect information from an infected system, including sensitive data, passwords, and browsing habits. Examples include CoolWebSearch (delivered through pop-up ads) and FinSpy (used by law enforcement agencies to capture screenshots and intercept communications).

	Rootkits: Malware that gets privileged access to a system without being noticed. This lets attackers hide their presence and keep control of the system that has been compromised. Examples include Sony BMG Rootkit, Alureon, and ZeroAccess.

Malware is usually spread through different ways, such as phishing emails, malicious downloads, infected websites, and external devices such as USB drives that have been hacked. Cybercriminals are always changing their methods to avoid being caught and take advantage of new weaknesses. Now, let’s learn about some of the important Wazuh capabilities for malware detection.

Wazuh capabilities for malware detection

Wazuh offers several capabilities that contribute to its effectiveness in detecting malware. This is accomplished through the use of a combination of log analysis, intrusion detection, and threat intelligence. It also provides real-time alerting, event correlation, and the ability to execute custom scripts for automated reaction activities, making it a powerful tool for effectively identifying and responding to malware attacks. The following are some of Wazuh’s methods for malware detection:

	Threat detection rules and FIM: In this method, Wazuh utilizes its built-in capability to detect any critical file modification. Some of the capabilities are:	Wazuh employs a set of predefined, continuously monitored threat detection principles. The purpose of these principles is to identify suspicious activities, events, and patterns that may indicate malware infections or security breaches.
	Wazuh’s malware detection relies heavily on FIM. It monitors modifications to files and directories, such as additions and deletions. Wazuh generates an alert when an unauthorized or unanticipated change occurs, which may indicate malware activity.

	Rootkit behavior detection: Wazuh uses the rootcheck function to detect anomalies that might indicate the presence of malware in an endpoint:	Rootkits are a form of malware that can conceal their presence and other malicious actions on a compromised system. Wazuh identifies rootkit-like activities using behavior-based detection techniques.
	Wazuh searches for suspicious system behavior, such as unauthorized privilege escalation, attempts to conceal files or processes, and other activities that are typically associated with rootkits. When such conduct is identified, an alert is triggered.

	VirusTotal integration: Wazuh detects malicious files through integration with VirusTotal:	VirusTotal is a web-based service that scans files and URLs for potential hazards using multiple antivirus engines and threat intelligence sources. Wazuh incorporates VirusTotal to improve its malware detection capabilities.
	When Wazuh encounters a file or URL that it suspects to be malicious, it can automatically submit the sample for analysis by VirusTotal. The result includes findings from multiple antivirus engines, which are then integrated into Wazuh’s alerting mechanism. If the file is identified as malicious by multiple engines, the confidence in the alert is increased.

	YARA integration: Wazuh detects malware samples using YARA, which is an open-source tool that identifies and classifies malware artifacts based on their binary patterns:	YARA is a powerful tool that lets you write your own rules to find malware and certain patterns in files and processes. Wazuh works with YARA, so users can make their own rules for YARA to use to find malware that fits their needs.
	Security professionals can use YARA integration to create custom signatures that detect specific malware strains or behaviors that are not covered by the normal Wazuh rules. These custom rules can be added to the Wazuh ruleset and used to monitor the environment.

Now that we understand some important malware detection capabilities of the Wazuh platform, we can start to learn about different use cases with Wazuh. In the next section, we will learn how to detect malware using the FIM module of Wazuh.

Malware detection using FIM

When a system gets compromised by malware, it may create new files or modify existing files, such as the following file types:

	Executable files (.exe, .dll, .bat, and .vbs)

	Configuration files (.cfg and .ini)

	Temporary files (.tmp)

	Registry entries

	Log files (.log)

	Payload files

	Hidden files and directories

	Batch scripts (.bat)

	PowerShell (.ps1)

	Specially crafted documents with a malicious payload (.doc, .xls, and .pdf)

Using this information, we can create an FIM rule in Wazuh to detect any file changes. However, we will get a high number of false positive alerts, too. To solve this problem, we can focus on a specific directory or folder. We will learn more in this section.

In this section, we’ll learn how to create Wazuh rules to detect some of the common malware patterns.

We’ll cover the following use cases:

	Configuring and testing FIM on an Ubuntu machine

	Detecting suspicious files on a PHP server using the FIM module

Configuring and testing FIM on an Ubuntu machine

FIM is a technology that monitors the integrity of system and application files. It safeguards sensitive data, application, and device files by routinely monitoring, scanning, and confirming their integrity. It works by detecting changes to mission-critical files in the network and as a result, it brings down the risk associated with data breaches.

The good news is that Wazuh has a built-in capability for FIM. This is possible because Wazuh uses an Open Source HIDS Security (OSSEC) agent. OSSEC is a free, open-source host-based intrusion detection system. When a user or process creates, modifies, or deletes a monitored file, the Wazuh FIM module initiates an alert. Let’s understand a file integrity check by setting up a FIM module on an Ubuntu machine. In order to test this use case, you need to follow these steps.

Requirements

To test the FIM use case, we would require the following:

	The Wazuh manager

	An Ubuntu machine (with the Wazuh agent installed)

Step 1 – Setting up the Wazuh agent on an Ubuntu machine

By default, the FIM module is enabled on the Wazuh agent. The configuration of the FIM module is present in the <syscheck> tag under the ossec.conf file located at /var/ossec/etc. We only need to add directories (to be monitored) under the <syscheck> block. The following configuration will monitor specified files and directories for any types of changes or modifications:

<syscheck>
 <disabled>no</disabled>
 <frequency>720</frequency>
 <scan_on_start>yes</scan_on_start>
 <directories check_all="yes" report_changes="yes" real_time="yes">/etc,/bin,/sbin</directories>
 <directories check_all="yes" report_changes="yes" real_time="yes">/lib,/lib64,/usr/lib,/usr/lib64</directories>
 <directories check_all="yes" report_changes="yes" real_time="yes">/var/www,/var/log,/var/named</directories>
 <ignore>/etc/mtab</ignore>
 <ignore>/etc/hosts.deny</ignore>
 <ignore>/etc/mail/statistics</ignore>
 <ignore>/etc/random-seed</ignore>
 <ignore>/etc/adjtime</ignore>
 <ignore>/etc/httpd/logs</ignore>
 <ignore>/etc/utmpx</ignore>
 <ignore>/etc/wtmpx</ignore>
 <ignore>/etc/cups/certs</ignore>
 <ignore>/etc/dumpdates</ignore>
 <ignore>/etc/svc/volatile</ignore>
 <ignore>/sys/kernel/security</ignore>
 <ignore>/sys/kernel/debug</ignore>
 <ignore>/sys</ignore>
 <ignore>/dev</ignore>
 <ignore>/tmp</ignore>
 <ignore>/proc</ignore>
 <ignore>/var/run</ignore>
 <ignore>/var/lock</ignore>
 <ignore>/var/run/utmp</ignore>
</syscheck>
 Let’s break down the preceding configuration:

	The <disabled> tag is set to no to enable the syscheck module on Wazuh.

	The <scan_on_start> tag is set to yes to conduct the initial scan when the Wazuh agent shows up.

	The <frequency> tag is set to 720 to conduct a file monitoring scan every 720 minutes.

	The <directories> tags talk about all the directories to monitor. In this example, we’re monitoring important system directories such as /etc, /bin, /sbin, /lib, /lib64, /usr/lib, /usr/lib64, /var/www, /var/log, and /var/named.

	The <ignore> tags indicate files or directories to ignore during the monitoring process. These are common system files that are not generally important for FIM analysis.

Step 2 – Restart the Wazuh agent

For the configuration changes to take effect, we need to restart the wazuh-agent service as shown in the following:

sudo systemctl restart wazuh-agent
 Step 3 – Visualizing the alerts

To visualize the alerts, you can navigate to Security Alerts or the Integrity Monitoring module in the Wazuh dashboard and check for the file-added alerts as shown in the following figure:

[image: Figure 2.1 – Visualizing the file-added alert on the Wazuh manager]

Figure 2.1 – Visualizing the file-added alert on the Wazuh manager

Let’s break this down:

	decoder.name: syscheck_new_entry: This field represents a new entry related to system checks or FIM that have been detected by the Wazuh agent. In this case, a file has been added.

	full.log: File '/root/infectedfile.txt'added: This represents that a new file called infectedfile.txt has been added.

In this use case, we have learned to detect file changes in /root using the FIM module of Wazuh. In the next section, we will learn to detect possible malware in the PHP server.

Detecting suspicious files in the PHP server using the FIM module

PHP is known for its simplicity, speed, and flexibility. Currently, there are more than 33 million websites that use PHP. The most common PHP file extensions are .php, .phtml, .php3, .php4, .php5, .php7, and .phps.

These files are commonly found in the /var/www/html/, /var/www/public_html/, and root directory. In order to test possible malware using the FIM module in the PHP server, you need to follow these steps.

Requirements

To detect possible malicious files in the PHP server using Wazuh’s FIM module, you need the following system requirements:

	The Wazuh manager

	An Ubuntu server, which should have the PHP server package and Wazuh agent installed

Creating a Wazuh rule

We will create a Wazuh rule to detect file creation and modification on the PHP server. We will add different types of PHP file extensions under the <field> tag of the Wazuh rule. We will cover this use case along with testing and finally, we will visualize the alerts on the Wazuh manager:

Create a Wazuh rule to detect PHP file creation/modification

To create a Wazuh rule, go to Management | Rules and click on Create a new rule. Next, we’ll name it custom_fim.xml and add the following rule:

<group name="linux, webshell, windows,">
 <!-- This rule detects file creation. -->
 <rule id="100500" level="12">
 <if_sid>554,550</if_sid>
 <field name="file" type="pcre2">(?i).php$|.phtml$|.php3$|.php4$|.php5$|.phps$|.phar$|.asp$|.aspx$|.jsp$|.cshtml$|.vbhtml$</field>
 <description>[File creation]: Possible web shell scripting file ($(file)) created</description>
 </rule>
</group>
 Let’s break this code down:

	<if_sid>554</if_sid>: This tag represents a list of rule IDs. This rule will match when a rule ID on the list has previously been matched. In this case, rule ID 100500 will match when rule ID 554 gets triggered. Rule ID 554 is fired when a file is added, and rule ID 550 represents the change in the integrity checksum.

	<field name="file" type="pcre2">(?i).php$|.phtml$|.php3$|.php4$|.php5$|.phps$|.phar$|.asp$|.aspx$|.jsp$|.cshtml$|.vbhtml$</field>: This is used as a requisite to trigger the rule. It will check for a match in the content of a file extracted by the decoder. In this case, the content is the list of all possible PHP file extensions.

Testing

 To test our FIM rule, we will add a new file called antivirusupdate.php in the root directory using the touch command as shown in the following figure.

[image: Figure 2.2 – Creating a blank file in the root directory]

Figure 2.2 – Creating a blank file in the root directory

Visualizing the alerts

To visualize the FIM alerts, navigate to the Security Alerts module of the Wazuh dashboard and you will find the alert as shown in the following figure.

[image: Figure 2.3 – Visualizing possible web shell alerts on the Wazuh manager]

Figure 2.3 – Visualizing possible web shell alerts on the Wazuh manager

Let’s break this down:

	full.log: File '/root/antivirusupdate.php' added Mode: This represents the full logs on the Wazuh manager

	rule.description: This represents the triggered rule ID. In this case, the rule ID is 100500

Note

This FIM rule may lead to a lot of false positive alerts on the Wazuh dashboard. To overcome this situation, you can fine-tune your <syscheck> block by adding more <ignore> tags.

In the next section, we will detect malicious files using the CDB list in the Wazuh manager.

The CDB list

The CDB list in Wazuh serves as a repository for distinct hashes or checksums of malicious and benign files. The Wazuh security platform can precisely compare the files’ cryptographic representations on a system and those kept in the CDB. The CDB list consists of lists of users, file hashes, IP addresses, domain names, and so on. In this section, we will cover the following topics:

	The workings of the CDB list

	Setting up the Wazuh server

	Configuring Windows endpoints

	Testing

	Visualizing the alerts

The workings of the CDB list

You can save a list of users, file hashes, IP addresses, and domain names in a text file called a CDB list. A CDB list can have entries added in a key:value pair or a key:only format. Lists on CDBs can function as allow or deny lists. Wazuh processes the CDB list in the process mentioned here:

	Hash generation: CDB lists consist of hashes of both good and bad content such as IP addresses, malware hashes, and domain names. A hash is a unique fixed-length value generated based on the CDB list content.

	File comparison: Wazuh computes file hashes during a system scan and compares them to the CDB entries.

	Identification: Wazuh marks a file as possibly malicious if its hash matches a known malicious hash in the CDB.

	Alerts and reactions: Based on the set policies, Wazuh has the ability to trigger alerts or responses upon detection.

We’ve learned about how Wazuh processes the CDB list. Now, let’s go through the first practical use case of the CDB list wherein we will detect malicious IP addresses using the CDB list.

Setting up the Wazuh server

We need to set up our Wazuh server with the CDB list of malware hashes and create the required rules to trigger alerts when a file with a hash matches CDB malware hashes. We need to follow these steps to accomplish that:

	Create a file in the CDB list: CDB lists are stored in the /ossec/etc/lists directory on the Wazuh server. To add a new CDB list for malware hashes, create a new file with the name malware-hashes using the following command:
nano /var/ossec/etc/lists/malware-hashes

 	Add malware hashes: We need to enter the known malware hashes in the key:value pair where key will be the actual malware hash and value will be the name or keyword. Now, there are several sources from where we can download and use the malware hashes for the CDB list. One of the popular sources is a list published by Nextron Systems. You can view and download the list from the official GitHub page (https://github.com/Neo23x0/signature-base/blob/master/iocs/hash-iocs.txt). For testing purposes, we will use a few popular malware hashes such as Mirai and Fanny.Open the file using the Nano editor:

nano /var/ossec/etc/lists/malware-hashes
Then enter the malware hash in the format shown in the following:

[image: Figure 2.4 – The CDB list of malware hashes]

Figure 2.4 – The CDB list of malware hashes

In the preceding image, we have the hash of three types of malware: mirai, Xbash, and fanny.

	Add the CDB list under the default ruleset: By providing the location of the CDB list in the <ruleset> block, you may add a reference to the CDB list in the /var/ossec/etc/ossec.conf Wazuh manager configuration file:
<ruleset>
 <!-- Default ruleset -->
<list>etc/lists/malware-hashes</list>
 <ruleset>

 	Write a rule to compare hashes: Create a custom rule in the Wazuh server’s /var/ossec/etc/rules/local_rules.xml file. When Wazuh finds a match between the MD5 hash of a recently created or updated file and a malware hash in the CDB list, this rule triggers. When an event occurs that indicates a newly created or modified file exists, rules 554 and 550 will be triggered:
<group name="malware,">
 <rule id="110002" level="13">
 <if_sid>554, 550</if_sid>
 <list field="md5" lookup="match_key">etc/lists/malware-hashes</list>
 <description>Known Malware File Hash is detected: $(file)</description>
 <mitre>
 <id>T1204.002</id>
 </mitre>
 </rule>
</group>

 	Restart the manager: We have to restart the Wazuh manager to apply the changes:
systemctl restart wazuh-manager

We have successfully created a CDB list of malware hashes and security rules to compare it with the hash of each file in the Wazuh agent. In the next step, we will set up a Windows endpoint to detect any file changes so that it can trigger the CDB list to perform a comparison of file hashes.

Configuring the Windows endpoint

We need to set up our Windows endpoint to detect file changes. We will configure <syscheck> to track file changes in the Downloads folder. You can choose any folder:

<ossec_config>
 <syscheck>
<disabled>no</disabled>
<syscheck> <disabled>no</disabled>
<directories check_all="yes" realtime="yes">/PATH/TO/MONITORED/DIRECTORY</directories>
 </syscheck>
</ossec_config>
 Let’s break this code down:

	check_all="yes": This ensures that Wazuh verifies every aspect of the file, such as its size, permissions, owner, last modification date, inode, and hash sums

	realtime="yes”: Wazuh will perform real-time monitoring and trigger alerts

Next, restart the Wazuh agent using the following command:

systemctl restart wazuh-agent
 Testing

Download the Mirai malware sample and put it in the area that the FIM module is monitoring to make sure everything is working right. In our case, it is a Downloads folder.

Note

Be careful as these malicious files are harmful, so only use them for tests. Do not put them in places where they will be used.

Use the following PowerShell command to download the Mirai malware sample and store it in the Downloads folder:

Invoke-WebRequest -Uri https://wazuh-demo.s3-us-west-1.amazonaws.com/mirai -OutFile C:/Users/Administrator/Downloads/mirai
 Visualizing the alerts

Wazuh immediately detects the malware sample. As you can see in the following figure, we have an alert with the Known Malware File Hash is detected description:

[image: Figure 2.5 – Know Malware File Hash is detected]

Figure 2.5 – Know Malware File Hash is detected

If you expand the alert, you can see the full log, rule ID, and other information as shown in the following figure:

[image: Figure 2.6 – Visualizing the Mirai malware alerts]

Figure 2.6 – Visualizing the Mirai malware alerts

Let’s break this down:

	rule.description: Know Malware File Hash is detected: This represents the description of rule ID 11002

	full.log: File 'c:\users\administrator\downloads\mirai' modified: This shows the full log information with the location, mode, attributes, and old/new modifications

We have successfully tested the CDB list to detect known malware using file hashes stored in the form of key:value pairs within the CDB list. Moreover, there are some more use cases of the CDB list such as detecting unknown users and detecting blacklisted IP addresses. In the next section, we will learn to detect malware using the VirusTotal API.

VirusTotal integration

VirusTotal is a free online service that analyzes files and URLs to detect malware and other malicious content. It uses over 70 types of antivirus software and URL blocklisting engineers to provide detailed information about the submitted file, URL, or IP address. VirusTotal allows users to contribute their own findings and submit comments on files and URLs. These contributions can help improve the service’s accuracy and provide valuable insights to other users. VirusTotal provides an API with multiple paid plans. However, it also has a free plan where you can request four lookups per minute with a daily quote of 500 lookups.

In this use case of malware detection, we will use a FIM module to monitor the changes and then trigger VirusTotal to scan the files in that directory. We will cover the following points:

	Set up a VirusTotal account

	Integrate VirusTotal with the Wazuh manager

	Create a Wazuh rule on the Wazuh manager

	Set up a FIM check on Ubuntu Server

	Testing malware detection

Set up VirusTotal account

In order to set up the VirusTotal account, simply visit VirusTotal.com and sign up. After signing up, go to your profile and click API key. Copy the API key safely as shown in the following figure:

[image: Figure 2.7 – Retrieving the VirusTotal API key]

Figure 2.7 – Retrieving the VirusTotal API key

Integrate VirusTotal with the Wazuh manager

Wazuh has prebuilt VirusTotal integration scripts located in /var/ossec/integrations. Now, all you have to do is to call this VirusTotal script in /var/ossec/etc/ossec.conf file, and to do that, add a <integration> tag as shown in the following:

<ossec_config>
 <integration>
 <name>virustotal</name>
 <api_key><YOUR_VIRUS_TOTAL_API_KEY></api_key> <!-- Replace with your VirusTotal API key -->
 <rule_id>100200,100201</rule_id>
 <alert_format>json</alert_format>
 </integration>
</ossec_config>
 Let’s break this code down:

	<api_key>: This represents the VirusTotal API key. You need to replace the YOUR_VIRUS_TOTAL_API_KEY text with your API key.

	<rule_id>100200,100201</rule_id>: This represents the rule that triggers the VirusTotal inspection. In this case, we have rule ID 100200 and 100201. We haven’t created these rules yet; we will write these rules to detect file changes in a specific folder of the endpoint. This will be covered in the next step.

Create a Wazuh rule on the Wazuh manager

Now, we want to trigger VirusTotal scanning only when any file is changed, added, or deleted to avoid tons of false positive alerts. We will create an FIM rule with an ID of 100200 and 100201 in the local_rule.xml file located at /var/ossec/etc/rules in the Wazuh manager. The Wazuh rules can be written as shown in the following:

<group name="syscheck,pci_dss_11.5,nist_800_53_SI.7,">
 <!-- Rules for Linux systems -->
 <rule id="100200" level="7">
 <if_sid>550</if_sid>
 <field name="file">/root</field>
 <description>File modified in /root directory.</description>
 </rule>
 <rule id="100201" level="7">
 <if_sid>554</if_sid>
 <field name="file">/root</field>
 <description>File added to /root directory.</description>
 </rule>
</group>
 Let’s break this down:

	<if_sid>550</if_sid>: This specifies a condition that triggers this rule. It’s triggered when the event ID (SID) 550 occurs. The Wazuh rule 550 indicates that the integrity checksum changed.

	<if_sid>554</if_sid>: This rule triggers when the event ID 554 occurs. The Wazuh rule indicates that a file has been added to the system.

Set up an FIM check on Ubuntu Server

We want the Wazuh agent to first detect any file changes in the /root directory and this will trigger the Wazuh rule ID 100200 and 100201. To enable syscheck to detect any file changes in the /root directory, we need to make the following changes:

	Ensure <syscheck> is enabled: Search for the <syscheck> block in the /var/ossec/etc/ossec.conf Wazuh agent configuration file. Make sure that <disabled> is set to no. This enables the Wazuh FIM to monitor directory changes.

	Track the root directory for any file changes: In the Wazuh Ubuntu agent, you need to add a /root directory to enable an FIM check of <directories check_all="yes" report_changes="yes" realtime="yes">/root</directories>.

	Restart the Wazuh agent: Now, for the FIM changes to take effect in the ossec.conf file, we need to restart the Wazuh agent with the following command:
sudo systemctl restart wazuh-agent

This completes the Wazuh agent restart process. In the next step, we will test VirusTotal using a sample malware file.

Testing malware detection

To test malware detection using VirusTotal, we will use the European Institute for Computer Antivirus Research (EICAR) test file. An EICAR test file is used to test the response of antivirus software and it is built by the European Institute for Computer Antivirus Research (hence, EICAR) and the Computer Antivirus Research Organization (CARO). You can download the test file from their official website: https://www.eicar.org/download-anti-malware-testfile/.

Note

If you are testing this for a Windows machine, you need to disable the Enhanced security option on Google Chrome and Real-time protection on Windows Defender to allow the download.

Once the EICAR file is downloaded, move it to the root directory.

Visualizing the alerts

To view the alerts, navigate to the Security Alerts module of the Wazuh dashboard and you should find the alerts as shown in the following figure.

[image: Figure 2.8 – Visualizing the VirusTotal alert on the Wazuh dashboard]

Figure 2.8 – Visualizing the VirusTotal alert on the Wazuh dashboard

Let’s break this down:

	data.integration: virustotal: This represents the third-party integration used in Wazuh. In this case, it is VirusTotal.

	data.virustotal.permalink: This represents the URL of the VirusTotal detection page.

We have successfully detected an EICAR file using VirusTotal and Wazuh. In the next section, we will learn how to integrate Windows Defender (an antivirus solution) with the Wazuh platform.

Integrating Windows Defender logs

Windows Defender is an antivirus software module of Microsoft Windows. As per the 2023 Antivirus Market Report, Windows Defender is the most common free antivirus product for PC users, with around 40% of the market share of free antivirus software. For more information on this, you can check the following link: https://www.security.org/antivirus/antivirus-consumer-report-annual/. Additionally, Microsoft also offers endpoint security solutions for enterprises called Windows Defender for Endpoint. This makes us put more attention on integrating Windows Defender with Wazuh. By default, Wazuh cannot read the Windows Defender logs. Hence, it is important for us to put extra effort into making it possible.

In this section, we’ll learn to push Windows Defender logs to the Wazuh manager. You will learn about the following:

	How to get started with Windows Defender logs

	Setting up the Wazuh agent to collect Windows Defender logs

	Testing for malware detection

	Visualizing the alerts

Getting started with Windows Defender logs

Windows Defender logs help SOC analysts understand the security status of endpoints, identify potential cyber threats, and also help them investigate any security incidents. Windows Defender logs encompass several pieces of information such as scan activities, threat detection, updates, quarantine, remediation, firewall and network activities, and real-time protection.

Let’s first understand where the Defender logs are stored. Well, You can view the logs in Event Viewer.

Go to Event Viewer | Applications and Services Logs | Microsoft | Windows | Windows Defender | Operational.

The general tab will give you information about the scan type and user information. However, the Details tab will give you complete information on that threat detection.

[image: Figure 2.9 – Visualizing Windows Event Viewer]

Figure 2.9 – Visualizing Windows Event Viewer

To get more detailed information about this event, you can navigate to the Details tab shown in the following figure:

[image: Figure 2.10 – Details of the Windows Defender event]

Figure 2.10 – Details of the Windows Defender event

Setting up the Wazuh agent to collect Windows Defender logs

We need to push the Defender logs in the ossec.conf file of the Wazuh agent. To collect Windows Defender logs, you must configure the Wazuh agent using the Wazuh manager or locally using the ossec.conf agent file located at C:\Program Files (x86)\ossec-agent.

In a large network, manually going to each Wazuh agent and making the changes in each agent is a cumbersome task. Wazuh helps us with the agent.conf file, which pushes the configuration to specific agent groups.

Login to the Wazuh dashboard, go to Management | Groups, and select the Windows group. You can also create a new group if you haven’t created one. In order to push the Microsoft Defender logs to the Wazuh agent, you need to add <localfile> tag in the agent.conf file as shown in the following:

<localfile>
<location> Microsoft-Windows-Windows Defender/Operational</location> <log_format>eventchannel</log_format>
</localfile>
 Let’s break this down:

	<localfile>: This tag is used to define the local log file or file path that the Wazuh agent should monitor.

	<location> Microsoft-Windows-Windows Defender/Operational</location>: This represents the location or path of the log file that Wazuh should monitor. In this case, it is monitoring the Microsoft-Windows-Windows Defender/Operational log location.

	<log_format>: This tag specifies the format.

Now, for these changes to take effect, you need to restart the Wazuh agent using the following command:

sudo systemctl restart wazuh-agent
 Note:

To verify the location of Windows Defender events, you can also navigate to the Microsoft-Windows-Windows Defender/Operational location under Event Viewer and check for the log name as shown in the following figure.

[image: Figure 2.11 – Checking Log Name for Windows Defender events]

Figure 2.11 – Checking Log Name for Windows Defender events

Testing for malware detection

To test the malware detection using VirusTotal, we will use an EICAR test file. You can download the EICAR test file from their official website: https://www.eicar.org/download-anti-malware-testfile/.

Note

You need to disable the Enhanced security option on Google Chrome and Real-time protection on Windows Defender to allow the download.

Visualizing the alerts

To visualize the alerts related to the EICAR test file, you can navigate to Security Alerts in the Wazuh manager and check for the Windows Defender alerts as shown in the following figure:

[image: Figure 2.12 – Visualizing Windows Defender alerts in the Wazuh manager]

Figure 2.12 – Visualizing Windows Defender alerts in the Wazuh manager

Let’s break this down:

	data.win.eventdata.product Name: Microsoft Defender Antivirus: This represents the name of the product that generated the alert. In this case, it is Microsoft Defender Antivirus.

	data.win.system.channel: Microsoft-Windows-Windows Defender/Operational: This indicates the channel or source from where the alert originated. In this case, it is the Microsoft-Windows-Windows Defender/Operational channel.

	rule.description: Windows Defender: Antimalware platform detected potentially unwanted software (): This provides the description of the triggered rule.

	rule.groups: windows, windows_defender: This field specifies the groups or categories to which the rule or alert belongs. In this case, we have Windows and Windows_defender indicating that it’s a Windows-specific alert related to Windows Defender.

We have successfully collected and visualized the alerts from the Windows Defender solution. In the next section, we will learn to install and integrate Sysmon modules on a Windows machine to enhance the detection capabilities of the Wazuh platform.

Integrating Sysmon to detect fileless malware

Malicious code that operates directly within a computer’s memory rather than the hard drive is known as fileless malware. It is “fileless” in the sense that no files are downloaded to your hard drive when your machine is infected. This makes it more difficult to detect using traditional antivirus or anti-malware tools, which primarily scan disk files.

Sysmon is a device driver and Windows system service that provides advanced monitoring and logging capabilities. It was created by Microsoft’s Sysinternals team to monitor various aspects of system activity, such as processes, network connections, and file changes. While Sysmon does not specifically focus on detecting fileless malware, its comprehensive monitoring capabilities can undoubtedly assist in identifying and mitigating the impact of fileless malware attacks. We can enhance Wazuh’s malware detection capabilities by installing Sysmon on each Windows machine. To test the fileless attack detection, we will use the APTSimulator tool to simulate the attack and visualize them on the Wazuh manager.

In this section, we will learn how to detect fileless malware using Sysmon and finally, we will visualize them on the Wazuh dashboard. We will cover the following items in this section:

	How do fileless attacks work?

	Requirements for lab setup

	Setting up Sysmon on a Windows machine

	Configure the Wazuh agent to monitor Sysmon events

	Creating Sysmon rules on the Wazuh manager

	Testing malware detection

	Visualizing the alerts

How do fileless malware attacks work?

In its operation, a fileless malware attack is fairly unique. Understanding how it works can help an organization protect against future fileless malware attacks. Let’s learn about the different stages involved in the fileless malware attack. Each attack stage will be explained, and the techniques and tools used by the attackers will be explained in the following subsections.

Stage 1 – Gain access

Threat actors must first gain access to the target machine in order to carry out an attack. Some of the common techniques and tools involved in this stage are mentioned here:

	Techniques: Remotely exploit a vulnerability and gain remote access via web scripting or a social engineering scheme such as phishing emails

	Tools: ProLock and Bumblebee

Stage 2 – Steal credentials

Using the access gained in the previous step, the attacker now attempts to obtain credentials for the environment he has compromised, which will allow him to easily move to other systems in that environment. Some of the techniques and tools that he could have used are as follows:

	Techniques: Remotely exploit a vulnerability and gain remote access via web scripting (e.g., Mimikatz)

	Tools: Mimikatz and Kessel

Stage 3 – Maintain persistence

Now, the attacker creates a backdoor that will allow him to return to this environment at any time without having to repeat the initial steps of the attack. Some of the techniques and tools are as follows:

	Techniques: Modify the registry to create a backdoor

	Tools: Sticky Keys Bypass, Chinoxy, HALFBAKED, HiKit, and ShimRat

Stage 4 – Exfiltrate data

In the final step, the attacker collects the data he desires and prepares it for exfiltration by copying it to a single location and then compressing it with commonly available system tools such as Compact. The attacker then uploads the data via FTP to remove it from the victim’s environment. Some of the techniques and tools are as follows:

	Techniques: Using DNS tunneling, traffic normalization, use of an encrypted channel, and so on

	Tools: FTP, SoreFang, and SPACESHIP

Requirement for the lab

To test the fileless malware detection, we need the following system:

	The Wazuh server

	Windows 10 or 11 or Windows Server 2016 or 2019, which should have the Wazuh agent installed

Setting up Sysmon on a Windows machine

In this step, we’ll set up our Windows 11 endpoint with the Sysmon package.

Sysmon offers comprehensive data about process creation, network connections, and file creation time changes. Sysmon generates events and stores them in Applications and Services Logs/Microsoft/Windows/Sysmon/Operational. To install Sysmon on a Windows machine, you need to follow the steps as explained in the following sections.

Step 1 – Download and extract Sysmon

To download Sysmon on your Windows machine, visit its official website: https://learn.microsoft.com/en-us/sysinternals/downloads/sysmon. Once downloaded, extract the Sysmon archive to a folder of your choice on your Windows machine.

Step 2 – Download the SwiftOnSecurity Sysmon configuration

SwiftOnSecurity’s Sysmon configuration is a well-known and simple configuration file created by popular security professionals. Using this configuration can enhance our Windows monitoring capabilities. To download the SwiftOnSecurity Sysmon configuration file, visit their official GitHub repository (https://github.com/SwiftOnSecurity/sysmon-config) and download the latest version of the configuration file called SysmonConfig.xml.

Note

Make sure you place the SysmonConfig.xml file in the same folder where you extracted Sysmon.

Step 3 – Install Sysmon with the SwiftOnSecurity configuration

To install Sysmon using the SwiftOnSecurity configuration file called SysmonConfig.xml, you need to follow some steps as explained here:

	Open a command prompt or PowerShell with administrative privileges.

	Navigate to the folder where Sysmon is extracted.

	Now, run the following command to install Sysmon with the SwiftOnSecurity configuration:
sysmon.exe -accepteula -i SysmonConfig.xml
Let’s break this down:
	-accepteula: It represents the end user license agreement (EULA) for Sysmon. By including this flag, you are acknowledging and agreeing to the terms of use.

Verify installation

After the installation, you can verify that Sysmon is running properly by checking Event Viewer. To do so, open Event Viewer, navigate to Applications and Services Logs/Microsoft/Windows/Sysmon/Operational, and you should start getting Sysmon-related events as shown in the following figure:

[image: Figure 2.13 – Visualizing Sysmon events in Event Viewer]

Figure 2.13 – Visualizing Sysmon events in Event Viewer

Let’s break this down:

	Level: This refers to the severity of an event. The levels are usually categorized as follows:	0: Information
	1: Warning
	2: Error
	3: Critical

	Source: This field indicates the software or component that generated the event. In this case, it is Sysmon.

	Event ID: It is a unique value assigned to each type of event. Sysmon uses different event IDs for various purposes:	Event ID 1: Process creation
	Event ID 2: File creation
	Event ID 3: Network connection
	Event ID 7: Image loaded
	Event ID 10: Process access
	Event ID 11: File creation
	Event ID 12: Registry event (object create and delete)
	Event ID 13: Registry event (value set)
	Event ID 14: Registry event (key and value rename)
	Event ID 15: File creation stream hash
	Event ID 17: Pipe event (pipe created)
	Event ID 18: Pipe event (pipe connected)
	Event ID 22: DNS request

	Task Category: This provdes the classification for the events. It is the name of the event IDs as listed earlier.

Configure the Wazuh agent to monitor Sysmon events

Assuming the Wazuh agent is already installed and running, you need to inform the agent to monitor Sysmon events. To do that, we need to include the following block in the ossec.conf file:

<localfile>
<location>Microsoft-Windows-Sysmon/Operational</location>
<log_format>eventchannel</log_format>
</localfile>
 To ensure our changes take effect, we need to restart the agent.

Configure the Wazuh manager

We are required to create a custom rule in the Wazuh manager to match the Sysmon events generated by the Windows machine. This rule will ensure that the Wazuh manager triggers an alert every time it gets a Sysmon-related event.

To create a rule, go to the Wazuh dashboard and navigate to Management | Rules, select Manage rules | Add new rule | Enter a name (custom_sysmon.xml), and paste the following rules:

<!-- Log Sysmon Alerts -->
<group name="sysmon">
<rule id="101100" level="5">
<if_sid>61650</if_sid>
<description>Sysmon - Event 22: DNS Query.</description>
<options>no_full_log</options>
</rule>
<rule id="101101" level="5">
<if_sid>61603</if_sid>
 <options>no_full_log</options>
<description>Sysmon - Event 1: Process creation.</description>
</rule>
<rule id="101102" level="5">
<if_sid>61604</if_sid>
 <options>no_full_log</options>
<description>Sysmon - Event 2: A process changed a file creation time.</description>
</rule>
<rule id="101103" level="5">
<if_sid>61605</if_sid>
 <options>no_full_log</options>
<description>Sysmon - Event 3: Network connection.</description>
</rule>
<rule id="101104" level="5">
<if_sid>61606</if_sid>
 <options>no_full_log</options>
<description>Sysmon - Event 4: Sysmon service state changed.</description>
</rule>
<rule id="101105" level="5">
<if_sid>61607</if_sid>
 <options>no_full_log</options>
<description>Sysmon - Event 5: Process terminated.</description>
</rule>
<rule id="101106" level="5">
<if_sid>61608</if_sid>
 <options>no_full_log</options>
<description>Sysmon - Event 6: Driver loaded.</description>
</rule>
<rule id="101107" level="5">
<if_sid>61609</if_sid>
 <options>no_full_log</options>
<description>Sysmon - Event 7: Image loaded.</description>
</rule>
<rule id="101108" level="5">
<if_sid>61610</if_sid>
 <options>no_full_log</options>
<description>Sysmon - Event 8: CreateRemoteThread.</description>
</rule>
<rule id="101109" level="5">
<if_sid>61611</if_sid>
 <options>no_full_log</options>
<description>Sysmon - Event 9: RawAccessRead.</description>
</rule>
<rule id="101110" level="5">
<if_sid>61612</if_sid>
 <options>no_full_log</options>
<description>Sysmon - Event 10: ProcessAccess.</description>
</rule>
<rule id="101111" level="5">
<if_sid>61613</if_sid>
 <options>no_full_log</options>
<description>Sysmon - Event 11: FileCreate.</description>
</rule>
<rule id="101112" level="5">
<if_sid>61614</if_sid>
 <options>no_full_log</options>
<description>Sysmon - Event 12: RegistryEvent (Object create and delete).</description>
</rule>
<rule id="101113" level="5">
<if_sid>61615</if_sid>
 <options>no_full_log</options>
<description>Sysmon - Event 13: RegistryEvent (Value Set).</description>
</rule>
<rule id="101114" level="5">
<if_sid>61616</if_sid>
 <options>no_full_log</options>
<description>Sysmon - Event 14: RegistryEvent (Key and Value Rename).</description>
</rule>
<rule id="101115" level="5">
<if_sid>61617</if_sid>
 <options>no_full_log</options>
<description>Sysmon - Event 15: FileCreateStreamHash.</description>
</rule>
</group>
 Let’s break this down:

	<group>: This tag is used to organize rules and helps in managing and categorizing rules based on their functionality.

	<rule>: This defines the individual rule with the id and level attributes. In the preceding ruleset, the rule ID ranges from 101100 to 101107 with level=5.

	<if_sid>: This tag is used as a requisite to trigger any rule when a rule ID has previously matched. Let’s look at a couple of the following rules:	Rule ID "101100" with if_sid "61650" will be checked when the requisites of rule ID 61650 are satisfied
	Rule ID "101101" with if_sid "61603" will be checked when the requisites of rule ID 61603 are satisfied
	Rule ID "101102" with if_sid "61604" will be checked when the requisites of rule ID 61604 are satisfied
	Rule ID "101103" with if_sid "61605" will be checked when the requisites of rule ID 61605 are satisfied
	Rule ID "101104" with IF_SID "61606" will be checked when the requisites of rule ID 61606 are satisfied
	Rule ID "101105" with IF_SID "61607" will be checked when the requisites of rule ID 61607 are satisfied
	Rule ID "101106" with IF_SID "61608" will be checked when the requisites of rule ID 61608 are satisfied
	Rule ID "101107" with IF_SID "61609" will be checked when the requisites of rule ID 61609 are satisfied

Note

You can review the details of each of the mentioned IF_SID under the Wazuh rule file called 0595-win-sysmon_rules.xml. You can find this file under the Rules section of the Wazuh dashboard or in the Wazuh’s official GitHub repository located at https://github.com/wazuh/wazuh-ruleset/tree/master/rules.

For changes to take effect, you have to restart the Wazuh manager on the dashboard as shown in the following figure:

[image: Figure 2.14 – Restarting the Wazuh manager]

Figure 2.14 – Restarting the Wazuh manager

To restart the Wazuh manager using the command line, you can enter the following command:

systemctl restart wazuh-manager
 In the next step, we will test our Wazuh rules by initiating attacks simulated by the APTSimulator tool and will visualize the alerts on the Wazuh dashboard.

Testing

To test a fileless malware scenario, we will use the APTSimulator tool developed by Florian Roth. It is a Windows batch script that employs several tools and output files to make a system appear to be compromised. To execute this APTSimulator script, download the file on a Windows machine and execute the .bat file.

Here is the link to download: https://github.com/NextronSystems/APTSimulator.

Once you download this script on your Windows Server, open the command prompt, go to the APTSimulator-0.9.4 folder, and execute the bat file APTSimulator.bat, as shown in the following figure.

[image: Figure 2.15 – Executing APTSimulator for testing Sysmon alerts]

Figure 2.15 – Executing APTSimulator for testing Sysmon alerts

Type 0. This will run every test including Collection, Command and Control, Credential Access, Defense Evasion, Discovery, Execution, Lateral Movement, Persistence, and Privilege Escalation.

Note

Some of the attacks might not work so you can skip them.

Visualizing the alerts

To visualize the Sysmon alerts from the Windows machine, navigate to the Security Alerts module in the Wazuh dashboard and you should see multiple alerts as shown in the following figure:

[image: Figure 2.16 – Visualizing the Sysmon alerts in the Wazuh dashboard]

Figure 2.16 – Visualizing the Sysmon alerts in the Wazuh dashboard

Here, you can see that we got a wide range of Sysmon events such as Process Creation (Event 1), DNS Query (Event 22), Network Connection (Event 3), and RegistryEvent (Event 13). All these Sysmon events can be used to conduct further analysis.

Summary

This chapter introduced us to the synergy between Wazuh and malware detection, covering its capabilities in FIM and using VirusTotal for enhanced threat intelligence and the CDB list to build a list of known malware hashes. The integration of Windows Defender logs with Wazuh provided us with a unified look at security events on a Windows machine. In the end, we talked about the integration of Sysmon with a Windows machine to detect fileless malware on the Windows machine.

In the next chapter, we will learn how to enhance Wazuh’s threat intelligence capabilities by integrating the Malware Information Sharing Platform (MISP). To build a scalable system, we will also integrate TheHive and Cortex with the MISP platform.

Part 2: Threat Intelligence, Automation, Incident Response, and Threat Hunting

In this part, you will learn how to extend the Wazuh threat intelligence capability by integrating the MISP platform. You will learn to integrate TheHive with Wazuh and MISP to perform threat analysis. In addition to that, you will learn how to automate security operations and management of the Wazuh platform using the security orchestration, automation, and response (SOAR) tool, Shuffle. You will also learn to perform automated incident responses using a Wazuh-native feature called Active Response such as blocking brute force attempts and automatically isolating infected machines. Lastly, we will learn how to leverage the Wazuh platform to conduct proactive threat hunting.

This part includes the following chapters:

	Chapter 3, Threat Intelligence and Analysis

	Chapter 4, Security Automation and Orchestration Using Shuffle

	Chapter 5: Incident Response with Wazuh

	Chapter 6: Threat Hunting with Wazuh

3

Threat Intelligence and Analysis

According to a Ponemon Institute study (https://webroot-cms-cdn.s3.amazonaws.com/9114/5445/5911/ponemon-importance-of-cyber-threat-intelligence.pdf), organizations with robust threat intelligence respond to cyberattacks 53% faster, highlighting its importance in threat analysis, incident response, and mitigation. Simply put, threat intelligence is data that is gathered, processed, and studied to figure out why a threat actor does what they do, who they attack, and how they do it. Threat intelligence data empowers security operations teams to proactively defend against potential security incidents, improving their ability to detect, analyze, and eradicate the threat effectively. When you integrate threat intelligence capabilities into the Wazuh platform, security operations center (SOC) analysts can get more context for each security alert. In this chapter, we aim to enhance Wazuh’s threat intelligence capabilities. To achieve this, we will leverage the Malware Information Sharing Platform (MISP), an open-source project designed for the collection and sharing of threat intelligence. Additionally, we will incorporate TheHive/Cortex, a comprehensive suite tailored for scalable threat analysis and incident response. By integrating these tools with Wazuh, we enable security teams to conduct thorough threat analyses and streamline incident response processes. This integration facilitates the automation of threat intelligence tasks, resulting in reduced response times and enhanced security for organizations.

In this chapter, we will cover the following topics:

	What is threat intelligence?

	Automated threat intelligence

	Setting up TheHive and Cortex

	Setting up an MISP project

	Integrating Wazuh and TheHive

	Integrating TheHive and Cortex with MISP

	Use cases

What is threat intelligence?

Threat intelligence, or cyber threat Intelligence, is basically knowledge about threat actors (an individual or group of attackers that carry out hacking campaigns against companies or government bodies), their motives, and their capabilities. Threat intelligence is all about staying on top of the latest threats and risks lurking on the internet. Threat intelligence enables us to make faster, more informed, data-backed security decisions and change our behavior from reactive to proactive in the fight against attackers. Threat intelligence helps every domain of cybersecurity, including SOC analysts, intel analysts, chief information security officers (CISOs), etc. By collecting and analyzing threat intelligence information, organizations can be empowered through early detection and prevention, informed decision-making using context, improved incident response, a better understanding of attackers’ tactics, techniques, and procedures (TTPs), better security defense against growing threats, and more.

In this section, we will talk about:

	Types of threat intelligence

	How SOC analysts use threat intelligence

Types of threat intelligence

In the constantly changing world of cybersecurity, companies that want to strengthen their defenses must stay ahead of new risks and utilize threat intelligence. Threat intelligence is mainly offered in three types: tactical intelligence, operational intelligence, and strategic intelligence. By using these types of threat intelligence, businesses can not only learn about how threat actors’ strategies change over time but also plan their defenses to successfully deal with cyber threats that are always changing. Let’s understand all three types of threat intelligence in detail:

	Tactical intelligence: Tactical intelligence is concerned with the immediate future, is technical in nature, and identifies simple indicators of compromise (IOC). IOCs are technical information collected during investigations, threat-hunting activities, or malware analyses. IOCs are actual pieces of data, such as IP addresses, domains, file hashes, etc. They can even be collected via open source and free data feeds such as: 	AlienVault OTX (https://otx.alienvault.com/
	Abuse.ch (https://abuse.ch/)
	Blocklist.de (https://www.blocklist.de), and
	Proofpoint Emerging Threats (https://rules.emergingthreats.net).

	This tactical intelligence data is consumed by IT analysts and SOC analysts. It typically has a very short lifespan because IOCs such as malicious IP addresses or domain names can become obsolete in a matter of days or even hours.

	Operational intelligence: Every attack has a “who,” a “why,” and a “how.” The “who” is referred to as identification. The “why” is referred to as motivation or intent. The “how” is made up of the threat actor’s TTPs. This gives the blue team or security operations team insight into how adversaries plan, conduct, and sustain campaigns and major operations. This is called operational intelligence. Tactical intelligence plus human analysis gives this intelligence a longer useful lifespan.

	Strategic intelligence: Strategic intelligence assists decision-makers in understanding the threats that cyber threats pose to their organizations. With this knowledge, they can make cybersecurity investments that protect their organizations while also aligning with their strategic priorities. CISOs and management teams are the real consumers of this intelligence. Strategic intelligence requires human data collection and analysis, which requires a deep understanding of cybersecurity and geopolitics. Strategic intelligence is usually prepared in the form of reports.

Combining these different types of threat data can help businesses create complete and flexible cyber defenses against a wide range of cyber threats.

Next, we will focus on how SOC analysts can consume threat intelligence data (especially tactical and operational intelligence) for better detection and analysis of threats.

How SOC analysts use threat intelligence

In the previous section, we learned how SOC teams utilize both tactical and operational intelligence information. Threat intelligence provides valuable information about the latest threats, attack methods, malicious actors, and vulnerabilities. Let’s talk about the practical steps SOC analysts take when using threat intelligence:

	Gather observables: Observables are pieces of possible threat information. Examples include IP addresses, domain names, URLs, file hashes, email addresses, and more. Observables can be collected via SIEM tools, EDR, email security tools, open source and free threat intelligence feeds, etc.

	Enrichment and context: After identifying suspicious observables, gather context and enrich the information to better understand the threat. For example, you discovered an IP address (123.45.67.89) connecting to a newly registered domain (malicious-website.com). You begin by enriching this data by searching threat intelligence databases and historical data. This IP address has previously been linked to several phishing campaigns, and the domain is hosted in a high-risk region known for cybercriminal activity.

	IOC creation: On the basis of the enriched information, you generate IOCs that can be used in the future to detect similar malicious activities. For example, from the information gathered, you create the following IOCs:	IP address IOC: 123.45.67.89
	Domain IOC: malicious-website.com
	URL path IOC: malicious-website.com/login

These IOCs are now added to the security tools in your organization, such as firewalls, intrusion detection systems, and SIEM solutions. If any of these IOCs are matched, it indicates malicious activity that warrants investigation.

	Detection and response: With the enhanced IOCs in place, the security systems of your organization, such as SIEM, IDS, or XDR, actively monitor network traffic and logs for matches against these indicators. When a match is discovered, an alert is generated, and the SOC team is prompted to initiate incident response procedures. For example, an employee clicks a link that leads to the IOC-mentioned URL path (malicious-website.com/login). This triggers an alert in the intrusion detection system of your organization (e.g. Suricata). The SOC team investigates the incident after receiving the alert. They verify that the user’s computer has visited a malicious URL and may have been exposed to malware. The SOC team isolates the compromised system, initiates malware analysis, and initiates the containment and eradication processes to prevent further spread.

	Continuous improvement: After the incident has been resolved, the SOC team conducts a post-incident analysis. This involves evaluating the efficacy of the threat detection process, refining the IOCs, and learning from past responses to improve future response strategies. During analysis, the SOC team determines that the phishing attempt originated from an email with a subject line referencing a fake job offer. They decide to add email subject patterns to their IOCs to detect similar phishing campaigns more effectively in the future.

Note

IOCs are not just limited to domains, IP addresses, or URLs; they can also be file hashes, email addresses, email subjects and patterns, registry keys, network signatures (data payloads or packet headers), behavioral indicators (unusual file modification, new user accounts), custom YARA rules, user agents, HTTP headers, DNS records, SSL certificates, hosting information, etc.

We learned about how SOC analysts utilize threat intelligence information; however, in order to make it more efficient, we need to automate the threat intelligence process, including collection, observable analysis, and updates.

Automated threat intelligence

As of now, you might have realized the importance of threat intelligence for SOC analysts or blue team. But imagine, if there are thousands of observables generated every day, it will be very difficult to manually copy/paste each observable and search them in the threat intelligence database or feeds. This brings a lot of challenges to SOC, such as delayed threat detection, missed alerts, a lack of consistency, and slow response times. In this section, we will design an automated threat intelligence system and integrate it with Wazuh. We will cover the following:

	Designing automated threat intelligence

	Introduction to MISP

	TheHive and Cortex

	The workings of threat intelligence and analysis

Designing automated threat intelligence

Wazuh is a security platform that collects security events from all endpoints. To integrate threat intelligence capabilities, we will use an MISP project—an open-source threat intelligence sharing platform. The integration between Wazuh and MISP can be accomplished by using MISP API, as shown in the following figure:

[image: Figure 3.1 – Proposed integration of Wazuh with MISP]

Figure 3.1 – Proposed integration of Wazuh with MISP

However, the design will not allow the security team to track every observable and security incident. We need to build a system wherein we can take the security events from Wazuh and analyze the observables of each event separately against threat intelligence feeds. In short, we have three tools in this design:

	Wazuh (security events collection)

	A security incident management tool (for receiving alerts from Wazuh and performing a lookup with threat intelligence data)

	A threat intelligence tool (this tool is created to provide threat intelligence data to the security incident management tool)

	Top of Form

We will use the TheHive tool for security incident management and an MISP project for threat intelligence management. The following figure gives you an idea of the proposed integration of Wazuh with TheHive/Cortex and MISP:

[image: Figure 3.2 – Proposed integration of Wazuh with TheHive/Cortex and MISP]

Figure 3.2 – Proposed integration of Wazuh with TheHive/Cortex and MISP

This integration of Wazuh, TheHive, and MISP has some major advantages:

	Centralized threat intelligence: The integration lets threat intelligence from MISP be put together in TheHive, creating a central location for Wazuh to store and analyze security events and decide what to do about them. This integration lets security teams correlate events with known risks and IOCs, which makes responding to incidents more accurate and quicker.

	Scalable security operations: The integration streamlines the handling of security events, enabling scalable security operations. Through the utilization of Wazuh’s detection capabilities, TheHive’s case management skills, and MISP’s threat intelligence capabilities, organizations can effectively handle and address an increasing volume of security incidents without requiring significantly more manual effort.

	Automated incident response: Although this chapter is about threat intelligence integration, by integrating TheHive, we can also accomplish automated incident response capabilities. By utilizing information from MISP, security analysts can generate response playbooks in TheHive, which enables them to provide more consistent and prompt responses to security incidents identified by Wazuh.

Let’s first quickly understand the capabilities of each of these tools. Then, we will set them up and integrate them with each other.

Introduction to MISP

MISP is an open-source threat intelligence platform that enables organizations and security professionals to collect, share, and collaborate on structured threat information. MISP has seven core layers:

	Data layer: This layer focuses on gathering detailed information about security incidents and threats from the actual threat intelligence data. The primary components of the data layer are as follows:	Events: Security events or threat information.
	Attributes: Describes aspects of threats such as IP addresses, domains, hashes, email addresses, etc.
	Objects: A template that specifies contextualized and organized information about threats.

	Context layer: This layer is concerned with creating links and correlations between various pieces of threat intelligence data.

	Correlation layer: This layer is responsible for identifying patterns and correlations between various events and properties.

	Warning list layer: Warning lists are collections of indicators that are considered to be malicious or suspicious.

	Taxonomies layer: Taxonomies standardize threat intelligence data categorization and classification. They aid in the consistent and orderly organization and description of threats.

	Galaxies layer: Galaxies are groups of connected information regarding various threats, such as threat actors, methods, malware families, and so on. They provide contextual information to help you understand dangers better.

	Feed layer: Feeds entail incorporating external threat intelligence sources into MISP. This layer enables MISP to automatically retrieve and incorporate data from a variety of reliable sources, thereby enhancing the threat intelligence database.

As we discussed earlier, we need TheHive as a broker that accepts the security alerts from Wazuh and allows us to analyze each observable against MISP threat intelligence data.

TheHive consists of two tools: TheHive for incident management and Cortex for integration with tons of threat intelligence platforms. TheHive and Cortex constitute a potent integration designed for SOC analysts. This integration bridges the gap between effective collaboration and advanced threat analysis, thereby enhancing the SOC’s ability to identify, mitigate, and respond to cybersecurity threats.

TheHive

TheHive is an incident response platform designed to help SOC analysts analyze security alerts and incidents. It facilitates collaboration and information sharing among different team members during security investigations and incident responses. Some of the important capabilities of TheHive are as follows:

	Observable analysis: TheHive can analyze the alerts received from Wazuh, and this enables SOC analysts to pre-qualify alerts before deciding whether to ignore them or convert them into cases.

[image: Figure 3.3 – Observable preview]

Figure 3.3 – Observable preview

	Case timeline: A case timeline illustrates the entirety of the case’s lifecycle, including initial alerts, ongoing and completed tasks, identified IOCs, and much more.

[image: Figure 3.4 – Case timeline in TheHive]

Figure 3.4 – Case timeline in TheHive

	Integration: TheHive version 5 has strong and default integration capabilities with Cortex, Wazuh, and MISP. However, it can also be integrated with IBM QRadar, Splunk SIEM, Elasticsearch, VirusTotal, and many more.

	Alert TTPs: TheHive can contain a set of MITRE ATT&CK TTPs with ATT&CK mapping post-integration with MISP. MITRE ATT&CK (standing for Adversarial Tactics, Techniques, and Common Knowledge) is a framework that classifies cyber threat behaviors and techniques employed by attackers at various stages of an attack. We will learn more about the MITRE ATT&CK framework in Chapter 6, Threat Hunting with Wazuh.

[image: Figure 3.5 – Visualizing TTPs in the TheHive platform]

Figure 3.5 – Visualizing TTPs in the TheHive platform

TheHive and Cortex are made to work together without any problems. TheHive can send observables from incidents to Cortex so that the preset analyzers can look at them. Some jobs can be automated with this integration, which cuts down on the amount of work that needs to be done by hand in the incident response process. Let’s explore the capabilities of Cortex.

Cortex

Cortex is a part of the TheHive project. It automates threat intelligence and response, providing SOC analysts with the ability to detect and respond to threats quickly and effectively. One of the core features of Cortex is its ability to integrate several security tools, threat intelligence feeds, security services, and more. Cortex serves as a central repository for this intelligence, allowing analysts to manage and access the information they require with ease.

Cortex has two major components:

	Analyzers: Analyzers gather and enrich data from various sources to help SOC analyst teams. There are many types of analyzers that connect to online security services, threat feeds, and databases. After transforming the data, the analyzer can enrich it by checking it against a list of known malicious indicators, querying online services for more information, or running custom scripts for more advanced analysis.

	Responders: Responders are used for acting in accordance with the enriched data supplied by the analyzers. Responders come in a variety of forms, each intended to carry out a particular task, such as blocking an IP address, isolating an infected device, or alerting a security analyst.

Understanding the workings of automated threat intelligence and analysis

The final design workflow involves all three components: Wazuh, TheHive/Cortex, and MISP. This recommended design helps enterprises build an effective and scalable incident response system. Some of the important steps involved in this automated threat intelligence and analysis design with Wazuh, TheHive/Cortex, and MISP are as follows:

	Event transfer: Post-integration, TheHive can receive the security events from Wazuh. We can also configure Wazuh to send only specific types of alerts, such as security alerts matching rule level three or higher.

	Alert triage: Once the alert is received from Wazuh by TheHive, it can invoke Cortex to immediately look at the observables that are linked to it. This can include things such as running security scans, comparing observables to MISP threat intelligence feeds, or getting more information from the internet.

	Response action: TheHive can initiate response actions based on Cortex analysis results, such as altering the status of an event, providing tasks for analysts, or generating reports. It helps in the automation of portions of the incident response workflow.

[image: Figure 3.6 – Workflow of threat intelligence and analysis with Wazuh, TheHive, and MISP]

Figure 3.6 – Workflow of threat intelligence and analysis with Wazuh, TheHive, and MISP

Now that we have learned the entire flow of automated threat intelligence, incident management, and analysis, let’s begin to set up Wazuh, TheHive/Cortex, and MISP tools and integrate them to work seamlessly.

Setting up TheHive and Cortex

The deployment design of TheHive provides companies with flexibility by allowing for both standalone server deployments (deployment on a single server) and clustered deployments (multiple servers work together to handle the TheHive application load). It is recommended to use cluster mode deployment for large production environments. Some of the software components of TheHive are as follows:

	Apache Cassandra: TheHive utilizes the Apache Cassandra database to store its data. Cassandra is a distributed NoSQL database known for its scalability and capability to manage massive amounts of data across a cluster of numerous nodes. Cassandra is utilized within the framework of TheHive to store data pertaining to cases, incidents, and other pertinent information.

	Elasticsearch: TheHive uses Elasticsearch for indexing. It is a powerful analytics and search engine that makes data indexing, querying, and searching more effective. It improves TheHive’s search performance and speed, which makes it simpler for users to find and evaluate data.

	S3 MINIO: When a clustered deployment is necessary or when organizations need scalable and distributed file storage, TheHive provides support for S3-compatible storage solutions such as MINIO. AWS provides a scalable object storage, called S3 (Simple Storage Service). An open-source substitute called MINIO is compatible with the S3 API.

The TheHive application, database, index engine, and file storage can be run separately so each layer can be a node or cluster. TheHive could be set up in a complex clustered architecture using virtual IP addresses and load balancers.

We can set up TheHive and Cortex in different environments, such as Ubuntu servers, Docker, Kubernetes, etc. To simplify the installation process, we are going to use Docker Compose. We need to take the following steps:

	Install Docker Compose

	Prepare the YML script for the TheHive module

	Launch and test

	Create an organization and user on TheHive

	Create an organization and user on Cortex

Install Docker Compose

Let’s start with the Ubuntu Server. I’ll use Ubuntu 23.10 and take the following steps to install Docker Compose:

	Install pre-requisites packages for Docker: Log in to Ubuntu 20.04 and run the following apt commands to install Docker dependencies:
$ sudo apt update
$ sudo apt install -y apt-transport-https ca-certificates curl gnupg-agent software-properties-common

 	Set up the official Docker repository: Although Docker packages are available in the default Ubuntu 20.04 repositories, it is recommended that you use the official Docker repository. Run the following commands to enable the Docker repository:
$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
$ sudo add-apt-repository \ "deb [arch=amd64] https://download.docker.com/linux/ubuntu \ $(lsb_release -cs) stable"

 	Install Docker with apt command: We are now ready to install the most recent and stable version of Docker from its official repository. Run the following to install it:
$ sudo apt-get update
$ sudo apt install docker-ce –y
After installing the Docker package, run the following command to add your local user to the Docker group:
$ sudo usermod -aG docker rajneesh
$ sudo usermod -aG docker root
Verify the Docker version by executing the following:
$ docker version
Verify whether the Docker daemon service is running:
$ sudo systemctl status docker

 	Install Docker Compose on Ubuntu 23.10. To install Docker Compose on Ubuntu Linux, run the following commands sequentially:
$ sudo curl -L "https://github.com/docker/compose/releases/download/1.29.0/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose
$ sudo chmod +x /usr/local/bin/docker-compose
Check the Docker Compose version by running the following command:
$ docker-compose --version

If the Docker installation is good, you should see the output with the Docker compose version, OpenSSL version, CPython version, etc.

Prepare the YML script for the TheHive module

The primary distinction between docker run and docker-compose is that docker run is entirely command line-based, whereas docker-compose reads configuration data from a YAML file. So, the beauty of Docker Compose is that we can install all the modules of TheHive with a single YML script, and once this YML script is executed by Docker, all the modules will be turned up. Now, let’s prepare our TheHive YML script:

	Create a new directory: To keep our project organized, let’s create a new directory named theHive and change the directory:
$ mkdir theHive
$ cd theHive

 	Create a docker-compose file: The docker-compose.yml is a configuration file that allows us to configure and launch multiple Docker containers within a single file. Let’s create a docker-compose.yml file with the code shared in the GitHub repository at https://github.com/PacktPublishing/Security-Monitoring-using-Wazuh/blob/main/Chapter%203/theHive_Docker_Compose.yml.You can also find the YML code from the link here: https://docs.strangebee.com/thehive/setup/installation/docker/

Launch and test

To deploy the TheHive, run the following command from the TheHive directory:

$ docker-compose up -d
 Next, wait for two or three minutes. Open your browser and access TheHive at http:://<Server_IP>:9000 and Cortex at http:://<Server_IP>:9001.

The default credentials of TheHive application are as follows:

	Login: admin@thehive.local

	Password: secret

Next, Cortex doesn’t provide default credentials; you have to reset the database and set a new username and password. These will be our default admin credentials.

Once you have admin credentials for both theHive and Cortex, we will create an organization and a user under it and generate an API key.

Create an organization and user on TheHive

Once you’re logged in, we need to do a few things. We need to first create an organization and then a user:

	To create an organization, go to Organization and click Add. Enter a Name and Description and set the tasks sharing rule to Manual.

	Next, create two users for the haxcamp organization—a user and an API user. Go to Users and click Add to create a normal user account. Enter the following:	Name: This represents the field to enter the name.
	Login: This indicates your login name. You can use a username or an email address.
	Type: This represents the type of user. You can select Normal or Administrator. Here, we will be selecting Normal.
	Password: You can set or reset the password for the user.
	Organization: This represents the organizations the user belongs to. In this case, we have admin and haxcamp organizations. Let us assign the user to the haxamp organizations.

	Now, let’s create API users. This user account will be used to integrate TheHive with the Wazuh manager. To create an API user, go to Users and click Add. Enter API User for the Name, enter api@haxcamp.local for the login ID, set the account type to Service, and set haxcamp organization as org-admin user. Once the API user is created, click on Reveal:

[image: Figure 3.7 – Retrieve TheHive API]

Figure 3.7 – Retrieve TheHive API

Copy the API key and save it somewhere. We will require this API key when integrating TheHive with the Wazuh manager.

Create an organization and user on Cortex

Once you’ve set your admin credentials on Cortex, you need to create an organization. Fill in Name and Description:

[image: Figure 3.8 – Setting up organization details in Cortex]

Figure 3.8 – Setting up organization details in Cortex

Next, we need to create a user. To do that, go to Users, click on Add user, and fill in Login, Full name, Organizations & Roles:

[image: Figure 3.9 – Creating and adding a user in Cortex]

Figure 3.9 – Creating and adding a user in Cortex

You will notice the following in the preceding screenshot:

	Login: This represents the login username or email address of the user.

	Organization: This represents the organization the user belongs to.

	Roles: This shows the role of the user.

After creating the user, you can click on Reveal to reveal the API key and save that for future use when we integrate Cortex with MISP:

[image: Figure 3.10 – Retrieving the Cortex API]

Figure 3.10 – Retrieving the Cortex API

Alright, now one of the three tools is deployed and ready to use. Let’s work on deploying our MISP project before we finally get to Wazuh.

Setting up MISP

MISP is an open source software and there are different ways we can install it to build our own threat intelligence and share it with the community. MISP can be installed on most Linux distributions, and the MISP community has created simple install scripts. MISP has many dependencies and combines various software to function properly. This is also known as the LAMP stack:

	Linux operating system

	Apache for web server

	MySQL relational database

	Miscellaneous—PHP, Perl, Python

We can deploy MISP in different environments (https://www.misp-project.org/download/), such as Docker, VirtualBox VM, and VMware VM. Deploying MISP and its dependencies via Docker is by far the simplest installation process I’ve found. VirtualBox VM and VMware VM are good for lab and testing environments. Take the following steps to set up MISP:

	Fulfill the requirements.

	Install Docker and Docker Compose.

	Set up and launch MISP.

	Add an organization and users.

	Add feeds.

Fulfill the requirements

To set up MISP in the Docker environment, we require Ubuntu Server 22.04.

Install Docker and Docker Compose

To set up Docker and Docker Compose, refer the step 1 of Setting up TheHive/Cortex.

Set up and Launch MISP

Now that we’ve installed Docker, we need to install the MISP Docker image and configure the environmental variable. This will have four sub-steps:

	Clone the Git repository.

	Modify the environmental variable file.

	Start Docker Compose.

	Launch MISP.

We will initiate the installation of MISP using their official GitHub repository, as explained:

	Clone the Git repository: Let’s clone the get repository with the following command:
$ git clone https://github.com/MISP/misp-docker
This will clone the Git repository under a directory misp-docker. Now, change the directory as follows:
$ cd misp-docker

 	Modify the environmental variable file: Let’s configure the environment variable file to update the server URL.Copy template.env to .env (on the root directory) and edit the environment variables in the .env file:

$ cp template.env .env
Next, open the file and edit it using the GNU nano editor:
$ nano .env
and set the MISP_BASEURL to https://<Server_IP>
The final file should look like this:
MYSQL_HOST=misp_db
MYSQL_DATABASE=misp
MYSQL_USER=misp
MYSQL_PASSWORD=misp
MYSQL_ROOT_PASSWORD=misp
MISP_ADMIN_EMAIL=admin@admin.test
MISP_ADMIN_PASSPHRASE=admin
MISP_BASEURL=https://<Server_IP>
POSTFIX_RELAY_HOST=relay.fqdn
TIMEZONE=Europe/Brussels
DATA_DIR=./data

 	Start Docker Compose: To start the MISP Docker container, we need to build it using this command:
$ docker-compose build
Next, run the containers in detach mode using this command:
$ docker-compose up -d

 	Launch MISP: Now it’s the moment of truth. Open your browser and enter https://<MISP_Server_IP>.The default credentials are as follows:
	Username: admin@admin.test
	Password: admin

Add an organization and users

We need to create a local organization and add a user to it. Go to Administration and enter the Organization identifier, Generate UUID, Upload the company logo (optional), and click on Submit.

[image: Figure 3.11 – Setting up organization details in the MISP platform]

Figure 3.11 – Setting up organization details in the MISP platform

You will notice the following in the preceding screenshot:

	Organization Identifier: This represents a unique name for each organization.

	UUID: This is a unique identifier that ensures that each piece of information has a global unique identifier. You can even generate UUID online from a website such as www.uuidgenerator.net.

Now, to add a user to your organization, go to Administration > Add User and enter your email, set the password, select your own organization, set the role to Org Admin, and click on Create User.

[image: Figure 3.12 – Adding an admin user on MISP]

Figure 3.12 – Adding an admin user on MISP

You will notice the following in the preceding screenshot:

	Email: This represents the email address of the admin user.

	Organization: This represents the organization’s name.

	Role: This represents the role of the user. In this case, you should set it to admin.

Add feeds

MISP uses feeds to download threat reports, IOCs, and other information. These feeds contain all of the data stored by MISP. Feeds are not enabled by default when configuring MISP. To use our feeds, we must import and enable them. Fortunately, MISP helps us with some good threat intelligence feeds. This feed information is fetched in JSON format and can be downloaded from their official GitHub repository at https://github.com/MISP/MISP/blob/2.4/app/files/feed-metadata/defaults.json.

Copy the raw data. Next, visit the MISP application, go to Sync Actions, click on Import Feeds from JSON, and paste the metadata there:

[image: Figure 3.13 – Adding feeds to MISP]

Figure 3.13 – Adding feeds to MISP

Here, Server metadata represents the JSON value of the threat intelligence feeds.

Next, enable the feeds. To do that, go to Sync Actions and click on List Feeds. Select all the feeds and click on Enable Selected:

[image: Figure 3.14 – Visualizing feeds in MISP]

Figure 3.14 – Visualizing feeds in MISP

Here List Feeds represents a list of all the threat intelligence feeds with their providers’ details.

This completes our task of setting up MISP applications. Next, we will work on integrating Wazuh and MISP with TheHive.

Integrating Wazuh with TheHive

We will integrate Wazuh with TheHive to automatically send Wazuh alerts to TheHive. SOC analysts will then be able to investigate and respond to these alerts, as well as create cases if necessary. In this section, we will take the following steps:

	Install the TheHive Python script on the Wazuh manager.

	Create an integration Python script on the Wazuh manager.

	Create a Bash script on the Wazuh manager.

	Integrate TheHive server in Wazuh server configurations.

	Restart the manager.

	Visualize the alerts on TheHive.

Install TheHive Python script on the Wazuh manager

We will use a Python script that will enable custom integration of TheHive with the Wazuh manager. We’ll write in the following step which we will use as a reference. This module is operational as of the time of this writing after being tested with TheHive version 5.2.1.

Let’s first install the thehive4py module using the following command:

sudo /var/ossec/framework/python/bin/pip3 install thehive4py
 Create an integration Python script on the Wazuh manager

It is necessary to build the script custom-w2thive.py in the /var/ossec/integrations/ directory to allow for the integration of TheHive with Wazuh. You can find the full code from the GitHub repository at https://github.com/PacktPublishing/Security-Monitoring-using-Wazuh/blob/main/Chapter%203/custom_thehive_integration_Wazuh.py. Let me explain the import statement of this code to clarify how it is being built. I have broken down the first part (the import statement).

Import statement

This part of the python code defines the imported module or packages.

#!/var/ossec/framework/python/bin/python3
import json
import sys
import os
import re
import logging
import uuid
from thehive4py.api import TheHiveApi
=
 Here, the lines import various Python modules, including json, sys, os, re, logging, uuid, and specific modules from the thehive4py package.

User configuration

This section of the code defines the user-configurable parameters as global variables:

lvl_threshold=0
suricata_lvl_threshold=3
debug_enabled = False
info_enabled = True
 Let us break down the code:

	lvl_threshold=0: This indicates that TheHive will receive all the alerts generated by Wazuh. If you have a large network with thousands of monitored agents, keep it higher so that you get more relevant alerts.

	debug_enable = False: This represents the debugging option. In this case, it is set to False.

	info_enabled= True: This is the information logging option. In this code, it is set to True.

Now, let’s set proper permissions and ownership using the chmod and chown commands:

sudo chmod 755 /var/ossec/integrations/custom-w2thive.py
sudo chown root:wazuh /var/ossec/integrations/custom-w2thive.py
 Create a Bash script on the Wazuh manager

To successfully execute the .py script developed, we must construct a bash script called custom-w2thive and place it in /var/ossec/integrations/custom-w2thive. You can copy the entire code from the GitHub repository at https://github.com/PacktPublishing/Security-Monitoring-using-Wazuh/blob/main/Chapter%203/custom_thehive_bash_script_Wazuh..sh. Let me break down this bash script to help you understand its functionality.

Setting variables

In this part of the bash script, some variables are defined as shown in the code:

WPYTHON_BIN="framework/python/bin/python3"
SCRIPT_PATH_NAME="$0"
DIR_NAME="$(cd $(dirname ${SCRIPT_PATH_NAME}); pwd -P)"
SCRIPT_NAME="$(basename ${SCRIPT_PATH_NAME})"

	WPYTHON_BIN is set to the path of the Python 3 interpreter

	SCRIPT_PATH_NAME is set to the full path of the script

	DIR_NAME is set to the absolute path of the directory containing the script

	SCRIPT_NAME is set to the base name of the script

Determining the Python script path

This part of the script is used to get the location of the custom-w2thive.py file:

case ${DIR_NAME} in
 */active-response/bin | */wodles*)
 if [-z "${WAZUH_PATH}"]; then
 WAZUH_PATH="$(cd ${DIR_NAME}/../..; pwd)"
 fi
 PYTHON_SCRIPT="${DIR_NAME}/${SCRIPT_NAME}.py"
 ;;
 */bin)
 if [-z "${WAZUH_PATH}"]; then
 WAZUH_PATH="$(cd ${DIR_NAME}/..; pwd)"
 fi
 PYTHON_SCRIPT="${WAZUH_PATH}/framework/scripts/${SCRIPT_NAME}.py"
 ;;
 */integrations)
 if [-z "${WAZUH_PATH}"]; then
 WAZUH_PATH="$(cd ${DIR_NAME}/..; pwd)"
 fi
 PYTHON_SCRIPT="${DIR_NAME}/${SCRIPT_NAME}.py"
 ;;
Esac
 Let us break them down the preceding code:

	*/active-response/bin | */wodles*): This is a pattern that if matched, sets WAZUH_PATH and PYTHON_SCRIPT to ${DIR_NAME}/${SCRIPT_NAME}.py.

	(*/bin): This is another pattern that, if matched, sets WAZUH_PATH and PYTHON_SCRIPT to ${WAZUH_PATH}/framework/scripts/${SCRIPT_NAME}.py.

	(*/integrations): This is the third pattern that, if matched, sets WAZUH_PATH and PYTHON_SCRIPT to ${DIR_NAME}/${SCRIPT_NAME}.py.

Setting the Python script path

Once the Python script is set in PYTHON_SCRIPT, this script executes the Python script:

${WAZUH_PATH}/${WPYTHON_BIN} ${PYTHON_SCRIPT} $@
 Here, (${WAZUH_PATH}/${WPYTHON_BIN}) with any command-line arguments is passed to the Bash script ($@).

As we did earlier, let’s again set the required permissions and ownership using chmod and chown, respectively:

sudo chmod 755 /var/ossec/integrations/custom-w2thive
sudo chown root:wazuh /var/ossec/integrations/custom-w2thive
 Integrate the TheHive server in the Wazuh server configurations

Now, you need to modify /var/ossec/etc/ossec.conf using your favorite text editor and insert the following code:

<ossec_config>
…
 <integration>
 <name>custom-w2thive</name>
 <hook_url>http://TheHive_Server_IP:9000</hook_url>
 <api_key>RWw/Ii0yE6l+Nnd3nv3o3Uz+5UuHQYTM</api_key>
 <alert_format>json</alert_format>
 </integration>
…
</ossec_config>
 Let us break down the code:

	<integration>: This specifies the integration with the external applications or platforms.

	<hootk_url>: This defines the URL endpoint. In this case, it is the URL of the TheHive platform.

	<api_key>: This represents the API key associated with the integration. In this case, it is the API key of the TheHive platform.

Restart and test

Once complete, you need to restart the Wazuh manager:

sudo systemctl restart wazuh-manager
 Visualizing the alerts on TheHive

If everything went according to plan, you should soon start seeing notifications generated under the Alerts tab in TheHive. As you can see in the screenshot, it worked:

[image: Figure 3.15 – Visualizing alerts on TheHive]

Figure 3.15 – Visualizing alerts on TheHive

Next, we need to integrate TheHive/Cortex with MISP threat intel to perform observable analysis.

Integrating TheHive and Cortex with MISP

TheHive and Cortex are powerful when they work together. TheHive is helpful in incident response, case management, collaboration, and threat analysis while Cortex is a powerful threat intel aggregator. Once we Integrate TheHive and Cortex with MISP, we can even run the observable analyzer directly from TheHive as a result; we don’t have to manually perform analysis by going to Cortex. In order to achieve this automation, we need to do three things:

	Integrate TheHive with Cortex

	Integrate Cortex with MISP

	Integrate TheHive with MISP

Integrate TheHive with Cortex

To integrate TheHive and Cortex, you need to enter the Cortex API key in the TheHive settings. I hope you’ve copied the Cortex API key, as explained in the earlier section Setting up TheHive and Cortex | Create an organization and user on Cortex. Now, in order to complete the integration, log in with the admin account or switch to the admin profile and click on the Platform Management tab. Test the server connection, as shown in the screenshot:

[image: Figure 3.16 – Testing the server connection between TheHive and Cortex]

Figure 3.16 – Testing the server connection between TheHive and Cortex

You will notice the following in the preceding screenshot:

	API Key: This represents the API key of the Cortex server

	Do not check Certificate Authority: It is recommended to keep this disabled if you have not installed SSL on the server

Integrate Cortex with MISP

Log in to Cortex with your newly created account and then go to Organizations, click on the Analyzer tab, and search for MISP_2_1 Analyzer:

[image: Figure 3.17 – Searching for MISP analyzer under Cortex]

Figure 3.17 – Searching for MISP analyzer under Cortex

Here, MISP_2_1 represents the MISP analyzers for performing observable analysis.

Next, click on Edit and a prompt will appear to configure the MISP integration. Enter a name, MISP base URL, and MISP API key, and set cert_check to False (if you haven’t configured the SSL):

[image: Figure 3.18 – Integrating MISP with Cortex]

Figure 3.18 – Integrating MISP with Cortex

You will need to enter the following:

	Name: This indicates the name of the MISP analyzer.

	URL: This represents the URL of the MISP platform.

	Key: This indicates the API key of the MISP server.

	cert_check: This will dictate whether the Cortex will perform an SSL check or not. In this case, we will keep it False.

Now, it’s time to verify the integration with a sample analyzer. In the top left, you have a New Analysis button. Now, set TLP to AMBER, PAP to AMBER, and Data Type to domain. Immediately, you get a new Button MISP_2_1, as shown:

[image: Figure 3.19 – Running MISP analyzer on Cortex]

Figure 3.19 – Running MISP analyzer on Cortex

Integrate TheHive with MISP

The best part about TheHive suite is that MISP is already integrated with it. You only need to enter the API key of MISP in the TheHive platform. To complete the integration, log in with an admin account or switch to an admin profile and click on the Platform Management tab. You need to set up the MISP server name, server URL, and API key, and then you can test the connection, as shown in the screenshot:

[image: Figure 3.20 – Testing the connection between TheHive and MISP]

Figure 3.20 – Testing the connection between TheHive and MISP

You will notice the following in the preceding screenshot:

	Server name: This is the name of the MISP server.

	Server url: This represents the URL of the MISP server.

	API Key: This indicates the API key of the MISP server.

	Purpose: This shows how this API integration will be used. It can be Export, Import, or both. In this case, we will set it to Export to send queries.

	Do not check Certificate Authority: It is recommended to keep this disabled if you have not installed SSL on the server.

	Test server connection: This runs a connection check between TheHive and the MISP server.

Finally, the installation and integration of all three tools—Wazuh, TheHive/Cortex, and MISP—is complete. We will now focus on some important use cases of threat intelligence and analysis.

Use cases

Wazuh and TheHive integration offers a lot of benefits to SOC analysts and incident response teams. We will go through different use cases to explore several features of TheHive and MISP that work extremely well with Wazuh. We will go through some common use cases such as investigating suspicious file and network connections and tracking TTPs. In this section, we will cover the following topics:

	Pre-requisites

	Reviewing alerts

	Creating a case

	Analyzing file observable

	Analyzing network observable

	Managing TTPs

Pre-requisites

Before we get into some use cases of threat intelligence and analysis with Wazuh, TheHive, and MISP, we need to ensure these requirements are fulfilled:

	A Wazuh server

	An Ubuntu server running TheHive and Cortex using Docker

	An Ubuntu server running an MISP server

	Ubuntu Desktop or Ubuntu Server with the Wazuh agent installed

Reviewing alert

Once you integrate Wazuh with TheHive, you will start getting security alerts. Before you start investigating alerts or analyzing any observable against the MISP server, you need to get a good understanding of TheHive alert attributes. You can review all the important attributes of an alert in the following screenshot:

[image: Figure 3.21 – Reviewing security alerts on TheHive]

Figure 3.21 – Reviewing security alerts on TheHive

You will notice the following in the preceding screenshot:

	General: This is a tab that has Tags, Description, Wazuh Rule, and Wazuh Agent information

	Observable: This shows information such as IP addresses, domains, URLs, hashes, etc.

	TTPs: This shows MITRE attack tactics and techniques

	Similar Cases: This will show you existing related cases

	Similar Alerts: This will show you similar alerts

	Responder: This shows TheHive responder reports

	History: This shows the history of alerts

In the top left, you have action items, such as the following:

	Create case from alert: You can create a brand new case with this alert. I recommend you do this only when you’re certain that it is not a false positive.

	Merge selection into case: You can merge alerts into a single case.

	Ignore new update: Once selected, you will not get any update on this alert.

	Start: Once you click on this play button, you can take it ahead without creating a case. You can change the status of the alert to Pending, add some summary notes, and assign it to another analyst or Tier 2 analyst.

	Close: If you are certain that it’s a false positive or duplicate, you can close the alert.

Based on your investigation, you can also change the status of the alert, as shown in this screenshot:

[image: Figure 3.22 – Changing the alert status]

Figure 3.22 – Changing the alert status

You will notice the following in the preceding screenshot:

	Status: This is the alert status, and it can be New, In Progress, Pending, Imported, Duplicate, False Positive, or Ignored. In this case, it is set to Duplicate.

	Assignee: This states whom you want to assign this alert to. It can be your team member, SOC Level 2, the threat intelligence team, etc.

Creating a case

Once you are confident that you need to work on a certain alert, you can either create a fresh case or use a case template. Once you click on an empty case, you need to enter details such as the case title, severity, tasks, etc. You can create multiple tasks and assign them to different team members, as shown in screenshot:

[image: Figure 3.23 – Creating a new case in TheHive]

Figure 3.23 – Creating a new case in TheHive

You will notice the following in the preceding screenshot:

	Title: This represents the case name. In this case, it is Suspicious File detected.

	Severity: This represents how critical the case is.

	Add a task: This allows you to add multiple tasks.

Analyzing file observables

As we know, observables are initial information that needs to be analyzed before it is marked as an IOC. TheHive detects observables from Wazuh security events. Then, we can analyze the observables against multiple threat Intelligence feeds. The pre-defined observable types are IPs, email addresses, URLs, domain names, files, and hashes.

When you create a case from an alert, observables from alerts are also transferred to the theHive case. Even if you don’t have any observables, you can create an observable and analyze it against MISP threat intelligence feeds. You can click on Add an Observable and enter the details, as shown in the following screenshot:

[image: Figure 3.24 – Adding an observable in TheHive]

Figure 3.24 – Adding an observable in TheHive

You will notice the following in the preceding screenshot:

	Type: This represents the observable’s type. In this case, it is filename.

	Value: I want to look for the svchost.exe file.

	Tags: Write any relevant tags.

	Description: Write a simple and relevant description.

Next, let’s click on hamburger menu on the left of the filename observable and select Run analyzers, as shown in the following screenshot:

[image: Figure 3.25 – Information about the observable]

Figure 3.25 – Information about the observable

You will notice the following in the preceding screenshot:

	Svchost[.]exe: This is the sample file and is added as an observable.

	Run analyzers: This represents an action to execute the Cortex analyzer. In this case, we want to take the observable Svshost[.]exe and run the analyzer against the MISP server for threat intelligence lookup. Once we select Run analyzers, you should see MISP_2_1. Select it and click on Run Selected Analyzer, as shown in this screenshot:

[image: Figure 3.26 – Executing the MISP analyzer]

Figure 3.26 – Executing the MISP analyzer

Next, wait for 10 to 20 seconds and you should get a report under the same observable from the MISP Server. Bingo! As shown in the screenshot, you can find the result from the MISP server:

[image: Figure 3.27 – Receiving the threat intelligence result from the MISP server]

Figure 3.27 – Receiving the threat intelligence result from the MISP server

Once you click on it, you will see all eight matching events (threat intel feeds) in MISP, as shown:

[image: Figure 3.28 – Visualizing the observable analysis report from the MISP Server]

Figure 3.28 – Visualizing the observable analysis report from the MISP Server

You can go to any of the MISP events and click on EventID. You will be redirected to the MISP server for a specific event, as shown in this screenshot:

[image: Figure 3.29 – Visualizing the threat intelligence event from the MISP server]

Figure 3.29 – Visualizing the threat intelligence event from the MISP server

You will notice the following in the preceding screenshot:

	EventID: This represents the event ID from the MISP server. In this case, the event ID is 1125.

	From: This represents the threat intelligence feed provider. In this case, it is CIRCL.

To explore this specific event even further, we can log in to our MISP server and navigate to View Event. You can search for the event ID 1125 and find the result, as shown in this screenshot:

[image: Figure 3.30 – Visualizing the event in the MISP server]

Figure 3.30 – Visualizing the event in the MISP server

Let us break down some of the entries:

	Info: This is a brief and descriptive summary of the event. In this case, it is IECrypt sample analyzed with VMRay Analyzer Report for Sample #245141.

	Date: This is the date and time when the event was created.

	Threat Level: This represents the severity or criticality of the threat. It can be low, medium, or high.

	Analysis: This indicates the current analysis state of the event, e.g., initial, ongoing, or completed.

	Distribution: This specifies the distribution level of the event, finding out who can access the information, such as only the organization, the sharing group, or the community. In this case, it is All Communities.

	Tags: This is a list of tags associated with the event, delivering additional categorization or metadata.

Analyzing network observables

Now, let’s suppose you have some IP and domain observables. We can also test them in the same manner, or you can add related observables found during the investigation of other events. You can navigate to the Observables tab and, as you can see in the screenshot, we have some IP addresses as observables:

[image: Figure 3.31 – Visualizing IP address observables in TheHIve]

Figure 3.31 – Visualizing IP address observables in TheHIve

Let us break down the highlighted boxes in the screenshot:

	95[.]154[.]195[.]171: This is a sample IP address observable that needs to be analyzed by the MISP server

	drivgoogle[.]firewall-gateway[.]com: This is a sample domain name in the observable list that needs to be analyzed by the security team

Next, wait for 10 to 20 seconds and you should get a report under the same observable from the MISP Server. Awesome! As shown in the next screenshot, you can find the result from the MISP server:

[image: Figure 3.32 – Visualizing the observable analysis report from the MISP Server]

Figure 3.32 – Visualizing the observable analysis report from the MISP Server

Here, EventID: 1623 represents the event ID from the MISP server. In this case, the event ID is 1125.

Managing TTPs

TTP analysis can aid security teams in detecting and mitigating attacks by revealing how threat actors conduct their operations. TTPs are tactics, techniques, and procedures used by threat actors. The MITRE ATT&CK framework empowers SOC teams to identify and address TTPs they encounter. The MITRE ATT&CK framework consists of 14 tactics and hundreds of associated techniques and procedures. TheHive imports TTPs from Wazuh events and enhances our security investigation. You can also add a new TTP to any case by taking these steps:

	Go to a specific case.

	Click on TTPs at the top.

	Click on Add.

	Enter occur data.

	Choose the tactic.

	Choose a technique ID.

You can add a new TTP and enter the relevant information, as shown in the following screenshot:

[image: Figure 3.33 – Adding TTPs in TheHive]

Figure 3.33 – Adding TTPs in TheHive

You will notice the following:

	Catalogue: This represents the category of attack. In this case, we selected Enterprise Attack.

	Occur date: This indicates the date on which the attack happened.

	Technique: This represents the technique and its ID from the MITRE ATT&CK matrix.

	Procedure: This requires you to manually enter the step-by-step instructions or sequences of actions that threat actors follow to execute a specific technique.

This completes our overview of the use cases of threat intelligence and analysis using Wazuh, TheHive, Cortex, and the MISP server. To learn more about the administration, features, and integration, you can visit their official websites:

	TheHive: https://docs.strangebee.com/thehive/setup/

	Cortex: https://docs.strangebee.com/cortex/

	MISP: https://www.misp-project.org/documentation/

Summary

This chapter on threat intelligence and analysis using MISP provided a comprehensive guide to understanding and implementing a practical threat intelligence and analysis system. We learned the critical role of MISP—when integrated with Wazuh and TheHive—in helping security analysts perform observable analyses and add TTPs. We also covered some important use cases of TheHive and Cortex for performing analyses of files, IP addresses, domains, etc. against the MISP threat intelligence database.

In the next chapter, we will learn how to enhance Wazuh’s capabilities using security automation tools such as Shuffle. We will learn the importance of security automation and the integration of Shuffle with Wazuh, and we will also go through some use cases as well.

4

Security Automation Using Shuffle

Every day, the average security operations team receives over 11,000 security alerts (https://start.paloaltonetworks.com/forrester-2020-state-of-secops.html), including suspicious activity, intrusion attempts, privileged user and account monitoring, abnormal external communication, and unauthorized access attempts.

The majority of an analyst’s time (almost 70%) is spent investigating, triaging, or responding to alerts, and the majority of these alerts must be processed manually, greatly slowing down a company’s alert triage process. According to the same report, about 33% of these alerts turn out to be false positives. An SOC analyst can get frustrated with this overwhelming number of security alerts and repetitive false positives. This leads to the need for security automation, and this is where SOAR (Security Orchestration and Automation Response) plays a critical role. SOAR is a set of security features that enables businesses to collaborate on incident investigation and automate security operations tasks. The ultimate goal of this SOAR is to reduce the MTTR (Mean Time to Respond). This is achieved by automating every action or response taken by the SOC analyst. As a result, organizations stop alert fatigue for the SOC analyst and save them time. There are six core elements of SOAR: investigation, incident management, automation, reporting, vulnerability management, and threat intelligence. All of these elements are crucial for building powerful security automation in a network. Although Wazuh has some of these capabilities to build a strong security automation system, we need a third-party tool. In this chapter, we will use the Shuffle platform. Shuffle is an open-source security automation tool.

In this chapter, we will cover the following topics:

	What is SOAR?

	How a SOC analyst uses SOAR

	Setting up Shuffle SOAR

	Retrieving Wazuh Alerts

	Remotely managing Wazuh

	Important Shuffle apps

What is SOAR?

According to Gartner, “Security orchestration, automation and response (SOAR) solutions combine incident response, orchestration and automation, and threat intelligence (TI) management capabilities in a single platform.” SOAR tools are used to implement processes such as security playbooks, workflows, or processes to support a security operation analyst or incident analyst. The functionalities of SOAR are as follows:

	Security orchestration: Security orchestration involves the coordination of security tasks and workflows across several security tools and teams. It aims to streamline and optimize a response to security incidents and threats. We can create workflows that automate a sequence of security tasks, such as alert triage, investigation, containment, and remediation. This also involves the integration of a wide range of security tools, such as SIEM, firewalls, endpoint protection, and threat intelligence feeds. An example could be orchestrating the isolation of a compromised device from a network when a malware alert is detected.

	Security automation: Security automation focuses on the execution of predefined actions in response to security events or incidents. With event-driven workflows and the integration of various security tools, security automation enhances operation efficiency, reduces manual errors, and ensures that security responses align with organizational policies. An example of security automation in SOAR is automatically updating and patching software vulnerabilities as soon as they are discovered.

	Incident response: Incident response involves the processes and actions taken when a security incident or data breach occurs. In a SOAR system, incident response is made more efficient by orchestrating and automating security tools, tasks, executions, and so on. For example, when a data breach is detected, the SOAR platform can automatically generate an incident report, notify the relevant stakeholders, and initiate a predefined incident response plan.

SOAR integrates the concepts of security orchestration and security automation to provide an all-encompassing incident response strategy.

Next, let’s discuss how an SOC analyst uses a SOAR platform throughout the alert and incident life cycle.

How a SOC analyst uses SOAR

A Security Operation Center (SOC) analyst is a cybersecurity professional responsible for monitoring, detecting, analyzing and mitigating security incidents in an organization. The SOC analyst leverages a SOAR platform to enhance the efficiency and effectiveness of security operations. By utilizing SOAR, SOC analysts can make jobs easier, cut down on reaction times, and make sure that security incidents are handled in a more coordinated and consistent way. There are several stages within the incident response process where the SOAR platform can be utilized, as shown in the following diagram.

[image: Figure 4.1 – The flow of the incident response and SOAR]

Figure 4.1 – The flow of the incident response and SOAR

Based on the diagram, each stage can be explained as follows:

	Alert generation: SIEM (Security Information and Event Management) systems, an IDS/IPS (Intrusion Detection System/Intrusion Prevention System), and endpoint security solutions monitor network and system activity continuously for potential threats. Wazuh triggers an alert when there is an event matching Wazuh rules, and these alerts can be as follows:	Log analysis alerts: The Wazuh platform monitors endpoints, network, and application logs for any suspicious activities, and if there is a match based on the rule, it will trigger an alert – for example, detecting multiple failed login attempts within a short period
	Intrusion detection system (IDS) alerts: When integrated with Suricata Network-based IDS, Wazuh can analyze network traffic for signs of malicious activities – for example, an alert gets triggered when there is a known vulnerability, network scanning, or known exploits
	File Integrity Monitoring (FIM) alerts: Wazuh has an in-build FIM module to detect any unauthorized file changes – for example, unauthorized file modification alerts in the root directory of the Ubuntu server

	Alert triage and prioritization: The SOAR platform uses predefined security rules and logic to prioritize incoming alerts according to their severity, origin, and potential impact, such as a brute-force attempt or potential ransomware attack.

	Investigation and context gathering: This step involves three sub-steps – playbook execution, automated enrichment, and manual analysis:	Playbook execution: For each alert, SOAR can use an incident response playbook. Playbooks are sets of automated and manual actions that guide an analyst through the investigation process.
	Automated enrichment: The SOAR platform can automatically add context to notifications, such as threat intelligence data, historical logs, and asset information. This contextual information assists the analyst in determining the alert’s veracity and severity.
	Manual analysis: The analyst evaluates the enriched alert and may perform additional manual investigation. They may query systems, examine records, and utilize their knowledge to determine the nature and scope of the incident.

Once the investigation and content gathering are completed, the SOAR playbook can be triggered for different actions, as mentioned in the next step.

	Containment, eradication and recovery: During the containment phase of incident response, immediate actions are taken to limit the intensity of an incident, involving the isolation of affected endpoints to prevent further damage. This is followed by the eradication phase, where organizations focus on removing threats from the network. It also involves identifying and eliminating the root cause of the incident. Finally, the recovery phase takes care of restoring systems and services to their normal operational state.

We’ve learned about how an SOC analyst uses a SOAR platform, using an incident response example. In the next section, we will learn about the Shuffle platform.

Introduction to Shuffle

Shuffle is an open-source interpretation of SOAR. It was built by Fredrik Oedegaardstuen. It brings automation with Plug and Play enterprise apps. Shuffle relies heavily on Docker and microservices, making its design modular and powerful. Let’s discuss some important components and features of Shuffle:

	Apps and workflows: Apps are building blocks in workflows. Workflows are the part of Shuffle where everything comes together. When you first configure Shuffle, it should provide you with more than 100 existing apps. Shuffle covers many of the popular apps, as shown in the following screenshot.

[image: Figure 4.2 – App and workflows in Shuffle]

Figure 4.2 – App and workflows in Shuffle

	File analysis: Shuffle can help you upload and analyze an email attachment file with Yara. You can also manually upload a file by going to Admin | Files.

[image: Figure 4.3 – Files for workflows in Shuffle]

Figure 4.3 – Files for workflows in Shuffle

	Shuffle cache: Shuffle can help you store any information in the key-value pair format. The value will be sticky in nature, and hence, it can be used in a timestamp for security reports, maintaining IOC (Indicators of Compromise) lists, and so on. This is available in the form of Shuffle Tools. Whenever we use the Shuffle Tools app, we need to set the action type to Set cache value for caching to work.

[image: Figure 4.4 – The Shuffle cache]

Figure 4.4 – The Shuffle cache

	Trigger: To achieve better security automation, Shuffle provides six types of Triggers:	Webhooks: These allow any outside source to send data in real time to Shuffle.
	Schedules: These make it possible to start a workflow on a schedule
	Subflows: Want to run another workflow from within your current one? This does that exactly.
	User input: Starting or continuing an action based on what an analyst decides.
	Office365 Email Trigger: This gets triggered when an email is received. It is useful for phishing analysis.
	Gmail email trigger: Similar to Office365, Gmail gets a trigger when a Google user gets an email.

	Use cases: Users can create custom workflows to set up security use cases. The use cases in Shuffle are divided into five types – Collect, Enrich, Detect, Respond, and Verify. Each category can have multiple use cases. You can find the list all use cases here: https://shuffler.io/usecases.

Shuffle is a powerful security automation platform, offering full user management, multi-factor authentication, single sign-on, multi-tenancy, and a lot more. Now, let’s learn to set up Shuffle using a Docker container.

Setting up Shuffle SOAR

Shuffle SOAR can be deployed in self-hosted or in the cloud. For cloud-based deployment, you simply have to visit their official website (https://shuffler.io/register) and create an account. In this section, we will learn how to deploy Shuffle SOAR using a self-host deployment method. We need to complete the following steps:

	Requirements

	Install Shuffle.

	Fix the prerequisites for the Shuffle database.

	Launch Shuffle.

Requirements

Shuffle can be installed using Docker Compose. Docker Compose helps us to define and run a multi-container docker application using docker-compose.yml script. As pre-requisites, we need to have the following:

	Ubuntu Server 22.0 (https://ubuntu.com/download/server)

	Docker and Docker Compose installed

Install Shuffle

When it comes to a Shuffle SOAR self-hosted deployment, currently it is only supported by Docker and Kubernetes. Here, we will utilize the Docker deployment method, and the package can be downloaded from Docker’s official GitHub repository by following these steps:

	Clone the Shuffle module from GitHub: Use the git clone command to download the Shuffle codebase from its GitHub repository:
git clone <https://github.com/Shuffle/Shuffle>

 	Change the directory to Shuffle: Move into the directory where the Shuffle code has been cloned:
cd shuffle

Once you have downloaded the packages, you need to fix some dependency issues with the database, as detailed in the next step.

Fixing the prerequisites for the Shuffle database

To avoid issues with the backend database, you are required to set the permissions and change the ownership, as follows:

	Create a directory for the OpenSearch database: To store information in the OpenSearch database, create a directory called shuffle-database:
mkdir shuffle-database.

 	Set permissions and ownership for the directory: Change the permissions with chmod to supposedly make the directory executable:
sudo chmod +x shuffle-database

 	Change the database ownership: To change the ownership of the directory, use chown. You can also use it to assign the directory to a particular user or group (1000:1000 in this example):
sudo chown -R 1000:1000 shuffle-database

Launch Shuffle

To start Docker Compose, set up and execute Shuffle SOAR in detached mode (-d flag), which means it will run in the background, and you can continue to use your Terminal for other tasks. Use the following command to run Docker compose in detached mode:

sudo docker compose up -d
 These instructions essentially walk you through the installation and configuration of Shuffle, ensuring that all necessary components (the OpenSearch database directory, Docker, and Compose) are installed, and then we use Docker Compose to launch the Shuffle SOAR platform.

In the next section, we will learn to integrate Wazuh with Shuffle SOAR and start receiving alerts from the Wazuh platform.

Retrieving Wazuh alerts

Wazuh and Shuffle SOAR’s combination offers an excellent synergy for automating a variety of security activities. Renowned for its strong threat detection and response capabilities, Wazuh gathers data from multiple sources throughout the infrastructure to produce alerts and insights. When combined with Shuffle, a SOAR platform created to make incident response and automation easier, it makes it possible for these alerts to be coordinated easily. By using Shuffle’s automation features, the integration lets security teams set up predefined responses to Wazuh alerts that are immediately carried out. Shuffle SOAR automates the initial analysis of alerts generated by Wazuh, filtering out false positives and prioritizing alerts based on severity. This helps security analysts focus on relevant security incidents.

This integration makes it possible to automate security tasks that used to be done manually, such as sorting alerts, investigating, and taking corrective actions. This frees up security teams to work on more important tasks while still protecting the network. To integrate Wazuh with Shuffle, we need to follow some steps:

	Integrate Wazuh with Shuffle.

	Retrieve Wazuh alerts for abnormal user login analysis.

	Retrieve Wazuh alerts for successful login analysis.

Integrating Wazuh with Shuffle

The best part about Wazuh and Shuffle integration is that Shuffle integration scripts are already present in the current version of Wazuh, and hence, we don’t have to manually create a new one. We only need to do the following:

	Create a new Shuffle workflow: Go to the Shuffle self-hosted or cloud platform, and then create a new workflow. Next, from the Trigger section, add a Webhook node and copy the Webhook URI. Also, start the Webhook.

[image: Figure 4.5 – Create a new Workflow in Shuffle]

Figure 4.5 – Create a new Workflow in Shuffle

	Add a Hook URL to the Wazuh ossec.conf file:Log in to the Wazuh manager and open the ossec.conf file located at the following path:

/var/ossec/etc/ossec.conf
Next, add the following script:
<integration>
 <name>shuffle</name>
<level>3</level>
<hook_url>[https://<Shuffle_Server_IP>/api/v1/hooks/webhook_b68508da-0727-436c-8f33-412419222441](<https://shuffler.io/api/v1/hooks/webhook_b68508da-0727-436c-8f33-412419222441>)
</hook_url>
<alert_format>json</alert_format>
</integration>
Here, we request Wazuh to push all the level 3 alerts to Shuffle at the Hook URL: https://<Shuffle_Server_IP>/api/v1/hooks/webhook_b68508da-0727-436c-8f33-412419222441.
In order for Wazuh to take effect, we need to restart the Wazuh dashboard:
systemctl restart wazuh-manager

 	Testing: Once the integration is complete, we can come back to Shuffle. You need to save the workflow and run the test execution.

[image: Figure 4.6 – Test execution]

Figure 4.6 – Test execution

Retrieve Wazuh alerts for abnormal user login analysis

Abnormal user login attempts refer to any login activities that deviate from established patterns of normal behavior. It can be because of excessive failed login attempts, unusual login times, unfamiliar locations, multiple concurrent logins, and much more. Let’s set up Shuffle SOAR to receive Wazuh alerts for abnormal user login attempts. The Wazuh alert name is sshd: Attempt to login using a non-existent user, and the alert is shown in the following screenshot.

[image: Figure 4.7 – A Wazuh alert – sshd: Attempt to login using a non-existent user]

Figure 4.7 – A Wazuh alert – sshd: Attempt to login using a non-existent user

Let’s break down the preceding screenshot:

	Oct 3, 2023 @ 05:59:23.443 sshd: Attempt to login using a non-existent user: This represents the name of the alert.

	GeoLocation.city_name: This represents the city name.

	Oct 3 00:29:22 Wazuh-Agent sshd[3608]: Failed password for invalid user kat from 185.255.91.147 port 33872 ssh2: This represent the full log.

	decoder.name: sshd: This represents the extracted Wazuh’s decoder. In this case, it is sshd.

Retrieving alerts on Shuffle

In order to retrieve these alerts on Shuffle, we need to follow a three-step process:

	Create a Shuffle workflow:	Go to the Shuffle platform and click on New workflows. Then, select Webhook from the left-side Workflow starters menu under Triggers, and drag and drop it to the workflow editor.

[image: Figure 4.8 – A Shuffle workflow with a Webhook]

Figure 4.8 – A Shuffle workflow with a Webhook

	Next, click on the Webhook node and copy the Webhook URI. This URI will be used as the hook URL in the Wazuh manager. If you chose a self-hosted version of Shuffle, you would see the IP address instead of shuffler.io (http://shuffler.io) in the URI.

[image: Figure 4.9 – Retrieving the Shuffle Webhook URI]

Figure 4.9 – Retrieving the Shuffle Webhook URI

	Add integration tags: Log in to the Wazuh manager and open the ossec.conf file, located in the following path:
/var/ossec/etc/ossec.conf
Next, add the following script:
<integration>
<name>shuffle</name>
<rule_id>5710</rule_id>
<rule_id>5503</rule_id>
<rule_id>5760</rule_id>
<hook_url>[https://<Shuffle_Server_IP>/api/v1/hooks/webhook_b68508da-0727-436c-8f33-412419222441](<https://shuffler.io/api/v1/hooks/webhook_b68508da-0727-436c-8f33-412419222441>)
</hook_url>
<alert_format>json</alert_format>
</integration>
Let’s break down the preceding code:
	Rule_id 5710 is the Wazuh in-built rule used to detect the Attempt to login using a non-existent user alert
	Rule_id 5503 and 5760 are related to SSH login failure

 	Run the execution:	First, give a name such as Get_User_Logins node and save the workflow. Next, start the node.

[image: Figure 4.10 – Start the Webhook URI]

Figure 4.10 – Start the Webhook URI

	Next, add Shuffle Tools from the Apps section. This will help us to view all the alerts and connect the Shuffle tools with Get_User_Logins node. Make sure you set the following:Name: View_response
Find Actions: Repeat back to me
Call: $exec

Now, let’s run the test execution and then click on the show execution button. If everything is good, you should see all the alerts, as shown in the following screenshot:

[image: Figure 4.11 – Wazuh alerts received on Shuffle]

Figure 4.11 – Wazuh alerts received on Shuffle

Once you expand any part of the alert, you will see the entire alert in JSON format.

[image: Figure 4.12 – A Wazuh alert in the JSON format]

Figure 4.12 – A Wazuh alert in the JSON format

Retrieving Wazuh alerts for successful login analysis

Analyzing successful logins is just as important as analyzing failed or abnormal login attempts, as it helps to detect unauthorized access, monitor privileged access, monitor for anomalies, and much more. To retrieve Wazuh alerts for successful logins, we only need to make the following changes to the previous steps:

	Create a new workflow,

	Add new integration tags, as follows:
<integration>
<name>shuffle</name>
<rule_id>5715</rule_id>
<hook_url>[https://<Shuffle_Server_IP>/api/v1/hooks/webhook_b68508da-0727-436c-8f33-412419222441](<https://shuffler.io/api/v1/hooks/webhook_b68508da-0727-436c-8f33-412419222441>)
</hook_url>
<alert_format>json</alert_format>
</integration>
Here, rule_id 5715 indicates a successful login to the device. Additionally, you need to replace hook_url with a newly generated URI.

Now that we understand how to retrieve Wazuh alerts, we should be made aware of some advanced nodes to conduct enrichment, security investigation, incident responses, and so on.

Remotely managing Wazuh

Shuffle SOAR is capable of automating multiple security operation activities. When it comes to managing the Wazuh manager and its agent, there is a manual element where a security analyst has to manually add/remove/modify different attributes. The good news is that Wazuh provides a Wazuh API to allow a trusted party to communicate and send required data. In this section, we will remotely manage multiple Wazuh-related tasks, such as managing agents, rules, CDB lists, agent groups, and decoders. We will cover the following topics in this section:

	Requirements

	Managing Wazuh agents

Requirement

To remotely manage Wazuh using Shuffle SOAR, we need to set up three things – authentication, JWT token generation, and subsequent API requests.

Authentication

In order to allow Shuffle to talk to the Wazuh manager, Shuffle initiates the authentication process by providing valid authentication. The default credential of the Wazuh API is the username wazuh-wui and the password wazuh-wui.

Go to Shuffle and create a new workflow, and then follow these steps:

	From the Search Active Apps section, find the Http app and drag and drop it into the workflow editor.

[image: Figure 4.13 – Creating an Http app in a workflow]

Figure 4.13 – Creating an Http app in a workflow

	Next, we will create a curl query for authentication, as shown in the following diagram:

[image: Figure 4.14 – Authentication using the curl command]

Figure 4.14 – Authentication using the curl command

	Set a relevant name for the node.

	Set Action to Curl.

	Write a curl statement:
curl -u wazuh-wui:wazuh-wui -k -X POST "<https://192.168.29.32:55000/security/user/authenticate?raw=true>"

Finally, save and click the Test Execute button.

[image: Figure 4.15 – Save and execute the curl Command on Shuffle]

Figure 4.15 – Save and execute the curl Command on Shuffle

JWT token generation

Upon successful authentication, Wazuh generates a JSON Web Token (JWT). JWTs are often used for authentication and authorization in web applications and APIs.

[image: Figure 4.16 – JWT Token generation]

Figure 4.16 – JWT Token generation

The subsequent API request

Shuffle can now access all of Wazuh’s protected resources by inserting a JWT token into the HTTP request:

curl -k -X <METHOD> "https://<HOST_IP>:55000/<ENDPOINT>" -H "Authorization: Bearer <YOUR_JWT_TOKEN>"
 Let’s break down the preceding code:

	-k: This states that curl will allow connections to SSL/TLS-protected (HTTPS) sites without verifying the server’s SSL certificate.

	-X <Method>: This curl option talks about HTTP request methods such as GET, POST, PUT, and DELETE.

	<ENDPOINT>: This represents the specific endpoint or resource on the Wazuh manager, such as agents, groups, lists, rules, and decoders.

	-H: This is another curl option that adds an HTTP header to the request. In the preceding example, we added an Authorization header with a Bearer value to the JWT token.

Managing Wazuh agents

We can use the Shuffle tool to manage Wazuh agents for information gathering and incident response. Wazuh API allows you to add a new agent, remove agents, restart agents, upgrade agents, and retrieve outdated agents using the Shuffle tool.

If you follow the previous steps, you must have retrieved the JWT token. Let’s create a new Shuffle workflow with HTTP nodes, as shown in the following screenshot:

[image: Figure 4.17 – Retrieving Wazuh agent information]

Figure 4.17 – Retrieving Wazuh agent information

To configure the new workflow, you need to follow the following steps:

	Add a new Http node.

	Enter a name – Agent_info.

	Set Find Actions to Curl.

	Write a curl command:
curl -k -X GET "<https://139.84.173.180:55000/agents>" -H "Authorization: Bearer $jwt_token" -H "Content-Type: application/json"
Let’s break down the preceding code:
	$jwt_token: This is a variable that holds the JWT token. This variable name should be the same as the node name.

Next, save and test execute the workflow. You will get an output with all the agent information.

[image: Figure 4.18 – Receiving the Wazuh agent information]

Figure 4.18 – Receiving the Wazuh agent information

Let’s break down the preceding screenshot:

	Status SUCCESS: This shows that the API request was successful.

	“affected items”: This shows the content of the response message. In this case, we have four items about the agent information.

To learn more about managing Wazuh agents, refer to Wazuh’s official documentation at https://documentation.wazuh.com/current/user-manual/api/reference.html#tag/Agents.

We have learned to manage Wazuh remotely using its API. In the following section, we will learn about some important apps and the integration of Shuffle.

Important Shuffle apps

The integration of Wazuh and Shuffle SOAR helps a security team to automate multiple recurring activities. It introduces a paradigm shift in approaching incidents, faster response time, phishing analysis, managing Wazuh, and much more. Shuffle SOAR support integration with hundreds of security tools. In this section, we will discuss some important apps and their integration with Wazuh.

Incident enrichment using TheHive

TheHive is a powerful and a scalable security incident response tool designed for SOCs , CSIRTs (Computer Security Incident Response Teams), and CERTs (Computer Emergency Response Teams). We can use TheHive app in a Shuffle workflow to add enrichment to every alert before conducting a manual security investigation. Once you integrate TheHive with a Shuffle workflow, you can execute multiple tasks on TheHive by using API endpoints, as shown here.

[image: Figure 4.19 – TheHive API endpoints]

Figure 4.19 – TheHive API endpoints

An API endpoint is essentially a unique Uniform Resource Identifier (URL) or URI that provides access to an API. It facilitates communication between various software applications by serving as a point of interaction. In our case, TheHive allows Shuffle to access its capabilities using different API endpoints. For example, if you want to create a case in TheHive tool, you can use the Create case endpoint using the POST method, as shown here:

[image: Figure 4.20 – The Create case endpoint on TheHive platform]

Figure 4.20 – The Create case endpoint on TheHive platform

Let’s break down the preceding screenshot:

	Apikey: This is the API key for the TheHive platform

	Url: This is the complete URL for TheHive platform

Let’s look at sample workflow published by the Shuffle community. The following workflow starts by receiving a Wazuh alert and then creating a case in TheHive, adding an observable to TheHive case, retrieving artifacts, and finally, running TheHive/Cortex analyzer against MISP and VirusTotal.

[image: Figure 4.21 – Automating TheHive case enrichment using Shuffle]

Figure 4.21 – Automating TheHive case enrichment using Shuffle

The link to access this sample workflow is available here: https://shuffler.io/workflows/4e9f5826-a7fc-4cc1-b21d-0c7d231bcfa7?queryID=17e8f00cbed5d69823b1a0ad665d4b48.

Note

The preceding sample workflow can be used once you submit all the required information, such as the Wazuh Webhook URI, TheHive API key and URL, and other essential information. Also, ensure that MISP and VirusTotal are already integrated with TheHive/Cortex to execute the analyzer, as mentioned in the preceding workflow.

Malware analysis using YARA

YARA is a tool that empowers malware researchers in identifying and categorizing malware samples. It’s a free and open source program that works on Linux, Windows, and macOS. We can use the YARA tool in a Shuffle workflow to analyze an email attachment file or any other file, based on the custom rules defined by malware researchers. Let’s take a look at the sample workflow here.

[image: Figure 4.22 – Automated file analysis using YARA]

Figure 4.22 – Automated file analysis using YARA

The preceding workflow was created by Taylor Walton. This workflow starts by adding an email attachment to TheHive, then creating an alert on TheHive, and finally, running a YARA scan. To run the YARA scan against each email attachment, we can prepend this workflow as follows.

[image: Figure 4.23 – An email collection workflow]

Figure 4.23 – An email collection workflow

Messaging and collaboration tools

Shuffle has a range of workplace collaboration application integration tools, such as Microsoft Teams, Slack, Discord, Outlook, and Gmail. Each application provides tons of API endpoints such as the following:

	Retrieving emails and creating a message on Outlook

	Creating a new chat on Slack

	Writing a message to a group on Microsoft Teams and so on

Threat intelligence platforms

Shuffle SOAR can be integrated with threat intelligence platforms such as MISP, AbuseIPDB, and AlienVault OTX, expanding its ability to collect and correlate different threat data:

	MISP: Shuffle SOAR connects to MISP to gain access to a collaborative threat intelligence-sharing platform, facilitating the exchange of structured threat information.

	AbuseIPDB: Integration with AbuseIPDB provides quick access to crowdsourced threat data relating to malicious IP addresses, improving the platform’s ability to detect and block possible threats.

	AlienVault OTX: Integrating with AlienVault OTX improves threat visibility by leveraging its vast store of threat indicators and worldwide data. This thorough connection enables Shuffle SOAR users to investigate and respond to security issues in depth by accessing richer, real-time threat intelligence from a variety of trusted sources.

Endpoint protection/antivirus software

Shuffle provides a seamless integration with top-tier endpoint protection and antivirus solutions such as CrowdStrike Falcon, Windows Defender, Sophos, and BlackBerry Cylance, improving its efficacy in incident response and threat prevention. This integration enables direct communication and orchestration between the centralized platform of Shuffle SOAR and these security technologies, enabling automated response actions based on identified threats or incidents. Once integrated, we can create a Shuffle workflow to retrieve alerts from endpoint protection and send them to TheHive for further analysis, get detection rules from CrowdStrike, and so on.

Summary

In this chapter, we learned about the purpose of SOAR and how an SOC analyst uses SOAR in a real-world environment. We also learned how to set up a Shuffle SOAR platform using a Docker Compose environment and fixed some backend related issues. This chapter continued with the integration of Wazuh with Shuffle to receive alerts from Wazuh in real time. Finally, we learned how to remotely manage Wazuh using API integration and also covered some popular third-party integrations with Shuffle.

In the next chapter, we will learn about Wazuh’s active response module to build a proactive incident response system. We will also cover some practical incident response use cases.

5

Incident Response with Wazuh

It is of utmost importance to have a rapid and efficient response plan in place to handle any security events that may arise in the ever-changing world of cybersecurity. For example, a sales employee opened up a malicious file with a name attached to an email pretending to be from an authorized business partner. This can result in a ransomware attack and bring down many mission-critical services. When such an incident happens, responding promptly can help to minimize the overall damage to the network. An efficient incident response (IR) can help businesses to promptly resume normal operations, thereby reducing the amount of downtime that occurs and the expenses connected with it.

In this chapter, we will learn how to leverage the Wazuh platform and other Wazuh-supported third-party tools to build an effective IR system. We will cover the following topics in this chapter:

	Introduction to incident response

	What is Wazuh active response?

	Blocking unauthorized SSH access

	Isolating an infected Windows machine

	Blocking RDP brute-force attack attempts

Introduction to incident response

IR is the process by which an organization handles situations such as data breaches, distributed denial of service (DDoS), and ransomware attacks. It is an effort to immediately identify an attack, mitigate the impacts of the attack, contain any damage caused by the attack, and fix the cause in order to reduce the risk of future attacks. In practice, IR refers to a collection of information security rules, processes, and tools that can be used to detect, contain, and remove intrusions. Let’s discuss the two most popular IR frameworks, the National Institute of Standards and Technology (NIST) and SANS, as shown in the following diagram.

[image: Figure 5.1 – NIST and SANS IR]

Figure 5.1 – NIST and SANS IR

Different methods of incident response process

There are various methods for developing a structured IR process. There are two IR frameworks and processes that are most popular: NIST and SANS. Let us see each of them in detail.

SANS six-step procedure

The SANS Institute recommends six processes for IR: preparation, identification, containment, eradication, recovery, and lessons learned.

Let’s elaborate on the SANS six-step procedure. SANS defines IR as having six stages. When an incident occurs, these six processes are repeated in a cycle. The steps are as follows:

	Preparation of systems and procedures

	Identification of incidents

	Containment of attack

	Eradication of intrusion

	Recovery from accidents, including system restoration

	Lessons gained and feedback applied to the next stage of planning

Let us understand each of the processes step by step:

	Preparation: During the first step of preparation, you evaluate the efficiency of existing security measures and regulations. This entails doing a risk assessment to identify current vulnerabilities and the priority of your assets. Some of the important action items are listed here:	Create a policy and plan for IR
	Create an IR team
	Determine and categorize important assets
	Acquire the tools and technology required for incident detection and response

	Identification of incidents: The emphasis is on the constant monitoring and identification of potential security issues using techniques such as intrusion detection systems (IDSs), security incident and event management (SIEM), endpoint detection and response (EDR), and log analysis. Some of the important steps are listed here:	Continuous surveillance for indications of security incidents
	Use host-based and network-based IDSs
	Gather and examine logs from various sources
	Make use of threat intelligence streams

	Containment of attack: When an incident occurs, this phase focuses on immediately isolating compromised systems, implementing temporary solutions or workarounds, and updating access restrictions and firewall rules to avoid additional compromise. This is where digital forensics plays a critical role.

	Eradication of intrusion: The incident’s root cause is recognized and treated here. Vulnerabilities that allowed the incident to occur are remedied, and policies and configurations are modified to prevent the same occurrence from occurring again.

	Recovery from accidents, including system restoration: This phase focuses on resuming the normal operation of affected systems, certifying their integrity, and ensuring that the incident has been thoroughly resolved. It also entails analyzing and upgrading IR processes depending on the incident’s lessons gained.

	Lessons learned phase: During this phase, organizations undertake a post-event review, documenting the incident, the reaction, and the lessons learned. The purpose is to develop IR plans and policies, as well as to offer IR team members additional training.

NIST four-step procedure

NIST defines IR as having four steps: preparation, detection and analysis, containment, eradication, and recovery, and post-incident activity. Let us understand each of these processes in detail:

	Preparation: The NIST framework for IR emphasizes preparation as a critical component, much like the SANS framework does. During this phase, systems, procedures, and plans must be put in place in order to get ready for incidents. Organizations should have the following in place to be ready for incidents:	A precise IR strategy
	Clearly defined roles and duties
	A successful communication strategy
	Reporting plan
	Determining the vital systems and resources
	Testing and updating the IR plan on a regular basis

	Detection and analysis: During this phase, companies identify and examine occurrences to comprehend their extent and consequences. Making decisions regarding how to respond to an incident at this time is crucial. The following should be in place inside businesses in order to recognize and analyze occurrences effectively:	Keeping an eye on escalation processes and mechanisms
	Prompt incident detection and analysis

	Containment, eradication, and recovery: The containment, eradication, and recovery stages in the NIST framework are similar to those in the SANS framework. The following should be in place inside organizations in order to contain, eliminate, and recover from incidents:	Isolating the impacted systems
	Eliminating the incident’s cause
	Returning to regular operations

	Post-incident activity: In the NIST system, post-incident activity is the last phase. Organizations evaluate their IR procedure and evaluate the effects of incidents at this point. The following should be in place for organizations to examine and enhance the IR process:	A procedure to evaluate the IR methodology
	A process for recording the lessons discovered
	A plan for bringing enhancements to the IR procedure into practice

Objectives of the NIST and SANS procedures

The objectives of the NIST and SANS IR frameworks are similar and offer an organized method for handling incidents. Nonetheless, the two frameworks differ in a few significant ways:

	Both frameworks emphasize the significance of having a precise IR plan, defined roles and duties, and efficient communication when it comes to the preparation stage. On the other hand, having a reporting plan in place and identifying key systems and assets are given more weight in the NIST framework.

	Both frameworks concentrate on the prompt detection and examination of occurrences in terms of detection and analysis. But whereas the NIST framework is more concerned with monitoring systems and escalation protocols, the SANS approach prioritizes triage and prioritizing.

In the next section, we will discuss the importance of automating IR activities.

Incident response automation

Effective IR is time-sensitive and requires teams to identify threats and initiate an incident response plan (IRP) as soon as possible. A security team receives thousands of security alerts from security tools every day and hence it is difficult to manually analyze events or assess every alarm that security tools generate. These constraints are addressed via automated IR. In Chapter 4, Security Automation and Orchestration Using Shuffle, we learned how shuffle SOAR makes this possible by creating workflows, helping the security team with automated incident enrichment, automated observable analysis with TheHive tool integration, automating Wazuh activities, and many more. In this chapter, our focus will be on using Wazuh’s in-built capability called active response to perform IR. In general, IR automation can help the security team with the following:

	Immediate containment: Once compromised systems are identified, automated IR systems should isolate them to stop threats from spreading

	Dynamic firewall rules: In response to certain risks, the IR automation system can dynamically develop and deploy firewall rules that block malicious traffic or isolate vulnerable systems

	Automated account disabling: Automated reaction steps can quickly disable compromised user accounts in the case of a security incident, blocking future unauthorized access

	User access restrictions: To improve the security posture, the IR automation system can impose access controls, such as removing users who indicate suspicious behavior or restricting access privileges

	GeoIP blocking: To strengthen defense against targeted attacks, automated IR can use GeoIP blocking rules to limit access from particular geographic regions known for malicious activity

We can create tons of different use cases for automating IR. In the next section, we will practically deploy and test some of the automated IR using Wazuh’s active response capability.

Wazuh active response

One of the main components of the Wazuh platform that enables automatic responses to security events and incidents is called active response. Security analysts can respond quickly to specific security threats or triggers identified by the Wazuh system by utilizing active response. By utilizing active response features, Wazuh enables organizations to respond to security incidents quickly and aggressively. With Wazuh active response, you may develop and execute automated responses against most security alerts. These responses may include executing custom scripts, banning IP addresses, or deactivating user accounts. Automating response actions makes sure that incidents with a high significance are dealt with and mitigated in a timely and consistent way. This is especially helpful when security teams don’t have a lot of resources and have to decide how to respond first.

In this section, we will cover the following topics:

	Active response scripts

	Configuring active response

	The working of Wazuh active response

Active response scripts

Wazuh provides pre-built Active response scripts for Linux, Windows, and macOS systems. Additionally, it also helps security professionals to write custom active response scripts based on specific requirements. The default active response scripts are stored in the following folders/directories:

	
Endpoint

	
Location (Directory/Folder)

	
Windows

	
C:\Program Files (x86)\ossec-agent\active-response\bin

	
Linux

	
/var/ossec/active-response/bin

	
macOS

	
/Library/ossec/active-response/bin

Table 5.1 – Location of active response scripts

The Wazuh team and the entire community have done a brilliant job in building powerful active response scripts. Some of the popular scripts are mentioned in the following table:

	
Operating System

	
Scripts

	
Windows

	

	Netsh.exe: Blocks an IP address using netsh

	Restart-wazuh.exe: Restarts the Wazuh agent

	Route-null.exe: Adds an IP address to the null route

	
Ubuntu

	

	firewall-drop: Adds an IP address to the IP tables deny list

	start.sh: Restarts the Wazuh agent or manager

	Route-null: Adds an IP address to a null route

Table 5.2 – List of default active response scripts

Now, let’s learn how to set up active response on the monitored endpoints.

Configuring active response

Active response configuration needs to be done only on the Wazuh server. However, both the server and agent must have an active response script. Wazuh requires three things to execute an active response, and these are as follows:

	Active response script

	The <command> tag

	The <active-response> tag

Active response script

The Wazuh manager and agents have out-of-the-box active response scripts, supporting Linux, macOS, and Windows endpoints. We can also create custom active response scripts that run when an alert of a specific rule ID, rule group, or alert level triggers. All the default active response scripts are stored in the /var/ossec/active-response/bin directory. If you create a custom script, make sure you save them in the same directory.

The <command> tag

The <command> tag specifies which script should be executed when a certain rule is triggered. The <command> elements for out-of-the-box active response scripts are automatically included in the Wazuh server /var/ossec/etc/ossec.conf instance type; therefore, it is not required to add them. Let me share an example of the <command> block:

<command>
 <name>firewall-drop</name>
 <executable>firewall-drop</executable>
 <timeout_allowed>yes</timeout_allowed>
</command>
 Here, we have the following:

	<name>: Name of the command

	<executable>: Defines the script or executable that must be executed in response to a trigger

	<timeout_allowed>: Enables a timeout following a specified duration

The <active-response> tag

Insert an <active-response> tag within the <ossec_config> element in the /var/ossec/etc/ossec.conf file of the same Wazuh server. The <active-response> block specifies the location and condition of command execution, as shown:

<active-response>
 <command>firewall-drop</command>
 <location>local</location>
 <rules_id>5712</rules_id>
 <timeout>60</timeout>
 </active-response>
 Here, we have the following:

	<command>: It provides the configuration command. In our case, we have used firewall-drop.

	<location>: It indicates the location where the command must be executed. We have three types of locations: Local, Server, or Defined-agent. The purpose of these options is as follows:	Server: It executes the script on the Wazuh server.
	Defined-agent: It runs the script on a predefined agent. We require the <agent-id> tag to specify the ID of the Wazuh agent.

How Wazuh active response works

These active response scripts (hosted at /var/ossec/active-response/bin) are run on monitored endpoints by Wazuh in response to alerts triggered by a particular rule ID, level, or rule group. You can write a variety of scripts to start in response to a trigger, but you need to carefully plan these actions. Inadequate execution of rules and replies may make an endpoint more vulnerable.

Let’s talk about how Wazuh active response works:

	Event generated: The Wazuh agent pushes the events to the manager. The Wazuh manager analyzes and triggers alerts based on the matched rule.

[image: Figure 5.2 – Event generated]

Figure 5.2 – Event generated

	Triggering active response: Every security alert you see on the Wazuh dashboard is generated by the corresponding rule (pre-built by Wazuh or custom). If you add an <active-response> block within the <ossec_config> tag in the Wazuh server with the <rule_id> tag and there is a matching security alert, it will trigger our newly created <active-response>.

	Responding to the Wazuh agent: Now, our Wazuh server will order the agent to perform an action defined by the <command> block. Wazuh agents will have the default active response scripts; however, if you want to implement any custom active response, you need to write and save the code in the Wazuh agent.

	Executing active response: Active response scripts are stored within the Wazuh agent at the /var/ossec/active-response/bin location. You can troubleshoot or verify the Wazuh active response by checking the logs present at /var/ossec/active-response/active-response.log.

[image: Figure 5.3 – Executing active response on Wazuh agent]

Figure 5.3 – Executing active response on Wazuh agent

	Active response alert: Once the active response script is executed, our Wazuh manager will take that alert from the Wazuh agent and show it to us on the security alert dashboard.

[image: Figure 5.4 – Active response log]

Figure 5.4 – Active response log

Now that we understand how Wazuh active response works and how to configure it, let’s cover some practical use cases.

Blocking unauthorized SSH access

SSH attacks are among the most prevalent types of attacks against servers accessible via the internet. Automated bots that regularly monitor the internet for SSH servers with inadequate security setups carry out the major share of SSH attacks. Because attack sources are frequently scattered globally, with no single country dominating, it is a global cybersecurity threat. Organizational losses, data breaches, and compromised servers are all possible outcomes of successful SSH attacks. In this section, we will learn how to automatically block unauthorized SSH access to a victim’s machine.

We will learn about the following:

	 Lab setup

	Setting up active response

	Testing

Lab setup

In this lab setup, we require three things: an Ubuntu Server with a Wazuh agent installed, an attacker machine (Kali Linux), and, finally, our Wazuh server (we have used a Virtual Machine OVA file for Lab purposes only). The lab is designed as follows.

[image: Figure 5.5 – Lab setup: Blocking unauthorized SSH access using Wazuh active response]

Figure 5.5 – Lab setup: Blocking unauthorized SSH access using Wazuh active response

In this lab, we are going to use the firewall-drop scripts as the default active response script for the monitored Ubuntu agent. Next, we need to modify the active response script to be triggered when an unauthorized SSH connection is detected.

Setting up Wazuh active response

In order to set up the Wazuh platform to block unauthorized SSH access attempts, we need to execute the firewall-drop active response script once Wazuh rule 5710 is triggered. We need to take the steps that follow to accomplish this task.

Modifying the active response on the Wazuh manager

As we have learned, <active-response> executes a specific <command> block. In our case, we are utilizing the firewall-drop active response, which executes the firewall-drop command. We can find both the <command> and <active-response> blocks in the ossec.conf file located at /var/ossec/etc. We want to make sure the <active-response> block for firewall-drop is executed once rule 5710 is triggered. Wazuh rule 5710 represents sshd: Attempt to login using a non-existent user. The final modified <command> and <active-response> blocks are shown here:

 <name>firewall-drop</name>
 <executable>firewall-drop</executable>
 <timeout_allowed>yes</timeout_allowed>
 </command>
 <active-response>
 <command>firewall-drop</command>
 <location>local</location>
 <rules_id>5710</rules_id>
 <timeout>60</timeout>
 </active-response>
 Here, we have the following:

	<executable>: It is set to firewall-drop, which indicates the name of the script located at /var/ossec/active-response/bin of the Wazuh agent

	<location>: It is set to local, which indicates it only runs the script on the monitored endpoint that generated the alert

	<timeout>: It is set to 60 seconds and specifies that for 60 seconds the active response action will be effective

Restarting the Wazuh manager

In order for the Wazuh manager to implement the configuration change, we need to restart the manager, as shown:

systemctl restart wazuh-manager
 Testing

To test the unauthorized SSH brute-force attack, you can log in to a Kali Linux machine and run the following-mentioned hydra tool command:

hydra -l voldemort -P <PASSWORD_TEXT_FILE> <WAZUH_AGENT_IP> ssh
 Here, we have the following:

	hydra: This is the name of the tool used to perform the SSH brute-force attack.

	-l voldemort: The -l flag is used to indicate the username for the SSH login attempt. In this case, the username is voldemort.

	-P <PASSWORD_TEXT_FILE>: The –P flag is used to specify the path to the text file containing the list of passwords.

	<WAZUH_AGENT_IP>: This represents the IP address of the Wazuh agent.

	SSH: This specifies the service that hydra will attempt to attack.

Once you hit Enter, the SSH brute-force attack will be executed as shown in the following diagram:

[image: Figure 5.6 – Launching an SSH brute-force attack]

Figure 5.6 – Launching an SSH brute-force attack

Visualizing alerts

Now, once the SSH brute-force attack is executed, we will see two alerts: first, an SSH unauthorized access attempt, and second, an active response blocking user access. To visualize the alerts, go to the Wazuh manager and navigate to Security alerts. You will see the following:

[image: Figure 5.7 – Wazuh alerts after the SSH brute-force attack]

Figure 5.7 – Wazuh alerts after the SSH brute-force attack

Let’s look into the first alert, ssh: Attempt to login using a non-existing user, as shown in the following figure.

[image: Figure 5.8 – Wazuh alert – ssh: Attempt to login using a non-existing user]

Figure 5.8 – Wazuh alert – ssh: Attempt to login using a non-existing user

Here, we have the following:

	5710: This represents the Wazuh rule ID 5710, sshd: Attempt to login using a non-existing user.

	data.srcuser: voldemort: This represents the username of the unauthorized account. In this case, it is voldemort.

Next, we will look into an active response alert triggered by Wazuh rule ID 5710, as shown in the following figure.

[image: Figure 5.9 – Security alert – Host Blocked by firewall-drop Active Response]

Figure 5.9 – Security alert – Host Blocked by firewall-drop Active Response

Here, we have the following:

	data.parameters.alert.data.srcuser: voldemort: This represents the username blocked by the firewall-drop active response script.

In this use case, we have automatically blocked any unauthorized SSH attempt to our Ubuntu server running the Wazuh agent. In the next section, we will learn how to automatically isolate a Windows machine after getting infected by malware.

Isolating a Windows machine post-infection

The process of isolating a compromised endpoint is an essential part of IR in a SOC. In order to stop the threat from spreading and inflicting further damage, you must isolate the infected device or system from the network immediately. Also remember that it is important to examine the severity of the compromise, the value of the asset, and the potential impact on the business before deciding on an isolation strategy; isolation is not a silver bullet. A ransomware attack is an essential attack scenario in which isolation is a crucial step. Ransomware is a type of malware that encrypts the data of a victim and demands payment for the decryption key. It frequently spreads quickly throughout a network, potentially affecting many endpoints. In this section, we will isolate a Windows machine post-infection by malware. We will utilize the Wazuh active response capability to create an automatic outbound rule to block all outgoing traffic. In this section, we will cover the following:

	Requirement

	Approach

	Setting up a Windows machine with a batch and PowerShell file

	Setting up Wazuh manager with VirusTotal and active response

	Testing

Requirement

In this use case, we are going to write a custom active response script to isolate a Windows machine. In order to demonstrate this detection, we need the following:

	A Windows 10 or 11 machine with the Wazuh agent installed

	PowerShell version 7

	VirusTotal integration

	A PowerShell script to block all outgoing traffic

	A Windows batch file (active response script) to trigger a PowerShell script

VirusTotal integration

In this step, we will integrate the VirusTotal platform with the Wazuh manager. VirusTotal is an online platform that aggregates several antivirus software and detects malicious content and false positives. We will cover three steps:

	Set up a VirusTotal account.

	Integrate VirusTotal with Wazuh.

	Create a file integrity rule.

To complete all three steps, you can follow the steps described in the VirusTotal integration section of Chapter 2, Malware Detection Using Wazuh.

Setting up a Windows machine with a batch and PowerShell file

In this step, we will set up our Windows machine with an active response script. We will use a batch file to create an active response script. Next, to create a Windows Firewall rule to block all outgoing traffic, we need a PowerShell script. This PowerShell script will only be triggered when the batch file is executed. To complete the entire process, follow these steps.

Installing PowerShell version 7

Log in to your Windows 10 or 11 machine and install PowerShell version 7 from the official website:

https://learn.microsoft.com/en-us/powershell/scripting/install/installing-powershell-on-windows?view=powershell-7.3

Once downloaded and installed, you can find the executable at C:\\Program Files\\PowerShell\\7\\"pwsh.ex.

Writing a batch file as an active response script

Next, let’s create our active response script first. This will be done by using a Windows batch script, which will then trigger a PowerShell script to block all outgoing traffic from a Windows machine.

Write an active response script in Notepad and save it with the name fw.cmd at the following location:

C:\\Program Files (x86)\\ossec-agent\\active-response\\bin
@ECHO OFF
ECHO.
"C:\\Program Files\\PowerShell\\7\\"pwsh.exe -executionpolicy ByPass -File "C:\\Program Files (x86)\\ossec-agent\\active-response\\bin\\wfblock.ps1"
:Exit
 Writing a PowerShell script

Next, write a PowerShell script in Notepad and save it with name wfblock.ps1 at the same location:

C:\\Program Files (x86)\\ossec-agent\\active-response\\bin\\wfblock.ps1
#Author Rajneesh Gupta
Set ConfirmPreference to None to automatically answer "No" to confirmation prompts
$ConfirmPreference = "None"
Define the rule name
$ruleName = "BlockOutgoingTraffic"
Check if the rule already exists
$existingRule = Get-NetFirewallRule | Where-Object {$_.Name -eq $ruleName}
if ($existingRule -eq $null) {
 # Create a new outbound block rule
 New-NetFirewallRule -DisplayName $ruleName -Direction Outbound -Action Block -Enabled True
 Write-Host "Outgoing traffic is now blocked."
} else {
 Write-Host "Outgoing traffic is already blocked."
}
 Here, we have the following:

	$ruleName = "BlockOutgoingTraffic": It creates a $ruleName variable with the value BlockOutgoingTraffic. This will create a name for the Windows Firewall rule.

	$existingRule: This will check whether the rule already exists. If it doesn’t exist, then create a new rule to block all outgoing traffic.

Once you set up the Windows machine configuration, you need to set up the Wazuh manager with an active response block and Wazuh rules.

Active response block in the Wazuh manager

In order to make sure, we need to modify or add the <command> and <active-response> blocks under the /var/ossec/etc/conf file:

<command>
 <name>windowsfirewall</name>
 <executable>fw.cmd</executable>
 <timeout_allowed>yes</timeout_allowed>
 </command>
 Here, make sure the <executable> tag has fw.cmd, which is the same as the Windows batch file we created earlier.

Second, we need to add an <active-response> block, as shown:

 <active-response>
 <disabled>no</disabled>
 <command>windowsfirewall</command>
 <location>local</location>
 <rules_id>87105</rules_id>
 <timeout>60</timeout>
 </active-response>
 Here, we have the following:

	<command> is using the Windows firewall command.

	<rules_id> is selected as 87105 so that it will trigger when VirusTotal detects any malware sample. Wazuh rule 87105 defines the VirusTotal alert related to the sample file against the defined number of antivirus engines. To learn more, you can check the 0490-virustotal_rules.xml Wazuh rule file under the Management tab of the Wazuh manager.

Testing

In order to test this use case, we will use a malware sample from eicar.org. You can download it using this URL: https://www.eicar.org/download-anti-malware-testfile/.

To make sure VirusTotal detects our testing malware sample, you need to save it in the document folder of a Windows 10/11 machine. Once you save the file, a file integrity check will be executed, and it will trigger VirusTotal to scan the sample. You can also find the corresponding alerts on the Wazuh dashboard.

[image: Figure 5.10 – Visualizing VirusTotal alerts on the Wazuh manager]

Figure 5.10 – Visualizing VirusTotal alerts on the Wazuh manager

Let’s take a closer look at the File added to Document Folder file integrity alert. You can see the full.log and rule description as follows.

[image: Figure 5.11 – Visualizing a Wazuh alert about the eicar.com(1) file]

Figure 5.11 – Visualizing a Wazuh alert about the eicar.com(1) file

We can also check the second alert, VirusTotal: Alert. You can see the malware sample in the data.virustotal.source.file data field and rule ID 87105.

[image: Figure 5.12 – Expanding a VirusTotal security alert on the Wazuh manager]

Figure 5.12 – Expanding a VirusTotal security alert on the Wazuh manager

Now, our <active-response> block will be executed as it is tied with rule ID 87105, which belongs to the VirusTotal alert, and our command, fw.cmd, will be executed on a Windows 10 machine. This fw.cmd active response script will trigger a PowerShell script and block all the outgoing traffic, as you can see in the following figure.

[image: Figure 5.13 – Status of newly created BlockOutgoingTraffic rule on a Windows machine]

Figure 5.13 – Status of newly created BlockOutgoingTraffic rule on a Windows machine

So, we have successfully tested how Wazuh active response automatically blocks all outgoing traffic when our Windows machine is compromised by malware. This was possible by using our custom PowerShell script to create a security rule in the Windows Firewall service. In the next section, we will use active response to block RDP brute-force attack attempts.

Blocking RDP brute-force attacks

According to Sophos, in the first half of 2023, adversaries leveraged Remote Desktop Protocol (RDP) in 95% of attacks, increased by 88% from 2023. RDP is a Microsoft-developed proprietary protocol that allows users to connect to and remotely operate another computer or device via a network connection. Attackers employ automated software to try many login and password combinations in order to obtain unauthorized access to systems via RDP. Mitigating such risks involves proactive measures as well as quick action to block malicious IP addresses that try these assaults. In this section, we will utilize Wazuh active response to block the attacker’s IP address against an RDP brute-force attack. We will cover the following points:

	Requirement

	Setting up a Windows agent with an active response script

	Setting up the Wazuh server with a rule and active response script

	Testing

	Visualization

Requirement

In this use case, we will use the default Wazuh active response script of a Windows machine called netsh.exe, located at C:\Program Files (x86)\ossec-agent\active-response\bin. We don’t need to create any custom script for this. In order to make this entire use case work, we will use the following:

	Windows 10 or Windows Server

	Kali Linux for testing

Setting up a Windows agent with an active response script

In this step, we need to add the netsh command and the netsh active response block to the Wazuh agent’s C:\\Program Files (x86)\\ossec-agent\\ossec.conf file:

<command>
 <name>netsh</name>
 <executable>netsh.exe</executable>
 <timeout_allowed>yes</timeout_allowed>
 </command>
<active-response>
 <disabled>no</disabled>
 <command>netsh</command>
 <location>local</location>
 <rules_id>100100</rules_id>
 </active-response>
 Here, we have the following:

	netsh.exe: This is the network shell script located at C:\Program Files (x86)\ossec-agent\active-response\bin.

	<rules_id>: This indicates that the active response netsh script will be executed when rule 100100 is triggered. We will be creating rule 100100 to detect RDP brute-force attacks on the Wazuh server in the next step.

Save the ossec.conf file and restart the Wazuh agent.

[image: Figure 5.14 – Restart the Wazuh agent on the Windows Server]

Figure 5.14 – Restart the Wazuh agent on the Windows Server

Setting up Wazuh Server with a brute-force attack rule and active response script

We want our Wazuh to execute the active response netsh script against a brute-force attack and hence, we will write a Wazuh rule to detect RDP login attempts with level="10", frequency="3", and timeframe="120". This rule will be triggered when three failed login attempts are detected within 120 seconds of the timeframe. The following-mentioned rule block needs to be added to the local_rules.xml file located in the /var/ossec/etc directory:

<group name="rdp">
 <rule id="100100" level="10" frequency="3" timeframe="120">
 <if_matched_sid>60122</if_matched_sid>
 <description>Possible RDP attack: 3 failed logins in a short period of time</description>
 </rule>
</group>
 Here, we have the following:

	<if_matched_sid>: This option is similar to <if_sid> but it will only match if the rule ID has been triggered in a certain period of time. As we want Wazuh to detect the same alert three times within 120 seconds of the timeframe, this is specific to our needs.

	Rule ID 60122 under <if_matched_sid>: This rule is used to track multiple Windows event IDs related to login failure. To learn more about this rule and its parent ruleset, visit this page: https://github.com/wazuh/wazuh-ruleset/blob/master/rules/0580-win-security_rules.xml.

Next, add the same netsh command and active response block to the Wazuh server:

C:\\Program Files (x86)\\ossec-agent\\ossec.conf file
<command>
 <name>netsh</name>
 <executable>netsh.exe</executable>
 <timeout_allowed>yes</timeout_allowed>
 </command>
<active-response>
 <disabled>no</disabled>
 <command>netsh</command>
 <location>local</location>
 <rules_id>100100</rules_id>
 </active-response>
 Save the ossec.conf file and restart the Wazuh manager:

systemctl restart wazuh-manager
 Testing

To emulate this attack, we will launch an RDP brute-force attack using the hydra tool. The Hydra tool comes pre-built with Kali Linux; however, if you want to install it manually on some other platform, you can download it using this link: https://github.com/vanhauser-thc/thc-hydra. You can run the following command to execute an RDP brute-force attack on your Windows Server:

hydra -l roger -P pass.txt 192.168.29.77 rdp
 Here, we have the following:

	-l roger: This parameter specifies the username roger that Hydra will use for the brute-force attack. Change roger to the username you want to target.

	-P pass.txt: Indicates the pass.txt password file, which contains a list of passwords. Hydra will repeatedly try each password for the chosen username by looping over this file. Put your password list’s actual filename and directory in place of pass.txt.

	192.168.29.77: Represents the IP address of the target system where the RDP service is running. Replace this with the actual IP address you want to target.

	rdp: Indicates which service protocol to target, which is RDP in this instance. Hydra will make an effort to access the RDP service by logging in using the password list and the supplied username.

Visualizing the alerts

You can view the alerts on the Wazuh dashboard. Go to the Security events module and check for the latest alert or apply a filter for rule ID: 100100. As you can see in the following screenshot, rule 100100 has been triggered from our Windows Server with IP address 192.168.29.77.

[image: Figure 5.15 – Wazuh alert showing an RDP brute-force attack]

Figure 5.15 – Wazuh alert showing an RDP brute-force attack

Immediately, the Wazuh active response Netsh script is activated on the Windows Server.

[image: Figure 5.16 – Wazuh alert showing netsh active response]

Figure 5.16 – Wazuh alert showing netsh active response

To test whether the attacker machine is blocked or not, you can try launching an RDP session using a Remote Desktop client; it should not work and should give an error, as shown.

[image: Figure 5.17 – Remote Desktop connection failed]

Figure 5.17 – Remote Desktop connection failed

With this, we have learned how to block RDP attack attempts using Wazuh’s active response feature.

Summary

In this chapter, we learned about IR phases, Wazuh’s active response capability, and some important use cases. We learned how Wazuh’s active response module actively blocks unauthorized SSH and RDP access attempts. Additionally, we also learned about Wazuh’s capability to isolate infected Windows machines promptly upon detection of malware.

In the next chapter, we will learn how to conduct threat hunting using Wazuh modules. We will learn the importance of log data analysis in Wazuh for better threat investigation and hunting. We will also utilize the MITRE ATT&CK framework to streamline our threat-hunting process.

6

Threat Hunting with Wazuh

Approximately 80% of threats can be mitigated with the assistance of tier 1 and 2 security operations center (SOC) analysts and automated security tools; the remaining 20% requires your attention. Threat hunting is an important proactive security method for finding threats and holes in security that are hard to spot with regular security measures. Threat hunting uses advanced analytics, threat intelligence, and human expertise to go beyond automated detection and actively seek, find, and fix any security holes or threats that might be hiding in an organization’s network. By being proactive, security teams can spot and stop complex threats before they happen. This reduces the time that attackers can stay on the network and stops possible breaches. In this chapter, we will learn how Wazuh can help security teams to proactively detect advanced threats. Wazuh offers an extensive overview of an organization’s security features by analyzing large amounts of logs, along with offering real-time monitoring, custom advanced rulesets, threat intelligence, MITRE ATT&CK mapping, and much more.

In this chapter, we will cover the following:

	Proactive threat hunting with Wazuh

	Log data analysis for threat hunting

	MITRE ATT&CK mapping on Wazuh

	Threat hunting using Osquery

	Command monitoring

Proactive threat hunting with Wazuh

Organizations can use Wazuh for proactive threat hunting, a security practice that helps them find and report possible security threats before they become significant threats. This can take the form, for example, of analyzing network traffic patterns to detect anomalous behavior that may indicate a potential cyber threat. By contrast, the main goal of reactive cybersecurity defenses is to react to threats once they are identified or after an incident has taken place. As an example, antivirus software detects and eradicates known malware, and firewalls prevent malicious traffic from entering the network based on predefined rules by the security team.

When you do proactive threat hunting, you look for possible risks or weaknesses in a network before any damage can be caused. Instead of waiting for alerts or known signatures, we can use Wazuh to conduct threat hunting by performing real-time log analysis across multiple platforms, correlating events to detect potential security issues, along with integrating third-party tools to enhance our event visibility and detection capabilities.

In this section, we will cover the following:

	Threat-hunting methodologies

	Threat-hunting steps

	How to use Wazuh for proactive threat hunting

Threat-hunting methodologies

When threat hunters look into a system, they assume that attackers are already there and look for strange behavior that could indicate that bad things are happening. While conducting proactive threat hunting, the first step of looking for a threat usually falls into three main categories:

	Hypothesis-based investigation: Threat hunters often start hypothesis-based investigations when they find a new threat within the pool of attack information. This gives them information about the newest tactics, techniques, and procedures (TTPs) that attackers are using. Once threat hunters have found a new TTP, they check whether the attacker’s unique behaviors are common in their own area. For this, our Wazuh platform needs the following configured:	File integrity monitoring rules to detect any unauthorized changes
	Enabling rootkits behavior detection
	Log collection from different security solutions such as Antivirus, Endpoint Detection and Response (EDR), and email security
	Vulnerability detection
	Command monitoring

	Intelligence-based hunting: Intelligence-based hunting is a way to actively look for threats in response to different sources of intelligence. IOCs, IP addresses, hash values, and domain names are some of the threat intelligence sources that you can exploit. In order to accomplish this, Wazuh should be integrated with the following:	Third-party threat intelligence tools such as VirusTotal or AbuseIPDB
	MISP
	OpenCTI

Host or network artifacts from computer emergency response teams (CERTs) or information sharing and analysis centers (ISACs) allow you to export automated warnings or communicate crucial information about fresh threats in other businesses. These are mostly paid services, but they do offer highly curated information.

	Investigation using indicators of attack (IOA): This is one of the most popular and widely used methods for threat hunting. The idea is simple: “Not every threat group is after you” or even if they are, why you should prioritize them. The first step is to identify the threat group based on its target location, industry, and software by using a free detection playbook called ATT&CK Navigator. This online platform is built by MITRE, a not-for-profit organization that operates Federally Funded Research and Development Centers (FFRDCs) in the United States.

Threat-hunting steps

A proactive threat-hunting method consists of three stages: the initial trigger phase, the investigation phase, and the resolution phase (or, in some situations, an escalation to other teams as part of a communications or action plan). Let’s examine these three steps of the threat-hunting process in more detail:

	Choosing the right trigger	Threat hunting is usually an in-depth effort. The threat hunter gathers data about the environment and formulates hypotheses on potential threats.
	Next, the threat hunter selects a trigger for further investigation. This might be a specific system, an area of the network, a hypothesis brought on by a disclosed vulnerability or patch, knowledge of a zero-day exploit, an abnormality seen in the security dataset, or a request coming from another department within the company.

	Investigation	After a trigger has been identified, the hunt continues to focus on proactively looking for anomalies that support or contradict the theoretical threat.
	The threat hunter works with the assumption that “My network is compromised by a new malware or exploit” and conducts reverse engineering to prove the assumption.
	Threat hunters employ a variety of tools to help them analyze logs from multiple devices and security controls including server logs, Sysmon, antivirus logs, and spam filter logs.

	Resolution and reportingDuring the investigative phase, threat hunters gather crucial information and provide answers to the following questions:
	Who? – i.e., perhaps an insider threat was involved
	What? – A timeline of incidents in chronological order
	Where? – Details of the affected system including computers and servers
	Why? – A lack of security controls, poor planning, human error, an external attack, and so on

This information is circulated to other teams and tools during the resolution phase so that they may respond, prioritize, analyze, or retain the data for future use.

Proactive threat hunting with Wazuh

Proactive threat hunting with Wazuh entails an ongoing and methodical search for indicators of potential security threats in the environment of your organization. To conduct threat hunting, Wazuh can be leveraged by security teams for comprehensive log data analysis, seamless integration with MITRE ATT&CK, and the utilization of Osquery (an endpoint analytics tool) and regular monitoring. Let’s cover each of these Wazuh capabilities in detail:

	Log data analysis: Threat detection is significantly more effective when log data generated by various devices and systems within an organization is analyzed. Wazuh functions as a centralized platform for log management and analysis, receiving and examining data from a wide range of origins, including endpoints, servers, and network devices. In order to conduct a log analysis of each of the devices in your network, you need to have decoders for each of them. Wazuh extracts meaningful information from log data obtained from various sources using decoders.

	MITRE ATT&CK mapping: The internationally acclaimed MITRE Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK) framework offers a thorough, current knowledge base on adversary tactics and techniques. Wazuh uses MITRE ATT&CK to map observed security events to certain ATT&CK approaches, improving threat-hunting capabilities. Security teams can gain a better understanding of prospective adversaries’ strategies by using this mapping.

	Osquery integration: An open-source, cross-platform endpoint security framework called Osquery enables organizations to communicate with and query their endpoint devices to obtain important data for threat hunting. Wazuh and Osquery combine to give an organization’s endpoints a comprehensive picture with endpoint visibility and live querying.

	Command monitoring: You can use Wazuh’s command tracking feature to track the output of certain commands and treat that output as log content. Command monitoring can be used for threat hunting to monitor many system properties, such as disk space usage, load averages, changes in network listeners, and the state of processes that are already running.

Let’s get some deeper and more practical knowledge of Wazuh’s log data analysis functionality. This capability of Wazuh helps us to perform manual threat hunting by analyzing tons of log information.

Log data analysis for threat hunting

Log data analysis is a critical component of threat hunting. It involves inspecting and retrieving useful information from log files generated by various systems, applications, and devices. Traditional security methods may miss suspicious patterns or events, but threat hunters can detect them through constant monitoring and analysis of logs. Threat hunters examine log data in search of certain Indicators of Compromise (IOCs). These IOCs could be domain names, IP addresses, file hashes, or other identifiers linked to known security risks. The problem is that not all logs are the same. Depending on the source of the logs you want to gather, you may need to create a tailored Wazuh decoder. In this section, we will review the following:

	Wazuh decoders

	Building decoders

	Log collection

	Log data analysis

Wazuh decoders

A Wazuh decoder is a component that interprets and extracts useful information from raw log data. It collects data from log files or events created by many sources, such as operating systems, applications, and network devices, and converts it into a standardized format that can easily be analyzed and related. We don’t have to create decoders every time we onboard a new endpoint as Wazuh has a selection of prebuilt decoders for sources such as Linux, Windows, and macOS.

Wazuh decoders are normally provided as XML files and stored at /var/ossec/etc/decoders. Each decoder is tailored to a certain log source such as 0025-apache_decoders.xml for Apache, 0100-fortigate_decoders.xml for FortiGate firewalls, and so on. These decoders specify how to parse log data, extract pertinent information (such as timestamps, IP addresses, user IDs, and so on), and transform it into a structured format suitable for security analysis and threat hunting. Wazuh decoders are extremely customizable, allowing users to create custom decoders for specific log sources as needed.

Building decoders

Creating a custom Wazuh decoder begins with the creation of an XML file that explains how to decode and parse log data from a given source. If you want to build a custom decoder, you need to first take a look at an example event from the source. For example, let’s take a Check Point Firewall log from the decoder file available on GitHub at https://github.com/wazuh/wazuh-ruleset/blob/master/decoders/0050-checkpoint_decoders.xml:

Jan 21 15:15:45 myCP Checkpoint: 21Jan2019 15:15:45 monitor 10.0.10.1 <bond0 Protection Name:Header Rejection;Severity:4;Confidence Level:4;protection_id:HttpHeaderRejection;SmartDefense Profile:SU2_Protection;Performance Impact:2;Industry Reference:CVE-2002-0032, CAN-2003-0237, CAN-2002-0254, CVE-2002-0155, CAN-2003-0397, CAN-2002-0314;Protection Type:protection;Signature Info:^User-Agent[^I]*:[^I]*.*esb|ESB;Update Version:634182243;rule:26;rule_uid:{405CB782-3274-4D7F-8AAA-4FB24CE726A0};resource:<http://dnl-02.geo.kaspersky.com/bases/av/kdb/i386/kdb-i386-1211g.xml.klz;reject_id:5accf7c4-10053-c00080a-c0000003;web_client_type:Other:> *BcfBAAAAgCCAAEFBAAwQfKXVzrzGvyfPESboPxow0mHhxRLAXAQAAIAAKAA=;Attack Info:WSE0100001 header rejection pattern found in request;attack:Header Rejection;src:10.20.10.1;dst:1.1.1.1;proto:6;proxy_src_ip:10.10.10.1;product:SmartDefense;service:80;s_port:51642;FollowUp:Not Followed;product_family:Network
 Once you have the log, pay close attention to its format. Divide your log into two parts: prematch and custom match. Prematch consists of the date, time, and device name. In our example, it will be Jan 21 15:15:45 myCP Checkpoint: 21Jan2019 15:15:45. Second, the custom match section varies every time. We can also call these the parent decoder and child decoder respectively. Let’s begin by writing the prematch decoder first.

Parent decoder

When creating a Wazuh decoder, it is a good practice to create a parent decoder and then a child decoder to simplify and organize the decoder rules in a file. The parent decoder usually consists of the date, time, and device name, and the child decoder consists of a specific pattern match. To extract the relevant information from the logs, we need to use a regular expression. A regular expression is a sequence of characters defining a search. The parent decoder is defined using the following <prematch> tags:

<decoder name="checkpoint-syslog">
 <program_name>^Checkpoint</program_name>
 <prematch>^\\s*\\S+ \\d\\d:\\d\\d:\\d\\d </prematch>
</decoder>
 In the preceding regular expression, we can see the following:

	The \d operator is used to denote numeric characters from 0 to 9 for the time field.

	The \s operator is used to represent alphabetical characters from a to z.

Child decoder

The following decoder rule already exists in the Wazuh decoder ruleset with the filename 0050-checkpoint_decoders.xml. To extract further information from the Check Point firewall log, multiple decoder rules have to be created. These are used to extract items such as the source IP address, destination IP address, source port, destination port, and service. All the rules must start with the parent decoder “checkpoint-syslog”:

<decoder name="checkpoint-syslog-fw">
 <parent>checkpoint-syslog</parent>
 <type>firewall</type>
 <prematch offset="after_parent">^drop|^accept|^reject</prematch>
 <regex offset="after_parent">^(\\w+)\\s+\\S+ \\p\\S+ rule:\\.+</regex>
 <regex>src: (\\S+); dst: (\\S+); proto: (\\S+);</regex>
 <order>action,srcip,dstip,protocol</order>
</decoder>
<decoder name="checkpoint-syslog-fw">
 <parent>checkpoint-syslog</parent>
 <type>firewall</type>
 <regex offset="after_regex">service: (\\d+); s_port: (\\d+);</regex>
 <order>dstport,srcport</order>
</decoder>
<decoder name="checkpoint-syslog-ids">
 <parent>checkpoint-syslog</parent>
 <type>ids</type>
 <prematch offset="after_parent">^monitor|^drop</prematch>
 <regex offset="after_prematch">attack:\\s*(\\.+);\\s*</regex>
 <regex>src:\\s*(\\S+);\\s*dst:\\s*(\\S+);\\s*</regex>
 <regex>proto:\\s*(\\S+);</regex>
 <order>extra_data, srcip, dstip, protocol</order>
 <fts>name, extra_data, srcip, dstip</fts>
 <ftscomment>First time Checkpoint rule fired.</ftscomment>
</decoder>
 While you are building your decoder, you can get help from the Wazuh built-in decoder validator module by running /var/ossec/bin/wazuh-logtest. You can also perform this test on the Wazuh dashboard by navigating to Ruleset Test under the Tools section. Once you execute the module, you need to enter your original Check Point log:

[image: Figure 6.1 – Executing Wazuh’s decoder validator]

Figure 6.1 – Executing Wazuh’s decoder validator

In the preceding screenshot, we can see the following:

	The phase 1 output shows the pre-decoding, which simply takes the log and processes it

	The phase 2 and phase 3 output shows that the decoder name checkpoint-syslog-ids has been detected properly and we receive information such as srcip, dstip, protocol, and extra_data

After creating both the parent and child decoders, we need to create a Wazuh rule to trigger an alert once there is a match.

Creating Wazuh rules

Wazuh rules examine the extracted decoder fields to determine the type of message received. The final rule that is matched determines whether an alert is created, as well as its level and category groups. For any event that triggers the Check Point FW decoders, the following grouping rule will issue an alert:

<group name="checkpoint-syslog,">
 <!--Generic rule -->
 <rule "d="64"00" lev"l""3">
 <decoded_as>checkpoint-syslog</decoded_as>
 <description>Checkpoint $(type) event</description>
 </rule>
 In the preceding code, <decoded_as> represents the name of the decoder.

Alright, we have learned to create a decoder and the corresponding Wazuh rule, taking a Check Point firewall log as an example. Once you have a decoder, you can then create a Wazuh rule. If there is a match against any of the events received by the Wazuh manager, it will generate a security alert on the dashboard. To conduct a comprehensive threat-hunting program, all types of events have to be available on the Wazuh platform and hence, building a custom decoder should also be part of this process. In the next section, we will learn how Wazuh collects and categorizes different types of log data.

Log data collection

Log data collection means getting logs from different network sources and putting them all together. It is critical for threat hunters to access all types of logs from across endpoints, servers, security devices, and so on. The Wazuh indexer is responsible for log analysis as it stores and indexes alerts generated by the Wazuh server. By default, Wazuh will give you alerts that are triggered by Wazuh rules. However, we need access to all the events for better threat-hunting practice. We will learn to pull out all the events and archive them on the Wazuh server. Let’s first discuss the different indices used to store our event types.

wazuh-alerts

This is the default index that stores the alerts generated by the Wazuh server. When normal events get triggered by a rule with high priority, we see the alert and it gets stored in the wazuh-alerts index.

All the information in the Security Event tab comes from the wazuh-alerts index. To see the wazuh-alerts index, navigate to the Discover tab under OpenSearch Dashboards. By default, the wazuh-alerts index will be selected.

[image: Figure 6.2 – wazuh-alerts index]

Figure 6.2 – wazuh-alerts index

wazuh-archives

This index keeps track of all events that come in from the Wazuh server, even if they don’t set off alerts. The wazuh-archives index stores logs and allows queries that give more information about what’s happening on monitored endpoints. wazuh-archives is disabled by default to save space on the Wazuh server. Remember, to run an effective threat-hunting program, it is crucial to enable this index. Please follow these steps to turn it on, and once it is configured, two new files will be created to store all the events, /var/ossec/logs/archives/archives.log and /var/ossec/logs/archives/archives.log:

	Edit the Wazuh manager config file: In the /var/ossec/etc/ossec.conf file, set the value of <logall> and <logall_json> to yes:
<ossec_config>
 <global>
 <jsonout_output>yes</jsonout_output>
 <alerts_log>yes</alerts_log>
 <logall>yes</logall>
 <logall_json>yes</logall_json>
</ossec_config>

 	Restart the Wazuh manager: In order for the Wazuh manager to put into effect your changes, you are required to restart it with the following command:
systemctl restart wazuh-manager

 	Enable visualizationTo enable visualization on the Wazuh dashboard, you need to enable the archiving feature on the filebeat service by editing /etc/filebeat/filebeat.yml and changing archives: value to true.
Next, restart the filebeat service as follows:

systemctl restart filebeat

 	Discover events: To discover all the events from the wazuh-archives index, go to Stack management > index patterns and click on Create index pattern.

[image: Figure 6.3 – Create index pattern]

Figure 6.3 – Create index pattern

	Define an index pattern: Next, define the wazuh-archives-* index pattern to match all available indices, as shown in the following screenshot, and click on Next step.

[image: Figure 6.4 – Define index pattern]

Figure 6.4 – Define index pattern

	Set the timestamp: Next, set the timestamp in the Time field box.

[image: Figure 6.5 – Set primary time field]

Figure 6.5 – Set primary time field

	View the dashboard: Now, to view the events on the dashboard, navigate to Discover under OpenSearch Dashboards.

[image: Figure 6.6 – Discover under the OpenSearch Dashboards menu]

Figure 6.6 – Discover under the OpenSearch Dashboards menu

Make sure you select the wazuh-archives index and finally, we get all the events.

[image: Figure 6.7 – Select wazuh-archives]

Figure 6.7 – Select wazuh-archives

wazuh-monitoring

This index keeps track of information about the state of Wazuh agents over time. The Wazuh agent’s state could be Pending, Active, Disconnected, or Never Connected. This information is very helpful for finding Wazuh agents that aren’t reporting to the dashboard for a number of reasons that need to be looked into. If you want to see all the events from the wazuh-monitoring index, navigate to Discover and then change the index to wazuh-monitoring.

[image: Figure 6.8 – Select wazuh-monitoring]

Figure 6.8 – Select wazuh-monitoring

Everything you see under the Agents tab comes from the wazuh-monitoring index.

[image: Figure 6.9 – Wazuh Agents tab]

Figure 6.9 – Wazuh Agents tab

wazuh-statistics

This index holds information about the Wazuh server’s overall performance. This information is very important for making sure that the Wazuh server uses its computing resources in the best way possible.

Log data analysis

Log data analysis is a critical component of threat hunting because it gives you a lot of information about the activities of systems, and networks. This information helps you find security threats early, spot unusual activity and also helps you find IOCs. Also note that log collection and log analysis are also important in incident response, forensic investigations, security compliance, and many more areas. Let’s do some live testing with our wazuh-archives log events. We will run some notable MITRE ATT&CK techniques on Windows Server 2012 Server using APT Simulator and then we will conduct some log data analysis. Let’s get started:

Prerequisites

You will need Windows Server 2012 or higher.

	Sysmon installation: In this first step, we need to install Sysmon and integrate it with Wazuh. Please refer to Chapter 2, Malware Detection Using Wazuh, the Integrating Sysmon to detect fileless malware section in particular, as it covers the step-by-step process to install Sysmon on Windows machines.

	Installing and executing the APT Simulator: APT Simulator is an interesting project built by Nextron Systems. To know more about APT Simulator, please refer to Chapter 2, Malware Detection Using Wazuh, the Integrating Sysmon to detect fileless malware section. Once you download this script to your Windows Server instance, open the Command Prompt, go to the APTSimulator-0.9.4 folder, and execute the APTSimulator.bat file.Type 0. This will run every test including collection, command and control, credential access, defense evasion, discovery, execution, lateral movement, persistence, and privilege escalation.

	Testing: Now, let’s log in to Wazuh and navigate to Discover under OpenSearch Dashboards. Then, filter the results to agent.id. In my case, agent.id is 002.

[image: Figure 6.10 – Visualizing APT alerts]

Figure 6.10 – Visualizing APT alerts

We have learned to create custom decoders, covered the different Wazuh log data indices, and analyzed the log data. In the next section, we will explore the MITRE ATT&CK framework and how Wazuh maps the MITRE ATT&CK tactics and techniques.

MITRE ATT&CK mapping

We cannot begin threat hunting by assuming everyone in the world is after us. We need a targeted threat actor or threat campaign-based approach. This is where both Wazuh and MITRE ATT&CK become helpful. Wazuh can collect and trigger any alerts, but for threat hunting, we need to focus on relevant and high-priority threats to our business and need to map this to our Wazuh rules. The MITRE ATT&CK framework helps threat hunters to focus on these kinds of threats and Wazuh allows us to map each of the techniques of those threat actors to Wazuh rules. As a result, threat hunters can hone their focus and save tremendous amounts of time. In this section, we will cover the following topics:

	What is MITRE ATT&CK?

	The ATT&CK framework

	Prioritizing the adversary’s techniques

	MITRE ATT&CK mapping

What is MITRE ATT&CK?

The MITRE ATT&CK framework was developed by the MITRE Corporation to provide a uniform taxonomy for analyzing and categorizing cyber threats. It provides a common language that both defensive and offensive teams in security operations can utilize to improve their capabilities.

Tactics, techniques, and procedures (TTPs)

The MITRE ATT&CK framework is used to categorize and comprehend cyber attackers’ tactics, methods, and procedures (TTPs) during security operations. TTPs are used for organizing threat intelligence, threat detection, building an effective incident response, conducting a security gap analysis, and threat hunting. Let’s first understand what the TTP concept involves:

	Tactics: These are the main modes of action that attackers use to reach their targets. Consider tactics as the “what” of an attack, such as gaining initial access or causing damage.

	Techniques: Techniques are precise ways or acts that attackers use to carry out their tactics. They are the “how” of an attack, outlining the processes or tools utilized to achieve an objective.

	Procedures: Procedures involve greater levels of specificity and detail in comparison to techniques. Procedures are like “step-by-step instructions” for carrying out an attack.

ATT&CK framework

MITRE ATT&CK is made up of several critical components that work together to provide a thorough understanding of adversary TTPs:

	Matrices

	Tactics

	Techniques

	Procedures

	Groups

	Software

Matrices

The ATT&CK framework has three matrices: Enterprise, Mobile, and Cloud. The Enterprise Matrix is the most widely used matrix in the ATT&CK framework. Let’s understand some of the technologies covered under each of these matrices as follows:

[image: Figure 6.11 – MITRE ATT&CK matrices]

Figure 6.11 – MITRE ATT&CK matrices

	The Enterprise Matrix contains information about platforms such as Windows, macOS, Azure, Office 365, SaaS, IaaS, network, and cloud

	The Mobile Matrix covers techniques used by adversaries related to Android or iOS

	ICS covers industrial control system-related tactics and techniques

Throughout this chapter, our primary focus will be on the Enterprise Matrix.

Tactics

MITRE ATT&CK provides 14 tactics that consist of several sets of techniques. In the following screenshot, you can see at the top of each column all of the tactics, and under each tactic column, you can find several techniques.

[image: Figure 6.12 – MITRE ATT&CK Tactics]

Figure 6.12 – MITRE ATT&CK Tactics

Techniques

Techniques are specific means or procedures used by opponents to carry out tactics. For example, under the Execution tactic, you might find techniques such as Command-Line Interface or Scripting. Visit attack.mitre.org and click on any technique to display a list of sub-techniques. As an example, I selected the Reconnaissance tactic, then under that I clicked on the Gather Victim Network Information technique, and as a result, I got six sub-techniques: Domain Properties, DNS, Network Trust Dependencies, Network Topology, IP Addresses, and Network Security Appliances as shown in the following screenshot.

[image: Figure 6.13 – MITRE ATT&CK techniques]

Figure 6.13 – MITRE ATT&CK techniques

Procedures

Procedures describe step by step and in detail how adversaries perform various techniques. In our preceding example, we got six sub-techniques. Click on any of those sub-techniques and you will land on a page with a list of example procedures.

[image: Figure 6.14 – MITRE ATT&CK procedures]

Figure 6.14 – MITRE ATT&CK procedures

Groups

Groups are sets of threat actors or cybercriminal organizations that are known to use specific TTPs. You can refer to a list of all threat actors documented by MITRE ATT&CK at https://attack.mitre.org/groups/.

Software

Software lists the exact pieces of malware, tools, and software that attackers use to carry out their objectives. This helps threat hunters to identify the threat group based on the tools they use.

Prioritizing the adversary’s techniques

ATT&CK Navigator is a powerful analytical tool developed by MITRE as a part of the MITRE ATT&CK framework. It provides a web-based interactive interface, helping threat hunters and security professionals to explore, visualize, and prioritize techniques used by threat actors. ATT&CK Navigator also helps in aligning security controls against known adversary techniques. You can access the tool at https://mitre-attack.github.io/attack-navigator/:

[image: Figure 6.15 – ATT&CK Navigator]

Figure 6.15 – ATT&CK Navigator

The numbers in the preceding screenshot refer to the following:

	1 is layer, used to create multiple ATT&CK framework layers.

	2 is section controls, which gives the following options:	Selection behavior
	A search button for selecting techniques, threat groups, software, campaigns, data sources, and more
	The option to deselect all techniques

	3 is layer controls, which have the following options:	The option to add metadata information to each layer, including a name, description, and other custom metadata
	Download the layer in JSON format
	Export the layer in XML format
	Download the layer in SVG format
	A filter option to display techniques based on Linux, macOS, Windows, containers, and so on
	Sorting the techniques based on AI
	Color setup: You can choose a specific color for certain tactics on the interface

	4 is technique controls, which is useful to mark specific techniques with a color and score. We will use this feature when we combine multiple layers to identify overlapping techniques of multiple threat actors.

Practical use case using MITRE ATT&CK

Let me take you through a practical use case to perform threat hunting using MITRE ATT&CK. Imagine yourself as a threat hunter working for a financial services organization based in the United States. After doing some research on the Groups page (https://attack.mitre.org/groups/) of the MITRE ATT&CK official website, you settled on two relevant threat actors that target financial services organizations based in the United States. These are APT19 and APT38. (Remember, this is only an example – I suggest you do your research based on your specific industry, software, target countries, and so on.) To discover the priority techniques, we need to find common techniques used by both APT19 and APT38. To do this, we need to customize the ATT&CK Navigator layers as explained in the following steps:

	Open ATT&CK Navigator, click Create New Layer, and then select Enterprise as shown in the following screenshot.

[image: Figure 6.16 – Create a new layer in ATT&CK Navigator]

Figure 6.16 – Create a new layer in ATT&CK Navigator

	Click the search button under section controls and search for APT19 under Threat Groups.

[image: Figure 6.17 – Select APT19 from Threat Groups]

Figure 6.17 – Select APT19 from Threat Groups

	Next, click the layer information button under layer controls and enter the name APT19 with the description TTPs of APT19 - Initial threat analysis.

[image: Figure 6.18 – Enter basic information about the layer]

Figure 6.18 – Enter basic information about the layer

	Next, set the color of the APT19 techniques to red. To do this, click on the background color button under technique controls.

[image: Figure 6.19 – Apply a color to the APT19 techniques]

Figure 6.19 – Apply a color to the APT19 techniques

	Next, click on scoring under technique controls and set it to 1.

[image: Figure 6.20 – Set a score for the APT19 techniques]

Figure 6.20 – Set a score for the APT19 techniques

	Repeat the same steps for APT38 with the following details:	Create a new layer.
	Click the search button under section controls and search for APT38 under Threat Groups.
	Click the layer Information button under layer controls and enter the name APT38 with the description TTPs of APT38 - Initial threat analysis.
	Set the color of the APT38 techniques to green by clicking on the background color button under technique controls.
	Click on scoring under technique controls and set it to 2.

The final APT38 layer will look like the following.

[image: Figure 6.21 – APT38 layer]

Figure 6.21 – APT38 layer

	Now, merge both layers to get the common techniques used by both APT19 and APT38. This will help us to prioritize the adversary’s techniques. Click on Create New Layer and then click on Create Layer from other layers.

[image: Figure 6.22 – Create Layer from other layers]

Figure 6.22 – Create Layer from other layers

Enter the following information:

	domain: Enterprise ATT&CK v13

	score expression: a+b

You can leave everything else blank, then click on the Create button at the bottom.

[image: Figure 6.23 – Provide the domain and set expression]

Figure 6.23 – Provide the domain and set expression

	Once you click on Create, you will find a new layer with red techniques from APT19, yellow techniques from APT38, and green techniques that are common to both APT groups, as shown in the following screenshot.

[image: Figure 6.24 – Layers showing techniques from APT19 and APT38]

Figure 6.24 – Layers showing techniques from APT19 and APT38

Based on the final layers, there are four common techniques. The threat hunter could now start their hunting process by focusing on these four techniques:

	Drive-by Compromise with technique ID T1189 under the Initial Access tactic

	Modify Registry with technique ID T1112 under the Defense Evasion tactic

	System Information Discovery with technique ID T1082 under the Discovery tactic

	System Owner/User Discovery with technique ID T1033 under the Discovery tactic

Wazuh MITRE ATT&CK mapping

Wazuh maps the security events in the environment to the MITRE ATT&CK framework’s TTPs. Wazuh helps security teams by matching them with known threat groups’ TTPs. In order to map a MITRE ATT&CK technique ID to a specific Wazuh event, you need to add the <mitre> tag under the given rule. For example, if you want to create a Wazuh rule to associate SSH brute-force attacks with MITRE technique ID T1110, you will use the following rule:

<rule id="100009" level="10" frequency="8" timeframe="120" ignore="60">
 <if_matched_sid>100001</if_matched_sid>
 <description>sshd: brute force attack</description>
 <same_srcip />
 <mitre>
 <id>T1110</id>
 </mitre>
 </rule>
 You can also verify all the security events related to MITRE ID T1110 by going to the MITRE ATT&CK module in Wazuh and searching for T1110 under Techniques.

[image: Figure 6.25 – MITRE ATT&CK visualization in Wazuh]

Figure 6.25 – MITRE ATT&CK visualization in Wazuh

Once you click on T1110, you will see all the security events associated with this MITRE ID, as shown in the following screenshot.

[image: Figure 6.26 – Security events related to MITRE ATT&CK technique ID T1110]

Figure 6.26 – Security events related to MITRE ATT&CK technique ID T1110

We have learned to prioritize techniques using ATT&CK Navigator and created a Wazuh rule mapped to a MITRE ATT&CK technique ID. This helps security teams and threat hunters to discover triggers to start their investigations. In the next section, we will learn to utilize the Osquery tool to conduct comprehensive threat hunting.

Threat hunting using Osquery

When it comes to threat hunting, we need in-depth visibility of endpoint activities and the ability to run queries to allow the threat hunter to retrieve IOCs, suspicious activities, and vulnerabilities in a given endpoint. Osquery is the ideal tool for this purpose. It helps threat hunters treat their entire IT infrastructure, including endpoints, as a structured database that can be queried using SQL-like commands. You can get real-time, detailed information about your systems with Osquery and keep an eye on them for signs of compromise. In this section, we will cover the following topics:

	What is Osquery?

	Installing Osquery

	Integrating Osquery with Wazuh

	Threat hunting with Osquery and Wazuh

What is Osquery?

Osquery is an open-source tool built by Facebook in 2014. It converts the target operating system into a relational database and allows us to ask questions from the table using SQL queries containing things such as information about the state of remote machines, running processes, active user accounts, active network connections, and much more. Osquery can be installed on Windows, Linux, macOS, and FreeBSD.

Osquery is heavily used by security analysts, digital forensic and incident response (DFIR) analysts, and threat hunters. Before we discuss how threat hunters can utilize Osquery with Wazuh, let me first share with you some simple use cases of Osquery:

	Use case #1 – query for the top 10 largest processes by resident memory sizeTo get the list of the top 10 largest processes by memory size, use this query:

select pid, name, uid, resident_size from processes order by resident_size desc limit 10;

[image: Figure 6.27 – Result of top 10 largest processes by memory size]

Figure 6.27 – Result of top 10 largest processes by memory size

	Use case #2 – query the list of the top 10 most active processes with process countsIn this use case, we will utilize Osquery to retrieve from the system the top 10 active processes based on their frequency and process count. The query is as follows:

select count(pid) as total, name from processes group by name order by total desc limit 10;

Once the query is executed, you will get the result in the form of a table with the process names and corresponding frequencies. The output is shown in the following screenshot.

[image: Figure 6.28 – Result of the top 10 most active processes with process counts]

Figure 6.28 – Result of the top 10 most active processes with process counts

Before we integrate Osquery with Wazuh, we need to install Osquery in each of the individual Wazuh agents.

Installing Osquery

The process of installing Osquery is different for each platform. In this section, we will cover the installation of Osquery on an Ubuntu machine and a Windows machine.

Installing Osquery on Ubuntu Server/Desktop

Installation of Osquery on the Ubuntu Server requires the OSQUERY KEY and downloading the official Osquery package, explained as follows:

	Set the OSQUERY KEY environment variableThis step involves the creation of an environment variable called OSQUERY_KEY to store the GPG key used to validate the Osquery package’s authenticity. This key is required to confirm that the packages you download are from a reliable source:

export OSQUERY_KEY=1484120AC4E9F8A1A577AEEE97A80C63C9D8B80B

 	Import the GPG keyImport the GPG key into the APT keyring with the apt-key command. This key is necessary to validate the Osquery packages you will be installing:

apt-key adv --keyserver keyserver.ubuntu.com --recv-keys $OSQUERY_KEY

 	Add the Osquery repository and update the packageNext, you must add the Osquery repository to the list of software sources on your system. The Osquery package will be installed from this repository:

add-apt-repository 'deb [arch=amd64] https://pkg.osquery.io/deb> deb main'
apt-get update

 	Install OsqueryAfter adding the repository and updating the package list, use the apt-get install command to install Osquery. This will get Osquery from the newly added repository and install it:

apt-get install osquery

Installing Osquery on Windows

Installing Osquery on Windows desktops is pretty simple. Please visit the official website of Osquery and download the packages. The website is https://www.osquery.io/.

Integrating Osquery with Wazuh

The good news is that Wazuh is already integrated with Osquery. We just need to enable it and make some minor changes to the Osquery configuration file. Follow these steps to complete the installation:

	Enable Osquery: Open the ossec.conf file in the Wazuh agent and change the <disabled> tag value to no under <wodle name="osquery":
<!-- Osquery integration -->
<wodle name="osquery">
<disabled>no</disabled>
<run_daemon>yes</run_daemon> <log_path>/var/log/osquery/osqueryd.results.log</log_path> <config_path>/etc/osquery/osquery.conf</config_path> <add_labels>yes</add_labels>
 </wodle>
In the preceding code, we can see the following:
	<log_path> represents the location of the Osquery logs
	<config_path> shows the location of the Osquery configuration file

 	Copy the Osquery config file: By default, the Osquery configuration file is located at /opt/osquery/share/osquery/osquery.example.conf.Let’s copy the file to /etc/osquery/osquery.conf using the cp command:

cp /opt/osquery/share/osquery/osquery.example.conf /etc/osquery/osquery.conf
Wazuh has already modified the Osquery configuration and added some important packs. You can run nano /etc/osquery/osquery.conf to view the default packs:
 "packs": {
 "osquery-monitoring": "/opt/osquery/share/osquery/packs/osquery-monitoring.conf",
 "incident-response": "/opt/osquery/share/osquery/packs/incident-response.conf",
 "it-compliance": "/opt/osquery/share/osquery/packs/it-compliance.conf",
 "vuln-management": "/opt/osquery/share/osquery/packs/vuln-management.conf",
 "hardware-monitoring": "/opt/osquery/share/osquery/packs/hardware-monitoring.conf",
 "ossec-rootkit": "/opt/osquery/share/osquery/packs/ossec-rootkit.conf"
 }
	In the preceding code, we can see the following:
	osquery-monitoring.conf is an Osquery configuration file to collect information about every Osquery pack, including general performance and versions
	incident-response.conf retrieves information about crontab, the loginwindow process, a list of open sockets, a list of mounted drives, and so on
	it-compliance.conf collects information about active directory, the operating system, shared services, browser plugins, Windows drivers, a list of USB drives, and so on
	vuln-management.conf retrieves information about installed applications, browser plugins, and Chrome extensions
	hardware-monitoring.conf gathers hardware-related information such as PCI devices, fan speed, an inventory of USB drives, kernel modules, and so on
	ossec-rootkit.conf collects information about rootkits

 	Restart Osquery: Now, you need to restart Osquery for your changes to take effect:
systemctl restart osqueryd

Threat hunting with Osquery

Osquery gives you a SQL-like way to query requests and get real-time information about how a system is running. This lets security teams do proactive investigations and find threats. Threat hunting with Osquery involves actively searching for system information such as suspicious processes, unwanted software or modules, abnormal network connections, registry settings, file integrity, and more. For testing purposes, we will write some Osquery queries based on popular MITRE ATT&CK techniques.

It is sufficient to run the queries on a single endpoint for testing purposes and to demonstrate the information retrievable by Osquery. However, keep in mind that the true power of Osquery presents itself when it is widely deployed and administered centrally by the Wazuh manager. Let’s focus on discovering persistence tactics in our environment by utilizing a few of its associated techniques.

Local Job Scheduling (MITRE ATT&CK ID T1168)

Adversaries utilize local job scheduling to schedule and execute tasks or jobs on a hacked system. It is covered by MITRE ATT&CK framework under technique ID 1168. On Linux-based systems, adversaries can schedule their multi-step attack jobs by abusing the Cron service. They may set up new Cron jobs to run harmful scripts or commands on a regular basis. You can use the following query to retrieve information about local Cron jobs:

select command, path from crontab;
 Once this query is executed, you will see the result in the form of a table with the command and corresponding path, as shown in the following screenshot:

[image: Figure 6.29 – Resulting list of local Cron jobs]

Figure 6.29 – Resulting list of local Cron jobs

Kernel Modules and Extensions (MITRE ATT&CK ID T1215)

Adversaries can ensure that their code runs each time the system reboots by installing a malicious kernel module or extension at startup or during system initialization. This makes it difficult to identify and uninstall. This is described under MITRE ATT&CK technique ID T1215. Kernel modules are pieces of code that can be dynamically loaded and unloaded from an operating system’s kernel. The query to retrieve the kernel modules is as follows:

select name from kernel_modules;
 Once this query is executed, you will get a list of all the kernel modules as shown in the following screenshot.

[image: Figure 6.30 – Result of list of kernel modules]

Figure 6.30 – Result of list of kernel modules

Redundant Access (MITRE ATT&CK ID T1108)

Redundant access is a strategy in which adversaries create several paths or techniques for accessing and manipulating a victim machine. This works like a “plan B” for threat actors. To detect redundant access, we need to retrieve information about all the running processes on the endpoint. To get this information, we can run the following query:

select pr.pid, pr.name, usr.username, pr.path, pr.cmdline from processes pr LEFT JOIN users usr ON pr.uid = usr.uid WHERE pr.cmdline != '';
 Once this query is executed, we will get the result in a table containing details on the process ID (pid), process name (name), username, path, and command line (cmdline) of the running processes, as shown in the following screenshot.

[image: Figure 6.31 – Result of all running processes and their corresponding paths]

Figure 6.31 – Result of all running processes and their corresponding paths

Writing and organizing queries

There are two ways you can create queries. You can either write a query directly under the schedule block of the /etc/osquery/osquery.conf file or you can organize them in the form of packs. When you have tons of queries to run, it’s always better to create a separate Osquery pack. In our scenario, we will add the following queries to a pack with the name custom-pack-1.conf:

{
 "queries": {
 "Services": {
 "query": "SELECT * FROM services WHERE start_type='DEMAND_START' OR start_type='AUTO_START';",
 "interval": 3600,
 "description": "Lists all installed services configured to start automatically at boot - ATT&CK T1050",
 "removed": false
 },
 "Snapshot_services": {
 "query": "SELECT * FROM services;",
 "interval": 28800,
 "description": "Snapshot Services query",
 "snapshot": true
 },
 "OtherServices": {
 "query": "SELECT name, display_name, status, start_type, path, module_path FROM services;",
 "interval": 3600,
 "description": "Services whose executables are placed in unfamiliar folders- ATT&CK T1543.003",
 "removed": false
 }
 }
}
 You need to add all the queries under the queries field. Each Osquery query can have multiple items of metadata including query, interval, description, and snapshot. The following screenshot shows a query pack containing three queries.

[image: Figure 6.32 – Custom Osquery pack]

Figure 6.32 – Custom Osquery pack

In the preceding screenshot, we can see the following:

	SELECT * FROM services WHERE start_type='DEMAND_START' OR start_type='AUTO_START: This query retrieves all rows from the services table where start_type is either 'DEMAND_START' or 'AUTO_START'

	SELECT * FROM services: This query retrieves all rows from the services table

	SELECT name, display_name, status, start_type, path, module_path FROM services: This query retrieves specific columns (name, display_name, status, start_type, path, module_path) from the services table

You can save the file and call this under the /etc/osquery/osquery.conf Osquery file.

To visualize Osquery events on the Wazuh dashboard, navigate to Wazuh Modules>Osquery> Events. You should see all the query results as shown in the following screenshot.

[image: Figure 6.33 – Visualizing Osquery events]

Figure 6.33 – Visualizing Osquery events

We’ve learned to create custom Osquery queries and visualize the events on the Wazuh dashboard. In the next section, we will learn about command monitoring on Wazuh.

Command monitoring

The most effective way to collect information about an endpoint is to run specific commands on the given endpoint, such as netstat (for network connections on Windows), ps (to collect process information from Linux machines), and so on. This information plays a vital role in collecting IOCs and running a successful threat-hunting program. The good news is that Wazuh has a built-in feature to monitor the output of specific Windows/Linux commands and show that output as log content. In this section, we will learn the following:

	How does command monitoring work?

	Monitoring Linux commands

	List of Linux commands for threat hunting and security Investigations

How does command monitoring work?

Wazuh runs commands on the endpoints using the Command and Logcollector modules, and then sends the results to the Wazuh server for examination. The following steps describe the process of command monitoring.

Step 1 – configuration

The process starts when a user chooses to monitor how a particular command is being executed on a system. This can be accomplished locally by adding the necessary command to the local agent configuration file (/var/ossec/etc/ossec.conf) or remotely through the agent.conf file hosted on the Wazuh server. Wazuh has two modules that let you monitor the results of system commands that are running on an endpoint. The Command and Logcollector modules run and watch commands or executables on Windows, Linux, and macOS targets on a regular basis.

Using the Command module

Wazuh recommends using the Command module as it has checksum verification, allows encrypted communication, and helps in scheduling execution.

The following is an example of the Command module:

 <wodle name="command">
 <disabled>no</disabled>
 <tag>tasklist</tag>
 <command>PowerShell.exe C:\\activeTasks.bat</command>
 <interval>2m</interval>
 <run_on_start>yes</run_on_start>
 <timeout>10</timeout>
 </wodle>
 Here, the PowerShell.exe C:\\tasklist.bat value in the <command> tag is the command to be executed by the Command module. The PowerShell program executes the C:\activetasks.bat script.

Using the Logcollector module

Text files, Windows event logs, and straight syslog messages can all send logs to the Logcollector module. It is easy to use and also allows us to format fields such as timestamp, hostname, and program_name.

This is what a simple Logcollector module setup block looks like:

<localfile>
<log_format>full_command</log_format> <command><COMMAND></command>
<frequency>120</frequency>
 </localfile>
 In the preceding code, we can see the following:

	<command> reads the output of the command executed by the Wazuh agent.

	<log_format> can be set to either full_command or command. full_command reads the output as a single-line entry and command reads the output as multiple entries.

Step 2 – execution by the Wazuh agent

Following the configuration of the required command, the endpoint runs the command on a regular basis according to the predetermined frequency or interval.

Under the Command module, we define the <interval> tag to execute the command at a specified interval.

Step 3 – monitoring and data forwarding

The Wazuh agent monitors how the configured command is being executed. It records the result of the command along with any associated data, including the timestamp, execution details, and user that started the command. The agent sends this data to the Wazuh server for further analysis.

Step 4 – Wazuh server analysis and alert generation

The data is processed by the Wazuh server after it is received from the Wazuh agent. A number of crucial tasks are carried out by the server, such as pre-decoding, decoding, and matching the received logs against preset rules, explained as follows:

	Pre-decoding and decoding: The raw data is converted into a readable format using a Wazuh decoder. So, yes, we need to write a decoder rule too.

	Matching rules: The Wazuh server matches the decoded logs to predefined Wazuh rules. These rules identify suspicious or malicious command-related activity using patterns and criteria. If a match is identified, the server alerts security.

	Alert generation and storage: Wazuh generates alerts when rules are triggered. Wazuh server log files store alerts for future analysis. These alerts are stored in the /var/ossec/logs/alerts/alerts.log and /var/ossec/logs/alerts/alerts.json file on the Wazuh server.

Now that we have understood how command monitoring works, let’s take a simple use case of monitoring the output of the netstat command on a Linux machine.

Monitoring the output of the netstat command on Linux

netstat is a tool for looking at connection information and can be used to find connections that seem suspicious or unusual. As a threat hunter, you may need to focus on a certain endpoint in the context of any unusual network connections. In order to monitor the output of the netstat command, follow these next steps:

	Installation of net-tools package: Make sure the net-tools package is installed on all the monitored Linux endpoints:
sudo apt install net-tools
This package gives users and administrators a set of command-line networking tools that can be used to do different network-related jobs such as running ifconfig, netstat, route, arp, rarp, and so on.

 	Monitor the netstat command: Append the Logcollector module to monitor the netstat command in the Wazuh agent’s ossec.conf file:
<ossec_config>
<localfile>
 <log_format>full_command</log_format>
<command>netstat -tulpn</command>
<alias>netstat listening ports</alias>
 <frequency>360</frequency>
 </localfile>
</ossec_config>
In the preceding code, we can see the following:
	<log_format>full_command</log_format>: This specifies the log format. In this case, it is set to full_command, indicating that the log consists of the full output.
	<command>netstat -tulpn</command>: This indicates the command to be executed. In this case, the netstat -tulpn command is used to display active network connections, listening ports, and other related information.
	<frequency>360</frequency>: This represents the frequency at which the preceding command will be executed. It is set to execute every 360 seconds (i.e., every 6 minutes).

 	Restart and test: Now, restart the Wazuh agent using the following command and check the Wazuh manager for the alert:
systemctl restart wazuh-agent

 	Visualizing the alert: To visualize the alerts, navigate to the Security alert module on the Wazuh manager and find the alert related to Listened port status (netstat) as shown in the following screenshot:

[image: Figure 6.34 – Wazuh alert about netstat listened ports status having changed]

Figure 6.34 – Wazuh alert about netstat listened ports status having changed

You will notice that we didn’t even create any Wazuh decoder or rule, but we got the alert. It was possible because Wazuh has a built-in ruleset named 0015-ossec_rule.xml, containing a rule for netstat listening, as follows:

<rule id="533" level="7">
<if_sid>530</if_sid>
<match>ossec: output: 'netstat listening ports</match>
<check_diff />
<description>Listened ports status (netstat) changed (new port opened or closed).</description>
<group>pci_dss_10.2.7,pci_dss_10.6.1,gpg13_10.1,gdpr_IV_35.7.d,hipaa_164.312.b,nist_800_53_AU.14,nist_800_53_AU.6,tsc_CC6.8,tsc_CC7.2,tsc_CC7.3,</group>
</rule>
 And if you look at the parent rule, you will find the decoder named ossec as follows:

<group name="ossec,">
<rule id="500" level="0">
<category>ossec</category>
<decoded_as>ossec</decoded_as>
<description>Grouping of ossec rules.</description>
</rule>
</group>
 List of Linux commands for threat hunting and security investigations

As we bring this chapter to a close, let’s quickly review some essential Linux commands for threat hunting and security investigations:

	ss: This is a tool used to dump socket statistics and provide information about network connections. The ss command is useful to identify open ports, check established connections, and gather network information. It is slightly more advanced than netstat.

	ps: Using the ps command, you can see which processes are active on your system. Examining active processes might assist you in locating unauthorized or suspicious software.

	top and htop: These commands provide up-to-date details on programs that are currently executing, and the number of system resources being consumed. They can also be used to spot any unexpected or resource-intensive activity.

	lsof: You can find open files and network connections with the lsof (for list open files) command, which can help you keep an eye on behavior that might be suspicious.

	tcpdump: This is a very powerful packet capture tool that can be used to detect network-based threats.

Summary

This chapter covered important aspects of modern intelligence and threat-hunting tactics. It started with Wazuh’s contribution to proactive threat hunting, then moved on to the importance of analyzing log data, and finally looked at how MITRE ATT&CK mapping improves our understanding of threats. We learned how to use Osquery in Wazuh to effectively perform threat hunting and also learned how to use command monitoring in Wazuh to discover suspicious activities.

In the next chapter, we will learn about the Vulnerability detection and SCA modules of the Wazuh platform. We will learn how to leverage these modules to meet regulatory compliance including PCI DSS, NIST 800-53, and HIPPA.

Part 3: Compliance Management

This part of this book focuses on compliance management using Wazuh and explores vulnerability detection and security configuration assessment modules of the Wazuh platform. You will learn to fulfill some specific requirements of regulatory compliance such as PCI DSS, HIPPA, and NIST 800-53 controls.

This part includes the following chapter:

	Chapter 7, Vulnerability and Configuration Assessment

7

Vulnerability Detection and Configuration Assessment

A security vulnerability is a weakness in the program code or a configuration error in the system, such as Log4Shell, code injection and so on, that allows an attacker to directly and uninvitedly access a system or network. The Hacker-Powered Security Report from HackerOne in 2022 revealed that over 65,000 vulnerabilities were discovered by ethical hackers in 2022 alone—a 21% increase from 2021. We know that a threat is an adverse or malicious occurrence that exploits a vulnerability. So, why are we so bothered by vulnerabilities? Why can’t we work on threats directly? Why can’t we prevent threats from happening? The simplest answer is we can’t control threats due to their rapidly evolving nature. We can only control and manage vulnerabilities, hence, organizations spend their time and resources on patching security vulnerabilities.

There is a related concept called security configuration management. This is the process of identifying misconfigurations of a system’s default settings and, as a result, bringing down the number of security vulnerabilities in the network. Vulnerability monitoring and security configuration management are critical for maintaining regulatory compliance such as PCI DSS, NIST, HIPPA, and so on. Wazuh has built-in capabilities to look after both vulnerability detection and security configuration monitoring.

In this chapter, we will get hands-on with vulnerability detection and security configuration assessment modules of the Wazuh platform. We will also learn how to monitor and maintain regulatory compliance.

In this chapter, we will cover the following topics:

	Introduction to vulnerability detection and security configuration monitoring

	PCI DSS

	NIST

	HIPPA

Introduction to vulnerability detection and security configuration management

Vulnerability scanning or detection and security configuration management are critical to keeping the overall security posture of an organization under control. By discovering and fixing vulnerabilities, vulnerability management reduces the likelihood of cyberattacks. By ensuring that systems are configured securely, security configuration assessment helps to prevent data breaches and unauthorized access. Both strategies strengthen the organization’s defenses, reducing risks and maintaining trust with stakeholders. Wazuh has modules called Vulnerability Detector to fulfill the requirement of vulnerability scanning and Security Configuration Assessment (SCA) to maintain the baseline security configuration of endpoints in the network. Let’s understand how Wazuh can deliver both services with its built-in features.

Vulnerability Detector

The Wazuh Vulnerability Detector module enables the security team to identify operating system and application vulnerabilities on the endpoints being monitored. All valid vulnerabilities are named by Common Vulnerabilities and Exposures (CVE). You can view the list of all the vulnerabilities on the cvedetails.com website and nvd.nist.gov. Both sites are managed by the MITRE Corporation. Wazuh is natively integrated with different vulnerability feed providers, such as Canonical, Debian, Red Hat, Arch Linux, Amazon Linux Advisories Security (ALAS), Microsoft, and the National Vulnerability Database (NVD). Let’s talk about how Wazuh can detect any new vulnerabilities.

How to set up vulnerability detection using Wazuh

Wazuh agents periodically share a list of installed applications from monitored endpoints to the Wazuh server. This inventory of installed applications is stored in local SQLite databases on the Wazuh server.

Let’s find out how vulnerability detection works and what needs to be configured to enable vulnerability detection in Wazuh. The workings of Wazuh’s vulnerability detection can be explained in three steps:

	Step 1: System inventoryA system inventory comprises data related to the software and hardware components of the network infrastructure. For the Vulnerability Detector module of Wazuh to work, the system inventory should be up and running. By default, the system inventory module called Syscollector is enabled on all Wazuh agents.
The following block is the default Syscollector configuration present in the Wazuh agent ossec.conf file:

<!-- System inventory -->
 <wodle name="syscollector">
 <disabled>no</disabled>
 <interval>1h</interval>
 <scan_on_start>yes</scan_on_start>
 <hardware>yes</hardware>
 <os>yes</os>
 <network>yes</network>
 <packages>yes</packages>
 <ports all="no">yes</ports>
 <processes>yes</processes>
 <!-- Database synchronization settings -->
 <synchronization>
 <max_eps>10</max_eps>
 </synchronization>
 </wodle>
Let’s break this down:
	<wodle name="syscollector">: A wodle is a module in Wazuh that allows users to perform syscollector, Command, Osquery, Docker-Listener, and other tasks.
	<interval>1h</interval>: This represents the interval at which the syscollector module runs. In this case, it is set to 1 hour.
	<hardware>yes</hardware>: This talks about monitoring hardware-related information.
	<os>yes</os>: This represents the monitoring of the operating system
	<network>yes</network>: This represents the monitoring of network-related information.
	<packages>yes</packages>: This talks about the monitoring of packages or the software of endpoints.
	<processes>yes</processes>: This talks about the monitoring of all processes of endpoints.
	<synchronization>: This contains information related to database synchronization.
	<max_eps>10</max_eps>: This specifies the maximum number of events per second (EPS) for database synchronization. In this case, it is set to 10 events per second.

 	Step 2: Enabling vulnerability detection on the Wazuh serverWe need to enable the Vulnerability Detector module on the Wazuh server under the ossec.conf file.
Specify yes as the value for the enabled> tag for each operating system you intend to scan and the Vulnerability Detector module. For example, if you want to enable the Vulnerability Detector for the Ubuntu OS, here is what you should do:

<vulnerability-detector>
 <enabled>yes</enabled>
 <interval>5m</interval>
 <min_full_scan_interval>6h</min_full_scan_interval>
 <run_on_start>yes</run_on_start>
 <!-- Ubuntu OS vulnerabilities -->
 <provider name="canonical">
 <enabled>yes</enabled>
 <os>trusty</os>
 <os>xenial</os>
 <os>bionic</os>
 <os>focal</os>
 <os>jammy</os>
 <update_interval>1h</update_interval>
 </provider>
Next, restart the Wazuh manager to apply the changes:
systemctl restart wazuh-manager

 	Step 3: Vulnerability alerts generatedWhen the version of packages in the inventory database matches the vulnerability database (list of CVEs), the package will be labeled as vulnerable and the Vulnerability Detector module will organize all these vulnerabilities against every agent. You can check the vulnerable packages or applications by navigating to the vulnerabilities module of the Wazuh manager, as shown in the following screenshot.

[image: Figure 7.1 – Vulnerable packages or applications in Wazuh manager]

Figure 7.1 – Vulnerable packages or applications in Wazuh manager

Note

When we enable vulnerability detection for the first time, it performs a baseline scan wherein it performs a full scan of the operating system and every package installed. After that, it performs a partial scan where it only scans new packages.

Security configuration assessment

The Security Configuration Assessment (SCA) procedure validates that every system adheres to a predetermined set of regulations concerning configuration settings and authorized application usage.

Here are a couple of examples:

	Verifying that all the unnecessary open ports (TCP or UDP) are disabled or blocked

	Ensuring that default credentials have been modified

These are some of the most common approaches to bringing down the vulnerability surface of endpoints in the network. Wazuh has a built-in SCA module to scan such misconfigured endpoints and recommend remediation steps. The scanning is conducted based on the SCA policy file, which contains a set of rules. SCA policies can check for the existence of files, directories, registry keys/values, running processes, and so on, as illustrated in the following diagram.

[image: Figure 7.2 – Wazuh SCA check]

Figure 7.2 – Wazuh SCA check

Wazuh SCA checks that every Wazuh agent maintains a local database in which it keeps the present status of every SCA check. SCA scan results are shown as alerts whenever a particular check changes its status from its last scan.

The Wazuh team and community have built the SCA rules based on the CIS Benchmark. Center for Internet Security (CIS) is a non-profit, community-driven organization, responsible for building security controls and benchmarks for numerous operating systems and platforms. CIS Controls and CIS Benchmarks are globally recognized best practices for security network infrastructure.

How to set up Wazuh SCA

Wazuh SCA policies are derived from the CIS Benchmark. To configure Wazuh for SCA, start by turning on SCA policies on Wazuh agents. If you have a custom SCA policy, you can push it from the Wazuh manager to all the Wazuh agents. The process is explained as follows:

	Step 1: Enabling SCA policies on Wazuh agentsBy default, Wazuh SCA checks are enabled on the Wazuh agent. However, it uses the default rule present in the /var/ossec/ruleset/sca directory for Linux and the C:\\Program Files (x86)\\ossec-agent\\ruleset\\sca folder for Windows. You can also create a custom SCA script by utilizing a YML file structure with four sections: policy, requirements, variables, and checks, as shown here:

policy:
 id: "rdp_audit"
 file: "sca_rdp_audit.yml"
 name: "System audit for Windows based system"
 description: "Guidance for establishing a secure configuration for Unix based systems."
 references: https://www.cisecurity.org/
 -
requirements:
 title: "Check that the RDP service is not using the default port (3389)"
 description: "Requirements for running the SCA scan against the RDP service on Windows."
 condition: any
 rules:
 - 'r:HKEY_LOCAL_MACHINE\System\CurrentControlSet'
variables:
 $rdp_registry_path: HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Terminal Server\WinStations\RDP-Tcp
checks:
 - id: 3000
 title: "RDP Port: Check that RDP is not running on the default port (3389)"
 description: "The RDP service should not be listening on the default port 3389 for incoming connections."
 rationale: "Changing the default RDP port can help reduce the risk of unauthorized access to the system."
 remediation: "Change the RDP port to a non-standard port for added security."
 compliance:
 - pci_dss: ["2.2.4"]
 - nist_800_53: ["CM.1"]
 condition: all
 rules:
 - 'r:HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Terminal Server\WinStations\RDP-Tcp -> PortNumber -> d3d'
Let’s break this down:
	policy is a required section.
	id, file, name, description, and references are some basic metadata for the preceding SCA script.
	requirements is an optional section.
	variables is again an optional section. It’s important for simplifying the rule creation by creating variables for the path or file name and so on.
	checks is a required section. This is where we define rules and conditions.
	'r:HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Terminal Server\WinStations\RDP-Tcp -> PortNumber: This represents the registry value of the RDP port. In this case, the rule checks whether it is d3d, which means 3389.

 	Step 2: Pushing an SCA policy from the Wazuh managerIf you have any custom SCA policy, you can push SCA files directly from the Wazuh manager to all the agents, but it requires enabling remote command execution on Wazuh agents. Once it is done, we can update our custom SCA policy under the agent.conf file to push the configurations to all Wazuh agents.
To complete the setup, we need to follow these steps:
	Enable remote command execution. Set sca.remote_commands to 1:# echo "sca.remote_commands=1" >> /var/ossec/etc/local_internal_options.conf

	Place the custom SCA policy under the /var/ossec/etc/shared/default folder of the Wazuh manager and set the ownership to wazuh:wazuh:chown wazuh:wazuh /var/ossec/etc/shared/default/sca_rdp_audit.yml

	Add the following configuration block to the agent.conf file:<agent_config>
 <!-- Shared agent configuration here -->
 <sca>
 <policies>
 <policy>etc/shared/sca_rdp_audit.yml</policy>
 </policies>
 </sca>
</agent_config>

We have learned how SCA policies are created and how they are pushed to Wazuh agents. In the next section, we will learn about PCI DSS compliance and how can you use the Wazuh Vulnerability Detector and Security Configuration Assessment modules to meet its requirements.

PCI DSS

Credit card fraud is one of the most common types of bank fraud. A record $34.36 billion was lost to fraud on credit and debit cards in 2022, up almost 5% from the previous year (http://tinyurl.com/4dymuc8d). Payment Card Industry Data Security Standard (PCI DSS) compliance plays an important role because it forces organizations to safely and securely store and process payment card information. This protects both companies and their customers from data breaches and financial losses. For any organization to become PCI DSS compliant, it needs to fulfill 12 requirements drafted by PCI DSS. The Wazuh platform plays a crucial role in fulfilling some of the most critical PCI DSS requirements. In this chapter, we will address some of the important PCI DSS requirements:

	What is PCI DSS compliance?

	Requirements of PCI DSS compliance

	Wazuh use cases for PCI DSS compliance

What is PCI DSS compliance?

PCI DSS compliance was developed by Visa, MasterCard, Discover Financial Services, JCB International, and American Express in 2004 as a set of security standards. This compliance scheme is overseen by the Payment Card Industry Security Standards Council (PCI SSC), with the objective of safeguarding credit and debit card transactions from fraudulent activities and data theft. PCI SSC is an international body that regulates the payment card industry.

PCI DSS is a set of twelve requirements and checklists to ensure that cardholder data is protected and prevent data breaches in organizations. Organizations complying with PCI DSS must meet all 12 requirements, covering the installation and use of firewalls, encryption, endpoint security, network security monitoring, log management, file integrity, access controls, and so on. Let’s learn about each PCI DSS requirement in detail and the corresponding security controls.

Requirements of PCI DSS compliance

There are a total of 12 requirements to achieve PCI DSS certification. Each requirement has a few sub-requirements. I will explain each of the PCI DSS requirements with its main points, security controls, and the tools used to fulfill the corresponding requirements, and what Wazuh capabilities or modules can be used to address the same requirements.

	Requirement #1: Install and maintain a firewall configuration to protect cardholder data	Main Points
	Security Controls and Tools
	Wazuh Capabilities

		Install and maintain a firewall configuration to protect cardholder data.
	Do not use vendor-supplied defaults for system passwords and other security parameters.
	Protect stored cardholder data.

		Firewall
	Next-gen Firewall
	IPS/IDS: Suricata, Snort, Cisco Firepower

		Security Configuration Assessment (SCA) module

Table 7.1 – Security controls and Wazuh modules for PCI DSS Requirement 1

	Requirement #2: Do not use vendor-supplied defaults when it comes to system passwords and other security elements	Main Points
	Security Controls and Tools
	Wazuh Capabilities

		Encrypt transmission of cardholder data across open, public networks.
	Do not store sensitive authentication data after authorization.
	Encrypt stored cardholder data.

		Two-factor authentication: Google Authenticator, Cisco DUO

		Security Configuration Assessment (SCA)
	Vulnerability detection
	Log analysis

Table 7.2 – Security controls and Wazuh modules for PCI DSS Requirement 2

	Requirement #3: Protect cardholder data

	
Main Points

	
Security Controls and Tools

	
Wazuh Capabilities

	

	Keep anti-virus software updated and actively running.

	Develop and maintain secure systems and applications.

	Protect against malware.

	
SSL/TLS

Encryption solutions: BitLocker

	

	Security Configuration Assessment (SCA)

	File integrity monitoring

Table 7.3 – Security controls and Wazuh modules for PCI DSS Requirement 3

	Requirement #4: Encrypt Transmission of Cardholder Data Across Open, Public Networks	Main Points
	Security Controls and Tools
	Wazuh Capabilities

		Use strong encryption over public networks.
	Avoid sending unprotected PANs.

		SSL/TLS Certificates
	Remote Access VPN: Cisco AnyConnect, Palo Alto Global Protect etc

		Security Configuration Assessment (SCA)

Table 7.4 – Security controls and Wazuh modules for PCI DSS Requirement 4

	Requirement #5: Protect all systems against malware and regularly update anti-virus software or programs	Main Points
	Security Controls and Tools
	Wazuh Capabilities

		Use updated anti-virus software.
	Ensure regular updates and scans.

		Endpoint protection or anti-virus software: Carbon Black, Kaspersky, CrowdStrike, and so on.

		Security Configuration Assessment (SCA)
	Malware detection
	Rootkit detection
	Threat intelligence
	Log analysis

Table 7.5 – Security controls and Wazuh modules for PCI DSS Requirement 5

	Requirement #6: Develop and maintain secure systems and applications	Main Points
	Security Controls and Tools
	Wazuh Capabilities

		Identify security vulnerabilities.
	Protect systems from known vulnerabilities.
	Follow secure software development practices.

		Security testing tools: Checkmarx, Veracode SonarQube, OWASP ZAP, Burp-Suite, Sonatype Nexus, Mend SCA

		Security Configuration Assessment (SCA)
	Vulnerability detection
	Log analysis
	Active response,
	File integrity monitoring

Table 7.6 – Security controls and Wazuh modules for PCI DSS Requirement 6

	Requirement #7: Restrict access to cardholder data by business need to know	Main Points
	Security Controls and Tools
	Wazuh Capabilities

		Limit access based on job necessity.
	Implement access control.
	Restrict physical access.

		Identity and access management: Okta, SailPoint, CyberArk

		Security Configuration Assessment (SCA)

Table 7.7 – Security controls and Wazuh modules for PCI DSS Requirement 7

	Requirement #8: Identify and authenticate access to system components	Main Points
	Security Controls and Tools
	Wazuh Capabilities

		Use unique IDs for system access.
	Assign access by job role.

		Network access controls: Cisco ISE, Aruba ClearPass
	Remote access VPN: Cisco AnyConnect, Palo Alto Global Protect, and so on

		Security Configuration Assessment (SCA)
	Log analysis
	File integrity monitoring

Table 7.8 – Security controls and Wazuh modules for PCI DSS Requirement 8

	Requirement #9: Restrict physical access to cardholder data	Main Points
	Security Controls and Tools
	Wazuh Capabilities

		Employ entry controls for physical access.
	Differentiate between personnel and visitors.

		Physical access control system
	Surveillance cameras
	Biometric access system

		Security Configuration Assessment (SCA)
	Log analysis

Table 7.9 – Security controls and Wazuh modules for PCI DSS Requirement 9

	Requirement #10: Track and monitor all access to network resources and cardholder data	Main Points
	Security Controls and Tools
	Wazuh Capabilities

		Monitor all network and data access.
	Implement automated audit trails.

		Security Information and Event Management (SIEM) tools: Splunk SIEM, IBM QRadar, LogRhythm, and so on
	IDS solutions: Snort, Suricata
	Log management: Graylog

		Security Configuration Assessment (SCA)
	Log data analysis
	Active response

Table 7.10 – Security controls and Wazuh modules for PCI DSS Requirement 10

	Requirement #11: Regularly test security systems and processes	Main Points
	Security Controls and Tools
	Wazuh Capabilities

		Conduct regular security tests.
	Perform internal and external vulnerability scans.

		Vulnerability scanning: Tenable, Qualys, Rapid7, and so on
	Penetration testing: Metasploit framework, Burp-Suite

		Security Configuration Assessment (SCA)
	Vulnerability detection
	Log data analysis
	Active response

Table 7.11 – Security controls and Wazuh modules for PCI DSS Requirement 11

	Requirement #12: Regularly test security systems and processes	Main Points
	Security Controls and Tools
	Wazuh Capabilities

		Establish and disseminate a security policy.
	Ensure personnel awareness of security policy.

		Governance risk and compliance software: RSA Archer
	Security awareness platform: KnowBe4, Cofence PhishMe, and so on.

		Security Configuration Assessment (SCA)

Table 7.12 – Security controls and Wazuh modules for PCI DSS Requirement 12

When it comes to Wazuh modules to address most of the PCI DSS requirements, SCA and Vulnerability Detector are the most common Wazuh modules listed in the preceding tables. Let’s understand the use cases of both Wazuh modules to fulfill some of the important PCI DSS requirements as explained in the next section onward.

Vulnerability detection use cases for PCI DSS

As we learned in the Introduction to vulnerability detection and security configuration management section, Wazuh detects vulnerabilities in the applications or packages installed on agents using the Vulnerability Detector module. The vulnerability scanning or checks are performed by integrating vulnerability feeds from Debian, Red Hat, Arch Linux, Amazon Linux Advisories Security (ALAS), Microsoft, the National Vulnerability Database, and many more. Wazuh Vulnerability Detector can be confidently used for Requirement 6 and Requirement 11 of PCI DSS compliance. Use cases for PCI DSS requirements that the vulnerability detection module can fulfill are as follows:

Use case #1: Ensure the detection of and address security vulnerabilities on Windows machines

As per PCI DSS requirement 6, we need to ensure that we detect and address security vulnerabilities. In this use case, we will focus on a Windows machine to detect and address vulnerabilities using a Wazuh module. We can schedule a Vulnerability Detector scan to discover security vulnerabilities. This will require the following steps:

	Requirements

	Set up the syscollector wodle on the endpoint

	Enable Vulnerability Detector on the Wazuh server and restart

	Visualize the alerts

Requirements

To set up the lab environment to run vulnerability detection on a Windows machine, you require the following systems:

	Windows machine (with the Wazuh agent installed)

	Wazuh server

Set up the syscollector wodle on the Windows endpoint

The Wazuh syscollector wodle manages the information related to hardware, applications, the operating system, and so on. To customize our Windows endpoint, add the syscollector wodle in the ossec.config file located at /var/ossec/etc in the Wazuh agent, as shown here:

<wodle name="syscollector">
 <disabled>no</disabled>
 <interval>1h</interval>
 <packages>yes</packages>
</wodle>
 Enable Vulnerability Detector on the Wazuh server and restart

To enable vulnerability detection for the Windows platform, you need to edit the ossec.conf file in the Wazuh server located at /var/ossec/etc. You are required to set <enabled> tab to yes under the Windows OS vulnerabilities section, as shown here:

<vulnerability-detector>
 <enabled>yes</enabled>
 <interval>5m</interval>
 <run_on_start>yes</run_on_start>
 <!-- Windows OS vulnerabilities -->
 <provider name="msu">
 <enabled>yes</enabled>
 <update_interval>1h</update_interval>
 </provider>
 Restart and test the Wazuh manager:

systemctl restart wazuh-manager
 Once the Wazuh manager is finished with the restart, you can see the vulnerability alerts on the Modules > Vulnerabilities > Events tab. The top two vulnerabilities are about the Google Chrome application on the Windows machine.

Note

Once you select Google Chrome Vulnerability CVE-2023-5472, the Wazuh dashboard gives an overview of the alert and the current status of the agent. To know more about all the active CVEs, including information on the affected software, severity rating, links to adversaries, and patches released by the vendor, you can visit cvedetails.com. This website is managed by the SecurityScorecard organization.

[image: Figure 7.3 – Vulnerability detection for Google Chrome CVE-2023-5472]

Figure 7.3 – Vulnerability detection for Google Chrome CVE-2023-5472

Use case #2: Identify, prioritize, and address security vulnerabilities regularly

As per PCI DSS Requirement 11, we need to identify, prioritize, and address security vulnerabilities. You can apply a filter with severity=Critical and you can see all Windows vulnerabilities with critical severity.

[image: Figure 7.4 – Finding critical vulnerabilities with Vulnerability Detector]

Figure 7.4 – Finding critical vulnerabilities with Vulnerability Detector

Security configuration assessment use cases for PCI DSS

Security configuration assessment is an essential Wazuh module, helping you to address multiple PCI DSS requirements. In fact, many of the PCI DSS requirements can be fulfilled by using the Wazuh SCA module. We will address two important PCI DSS requirements using some sample SCA scripts. Please note, both the mentioned use cases are already present in the cis_win2012r2.yml file located at C:\\Program Files (x86)\\ossec-agent\\ruleset\\sca.

Use case #1: Do not display the last user name on interactive login

PCI DSS Requirement 2 requires enabling only necessary services, protocols, and daemons, and removing or disabling all unnecessary functionality. Let’s audit a specific service on Windows Server 2012 R2. We will run an SCA check on whether the account name of the last user to log on to the computer will be displayed on each computer’s respective Windows logon screen. It’s recommended the feature is disabled.

In the Security configuration assessment section, we already covered how to create a custom SCA and the components of each SCA script (policy, requirements, checks). Following is a PCI DSS requirement use case wherein we check if ‘Interactive logon: Do not display last user name’ is set to ‘Enabled’. The SCA script is already built by the Wazuh team and compiled by them in the cis_win2012r2.yml file located at C:\\Program Files (x86)\\ossec-agent\\ruleset\\sca.

One of the sub-requirements under PCI DSS Requirement 2 requires disabling all unwanted services, protocols, daemons, and functionalities. In this use case, we will run an SCA check to ensure ‘Do not display last user name in the interactive Windows logon’ is enabled on the Windows machine. The SCA script has already been built by the Wazuh team and compiled by them in the cis_win2012r2.yml file located at C:\\Program Files (x86)\\ossec-agent\\ruleset\\sca. This will require the following steps:

	Requirements

	Reviewing the SCA policy

	Visualizing alerts

Requirements

In order to complete the use case of performing an SCA check for Do not display last user name on Interactive login, the requirements are as follows:

	Windows machine (with the Wazuh agent installed)

	Wazuh server

Reviewing the SCA policy

We don’t need to make any changes in this step. Wazuh has a built-in SCA policy for ‘Interactive logon: Do not display last user name’, set to ‘Enabled’ under the C:\\Program Files (x86)\\ossec-agent\\ruleset\\sca file as shown here:

- id: 15015
 title: "Ensure 'Interactive logon: Do not display last user name' is set to 'Enabled'"
 description: "This policy setting determines whether the account name of the last user to log on to the client computers in your organization will be displayed in each computer's respective Windows logon screen. Enable this policy setting to prevent intruders from collecting account names visually from the screens of desktop or laptop computers in your organization. The recommended state for this setting is: Enabled."
 rationale: "An attacker with access to the console (for example, someone with physical access or someone who is able to connect to the server through Remote Desktop Services) could view the name of the last user who logged on to the server. The attacker could then try to guess the password, use a dictionary, or use a brute-force attack to try and log on."
 remediation: "To establish the recommended configuration via GP, set the following UI path to Enabled: Computer Configuration\\Policies\\Windows Settings\\Security Settings\\Local Policies\\Security Options\\Interactive logon: Do not display last user name."
 compliance:
 - cis: [«2.3.7.1»]
 - cis_csc: [«13»]
 - pci_dss: [«2.2.3»]
 - nist_800_53: ["CM.1"]
 - gpg_13: ["4.3"]
 - gdpr_IV: ["35.7.d"]
 - hipaa: ["164.312.b"]
 - tsc: ["CC5.2"]
 references:
 - 'CCE-36056-0'
 condition: all
 rules:
 - 'r:HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Policies\System -> DontDisplayLastUserName -> 1'
 Here, we see the following:

	condition is set to all.

	r:HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Policies\System represents the registry value by using the r parameter at the beginning. In our case, we have set the registry value to 1.

Visualizing the alerts

To verify whether our Windows Server 2012 R2 passed or failed the SCA check, you can go to Modules > Security configuration assessment and then select the agent. As per the SCA alert shown here, the check has failed.

[image: Figure 7.5 –SCA check – Do not display last user name on Interactive login]

Figure 7.5 –SCA check – Do not display last user name on Interactive login

In order to ensure our Windows machine passes the SCA check for Ensure ‘Interactive logon. Do not display last user name’ is set to ‘Enabled, we simply navigate to the registry editor of the Windows machine, navigate to the HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Policies\System -> DontDisplayLastUserName registry location and set it to 1.

Use case #2: Disable anonymous enumeration of SAM accounts and shares

According to PCI DSS Requirement 7, businesses should restrict access to the cardholder data environment based on a business need-to-know basis. This simply means that only authorized personnel (engineer/technician/manager) should be able to access cardholder-related data, and that access should be limited based on the job responsibilities and business requirements. One such use case for a Windows machine is to disable the anonymous enumeration of SAM accounts and shares. SAM (short for Security Account Manager) refers to a database file in Microsoft Windows that stores user accounts and passwords. If we disable the anonymous enumeration of SAM accounts, it will ensure that only authorized users get access to the network. Wazuh has already created an SCA script to fulfill this requirement under the cis_win2012r2.yml file located at C:\\Program Files (x86)\\ossec-agent\\ruleset\\sca in the Windows agent.

The following topics will be covered in this use case:

	Requirements

	Reviewing the SCA policy

	Visualizing the alerts

Requirements

In order to complete the use case to perform an SCA check for Disable Anonymous enumeration of SAM accounts and shares, the requirements are as follows:

	Kali Linux (with the Wazuh agent installed)

	Wazuh server

Reviewing the SCA policy

The following example is a use case where we ensure that anonymous users can’t scan SAM accounts and shares. Enabling this policy setting will prevent anonymous users from enumerating network share names and domain account user names on the systems in your environment:

- id: 15031
 title: "Ensure 'Network access: Do not allow anonymous enumeration of SAM accounts and shares' is set to 'Enabled'"
 description: "This policy setting controls the ability of anonymous users to enumerate SAM accounts as well as shares. If you enable this policy setting, anonymous users will not be able to enumerate domain account user names and network share names on the systems in your environment. The recommended state for this setting is: Enabled. Note: This policy has no effect on Domain Controllers."
 rationale: "An unauthorized user could anonymously list account names and shared resources and use the information to attempt to guess passwords or perform social engineering attacks. (Social engineering attacks try to deceive users in some way to obtain passwords or some form of security information)"
 remediation: "To establish the recommended configuration via GP, set the following U path to Enabled: Computer Configuration\\Policies\\Windows Settings\\Security Settings\\Local Policies\\Security Options\\Network access: Do not allow anonymous enumeration of SAM accounts and shares."
 compliance:
 - cis: [«2.3.10.3»]
 - cis_csc: [«16»]
 - pci_dss: [«7.1»]
 - tsc: ["CC6.4"]
 references:
 - 'CCE-36316-8'
 condition: all
 rules:
 - 'r:HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa -> RestrictAnonymous -> 1'
 Here, we see the following:

	condition is set to all.

	r:HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa represents the registry value of HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa. In our case, it is set to 1.

Visualizing the alerts

To verify whether our Windows Server 2012 R2 passed or failed the SCA check, you can go to Modules > Security Configuration Assessment and then select the agent. You can verify whether the SCA check is passed or failed as shown in the following screenshot:

[image: Figure 7.6 – SCA check – Disable Anonymous enumeration of SAM accounts and shares]

Figure 7.6 – SCA check – Disable Anonymous enumeration of SAM accounts and shares

As per the SCA output, the check failed because the registry value of HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa is not set to 1 on our Windows machine. This means an attacker could list account names and shared resources and use that information to perform a social engineering attack.

The remediation is shown in the above diagram and requires you to set the registry value to 1, then our SCA check will be marked as passed.

In this section, we have learned about PCI DSS compliance and its requirements and utilized Wazuh’s Vulnerability Detector and SCA modules to fulfill some of the popular PCI Compliance requirements. In the next section, we will learn about NIST 800-53 controls and how Wazuh modules can be used for some of the NIST 800-53 controls.

NIST 800-53

Over 30,000 cyber security incidents were reported to federal agencies in the United States in the fiscal year 2022-23 – a five percent reduction from the year before (http://tinyurl.com/2s3msja8). All federal agencies need to be compliant with the Federal Information Security Management Act (FISMA). FISMA is a federal law that requires US government agencies to create, document, and implement an information security and protection program. NIST 800-53 is a cybersecurity standard and guidelines that help federal agencies meet the requirements set by FISMA. The NIST 800-53 framework is developed by the National Institute of Standards in Technology. To summarize, the NIST 800-53 framework helps federal agencies to become FISMA compliant. In this section, we will cover the following topics:

	What is the NIST 800-53 framework?

	List of control families in the NIST 800-53 framework

	Vulnerability detection use case

What is the NIST 800-53 framework?

The NIST 800-53 framework is a cybersecurity standard and compliance framework developed by the National Institute of Standards and Technology (NIST). It provides a set of guidelines on the security controls needed to build secure and resilient information systems.

What is the goal of NIST 800-53?

The goals of NIST Special Publication 800-53 are the following:

	Offer a thorough framework: The goal of NIST 800-53 is to provide an extensive and organized framework for choosing and putting security policies in place to safeguard information systems

	Enhance information security: By implementing a set of security controls and best practices, its main objective is to improve the security and privacy of federal information systems and organizations

	Encourage risk management: NIST 800-53 advises businesses to recognize, evaluate, and control cybersecurity risks in accordance with their particular requirements and threat environments

	Facilitate compliance and regulation: It acts as a guide for companies doing business with the United States government and assists firms in conforming to federal rules and compliance obligations, such as FISMA

	Encourage continuous improvement: Organizations can adjust and improve their cybersecurity procedures over time as a result of NIST 800-53’s evolution to address new threats and technology

The NIST 800-53 framework provides a number of different controls across multiple security and system access control families. The controls are then organized into 20 security and control families.

List of control families in the NIST 800-53 framework

NIST 800-53 controls are categorized into 20 different security and control families. Each control family has a unique ID and multiple sub-controls. In the following table, we will focus on a wider control family only. Additionally, I’m adding two additional columns to showcase enterprise tools and Wazuh capabilities (modules) available for each NIST 800-53 control.

	
ID

	
Family Name

	
Examples of Controls

	
Wazuh Capabilities

	
AC

	
Access Control

	
Account management and monitoring; least privilege; separation of duties

	

	Wazuh log data analysis

	
AT

	
Awareness and Training

	
User training on security threats; technical training for privileged users

	

	Log data analysis

	
AU

	
Audit and Accountability

	
Content of audit records; analysis and reporting; record retention

	

	None

	
CA

	
Assessment, Authorization, and Monitoring

	
Connections to public networks and external systems; penetration testing

	

	Vulnerability detector

	File integrity monitoring

	
CM

	
Configuration Management

	
Authorized software policies; configuration change control

	

	SCA

	
CP

	
Contingency Planning

	
Alternate processing and storage sites; business continuity strategies; testing

	

	None

	
IA

	
Identification and Authentication

	
Authentication policies for users, devices, and services; credential management

	

	SCA

	
IP

	
Individual Participation

	
Consent and privacy authorization

	

	None

	
IR

	
Incident Response

	
Incident response training, monitoring, and reporting

	

	Active response

	Threat intelligence

	
MA

	
Maintenance

	
System, personnel, and tool maintenance

	

	Log data analysis

	
MP

	
Media Protection

	
Access, storage, transport, sanitization, and use of media

	

	Log data analysis

	
PA

	
Privacy Authorization

	
Collection, use, and sharing of personally identifiable information (PII)

	

	None

	
PE

	
Physical and Environment Protection

	
Physical access; emergency power; fire protection; temperature control

	

	None

	
PL

	
Planning

	
Social media and networking restrictions; defense-in-depth security architecture

	

	None

	
PM

	
Program Management

	
Risk management strategy; enterprise architecture

	

	None

	
PS

	
Personnel Security

	
Personnel screening, termination, and transfer; external personnel; sanctions

	

	None

	
RA

	
Risk Assessment

	
Risk assessment; vulnerability scanning; privacy impact assessment

	

	None

	
SA

	
System and Services Acquisition

	
System development lifecycle; acquisition process; supply chain risk management

	

	None

	
SC

	
System and Communications Protection

	
Application partitioning; boundary protection; cryptographic key management

	

	Threat intelligence

	Active response

	
SI

	
System and Information Integrity

	
Flaw remediation; system monitoring and alerting

	

	File integrity monitoring

	Active response

Table 7.13 – List of NIST 800-53 framework controls and Wazuh capabilities

Vulnerability detection use cases for NIST 800-53

The Vulnerability Detector module of Wazuh helps to discover the vulnerabilities of different operating systems. As per the List of NIST 800-53 framework controls and Wazuh capabilities table, the Assessment, Authorization, and Monitoring control family, with control ID CA, uses the Vulnerability Detector module of the Wazuh platform.

Use case: Detect vulnerabilities on Debian-based endpoints

In this use case of vulnerability detection for the NIST 800-53 Assessment, Authorization, and Monitoring, control family, we will set up the Wazuh platform to discover vulnerabilities on a Kali Linux machine. Kali Linux is a Debian-based Linux operating system. We will cover the following points in this section:

	Requirements

	Setting up the syscollector wodle on endpoint

	Enabling Vulnerability Detector on the Wazuh server and restarting

	Visualizing the alerts

Requirements

In order to complete the use case to perform vulnerability detection on a Kali Linux machine, the requirements are as follows:

	Kali Linux machine (with the Wazuh agent installed)

	Wazuh server

Setting up the syscollector wodle on endpoint

Wazuh’s syscollector module is responsible for collecting information about the Wazuh agent such as hardware, the operating system, installed applications, packages, and so on. To customize our Debian endpoint, add the syscollector wodle in the ossec.config file located at /var/ossec/etc in the Wazuh agent:

<wodle name="syscollector">
 <disabled>no</disabled>
 <interval>1h</interval>
 <packages>yes</packages>
</wodle>
 Enabling Vulnerability Detector on the Wazuh server and restarting

To enable vulnerability detection for a Debian-based platform, you need to edit the ossec.conf file in the Wazuh server located at /var/ossec/etc. You are required to set <enable> tab to yes under the Debian OS vulnerabilities section, as shown here:

-- Debian OS vulnerabilities -->
 <provider name="debian">
 <enabled>yes</enabled>
 <os allow="Kali GNU/Linux-2023">buster</os>
 <os>bullseye</os>
 <os>bookworm</os>
 <update_interval>1h</update_interval>
 </provider>
 Note the following:

	<os allow="Kali GNU/Linux-2023">buster</os> indicates what operating system should be allowed to be monitored for vulnerability scanning. In this case, it is Kali GNU/Linux-2023

Next, restart the Wazuh manager:

systemctl restart wazuh-manager
 Visualizing the alerts

To visualize the vulnerability events, navigate to the Vulnerabilities module in the Wazuh manager and check for alerts.

[image: Figure 7.7 – Visualizing vulnerability events of Kali Linux]

Figure 7.7 – Visualizing vulnerability events of Kali Linux

SCA use cases for NIST 800-53

The Wazuh SCA module scans monitored endpoints to see whether they fulfill secure configuration and hardening standards. Let’s cover a use case of Wazuh SCA to support NIST 800-53 controls. We can use Wazuh’s SCA module to address multiple NIST 800-53 control requirements. One such use case will be covered in this section.

Use case

We need to change the default SSH port. The Configuration Management (CM) control family talks about creating and enforcing baseline system configurations. There is a sub-control under the CM control family called CM.1 that focuses on changing the default setting for the port or service on the system. In this use case, we will do SSH hardening checks on a Debian machine. By changing the default port, you may be able to decrease the amount of zombie bot attacks that succeed. The SCA script is already built by the Wazuh team and compiled by them in the sca_unix_audit.yml file located at C:\\Program Files (x86)\\ossec-agent\\ruleset\\sca. The following topics will be covered in this use case:

	Requirements

	Reviewing the SCA policy

	Visualizing the alerts

Requirements

In order to complete the use case to perform an SCA check for Change the default SSH port, the requirements are as follows:

	Kali Linux (with the Wazuh agent installed)

	Wazuh server

Reviewing the SCA policy

We are not required to make any changes to this set. Wazuh has already built tons of SCA policies based on CIS Benchmarks for multiple operating systems. The SCA policy named sca_unix_audit.yml will be automatically installed while downloading the Wazuh agent packages. To view the SCA policy for SSH Hardening: Port Should not be 22, you can open the sca_unix_audit.yml file located at /var/ossec/ruleser/sca in the Kali Linux Wazuh agent. You can find the required SCA policy under rule id: 3000, as shown here:

- id: 3000
 title: "SSH Hardening: Port should not be 22"
 description: "The ssh daemon should not be listening on port 22 (the default value) for incoming connections."
 rationale: "Changing the default port you may reduce the number of successful attacks from zombie bots, an attacker or bot doing port-scanning can quickly identify your SSH port."
 remediation: "Change the Port option value in the sshd_config file."
 compliance:
 - pci_dss: [«2.2.4»]
 - nist_800_53: [«CM.1»]
 condition: all
 rules:
 - 'f:$sshd_file -> !r:^# && r:Port && !r:\s*\t*22$'
 Note the following:

	Condition is all

	Rules: 'f:$sshd_file -> !r:^# && r:Port && !r:\s*\t*22$ checks for non-command lines indicating the SSH port, excluding lines representing default port 22

Visualizing the alerts

To visualize the SCA check for SSH Hardening: Port should not be 22, you can navigate to the SCA module on the Wazuh manager and search for SSH Hardening: Port should not be 22. You should see the result as shown in the following screenshot:

[image: Figure 7.8 – Visualizing SCA check for SSH hardening]

Figure 7.8 – Visualizing SCA check for SSH hardening

Note the following:

	Title: SSH Hardening: Port should not be 22 represents the name of the SCA check.

	Target: /etc/ssh/sshd_config is the target file location that SCA will validate for the SSH configuration.

	Result: Failed represents the status of the SCA check. In this case, it is failed.

	Remediation: Change the Port option value in the sshd_config file explains how to modify the target configuration file if the SCA check fails.

	Compliance: nist_800_53 represents the list of regulatory compliance meeting this requirement.

In this section, we have learned about NIST 800-53 controls and use cases of the Vulnerability Detector and SCA modules to fulfill the requirements of NIST 800-53 controls. In the next section, we will learn about HIPAA compliance in detail.

HIPAA

The HHS Office for Civil Rights (OCR) data leak portal says that there were about 295 breaches in the healthcare sector in just the first half of 2023. In the first half of the year, healthcare data leaks were linked to more than 39 million people. The Health Insurance Portability and Accountability Act (HIPAA) is important for many reasons, but the main one is to keep healthcare data private and secure. Wazuh can help health organizations to maintain HIPPA compliance using its in-built capabilities. In this chapter, we will cover the following topics:

	HIPAA compliance rules

	HIPAA security rules

	Vulnerability Detector use cases

	SCA use cases

What is HIPAA compliance?

HIPAA establishes protection standards for sensitive patient health information. HIPAA violations are mainly related to unauthorized access, use, or disclosure of Protected Health Information (PHI).

Any personally identifiable health information that is communicated or maintained electronically, on paper, or orally is considered PHI. Any information pertaining to a person’s past, present, or future health, as well as specifics about medical treatments and payment information that could be used to identify the individual is included in Health Information (HI). PHI examples are as follows:

	Social Security number

	Name

	Dates of birth, death or treatment, and other dates relating to patient care

	Photographs

	Contact information

	Medical record numbers

HIPAA security rules

The HIPAA Security Rule checklist includes criteria for ensuring the confidentiality, integrity, and availability of PHI created, received, maintained, or transmitted electronically (ePHI). The HIPAA security rules consist of five sections:

	General rules: These lay the groundwork for HIPAA compliance, highlighting the importance of privacy and security policies, processes, and worker training

	Administrative safeguards: These concentrate on organizational safeguards for ePHI, such as risk assessments, security management, and employee training

	Physical safeguards: These cover workstation security, facility security measures, and access controls as they relate to the physical security of data centers and equipment

	Technical safeguards: These encompass technical security protocols, including audit controls, encryption, and access controls, which are implemented to safeguard electronic health

	Organizational requirements: These focus on the necessity of contracts, agreements, and oversight of business partners’ HIPAA compliance and are related to requirements while working with them

As per the scope of this book, we will focus on two categories of HIPAA security rules: administrative safeguards and technical safeguards.

Administrative safeguards

The administrative safeguards, which mandate the designation of a security officer in charge of workforce training, risk analysis, risk and vulnerability implementation, IT continuity supervision, and business associate agreements, form the foundation of security rule compliance.

	
Standards

	
Description

	
Wazuh Capabilities

	
Security Management Process

	

	Risk analysis to detect vulnerabilities regularly

	Implementing risk minimization

	

	Vulnerability detection

	Configuration assessment

	
Assign Security Responsibility

	

	Designation of a HIPAA security officer

	They can also serve as privacy officer

	

	
Workforce Security

	

	Implement access control for employees

	Ensure monitoring for role change and termination access

	

	Log data analysis

	File integrity monitoring

	
Information Access Management

	

	Restrict ePHI access to “covered” organizations’ workforces

	Block parent and connected entities from accessing ePHI

	

	File integrity monitoring

	Configuration assessment

	Malware detection

	
Security Awareness and Training

	

	Conduct employee security awareness training

	Include security reminders and password guidance

	

	Log data analysis

	Action response

	
Security Incident Procedures

	

	Implement policies and procedures for incident reporting

	Not limited to cybersecurity incidents

	

	Log data analysis

	Active response

	
Contingency Plan

	

	Emergency response policies, including data backup and recovery

	Routine drill exercise

	
None

	
Periodic Evaluations

	

	Periodic review of policies, procedures, and measures

	

	Configuration assessment

Table 7.14 – Security controls and Wazuh modules for administrative safeguards of HIPAA compliance

Technical safeguards

The HIPAA technical safeguards ensure that people accessing ePHI are who they say they are, do what they should, and correct issues caused by accidental or malicious actions as soon as possible.

	
Standards

	
Description

	
Wazuh Capabilities

	
Access Control

	

	Restrict ePHI access

	Ensure authorized users have access rights

	

	Log data analysis

	Configuration assessment

	
Audit Controls

	

	Implement system activity recording and analysis

	Store ePHI access and modification audit logs

	

	Log data analysis

	
Integrity Controls

	

	Prevent ePHI modification

	Implement data integrity checks

	

	File integrity monitoring

	
Transmission Security

	

	Transmit ePHI encrypted

	Protect electronic communication

	

	File integrity monitoring

	Configuration assessment

	
Person or Entity Authentication

	

	Verify ePHI users’ identities

	Secure system access with rigorous authentication

	

	Log data analysis

Table 7.15 – Security controls and Wazuh modules for technical safeguards of HIPAA compliance

Vulnerability Detector use cases

Vulnerability detection plays a critical role in the security management process standard under administrative safeguards. It is about risk analysis and thorough assessment of the potential risks and vulnerabilities. Wazuh’s Vulnerability Detector module can be used to address multiple HIPAA requirements under administrative and technical safeguards.

Use case: Detect vulnerabilities on Ubuntu endpoints

In this use case of vulnerability detection for HIPAA compliance, we are addressing the Security Management Process standard under administrative safeguards. We will set up the Wazuh platform to discover vulnerabilities on an Ubuntu machine. We will cover the following points in this section:

	Requirements

	Setting up the syscollector wodle on endpoint

	Enabling Vulnerability Detector on the Wazuh server and restarting

	Visualizing the alerts

Requirements

In order to complete the use case to perform vulnerability detection on an Ubuntu machine, the requirements are as follows:

	Ubuntu machine (with the Wazuh agent installed)

	Wazuh server

Setting up the syscollector wodle on endpoint

To customize our Ubuntu endpoint, add the syscollector wodle in the ossec.config file located at /var/ossec/etc in the Wazuh agent, as shown here:

<wodle name="syscollector">
 <disabled>no</disabled>
 <interval>1h</interval>
 <packages>yes</packages>
</wodle>
 Enabling Vulnerability Detector on the Wazuh server and restarting

To enable vulnerability detection for the Ubuntu operating system, you need to edit the ossec.conf file on the Wazuh server located at /var/ossec/etc. You are required to set the <enable> tab to yes under the Ubuntu OS vulnerabilities section, as shown:

<vulnerability-detector>
 <enabled>yes</enabled>
 <interval>5m</interval>
 <run_on_start>yes</run_on_start>
 <provider name="canonical">
 <enabled>yes</enabled>
 <os>bionic</os>
 <update_interval>1h</update_interval>
 </provider>
 </vulnerability-detector>
 Next, restart the Wazuh manager:

systemctl restart wazuh-manager
 Visualizing the alerts

To visualize the vulnerability events, navigate to the Vulnerabilities module in the Wazuh manager and check the alerts, as shown here:

[image: Figure 7.9 – Visualizing the CVE-2021-41617 Ubuntu vulnerability on the Wazuh manager]

Figure 7.9 – Visualizing the CVE-2021-41617 Ubuntu vulnerability on the Wazuh manager

SCA use case

In this use case, we will go through SCA scripts on Ubuntu machines. As we have already learned, the SCA feature conducts scans on the monitored endpoints to ascertain whether they are properly configured and hardened. These scans evaluate the endpoint’s setup by comparing the endpoint’s actual configuration to the settings in a policy file.

Use case: Ensure audit tools are 755 or more restrictive

The HIPAA 164.308(a)(3)(i) and 164.308(a)(3)(ii)(A) sections talk about administrative safeguards. All members of a workforce should have appropriate access to electronic PHI to prevent unauthorized access. It is primarily concerned with controlling and managing access to PHI by employees. Let’s run SCA checks on an Ubuntu 22.04 machine. In this use case, we will check whether auditd and audit logs are protected with sufficient permissions:

	Requirements

	Reviewing the SCA policy

	Visualizing the alerts

Requirements

In order to complete the use case to perform an SCA check to Ensure Audit tools are 755 or more restrictive, the requirements are as follows:

	Ubuntu machine (with the Wazuh agent installed)

	Wazuh server

Reviewing the SCA policy

The SCA policy file called cis_ubuntu22-04.yml gets installed while installing the Wazuh agent package on an Ubuntu machine. This file consists of all the SCA policies related to Ubuntu version 22.04. To view the SCA policy for Ensure audit tools are 755 or more restrictive, you can open the cis_ubuntu22-04.yml file located at /var/ossec/ruleser/sca in the Ubuntu Wazuh agent. You can find the required SCA policy under rule id: 28610, as shown here:

 - id: 28610
 title: "Ensure audit tools are 755 or more restrictive."
 description: "Audit tools include, but are not limited to, vendor-provided and open source audit tools n> rationale: "Protecting audit information includes identifying and protecting the tools used to view and > remediation: "Run the following command to remove more permissive mode from the audit tools: # chmod go-> compliance:
 - cis: [«4.1.4.8»]
 - cis_csc_v7: [«14.6»]
 - cis_csc_v8: [«3.3»]
 - mitre_techniques: [«T1070», «T1070.002», «T1083»]
 - mitre_tactics: [«TA0007»]
 - cmmc_v2.0: [«AC.L1-3.1.1», «AC.L1-3.1.2», «AC.L2-3.1.5», «AC.L2-3.1.3», «MP.L2-3.8.2»]
 - hipaa: ["164.308(a)(3)(i)", "164.308(a)(3)(ii)(A)", "164.312(a)(1)"]
 - pci_dss_3.2.1: ["7.1", "7.1.1", "7.1.2", "7.1.3"]
 - pci_dss_4.0: ["1.3.1", "7.1"]
 - nist_sp_800-53: ["AC-5", "AC-6"]
 - soc_2: ["CC5.2", "CC6.1"]
 condition: none
 rules:
 - 'c:stat -c "%n %a" /sbin/auditctl /sbin/aureport /sbin/ausearch /sbin/autrace /sbin/auditd /sbin/aug>
 Note the following:

	condition is set to none

	The 'c:stat -c "%n %a" /sbin/auditctl /sbin/aureport /sbin/ausearch /sbin/autrace /sbin/auditd /sbin/aug> rule checks for the permissions of auditd and related permissions

Visualizing the alerts

To visualize the SCA check for Ensure audit tools are 755 or more restrictive, you can navigate to the SCA module on the Wazuh manager and search for Ensure audit tools are 755 or more restrictive. You should see the result shown in the following screenshot:

[image: Figure 7.10 – SCA check – Ensure audit tools are 755 or more restrictive]

Figure 7.10 – SCA check – Ensure audit tools are 755 or more restrictive

Note the following:

	Title: Ensure audit tools are 755 or more restrictive represents the name of the SCA check.

	Target: /etc/ssh/sshd_config is the target file location that SCA will validate for the SSH configuration.

	Command: stat -c “%n %a “ /sbin/auditctl /sbin/aureport /sbin/ausearch /sbin/autrace /sbin/auditd /sbin/augenrules: This command displays the file names and their access permissions (in octal format) for specified files in the /sbin directory.

	hipaa: 164.308(a) (3)(1), 164.308(a)(3 (MA).164.312(a)(1): HIPAA requirements under 164.308(a)(3)(i) emphasize conducting risk analysis, while 164.312(a)(1) focuses on implementing access controls to safeguard electronic protected health information (ePHI).

	Result: Passed represents the status of the SCA check.

With this, we have come to the end of the chapter.

Summary

This chapter has shed light on the critical role of the Vulnerability Detector and SCA modules of the Wazuh platform. We have learned how to configure vulnerability detection with different customizations of packages, operating systems, applications, and so on. We also went through the workings of the Wazuh SCA module and how to create a custom SCA script from scratch. We learned how to fulfill requirements of the regulatory compliance framework such as PCI DSS, NIST 800-53 Controls, and HIPAA using the Vulnerability Detector and SCA modules.

In the next chapter, we will cover some important rules and custom Wazuh rules for different security use cases.

8

Appendix

We have now reached the Appendix chapter. Here, we will cover several custom Wazuh rules. Wazuh has already built thousands of rules to enhance its detection capabilities. However, we will write some important custom Wazuh rules to detect PowerShell, Linux Auditd, Kaspersky, and Symon-related alerts. This chapter covers the following topics:

	Custom PowerShell rules

	Custom Auditd rules

	Custom Kaspersky Endpoint Security rules

	Custom Sysmon rules

Custom PowerShell rules

To enhance the Wazuh detection capabilities for Windows machines, we need to integrate some custom PowerShell Wazuh rules. Each rule can be created with specific conditions, severity levels, and other optional configurations. We will cover the following types of rules in this section:

	PowerShell event information

	PowerShell error logs

	PowerShell warning logs

	PowerShell critical logs

PowerShell event information

We can create a custom PowerShell rule to get event information, as shown in the following:

<rule id="200101" level="1">
 <if_sid>60009</if_sid>
 <field name="win.system.providerName">^PowerShell$</field>
 <options>no_full_log</options>
 <group>windows_powershell,</group>
 <description>PowerShell Log Information</description>
 </rule>
 Here, we have the following:

	<if_sid>60009</if_sid>: This represents the list of rule IDs. It will match when a rule ID on the list has previously matched. Rule ID 60009 is a pre-built Wazuh rule for Windows informational events.

	<field name="win.system.providerName">^PowerShell$</field>: The <field> tag is used as a requisite to trigger the rule. It will check for a match in the content of a field extracted by the decoder. In this case, it will check whether the win.system.providerName log field has the PowerShell keyword.

	<group>windows_powershell,</group>: This enforces that the alert will be categorized under a specific group. In this case, it is windows_powershell.

PowerShell error logs

PowerShell error logs typically contain information related to errors, warnings, and other events. To detect such PowerShell error logs, we can create custom Wazuh rules, as shown here:

<rule id="200102" level="7">
 <if_sid>60011</if_sid>
 <field name="win.system.providerName">^Microsoft-Windows-PowerShell$</field>
 <mitre>
 <id>T1086</id>
 </mitre>
 <options>no_full_log</options>
 <group>windows_powershell,</group>
 <description>Powershell Error logs</description>
 </rule>
 Here, we have the following:

	<if_sid>60011</if_sid>: This represents the list of rule IDs. It will match when a rule ID on the list has previously matched. Rule ID 60011 is a pre-built Wazuh rule for Windows error events.

	<field name="win.system.providerName">^Microsoft-Windows-PowerShell$</field>: The <field> tag is used as a requisite to trigger the rule. It will check for a match in the content of a field extracted by the decoder. In this case, it will check whether the win.system.providerName log field has the Microsoft-Windows-PowerShell keyword.

	<group>windows_powershell,</group>: This enforces that the alert will be categorized under a specific group. In this case, it is windows_powershell.

PowerShell warning logs

PowerShell also generates non-critical alerts during script execution. This is helpful for security investigation. To detect such alerts on the Wazuh manager, we can create custom Wazuh rules, as shown here:

<rule id="200103" level="5">
 <if_sid>200101</if_sid>
 <field name="win.system.providerName">^Microsoft-Windows-PowerShell$</field>
 <field name="win.system.severityValue">^WARNING$</field>
 <options>no_full_log</options>
 <group>windows_powershell,</group>
 <description>Powershell Warning Event</description>
 </rule>
 Here, we have the following:

	<field name="win.system.providerName">^Microsoft-Windows-PowerShell$</field>: The <field> tag is used as a requisite to trigger the rule. It will check for a match in the content of a field extracted by the decoder. In this case, it will check whether the win.system.providerName log field has the Microsoft-Windows-PowerShell keyword.

	<field name="win.system.severityValue">^WARNING$</field>: It will check whether the win.system.severityValue log field has the WARNING keyword.

	<group>windows_powershell,</group>: This enforces that the alert will be categorized under a specific group. In this case, it is windows_powershell.

PowerShell critical logs

PowerShell generates critical alerts where there are some severe errors during execution. To detect such alerts, we can create custom Wazuh rules, as shown here:

<rule id="200103" level="12">
 <if_sid>60012</if_sid>
 <field name="win.system.providerName">^Microsoft-Windows-PowerShell$</field>
 <mitre>
 <id>T1086</id>
 </mitre>
 <options>no_full_log</options>
 <group>windows_powershell,</group>
 <description>Powershell Critical EventLog</description>
 </rule>
 Here, we have the following:

	<field name="win.system.severityValue">^WARNING$</field>: It will check whether the win.system.severityValue log field has the WARNING keyword.

	<group>windows_powershell,</group>: This enforces that the alert will be categorized under a specific group. In this case, it is windows_powershell.

This completes some of the important custom PowerShell rules. In the next section, we will cover Wazuh rules for Linux Auditd modules.

Custom Wazuh rules for Auditd

Custom Wazuh rules for Auditd provide a tailored method to enhance Wazuh’s capabilities to detect Linux command executions. This will also help the security team to detect critical security events, track user activities, and ensure regulatory compliance.

Auditd syscall rule

We can create a Wazuh rule to detect any system call (syscall) events, as written here:

 <rule id="200200" level="3">
 <decoded_as>auditd-syscall</decoded_as>
 <description>Auditd: System Calls Event </description>
 <group>syscall,</group>
 </rule>
 Here, we have the following:

	<decoded_as>auditd-syscall</decoded_as>: This represents a requisite to trigger the rule. It will be triggered only if the event has been decoded by a specific decoder. In this case, it is auditd-syscall.

Auditd path

Linux Auditd generates an event for every path record. We will create a Wazuh rule to capture the event for Auditd path messages, as shown:

 <rule id="200201" level="3">
 <decoded_as>auditd-path</decoded_as>
 <description>Auditd: Path Message event.</description>
 <group>path,</group>
 </rule>
 Here, we have the following:

	<decoded_as>auditd-syscall</decoded_as>: This represents a requisite to trigger the rule. It will be triggered only if the event has been decoded by a specific decoder. In this case, it is auditd-path.

Detecting a change in the user environment

To detect any changes in the user environment, we can create a custom Wazuh rule to detect changes in bash_profile, as written here:

<rule id="200202" level="12">
 <if_sid>200201</if_sid>
 <list field="audit.directory.name" lookup="address_match_key">etc/lists/bash_profile</list>
 <description> Auditd: Detects change of user environment</description>
 <group>path,</group>
 </rule>
 Here, we have the following:

	<list field="audit.directory.name" lookup="address_match_key">etc/lists/bash_profile</list>: The <list> tag performs a CDB lookup, and the field attribute is used as a key in the CBD list. In this case, the CDB list audit.directory.name is used and address_match_key is used to search for the IP address and key.

We’ve learned how to build custom Wazuh rules for Linux Auditd modules. In the next section, we will build Wazuh rules for Kaspersky Endpoint Security solutions.

Custom Wazuh rules for Kaspersky Endpoint Security

Kaspersky Endpoint Security is a leading security provider, delivering cloud security, embedded security, threat management, and industrial security. To enhance Wazuh’s capability to detect Kaspersky endpoint alerts, we need to create custom Wazuh rules. In this section, we will cover the following topics:

	Kaspersky’s general rules

	Rules to detect events when a Kaspersky agent restarts

	Rules for quarantine alerts

Kaspersky’s general rules

Kaspersky Endpoint Security generates some general alerts. To detect those alerts, the following Wazuh rule needs to be created:

 <rule id="200300" level="0">
 <if_sid>60009</if_sid>
 <field name="win.system.channel">^Kaspersky Event Log$</field>
 <options>no_full_log</options>
 <description>Kapersky rule for the System channel</description>
 </rule>
 Here, we have the following:

	<field name="win.system.channel">^Kaspersky Event Log$</field>: It will check whether the win.system.channel log field has the Kaspersky Event Log keyword

Rules to detect events when the Kaspersky agent restarts

To detect events when the Kaspersky agent restarts, a custom Wazuh rule needs to be created, as shown here:

<rule id="200301" level="10">
 <if_sid>200300</if_sid>
 <field name="win.system.providerName">klnagent</field>
 <field name="win.system.eventID">1</field>
 <description>Kaspersky Agent Restarted</description>
 </rule>
 Here, we have the following:

	<field name="win.system.providerName">klnagent</field>: It will check whether the win.system.providerName log field has the klnagent<field name="win.system.eventID">1</field> keyword. This represents another field within the Windows event log. This rule triggers if the value of eventID is 1. In Windows event logging, eventID 1 often represents system startup or the start of a logging session or a restart of the Windows Time service.

Rules for quarantine alert

To detect whether a suspicious file has been quarantined, we can a custom Wazuh rule to trigger the alert, as shown here:

<rule id="200302" level="10">
 <if_sid>200300</if_sid>
 <field name="win.system.providerName">klnagent</field>
 <field name="win.system.message" type="pcre2">(?i)^"Quarantine</field>
 <description>Kaspersky Agent - Quarantine Event</description>
 </rule>
 Here, we have the following:

	<field name="win.system.message" type="pcre2">(?i)^"Quarantine</field>: It will check whether the win.system.message log field has the Quarantine.<field name="win.system.message" type="pcre2">(?i)^"Quarantine</field> keyword. This specifies another field within the Windows event log; this time it is the message field. This rule triggers if the message contains the Quarantine keyword. This is done by using a regular expression library called Perl Compatible Regular Expressions (PCRE2).

We have learned how to build custom Wazuh rules to detect Kaspersky Endpoint Security events. In the next section, we will build custom rules to detect Sysmon events.

Custom Wazuh rules for Sysmon

Sysmon – a Windows Sysinternals tool – provides an in-depth view into system-related activities. Sysmon helps us detect a wide range of activities, such as process creation, file creation and modification, registry changes, driver loading, DLL loading, named pipe creation, process access, and DNS query logging. In order to expand Wazuh’s detection capability, we need to build a custom Wazuh rule to generate alerts. There is a total of 30 Sysmon events, as explained on the official Microsoft website (https://learn.microsoft.com/en-us/sysinternals/downloads/sysmon). However, we will cover the most important Sysmon events that are mapped with some specific MITRE ATT&CK techniques. These rules are developed by taking reference from the official GitHub account of SOCFortress – a SaaS-based cybersecurity platform. You can also refer to the list of all the Wazuh rules mapped with MITRE techniques against Sysmon events here: https://github.com/socfortress/Wazuh-Rules/tree/main/Windows_Sysmon. In this section, we will cover some of the important Sysmon events, as mentioned here:

	Sysmon Event 1: Process Creation

	Sysmon Event 2: Process changed a File Creation Time

	Sysmon Event 3: Network Connection

	Sysmon Event 7: Image loaded

	Sysmon Event 10: Process Access

	Sysmon Event 11: File Creation

	Sysmon Event 12: Registry Event (Object create and delete)

	Sysmon Event 13: Registry Event (Value Set)

	Sysmon Event 14: Registry Event (Key and Value Rename)

	Sysmon Event 15: File Creation StreamHash

	Sysmon Event 17: Pipe Creation

	Sysmon Event 18: Pipe Event

	Sysmon Event 22: DNS Request

Sysmon Event 1: Process Creation

A Wazuh rule for the detection of a Process Creation event allows the security team to monitor suspicious unauthorized processes being executed and is written as follows:

<rule id="200401" level="3">
 <if_sid>61603</if_sid>
 <description>Sysmon - Event 1: Process creation $(win.eventdata.description)</description>
 <mitre>
<id>T1546</id>
</mitre>
 <options>no_full_log</options>
 <group>sysmon_event1,windows_sysmon_event1,</group>
 </rule>
 Here, we have the following:

	<if_sid>61603</if_sid>: The <if_sid> tag is used as a requisite to trigger the rule. In this case, rule 200401 will be triggered only when the parent rule 61603 matches. Rule ID 61603 is already created in the Wazuh manager under the filename 0595-win-sysmon_rules.xml.

Sysmon Event 2: Process changed a File Creation Time

The File Creation event of the Sysmon module detects the creation of potentially infected files or unexpected file changes, providing insights into file-based malware threats. The custom Wazuh rule for Sysmon Event 2 can be created as follows:

<rule id="200402" level="3">
 <if_sid>61604</if_sid>
 <field name="win.eventdata.RuleName">^technique_id=T1099,technique_name=Timestomp$</field>
 <description>Sysmon - Event 2: A process changed a file creation time by $(win.eventdata.image)</description>
 <mitre>
 <id>T1099</id>
 </mitre>
 <options>no_full_log</options>
 <group>sysmon_event2,</group>
 </rule>
</group>
 Here, we have the following:

	<if_sid>61604</if_sid>: The <if_sid> tag is used as a requisite to trigger the rule. In this case, rule 200402 will be triggered only when the parent rule 61604 matches. Rule ID 61604 is already created in the Wazuh manager under the filename 0595-win-sysmon_rules.xml.

Sysmon Event 3: Network Connection

Sysmon Event 3 is generated when it detects any unusual or unauthorized network connections. To detect such a network connection, we can create a custom Wazuh rule, as shown here:

<rule id="200403" level="3">
<if_sid>61605</if_sid>
<field name="win.eventdata.RuleName">^technique_id=T1021,technique_name=Remote Services$</field>
<description>Sysmon - Event 3: Network connection by $(win.eventdata.image)</description>
<mitre>
<id>T1021</id>
</mitre>
<options>no_full_log</options>
<group>sysmon_event3,</group>
</rule>
 Here, we have the following:

	<if_sid>61605</if_sid>: The <if_sid> tag is used as a requisite to trigger the rule. In this case, rule 200403 will be triggered only when the parent rule 61605 matches. Rule ID 61605 is already created in the Wazuh manager under the filename 0595-win-sysmon_rules.xml.

Sysmon Event 7: Image loaded

The Image Loaded event is generated when malicious code is injected into a normal process. The Wazuh rule to detect such events is shown here:

<rule id="200404" level="3">
<if_sid>61609</if_sid>
<field name="win.eventdata.RuleName">^technique_id=T1059.001,technique_name=PowerShell$</field>
<description>Sysmon - Event 7: Image loaded by $(win.eventdata.image)</description>
<mitre>
<id>T1059</id>
</mitre>
<options>no_full_log</options>
<group>sysmon_event7,</group>
</rule>
 Here, we have the following:

	<if_sid>61609</if_sid>: The <if_sid> tag is used as a requisite to trigger the rule. In this case, rule 200404 will be triggered only when the parent rule 61609 matches. Rule ID 61609 is already created in the Wazuh manager under the filename 0595-win-sysmon_rules.xml.

Sysmon Event 10: Process Access

The Process Access event helps the security team to detect suspicious activities such as process memory modification or injection, often linked to an advanced attack chain. To visualize such events, the following Wazuh rule needs to be created:

<rule id="200405" level="3">
<if_sid>61612</if_sid>
<field name="win.eventdata.RuleName">^technique_id=T1003,technique_name=Credential Dumping$</field>
<description>Sysmon - Event 10: ProcessAccess by $(win.eventdata.sourceimage)</description>
<mitre>
<id>T1003</id>
</mitre>
<options>no_full_log</options>
<group>sysmon_event_10,</group>
</rule>
 Here, we have the following:

	<if_sid>61612</if_sid>: The <if_sid> tag is used as a requisite to trigger the rule. In this case, rule 200405 will be triggered only when the parent rule 61612 matches. Rule ID 61612 is already created in the Wazuh manager under the filename 0595-win-sysmon_rules.xml.

Sysmon Event 11: File Creation

The File Creation event provides redundancy for file creation monitoring and helps provide maximum coverage for file-based malware threats. A Wazuh rule to detect such events can be created, as shown here:

<rule id="200406" level="3">
<if_sid>61613</if_sid>
<field name="win.eventdata.RuleName">^technique_id=T1546.011,technique_name=Application Shimming$</field>
<description>Sysmon - Event 11: FileCreate by $(win.eventdata.image)</description>
<mitre>
<id>T1546</id>
</mitre>
<options>no_full_log</options>
<group>sysmon_event_11,</group>
</rule>
 Here, we have the following:

	<if_sid>61613</if_sid>: The <if_sid> tag is used as a requisite to trigger the rule. In this case, rule 200406 will be triggered only when the parent rule 61613 matches. Rule ID 61609 is already created in the Wazuh manager under the filename 0595-win-sysmon_rules.xml.

Sysmon Event 12: Registry Event (Object create and delete)

Sysmon Event 12 captures logs when a new registry key or subkey is created or an existing one is deleted. This is useful for detecting unauthorized changes to the registry, which may indicate the presence of file-less malware. A Wazuh rule can be created to detect such events, as shown here:

<rule id="200407" level="3">
<if_sid>61614</if_sid>
<field name="win.eventdata.RuleName">^technique_id=T1546.011,technique_name=Application Shimming$</field>
<description>Sysmon - Event 12: RegistryEvent (Object create and delete) by $(win.eventdata.image)</description>
<mitre>
<id>T1546</id>
</mitre>
<options>no_full_log</options>
<group>sysmon_event_12,</group>
</rule>
 Here, we have the following

	<if_sid>61614</if_sid>: The <if_sid> tag is used as a requisite to trigger the rule. In this case, rule 200407 will be triggered only when the parent rule 61614 matches. Rule ID 61614 is already created in the Wazuh manager under the filename 0595-win-sysmon_rules.xml.

Sysmon Event 13: Registry Event(Value Set)

Sysmon Event 13 is triggered when a new value is set, or an existing value is modified within a registry key. This event is important to detect changes related to malware persistence or privilege escalation techniques. A Wazuh rule can be created to detect such an event, as shown here:

<rule id="200408" level="3">
<if_sid>61615</if_sid>
<field name="win.eventdata.RuleName">^technique_id=T1546.011,technique_name=Application Shimming$</field>
<description>Sysmon - Event 13: RegistryEvent (Value Set) by $(win.eventdata.image)</description>
<mitre>
<id>T1546</id>
</mitre>
<options>no_full_log</options>
<group>sysmon_event_13,</group>
</rule>
 Here, we have the following:

	<if_sid>61615</if_sid>: The <if_sid> tag is used as a requisite to trigger the rule. In this case, rule 200408 will be triggered only when the parent rule 61615 matches. Rule ID 61615 is already created in the Wazuh manager under the filename 0595-win-sysmon_rules.xml.

	<field name="win.eventdata.RuleName">^technique_id=T1546.011,technique_name=Application Shimming$</field>: The <field> tag is used as a requisite to trigger the rule. It will check for a match in the content of a field extracted by the decoder. In this case, it will check whether the win.eventdata.RuleName log field has the technique_id=T1546.011,technique_name=Application Shimming l keywords.

Sysmon Event 14: Registry Event(Key and Value Rename)

Sysmon Event 14 is triggered when a registry key or value is renamed. These techniques can be used by advanced attackers to evade anti-malware detection or disrupt the system. A Wazuh rule can be created to detect such events, as written here:

<rule id="200409" level="3">
 <if_sid>61616</if_sid>
 <field name="win.eventdata.RuleName">^technique_id=T1546.011,technique_name=Application Shimming$</field>
 <description>Sysmon - Event 14: RegistryEvent (Key and Value Rename) by $(win.eventdata.image)</description>
 <mitre>
 <id>T1546</id>
 </mitre>
 <options>no_full_log</options>
 <group>sysmon_event_14,</group>
 </rule>
 Here, we have the following:

	<if_sid>61616</if_sid>: The <if_sid> tag is used as a requisite to trigger the rule. In this case, rule 200409 will be triggered only when the parent rule 61615 matches. Rule ID 61615 is already created in the Wazuh manager under the filename 0595-win-sysmon_rules.xml.

	<field name="win.eventdata.RuleName">^technique_id=T1546.011,technique_name=Application Shimming$</field>: The <field> tag is used as a requisite to trigger the rule. It will check for a match in the content of a field extracted by the decoder. In this case, it will check whether the win.eventdata.RuleName log field has the technique_id=T1546.011,technique_name=Application Shimming l keyword.

Sysmon Event 15: File Creation StreamHash

Sysmon Event 15 captures the file creation activities with the hash of the file. To create a Wazuh rule to detect such events, we can create a custom rule, as shown here:

 <rule id="200410" level="3">
 <if_sid>61617</if_sid>
 <field name="win.eventdata.RuleName">^technique_id=T1089,technique_name=Drive-by Compromise$</field>
 <description>Sysmon - Event 15: FileCreateStreamHash by $(win.eventdata.image)</description>
 <mitre>
 <id>T1089</id>
 </mitre>
 <options>no_full_log</options>
 <group>sysmon_event_15,</group>
 </rule>
 Here, we have the following:

	<if_sid>61617</if_sid>: The <if_sid> tag is used as a requisite to trigger the rule. In this case, rule 200410 will be triggered only when the parent rule 61617 matches. Rule ID 61617 is already created in the Wazuh manager under the filename 0595-win-sysmon_rules.xml.

	<field name="win.eventdata.RuleName">^technique_id=T1089,technique_name=Drive-by Compromise$</field>: The <field> tag is used as a requisite to trigger the rule. It will check for a match in the content of a field extracted by the decoder. In this case, it will check whether the win.eventdata.RuleName log field has the technique_id=T1089,technique_name=Drive-by Compromise l keyword.

Sysmon Event 17: Pipe Creation

Sysmon Event 17 records the creation of named pipes, which allows for inter-process communication on a system. This helps to identify any suspicious activities related to the setting up of named pipes. A custom Wazuh rule can be built to detect such events, as shown here:

<rule id="200411" level="3">
<if_sid>61646</if_sid>
<field name="win.eventdata.RuleName">^technique_id=T1021.002,technique_name=SMB/Windows Admin Shares$</field>
<description>Sysmon - Event 17: PipeEvent (Pipe Created) by $(win.eventdata.image)</description>
<mitre>
<id>T1021</id>
</mitre>
<options>no_full_log</options>
<group>sysmon_event_17,</group>
</rule>
 Here, we have the following:

	<if_sid>61646</if_sid>: The <if_sid> tag is used as a requisite to trigger the rule. In this case, rule 200411 will be triggered only when the parent rule 61646 matches. Rule ID 61646 is already created in the Wazuh manager under the filename 0595-win-sysmon_rules.xml.

	<field name="win.eventdata.RuleName">^technique_id=T1021.002,technique_name=SMB/Windows Admin Shares$</field>: The <field> tag is used as a requisite to trigger the rule. It will check for a match in the content of a field extracted by the decoder. In this case, it will check whether the win.eventdata.RuleName log field has the "technique_id=T1021.002,technique_name=SMB/Windows Admin Shares keyword.

Sysmon Event 18: Pipe Event

Sysmon Event 18 captures additional information about pipes, such as opening, closing, or reading to named pipes, and helps in detecting anomalous behavior in the system. A Wazuh rule can be created to detect such events, as written here:

<rule id="200412" level="3">
<if_sid>61647</if_sid>
<field name="win.eventdata.RuleName">^technique_id=T1021.002,technique_name=SMB/Windows Admin Shares$</field>
<description>Sysmon - Event 18: PipeEvent (Pipe Connected) by $(win.eventdata.image)</description>
<mitre>
<id>T1021</id>
</mitre>
<options>no_full_log</options>
<group>sysmon_event_18,</group>
</rule>
 Here, we have the following

	<if_sid>61647</if_sid>: The <if_sid> tag is used as a requisite to trigger the rule. In this case, rule 200412 will be triggered only when the parent rule 61647 matches. Rule ID 61646 is already created in the Wazuh manager under the filename 0595-win-sysmon_rules.xml.

	<field name="win.eventdata.RuleName">^technique_id=T1021.002,technique_name=SMB/Windows Admin Shares$</field>: The <field> tag is used as a requisite to trigger the rule. It will check for a match in the content of a field extracted by the decoder. In this case, it will check whether the win.eventdata.RuleName log field has the technique_id=T1021.002,technique_name=SMB/Windows Admin Shares keyword.

Sysmon Event 22: DNS Request

Sysmon Event 22 records DNS requests initiated by processes on the machine. This helps us to monitor requests to potentially malicious servers or commands and control centers. A Wazuh rule to detect such DNS requests can created, as shown:

<rule id="200413" level="3">
<if_sid>61644</if_sid>
<description>Sysmon - Event 22: DNS Request by $(win.eventdata.image)</description>
<mitre>
<id>T1071</id>
</mitre>
<options>no_full_log</options>
<group>sysmon_event_22,</group>
</rule>
 Here, we have the following:

	<if_sid>61644</if_sid>: The <if_sid> tag is used as a requisite to trigger the rule. In this case, rule 200412 will be triggered only when the parent rule 61644 matches. Rule ID 61644 is already created in the Wazuh manager under the filename 0595-win-sysmon_rules.xml.

We’ve learned how to create custom Sysmon rules for Wazuh. We can create multiple granular rules under each category of Sysmon events. To explore a list of all the custom Sysmon rules for Wazuh, you can visit the official SOCFotress GitHub repository here: https://github.com/socfortress/Wazuh-Rules/tree/main/Windows_Sysmon.

Summary

In this chapter, we have covered some of the important custom Wazuh rules for different types of events, such as PowerShell events, Linux Auditd events, Kaspersky endpoint protection events, and Sysmon events. In the next chapter, we will cover a list of important terms related to the Wazuh platform.

9

Glossary

This chapter features a glossary of some of the important topics related to the Wazuh platform and its peripheral technologies. This chapter serves as a comprehensive guide to learning fundamentals of Wazuh’s technical landscape. Whether you are an experienced security professional or a newcomer to the security landscape, this chapter will provide you with a useful summary of Wazuh’s capabilities and its related concepts.

The glossary is covered in alphabetical order.

A

	Active response: Active response is a Wazuh module that automates response actions based on specific triggers. This helps security professionals to manage security incidents in a prompt and effective manner. Some actions that can be executed include a firewall drop or block, account block, deleting malicious files, blocking a suspicious network connection, and isolating an infected endpoint. To learn more, check out the following links:	Wazuh official documentation on active response: https://documentation.wazuh.com/current/user-manual/capabilities/active-response/index.html
	Configuring active response for malicious files: https://wazuh.com/blog/detecting-and-responding-to-malicious-files/
	Integrating Suricata with Wazuh for a network attack response: https://wazuh.com/blog/responding-to-network-attacks-with-suricata-and-wazuh-xdr/

	AWS instances: An AWS instance is a virtual machine that runs cloud-based applications on the AWS platform. The cloud-based infrastructure lets you do things without having to buy a computer or server. AWS instances come in various types, such as general-purpose, compute-optimized, memory-optimized, and storage-optimized. To learn more, visit the following websites:	Amazon EC2 instances – AWS documentation: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Instances.html
	AWS EC2 instance types – AWS: https://aws.amazon.com/ec2/instance-types/

B

	Brute-force attack: Brute-force attacks are a type of hacking technique where passwords, login credentials, and encryption keys are cracked through a process of trial and error. It is a straightforward yet effective strategy for getting unauthorized access to user accounts, company networks, and systems. Until they discover the right login details, the hacker attempts a variety of usernames and passwords, frequently testing a large range of combinations on a machine. To learn more, check out the following links:	Brute-force attack: https://www.crowdstrike.com/cybersecurity-101/brute-force-attacks/
	Brute-force attack by OWASP: https://owasp.org/www-community/attacks/Brute_force_attack

C

	CDB lists: CDB (Contant Database) lists in Wazuh are text files that can hold user lists, file hashes, IP addresses, and domain names. You can also store other things in them, such as network ports. You can use CDB lists to make “white” or “black” lists of users, files, IP addresses, or domain names. By searching to see whether their signatures are in a CDB list, they can also be used to find malicious files. To learn more, visit the following websites:	CDB lists and threat intelligence: https://documentation.wazuh.com/current/user-manual/capabilities/malware-detection/cdb-lists-threat-intelligence.html
	Using CDB lists: https://documentation.wazuh.com/current/user-manual/ruleset/cdb-list.html

	ClamAV: ClamAV is an open source antivirus software that can find and get rid of malware, viruses, and other online activities that are harmful to your system and database. It’s compatible with Windows, Linux, and Mac devices. To learn more, visit the following websites:	ClamAV – official documentation: https://docs.clamav.net/
	ClamAV log collection on Wazuh: https://documentation.wazuh.com/current/user-manual/capabilities/malware-detection/clam-av-logs-collection.html

	Command monitoring: Command monitoring allows you to monitor several things, such as how much disk space is used, the average load, changes in network listeners, and running processes. Command monitoring works on all endpoints where the Wazuh agent is installed. To learn more, visit the following websites:	Wazuh – command monitoring: https://documentation.wazuh.com/current/user-manual/capabilities/command-monitoring/index.html
	Monitoring root actions on Linux using Auditd and Wazuh: https://wazuh.com/blog/monitoring-root-actions-on-linux-using-auditd-and-wazuh/

	Compliance (regulatory): Compliance (i.e., security compliance) is the process that businesses use to make sure they follow rules, standards, and frameworks for security. The purpose of security compliance is to follow the law, government rules, best practices in business, and agreements made in writing. Some of the popular security compliances are as follows:	Payment Card Industry Data Security Standard (PCI DSS)
	Health Insurance Portability and Accountability Act (HIPAA)
	Federal Information Security Management Act (FISMA)
	Sarbanes-Oxley Act (SOX)
	EU’s General Data Protection Regulation (GDPR)

To learn more, check out the following links:
	What is PCI DSS compliance?: https://www.imperva.com/learn/data-security/pci-dss-certification/
	Using Wazuh for GDPR compliance: https://documentation.wazuh.com/current/compliance/gdpr/index.html

	Container: Containers keep software separate from its different environments, such as the development and staging environments. They also help teams that use different software on the same infrastructure work together more smoothly. A container image is a lightweight, standalone piece of software that can be run on an application. It has all the code, runtime, system tools, system libraries, and settings that a program needs to run. To learn more, check out the following links:	What are containers?: https://www.ibm.com/topics/containers
	Container security by Wazuh: https://documentation.wazuh.com/current/getting-started/use-cases/container-security.html

D

	Docker: Docker is a free tool for making apps, sending them out, and running them. Docker helps you to keep your applications separate from your infrastructure, which speeds up the delivery of software. You can manage your infrastructure with Docker in the same way you run your apps. To learn more, check out the following links:	Docker official documentation: https://docs.docker.com/
	Monitoring Docker events on Wazuh: https://documentation.wazuh.com/current/proof-of-concept-guide/monitoring-docker.html

E

	Endpoint: An endpoint is a device or node in a network, such as a computer or server, which is monitored by Wazuh agents for security purposes. You can learn more about endpoint from the following link:	What is an endpoint?: https://www.paloaltonetworks.com/cyberpedia/what-is-an-endpoint

F

	File Integrity Monitoring (FIM): FIM is an IT security procedure and practice that examines and verifies application software, databases, and operating system (OS) files to see whether they have been altered or corrupted. If FIM finds that files have been changed, updated, or corrupted, it can send out alerts to ensure further investigation, and if necessary, remediation takes place. To learn more, check out the following links:	What is FIM?: https://www.crowdstrike.com/cybersecurity-101/file-integrity-monitoring/
	Setting up FIM on Wazuh: https://documentation.wazuh.com/current/getting-started/use-cases/file-integrity.html

G

	GDPR compliance: The General Data Protection Regulation (GDPR) is a digital privacy legislation about digital privacy that tells businesses how to gather, use, and keep personal data about people who live in the European Union (EU). This law also controls the sending of personal data outside of the EU. By granting users (often referred to as data subjects) authority over the collection, sharing, and use of their personal data, GDPR compliance enhances privacy rights. To learn more, check out the following links:	What is the GDPR?: https://www.cloudflare.com/learning/privacy/what-is-the-gdpr/
	Using Wazuh for GDPR compliance: https://documentation.wazuh.com/current/compliance/gdpr/index.html

	GitHub: GitHub uses Git, an open source version control software, to allow multiple people to make changes to web pages at the same time. This makes it possible for teams to collaborate in real time while creating and editing the content for their websites. To learn more, check out the following links:	What is GitHub and how to use it?: https://www.geeksforgeeks.org/what-is-github-and-how-to-use-it/
	Using Wazuh to monitor GitHub: https://documentation.wazuh.com/current/cloud-security/github/index.html

H

	HIPAA compliance: HIPAA compliance is a set of standards and protocols that healthcare organizations must follow to protect the privacy and security of sensitive patient data. If an organization deals with protected health information (PHI), it need to make sure that it follow HIPAA rules about physical, network, and process security. To learn more, check out the following links:	What is HIPPA compliance?: https://www.proofpoint.com/us/threat-reference/hipaa-compliance
	Using Wazuh for HIPPA compliance: https://documentation.wazuh.com/current/compliance/hipaa/index.html

I

	IDS (Intrusion Detection System): An IDS is a network security solution that checks network data and devices for known malicious activity, unusual activity, or security policy violations. When there are known or potential threats, an IDS detects and alerts a central security tool, such as a security information and event management (SIEM) system. To learn more, check out the following links:	What is IDS?: https://www.geeksforgeeks.org/intrusion-detection-system-ids/
	Network IDS integration with Wazuh: https://documentation.wazuh.com/current/proof-of-concept-guide/integrate-network-ids-suricata.html

J

	JSON (JavaScript Object Notation): JSON is a simple text-based format for sending and storing info. When data is sent from a computer to a web page, JSON is often used. It is a data serialization format that enables consistent data transmission between many platforms, applications, and systems. To learn more, check out the following link:	What is JSON?: https://www.w3schools.com/whatis/whatis_json.asp

K

	Kubernetes: Kubernetes is a portable, expandable, open source platform that makes automation and declarative configuration easier for managing containerized workloads and services. In a production setting, you need to keep an eye on the containers that run the apps and make sure they don’t go down. Containers are a good way to bundle and run your applications. To learn more, check out the following links:	What is Kubernetes?: https://cloud.google.com/learn/what-is-kubernetes
	How to deploy Wazuh on Kubernetes?: https://documentation.wazuh.com/current/deployment-options/deploying-with-kubernetes/index.html

L

	Log data collection: Log data collection is the process of getting logs from different network sources and putting them all in one place. Collecting log data helps security teams maintain compliance, identify and remediate threats, and find failures in applications and other security problems.

	To learn more, check out the following link:	How log data collection works: https://documentation.wazuh.com/current/user-manual/capabilities/log-data-collection/how-it-works.html

M

	Malware IOC (Indicators of Compromise): This is forensic data that shows that an attack has been executed in an organization’s network or endpoint. IOCs can be IP addresses, domains, hashes of malware files, and so on. An IOC can also include metadata about a file, such as author, the date of creation, and the file version. To learn more, check out the following links:	What are IOCs?: https://www.crowdstrike.com/cybersecurity-101/indicators-of-compromise/
	Malware detection using Wazuh: https://documentation.wazuh.com/current/user-manual/capabilities/malware-detection/index.html

	MITRE ATT&CK: A MITRE ATT&CK (MITRE Adversarial Tactics, Techniques, and Common Knowledge) is a framework that assists organizations in determining their security readiness and locating vulnerabilities in their defenses. The MITRE ATT&CK framework offers an exhaustive taxonomy of adversary techniques and tactics and is characterized by its level of specificity. It is built on observations of cybersecurity threats in the real world. To learn more, check out the following links:	What is the MITRE ATT&CK framework?: https://www.ibm.com/topics/mitre-attack
	Enhancing Wazuh’s detection with the MITRE ATT&CK framework: https://documentation.wazuh.com/current/user-manual/ruleset/mitre.html

N

	NIST 800-53 framework: The National Institute of Standards and Technology (NIST) 800-53 is a cybersecurity standard and compliance framework. It is a set of guidelines that specify the bare minimum-security controls for all federal information systems in the United States, excluding those that are critical to national security. To learn more, check out the following links:	What is the NIST SP 800-53 framework?: https://www.forcepoint.com/cyber-edu/nist-sp-800-53
	Wazuh for compliance with NIST 800-53: https://documentation.wazuh.com/current/compliance/nist/index.html

O

	OpenSearch: OpenSearch is an open source search engine and analytics suite, used for log analytics, website information search, and real-time application monitoring. OpenSearch is a fork of Elasticsearch and Kibana, launched in 2021. It is licensed under the Apache 2.0 license and is Lucene-based. OpenSearch provides functionality for searching using keywords, multiple languages, natural language, and synonyms. To learn more, check out the following links:	OpenSearch official documentation: https://opensearch.org/docs/latest/
	Wazuh and OpenSearch integration: https://documentation.wazuh.com/current/integrations-guide/opensearch/index.html

	OSSEC: OSSEC is an open-source host-based intrusion detection system (HIDS) that’s compatible with multiple operating systems. It is a scalable program that checks logs, makes sure files are correct, keeps an eye on the Windows system, enforces policies centrally, finds rootkits, sends real-time alerts, and many more. To learn more, check out the following links:	What is OSSEC?: https://www.ossec.net/ossec-downloads/
	How to migrate from OSSEC to Wazuh: https://wazuh.com/blog/migrating-from-ossec-to-wazuh/

	Osquery: Osquery is a tool used to query and monitor systems using SQL-like syntax. It works with Windows, Linux, and macOS. With Osquery, you can query thousands of system data points and receive structured data back. Because it can return data in machine-readable formats such as JSON, it is useful for integrating with your existing security or monitoring tools and scripts. To learn more, check out the following links:	What is Osquery?: https://www.uptycs.com/blog/osquery-what-it-is-how-it-works-and-how-to-use-it
	Threat hunting using Osquery and Wazuh: https://documentation.wazuh.com/current/getting-started/use-cases/threat-hunting.html

P

	PCI DSS compliance: PCI DSS (Payment Card Industry Data Security Standard) compliance is a set of requirements that talks about how an organization should store, process, or transmit credit card information to achieve a secure environment. It’s an international security standard that helps prevent fraud and data breaches while providing consumers with a baseline degree of protection. PCI DSS compliance is not a one-time activity; it’s a continuous process that involves assessing infrastructure that handles cardholder data, analyzing the system vulnerabilities, and remediating the exploitable vulnerabilities to secure the network.

	To learn more, check out the following links:	What is PCI DSS compliance?: https://www.techtarget.com/searchsecurity/definition/PCI-DSS-Payment-Card-Industry-Data-Security-Standard
	Using Wazuh for PCI DSS compliance: https://documentation.wazuh.com/current/compliance/pci-dss/index.html

	PowerShell: Built on.NET, PowerShell is a task-based command-line shell and scripting language that saves you a lot of time and effort, and it can also help you to improve the efficiency of your IT infrastructure. To learn more, check out the following links:	What is PowerShell?: https://learn.microsoft.com/en-us/powershell/scripting/overview?view=powershell-7.4
	How to use Wazuh to monitor Sysmon events: https://wazuh.com/blog/using-wazuh-to-monitor-sysmon-events/

R

	Rootkit: A rootkit is a type of software that allows hackers to gain unauthorized access to a network or machine while hiding its presence. Rootkits can be difficult to discover and hide for a very long period. To learn more, check out the following links:	What is Rootkit?: https://www.fortinet.com/resources/cyberglossary/rootkit
	Rootkit detection using Wazuh: https://documentation.wazuh.com/current/user-manual/capabilities/malware-detection/rootkits-behavior-detection.html

S

	SCA Policy: In the Wazuh platform version 3.9.0, the SCA module was added. It offers unique tests that are applied to hardened systems. All platforms supported by Wazuh (Linux, macOS, Windows, Solaris, AIX, and HP-UX) can run the module. The SCA tool gives you a way to read and run configuration checks that are written in the YAML format. Also, having policies set up front makes it easier to follow rules such as HIPAA or PCI DSS, as well as guidelines such as those provided by the CIS (Center for Internet Security). To learn more, check out the following link:	SCA by Wazuh: https://documentation.wazuh.com/current/user-manual/capabilities/sec-config-assessment/index.html

	SSH (Secure Shell): The SSH protocol is a protocol for securely sending remote commands to a computer over an unsecured network. SSH encrypts and verifies device connections using cryptography. To learn more, check out the following link:	What is SSH?: https://www.geeksforgeeks.org/introduction-to-sshsecure-shell-keys/

	Syslog: Syslog is used to send informational, analytical, and debugging messages, as well as general informational, analysis, and debugging messages. You can use it to keep track of different kinds of events, such as when a system is turned off, an unstable internet connection, system restarts, or the change of port status. To learn more, check out the following links:	How does syslog work?: https://www.solarwinds.com/resources/it-glossary/syslog
	Configuring syslog on the Wazuh server: https://documentation.wazuh.com/current/user-manual/capabilities/log-data-collection/syslog.html

	System call: A system call is a programmatic method by which an operating system software runs on a computer and asks the kernel for a service. Programs can communicate with the operating system via system calls. When computer software asks the kernel of the operating system for anything, it initiates a system call. Through the Application Program Interface (API), system calls give user programs access to the operating system’s services. To learn more, check out the following links:	What are system calls?: https://www.geeksforgeeks.org/introduction-of-system-call/
	Monitoring system calls using Wazuh: https://documentation.wazuh.com/current/user-manual/capabilities/system-calls-monitoring/index.html

	System inventory: The system inventory module of Wazuh collects data regarding a monitored endpoint. Details about the hardware, operating system, network, and running processes are all included in this data. To learn more, check out the following link:	Wazuh’s system inventory: https://documentation.wazuh.com/current/user-manual/capabilities/system-inventory/index.html

T

	Threat intelligence: Threat intelligence is data that is gathered, processed, and studied to figure out why a threat actor does what they do, who they attack, and how they do it. Threat intelligence lets us make faster, smarter data-based security decisions. It also changes the way threat actors act, from being reactive to being proactive, in the fight against them. To learn more, check out the following links:	What is cyber threat intelligence?: https://www.crowdstrike.com/cybersecurity-101/threat-intelligence/
	Building IOC files for threat intelligence with Wazuh: https://wazuh.com/blog/building-ioc-files-for-threat-intelligence-with-wazuh-xdr/

	Trust Services Criteria (TSC) compliance: The Assurance Services Executive Committee (ASEC) of the AICPA developed the Trust Services Criteria (TSC), which are standards for evaluating control objectives. These standards include measures for the safety, availability, processing integrity, privacy, and confidentiality of all of an organization’s information and systems. These measures also relate to more specific parts of the entity, such as a division, a process, or the type of information that the entity uses. To learn more, check out the following links:	What is the TSC?: https://drata.com/glossary/trust-services-criteria
	Using Wazuh for TSC compliance: https://documentation.wazuh.com/current/compliance/tsc/index.html

V

	Vulnerability: An information system vulnerability is a weakness or an opportunity that hackers can take advantage of to get into a computer system without consent. Vulnerabilities make systems less strong and allow hackers to attack them. To learn more, check out the link below:	What is vulnerability?: https://www.upguard.com/blog/vulnerability

	Vulnerability Detector module: The Wazuh Vulnerability Detector module helps users find weaknesses in an operating system and apps that are installed on the endpoints that are monitored. The module works by integrating Wazuh natively with external vulnerability feeds from Microsoft, Amazon Linux Advisories Security (ALAS), Canonical, Debian, Red Hat, Arch Linux, and the National Vulnerability Database (NVD). To learn more, check out the following link:	How vulnerability detection works: https://documentation.wazuh.com/current/user-manual/capabilities/vulnerability-detection/

	Windows Defender: Windows Defender is a built-in antivirus and antimalware solution in Microsoft Windows. It scans for malware on a computer and looks for any unusual behavior in the system. To learn more, check out the following link:	Windows Defender logs collection: https://documentation.wazuh.com/current/user-manual/capabilities/malware-detection/win-defender-logs-collection.html

Y

	YARA: YARA is a tool that helps malware analysts to detect and classify malware samples. YARA rules are instructions that describe what a certain kind of malware or threat looks like. YARA rules check files and networks for patterns, scripts, and signatures that show the presence of malicious software. To learn more, check out the following links:	What is YARA?: https://virustotal.github.io/yara/
	Detecting malware using YARA integration: https://documentation.wazuh.com/current/proof-of-concept-guide/detect-malware-yara-integration.html

Index

As this ebook edition doesn't have fixed pagination, the page numbers below are hyperlinked for reference only, based on the printed edition of this book.

A

abnormal user login attempts 133

Abush.ch

reference link 82

active response 275

reference link 275

Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK) 13, 88

AlienVault OTX

reference link 82

Amazon EC2 instances

reference link 276

Amazon Linux Advisories Security (ALAS) 222, 234, 285

analyzers 89

Apache Cassandra 91

Application Program Interface (API) 284

Assurance Services Executive Committee (ASEC) 285

ATT&CK framework

procedures 195

ATT&CK Navigator 179, 195

Auditd path 261

Auditd syscall rule 260

automated threat intelligence 84

designing 85, 86

workings 90

AWS instances 276

B

Blocklist.de

reference link 82

brute-force attack 276

reference link 276

C

Center for Internet Security (CIS) 13, 226, 283

checksum database (CDB) list

chief information security officers (CISOs) 82

ClamAV 277

reference link 277

command line interface (CLI) 22

Command module 213

command monitoring 181, 212, 277

configuration 213

data forwarding 214

execution, by Wazuh agent 214

Wazuh server analysis and alert generation 214

Common Vulnerabilities and Exposures (CVE) 222

compliance 277

Computer Antivirus Research Organization (CARO) 62

Computer Emergency Response Teams (CERTs) 145, 179

Computer Security Incident Response Teams (CSIRTs) 145

Configuration Management (CM) 247

constant database (CDB) list 16, 47, 55, 276

alerts, visualizing 59

reference link 16

testing 58

Wazuh server, setting up 56-58

Windows endpoint, configuring 58

working 56

container 278

reference link 278

context layer, MISP 86

correlation layer, MISP 86

Cortex 87-90, 107

analyzers 89

integrating, with MISP 108, 109

reference link 122

responders 89

TheHive, integrating 107

cross-site request forgery (CSRF) 33

cross-site scripting (XSS) 33

custom PowerShell rules 257

PowerShell critical logs 260

PowerShell error logs 258, 259

PowerShell event information 258

PowerShell warning logs 259

custom Wazuh rules for Auditd 260

Auditd path 261

Auditd syscall rule 260

user environment change, detecting 261

custom Wazuh rules for Kaspersky Endpoint Security 262

event detection rule 262, 263

general rules 262

quarantine alert rule 263

custom Wazuh rules for Sysmon 263

DNS Request 272

File Creation event 267, 268

File Creation StreamHash 270

File Creation Time event 265

Image Loaded event 266

Network Connection event 265

Pipe Creation event 271

Pipe Event 271, 272

Process Access event 267

Process Creation event 264

reference link 273

Registry Event (Key and Value Rename) 269, 270

Registry Event (object create and delete) 268

Registry Event (Value Set) 268, 269

cyber threat Intelligence 82

D

Damn Vulnerable Web Application (DVWA) 4

used, for testing web-based attacks 33

data layer, MISP

attributes 86

events 86

objects 86

Debian-based endpoints

vulnerability detection 245, 246

decoders 14

decoders syntax

reference link 15

deployment options

Docker container 12

Kubernetes 12

servers 11

VM image 12

digital forensic and incident response (DFIR) analysts 204

Distributed Denial of Service (DDoS) attack 6, 151

Docker

reference link 278

Docker Compose 129

Docker container 12

Docker image

reference link 12

E

Elasticsearch 91

electronic protected health information (ePHI) 256

Emerging Threats (ET) 6

endpoint 278

reference link 278

endpoint detection and response (EDR) 153, 178

endpoint protection/antivirus software 149

end user license agreement (EULA) 71

European Institute for Computer Antivirus Research (EICAR) 62

extended detection and response (XDR) 9

F

Federal Information Security Management Act (FISMA) 242, 277

Federally Funded Research and Development Centers (FFRDCs) 179

feed layer, MISP 87

file integrity monitoring (FIM) 47, 49, 278

configuring, on Ubuntu machine 50

reference link 278

requisites 51

testing, on Ubuntu machine 50

file integrity monitoring (FIM), requisites

alerts, visualizing 52, 53

Wazuh agent, restarting 52

Wazuh agent, setting up on ubuntu machine 51, 52

fileless malware 68

detecting, with Sysmon 68

testing 77

fileless malware attack

access, gaining 69

credentials, stealing 69

data, exfiltrating 69

persistence, maintaining 69

working 69

FIM module

used, for detecting suspicious files in PHP server 53

G

galaxies layer, MISP 87

GDPR compliance 279

General Data Protection Regulation (GDPR) 277, 279

reference link 279

GitHub 279

reference link 279

graphical user interface (GUI) 22

groups 16

H

Health Information (HI) 249

Health Insurance Portability and Accountability Act (HIPAA) 249, 277

HIPAA compliance 279

reference link 279

rules 249

HIPAA security rules 250

administrative safeguards 250

technical safeguards 251

host-based IDS (HIDS)

host-based intrusion detection system (HIDS) 4, 11, 282

htop command 217

hypothesis-based investigation 178

I

incident enrichment

with TheHive 145-147

incident response automation 155

incident response (IR) 151

incident response plan (IRP) 155

incident response process 152

index 10

Indicator of Compromise (IOC) 83, 128, 181

indicators of attack (IoA) 179

indicators of vulnerability (IOCs) 82

information sharing and analysis centers (ISACs) 179

inline deployment at network perimeter 6

intelligence-based hunting 179

intrusion detection and prevention system (IDS/IPS) 5, 125

intrusion detection system (IDS) 3, 4, 153, 280

reference link 280

types 4, 5

intrusion prevention system (IPS) 3

J

JavaScript Object Notation (JSON) 280

reference link 280

JSON Web Token (JWT) 141

K

Kaspersky Endpoint Security 262

Kernel Modules and Extensions (MITRE ATT&CK ID T1215) 208, 209

Kubernetes 12, 280

reference link 280

L

LAMP stack 96

Linux commands, for threat hunting and security investigations

htop 217

lsof 217

ps 217

ss 217

tcpdump 217

top 217

Local Job Scheduling (MITRE ATT&CK ID T1168) 208

Logcollector module 213

log data analysis 180, 181, 190, 191

log data collection 185, 280

reference link 280

wazuh-alerts 185

wazuh-archives 186-188

wazuh-monitoring 189, 190

wazuh-statistics 190

lsof command 217

M

malicious software (malware) 47

ransomware 48

rootkit 48

spyware 48

trojans 48

types 48

viruses 48

worms 48

malware analysis

with YARA 147, 148

malware detection 47

malware detection with FIM 50

FIM, configuring on Ubuntu machine 50

FIM, testing on Ubuntu machine 50

PHP server suspicious files, detecting with FIM module 53

Malware Information Sharing Platform (MISP) 81, 86, 90, 96

context layer 86

correlation layer 86

Cortex, integrating with 108, 109

data layer 86

feed layer 87

galaxies layer 87

reference link 122

taxonomies layer 86

TheHive, integrating 110

warning list layer 86

Malware IoC (Indicators of Compromise)

reference link 281

Mean Time to Respond (MTTR) 123

messaging and collaboration tools 149

MINIO 91

MISP setup 97, 98

Docker Compose, installing 97

Docker, installing 97

feeds, adding 101, 102

organization and users, adding 98-100

requirements 97

MITRE Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK) 281

MITRE ATT&CK framework 13, 192

adversary’s techniques, prioritizing 195-197

groups 195

matrices 193

practical use case 197-202

procedures 195

software 195

tactics 193

techniques 194

MITRE ATT&CK mapping 180, 191

N

National Institute of Standards and Technology (NIST) 151, 242

National Institute of Standards and Technology (NIST) 800-53 framework 242, 281

goal 242

security and control families 243

Security Configuration Assessment (SCA), use cases 246, 247, 248

vulnerability detection, use cases 244

National Vulnerability Database (NVD) 222, 285

netstat command 215

output, monitoring on Linux 215, 216

network-based IDS (NIDS) 4

testing, with tmNIDS 41

network interface card (NIC) 26

network scanning 28

attack simulation 29, 30

lab setup 29

Wazuh dashboard, visualizing 31-33

network taps 8

NIST four-step procedure 154

containment, eradication, and recovery 154

detection and analysis 154

objectives 155

post-incident activity 154

preparation 154

Nmap 28

O

Office for Civil Rights (OCR) 249

Open Information Security Foundation (OISF) 5

OpenSearch 282

reference link 282

Open Source HIDS Security (OSSEC) 51

Open Virtual Appliance (OVA) 12

operational intelligence 82, 83

Osquery 180, 203, 204, 282

installing 205

installing, on Ubuntu Server/Desktop 205, 206

installing, on Windows 206

integrating, with Wazuh 206, 207

reference link 282

use cases 204

OSSEC 282

P

Payment Card Industry Data Security Standard (PCI DSS) 228, 277, 282

PCI DSS compliance 229, 277, 282

reference link 282

requisites 229, 233

security configuration assessment, use cases 237

Perl Compatible Regular Expressions (PCRE2) 263

PHP server suspicious files

detecting, with FIM module 53

requisites 53

Wazuh rule, creating 53

port mirroring 8

PowerShell 283

reference link 283

PowerShell critical logs 260

PowerShell error logs 258, 259

PowerShell event information 258

PowerShell version 7

installing 166

PowerShell warning logs 259

proactive threat hunting

with Wazuh 178-181

Proofpoint Emerging Threats

URL 82

protected health information (PHI) 249, 279

ps command 217

Q

queries

organizing 210-212

writing 210-212

R

ransomware 48

RDP brute-force attacks block 170

alerts, visualizing 174, 175

requirement 171

testing 173

Wazuh Server, setting up with brute-force attack rule and active response script 172

Windows agent, setting up with active response script 171, 172

Redundant Access (MITRE ATT&CK ID T1108) 209

reflected XSS attack 38

Remote Desktop Protocol (RDP) 170

reset (RST) 29

responders 89

rootkit 48, 283

reference link 283

rootkit behavior detection 49

S

S3 MINIO 91

S3 (Simple Storage Service) 91

SANS six-step procedure 152

containment of attack 153

eradication of intrusion 153

identification of incidents 153

lessons learned phase 153

objectives 155

preparation 153

recovery from accidents 153

Sarbanes-Oxley Act (SOX) 277

Security Account Manager (SAM) 239

security configuration assessment (SCA) 222, 225, 226

setting up 226-228

use cases 254-256

security configuration assessment (SCA Policy) 283

security configuration assessment (SCA), use cases

display user name, avoiding on interactive login 237-239

SAM accounts and shares anonymous enumeration, disabling 239-241

security configuration management 221

security information and event management (SIEM) 6, 125, 153, 280

security operations center (SOC) analysts 81, 125, 177

practical steps, to use threat intelligence 83, 84

Security Orchestration and Automation Response (SOAR) 123, 124

incident response 124

security automation 124

security orchestration 124

using, in SOC analyst 125, 126

servers 11

Shuffle 127

components and features 127-129

Shuffle apps 145

endpoint protection/antivirus software 149

incident enrichment, with TheHive 145-147

Malware analysis, with YARA 147, 148

messaging and collaboration tools 149

threat intelligence platforms 149

Shuffle SOAR 129

prerequisites, fixing for Shuffle database 130

requirements 129

setting up 129

Shuffle, installing 130

Shuffle, launching 130

SOC analyst

with SOAR 125, 126

software components, TheHive

Apache Cassandra 91

Elasticsearch 91

S3 MINIO 91

spyware 48

SQL Injection (SQLi) 36

ss command 217

SSH attacks 160

SSH (Secure Shell) 284

strategic intelligence 82, 83

Suricata 3, 5, 9

installation 25-27

installing, on Ubuntu Server 25

prerequisites 25

reference link 5

use cases 6

Suricata, deployment methods 6

cloud environment monitoring 8

inline deployment at network perimeter 6

internal network monitoring 7

network tap monitoring 8, 9

Suricata rules 27

network scanning 28

syntax 27, 28

SwiftOnSecurity Sysmon configuration

downloading 70

synchronize-acknowledgment (SYN-ACK) 29

Syscollector 222

syslog 284

reference link 284

Sysmon alerts

visualizing 78

Sysmon events

monitoring, to configure Wazuh agent 73

system call 284

reference link 284

system inventory 284

reference link 284

System Monitor (Sysmon) 47, 68, 263

downloading 70

extracting 70

installation, verifying 71, 72

installing, with SwiftOnSecurity configuration 71

integrating, to detect fileless malware 68

lab requirement 70

reference link 263

setting up, on Windows machine 70

T

tactical intelligence 82

tactics, techniques, and procedures (TTPs) 178, 192

taxonomies layer, MISP 86

tcpdump command 217

TheHive 87, 90, 107

alert TTPs 88

case timeline 88

integrating, with Cortex 107

integrating, with MISP 110

integration 88

observable analysis 87

reference link 122

software components 91

used, for incident enrichment 145-147

TheHive and Cortex setup 91

Docker Compose, installing 92

launch and test 93

organization and user, creating on Cortex 95, 96

organization and user, creating on TheHive 94

YML script, preparing for TheHive module 93

threat detection rules 49

threat-hunting methodologies 178

hypothesis-based investigation 178

intelligence-based hunting 179

investigation, with indicators of attack (IoA) 179

threat-hunting steps 179

initial trigger phase 179

investigation phase 179, 180

resolution phase 180

threat hunting, with Osquery 207

Kernel Modules and Extensions (MITRE ATT&CK ID T1215) 208, 209

Local Job Scheduling (MITRE ATT&CK ID T1168) 208

Redundant Access (MITRE ATT&CK ID T1108) 209

threat intelligence 82, 285

operational intelligence 82, 83

reference link 285

strategic intelligence 82, 83

tactical intelligence 82

types 82

threat intelligence and analysis, use cases 111

alert, reviewing 111, 113

case, creating 113, 114

file observables, analyzing 115-119

network observables, analyzing 120, 121

pre-requisites 111

TTPs, managing 121, 122

threat intelligence platforms 149

AbuseIPDB 149

AlienVault OTX 149

MISP 149

tmNIDS 41

installing, on Ubuntu Server 41, 42

lab setup 41

malicious User-Agent, testing 42, 43, 44

testing 46

Tor connection, testing 44, 46

used, for testing NIDS 41

top command 217

Tor Browser 44

Transmission Communication Protocol (TCP) 28

trojans 48

Trust Services Criteria (TSC) 285

reference link 285

U

Ubuntu machine

used, for configuring file integrity monitoring (FIM) 50

used, for testing file integrity monitoring (FIM) 50

Ubuntu Server

used, for installing Suricata 25

used, for installing tmNIDS 41, 42

used, for installing Wazuh agent 19-22

Ubuntu Server/Desktop

Osquery, installing on 205, 206

unauthorized SSH access, blocking

alerts, visualizing 163-165

lab setup 161

testing 162

Wazuh active response, setting up 161

Uniform Resource Identifier (URL) 146

user environment change

detecting 261

V

virtual machine (VM) 6

viruses 48

VirusTotal integration 49, 60

account, setting up 60

alerts, visualizing 63

FIM check, setting up on Ubuntu Server 62

malware detection, testing 62

Wazuh rule, creating on Wazuh manager 61, 62

with Wazuh manager 61

VM image 12

vulnerability 285

reference link 285

vulnerability detection 222

on Debian-based endpoints 245, 246

setting up, with Wazuh 222-224

vulnerability detection for PCI DSS

enabling, on Wazuh server and restart 235

requisites 234

security vulnerabilities, addressing 236

security vulnerabilities, identifying 236

security vulnerabilities, prioritizing 236

Syscollector wodle, setting up on Windows endpoint 234

use cases 234

Vulnerability Detector module 222, 285

use cases 252, 253

vulnerability security configuration management 222

W

warning list layer, MISP 86

Wazuh 9, 85, 90

for proactive threat hunting 178-181

managing, remotely 139

Osquery, integrating with 206, 207

requirement 139

used, for setting up vulnerability detection 222-224

Wazuh active response 156

<active-response> tag 158

<command> tag 157

active response scripts 156, 157

configuring 157

working 158-160

Wazuh Administration 14

configuration 17

constant database (CDB) list 16

decoders 14, 15

groups 16

rules 15, 16

Wazuh agent

configuring, to monitor Sysmon events 73

installing 18

installing, on Ubuntu Server 19-22

installing, on Windows Server 22-25

Wazuh agents 11

managing 143, 144

reference link 144

Wazuh alerts 185

integrating, with Shuffle 131, 132

retrieving 131

retrieving, for abnormal user login analysis 133, 134

retrieving, for login analysis 138, 139

retrieving, on Shuffle 134-137

wazuh-archives 186

Wazuh core components 10

Wazuh agents 11

Wazuh dashboard 11

Wazuh indexer 10, 11

Wazuh server 10

Wazuh dashboard 11

Wazuh decoders 181

building 182

child decoder 183, 184

parent decoder 182

Wazuh indexer 10, 11

Wazuh, integrating with TheHive 102

alerts, visualizing on TheHive 106

Bash script, creating on Wazuh manager 104, 105

integration Python script, creating on Wazuh manager 103

restart and test 106

TheHive Python script, installing on Wazuh manager 102

TheHive server, integrating in Wazuh server configurations 106

Wazuh Kubernetes repository

reference link 12

Wazuh manager

active response, modifying on 162

configuring 73-76

restarting 162

Wazuh methods for malware detection 48

rootkit behavior detection 49

threat detection rules and FIM 49

VirusTotal integration 49

YARA integration 49

Wazuh MITRE ATT&CK mapping 202, 203

Wazuh modules 12, 13

wazuh-monitoring 189, 190

Wazuh requirement

authentication 139, 141

JWT token generation 141

subsequent API request 142

Wazuh rule

creating 53, 185

creating, to detect PHP file creation 53

creating, to detect PHP file modification 53

FIM alerts, visualizing 54, 55

testing 54

Wazuh server 10

installing 17

lab environment 17, 18

production environment 17

wazuh-statistics 190

Web Application Firewall (WAF) 14

web-based attacks

lab setup 34

reflected XSS attack 40

reflected XSS attack, testing 38, 39

SQL Injection attack, testing 36-38

testing, with DVWA 33

victim server, setting up with DVWA 35, 36

Windows

Osquery, installing on 206

Windows Defender 286

reference link 286

Windows Defender logs

alerts, visualizing 67, 68

collecting, by Wazuh agent set up 65

integrating 63, 64

malware detection, testing 67

requirement 165

usage 64, 65

Windows machine post-infection, isolating 165

active response block, in Wazuh manager 167, 168

batch file, writing as active response script 166

PowerShell script, writing 167

requirement 165

testing 168-170

VirusTotal integration 166

Windows machine, setting up with batch and PowerShell file 166

Windows Server

used, for installing Wazuh agent 22-25

worms 48

X

XML External Entity (XXE) 33

Y

YARA 286

reference link 286

using, in Malware analysis 147, 148

YARA integration 50

[image: Packt Logo]

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

Why subscribe?

	Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

	Improve your learning with Skill Plans built especially for you

	Get a free eBook or video every month

	Fully searchable for easy access to vital information

	Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

[image: Other Books You May Enjoy - Practical Cybersecurity Architecture]

Practical Cybersecurity Architecture

Diana Kelley, Ed Moyle

ISBN: 978-1-83763-716-4

	Create your own architectures and analyze different models

	Understand strategies for creating architectures for environments and applications

	Discover approaches to documentation using repeatable approaches and tools

	Discover different communication techniques for designs, goals, and requirements

	Focus on implementation strategies for designs that help reduce risk

	Apply architectural discipline to your organization using best practices

[image: Other Books You May Enjoy - Fuzzing Against the Machine]

Fuzzing Against the Machine

Antonio Nappa, Eduardo Blázquez

ISBN: 978-1-80461-497-6

	Understand the difference between emulation and virtualization

	Discover the importance of emulation and fuzzing in cybersecurity

	Get to grips with fuzzing an entire operating system

	Discover how to inject a fuzzer into proprietary firmware

	Know the difference between static and dynamic fuzzing

	Look into combining QEMU with AFL and AFL++

	Explore Fuzz peripherals such as modems

	Find out how to identify vulnerabilities in OpenWrt

Packt is searching for authors like you

If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts

Now you’ve finished Security Monitoring with Wazuh, we’d love to hear your thoughts! If you purchased the book from Amazon, please click here to go straight to the Amazon review page for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

Follow these simple steps to get the benefits:

	Scan the QR code or visit the link below

[image: Download a free PDF copy of this book QR Code]

https://packt.link/free-ebook/9781837632152

	Submit your proof of purchase

	That’s it! We’ll send your free PDF and other benefits to your email directly

OEBPS/image/B19549_1_34.jpg
= @ WAZUN. V' Modes HDSUbSen11 Securtyevents ©

t

ruleid

rule evel

Available fields

Popular

t

3

t

t

t

t

t

t

t

3

g

t

3

t

3

3

t

3

t

3

agentname
agentid

agentip
datalertaction
data aert category
data.lert gid

data.alert metadata.
affected_product

data.alert metadata.
attack_targst

data alert metadata.
crested_at

data.alert metadata.
deployment

data.alert metadata.
former_category

data.alert metadata.
signature_severity

data.alert metadata tag

data.alert metadata.
updated_at

data.alertrev
data.alert severity
data alert signature.
data alert signature_id
data.app_proto
dataarch

R

8

timestamp per 30 minutes

Time + rule.description rulelevel rulc.id
> Aug 8, 2023 Suricata: Alert - SURICATA STREAM 3way handshake excessive different SYNs 3 86601
> Aug 8, 2623 © 18:59:29.148 Suricata: Alert - ET INFO DYNAMIC_DNS Query to a Suspicious no-ip Domain 3 86601
> Aug 8, 2623 © 18:50:27.158 Suricata: Alert - ET DNS Query for .su TLD (Soviet Union) Often Malware Related 3 86601
> Aug 8, 2023 146 Suricata: Alert - ET DNS Reply Sinkhole - sinkhole.cert.pl 148.81.111.111 3 86601
> Aug 8, 2023 139 Suricata: Alert - ET SCAN Potential SSH Scan OUTBOUND 3 86601
> Aug 8, 2823 ® 18:58:45.111 Suricata: Alert - ET TOR Known Tor Relay/Router (Not EX1T) Node Traffic group 316 3 86661
> Aug 8, 2623 @ 18:58:41.186 Suricata: Alert - ET TOR Known Tor Relay/Router (Not Exit) Node Traffic group 473 3 86601
> Aug 8, 2023 Suricata: Alert - ET HALWARE Cryptowall .onion Proxy Domain 3 86601
> Aug 8, 2023 Suricata: Alert - ET POLICY DNS Query for TOR Hidden Domain .onion Accessible Via TOR 3 86601
> Aug 8, 2623 © 18:58:29.126 Suricata: Alert - GPL ATTACK_RESPONSE id check returned root 3 86601
> Aug 8, 2623 © 17:35:28.663 Partition usage reached 168% (disk space monitor). 7 531

> Aug 8, 2023 127 Suricata: Alert - ET MALWARE SuperFish Possible SSL Cert Signed By Compromised Root CA 3 86601
> Aug 8, 2023 Suricata: Alert - ET INFO DYNAMIC_DNS Query to a Suspicious no-ip Domain 3 86601
> Aug 8, 2623 © 17:25:44.678 Suricata: Alert - ET DNS Query for .su TLD (Soviet Union) Often Malware Related 3 86601
> Aug 8, 2023 Suricata: Alert - ET DNS Reply Sinkhole - sinkhole.cert.pl 148.81.111.111 3 86601
> Aug 8, 2023 Suricata: Alert - ET WEB_CLIENT Possible eDellRoot Rogue Root CA 3 86601

OEBPS/image/B19549_1_26.jpg
192.168.29.218

19216829218 says

OEBPS/image/B19549_6_08.jpg
= () [oiscover New Save Open Share Reporting Inspect . ®

B v search DQL @ v Last24 hours Show dates. -

© — +Addfilter /
]

Q search field names Oct 28,2023 @ 18

20 hits
:41.226 - Oct 29, 2023 @ 18:

Auto ~
@ Filter by type 0
Selected fields 3

@) _source

Count

Available fields. ’
€] _index

€ cluster.name 2100 0000 0300 08:00 0200 1200 1500 1800
® configsum timestamp per 30 minutes
D Time « source

disconnection.time
© o > oct 29, 2023 @ 18:

o0s.arch: x86_64 0s.codename: Jammy Jellyfish os.major: 22 0s.minor: @4 os.name: Ubuntu

rou
@) group os.platform: ubuntu os.uname: Linux |thehive |5.15.8-86-generic |#96-Ubuntu SMP Wed Sep 28
© group.config_status 08:23:49 UTC 2023 |xB6_64 os.version: 22.84.3 LTS p: 192.168.29.113 dateAdd: 2023-10-

€] host 28721:17:33+80:00 version: Wazuh v4.5.4 group: default group_config_status: synced id: o1

tid mergedSun: 4a8724b20decd124ff9656783c490c4e configSum: ab73af41699f13fdd81903b523dad0R

OEBPS/image/B19549_1_18.jpg
= O wazuh. v [iesis ik [SyeRE0T ® o

Dashboard Events (?) ubu-bgir (005) X

B v search DAL

‘manager.name: wazuh-server || agentid:005 |+ Add filter

wazuh-alerts-* v

420 hits,
el aaareh ok namae Dec 10, 2023 @ 00:33:22.049 - Dec 11, 2023 @ 00:33:22.049 Auto v
@ Filter by type J
20
Selected fields
¢ rule.description E 200
8
¢ nuleid %
rulelevel
o -
Availablefids 0300 0600 0200 1200 1500 1800 2100 0000
¢ agentid timestamp per 30 minutes
€ agentip Time rule.description rule level ruled
¢ agentname
» Dec 11, 2023 © 00:33:13.466 Suricata: Alert - ET SCAN Suspicious inbound to MSSQL port 1433 3 86601
¢ data.alertaction
¢ data.alert category 5 Dec 11, 2023 @ 0:33:13.466 Suricata: Alert - ET SCAN Suspicious inbound to PostgreSQL port 5432 3 86601
« data.alertgid
> Dec 11, 2023 © 80:33:13.419 Suricata: Alert - ET SCAN Potential VNC Scan 5800-5620 3 86601
¢ data.alert metadata created_at
B et slert st 5> Dec 11, 2023 © 00:33:13.419 Suricata: Alert - ET SCAN Potential VNC Scan 5980-5920 3 86601
former_category
B e te s Emtndctapdston i N Suricata: Alert - ET SCAN Suspicious inbound to Oracle SQL port 1521 3 86601
g dataakertey 5 Dec 1, Suricata: Alert - ET SCAN Suspicious inbound to mySQL port 3306 3 86601

OEBPS/image/B19549_3_26.jpg
Analyzer

Filename Analyzer Selectall / Deselectall

@ MISP_2_1 [c

Cancel

OEBPS/image/B19549_6_24.jpg
APTIO X APT38 X layer by operation X +
e
Ctxm oz MmA o

T
8.2 x B ¢

\Common Technique
i Resource - 5 . Privilege _ Credential 5 _ Command and §
Reconnaissance Development Initial Access ”Execution ~ Persistence Escalation Defense Evasion Access Discovery ¢t Collectio Control | Exfiltration
10techniques Btechniques 9 techniques latechniques 19 techniques 13 techniques 42 techniques 17techniques 31 techniques Stechniques __17techniques 16 techniques 9 techniques 13 techniques
Active Scanning o, [Acaire Access Cloud [Account ‘Abuse Elevation] Abuse Elevation adversany-in- [Account Discovery o [Explotation o | acversary-in- [appiication automated | Account Access
Administration Manipuation . i Control Control the-Middle o, Remote the-Middie) W Layer Extitrsion i Removal
ather victim Host [Acauie Command Mechanism o [l Mechanism . ‘Application Window | Servies Protocol
nformation inirastructure ., M Expoit Public- 81T Jobs Discovery Archive Data Transfer
Facing Access Token Internal Collected Communication Sizs Limits
Gather ictm dentity [l Compromise [} Appication sootortogon [} Manipuision ol Manipuiation . Spearphishing | Data gy Though
nformation Accounts gy Auostart from password Remowble Exfitation
Extemal Remote Execution g [sootortogon i ams sobs Store gy Lateral Tool | Audio Capture | Meda Over
‘Gather victim Network [Compromise [Services Container Autostart Cloud nfrastructure | Tranfer Aemative
Information gy Infrafructure ‘Adminisration sootor togon [l Bxecuion 4 Discovery Avomated | Data Protocolyy,,
Harduare ommand Intazation Credentil Remote Collecton Encoding
Gathervictimorg [Develop Additions SCHPES gy Bootortogon [Debuggervasion | Access loud senice Senvice Extiation
Information g,y Capabittes Deploy Container Intaization Gashboard Session srowser Session Owrc2
phising 1, [Browser o Forced Hiacking o, [l Hiacking Obfuscation g, W Chamnel
Phishing for Estabish Exploitationfor | Etensions Adthentication | Cloud ervice
Informstion g Accounts ;M Replcation Cllent Execution Create or Moy Discovery Remote Oynamic exiration
T Compromise | System Deploy Container Forge Web Servies Résoiution o, [Over Other
Search Closed Obtain Removable Inter-Process et Software | Process Credentiats , ll Cloud storage Object Data from Network
Sources gy Capabiltes [Mecia Communication [Binary Direct Volume Access Discovery Repicaon | Cloud Storage | Encypted Medum o, [Firmware
Domain polcy Ioput Thiough Chamel gy Comiption
Search Open Technical i stage Supply Chain Modiicaton z, [Domain poicy Cipture W container ana Removable exiation
Databases gy Capabiles [Compromise sy Modication Resource Discovery | Media Configuration [Fatback ver physial [omivi system
Escape to Host Modity Repostory s, [Channeis Medium gy [Recovery
Search Open Tused Execution Auhentication [Debugger Evasion | software
Websites/Domains . Relationship event Tiggered [Guardrais o Process gy Deployment Network Denial of
Execution ygg Devce Driver Tools Serice gy
Search victim-Owned valid Explotation for Multi-Factor | Discovery
Websites Accounts Tant shared Resource
Priege Interception | Domain Trust Content Hjacking
Escalabon File and Directory Discovery
Fermissions i ractor use atemat on-
Hijack Execution [} Modifation Authentication Authentication [Data from Application | Transer Data
System Senices Flow gy Request Miteral [Network Shared Liper protocol o Cloud
iack Execution Fide Actfacts [Generation Drive
User brection [Fow g process Group Poliy Discovery Non-standard
Inection g5 [Hiack Execution Network Data rom port
indows implant nternal Fiow gy Snifing Network senvice Removable
Management image Scheduled iscovery Meda protocol
Instrumentation Taskfiob g mpair Defenses [05 Credential Tunneling
Modiy DuUmPing g5y Data Staged
Auentication [valid Indicator Removal Poves
Process g Accounts Steal emai
Indirect Command | Applicaion | Network Snifing Collecton) I Remote.
Erecution ‘ACCess Token . Software
password policy oput
€ommon Technigue Masquerading Steal or Forge | Discovery. Capture) S
Authentication Signaiing .,
Certficates Screen Capture
Proces: Discovery Web senice o,
Stea or Forge Video Capture
Modity loud Kerberos peission Groups
Compite Tikets Discovery,
Infrasructure L] (5]
steal web
" 2

OEBPS/image/B19549_2_16.jpg
= @ wazuh. v e

agentip

agentname
data.win.eventdata.accountexpires
data.win.eventdata.address
data.win.eventdata. addressLength
data.win.eventdata alertDesc

data.win.cventdata.
authenticationPackageName

data.win.eventdata binary
data.win.eventdata commandLine
data.win.eventdata.company
data.win.eventdata creationUtcTime
data.win.eventdata currentDirectory
data.win eventdata data
data.win.eventdata description

data.win.eventdata.
destinationHostname

data.win.eventdata destinationip
data.win.eventdata destinationisipve
data.win.eventdata.destinationPort

data.win.eventdata.
destinationPortName

data.win eventaata detail
data.vin eventdata detals
data.win eventasta.displayName
datavin eventdata eventType
data.vin eventdata feVersion
datawin eventdstahashes.
data.win eventdata homeDirectory
data.win eventdata homePatn
data.vin eventdata mage

data win eventdata impersonationLevel

Securty events @

WIN-MQI4EREUQNV
Time +
> hug 16, 2623
> hug 16, 2623
> hug 16, 2023
> hug 16, 2023
> hug 16, 2023
> hug 16, 2023
> hug 16, 2023
> hug 16, 2023
> hug 16, 2023
> hug 16, 2023
> hug 16, 2023
> hug 16, 2023
> hug 16, 2023
> hug 16, 2023
> hug 16, 2623
> hug 16, 2623
> hug 16, 2623
> hug 16, 2623
> hug 16, 2023
> hug 16, 2023
> hug 16, 2023

610

606

945

78

rule.description

User account changed.

Sysmon

Sysmon

Sysmon

Sysmon

Sysmon

Sysmon

Sysmon

Sysmon

Sysmon

Sysmon

Sysmon

Sysmon

Sysmon

Sysnon

Sysnon

Sysmon

Sysmon

Sysmon

Sysmon

Sysmon

Event 1: Process creation.

Event 1: Process creation.
Event 1: Process creation.
Event 1: Process creation.
Event 1: Process creation.
Event 1: Process creation.
Event 1: Process creation.
Event 1: Process creation.

Event 22: DNS Query.

Event 5: Process terminated.

Event 1: Process creation.

Event 1:

Process creation.

Event 11: FileCreate.

Event 1: Process creation.

Event 5: Process terminated.

Event 1: Process creation.

Event 1: Process creation.

Event 5: Process terminated.

Event 1: Process creation.

Event 1: Process creation.

timestamp per 30 minutes

ruleid

60110

101101

101101

101101

101101

101101

101101

101101

101101

161100

161105

101101

101101

101111

101101

101105

101101

101101

161105

101101

101101

OEBPS/image/B19549_4_16.jpg
Apps

Docs

» Connecting Wazuh

< See more runs

Details <~

Status FINISHED
Started 02/10/2023, 16:30:11
Finished 02/10/2023,16:30:13

]

Status SUCCESS

Connecting

3

-rt-/

"Results for Connecting Wazuh"

2 items

"data" : { 1 item

“token" :
"eyJhbGci0iJFUzUXxMiIsInRScCI6IK|

2hPV9AQX2v403N6p66-RMAEYb7qRSeRR

3

"error” : @

L]
5.
) +]
N

OEBPS/image/B19549_4_08.jpg
5 Workflows

Workflow starters

Webhook
Custom HTTP input

Specify time

Office365
0365 email trigger

Gmail
Gmail email trigger

H-:=QBE8
§
&

Mid-Workflow

User Input
‘Wait for user input

Aoy I @ Trggers Iov.,s

Apps Docs i

< Workflows - Failed Logins Analysis

Get_User_Logins

Execution ArgL - (@] L) []

OEBPS/image/B19549_6_16.jpg
MITRE ATT&CK® Navigator

The ATTBICK Navigator is a web-based tool for annotating and exploring ATTALCK matrices.
It can be used to visualize defensive coverage, red/blue team planning, the frequency of
detected techniques, and more.

help changelog theme +

Create a new empty layer

I Enterprise

| Mobile

ics

More Options

Open Existing Layer

Create Layer from other layers

Create Customized Navigator

Load a layer from your computer or a URL.

Choose layers to inherit properties from

Create a hyperlink to a customized ATT&CK Navigator

OEBPS/image/B19549_2_08.jpg
~ Nov 19, 2023 @ 02:53:35.287

VirusTotal: Alert - c:\users\administrator\documents\eicar_com.zip - 6 12 87105
@ engines detected this file

5 Expanded document

Table

JSON

t

_index

agent.id

agent.ip

agent.name

data.integration

data.virustotal.found

data.virustotal.malicious

View surrounding documents View single document

wazuh-alerts-4.x-2023.11.18
002

2405:0201:0036:0093:7810:0848:62A0 :FFCB

WIN-MQI4EREUQNV

virustotal

data.virustotal.permalink

>

https://www.virustotal.com/gui/file/2546dcffc5ad854d4ddc64fbfe56871cd5a00f2471cb7a5bf
d4ac23bbegeedad/detection/f-2546dcffe5ad854d4ddc64fbfo56871cd5aeef2471¢cb7a5bfd4ac23b6
e9eedad-1700333172

data.virustotal.positives

608

OEBPS/image/B19549_QR_Free_PDF.jpg

OEBPS/image/B19549_5_14.jpg
Authertication key: [MDADIFGITIBROSUIGFueSAw,
Save Refresh

Fitpe/wazuhcom [Revion 30605

OEBPS/image/B19549_1_14.jpg
@ serveraddress

This is the address the agent uses to communicate with the Wazuh server. Enter an IP address or a fully qualified
domain name (FDQN).

Assign a server address @

192.168.20.32

. Optional settings

The deployment sets the endpoint hostname as the agent name by default. Optionally, you can set your own name in
the field below.

Assignan agentname ()

WIN-AGNT

@ The agent name must be unique. It can't be changed once the agent has been enrolled. &

Select one or more existing groups @

default x o

OEBPS/image/B19549_3_14.jpg
i

F

Search Feed Caches.
Add Feed

mport Feads rom JSON
Feed overiap analsis matix

Export Feed settings

(Cache frelex/CSV feeds_Cache MIS:

2[3] 4 nets | tasts

Enabled Caching Name

X CRCLOSINTFeed

X TheBoieuData

X bockulesof
ules emergingthrats net

x Tor et nodes

x Tor ALL nodes

X cyvercrime tackernet -
a

X Prishtank onine vaid
phisting

X pbockist-snortor

X damondiox paneis

X popgropers

X FeodolP Blockist

X Openhisnunist

X trehollevert

X PstomHon

Confidence DGA-Based
(C&Cs Actvely Resolving
requires 3 vald icense

Format

misp.

misp

I~

reetext

restext

restext

fectext

reetext

Provider
CoReL
Bovrieu

rules emergingihveats net

for slected

cybercrime-tracker net

Phishtank

ntps:snortorg

pan-unita2

home nuug no
abuse.ch
openphish.com

Ipists freholorg

osintbambenekconsuling.com

‘Confdence DGAbased

“Tor ALL nodes” feed.

Tor xitnodes” feed

org Source
netvork
netvork
netuork

network
network

network

network

network

network

network
network

network

network

network

URL
s v e docimispeed-osint

s v botvi euldataeed-osint

Mios s emergingireats netiblockrulslcompromised-
st

[rTT——

s v dan me ukctorisy

its:icyvercrime-rackernetall php

hitps:idata phishtank com/datalonine-vald csv

itps:isnortorg/dowloads/ip-bock st

Ditpsraw githubusercontent compan-
unite2focsimaster/Gamondioxdamondiox_panels bt

hitps:/mome nuug nol~peteripop3gropers bt
hitps:Nodotracker abuse.chdownloads/pblocklst csv
hitps:openphish comvieed bt

its:raw githubusercontent comkisaouiockist-
Ipsetsimasterfrehollevel netset
hitps:losintbambenskconsultng com/Teedsic2-
Ipmasteristhigh bt

hitps:iosintbambenskconsulting com/feedsic2-
dommastertst high i

Headers

Target

Fixed event 1624

Fixed event 1625
Fixed event 1626

Fixed event 1627

New fxed event

Fixed event 1628

New foed event

Fixed event 1620
Fixed event 1630
Fixed event 1631

New foed event

New fed event

New foed event

F
Publish Del
x x
x x
x v
x v
x v
x v
x v
v v
v v
v v
x x
x v
x v
x v
x v

— ‘CAC Domains Actvely ~

OEBPS/image/B19549_6_20.jpg
APT19 x +
selection controls. layer controls. ‘technique ¢
B ax B rEA-teo: 1= 7
. Resource . ilege 3 Credential Command and
Initial lation Evasion Access Control
Totecmies . 8lahmques O tachmiques Ttechniqes Talahmioues 42 techmiques 17 techmiues 16 techiaues
Active Scanning, Acquire Access. Abuse Elevation Adver - Application Automated Account Access
= the-Midde Layer Exiiltration o, | Removal
Gamervim ot [Acaure Vaanani . oo
oo i e Fore g Data Tonster | Data Destruction
hcces Token Commicaton | [Sot Lot
arrmisry l ompense Namposton s, [cregenls Shvoush Data ncypted
Informati Accounts from Password Removable Exiltration for Impact
BITS Jobs Stores) Media Over
..1.,....)."“'"‘ i i Jotation for Protocel Vnipuat
matongy "l Fatvacine wudimageontost | Exotaton for oata Frsocoy, [Vsnpuition
o o Credential Encoding) £e) o
atervieimorg Jf Develop Debugger bason | s bvaton | Defocement gy
omang [Cepaties g oua v
Forced Obfuscation ., ll Channel Disk Wipe)
Phishing for Establish Authentication
ormaton gy oot i Createor odty oynanic oxtration] Endpoint e
s - Deploy Contaner | Frge e Riaoton gy [Soerorer [S oome e
search closed obain Remole ey Somare | [P g et R
St Siiies [l it Sy et Volume Access trcpica [et gy [Frare
Doman olcy oput et o Compon
‘Search Open Technical [l stage ‘Supply Chain Create M 'Domain Policy Capture o,y Exfltration
e Capailies g, [Compromise o, Account Modification) Fallback Over physical [l imhibit System
Esapetotost vodiy Chamets ol Fecovey
searh Open usted createor Modiy erecton Neveptcation
enhebamans g Ressorstio e et Tiggered [Cunrtans e ngressToal | xituation [Network berialof
E (P Tonie vt St
Search Victim-Owned Valid Exploitation for Multi-Factor service)
Websites Accounts Event Triggered Multi-Stage ce
ecsionsme [Finee nercapton Chamee” | [scredued | npacang
= e andDirectors e
el emote Fermasons - Non- Senice st
e Hick xecution [Modthcnon oy opicaton | [ransterwa
Lrp Reoes Seiol | S | g
Hijack Execution Hide ATEfacts 10, Generation Account
Flow (1 Process Non-Standard
cton gy W ek xecion [networe Yo
il [ty St
scheculd rotoce
il imossocimes o [o5 Fenneiing
Mmm-m Valid Indicator Removal o8 PrOXY
Rzt g siea
ndiect Command | [applcation [y
5 Pl ot

OEBPS/image/B19549_4_04.jpg
B ® Qa x

Name Delay

Shuffle_Tools_1

Find Actions
Set cache value 5

Parameters

Key

malicious_domains (O]

Value

43.142.4.165
150.158.54.252
104.168.83.3

® 0

OEBPS/image/B19549_7_03.jpg
QO wazuh. v

Modules

WINVQUEREL. | Valerabites ©
CVE-2023-5472

v Details

0 Title

(CVE-2023-5472 affects Google Chrome

@ Version

109.0.5414.168

@ Last full scan
Nov 5, 2023 @ 18:26:29.000

© Updated
Nov 3, 2023 @ 00:00:00.000

“ Recent events

search DL @ Lest2ahours Showdates
+ Add filter

Time \ Description Level Rule1D. Status

Nov 5, 2023

@ CVE-2023-5472 affects Google Chrome 10 23505 Active

18:26:27.664

Rows per page: 10 v

Index pattern wazuh-alerts* v/ . =]
x
Name @ o%
Google Chrome: CVE-2023-5472
O Architecture Condition
x86 less than 118.0.5993.117
® Last partial scan ® Published
- Oct 25, 2023 @ 00:00:00.000
69 References
View external references @
1hits

OEBPS/image/B19549_3_29.jpg
Analysis report

Show raw result

MISP - 8 results

1125 - IECrypt sample analysed with VM Analyzer Report for Sample #245141 (IECrypt)

Event info: IECrypt sample analy!

with VMRay Analyzer Report for Sample #245141 (IECrypt)
UUID: 5dc6ecc-c038-4b5b-91e6-4879

From: CIRCL

Tags:

osint:lifetime="perpetual”

OEBPS/image/B19549_3_30.jpg
View Correlation Graph

View Event History

Propose Attribute

Propose Attachment

Publish Sightings

Download as.

List Events

Add Event

IECrypt sample analysed with VMRay Analyzer Report for Sample #245141 (IECrypt)

I Event ID 125 I
[T 5dc16ccc-c033-4b5b-91e6-4879950d210f B
Creator org ® creL

Protected Event
(experimental) @

Tags
Date

Threat Level
Analysis

Distribution

Info
Published

#Attributes

First recorded change
Last change

Mo

ication map

Sightings

& Eventis in unprotected mode.

@ type:OSINT | @ osintlifetime="perpetual”] tip:white
2019-11-05
¥ Low

Completed

All communities I o<

IECrypt sample analysed with VMRay Analyzer Report for Sample #245141 (IECrypt)
Yes (2023-07-25 14:06:39)

3884 (1267 Objects)

2019-11-05 13:36:28

2019-11-05 14:18:49

0 (0) - restricted to own organisation only. /&

y +Eventgraph +Event timeline +Correlation graph +ATT&CK m

X 1125: IECrypt samp.

OEBPS/image/B19549_4_13.jpg
iWorkflows > Connecting Wazuh

@, /'

® Connecting_Wazuh

Email
Version: 1.3.0
Email app.

Shuffle Tools
Version: 12.0
Atool app for Shufle. Gives.

Http
Version: 1.3.0
HITP app

Microsoft 365

Defender
Version: 1.1.0

MisP
Version: 1.0.0
##4 Getting Started

Active Directory
Version: 1.0.0

AAREEIE pctive Directory and

[Palo Alto Networks
Version: 1.1.0

O Tiggens O vars

Execution ArgL - (] L)

-
5.
‘ll
N
[}

OEBPS/image/B19549_3_03.jpg
4 Observable preview

@ id ~2337595504 & Created by TheHivesystemuser [Created at 24/02/2022 1007
) Updatedat 13/03/202221:35

hash

Tags

(s caisgory=payioad deivery] | s

Reports

\T:GetReport="46/71

Description

Description

Analyzers

ANALYZER LAST ANALYSIS

Report_1_ No Data

TeamCymruMHR_1_ No Data
o

URLhaus 2.0 No Data

Urlscan_io_Search_0_ No Data
11

Actions v

OEBPS/image/B19549_4_21.jpg
Create Case and enrich it
with observables and start
analyzing if MISP alert a
known Domain to Wazuh

This workflow s public and must be saved
or exported before use.

Tags ~ Wemn TheHve | Domar

Related blog & docs
w0 @O
Triggers @

Description
Creates Warning type Domain
from Wazuh to The Hive

Receive Wazuh Warnings type domain

Shuffle_receive_messages

create case

oberservable

“artifacts

i analyzer_abuseipdb

add_ip_agent

T analyzer.misp

fun_analyzer virustotal

OEBPS/image/B19549_2_12.jpg
I\/ Jan 18, 2624 @ 18:59:31.633 Windows Defender:

Antimalware platform detected potentially unwanted software () 12 62123 I

5 Expanded document

View surrounding documents View single document

Table JSON
t _index wazuh-alerts-4.x-2024.01.10
@ data.win.eventdata.path containerfile:_C:\\Users\\Administrator\\Downloads\\eicar_com.zip; file:_C:\\Users\\Administrator
\\Downloads\\eicar_com.zip->eicar.com; webfile: _C:\\Users\\Administrator\\Downloads\\eicar_com.
zip|https://secure.eicar.org/eicar_com.zip|pid:924, ProcessStart:133493669636253007
@ data.win.eventdata.post Clean Status)
@ data.win.eventdata.pre Execution Status 0
@ data.win.eventdata.process Name Unknown
I @ data.win.eventdata.product Name Microsoft Defender Antivirus I
@ data.win.eventdata.threat Name Virus:DOS/EICAR_Test_File
@ data.win.eventdata.type ID)
@ data.win.eventdata.type Name Concrete
I t data.win.system.channel Microsoft-Windows-Windows Defender/Operational I
I t rule.description Windows Defender: Antimalware platform detected potentially unwanted software () I
rule.firedtimes 1
t rule.gdpr 1V._35.7.d
t rule.gpgl3 4.2
I t rule.groups windows, windows_defender I
t rule.hipaa 164.312.b
t rule.id 62123

OEBPS/image/B19549_6_12.jpg
MATRICES Enterprise Matrix

View on the ATTRCK® Navigator &

Enterprise ~
P Below are the tactics and techniques representing the MITRE ATT&CK® Matrix for Enterprise. The Matrix contains information for the following Version permalink
PRE platforms: Windows, macs, Linux, PRE, Azure AD, Office 365, Google Workspace, Saas, Iaas, Network, Containers.
Windows
mac0S layout: side~ | show subtechniques | hide sub-techniques || help
Linux
Cloud v Discovery Lateral Collection
Movement
ol 1 iccmigwes __31 tecmizies 9techmigues 17 tecnies
; @
Containers Control Mechanism ¢, [[the Middie © W Remote =
Applcation Window | Senvices
- i hccess Toren Brute Force o [] | Discovery e
Mobile v 3 [, o | (S
Gatner T Ropicaion | |Serping Boctor Logon [[Access Toren (Crecentials [| Browser nformation | Spearphishing | |Data o
ics nformation ccouns nteroreer Adtostart BITS Jobs fom #
Extemal Ereon Fosswora LateraTool | Aucio Capture
Gatnervictm Compromse | Remote Cortainer GoctorLogon | Buldmageontost | |Stores 5 Cloud testucture | Tranoer
asructire [Serves Aaminiation | [Bootor ogon oo J Getey Automated
Information (s, Command Intalization Execution) [l | Debugger Evasion Explotation Remote Collection
Develon aravare forCregental | Cloug senvice Senvice
Gather Victim Org Capabilties o [Addtions Deploy Container | ———— M [ootorLogon [Deobfuscate/Decode | |Access Dashboard fon Browser
ntormaton Browser ntization | Fies ot nformaton Fisckng i Session
o | Py] Eoions | s | S vt | [oais —
Phishing for Accounts) Client Execution Deploy Container Authentication| | Discovery Remote
ntomaton o Repication Compromse | [Greateor Sevees) [| cipvoarapata
Obtain ' Through Inter-F Client Software fy Sy: Direct A Forge Web Cloud Storage Object’ —_—
femovavle | |Communcation o[Binary Frocess to W e | Coentals | Discovery Repicaion | pata rom
Soirees Veda Domain Polcy Througn Cloud Sorage
Stage ! Natve AP Ceate Domain Poicy | | odcaton ¢y oot Cortainerand Removaile
i ccourt o, [[Vocncaton gy [2 B |Cotwe [Resoucediscovery | Meda oata rom
L (mrcnen] oo — e
Datavaces Teskon s Create or EcapetoHost | |Guardrals o) oy DevugoerEvasion | Software Reposton ¢y
Trusted tic Deployment
Search Open Relationship Serveriess Process LEvem tTigoered [} | Expotaton for Process @ DeviceDrver Tools Data from
T fon I Scovey
_ Valid [Event Triggered [[——————g MultiFactor
‘Search Victim Owned Accounts Shared Modules | [Execution gy | | Exploitation for | | File and Directory Authentication| | Domain Trust
Wesanes Fermissons nterception | | Discovery
Sottware Etemal Excalation Voditcaton oy
Deployment Tools | | Remote WutFactor
Services iack e Ariacts 1o Adterticaton Discovery
System Erecution o B et
B iack Fow Hiack Brecation Coneraton | Group Polcy
3 Erecution ow 12 Discovery
[potong] [P rreeany JRSITNNNS ' frevees
inecion o, [[mparoerenses g] Suing Network Service
Wndows mpiant emal Discovery
Venagement image Soneauiea ndicator Removl [|05 Gredential
Instrumentation TasidJob 5 Dumping Data Staged ;) []
P — | i (R

OEBPS/image/B19549_5_06.jpg
(root ®haxcamp)-[~]
[:; hydra -1 voldemort pass.txt 192.168.29.172 ssh
Hydra V! 3 Yy van Hauser, avid Maciejal ease do not use in military or s

ecret service organizations, or for illegal purposes (this is non-binding, these *** ignore
laws and ethics anyway).

Hydra (https://github.com/vanhauser-thc/thc-hydra) starting at 2023-12-21 14:05:02
[WARNING] Many SSH configurations limit the number of parallel tasks, it is recommended to
reduce the tasks: use -t 4

[DATA] max 16 tasks per 1 server, overall 16 tasks, 72 login tries (1:1/p:72), ~5 tries per
task

[DATA] attacking ssh://192.168.29.172:22/

[STATUS] 46.00 tries/min, 46 tries in ©0:01h, 27 to do in 00:01h, 15 active

[STATUS] 36.50 tries/min, 73 tries in 00:02h, 1 to do in 00:01h, 12 active

1 of 1 target completed, © valid password found

Hydra (https://github.com/vanhauser-thc/thc-hydra) finished at 2023-12-21 14:07:35

OEBPS/image/B19549_1_10.jpg
Server address

This is the address the agent uses to communicate with the Wazuh server. Enter an IP address or a fully qualified
domain name (FDQN).

Assign a server address @

192168.29.32

Optional settings

The deployment sets the endpoint hostname as the agent name by default. Optionally, you can set your own name in
the field below.

Assign an agentname

ubu-serv

@ The agent name must be unique. It can't be changed once the agent has been enrolled.

Select one or more existing groups @

default x o

OEBPS/image/B19549_6_01.jpg
[rooteHazuh DIRI:—# Jvar/ossec/bin/wazuh togtest]
BTTTRE WoZOh TogTest VA o

Type one log per Line

Jan 21 15:15:45 myCP Checkpoint: 21Jan2019 15:15:45 monitor 16.0.10.1 <bonde Protection Name:Header Rejectio
n;Severity:a;Confidence Level:a;protection_id:HttpHeaderRejection;SmartDefense Profile:SU2_Protection;Perform
ance Tmpact:2;Tndustry Reference:CVE-2002-6032, CAN-2003-6237, CAN-2002-0254, CVE-2062-6155, CAN-2003-0397, C
AN-2062-6314;Protection Type:protection;Signature Info:aUser-Agent[AT 1+:[~I 1+.xesb|ESB;Update Version:63418
2243;rule:26; rule_uid: {405CB782-3274-4D7F-8AAA-4FB24CET26A0} ; resource: http: //dnl-62. geo. kaspersky . con/bases/a
v/kdb/386/kdb-i386-1211g.xml .Klz; reject_id:5accf7c4-10053-c08080a-C0000003 ;web_client_type:Other: +BcfBAAAAG
CCAAEFBAAWQTKXVzr zGvy fPESboPxowomHhxRLAXAQAATAAKAA=;Attack Tnfo:WSE@100001 header rejection pattern found in
request;attack:Header Rejection;srci19.20.16.1;dst:1.1.1.1;prote 0.10.10.1;product : Smar tDefen
sejservice:80;s_port:51642;FollowUp:Not Followed;product_family:Network

** Wazuh-Logtes
ed.

WARNING: (7612): Rule ID '100001' is duplicated. Only the first occurrence will be consider

*+Phase 1: Completed pre-decoding.

full event: 'Jan 21 15:15:45 myCP Checkpoint: 21Jan2019 15:15:45 monitor 10.0.10.1 <bonde Protection|
Name:Header Rejection;Severity:4;Confidence Level:4;protection_id:HttpHeaderRejection;SmartDefense Profile:s|
U2_Protection;Performance Impact:2;Industry Reference:CVE-2002-0632, CAN-2003-0237, CAN-2062-6254, CVE-2002-0)
155, CAN-2003-0397, CAN-2002-6314;Protection Type:protection;Signature Info:AUser-Agent[~T 1+:[~I 1x.<esb|ESB
;Update Version:634182243; rule:26; rule_uid: {405CB782-3274-4D7F-8AA-4FB24CET26A0} ; resource:http://dnl-62. geo.
kaspersky.com/bases/av/kdb/1386/kdb-1386-1211g. xml .k1z; reject_id:5accf7c4-10053-co0080a-c0800003;web_client_t|
ype:Other: +BcfBAAAAECCAAEFBAAWQTKXVzrzGvy fPESboPxowomHhxRLAXAQAATAAKAA=;Attack Info:WSEG160061 header reject]

*+Phase 2: Completed decoding.

*checkpoint-syslog'

parent: 'checkpoint-syslog'

ftscomment: 'First time Checkpoint rule fired.'
dstip: '1.1.1.1'

extra_data: 'Header Rejection'

protocol: '6"

'16.20.10.1'

*+Phase 3: Completed filtering (rules).
id: '20100"

st

T*ATert to be generated.

OEBPS/image/B19549_3_07.jpg
APl Key

Password

Seta new password

Reset the password

Organizations

© admin

admin

‘ ©® haxcamp

org-admin

OEBPS/image/Cover.jpg
Security Monitoring
with Wazuh

A hands-on guide to effective enterprise security using
real-life use cases in Wazuh

RAJNEESH GUPTA

Foreword by Santiago Bassett, Founder and CEO of Wazuh

OEBPS/image/B19549_3_22.jpg
Change the alert status

Status

Duplicate

Summary

T B I U

I Preview

Assignee

OEBPS/image/B19549_3_11.jpg
Wilcomel Last logn was on Sat. 28 Aug 23 21:5758 40200

At ser
LstUsers

Pening egsistons.
Usersaings
Setseting
ContactUsers

Add Organisation

Mandatory Fields.
Local organisation
e rgarisaton shoud ave accesst i nstance, make sure st the Loca rganisaton seing

(= ket fyou woud ey K 9 324 3 know s rganssten o ncusn n hating raues,
<heck tre Local oganisatonsetng

) Ve

ua
ot crgansaton aerer]

saaroe oD

% |vm= UUID or click generate

;E’“’ . Optional Fields

Update Progress

Jots

Sonedued Tasis
Event Book Ruses
Blockisis Event

Manage Evert Slookists
Blockiss Organisaion

Manage Org Blocists

A brief description ofthe organisation

‘Adescription of the organisafion that i purely informational

Bind user accounts to domains (ine separated)

Enter a (ist of) domain name(s) to enforce when creating users.

Logo (45x45 PNG)

Nationaly Sector
Not specified v | [For example “fnanciar
Type of organisation

Frestext description of the

Contact defails

You can add some contact detais for the organisation here, f appicable.

=

OEBPS/image/B19549_3_18.jpg
Edit analyzer MISP_2_1

Configuration

cnchesc ¥ | e [T

cert_path

Options

Enable TLP check MaxTLP Ave:
Enable PAP check Max AP

HTTP Proxy

OEBPS/image/B19549_1_06.jpg
O wazuh. ~ [wedies Index pattern wazuh-alerts

: iNSocdos e ory; Pending agents. Never connected agents
& Management & Security information management ¢ Auditing and Policy Monitoring 0 0
Security Events Policy Monitoring
() Agents Integrity Monitoring ‘System Auditing /AUDITING AND POLICY MONITORING.
Security configuration assessment
> Tools
= S Er—— o) :
20 Threat detection and response &) Reguiatory Compliance $4 policy monitoring Y- iSystemauding
Vertytat yoursystems are conigured accordng to your Auditusers behava, montoring conmand executon and
® Securty Byl Feioss securty polcies baseine. alering on access to cial les.
| MITRE ATTSCK GoPR
HIPAA
4} settings NIST 80053
s @) security configuration assessment

‘Scan your assets as part of a configuration assessment audt

THREAT DETECTION AND RESPONSE REGULATORY COMPLIANCE

B8 viTRe ATTRCK = PCIDSS ‘5 NIST800-53
Ba = T
Global secuty standardforentis hat rocess, tors o Nationl nstue of tandars and Technolgy Specil
vl now vunerabite. and tachnaues basedon resond obseatons ransmt paymen carhalder data Publcation 800-53 (ST 800-53)sels uideinesfor fedral

information systems.

OEBPS/image/B19549_2_01.jpg
| v aug e, 2023 e ea2

2.778 File added to the system. I \

5 Expanded document View surrounding documents

Table JSON
t _index wazuh-alerts-4.x-2623.68.15
t agent.id 82
t agent.ip 192.168.29.172
t agent.name ubu-serv-63
I t decoder .nane syscheck_new_entry I
t full_log File ' /root/infectedfile.txt’ added

Mode: realtine

OEBPS/image/B19549_5_10.jpg
Time « rule description rulelevel ruleid
5 0ct 9, 2023 @ 20:05:18.757 VirusTotal: Alert - c:\users\administrator\documents\eicar_com (1).zip - 60 engines detected this file 12 I 87165 I
Oct 9, 2623 @ 20:85:12.925 File added to Document Folder 7

>

I 100201 I

OEBPS/image/B19549_6_27.jpg
osquery> select pid, name, uid, resident_size from processes order by resident_size desc limit 10;select pid, name, uid, resident_size from processes
order by resident_size desc limit 10;

| pid | name | uid | resident_size |
| 993 | agent | 115 | 184532092 |
| 1552 | process-agent | 115 | 97765984 I
| 1189 | trace-agent | 115 | 66035712 I
| 4813 | osqueryi | o | 43ss0aas I
| 882 | snapd 1o | 28042336 I
| 437 | multipathd 1o | 27750400 I
| 960 | unattended-upgr | 6 | 22159360 I
| 3334 | packagekitd | o | 21200896 I
| 838 | networkd-dispat | 6 | 19476480 I
| 738 | systend-resolve | 162 | 14163968 I
| 993 | agent | 115 | 184532092 |
| 1552 | process-agent | 115 | 97765984 I
| 1189 | trace-agent | 115 | 66035712 I
| 4813 | osqueryi | o | 43ss0ass I
| 82 | snapd 1o | 28042336 I
| 437 | multipathd 1o | 27750400 I
| 960 | unattended-upgr | 6 | 22159360 I
| 3334 | packagekitd | @ | 21200896 I
| 838 | networkd-dispat | @ | 19476480 I
| 738 | systend-resolve | 162 | 14163968 1

OEBPS/image/B19549_1_23.jpg
— E— — S—
& IAug 2623 © 63:34:52.593 Suricata: Alert - ET WEB_SERVER Possible SQL Injection Attempt UNION SELECT I 3

5 Expanded document

Table

JSON

View surrounding documents

¢ _index Wazuh-alerts-4.x-223.08.08
¢ agent.1d 005
¢ agent.ip 192.168.29.218
¢ agent.nane deb serv 83
¢ data.alert.action alloved
I ¢ data.alert.category Web Application Attack I
¢ data.alert.gid 1
¢ data.alert.netadata.affected_product Web_Server_spplications
¢ dta.alert.netadata.attack_target Web_server
¢ dta.alert.netadata.created at 2010_07_38
¢ data.alert.netadata. deployment Datacenter
¢ data.alert.netadata. signature_severity Major
I t data.alert.metadata. tag sQL_Tnjection I
¢ data.alert.netadata.updated at 2026_09_01

86601

View single document

OEBPS/image/B19549_2_09.jpg
> [WinHittp (Microsoft-Windows-WinHttp)
» 5 Wit (Microsot-Windows- WiiNet Capture)
Winlogon

Windows Defender 1151 None & OpenSoved Log.
Windows Defender 1150 None ¥ Creste Custom View..
Windows Defender 1151 None
Import Custom View...
Windows Defender 1150 None
: W 1151 None ClearLog...
Windows Defender 1150 None T Fiter Current Log...
Windows Defender 2000 None B Properies
14.08-2003 17:2022 Windows Defender 2000 None e
Windows Defender 1151 None 125,
Windows Defender 1150 None 8 Find..
Windows Defender 1151 None T Sove Al Events s
TEW ihene Attach Tk Tothis Log..
Warning 14082023 145344 Windows Defender 1002 None
Windows Defender 1000 None
Windows Defender 1151 None
Windows Defender 1150 None
Windows Defender 1151 None
M .
B Attach Task To This vent..
By Copy
‘Scan ID: (47E1D574-CBY7-41AE-GCE1-11E172CAGB37) | o eiciniead
Scan Type: Antimalware @ Refresh
Scan Parameters: Quick Scan
User: NTAUTHORITV\SYSTEM B rep
LogName: Microsoft- Windows- Windows
Source: Windows Defender Logged: 14062023 145344
EventiD: 1002 Tosk Category: None
Levet: Warning Keywords:
User: SYSTEM Computer. haxcamp
nfo
More nformation: Event Log Oniine Help

OEBPS/image/B19549_1_17.jpg
wazuh. Server

Y
1
1
O i
1
1
1
L4

wazuh.

A

Attacker Machine Wazuh Agent

v

Port Scanning

OEBPS/image/B19549_3_17.jpg
+New Analysi

» Responders

Organization: haxcamp.com

&Users fAnalyzers Config fRespondersConfig Wb Responders

Available analyzers (217)

Q misp
Analyzer Max TLP Max PAP Rate Limit Cache

MISPWarningLists_2_0
Versior

0 Author: Nils Kuhnert, CERT-Bund License: AGPL-V3 Type: Docker

+ Enable
Check loCs/Observables against MISP Warninglists to filter false positives,

MISP_2_1

Versi

1 Author: Nils Kuhnert, CERT-8und ~ License: AGPL-V3 Type: Docker

TLPAMBER PAP:AMBER None & Edit @ Disable

Query multiple ISP instances for events containing an observable.

‘TheHive Project 2016-2021, AGPLV3

OEBPS/image/B19549_6_17.jpg
layer X + ®
: convos coros
\WX B.:EHOA=[}®O0C ¢ xm ma e =¥
o A N e e SN
. Resource . . Privilege Credential Lateral
Reconnaissance Development Initial Access Execution Persisten Escalation vasion Access Movement
10 techniques 8 techniques 9 techniques 14 techniques 19 techniques 13 techniques 42 techniques 17 techniques. 31 techniques. 9 techniques
Active Scaning o, [Acauive Access [orive-by. Account abuse elevation [Abuse Elevation Account Discovery [Exploitaton of
o, |Compromise Manipulation ., | Control Control o i) ol Remote Techniques (607) ~
‘Gather victm Host | acquire wechanism ., il Mechanism ¢, ‘Application Window
Information g, infrastructure ., B Explot public- 8IS Jobs Brute Dicovery
e e pecesToken f acces tcken Force s e selectall deselect all
Gather Victim dentity [l Compromise [Appiication 8ot ortogon [Manipuistion 5l Manipuation . Srowser Information Spearphishing
Information Accounts Autostart o o < Discovery ‘Abuse Elevation Control " =
). Extemal Remote: Execution o, [Bootortogon [& sobs from Password Lateral Tool Mechanism i ul
Gather Victim ‘Compromise - Autostart stores) Cloud Infrastructure | Transfer
N Infrastructure | ortogon [l Executon g, [l Build image on Host Discovery ‘Abuse Elevation Control
information Hardware Command initalzation o Remote M v [
. Develop Additions Scripts) BootorLogon il Debugger Evasion for Credential | Cloud Service Service ECHoNen < DypasE eer .
;i Copabities . Deploy Container Bashboard Sexsion ‘Account Control
information Establish P9 ey I Explotation for et Forced Cloud Senvice ol T2} #lusse Bloyaton Comtrol
Phishing for Accounts [l Repiication Cllent Execuion ntication Discovery Remote Mechanism Elevated Execution view |‘select | | desslect | -
information ., Thiough Compromise Deploy Container Services .,
. Obtain Removzble Inter-Process Client Software Process Forge Web
Search Closed Capabiltes ;) W Media Communication g, | 8inary Direct Volume Access Credenials ., lf Discovery Replication
Sources o Domai poicy = L = Through
Stage Supply Chain Native API Create Modification .., [l Domain Policy it Container ar Removable Threat Grou ~
‘Search Open Technical [l Capabiltes i, [Compromise Account) 2 B Modification . Capture ;,,, [Resource Discovery ps (136)
Databases Scheduled > Escape to Host
Trusted Task/iob s, Create or Modify Execution Modify 'Debugger Evas Software - _.
Search Open Relation: System Event Triggered WM Guardrails ., Authentication Deployment ozl fod
Websites/Domains - Serverless Process . Execution gy . Process o, [Device Driver Tools %
lig Execution Exploitation for Discovery APTI7
Seach victm-Owned Accounts . I s ogues | EentTigsered il epotationor se Evasi it Taint Shared T view osioct] Rdessiect]
tes Shared M Execution g [Priege Authentication Domain Trust Content
oo B escalation e and Dirctory I Discovery AEns Yiew _solect _ deselect
Software Extemal Remote Use Altemate p=
Deployment Tools ices ek Eecuion Nodieaon oy Multi-Factor Fle and Directory Authentication view sslect deselect
oW 1 Authentication Discovery Material
System Services ., [l Hijack Execution Hide Arifacts 1) est 2 APT28
FioW g process Generation Group Policy
User Bxecution njection o, W Hijack Execution Discovery APT20 -
Implant Internal o Flow Network.
Windows image Scheduled snifing Network senvice
Management Taskjiob ;[impair Defenses ., Discovery
Instrumentation Modify ; 05 Credential Software (635) &
Authentication [valid Indicator Removal ., f| Dumping o [Network share
Process g Accounts £ Discovery
Indirect Command ‘Steal
Office Execution ‘Application Network sniffing Mitigations (43) v
Application ‘Access Token i
Stanup g Masquerading) Password Policy
Stealor Forge Discovery Campaigns (20) v
Pre-0S Boot Modity Authentication [l Authentication
E Process. Certificates. Peripheral Device
o Discovery
Teski0b g Moty Clowd SteslorForge Data Sources (109) v
- Compute Kerberos. Permission Groups
Server Software Infrastructure g, Tickets Discovery)
e sty reisry |
Regisry Steal Web Process Discovery
Traffic ‘Session Cookie. Close
signaiing ., oty Sysem o g vy Regiy »

OEBPS/image/B19549_5_09.jpg
v Dec 21, 2623 @ 14:06:50.826 ubu-serv-83

Host Blocked by firewall-drop Active Response 3

5 Expanded document

Table JSON

t _index

agent.id

agent.ip

agent.name

data.command

data.origin.module

data.origin.name

data.parameters.alert.agent.id

data.parameters.alert.agent.ip

data.parameters.alert.agent.name

@ data.parameters.alert.data.srcip

View surrounding documents

wazuh-alerts-4.x-2023.12.21
006

192.168.29.172

ubu-serv-63

add

wazuh-execd

node@1

006

192.168.29.172

ubu-serv-63

192.168.29.207

@ data.parameters.alert.data.srouser

voldemort

data.parameters.alert.decoder .name

sshd

651

View single document

OEBPS/image/B19549_3_33.jpg
Add TTP

* Catalog

Enterprise Aack

* Occur date

= Technique

© T1001 - Data Obfuscation

© T1001.001 - Junk Data

© T1001.002 - Steganography
© T1001.003 - Protocol Impersonation

© T1008 - Fallback Channe

© T1026 - Multiband Commun

© T1043 - Commonly Used Port

© T1071 - Application Layer Protocol
© 1071001 -v
© 71071002 -Fil
© 11071005 - Mail Protoco
© T1072.004-DNS [command-and-<ontra]

Procedure

OEBPS/image/B19549_7_09.jpg
O wazuh. | Medies = bt
Inventory Events
SEVERITY
] @ Ciitical (36)
® High (321)
® Medum (78)
@ Low(18)

Vulnerabilities (6)

search: openssh x | Filter or search

Name Version
openssh-client
openssh-server

openssh-sftp-server

openssh-client

1:8.2p1-4ubuntu0.3
1:8.2p1-4ubuntu0.3
1:8.2p1-4ubuntu0.3

1:8.2p1-4ubuntu0.3

Architec

amds4

amd64

amds4

amds4

v Details

@)

Title
CVE-2021-41617 affects openssh-client

® Version

1:8.2p1-4ubuntu0.3

(@ Lestfullscan
Aug 10, 2022 @ 13:03:41.000

@ Updated
Jul 25, 2022 @ 00:00:00.000

v Recentevents (7

Search

+ Add filter

Description

&

&

Index pattern wazuh-alerts-*

CVE-2021-41617

Architecture v Condition
amd64 ™ package unfixed
Last partial scan @ Published

Aug 10, 2022 @ 15:46:23000 Sep 26,2021 @ 00:00:00.000
References
View exteral references (@

paL @ v Jun 28, 2022 @ 11:39:40.370 - now

Rule D status.

1hits

OEBPS/image/B19549_6_07.jpg
= () [iscover New Save Open Share Reporting nspect | (@) | ©@

B v Search DQL [v Last24 hours Show dates

clickhere
® +Add filter /

wazuh-alerts-*

468 hits
Oct 28, 2023 @ 18:14:48.067 - Oct 29, 2023 @ 18:14:48.067 Auto v

CCHANGE INDEX PATTERN
Q Filter options
v wazuh-alerts-*

wazuh-archives-*

waEihemontarig 2100 wo | o 0600 o900 1200 -

wazuh-statistics=* timestamp per 30 minutes

agent.name Time « _source
¢ data.command L
> 0ct 29, 2023 @ 18:14:01.543 ynput.type: log agent.ip: 2405:0201:0036:0093:7810:0848:62A0:FFCB agent.name: WIN-MQI4EREUQNV
data dstuser

agent.1d: 802 manager.nam

: wazuh-server data.win.eventdata.data: 2023-18-30T12:43:01Z, TBL

ARG data.win.system.eventID: 16384 data.win.system.eventSourceName: Software Protection Platform

data.file Service data.win.system.keywords: 6x60900000099006 data.win.system.providerGuid: (E2383386-

@ data.pwd ©8C9-472C-ASF9-F2BDFEAF156) data.win.system.level: 4 data.win.system.channel: Application

OEBPS/image/B19549_1_25.jpg
e Vulnerability: Reflected Cross Si

cripting (XSS)

Unstructions |
Setup / Reset DB What's your name? Submit

[Brute Force SRR .
Command Injection | More Information

CSRF

File Inclusion

File Upload

Insecure CAPTCHA |
SQinjecton |
SQL Injection (Blind)
Weak Session IDs

XSS (DOM)

ite_scripting
mi

XSS !SM.QL

CSP Bypass

JavaSeript

Open HITP Redirect |

DVWA Security
PHP Info
About

Logout |

Username: admin
Security Level: low
Locale: en

SQLi DB: mysal

View Source | View Help

OEBPS/image/B19549_2_10.jpg
Event 1002, Windows Defender
General Details

O FriendlyView O XMLView

+ System

- EventData
Product Name Microsoft Defender Antivirus
Product Version 4.18.23070.1004

Sean ID {ATE1D574-CBO7-41AE-8CE1-11E172CA6B37)
Scan Type Index 1

Sean Type Antimalware

Scan Parameters 1

Index

Scan Parameters Quick Scan

Domain NT AUTHORITY

User SYSTEM

sip 5-1-5-18

OEBPS/image/B19549_4_19.jpg
5 Workflows Apps Docs

TheHive 5 @
@ shared by friky (amme)

Came et Tk Ovseabe Commen Tasklog

- Create Alert

rapiryalont

-

7301 alrtfoortie)

- Create case

Iapimivease

- e

Japin/case/(dOrName)

- Query API

rapimt/query

[Ao pert e

Tapialot(alert) atfact

[Ao wien File

Tapialert{olert i cbservs

[Ao case Fite

Iapitcase/icase K artact

(S Ao caserie

Iapifcasaicase yiobsory

- Create an action

r———

- Get action by entity

Iapitconnector/cortex/actic

- List Analyzers

Iapiiconnector/conex/anal

@ search Appa, Workfiows, Doc 3¢+ K

Tinaine

[—
) Apikey
&

http://yourinstance

Headers

If-None-Match=undefined

asic&redirect=test

20 1
Workflows Related apps
4 2

INTEGRATIONS cReATOR

App Description
TheHive 5 OpenAP! implementation for
Shufle

Result O]
[p———

OEBPS/image/B19549_1_02.jpg
/in Intercepting
@/ Traffic

D
=

Standalone Server Internal Network/
fREIho | virtual Machine LAN/Campus Network

OEBPS/image/B19549_1_31.jpg
Aug 9, 2023 © 14:43:37.497

Suricata: Alert - ET POLICY GNU/Linux APT User-Agent Outbound likely related to package 0 El | 86601

5 Expanded document

Table JSON

View surrounding documents View single document

¢ _index Wazuh-alerts-4.x-2623.88.09
¢ agent.id 007
¢ agent.ip 192.168.29.49
¢ agent.nane ubu-serv-63
¢ data.alert.action allowed
I ¢ data.alert.category Not Suspicious Traffic I
¢ data.alert.gid B
¢ data.alert.netadata.created_at 2011_e_31
¢ data.alert.netadata. former_category PoLICY
¢ data.alert.netadata.updated_at 2020_64_22
¢ data.alert.rev 5
¢ data.alert.severity 3
I ¢ cetestertsignature ET POLTCY GNU/Linux APT User-Agent Outbound likely related to package managenent |

OEBPS/image/B19549_3_02.jpg
WGZUh. TheHive

@ Cortex MISP

Threat Sharing

Security Platform TheHive - Incident Response Threat Intelligence Sharing
Cortex - Automation, Analyzer Platform
and Integration

OEBPS/image/B19549_5_15.jpg
« Nov 23, 2623 @ 83:58:58.818

me

Possible RDP attack: 3 failed logins in a short period of ti 18

100100

£ Expanded document

Table

JSON

View surrounding documents

View single document

¢ _index wazuh-alerts-4.x-2023.11.22
¢ agent.id 604
I t agent.ip 192.168.29.77
¢ agent.name WIN-AGNT
¢ data.win.eventdata.authenticationPackageName NTLM
¢ data.win.eventdata. failureReason %2313

data.win.eventdata. ipAddress

192.168.29.207

data.win.eventdata.ipPort

data.win.eventdata.keyLength

data.win.eventdata.logonProcessName

data.win.eventdata.logonType

data.win.eventdata.processId

NtLmSsp

oxe

OEBPS/image/Packt_Logo_New.png
<PACKD

OEBPS/image/B19549_4_07.jpg
. 0ct 3, 2023 @ 05:59:23.443 sshd: Attempt to login using a non-existent user I

£ Expanded document

Table JSON

5718

View surrounding documents View single document

t GeoLocation.city_nane

Tehran |

t GeoLocation.country_name

GeoLocation. location

t GeoLocation. region_name

51.4158,
“lat": 35.6824

Tehran

t _index wazuh-alerts-4.x-2623.16.63
t agent.id 601
t agent.ip 139.186.158.65

3
t agent.nane Ubu-Sgnr-81
t data.srcip 185.255.91.147
4

t data.srcuser kat

I t decoder .name sshd I
t decoder parent sshd

I t full_log Oct 3 88:29:22 Wazuh-Agent sshd[3608]: Failed password for invalid user kat from 185.255.91.147 port 33872 ssh2 I

t id 1696292963.162868

t input.type

1og

OEBPS/image/B19549_2_05.jpg
> Nov 26, 2023 @ 02:43:24.108 WIN-AGNT Known Malware File Hash is detected: c:\users\administrator\downloads 13 110002
\mirai

> Nov 26, 2023 @ 02:43:23.817 WIN-AGNT Known Malware File Hash is detected: c:\users\administrator\downloads 13 110002
\mirai

OEBPS/image/B19549_3_27.jpg
FLAGS DATATYPE . VALUE/FILENAME .

| TLP:AMBER]I filename |svchost[.]exe
pAPAMBER | © [swefile
(W[MISP:Search="8 event(s)" .

DATESINS SR GRS

S.05/09/2023 03:13
C.05/09/2023 03:13

OEBPS/image/B19549_4_10.jpg
‘Webhook: running
What are webhooks?

< WOrkbes > Failed Logins Analysis

Name

Get_User_Logins Get_User_Logins

Find Associated App (optional) ~

Parameters

® Webhook URI

https://shuffler.io/api/v1/hooks, IT]

Lo

[clickihereltolStary
Execution Argu - (]) | | % a Vd 9

OEBPS/image/B19549_6_23.jpg
APTIO X [] APT38 X [] newtab X +

T U USE (U VISUGIIZS UTETSIVE COVETagE: TEuy U teanT pra)
detected techniques, and more.

g we requency or

help changelog theme -

Create New Layer Create anew empty layer

Open Existing Layer Load a layer from your computer or a URL.

Create Layer from other layers Choose layers to inherit properties from
Gomain*

Enterprise ATT&CK VI3~ Choose the domain and version for the new layer. Only layers of the same domain and version can be merged.

Use constants (numbers) and layer variables (yellow, above) to write an expression for the initil value of scores in the new layer. A

scor cxpessin fulllst of supported operations can be found here. Leave blank to initialize scores to 0. Here's a list of available layer variables:
b e
+ b (ayen)
gradient ~ Choose which layer to import the scoring gradient from. Leave blank to initialize with the default scoring gradient.
coloring ~ Choose which layer to import manually assigned colors from. Leave blank to initalize with no colors.
comments ~ choose which layer to import comments from. Leave blank to initialize with no comments.

links ~ Choose which layer to import technique links from. Leave blank to initialize without links.

OEBPS/image/B19549_2_04.jpg
GNU nano 2.

8 /var /ossec/etc/Lists/malware-hashes
eBec2cd43f71c80d42cd7bOf17802c73 :mirai
55142f1d393c5ba7405239f232a6c059: Xbash
F71539FDCAOC3D54D29DC3B6F8C30EOD: fanny

OEBPS/image/B19549_3_12.jpg
Add User

List Users

Pending registrations
User settings
Set Setting

Contact Users

Add Organisation

List Organisations.

Add Role
List Roles

Server Settings &
Maintenance

Update Progress

Jobs

Scheduled Tasks
Event Block Rules
Blockists Event
Manage Event Blockists
Blockists Organisation

Manage Org Blockists

Admin Add User

Email /
Eset password
/ Organisation
Choose organisation N

NIDS SID

/ Sync user for

Not bound to a server v

PGP key

Receive email alerts when events are published
Receive email alerts from "Contact reporter” requests
immediately disable this user account

Send credentials automatically

OEBPS/image/B19549_1_13.jpg
. Select the package to download and install on your system:

A LNux

RPMamd64 () RPM aarchéd Intel

O Wi s2/64 s
DEB amd64 DEB aarch64 ‘Apple silicon

= WINDOWS @& macos

© For additional systems and architectures, please check our documentation 2.

© serveradaress

This is the address the agent uses to communicate with the Wazuh server. Enter an IP address or a fully qualified
domain name (FDQN).

Assign a server address @

192.168.29.32

OEBPS/image/B19549_1_20.jpg
¢

Qe mse ¢

_index

wazuh-alerts-4.x-2023.07.03

08

agent.ip 192.168.29.85

¢ agent.name ids-ubu-serv-81

¢ data.alert.action allowed

¢ data.alert.category Attempted Information Leak

t data.alert.gid 1 t data.alert.severity
t data.alert.metadata.created_at 2010_67_38

t data.alert.metadata.updated_at 2010_67_30

¢ data.alert.rev 7

| ¢ data.alert.severity 2 I
I ¢ data.alert.signature ET SCAN Potential SSH Scan OUTBOUND

¢ data.alert.signature_id 2003068
¢ data.dest_ip 16.6.2.5
t data.dest_port 2

t data.event_type alert

t data.flow.bytes_toclient °

t data.flow.bytes_toserver 60

¢ data.flow.pkts_toclient °

¢ data.flow.pkts_toserver
¢ data.flow.start 2023-67-03T19:52:58.552952+6000
t data.flow_id 1951792769136376 .066006
t data.in_iface enpes3
t data.proto Tcp

I t data.src_ip 192.168.29.107 I
t data.src_port 41795

OEBPS/image/B19549_4_20.jpg
5 Workflows Apps Docs

Q search Apps, Workflows, Doc 3¢+ K

zu 1
Shared by frikky (Gethe)
)8 Workflows Related apps
Case. Alert Task Observable Comment Task Log Timeline
-
/api/i/alert B ~ < 2
pocs TRYITOUT STATS INTEGRATIONS CREATOR
/api/v1/alert/{alertid}
Action Description
Create case O crecte co=e
/api/vi/case Create a new case empty case. A Case
|+ wmewmowemienves Template can be used to provide tasks and
- Get case custom fields
/api/v1/case/{idOrName}
= o i Rt O
/api/v1/query The ion resuft will show up here
£ Apikey
- Add Alert File
/api/alert/{alert id)/artfact The API key to use. Space = skip
- Add Alert File
Japifalert/(alert idy/observi & ut
- Add Case File http://your-instance]
/api/case/{case_id)/artifact
Headers
- Add Case File
/apilcase/{case_id)/obsery If-None-Match=undefined
- Create an action
/api/connector/cortex/actic
(S Gt ccton by entiy e
/api/connector/cortex/actic

I st Anaveers

/api/connector/cortex/anal

view=basic&redirect=test

OEBPS/image/B19549_5_11.jpg
Oct 9, 2823 @ 28:05:12.925

5 Expanded document

Table

JSON

_index

agent.id

agent.ip

agent.name

decoder . name

File added to Document Folder 7

View surrounding documents

wazuh-alerts-4.x-2023.10.09

003
2405:0201:0036:0842:7810:0848:62A8 : FFCB
WIN-MQI4EREUQNV

syscheck_new_entry

t full_log File ‘c:\users\administrator\documents\eicar_com (1).zip' added
Mode: realtime

t id 1696862112.3207268

t input.type log

t location syscheck

t manager.nane Wazuh-DLHI

rule.description

File added to Document Folder I

100201

View single document

OEBPS/image/B19549_1_03.jpg
Server

Sensor

Sensor

OEBPS/image/B19549_6_13.jpg
MATRICES

Enterprise
PRE
Windows
mac0S
Linux
Cloud
Network
Containers

Mobile

| Reconnaissance |

10 techniques

Active Scanning (3)

Gather Victim Host

Information (4) Click here
Gather Victim Identity
Information (3

ain Properties

Gather Victim
Network
Information ()

Network Topology
IP Addresses

etwork Trust Dependencies

Network Security Appliances

Gather Victim Org
Information (4)

OEBPS/image/B19549_1_30.jpg
tmNIDS - NIDS detection tester - @oxtf
Project: https://github.com/6xtf/testmynids.org

Choose which test you'd like to run:

1) Linux UID

I 3) HTTP Malware User-Agent I

4) Bad Cert cate Authorities

5) Tor .onion DNS response and known IPs connection
6) EXE or DLL download over HTTP

7) PDF download with Embedded File

8) Simulate SSH Outbound Scan

9) Miscellaneous domains (TLD's, Sinkhole, DDNS, etc)
10) MD5 in TLS Certificate Signature

11) CHAOS! RUN ALL!

12) Qui
#2

& sresemion (1)

OEBPS/image/B19549_6_30.jpg
Iusquery> select name from kernel_modules; I

| tcp_diag

udp_diag

inet_diag
snd_hda_codec_generic
ledtrig_audio
intel_rapl_msr
ip6t_REJECT
nf_reject_ipve
xt_hl

ip6_tables

ip6t_rt
snd_hda_intel
snd_intel_dspcfg
snd_intel_sdw_acpi
ipt_REJECT
nf_reject_ipva
xt_L0G

nf_log_syslog

nft_
xt_limit
xt_addrtype
xt_tcpudp
xt_conntrack
nf_conntrack
nf_defrag_ipve
nf_defrag_ipva
nft_compat
nft_counter
snd_hda_codec
nf_tables
nfnetlink
binfmt_misc
nls_is08859_1

T e

OEBPS/image/B19549_1_29.jpg
tmNIDS - NIDS detection tester - @oxtf
Project: https://github.com/6xtf/testmynids.org

Choose which test you'd like to run:

1) Linux UID
2) HTTP Basic Authentication

3) HTTP Malware User-Agent

4) Bad Certificate Authorities

5) Tor .onion DNS response and known IPs connection
6) EXE or DLL download over HTTP

7) PDF download with Embedded File

8) Simulate SSH Outbound Scan

9) Miscellaneous domains (TLD's, Sinkhole, DDNS, etc)
16) MD5 in TLS Certificate Signature

11) CHAOS! RUN ALL!

12) Qui

& sresemion (1)

OEBPS/image/B19549_7_04.jpg
= () WwaAzUh. v Modues = WINMQUEREUQ.. | Vulnerabilties @ Indexpattern wazuh-alerts-* . ®

Inventory Events (§) WIN-MQI4EREUQNV (002) X
SEVERITY DETAILS SUMMARY
\' @ Critical (77) Critical High Medium Low e o
@ High(1658) 77 1658 745 18 @ Windows Server 2012 R2 (2310)
© Medun(745) Last full scan Last partial scan @ Google Chrome (165)
Nov 5,2023 @ 18:26:29.000 -
® lows) 2 @ @ Microsoft Edge (23)
Vulnerabilities (77) ¢y Export formatted
I severity=Critical x Filter or search I
Name ™ Version Architecture Severity CVE (CVSS2 Score (CVSS3 Score Detection Time
Google Chrome 109.0.5414.168 x86 Critical CVE-2023-2136 0 26 Nov5, 2023 @ 18:26:28.000
Google Chrome 109.0.5414.168 86 CVE-2023-1529 0 98 Nov'5, 2023 @ 18:26:29.000
Microsoft Edge 109.0.1518.140 86 CVE-2023-36735 0 26 Nov 5, 2023 @ 18:26:29.000
Windows Server 2012 R2 639600 64 CVE-2023-36434 0 98 Nov 5, 2023 @ 18:25:50.000
Windows Server 2012 R2 6.3.9600 x64 Critical CVE-2023-35349 o 9.8 Nov 5, 2023 @ 18:25:59.000

Windows Server 2012 R2 6.3.9600 x64 Critical CVE-2023-36911 0 9.8 Nov 5, 2023 @ 18

:59.000

OEBPS/image/B19549_4_03.jpg
5} Workflows Apps Docs Find Public Apps, Workflows, Documentation [o} - a

B9 omcanizaron T users B appautienmicaron B mies = pamastore O sceepuies Q cwvironments B renants

Files Files from Workflows. Learn more
EEEEE

Updated Name Workflow Md5 Status Filesize Actions

L1

OEBPS/image/B19549_3_23.jpg
‘ < ‘ Create case

> Title

Suspicious File detected |

Date

2023-09-04

Severity

] -coov | S| e

TLP

Tipclear | [TeoReEN] [TLPAMBER-STRICT | | TLPRED

PAP
e) () I o]

Tags

| agent_ip=2405:0201:0036:0842:781... | wazuh | agent_name=WIN-MQI4EREUQNV [agent_id=001 | rule=101111

* Description

TBIU SR N R 2 Preview

pyle.id | 101111 |

rule. firedtimes | 2 |

rule.mail | False |

rule.groups | ['sysmon'] |

#HE Agent
| key | val |
Tasks Customfields Pages

/'

OEBPS/image/B19549_3_06.jpg
"TheHive

Events
wazuh. >
Security Platform
&
@ﬁz&

“Cortex

Enrich Events

Threat Sharing

A~

Additional Analyzers

Seare,
h Op,
ser,
“bles g >
ISP 0\,
‘ents

Analyst

{

. Thetive

Analyzers

OEBPS/image/B19549_2_15.jpg
T] 5% S i

Gl ol NN B TS SR g T]
i/ S PP IR S LT I T
v P el O N N S Sl

Florian Roth, Nextron Systems. v8.9.3, April 2022
Select the test-set that you want to run:

[81 RUN EVERY TEST
[11 Collection

[21 Connand and Control
[3] Credential Access
[4] Defense Evasion

[51 Discovery

61 Execution

[71 Lateral Movement

[81 Persistence

191 Privilege Escalation

[C1 CobaltStrike Beacon Simulation
1 Apply AU Exclusions in Registry

[S1 Settings
[E] Exit

OEBPS/image/B19549_6_28.jpg
osquery> select count(pid) as total, name from processes group by name order by total desc limit 10;
. _

| total | name

PR S +

systemd

sshd
zswap-shrink
writeback
wazuh-syscheckd |
wazuh-modulesd |
wazuh-logcollec |
wazuh-execd
wazuh-agentd
watchdogd

osquery> ||

OEBPS/image/B19549_1_24.jpg
Mozilla/5.8 (Windows NT 10.8; Win6d; x64) AppleWebKit/537.36 (KHTHL, like Gecko) Chrome/115.9.8.8 Safari/537.36 I

t data.http.http_user_agent
t data.http.length 1375

t data.http.protocol HTTP/1.1

t data.http.status 260

t data.http.url /DVMA/vulnerabilities/sqli/?1d=a%27%20UNIONS20SEL ECTX20%22 text1%22, %22text2%22 ;- -%20-&Submit=Submit I
t data.in_iface ethg

® data.pkt_src wire/peap

t data.proto TP

t data.src_ip 192.168.29.207

t data.src_port 62820

& data.tinestamp Aug 9, 2623 @ 83:26:34.851

t data.txid [

decoder .name

json

OEBPS/image/B19549_1_07.jpg
|

wazuh.

% Modules

~

{83 Management

2

() Agents

>_ Tools

@ Security

Settings

Modules

Management directory

{53 Administration

Rules
Decoders
CDB lists
Groups
Configuration

(§) Status and reports
Status
Cluster
Statistics
Logs
Reporting

OEBPS/image/B19549_5_05.jpg
wazuh. Server

Active Response

firewall-drop

wazuh.
SSH Access

Attacker Machine Wazuh Agent

L3
1
1
1
1
1
1
1

v

L 2

OEBPS/image/B19549_6_02.jpg
= | O | oEsEy

B v Ssearch
© - +Add fitter

‘wazuh-

Q Search field names
@ Fierby type o
Setectaa fods

@ _source

Avalable fields
€ index

€ agentid
€ agentip

agentname

€ data.command

data dstuser

data extra_data

datafile

® datapwd

datasca.check.
‘command

data.sca.check.
‘compliance.cis

Count

20
150
100

50

2100

Time ..

Oct 29, 2023 @ 18:14:01.543

Oct 29, 2623 @ 17:49:24.349

New Save Open Share Reporting Inspect . (]

o [ot v e

468 hits
Oct 28, 2023 @ 18:25:55.033 - Oct 20, 2023 @ 18:25:55.033 Auto ~
000 0300 o800 o900 1200 1500 1800
timestamp per 30 minutes

anput.type: log agent.ip:
agent.id: @62 manager.name: wazuh-server data.win.eventdata.data: 2023-10-38T12:43:01Z, TBL
dat

2485:6261:8636:0093:7810:0848:62A8 :FFCB agent..name: WIN-MQI4EREUQNY

_win_systen.eventID: 16384 data.win.systen.eventSourceNane: Software Protection Platform Service
data.win.systen keywords: 8xB2080000000800 data.win.systen.providerGuid: (E23B3380-CBCS-472C-ASF9-

F2BDFEAGF156) data.win.systen.level: 4 data.win.system.channel: Application

anput.type: log agent.ip:
agent.id: @62 manager.name: wazuh-server data.win.eventdata.subjectLogonld: ex3e7
dat:

2405:6261:8636:0093:7810:0848:62A8 :FFCB agent.name: WIN-MQI4EREUQNY

win. . subj : data.win. . impe ionLevel: %41833

OEBPS/image/B19549_4_14.jpg
<. Workflows > Connecting Wazuh Hitp 130~

« B @ Qa

Name PEE
/ Connecting_Wazuh 0
9
Find Actions

. / Curl -
Connecting

curl -u wazuh-wui:wazuh-wui @)
-k -X POST
@

"https://139.84.173.180:550

Execution Argu -) [] ‘ £ ‘ a ‘ Ve ‘ 9

OEBPS/image/B19549_7_10.jpg
Failed Not applicable

» End scan
80 101 1 44% Dec 31, 2023 @ 16:47:50.000

Checks (1) C Refresh & Export formatted
| Ensure audit tools are 755 or more restrictive | waQL

D™ Title Target Result

™ Y -C "%n %a"

|285|0 Ensure audit tools are 755 or more restrictive. | | Jsbin/auditd /sbin/augenrules | ® Passed ~
Rationale

Protectir udit ir ion i identifyir 'd protecting the tools used to view and manipulate log data. Protecting audit tools it to prevent

Remediation

Run the following command to remove more permissive mode from the audit tools: Isbin/auditd

Description

Audit tools include, but are not limited to, vendor-provided and open source audit tools needed to view and ipulate audit information syste tivity and records. Audit tools include custom queries and report generators.
Check (Condition: none)

* c:stat -c "%n %a" /sbin/auditd - r\w+ &&

| 1 714

Compliance
cis:4.1.4.8
cis_csc_v7: 146
cis_csc_v8:3.3

ipaa: 164.308(a) (3)!
‘mitre_tactics: TAOO07
‘mitre_techniques: T1070,T1070.002,T1083

,164.308(a) (3)

15745

OEBPS/image/B19549_7_08.jpg
0O WQZUh.vl Modules kaliserv

< System audit for Unix based systems ©

Passed Failed Not applicable Score
3 13 7 18%
Checks (1)
| SSH Hardening: Port should not be 22 |
D Title Target
3000 | SSH Hardening: Port should not be 22 | File: /etc/ssh/sshd_config
Rationale

Changing the defauit port you may reduce the number of successful attacks from zombie bots, an attacker or bot doing port-scanning can quickly identify your SSH port.

Remediation
Change the Port option value in the sshd_config file.

Description
The ssh daemon should not be listening on port 22 (the default value) for incoming connections.

Check (Conditi

pei_dss: 2.2.4

End scan

Dec 27,2023 @ 13:24:42.000

C Refresh & Export formatted

Result

waQL

OEBPS/image/B19549_1_08.jpg
wazuh

The Open Source Security Platform

OEBPS/image/B19549_6_26.jpg
= @ wazuh. v e

MITRE ATTACK

Brute Force

+ Addfilter
Time Agent_ Agentame Technique(s) Tocticts) Level rute0 Descrigtion
Credential sshd: brute force trying to get access to the
> e 000 Wezuh-DLHI TI10 10 5712 o
- Access system. Non existent user.
2025:547%
oct22,2023
Credential sshd: brute force trying to get access to the
> @ 000 Wazuh-DLH ™o 10 5712 b
Access system. Non existent user.
e o o Credental . PAM: Muttiple failed logins in a small period of
Access time.
Ot 22,2023
Credential sshds: brute force trying to get access to the
>y @ Wazuh-DLH ™o 10 5763
} Access system. Authentication faled.
174952075
SRR Credential PAM: Multple failed logins in a small period of
> @ Wazuh-DLHI TI110 10 5551 o N eaeciogs ARt peroc
Access time.
17:42:44.069
Octen 20z Credential et brute force t t n
redential sshds brute force trying to get access to the
> e w0 Wazuh-DLHI ™0 10 5712 ‘ kel
Access system. Non existent user
174914042
i et Credential
> e 000 Wazuh-DLH TH0 o 8 5758 Maximum authentication attempts exceeded.
ccess
160440239
oct 22,2023
Credential syslog: User missed the password more than
> 000 Wazuh-DLHI 1110 10 2502
Access one time

16:04:40.239

OEBPS/image/B19549_3_16.jpg
Set up the server "cortex0"

General settings

Server name

* server url

Proxy settings

SSL Settings

Do not check Certificate Author

Disable hostname Verification

@

Advanced settings

Choose the filter on TheHive organizations

Include all organizations

Test server connection

OEBPS/image/B19549_5_16.jpg
Nov 23, 2023 @ 03:50:58.682 Netsh used to add firewall rule 10 92043

= Expanded document

Table JSON

View surrounding documents View single document

t _index wazuh-alerts-4.x-2023.11.22
t agent.id 004
t agent.ip 192.168.29.77

agent.name

data.win.eventdata.commandLine

data.win.eventdata.company

data.win.eventdata.currentDirectory

data.win.eventdata.description

data.win.eventdata.fileVersion

data.win.eventdata.hashes

WIN-AGNT

\"C:\\Windows\\System32\\netsh.exe\" advfirewall firewall add rule name=\"WAZUH AC
TIVE RESPONSE BLOCKED IP\" interface=any dir=in action=block remoteip=192.168.29.2
07/32

Microsoft Corporation

C:\\Program Files (x86)\\ossec-agent\\

Network Command Shell

10.0.17763.1 (WinBuild.160101.0800)

MD5=847B74DC766870BOFAD7DABFBB239999, SHA256=C94D41B92D051C1D7F38FC60196958799B4ACF
F3FA2A2CDF8CED9D@B8B42B583, IMPHASH=C8D91522FEEE1152DC40833F6A4717E7

data.win.eventdata.image

C:\\Windows\\SysWOW64\\netsh.exe

OEBPS/image/B19549_1_16.jpg
STATUS

Agents (6)

© 141008 and Search

O wazuh. v [Agens

Active (2)
Disconnected (4)
Pending (0)

Never connected (0)

Active.
2

Last registered agent
ubu-serv-03

DETALLS
Disconnected Pending Never connected Agents coverage
0 0 33.33%
Most active agent
ubu-serv-03

EvOLUTION

® -

Last 28 hours v
@ dscomecte
® actie

2100 0000 0300 0600 0900 1200 1500 1800
timestamp per 10 minutes.

@ Deploy new agent

c

Refresh (i Export formatted

@

B - |

DA Name asess Growts) Operting ysem. [r— Verson s Actons
001 agent-gve-03 192.16620.113 detaut A Ubuntu 2208317 nodk01 vasa e discomected ® 2
002 WIN-MOIEREUGNV Windows.] nodk01 V480 ediscomected ® e
003 debeserv-03 100211 detaut 2 Kall NULinux 20232 nock01 vi4s e discomected ® 2,
004 WIN-AGNT 192.1682977 defaut £ Microsoft Windows Server 2019 Datacenter Evaluation 10.0.17763.737 node0! v460 o active @
005 ububgr 192.168.29.246 Wbty D Ubuntu 22083175 nodk01 VB0 e discomected ® 2
005 ubu-senv-03 192.16820.172 detaut A Ubuntu 2206 nodk01 V50 eactive ® 2
Rows per page: 10 v 1

OEBPS/image/B19549_3_08.jpg
haxcamp.com

Description

OEBPS/image/B19549_5_08.jpg
®

| o Dec 21, 2003 14:06:48.838 ubu-serv-e3

sshd: Attempt to login using a non-existent user 5

| 5710

B9 Expanded document

Table JSON

View surrounding documents View single document

agent. ip

agent. name

data.sreip

wazuh-alerts-4.x-2023.12.21

192.168.29.172

ubu-serv-63

192.168.29.207

data.srcuser

voldemort

t decoder.nane

decoder . parent

full_log

t id

input. type

location

sshd

sshd

Dec 21 88:36:46 osboxes sshd[3923]: Failed password for invalid user voldemort from 192.168.29.267 port 52486 ssh2
1763147808. 415430

109

Ivar/log/auth. log

OEBPS/image/B19549_6_34.jpg
o SN ——— e e R ——
0300 0600 0200 1200 1500 1800 2100 0000 0300

timestamp per 30 minutes

Time + rule.description rule Jevel ruleid
« Oct 29, 2023 © 03:28:03.053 Listened ports status (netstat) changed (new port opened or closed). 7 533
B Expanded document View surrounding documents View single document
Table JSON
 _index wazuh-alerts-4.x-2023.10.28
¢ agent.id 601
t agent.ip 139.180.158.65
t agent.name Ubu-Sgnr-e1
t decoder.nane ossec
t full_log ossec: output: ‘netstat listening ports':
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address state PID/Program name
tep 0 6127.0.0.53:53 0.0.0.0:¢ LISTEN 737/systend-resolve
tep 0 6 127.0.0.1:6162 9.0.0.0:% LISTEN 833/process-agent
top 0 ©127.0.0.1:6062 0.0.0.0:% LISTEN 833/process-agent
tep 0 00.0.0.0:22 0.0.0.0:¢ LISTEN 912/sshd: /usr/sbin
tep 0 ©127.0.0.1:8126 0.0.0.0:% LISTEN 834/trace-agent
tep 0 © 127.0.0.1:5681 0.0.0.0:% LISTEN 832/agent
top 0 6 127.0.0.1:5608 8.0.0.0:% LISTEN 832/agent
tep o 6 127.0.0.1:5012 0.0.0.0:x LISTEN 834/trace-agent
tep6 0 622 LISTEN 912/sshd: /usr/sbin
udp 0 ©127.0.0.1:8125 832/agent
udp 0] 9.0.0.0:% 737/systend-resolve
udp o o 6.0.0.0:% 801/systend-network

OEBPS/image/Packt_Logo_New1.png
<packmn

OEBPS/image/B19549_5_01.jpg
NIST SANS

1.Preparation 1.Preparation

2 Detection and 2.1dentification
Analysis)

3.Containment, 3.Containment
Eradication and 4.Eradication
Recovery 5.Recovery

4.Post-incident 6.Lesson Learned

Acti

OEBPS/image/B19549_3_28.jpg
Analysis report

MISP - 8 results

1125 - IECrypt sample analysed with VMRay Analyzer Report for Sample #245141 (IECrypt)
1197 - RegretLocker - VMRay Analyzer Report for Sample #1500977
1277 - HALFRIG - Malware Analysis Report

1325 - Scraper: Black Basta Ransomware Gang Infiltrates Networks via QAKBOT, Brute Ratel, and Cobalt Strike

1365 - AA20-131A_Darkside_Ransomware_Best_Practices_for_Preventing_Business_Disruption_from_Ransomware_Att

1420 - Scraper: Ransomware Actor Abuses Genshin Impact Anti-Cheat Driver to Kill Antivirus
1512 - C2 With It All: From Ransomware To Carding

1619 - Scraper: DiceyF deploys GamePlayerFramework in online casino development studio

OEBPS/image/B19549_4_06.jpg
<. Workflows > Wazuh Alerts

v

Status SUCCESS

[: J¥ o

~ "Results for Execution Argument:

1 { 8 items
“severity” : 2

“pretext” : "WAZUH Alert”
“title” :

AH: User login failed.

“text” :

failure; lognam

rule_

uid=8 euid=6 tty=ssh ruser= rhost

17.217.62.61

d” : "s50

timestamp

"2023-10-03722:28:37.492+000¢

1d” : "1606372117.8079328"
v "all_fields” : { 10 items
“timestamp~ : "2023-10-63722:28:37.492+0000"
v “rule” : { 13 items
"level” : 5
“description” : "PAM: User login failed.”
-id" : "5503"

v "mitre” : { 3 items
v id" : [1 item

@ : "T1110.001"

1
v “tactic” : [1 item
@ : "Credential Access”

1

~ "technique” : [1 item

"Oct 3 22:28:36 Wazuh-Agent sshd[3108]: pam_unix(sshd:auth): authentication

Execution ArgL ‘ 5] H (] H o H [) H % H a

OEBPS/image/B19549_6_06.jpg
‘Opensearch Plugins. &
Reporting

Alerting

Maps

Notications

Indox Management.

‘Snapshot Management

Security

& mansgement v
oo Too
tack ansgement

[r—

OEBPS/image/B19549_1_28.jpg
% @0

tmNIDS Suricata IDS

-

wazuh. Agent

€m—mm ey

wazuh. Server

OEBPS/image/B19549_7_01.jpg
= (O wadzuh. v | WVodies | WNAGNT

® -

Inventory Events () WIN-AGNT (004) X
SEVERITY DETAILS SUMMARY
| @ Critical (54) Critical High Medium Low e o
® Hon(s12) 54 1312 404 7 @ T S 7
@ [Mediau(d0g) Last full scan Last partial scan
® Low(®) Dec 25,2023 @ Dec 26,
Vulnerabilities (1777) G Refresh & Export formatted
Search waL
Name Version Architecture Severity 3 cvss2 core cvss3 score Detection Time /.
Windows Server 2019 10.0.17763.737 x64 High CVE-2022-41081 0 8.1 Dec 19, 2023 @ 19:09:30.000
Windows Server 2019 10.0.17763.737 x64 High ‘CVE-2022-41033 o 78 Dec 19, 2023 @ 19:09:30.000
Windows Server 2019 10.0.17763.737 x64 High CVE-2022-38051 o 78 Dec 19, 2023 @ 19:09:30.000
Windows Server 2019 10.0.17763.737 x64 High 'CVE-2022-38050 o 78 Dec 19, 2023 @ 19:09:30.000
Windows Server 2019 10.0.17763.737 x64 High 'CVE-2022-38047 o 8.1 Dec 19, 2023 @ 19:09:30.000
‘Windows Scrver 2019 10.0.17763.737 x64 High CVE-2022-38046 o 7.5 Dec 19, 2023 @ 19:09:30.000

Windows Server 2019 10.0.17763.737 x64 High CVE-2022-38045 0 88 Dec 19, 2023 @ 19:09:30.000

OEBPS/image/B19549_3_01.jpg
wazuh, 2 mgj

Threat Sharing

Security Platform Threat Intelligence Sharing

Platform

OEBPS/image/B19549_6_22.jpg
APTIO X APT38 X +

MITRE ATT&CK® Navigator

The ATTBICK Navigator is a web-based tool for annotating and exploring ATTE.CK matrices.
It can be used to visualize defensive coverage, red/blue team planning, the frequency of
detected techniques, and more.

help changelog theme -

Create New Layer Create anew empty layer
Open Existing Layer Load a layer from your computer or a URL.
Create Layer from other layers Choose layers to inherit properties from

Create Customized Navigator Create a hyperlink to a customized ATT&CK Navigator

OEBPS/image/B19549_4_22.jpg
add_attachment

create_alert

Hyara —

1condition

yara_scan

=

repeat_email

OEBPS/image/B19549_2_11.jpg
B wHC
> [Windows Firewall With Advanced Securty
>] Windows Remote Management
> B WindowsBackup
> 1 WindowsColorSystem
> B WindowsSystemAssessmentTool
> B WindowsUllmmersive

S?é

(Microsoft-Windows-WinHttp)
WinlNet (Microsoft-Windows-WinNet-Capture)

i

I

>
>
>
>
>
>
>
>
>
>
>
>
>
5
>
>
>
>
>
>
>
>

E

Microsoft Office Alerts

teve et — o) | Bk Cateonsy
@ information 15-08-2023 02:05:19 Windows Defender 1151 None
[rer—— 1150 None
Warkous Bt 2000 Nene
Wekous e 2000 Nene
Windows Defnder 51 None
Windows Defender 1150 None
N 151 None
Werkss Deoter 1150 None
Windows Defender 51 None
W, 1150 None
Wankses st 1 Nome
Wekous e 1150 None
Windows Defnder 151 None
Windows Defender 1150 None
N 151 None
Werkss Deoter 1150 None
Windows Defender 51 None
—, 1150 None
< >
Event 1151, Windows Defender x
Gt [
ot il S g e s iR
Plormesion: 8230701004
Enginevarson: 11230701005
Network Reahime npeciion engine versions 1.1 245701005
0 sl i e e
Ao St b s | 4 K550
i weligencevesion: 13954360
RTP st Enabled
A stte Ensbied
108 ste Ebled
B st nbled
e e
P
s
Lo fll s g 254567295
[[ostome__ Microsot irvdows Wrsdows befender Operationa]
oo Weshore Do [T T
Euent i ks Mo
e Siin Koot
e svsTem Campiion e
Opcode nfo
Mo tismaton it log Ontneeln

OEBPS/image/B19549_4_11.jpg
5 Worfows Apps Docs a
4 All Workflow Runs

£ > Failed Logins Analysis > ReFRESH RUNS

o L — Pmap—y
owi0073,071902 11 >
fle. Giy n >
Get_User_Logins
Htp n »
Vemionc 1, 20
’ n >
Microsoft 365
Defender mn >
Vemion
© n >
LR hiestExecution]
MSP. & B view_response
e L] VIeW_Tespon: n >
] iz

n >

. ®

OEBPS/image/B19549_1_01.jpg
HIDS

&
7

a
1
1
1
1
1
1

HIDS

0
]
z

Centralized Manager

OEBPS/image/B19549_4_18.jpg
<. Workflows > Connecting Wazuh

agentinfo ve ® X
curl

Status SUCCESS

~ "Results for agent_
v -data” : { 4 it
~6:{ 12 itens

~ "os’ items
“arch : "x86_64"
“codename” : "Jammy Jellyfish”

Ui [Wazuh-DLAT |5 L P S T
17:16:10 UTC 2023 |86,

“version® : "22.64.3 LT5"
}

version” : "Wazuh v4.5.2"

“node_name!

~id” : "0e0"

“lastKeepAlive™ : "9999-12-31T23:59:59+00:00"

“status” : “active”
“dateAdd” : "2023-10-62T69:14:56+00:00"
“manager” : "Wazuh-DLHI"

"group_config_status' ynced”
Execution ArgL ‘ (] ‘ ‘]

OEBPS/image/B19549_6_18.jpg
eTI9 X +
seacton contis temauecortor
= 1a - 3 p
8.ax Bl:@BAa=- @0 ¢ xm %z M0A®
. Resource i 3 Privilege Credential P Commandand i
Reconnaissance Development Execution Persistence Escalation Defense Evasion Access Control Exfiltration Impact
10techniques Btechmioues 9 techniques Tatechniques 19 techniques 13 techniques 2technioues 17 techniques I hechiques 15techniques 9 techmioues 13 techniques
ActveScanning] Acauire Access [orve-by cloud Account Abuse tevaton] Abuse Elevation sovesayin [accou] T T T g B W spotiaton [atomates [account aces
[compromise |~ Administration Manipuiation ., | Control Control the-Middle -, e ., W Loyer Exfitration oval
Gathervictm Host | Acqure Commans Siecnansm ., M Viecnssm ppic] <
nformation 1., infrsstructre , B explit ublic- BTS Jobs Brute Force [Discon] - e Dsta Transfer Data Destruction
. Fating AccessToken [Access Token . ktea Communication Size Limits
ner victm dentity Jf Appidation scotortogon | anpulstion .. [Manpalstion . sousq . : Theough Dats Enc
Information 1. Accounts ey Adtostart v rom pesaword [Oisco] Remoisble exitvation] for mpact
Extemal Remote uton [Bootortogon Jil &S jobs Stores Copture Media
Gt victm Network [compromise [Sericas Autostat Cloud aternatve M Data
Information 1, nfrasructre 8cotor Log Eiecition ., [suldimsgeonkost Explotationfor Discor] Metadata Pated oats Protocal,,] Manpuistion ..,
Hardvare Commana Intalzstion Cregentil ftion Encoding .., J
Gather victmorg [l Develop Additions SCrpts ortogon [l Debuggervasion Access clowd{ [add metadata efitvaion Defacement
nformation Copabities ., Deploy Container Saihod kersession Dats Owerca
prishing o, [Browser Forced ing Obfuscation ,, Wl Channel Disk Wipe .
Shishing for stablish Expoitation Extensions Adthentication Cloud{ ks
Informaton ., S, W sepiion ot Feeeution e loartvta ymamic eutiaion [Fntpoint neniat
ough Compromi System Deploy Container Forge Web S Résalution . M Over ther [of Servie .,
Search Closed obtsin mmmue Inter-process Client Software Brocess Credentas M Cloua |3 Network
Sources Copabiltis Communcation ., [Sinary Direct Volume Access Sisc Sorsge Encrypted Vedium , [Fim
. Domain Policy oput R Chanel, Comuption
Search Open Technical [stage supplyChain [Native a0t creste Noditcation ., |} Domain plicy Copture W containersnd Removable i
Dstsbsses Copsbiltes [Compromse ., Aecount ., fstion . Retours Discovery Medie (mnguunon Falback uer physical [it system
Scheduled Excape to Host Modity Repostory o, [l Chamnels um o [l Recovery
Search open Trusted Task/lob g Create or Modity Execution Authenticaton [l Debugger Evasion Software
Wiebsites bomsins Relstionship Syatem seggere [s Deployment Dt from ingressTool xfitation [Network Denial of
; Serverlss Execution Process Erecution Device Drver Tods information [Tanster Over Senvice
Search Victim-Ovined valid Exploitation for Mulifactor Discovery Reposiories Service o, ‘
Viebsites Reconts g,] starsavosues sentriggerd [spctaton or se Evssion Authersicstion Taint shared Mutisstage
© ution g [Priviece itancepton " | [DomainTust . DatafomLocal | Channels Schedued iacking
Softaare e i snd Directory Dicovery e Transter
Deployment Tooss Exteral Remote o Mti-Factor use attemate on- Seriice stop
Seices sijack ecution [Meditestion ., : oaattem cton | Tonderoata
System Services e Request Discovery Materl [Network Shared Layer P toClo stem
“ W ijack execution 2 Hide Artifacts) Generation “ Drive Account utdown/Reboot
userexecution .,] Fiow gy Process Group Policy Discovery Non-Standard
mcion o[ek nection Network Data from Port
Windows implant ntermal 2 o e Snifing Network Senice Removable
Aan Imege Scheduled Discovery o Protocol
Instrumentation Taskriob ImpairDefenses ., [05 Credentil Tonnelng
mping ey [Network share Data taged
Authentication [vatid Incicator Removal Discovery ooy
Process o) Accounts, Steal email ;
Indirect Command Application Network Siffing Callecion ,, Ml Remorte Access
e Eecition ‘Actes: Token W S
Appication Password Policy oput
Shtup Masquerading o,] Stealorforge Discovery Cipture | maic
Adthentication Signaing ..,
Pre-05 Boot. e Certiicates . Screen Capture
Proceds ey Oiscovery Web Service
x SteslorForge Video Capture
Hheies e Moty Cloud Kerberos pemision Groups
Campite. Tickts ., Discovery .
R [RE i

OEBPS/image/B19549_2_06.jpg
« Nov 26, 2023 © 62:43:24.108 WIN-AGNT Known Malware File Hash is detected: c:\users\administrator\downloads 13 110802

B9 Expanded document View surrounding documents View single document
Table JSON
t _index wazuh-alerts-4.x-2023.11.25
¢ agent.id 004
t agent.ip 192.168.29.77
¢ agent.name WIN-AGNT
t decoder .name syscheck_integrity_changed
t full_log File 'c:\users\administrator\downloads\mirai' modified

Mode: realtime
Changed attributes: mtime
01d modification time was: '1768946796°, now it is '170946797"

toid 17009468084 .9024789

t input.type log

t location syscheck

¢ manager .nane wazuh-server

t rule.description Known Malware File Hash is detected: c:\users\administrator\downloads\mirai
rule.firedtimes 3

t rule.groups malware

OEBPS/image/B19549_1_32.jpg
tmNIDS - NIDS detection tester - @oxtf
Project: https://github.com/6xtf/testmynids.org

Choose which test you'd like to run:

1) Linux UID

2) HTTP Basic Authentication
3) HTTP Malware User-Agent

4) Bad Certificate Authorities

5) Tor .onion DNS response and known IPs connection

6) EXE or ULL download over HIIP

7) PDF download with Embedded File

8) Simulate SSH Outbound Scan

9) Miscellaneous domains (TLD's, Sinkhole, DDNS, etc)
10) MD5 in TLS Certificate Signature

11) CHAOS! RUN ALL!

12) Qui

& sresemion (1)

OEBPS/image/B19549_3_32.jpg
Analysis report

Show raw result

MISP - 1 results

g changes in years-long espionage campaign against Tibetans

Related events:

EventlD: 1623
Eventinfo: Shifting Tactics: Tracking changes in years-long espionage campaign against Tibetans
UUID: 56e1d652-a310-47a3-9017-b527c0a8ab16
From: CUDESO
Tags:

OSINT - Shifting Tactics: Tracking changes in years-long espionage campaign against Tibetans
OSINT Puttering into the Future...by Cylance

Import of CitizenLab public DB of malware indicators

OEBPS/image/B19549_5_12.jpg
- I Oct 9, 2623 @ 20:05:18.757 VirusTotal: Alert - c:\users\administrator\documents\eicar_com (1).zip - 6@ engines detected this file I 12

£ Expanded document

Table

JSON

t

_index

agent.1d

agent.ip

agent.name

data. integration

data.virustotal.found

data.virustotal.malicious

data.virustotal.permalink

data.virustotal.positives

data.virustotal.scan_date

data.virustotal.shal

data.virustotal.source.alert_id

View 9 View single

wazuh-alerts-4.x-2023.10.09
003

2405:0201:0036 :0842:7810:0848:62A0 1FFCB.
WIN-MQT4EREUQNY

virustotal

>
https://www.virustotal.com/gui/file/2546dct fc5ads54d4dde6dfbfasea71cd5ap8f2471cb7asbfdaac23b6edeedad/detect ion/f-2546dcffesads
54d4ddc64fbfes6871cd5a08f2471cb7asbfdaac23bbegeedad-1696838887

68
2023-10-09 08:08:07
d27265074c9eac2e2122ed69294dbc4d7cce9141

1696862112.3207268

data.virustotal.source.file

c:\users\administrator\documents\eicar_con (1).zip I

OEBPS/image/B19549_1_04.jpg
AWS Cloud

Availability Zone 1

Availability Zone 2

VPC

Public Subnet

e

NAT Gateway

Private Subnet

Public Subnet

2

Auto Scaling Group

Private Subnet

PIe

Auto Scaling Group

SURICATA

e

NAT Gateway

OEBPS/image/B19549_5_04.jpg
Active Response log is created

Active Response script is executed

wazuh.

-

Wazuh Agent

sponse

Event triggers Active response module

Wazuh Server

OEBPS/image/B19549_6_03.jpg
= (N e Sy

OpenSearch Dashboards ®

Index patterns

‘Saved Objects
Advanced Settings

Create and manage the index patterns that help you retrieve your data from
OpenSearch.

Q search...

OEBPS/toc.xhtml

Contents

		Security Monitoring with Wazuh

		Foreword

		Contributors

		About the author

		About the reviewers

		Preface

		Who this book is for

		What this book covers

		To get the most out of this book

		Download the example code files

		Get in touch

		Share Your Thoughts

		Download a free PDF copy of this book

		Part 1:Threat Detection

		Chapter 1: Intrusion Detection System (IDS) Using Wazuh

		What is an IDS?

		Types of IDS

		What is Suricata?

		How organizations use Suricata as an IDS

		Getting started with Wazuh and Suricata

		The core components of Wazuh

		Wazuh modules

		Wazuh Administration

		Installing the Wazuh server

		Installing Wazuh agent

		Installing Suricata on Ubuntu Server

		Understanding Suricata rules

		Suricata rule syntax

		Network scanning probe attack and detection

		Testing web-based attacks using DVWA

		Lab setup

		Setting up the victim server with DVWA

		Test an SQL Injection attack

		Test a reflected XSS attack

		Testing NIDS with tmNIDS

		Lab setup

		Installing tmNIDS on Ubuntu Server

		Testing for a malicious User-Agent

		Testing for Tor connection

		Testing everything at once

		Summary

		Chapter 2: Malware Detection Using Wazuh

		Types of malware

		Wazuh capabilities for malware detection

		Malware detection using FIM

		Configuring and testing FIM on an Ubuntu machine

		Detecting suspicious files in the PHP server using the FIM module

		The CDB list

		The workings of the CDB list

		Setting up the Wazuh server

		Configuring the Windows endpoint

		Testing

		Visualizing the alerts

		VirusTotal integration

		Set up VirusTotal account

		Integrate VirusTotal with the Wazuh manager

		Create a Wazuh rule on the Wazuh manager

		Set up an FIM check on Ubuntu Server

		Testing malware detection

		Visualizing the alerts

		Integrating Windows Defender logs

		Getting started with Windows Defender logs

		Setting up the Wazuh agent to collect Windows Defender logs

		Testing for malware detection

		Visualizing the alerts

		Integrating Sysmon to detect fileless malware

		How do fileless malware attacks work?

		Requirement for the lab

		Setting up Sysmon on a Windows machine

		Configure the Wazuh agent to monitor Sysmon events

		Configure the Wazuh manager

		Testing

		Visualizing the alerts

		Summary

		Part 2: Threat Intelligence, Automation, Incident Response, and Threat Hunting

		Chapter 3: Threat Intelligence and Analysis

		What is threat intelligence?

		Types of threat intelligence

		How SOC analysts use threat intelligence

		Automated threat intelligence

		Designing automated threat intelligence

		Understanding the workings of automated threat intelligence and analysis

		Setting up TheHive and Cortex

		Install Docker Compose

		Prepare the YML script for the TheHive module

		Launch and test

		Create an organization and user on TheHive

		Create an organization and user on Cortex

		Setting up MISP

		Fulfill the requirements

		Install Docker and Docker Compose

		Set up and Launch MISP

		Add an organization and users

		Add feeds

		Integrating Wazuh with TheHive

		Install TheHive Python script on the Wazuh manager

		Create an integration Python script on the Wazuh manager

		Create a Bash script on the Wazuh manager

		Integrate the TheHive server in the Wazuh server configurations

		Restart and test

		Visualizing the alerts on TheHive

		Integrating TheHive and Cortex with MISP

		Integrate TheHive with Cortex

		Integrate Cortex with MISP

		Integrate TheHive with MISP

		Use cases

		Pre-requisites

		Reviewing alert

		Creating a case

		Analyzing file observables

		Analyzing network observables

		Managing TTPs

		Summary

		Chapter 4: Security Automation Using Shuffle

		What is SOAR?

		How a SOC analyst uses SOAR

		Introduction to Shuffle

		Setting up Shuffle SOAR

		Retrieving Wazuh alerts

		Integrating Wazuh with Shuffle

		Retrieve Wazuh alerts for abnormal user login analysis

		Retrieving Wazuh alerts for successful login analysis

		Remotely managing Wazuh

		Requirement

		Managing Wazuh agents

		Important Shuffle apps

		Incident enrichment using TheHive

		Malware analysis using YARA

		Messaging and collaboration tools

		Threat intelligence platforms

		Endpoint protection/antivirus software

		Summary

		Chapter 5: Incident Response with Wazuh

		Introduction to incident response

		Different methods of incident response process

		Incident response automation

		Wazuh active response

		Active response scripts

		Configuring active response

		How Wazuh active response works

		Blocking unauthorized SSH access

		Lab setup

		Setting up Wazuh active response

		Testing

		Visualizing alerts

		Isolating a Windows machine post-infection

		Requirement

		VirusTotal integration

		Setting up a Windows machine with a batch and PowerShell file

		Active response block in the Wazuh manager

		Testing

		Blocking RDP brute-force attacks

		Requirement

		Setting up a Windows agent with an active response script

		Setting up Wazuh Server with a brute-force attack rule and active response script

		Testing

		Visualizing the alerts

		Summary

		Chapter 6: Threat Hunting with Wazuh

		Proactive threat hunting with Wazuh

		Threat-hunting methodologies

		Threat-hunting steps

		Proactive threat hunting with Wazuh

		Log data analysis for threat hunting

		Wazuh decoders

		Building decoders

		Creating Wazuh rules

		Log data collection

		Log data analysis

		MITRE ATT&CK mapping

		What is MITRE ATT&CK?

		ATT&CK framework

		Prioritizing the adversary’s techniques

		Wazuh MITRE ATT&CK mapping

		Threat hunting using Osquery

		What is Osquery?

		Installing Osquery

		Integrating Osquery with Wazuh

		Threat hunting with Osquery

		Command monitoring

		How does command monitoring work?

		Monitoring the output of the netstat command on Linux

		List of Linux commands for threat hunting and security investigations

		Summary

		Part 3: Compliance Management

		Chapter 7: Vulnerability Detection and Configuration Assessment

		Introduction to vulnerability detection and security configuration management

		Vulnerability Detector

		How to set up vulnerability detection using Wazuh

		Security configuration assessment

		PCI DSS

		What is PCI DSS compliance?

		Requirements of PCI DSS compliance

		Vulnerability detection use cases for PCI DSS

		Security configuration assessment use cases for PCI DSS

		NIST 800-53

		What is the NIST 800-53 framework?

		List of control families in the NIST 800-53 framework

		Vulnerability detection use cases for NIST 800-53

		SCA use cases for NIST 800-53

		Use case

		HIPAA

		What is HIPAA compliance?

		HIPAA security rules

		Vulnerability Detector use cases

		SCA use case

		Summary

		Chapter 8: Appendix

		Custom PowerShell rules

		PowerShell event information

		PowerShell error logs

		PowerShell warning logs

		PowerShell critical logs

		Custom Wazuh rules for Auditd

		Auditd syscall rule

		Auditd path

		Detecting a change in the user environment

		Custom Wazuh rules for Kaspersky Endpoint Security

		Kaspersky’s general rules

		Rules to detect events when the Kaspersky agent restarts

		Rules for quarantine alert

		Custom Wazuh rules for Sysmon

		Sysmon Event 1: Process Creation

		Sysmon Event 2: Process changed a File Creation Time

		Sysmon Event 3: Network Connection

		Sysmon Event 7: Image loaded

		Sysmon Event 10: Process Access

		Sysmon Event 11: File Creation

		Sysmon Event 12: Registry Event (Object create and delete)

		Sysmon Event 13: Registry Event(Value Set)

		Sysmon Event 14: Registry Event(Key and Value Rename)

		Sysmon Event 15: File Creation StreamHash

		Sysmon Event 17: Pipe Creation

		Sysmon Event 18: Pipe Event

		Sysmon Event 22: DNS Request

		Summary

		Chapter 9: Glossary

		A

		B

		C

		D

		E

		F

		G

		H

		I

		J

		K

		L

		M

		N

		O

		P

		R

		S

		T

		V

		Y

		Index

		Why subscribe?

		Other Books You May Enjoy

		Packt is searching for authors like you

		Share Your Thoughts

		Download a free PDF copy of this book

Landmarks

		Cover

		Table of Contents

		Index

OEBPS/image/B19549_3_20.jpg
Set up the server "MISP"

General settings

+ Server name.

i

* Server url

1682911

Proxy settings

defaultconfiguration Enabled

SSL Settings

Do not check Certificate Authority

Disable hostname Verification

Advanced settings \
‘

OEBPS/image/B19549_3_13.jpg
Create Sync Config
Import Server Sefings

List Servers

New Servers

Server overtap analysis marix

List Communities

List Cerebrates

Paste server data

Paste a MISP server metadata JSON below to add sync connections.

JSON

OEBPS/image/B19549_6_29.jpg
| command
| path I

-

| root cd / & run-parts

| Jetc/crontab

root test —x /usr/sbin/anacron || (cd / & run-parts —-report /etc/cron.daily)

| Jetc/crontab

root test —x /usr/sbin/anacron || (cd / & run-parts —-report /etc/cron.weekly)

| Jetc/crontab

root test —x /usr/sbin/anacron || (cd / & run-parts —-report /etc/cron.monthly)

| Jetc/crontab

root test e /run/systemd/system || SERVICE_MODE=1 /usr/lib/x86_64-linux-gnu/e2fsprogs/e2scrub_all_cr

on | /etc/cron.d/eascrub_all |

| root test —e /run/systemd/system || SERVICE_MODE=1 /sbin/e2scrub_all -A
| /etc/cron.d/e2scrub_all |

+
—report /etc/cron.hourly

OEBPS/image/B19549_2_03.jpg
Iv Aug 16, 2023 @ @3:47:04.737 [File creation]: Possible web shell scripting file (/root/antivirusupdate.php) created I 12
5 Expanded document View surrounding documents
Table JSON

t _index wazuh-alerts-4.x-2623.08.15

t agent.1d 602

t agent.ip 192.168.29.172

t agent.name ubu-serv-63

t decoder .nane syscheck_new_entry

t full log File */root/antivirusupdate.php’ added

Mode: realtine

¢ 1d 1692137824 5227042

© input.type log

¢ location syscheck

¢ manager .nane Wazuh

I t rule.description [File creation]: Possible web shell scripting file (/root/antivirusupdate.php) created I
rule.firedtines !
¢ rule.groups linux, webshell, windows

I t rule.id 168500 I

OEBPS/image/B19549_1_12.jpg
O wazuh. v | Agenss

® -

sTATUS DETAILS EvoLuTion
Last24pours v
.
® Actve()) Active Disconnected Pending. Never connected Agents coverage
s
@ Disconnected (5) 1 5 [0 16.67% H
® renang© S .
Last registered agent Most active agent
@ Never comnected (0) ubu-serv-03 N T——y 20 0000 0300 0600 0RO 200 1500
Umestamp per 10 minutes
Agents (6) @® Deploy new agent G Refresh & Export formatted &
© 1d1=000 and Search
LR Name address Group(s) Operating system Cluster node Version Sans.
001 agent-give-03 192.16820.113 detaut A Ubintu 22043175 nodeot vasa o disconnected ®2
002 WIN-MQI4EREUGNY. 192.168.29.55 Windows L] node01 V460 @ discomected @
003 deb-serv-03 100211 detaut A Kall GNUILinux 2023.2 nodeot waas — ® 2
004 WINAGNT 192.16820.77 detaun 8 Microsoft Windows Server 2019 Datacenter Evaluaton 10.0.17763.737 node0 V460 ®2
o0 - 162.168.29.286 Ubunt A Ubuntu 22043175 node0! as0 © discomnected ®9
| 006 ubusen-03 162.168.20.172 Setuit B Ubuntu 2208 nods01) ® 2 |

OEBPS/image/B19549_1_21.jpg
Attacker Machine

(((promiscuous
(
mode

Suricata IDS —
Ubuntu

Server

.)))

wazuh.
Agent

wazuh. Server

v

Victim Server (Debian)

OEBPS/image/B19549_6_14.jpg
TECHNIQUES
Enterprise ~
Reconnaissance ~
Active Scanning v
Gather Host v
Information
Gather Identity v

Information

Domain Properties

DNS

Network Trust Dependencies
Network Topology
IP Addresses

Network Security Appliances

Gather Victim Org v
Information

Phishing for Information v
Search Closed Sources v
Search Open Technical v

Databases.

Gather Victim Network Information: Domain Properties

Other sub-techniques of Gather Victim Network Information (6) v

‘Adversaries may gather information about the victs network domain(s) that can be used during targeting.
Information about domains and their properties may include a variety of details, including what domain(s) the
victim owns as well as administrative data (ex: name, registrar, etc.) and more directly actionable information
suuch as contacts (email addresses and phone numbers), business addresses, and name servers.

Adversaries may gather this information in various ways, such as direct collection actions via Active Scanning
or Phishing for Information. Information about victim domains and their properties may also be exposed o
‘adversaries via online or other accessible data sets (ex: WHOIS)."I4 Where third-party cloud providers are
i use, this information may also be exposed through publicly available APl endpoints, such as GefUiserRealm
and autodiscover in Office 365 environments. Il Gathering this information may reveal opportunities for
other forms of reconnaissance (ex: Search Open Technical Databases, Search Open Websites/Domains, or
Phishing for Information) establishing operational resources (ex: Acquire Infrastructure or Compromise
Infrastructure), and/or inital access (ex: Phishing).

1D: T1590.001

Subtechnique of: T1590
@ Tactic: Reconnaissance
@ Platforms: PRE

Contributors: Jannie Li, Microsoft Threat
Intelligence Center (MSTIC)

Version: 1.1
Created: 02 October 2020
ied: 21 October 2022

Last Mo

Version Permalink

D Neme Descripton
| S0677 AADIntemals AADInterals can gather information about a tenant’s domains using public Microsoft APIs. 617 |
G003 Team technical of the Parliament of Georgia's offcial ntemet domain prior o s 2019 atiack.
Team Ll

OEBPS/image/B19549_6_31.jpg
Iosquery> select pr.pid, pr.name, usr.username, pr.path, pr.cmdline from processes pr LEFT JOIN users usr ON pr.uid = usr.uid WHERE pr.cndline

| pid | name | username | path | cndUine

I
11 | systemd | root | Jusr/Uib/systemd/systend | /sbin/init vultr

I
| 1013 | wazuh-execd | root | /var/ossec/bin/wazuh-execd | /var/ossec/bin/wazuh-execd

I
| 101382 | osqueryd | root | /opt/osquery/bin/osqueryd | /opt/osquery/bin/osqueryd —flagfile /etc/osquery/osquery
.flags ——config_path /etc/osquery/osquery.conf I
| 101384 | osqueryd | root | /opt/osquery/bin/osqueryd | /opt/osquery/bin/osqueryd

I
| 1108 | wazuh-agentd | wazuh | /var/ossec/bin/wazuh-agentd | /var/ossec/bin/wazuh-agentd

I
| 1137 | wazuh-syscheckd | root | /var/ossec/bin/wazuh-syscheckd | /var/ossec/bin/wazuh-syscheckd

I
| 1176 | wazuh-logcollec | root | /var/ossec/bin/wazuh-logcollector | /var/ossec/bin/wazuh-logcollector

| 1194 | wazuh-modulesd | root | /var/ossec/bin/wazuh-modulesd | /var/ossec/bin/wazuh-modulesd

| 1612 | watchdog | root | Jusr/sbin/watchdog | Jusr/sbin/watchdog !
| 255689 | fwupd | root | Jusr/Uibexec/fwupd/fwupd | Jusr/Uibexec/fwupd/fwupd !
| 259458 | sshd | root | Jusr/sbin/sshd | sshd: rootepts/e !
| 259539 | systemd | root | Jusr/Uib/systemd/systend | /tib/systemd/systend —-user !
| 259541 | (sd-pam) | root | Jusr/Uib/systend/systend | (sd-pam) !
| 259626 | bash | root | Jusr/bin/bash | -bash !

OEBPS/image/B19549_4_15.jpg
<. Workflows > Connecting Wazuh

Connecting_Wazuh

. Execution ArgL [] cy a Ve 9

OEBPS/image/B19549_7_05.jpg
O wazuh. v Modules WIN-MQI4EREUQ...

@ o

Registry:
15015 Ensure ‘Interactive logon: Do not display last user name' is set to ‘Enab... | HKEY_LOCAL_MACH i i i ® Failed ~
olicies\System

Rationale
An attacker with access to the console (for example, someone with physical access or someone who is able to connect to the server through Remote Desktop Services) could view the name of the
last user who logged on to the server. The attacker could then try to guess the password, use a dictionary, or use a brute-force attack to try and log on.

Remediation
To establish the recommended configuration via GP, set the following Ul path to Enabled: Computer Configurati licies\Wi i ity Settings\Local Polici ity
Options\interactive logon: Do not display last user name.

Description
This policy setting determines whether the account name of the last user to log on to the client computers in your organization will be displayed in each computer's respective Windows logon
screen. Enable this policy setting to prevent intruders from collecting account names visually from the screens of desktop or laptop in your i The state for

this setting is: Enabled.

Check (Condition: all)
+ HKEY_LOCAL_MACI i i i ici - DontDisplayLastUserName - 1

Compliance
cis:2.37.1
cis_csc: 13
gdpr_IV:35.7.d
gpg_13:43
hipaa: 164.312.b
t_800_53: CM.1
pei_dss: 2.2.3

tsc: CC5.2

OEBPS/image/9781837637164.jpg
<packh

Practical Cybersecurity
Architecture

A guide to creating and implementing robust
designs for cybersecurity architects

<> DIANA KELLEY | ED MOYLE

OEBPS/image/B19549_3_24.jpg
@ Adding an Observable

Type

filename

* Value

One observable per line @D

1 observable(s)

svchost.exe

e

[mpciear [TecreEN | [tpAMBER-STRICT | | TLPRED
PAP

[papciear | [PAPcREEN | PAP:RED

Is10C Has been sighted Ignore similarity

Tags

| svcfile

Description

ATABETEU

S B A

This is an initial investigation.

I Preview

Cancel

Save and add another

OEBPS/image/B19549_3_05.jpg
Q [CREATE CASE + ENGLISH(UK) JOHN DOE

#737 Uncovering Tetris - a Full Surveillance Kit Running in your Browser

@ id ~2460287088

General @ Observables(52) @ TTPs(9) # SimilarCases ‘& SimilarAlerts B Responders
2 Created by TheHive system user
default”
Createdat 06/03/2022 2017 il €D Q

TLewhITE | [Papaveer | [Csevhicn | | TACTICr gECHNIQUE BY DATES O H

— e T1046 - Network Service Scanning ¥ 0.23/08/2021 02:00
Strangebee-dev
discovery. T1016 - System Network Configuration Discovery ¥ ©0.23/08/2021 02:00
Reference
o 737
discovery. T1016 - System Network Configuration Discovery ¥ ©0.23/08/2021 02:00
Type
misp discovery T1518 - Software Discovery ¥ ©0.23/08/2021 02:00
Oceurred date [defense-evasion T1564 - Hide Artifacts ¥ ©.23/08/2021 02:00
P 23/08/2021 02:00
=
collection T1005 - Data from Local System ¥ ©.23/08/2021 02:00
Status
@ New: collection T1005 - Data from Local System ¥ ©.23/08/2021 02:00
& Revoked T1063 - Security Software Discovery ¥ ©0.23/08/2021 02:00
£ Revoked T1063 - Security Software Discovery ¥ ©0.23/08/2021 02:00

500-RC1-

SNAPSHOT 0-90f9 Show = 30

OEBPS/image/B19549_1_19.jpg
Dashboard Events () ubu-bgir (005) X

BV Search 9@ oo @ Last2anours Show dates -
e e + Add fter

‘wazuh-alerts-*

31hits
St ek A mas Dec 10, 2023 @ 00:43:34.420 - Dec 11,2023 @ 00:43:34.420 Auto v
© Filter by type o 0
2
Selected fields
. 2
€ rule description E o
3
€ roleid 1
s
rulelevel
0
Available ields 0300 0600 0200 1200 1500 1800 2100 0000
¢ agentid timestamp per 30 minutes
) egentip Time - rule.description rule level rule.id
€ agentname
5 Dec 11, 2023 @ 00:33:13.466 Suricata: Alert - ET SCAN Suspicious inbound to MSSQL port 1433 3 86601
¢ data.alert action
¢ data.alert category 5> Dec 11, 2023 @ 00:33:13.466 Suricata: Alert - ET SCAN Suspicious inbound to PostgreSQL port 5432 3 86601
¢ data.alert.gid
s Dec 11, 2023 113.419 Suricata: Alert - ET SCAN Potential VNC Scan 5808-5820 3 86601
¢ data alert metadata created_at
B dataakertimatada 5> Dec 11, 2023 13.419 Suricata: Alert - ET SCAN Potential VNC Scan 5095920 3 86601
former_category
) i slort metadarspdtediat 5 Dec 11, 2023 © 00:33:13.418 Suricata: Alert - ET SCAN Suspicious inbound to Oracle SQL port 1521 3 86601
) dotaalertey 5 Dec 11, 2023 0 00:33:13.412 Suricata: Alert - ET SCAN Suspicious inbound to mySQL port 3366 3 86601
B

OEBPS/image/B19549_2_14.jpg
QO wazuh. v | iassgement | JRies) ® -

< custom_sysmon.xml [Ruleset Test -

© Changes will not take effect until a restart is performed.

<I-- Modify it at your will. -->
e

<group name="s;
Rule 1ao11d0r Tevel="5">
<if_s1d>61650</1f_sid>
<deScriptionssysmon - Event 22: Diis Query.</description>
<optionssno_full_log</options>
</rule>
- <rule id="101161" level-"5">

<if_sid>61603¢/if sid>

<options>no_full_log</options>

e e

EBomvonawnm

o " level-"5">
15 <if s sms:u«m sid>
16 o
ol o T = B A e O D G G

B e
3 G sislsesd/if sid
2 e
Bl e e e e
23 </rule

24~ <rule id="101104" level.

25 <if_sid>61686¢/if sid>

2 o o T

27 <description>Sysnon - Sysmon service state changed.</description>
28 </rule>

29+ <rule id="101105" level-"5">
30 <if_sid>61607</if sid>

31 <options>no_full_log</options>
32 <description>Sysmon - Event 5: Process terminated.</description>
3 /n

35 <if_sid>61668</1f_sid>
3 <options>no_full_log</options>
37 <description>Sysmon - Event 6: Driver loaded.</description> g

OEBPS/image/B19549_4_02.jpg
o7} Workflows Apps Docs Find Public Apps, Workflows, Documentation. Q

App upload > Microsoft_365_Defender Activated apps (113)

Search your apps

App Creator
Microsoft 365 Defender
= 7 Graph API based on https:/docs.microsoft.com/en- o
us/graph/ap...
Generate from Generate from Sentinel SIEM
OpenAPI/Swagger Documentation
MISP
Getting Started Automation functionality is designed €
CCREATE FROM SCRATCH ‘ MISP to..
Attributes. Events Galaxies
: A ive Di
Microsoft 365 Defender %] e Uiee ciory
Nersioniiio] Active Directory and LDAP/LDAPS. For full usage of the actio...
Graph AP based on htps://docs.microsoft.com/en- AdiveDirectory | Sy G @Ry
b e i ity-api- iew?vi arap
1.0. Works Mi 365 Defender. rts Wi Defender,
i i C i Center,
8 R Palo Alto Networks
security center and more. security.microsoft.com o

Based on documentation

-‘ (3 ‘ ‘ ‘ https://docs.paloaltonetworks.com/pan...

Sentinel SIEM FW Firewall
Sharing you -
QRadar
APl based on o
URL: https://graph.microsoft.com https://ibmsecuritydocs.github.io/qradar_api_18...

Actions SIEM Case Management QRadar

OEBPS/image/B19549_1_09.jpg
Deploy new agent
o Select the package to download and install on your system:

A LNux =2 WINDOWS

RPMamd64 () RPM aarché4

MS132/64 bits
DeB amds4 || DEB aarch6a

@ For additional systems and architectures, please check our documentation 2.

@ macos

Intel

Apple siicon

X Close

OEBPS/image/B19549_6_25.jpg
@ wazuh. |V e AT

=

s Ve | e | + A e

 Tactics
Credentisl Access
Lateral Movement
Initisl Access
Persistence
Priviege Escaation
Defense Evasion

cooooBEBEEBEB.

Inellgence Framework Dashboard Events.

T1555.005 - Password Managers

TISS7.001 - LLMNRINST-NS Poisoning and.

1557001 - LLUNRINBT-NS Poisoring and

Ti110- Brut Force
1558004 - AS-REP Roasting
1110003 - Passwrd Spraying
TE7 - Forcad Authentication

T1580.002 - Email Adcresses

330 | 1771 - LLMNRINBT-NS Posoring and Relay

T1003.005 - Cached Domain Credentals

Hide techniques with no alerts

71110002 - Password Cracking
71552004 - Privat Keys
TI110004 - Gredential Stufing

1201 - Password Polcy Discovery

) Explore agent

x
°
o

o

OEBPS/image/B19549_6_33.jpg
= 0 wazuh. v

idecparem | wennaerns v | (@) ©

Dashboard ~ Events) agent-give-03 (001) X

B o o 8 |t e

engerame s | oo sy | o |+ A e

wazuh-slerts-*

s
X e Vo e Oct25, 2023 0 0526551 0t 30,2023 @088 28EN Avto
© Pty e o N
P .
| B
PR H
data.osquery.name. ol
:
e —— :
O o ™ o - - - - o
Jus—. imesamppor 30 miutes
i somt it Time data.osquery.name. data.osquery.pack ‘data.osquery.action ‘data.osquery.subquery
¢ s
L ey (R ey [[,
) soenoame
e 3 O 0, 2025 0 0:57:36.213 pack.snerdent-response togged i ueers F—— aated prp—
T
5 ot 30, 2673 0 00:57:35.213 pack.incident-response_Logged_in_users tnctaent-response aatea [res—
e
o » Ot 30, 2025 0 00:57:55.196 pack_sncsdentrespense_Logged i ueers [rosm— astea e

D) e cenieycoumme e > Oct 30, 2023 © 00:57:35.167 pack.incident-response. logged_in_users Incadent-response sdded Yogged_in_users

OEBPS/image/B19549_4_17.jpg
<. Workflows > Connecting Wazuh P
Hp S

« B O Qa x

Name Delay

infi
jwt_token / Agent_info o
2

Execution variable (optional)

No selection

8 — Find Actions

Curl >
1
- O —
Statement
[Agent_info o oer
= =]
[| "https://139.84.173.180:550!
0/agents” -H "Authorization:

Execution Argu . =

-
5.
)+]
A S

[}

OEBPS/image/B19549_5_17.jpg
B Remote Desktop Connection

Remote Desktop
») Connection

Computer: _[1521682977 v

Remote Desktop Connection

° Remote Desktop can't connect to the remote computer for one of these reasons:

1) Remote access to the server is not enabled
2) The remote computer i turned off
3) The remote computeris not available on the network

Make sure the remote computer is turmed on and connected to the network, and that remote
access is enabled.

© Seedetals

OEBPS/image/B19549_6_09.jpg
QO wazuh. v

Index pattern wazuh-alerts* v . =]

sTatus DETALS EvoLuTion
N Last 24 ours ~
@ active
C Active Disconnected Pending Never connected 15 P
@ Disconnected (0) 2 0 0 o I
@ pending () os
Agents coverage °
@ Never comnected 0) 00.00% T
timostamp por 10m
Last registered agent Most active agent
'WIN-MQI4EREUQNV 'WIN-MQI4EREUQNV
Agents (2) ® Deploynewagent @ Exportformatted &
D Name P aderess Growis) Operating system Custornode Version Stats Actions
001 agent-give-03 192.168.29.113 default | Ubuntu 220431TS noded! V4S54 -Z""" ®
0 WN 24050201:0036:00937B1008486240F .- £ Microsoft Windows Server 2012 R2 Datacenter Evaluation ctiv

© %

a
MQUEREUGNV FCB 6.3.9600 nodedl va45 @

OEBPS/image/B19549_3_09.jpg
Edit user

Login %
Full name %

organization %

T | rolesx

Cancel Required field

rajneesh@

OEBPS/image/B19549_4_09.jpg
<. Workflows > Failed Logins Analysis _—

What are webhooks?

) Name

Get_User_Logins

Get_User_Logins

Find Associated App (optional) ~ ~

Parameters

® Webhook URI

I https://shuffler.io/api/v1/hooks; IE||

oy =

OEBPS/image/B19549_1_33.jpg
Time « rule.description rule level ruleid
> Aug 9, 2023 @ 15:15:19.215 Suricata: Alert - ET POLICY DNS Query for TOR Hidden Domain .onion Accessible Via TOR 3 86661
Aug 9, 2623 @ 15:15:19.215 Suricata: Alert - ET MALWARE Cryptowall .onion Proxy Domain 3 86601

>

OEBPS/image/B19549_7_07.jpg
= (O wazuh. v | Wodies | kalisen | Viinerabiliies ® @ o

Inventory () kali-serv (007) X

B v search baL v Last 24 hours Show dates

agentid: 007 |+ Add filter

groups:

wazuh-alerts-*

228 hits.
S o raniae :24.792 - Dec 27, 2023 @ 20:02:24.792 Auto v
@ Filter by type 0 20
Selected fieids o
£
¢ data.vulnerabil
wlnerabilty.cve i w
€ data.vuinerabllty package.name "
¢ data.vulnerabilty severtty .
¢ datavulnerabilty status 200 0000 0300 0600 0000 1200 1500 1800
Avaitabl filds timestamp per 30 minutes
il ecentld Time + i dat i i i i
€ agentip
N Libavahi-glibl CVE-2023-38469 Medium Active
¢ agentname
€ data.extra_data > Dec 27, 2023 Libavahi-core7 CVE-2023-38469 Medium Active
¢ datafile
> Dec 27, 2023 Libavahi-connon3 CVE-2023-38469 Medium Active
¢ data.sca checkcommand
Y italsca chosconiplenca > Dec 27, 2023 Libavahi-connon-data CVE-2023-38469 Medium Active
cis_csc
) eta sos.eheck corrollaiss.ngas. > Dec 27, 2023 Libavahi-client3 CVE-2023-38469 Medium Active
I det2.soa check comelsnce > Dec 27, 2623 © 14:55:41.278 avahi-daemon CVE-2023-38469 Medium Active
L ::':ds:s“‘d"‘*""”"‘"'"" 5 Dec 27, 2623 @ 14:55:41.214 smbclient CVE-2022-37966 High Active

OEBPS/image/B19549_5_07.jpg
>

Dec 21, 2023 @ 14:06:50.826

ubu-serv-83

Host Blocked by firewall-drop Active Response

651

>

Dec 21, 2023 @ 14:06:48.838

ubu-serv-83

sshd: Attempt to login using a non-existent user

OEBPS/image/B19549_3_25.jpg
#& General

"

#= Tasks (0) @ Observables (0)

default*

FLAGS DATATYPE . VALUE/FILENAME

2 1TPs (0)

TLPAMBER svchost[Jexe
papAMBER | O (| swefile

B Noreport(s) available

Attachments

Q@ Timeline

D Pages

B History

® Responders X

S.05/09/2023 03:13

C.05/09/2023 pz:1z
O Delete

® Runanalyzers

& Pin

B Export

® Copy data

OEBPS/image/B19549_1_15.jpg
o Run the following commands to download and install the Wazuh agent:

Tnvoke-WiebRequest -Ur1 https://packages.wazuh.con/4.x/windows/wazuh-agent-4.6.0-1.ns1 -OutFile
${env. tmp}\wazuh-agent ; msiexec.exe /1 ${env.tmp}\wazuh-agent /q WAZUH_MANAGER='192.168.29.32"
WAZUH_AGENT_GROUP="default’ WAZUH_AGENT_NAME='WIN-AGNT' WAZUH_REGISTRATION_SERVER='192.168.29.32'

° Start the Wazuh agent:

NET START WazuhSve

OEBPS/image/B19549_6_19.jpg
pTI9 X +
seecioncontslayercontros
= -
B.ax BrEO= (10 ¢
. Resou N i . Credential . Lateral i
ssance Development Initial Access Execution ce Access Discovery Movement Collection
10techniques Stechniques 9 techniques 19 techniques 17 techniques 31 techniques 9techniques 17 techniques
[Active Scanning, [acquire Access [Acoount adversan-in- [Account Discovey [Explotation of | adversary-in-
o ; Manipulation) the-Middle) 0 emote the-Miade e
Gathes vicim Host [Acauie Application Window || Services
nformation s Infrastructure ., M Exploit Publc- BT Jobs Brute Force i Dicovery rchive
Facing internal Collected
Gather victim dentity § compromise [Applcation Boot or Logon credentits [l srowser nformation | Spearphishing | Data gy
nformation Accounts gy Autostart from password [Discovery
External Remote Execution Stores g Lateral Tool | Audio Capture
Gather victim Network J§ Compromise [Services Container Cloud Infrastructure. || Transter
Information gy Infrastructure Administration oot or Logon Discovery Automated
Hardware Command Intalzation Credential femote Collection
Gather Victim Org Additions SCHPS gy GootorLogon | Debugger Evasion | Access Cloud Service
Information g, Capabities g, Deploy Container inialzation Dashboard Session Browser Session
eristing 1, [Septs g Hiacking o, [Hiacking
Phising for establsh Exploitationfor | Extensions Cloud Service
Information g Accounts o, M Replication Cllent Execution Create or Modity Discovery Remote Clipboard Data
Thiough Compromise | System veploy Container rorge web Services ¢y
Search closed obtain Removable Inter-process Client Software || Process Credentiat o, ll loud Storage Object ata from
Sources gy Capabittes) [Media Communication [sinary Direct Volume Access Discovery Replication | Cloud Storage
Domain Poicy Input Thiough
Search Open Technical [stage supply chain [Native AP1 create Modifcation g, [Domain policy Copture o, [container and Remoiable | Data from
Databsses gy Capabilties) [Compromise Account o, Modifcation Resource Discovery || Media Configuration
Scheduled Escape to Host Modity Repostory o
Search Open Trusted Taskfiob g Create or Modity execution Authentication [l Debugger Evasion | Software.
Websites/Domains Relationship. System event Triggered [Guardrais Process Deployment | Data from ingressTool | xitration | Network Denial of
Serverlss Execution Process ExecUtion gy Device Drver Tools information i Transter overweb [Service
Search Victim-Owned Valid exploitaton for Mulifactor | Discovery Repositones g Service
Websites Accounts g, [Shared Modules | |Event Triggered Taint Shared Ml Stage Resource
narg [Proiege terception | Domain Trust Content Data from Local || Channels Scheduied | Hiadang
Software Escalation fileand Directry Discovery System. Transter
Deployment Tools | extemal Remote Permissions Malti-Factor Use Aemate Non- Service Stop
Services Hiack Execution] Moditcation oy Data from Appication | Transter Data
System Services Flow 1 Request Discovery Miaterialyyy [Network Shared | Layer protocol | o Cloud system
Hijack Execution Hide Artfacts [Generation Drve Shutdown/Reboot
[ser Execution . [l Fiow. FE——— premm—

OEBPS/image/B19549_3_31.jpg
& General

+

Tasks (0) @ Observables(3) @ TTPs (0)

default*

FLAGS DATATYPE . VALUE/FILENAME

Attachments

Q© Timeline

D Pages

B History

@ Responders

[Jssmsanssmn

papAMBER | O (€2
£l Misp:Search="1 event(s)”

TLP-AMBER svchost[Jexe

pAPAMBER | O | swefile
[EW Misp:Search="8 event(s)"

TLP-AMBER drivgoogle[Jfirewall-gateway[Jcom

papAMBER | O (€2
£l Misp:Search="1 event(s)”

X

DATES S. [0

S.05/09/2023 18:04

C.05/09/2023 }o:n+
5 O Delete

U.05/09/202!

& Pin
5.05/09/2023 1
€.05/09/2023 | B» Export

® Copy data

OEBPS/image/B19549_3_15.jpg
€ » 0 r

© - <o vosmeo | oown

stage: anyiNey

STATUS SEVERTY TILE i sCASE TYPE SOURCE REFERENCE | DETAILS i ASSIGNEE

[Wazuh server st o .
¢ o (EEEEE (S | (T (S s o
= None
[Host-based anomaly detection event rootcheck] o o115 ”
= ST (B TIPS o o119
Q
[Host-based anomaly detection event rootcheck] o .
© [uiessio. [sgentmamewazun | sgentpenosgentip. | wazuh { sgent 42000 °
= = None

OEBPS/image/B19549_2_07.jpg
Z URL, IP address, domain, or file hash

APl Key

APl Key: ®

API quota allowances for your user

You own a standard free end-user account. It is not tied to any corporate group and so it
does not have access to VirusTotal premium services. You are subjected to the following
limitations:

Q 28 ®Pe roec ()

Profile

Settings

This is your personal key. Do not disclose it to anyone that you do not trust

itin scripts or software from which it can be easily retrieved if you care abc sjgn out
confidentiality. By submitting data using your API key, you are agreeing to ¢

Service and Privacy Policy, and to the sharing of your Sample submissions with the
security community. Please do not submit any personal information; VirusTotal is not
responsible for the contents of your submissions. Learn more

Upgrade API

OEBPS/image/B19549_1_27.jpg
Time «

rule.description

timestamp per 30 minutes

I . Aug 9, 223 © 13:53:37.895 Suricata: Alert - ET WEB_SERVER Script tag in URI Possible Cross Site Scripting Attempt

5 Expanded document

Table JSON
t _index wazuh-alerts-4.x-2023.08.09
t agent.1d 805
t agent.ip 192.168.29.218
t agent.nane deb-serv-63
t data.alert.action allowed
I t data.alert.category Web Application Attack I
t data.alert.gid 1
t data.alert.metadata.affected_product Web_Server_Applications
t data.alert.metadata.attack_target Web_server
t data.alert.metadata.created_at 2010_07_30
¢ data.alert.metadata. deployment Datacenter
t data.alert.metadata. former_category WEB_SERVER
t data.alert.metadata. signature_severity Major
| ¢ dete-alertnetadata.tog Cross_Site_Scripting, XSS 1
@ am t data.alert.metadata.updated_at 2620_08_20

ruleevel

View surrounding documents

OEBPS/image/B19549_7_02.jpg
SCA Policies

@ rutest
@) rulewz))

@ rutens

Scanning

)

Directories

B

Files

ut®
[Thg
[]

Registry

&

Process

OEBPS/image/B19549_4_05.jpg
Morkflow starters < Workflows - Wazuh Alerts

Webhook Find Associated App (optional) ~
Custom HTTP input
Environment
cloud v
Schedule
‘Specify time.
Receiving_Wazuh_Alerts [y
Office365 u Webhook URI
0365 email trigger
- \
ot 7
o p—r— aw
Mid-Workflow SisEmncun e
AUTH_HEADER=AUTH_VALUE1
Shuffle Workflow
[o——
User Input re ® Custom Resporse:
Wt foruserinput Togger Webhaok g
oK

Change Me

cccin |l 2| ~ | 8 5 [= /] o

OEBPS/image/9781804614976.jpg
<packb

Fuzzing Against
the Machine

Automate vulnerability research with
emulated loT devices on QEMU

ANTONIO NAPPA | EDUARDO BLAZQUEZ
Foreword by Nikias Bassen, Zimperium, Inc.
Dr. Javier Lépez-Gémez, CERN

OEBPS/image/B19549_5_02.jpg
v

wazuh.

-

Wazuh Agent Wazuh Server

OEBPS/image/B19549_6_05.jpg
OpenSearch Dashboards @
Index Patterns Create index pattern

Saved Objects

Advanced Settings An index pattern can match a single source, for example, filebeat-4-3-22 , or multiple data sources,

filebeat-* .
Read documentation &

Step 2 of 2: Configure settings
Specify settings for your wazuh-archives-* index pattern.
Search for timestamp

Select a primary time field for use with the global time filter.

Time field Refresh

v

OEBPS/image/B19549_4_23.jpg
Schedule_1

PRass.to Yara Subflow

collect_email

OEBPS/image/B19549_6_10.jpg
O | oiscover New Save Open Share Reporting nspect | (@) ©

+ Add filter

wazuh-archives-* v 963 hits

B Cearc e e 0ct 28, 2023 @ 18:36:43613 - Oct 29,2023 @ 18:36:43613 | Auto >
© Fitter by type o s
PRR—

200
@ _source

Count

20
Avaisble fieids.
00
Popuiar
¢ agentid 2100 0000 0300 0600 0s00

€ _index

200 1500 1800

timestamp per 30 minutes

B @tmestamp Time _source
¢ agemtip -
> Oct 29, 2023 @ 18:36:37.394 agent.id: @82 agent.ip: 2405:0201:0036:0093:7610:0848:6240:FFCE agent.name: WIN-HOI4EREUQNY

manager.nane: wazuh-server [data.win cventdata originalFileName: ping.exe]

€ agentname

i oo donser data.win.eventdata. inage: C:\\Windows\\Systen32\\PING..EXE data.win.eventdata.product: Microsofts

data hardware.cpu_cores Windowss Operating System data.win.eventdata.p: cessGuid: {JEGAECFE ~a311)
data hardware.cpu_mhz data.win. eventdata. description: TCP/IP Ping Comnand data.win.eventdata.logonGuid: {SEGAECFE-F128-653C-
€ data.hardware.cpu_name.

5 Oct 29, 2623 8 18:36:37.377 agent.id: @82 agent.ip: 2405:0201:0836:0993:7610:0545:6240:FFCE agent.name: WIN-HOIAEREUGNYV

data hardware ram_free

manager..nane: wazuh-server [Fata.win-eventdata-or iginalF ileNane: Fowersnell EXE]
data.win.eventdata.inage! C:\\Windows\\Systen32\\NindowsPowersheLL\\v1.@\\povershell.exe

-

data hardware.ram_total

OEBPS/image/B19549_4_12.jpg
< See more runs

Details “~

Status FINISHED
Source webhook
Started 03/10/2023, 07:19:08
Finished 03/10/2023, 07:19:08

v"Execution Argument” : {

8 items

"severity" : 2
"pretex WAZUH Alert"
"title” :
"PAM: User login failed."
"text" :
"Oct 3 01:48:59 Wazuh-Agent
sshd[4376]:
pam_unix(sshd:auth):

< authentication failure;

logname= uid=0 euid=@ tty=ssh
ruser= rhost=43.156.69.195 "
Erulelids

"timestamp" :

52023510
©3T01:49:00.183+0000"
"id" : "1696297748.649670"
) "all_fields" : {...}

10 items

OEBPS/image/B19549_3_04.jpg
o 0w

uafﬁi

Ed

500-RC1-

1
SNAPSHOT

[MALSPAM] Avis Business Club: Booking Confirmation

@ id ~122888400 & General i= Tasks (8)
& Created by Harry Knutson
9 Created at 26/05/2020 1512

© Updated at 10/03/2022 16:10

TLPWHITE | [PAPAVBER] [SEV-MEDIUM

Assignee
@ rarry xnutson

+ &

aTTPs

@ Sighted 10Cs

Status Impact

@ True positive No
8 Logs

Start date
25/05/2020 15:56

()
@ Observables (6) @ TTPs (3) Attachments ~ © Timeline [) Pages
a a L

@ [file]
doc_0780ca66fced4250absac23e97...

@ [mail]
ravibusinessclub@gmailfjcom

ring 10Cs 4 observal

8 A message has been sent to the use..

End date

26/05/2020 16:02

Tasks completion

& #1324 [MALSPAM]Avis Business CL...

& 1127 [MALSPAMJAvis Business Club..

[i #22 [MALSPAMAvis Business Club..] [i Avis Business Club: Booking Confir..]

T T
421 (MALSPAMIAvis Business Club | (8 [MALSPAMAVs Business Cub: Boo- |

Contributors.

Shared with

& Caseevents

CSIRT strangeBee (org-admin)
‘TheHive Project (org-admin)

& End of the incident response.

1
& Stage changed to New.

8 Start of the incident response

& Incident started

04:00

2 22 (P

Mon 25 May

0800 1200 1600 2000 (0000 0400 0800 1200 1600 2000 0000 0400

Tue 26 May Wed 27 May

OEBPS/image/B19549_5_03.jpg
Active Response scri executed Event triggers Active response module

wazuh.

-

Wazuh Agent Wazuh Server

OEBPS/image/B19549_2_13.jpg
@ Event Viewer

> [SmartCard-TPM-VCard-Module
> [smartScreen

= Lol and Tme Source =0
> B SvaDiet -01-2024 005516 T
5 £ swBSerer information 11.01-2024 005916 rm— s
5 [SMBWinessClent information 11.01-2024 005817 o 1
3 [StteReposiory) information 11.01-2024 005808 Sysmon 1
> [Storage-Tieing) information 11.01-2024 005807 Sysmon 1
=]) information 11.01-2024 005805 = n
> [StorageSpaces-Driver) Information 11-01-2024 00:5805 Sysmon 1
> = i 11-01-2024 00:58:04 Sysmon 1
> ti 11-01-2024 00:58:04 Sysmon 1
> [StoDiag) Information 11-01-2024 00:58:04 Sysmon "
> Ml information 11.01-2024 005803 o n
2 = bt) Information Sysmon 15
v %m..) S nformati Sysmon 15
> [SystemSettingsThreshold information Sysmon 15
> 1 TaskScheduler information Sysmon I
> B Top) information Sysmon W
> [TerminalServices-ClientActiveXCore) Information Sysmon n
=] S i 11.01-2024 005753 Scm I
> e « i 11.01-2024 005749 o "
5 Teminatsen i i 11.01-2024 005743 Sysmon i
> E i i ir tic 11-01-2024 00:57:19 Sysmon 1
>l i i “onnection! i 11-01-2024 00:57:19. Sysmon 1
5 £ Teminatsen i

»] TerminalSenvices-SessionBroker-Clien

> B Time-Senice Event Sysmen

3 1 Time-Senvice-PTP-Provider General Dets

5 T25me

> B 2w [CreateRemoteThread dctecied

> B uac [RuleName.-

i ——— lUtcTime 2024-01-11 085916783

> usesch Pt

=] ent s

3 1 User Control Panel e -)

+ 5 User Device Registation [TargetProcessi: 472

> 1 UserProile Sevice

> 5 ertonir o e

> B Userbrp

4 . - logged: 11-01-2024005816

> [VerifyHardwareSecurity Event ID: 8 Task Category: Cr

> [vHDmP Levek: Information Keywords:

+ Bl olume = svsTEm Computer: WIN-QICEDGOGTT0

> Il VolumeSnapshot-Driver OpCode: 5

> [Vpn Plugin Platform More Information: ~ Event Log Online Help

> [VPN-Client

OEBPS/image/B19549_6_11.jpg
MITRE | ATT&CK

MATRICES
Enterprise v
[Mobile v
ics

Home > Matrices > Enterprise.

Matrices ~

Tactics ~ Techniques

Data Sources

Mitigations ~

Groups

ATT&CKcon 4.0 will be held on Oct 24-25 in McLean, VA. Click here for more details and to register.

Enterprise Matrix

Below are the tactics and techniques representing the MITRE ATT&CK® Matrix for Enterprise. The Matrix contains information for the following
platforms: Windows, mac0s, Linux, PRE, Azure AD, Office 365, Google Workspace, Saas, laas, Network, Containers.

Software

(]

Campaigns

View on the ATT&CK® Navigator &

Version Permalink

layout: side~ | show sub-techniques hide subtechniques help
Reconnaissance Resource Initial Access Execution Persistence Privilege Defense Evasion Credential Discovery Lateral Collection
Escalatior Movement
Totecrniques Stecmiques _ otechmiaues Idtectmiues 19tectmiques _13techmiaues 2techniques 17 techniaues 31 techmiques Stechniques 17 techniques
Active scanning o,] | Acaure Access oud account [abuse Abuse Eieration naversaryin- [[Account Discovery o] Exdotationof [Adversary-n-
Compromise | Adminstration | |Manipuation i [Eievation the Midle o Remote tneMiade o
Gather Victm Host [[Acaure Commang Cortrol Servcss e
information iy intrastructure o ff Expot Pudic BITS Jobs, Mechanism e Force o il Discovery [ehive
Fatng [Command ana Intena Cotectea
dentty | [Compromise [Applcation |Scripting Bootor Logon | [Access Token Credentios [l Browser nformation | Spearphishing | Data
[Actounts o et o uiosiart Manipuiaions [l | BT Jos o covey F——
Extemal Execition 1o Password LateraTool | Audio Capture
Gather Vit Compromise. mote ontainer Bootor Logon stores Cloud nfrastructure | Transfer
Netwark infrastructre o |l | Senvices Adminstiation [Bootor Logon [l [Autostart 20 B ecovey Automated
information Command iniiaization [[Executon iy [Debugger Evasion Explotation Collecton
Deveiop Hardware scrits for Credential | Clowd Service
ather victimOrg [|Capabittes [l Adaitions oot o Logon coess Dasnboard Browser
nformation iy Browser nitiaization [l Fies ornformation Session
o || [owwoeJ] Eoemonto | Edteeirs Foed Goutsonvice e
Prish ccounts Clent Execuion Authenticatin Discovery Remote
information gy Repication Compromise | [Createor services 7, | Cipboara Data
Ootan Thioogn nterProcess Clnt Software | |Vodity System [§ Direct Votume Access | [Forge Web] |Cloud Storage Otject
Search Closed capabilties ¢ fil Removavee Communcaton o | & process (g crecentiais ol Discovery Repication | Data flom
rees dia Doman Pol Thiou Clogd Storage
Stage Native AP Create Domain Poicy [|Modifcator nput Container and Removable | ———
Search Open Capaviities [[supply cran iccout o Vidifcation & Coptire Media
Technical Compromse. I‘I Scheduied Execuion Contiguration
Databases s TaskiJob Create or Escape o Host | | Guarrais 1) oty Detugger Evasion Software Rep
Trusted ity System Deployment
Search Open Relationship | Serveless P Event Triggerea [| Expotaton for Process @] Device Drver Toals
Viebstes/omains Eiecition Erccution vy | | Defense Evasion il R o5 informaton
== Event Tiggered Wt Factor TantSnared | |Repositones o
Search Victm-Owned SnaredModules |Execution 1y || Expotationfor || Fle and Drectory Authenfication| Domain Trust Content el
Webstes et M e Fermissions Intetception | Discovery Data from
Software Extemal Escalation Mocifcaton LocalSystem
Deployment Tools | Remote Mult:Factor [Atrentcation|
Senvices Hiack Hide Artfacts u Authentcation Discovery | Mateil Data rom
[system Request Network
Sthvices o i Hiack Execution Generation | | Group Polcy Shared Drvve
Fiow a2 Discovery
[oeerreewon, i |7 Network Dota rom
impa Detenses, Snifing Network Servce Removadie
Windows impiant nternal Discovery Meda
aoement | Image Schodua [[acatorRemovar] [05 Crecenia
Instrumentation Tasdon MO M oumpings [Networkshare
Moaty Discovery
thentication [l [Valia Execution Steal .-

OEBPS/image/B19549_1_05.jpg
=) = =

Workstation

TAP

OEBPS/image/B19549_1_22.jpg
> Aug 9, 2023 @ 03:34:52.608 Suricata: Alert - Possible SQL Injection attack (Contains SELECT) 86661
> Aug 9, 2023 @ 03:34:52.598 Suricata: Alert - Possible SQL Injection attack (Contains UNION) 86661
> Aug 9, 2023 @ 03:34:52.505 Suricata: Alert - Possible SQL Injection attack (Contains singlequote) 86661

OEBPS/image/B19549_5_13.jpg
.vﬂmwmnmummmmm Security

Adion View Help.

ﬁ-t am e Em

I Inbound Rules
Outbound Rules.

B Connection Security Rles
& Montoring

9 BlodkOutgoingTraff

© Mo e 0500
BranchCache Content Retieval (TTP-Out)
BranchCache Hosted Cache Clent (HTTP.
BranchCache Hosted Cache ServerHTTP-_.
BranchCache Peer Discovery (WSD-Out)
@ Captve Portal Flow
@ Captve Portal Flow
8 Castto Device functonaity (qWave-TCP-
@ Cast to Device functionality (qWave-UDP-..
1 Cast o Device sreaming server RTP-Srea.
1 Castto Devic streaming sever RTP-Siren.
1 Castto Devic sreaming sever RTP-Siren.
8 Core Networiing - DNS (UDP-Out)
8 Core Networking - Dynamic Host Configu-
8 Core Networking - Dynamic Host Configu
© Core Networking - Group Policy (LSASS-O...
8 Core Networking - Group Policy (NP-Out)
8 Core Networking - Group Policy TCP-Out)
8 Core Networking - Intemet Group Manag-
@ Core Networking - PHITPS 1CP-Out)
1 Core Networking - V6 (POt
1 Core Networking - Mlticast istenar Don.
8 Core Networking - Mlticest itener Que..
8 Core Networking - Multicast Listener Rep-.
@ Core Networking - Multicast Listener Rep...
8 Core Netuorking - Neighbor Discovery A~
8 Core Netuorking - Neighbor Discovery So..
8 Core Networking - Pacet Too Big (CMPY-.

Captive Portal Flow
st to Device functionality
Castto Device functionality
Castto Device functionality
Castto Device functionality
Castto Device functionality

Core Networking
Core Networking
Core Networking
Core Networking
Core Networking
Core Netuorking
Core Netuorking
Core Networking

e
]

AR R R R R RN RN

FEIIIIIIIIIIIIIIIIRIIREIRI::

Frrrrzzy:

£8E8

EER

EELELE

IcMPvS.

CIIIIIIIIIIIEIACRIIIINIIIRIN:

Filter by Profile
Filter by State
Filter by Group
View

Refresh.
ExportList.
Help.

Disable Rule
cu

Copy
Delete
Properties
Help

OEBPS/image/B19549_6_04.jpg
Create index pattern

An index pattern can match a single source, for example, filebeat-4-3-22 , or multiple data sources,
filebeat-* .
Read documentation &

Step 1 of 2: Define an index pattern

Index pattern name

wazuh-archives-* ext step >

Use an asterisk (*) to match multiple indices. Spaces and the characters \, /, <,>, | are not allowed.

X Include system and hidden indices

v Your index pattern matches 1 source.

wazuh-archives-4.x-2023.10.29 Index

Rows per page: 10 v

OEBPS/image/B19549_6_21.jpg
nyer controls:
B.:EOAF[}®0 ¢ X =

Resource Privil Lateral Command and
Reconnaissance Devel Initial Access Execution Persistence fon Defense Evasion Collection Control | Exfiltration Imy
10 techniaues Stechmiaues Otechmiques Tétechmaues f9techmiaues 13 techniques 2techmiques __ 17techmiaues 31techniques Stechniques 17techmiques _ 16techniques _ Stechniques 13 techniaues
Active scanning, Acquire Access Cloud Account Abuse tlevation [Abuse Eevation oporatonor| aoveraoein [spicaton
= a Administration Manipulation ¢, i Control Remote the-Middle i, M Layer
Gather vitm Host [Acauire Command Mecharism o, [l Mechanism ., Services Protoco
nformaion . infestructore o, l Expot ubiic- oS Jobs archive
= Fiing Command and Access Token] Access Token intemal Colected Communiction
(Gather victm identty [compromise [Apphcation | Sar Sootortogon | Manipuation o, M Manipulstion o Spearphishing | Data gy Tivough
information g Accomts gy interpreter [Autostan Removable
- ton g [ootor ogon [l &S cbs o LateralTool | Audio Capture | Media
ner Compromise [services Contaier Autostart Cloud Infrastructure | Translr Outa
Information g, Infraiucture o, Admmsration | Bootortogon | Executon ,, [l BuldimageonHost | Expltation for Discovery Automated | Data Protocolgs, [Manipultion
E — Commana Intalzstion Cregentia Remote Colecion Encoding gy
Gather victimOrg [Develop Addions SCrpts g Bootortogon [l Debugger vasion | Access Cloud service Service oitation | Defacement
Information o Capabities g Deploy Contaner intalzstion Dashboard Sesson oata o
= e | Serpts Deobfuscate/Decode | Forced Hijacking o Obfuscaton gl Channel Disk Wipe
Phisring for stablsh Caploiationfor | Bxtensions Flesor mformation | Authentication Cloud Service
Informatin ., Accounts o, M Repication Cllnt Execution Create or Moy Discovery Remote Dynamic ation [Encpoint Denil
5 Thiough Compromise Deploy Container | Forge Web Services gy Résoition o [Over Other [of Service
Search Closed Obtain Removable Inter-Process Client Software | Process Gredentit ., ll cloud storage object Dsta from rk
Bouree< Copanitios [0 Ve Commumication g [Fnory irect Volume Access Diccoery Reptcation ||l Soage. | Eneryptod N, [l Femare
- Domain poicy nput Thiough Chamnel Comuption
rch Open Technicl [sage Supply Chain Noditcation ., | Domain olcy Copture ,,f Containerand Removable | Data from exitation
bases gy Capabities o | Compromee g - Modation Resource Discovery ia configurtion [Fallback Over Inhiitsysem
Scheduled Escape to Host Modity Repostory o, [l Channls Medium g, [l Recovery
open Trusted Taskob e Create or Modiy caion [oebuggermvasion | software
fesyomsins Reltonship em cvent iggered [Guardrat Process gy ployment | Datafom Network Derial of
Serveless Bxecution Focest Erecuton g Deice Drver Tools overwer [Servce s
Vicim-Owned valid Jotation for Multfactor | Dicovery Repostonss gy Service gy
s Accounts o, [shared Modules | event i Explotation for | Defense Evasion Authentication Taintshared Mult-Stage Resource
Execution gy intercepion | Domain Trst Chamnels Scheduled | Hjading
Softuare Excaation File and Directory Discovery Tranter
Deployment Tooks | Exteral Remote Permissions Multi-Factor Non- senvice stop
ijack Execution [Moditeation 1, Authen Applcatin Transter Data
E—— Flow gy Request Uyer rotocal | 1o Cloud
Hiack Execution ide Arfacts) [Generation
User brecution sy [Fow gy process Group polcy Discovery Non-Standard
I [rr—" Network Dsta from por
windows implant nterna Howgyry Snifing Network senvice Remonable
Management image Scheculed Discovery Vieda
insirumentation Tasiob gy [impair Defenses] 05 Credentia Tunneing
Modiy Osta Staged .
Authertcaion [vaid Indictor Removal ., Poves I
Process gy Accounts g, emai
indiect Command | Application Network snifing Calecton o, [remote
Beecution ‘Actes Token Software
password polcy nput =
Masaqueradi orForge | Discovery Copture, Tafic
S [t B Snding gy
Sereen Capture
Process Discovery web senice
stealorForge Video Capture
Modty Cloud Kerberos permisson Groups
Compute Tickets g, [l Discovery gy

OEBPS/image/B19549_3_21.jpg
@

oo

5222

@ ia -101

& Created by rajneesh

[Created at 04/09/2023 2327

— e —
[

General @ Observables (0)

2

5(0) B SimilarCases & Similar Alerts

B Responders

Tags

| agent ip-2605:0201:00360842781. | wazun | ager

me-WIN-MQIEREUQNY. | agent.i

o1

Assignee

Source

wazuh

Reference

62c01a

Type
wazuh_alert
Occurred date

2023-09-04 23:27;

status

o new

Description

Timestamp

key

val

timestamp 2023-09-04T17:57:31.865+0000

Rule
key val

rule Jevel 5
rule.description Sysmon - Event 11: FileCreate.
ruleid 101111
rule firedtimes 2
rule.mail False
rule.groups [sysmon']

‘Agent

key val

agent.id 001

agentname _ WIN-MQUEREUQNY.

/ AcTion

Comments

OEBPS/image/B19549_4_01.jpg
1
VAN

Alert generation

Alert triage an:
prioritization

d

o

Investigation and
context gathering

| &

Containment,
eradication
and recovery

SOAR

4

Playbook
Execution

O Automated
enrichment

@ Manual
Analysis

OEBPS/image/B19549_7_06.jpg
Registry:

15031 Ensure Network : Do not all tion of SA..
I nsureietworkaccass: oot alowianchyousiaumerationo I HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa

Rationale
An unauthorized user could anonymously list account names and shared resources and use the information to attempt to guess passwords or perform social engineering attacks. (Social
engineering attacks try to deceive users in some way to obtain passwords or some form of security information)

Remediation
To establish the recommended configuration via GP, set the following U path to Enabled: Computer Confi i ici i i i i ocal Polici
Options\Network access: Do not allow anonymous enumeration of SAM accounts and shares.

Description
This policy setting controls the ability of anonymous users to enumerate SAM accounts as well as shares. If you enable this policy setting, anonymous users will not be able to enumerate domain
account user names and network share names on the systems in your environment. The recommended state for this setting is: Enabled. Note: This policy has no effect on Domain Controllers.

Check (Condition: all)
« rHKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa - RestrictAnonymous - 1

Compliance
2.3.10.3

csc: 16
pci_dss: 7.1
tsc: CC6.4

OEBPS/image/B19549_2_02.jpg
root@haxcamp: ~# [touch antivirusupdate.php |

antivirusupdate.php| attackl.txt infectedfile.txt snap wazuh-agent.deb
Toot@haxcan

OEBPS/image/B19549_1_11.jpg
Run the following commands to download and install the Wazuh agent:

wget https://packages.wazuh.con/4.x/apt/pool /main/w/wazuh-agent /wazuh-agent_4.6.6-1_andsd. deb 8&
Sudo WAZUH_MANAGER="192.168.29.32' WAZUH_AGENT_GROUP="Ubuntu’ WAZUH_AGENT_NAME="ubu-serv' dpkg -1
. Iwazuh-agent_4.6.6-1_and6d. deb

Start the Wazuh agent:

sudo systenctl daemon-reload
sudo systenctl enable wazuh-agent
sudo systemctl start wazuh-agent

OEBPS/image/B19549_6_32.jpg
"queries": {

“Services": {

I "query": "SELECT * FROM services WHERE start_type='DEMAND_START' OR start_type='AUTO_START';", I

"interval": 3600,

Lists all iinstalled services configured to start automatically at boot - ATT&CK >

“descriptio
“removed": false
1

“Snapshot_services": {

"query ELECT * FROM services;",

"interval": 28800,

"description": "Snapshot Services query"

"snapshot": true

1
"OtherServices": {
"SELECT name, display_name, status, start_type, path, module_path FROM services;",
"interval": 3600,
"description": "Services whose executables are placed in unfamiliar folders- ATT&CK T1543.603",
“removed": false
}

OEBPS/image/B19549_6_15.jpg
|-;=XI\

4

\ seection contols contros
acax|B B 1@ 0

==
X -I amAa e =

Resource B ‘Command and .
Reconnai tnitisl Access Execution Access Movement Collection Exfiltration Impact
10 techniques 8 techniques 9 techniqu 14 techniques 19 techniques 13 techniques 42 techniques. 17 techniques 3itechniques 3 Otechniques 17techniques 16techniques Otechniques 4 13 techniques
Active Scanning o) [l Acauire Access Drive-by a Accour stuseclevaton [abuse cevaton adversaryin- [account Discovery g, [] Explottation o | acversaryin- [appiiation nutomated | Account Access
Compromise | Administration Maniputation o0 [l Control the-Middle g Remote the-middle o, M Liyer Exfitraion g, [Removal
Gather victim Host | Acquire Command Vechanism gl Viechanism . Application Window protocol g
Information nfrastructure) M Explot publc- BITS Jobs Brute Force g, [Discovery Archive Data Transfer | Data Destruction
Fating Commandand AccessToken [l Access Token Internal Collected Communication | Size Limits
Gather victim Identity [l Compromise Application 8ootorLogon [l Manipulation ¢, ll Manipulation 5, credentials [Browser information Spearphishing | Data o ugh Data Encrypted
o Accounts) et Autostart from assword [Discovery extitration [for impact
Extemal Remote Execution o, [Bootorogon [l &S obs Stores) LateralTool || Audio Capture | Media Over
Gather Vitim Network [l Compromise Services ‘Container Autostart Cloud Infrastructure | Transfer attemative M Data
information, Infrastructure) Administration ortogon [Execution ., [l Buildimage onHost | Exploitation for Discovery Automated protocol ;]| Maniputation
Hardware Command Initalization Credential Remote Collection Encoding)
Gather Victim Org Develop Aditions SCrips Bootor Logon il Debugger Evasion Cloud service: service Eitiation | Defacement .,
Information, Capabiltes I Deploy Container Initiaization Dashboard i Browser Session Overc2
Phishing Browser Scrpts Deobfuscate/Decode | Forced Hijacking, Hiacking Obluscation g, M Channel Disk Wipe
Phishing for Establish 0 Explotation for Extensions e Files or information Authentication Cloud Service: o o o
ormation Accounts o, W vepication Clent Execution ‘create or Moaity Discovery Kemote ipboard vata i ation [tndpoint veniar
Thiough Compromi System Deploy Container Forge Web Services Resolution M Over other M of senvice)
Search Closed Obtain Remova Inter-Process. Client Software | Process Credentias ., l Cloud Storage Object Data from Network
Sources g, Capabiltes o [Media Communication ., | &in Direct Volume Access Discovery Replication Cloud Storage | Encrypted wedium [l Firmware
Domain Policy Input Thiough Chanel Comption
Search Open Technical il stage supply chain [Native ap1 Create Modification g, [Domain policy Capture ,, M Container and Removable Data from Exfitration
5% Capabiltes [Compromise Account Modification g, Resource Discovery | Media configuration [Fallback Over Physical [imhibit System
Scheduled Escape to Host Modify Repository g, [l Channels wedium o, [l Recovery
Search Open Trusted Task/iob, Create or Modiy Execution Authentication [l Debugger evasion Software
Websites/Domains) Reltionship System Event Tiggered [Guardrais) Process Deployment | Data Ingress Tool exiitration [l Network Denial of
Serverless Execution Process) Execution g, Device Driver Tools Information Transfer Over Web Service
Search Victim-Owned Valid Explotation for Multi-factor | Discovery Repositories) Service
Accounts [shared Modules | vent Tain shared Mult-Stage Resource
Frecution gy, [Priege = Interception | Domain Trist oot Data from tacal | Channele Schedied Hineking
Software Escalation File and Directory Transfer
Deployment Tools | External Remote: permissions Mlti-Factor Non- Service stop
Hiack Execution [} Modificai Authentication | File and Directory ctnentiation [oata rom Application nster Data
System Services Flow, Request Discovery Material Network Shared Layer Protocol | to Cloud tem
2l Hijack Execution o Hide Artifacts 0, Generation 0 W orive Account utdown/Reboot
User Execution il Fiow gy Process Group policy Discovery Non-Standard
injection ,,,, M Hiack Execution Network Data from port
Windows Implant Internal Flow) Sniffing Network Senvice Removable
Management Image Scheduled Discovery Media Protocol
Instrumentation Task/iob) impair Defenses ¢, [O Credential Tunneling
Modity imping o, Ji Network share Data Staged g,
Authentication il vatid Indicator Removal) Discovery rove, [l
Process Accounts steal email
ndiect Con Application | Network Srfing ollection 5, [l Remote access
office Execution ‘Actess Token Software
Application Password Policy input
Startup) Masquerading Stealor Forge | Discovery Capture Taffic
Authentication Signaiing)
Pre-05 Boot) Cerificates Screen Capture
Process gz Web Service 5
Scheduled Steal or Forge Video Capture
Task/lob) Modity Cloud o5 Permission Groups
Compute Tickets g Discovery)
Server Software Infrastructure
Component Steal Web Process Discovery.
o Modify Registry Session Cookie.
1. Query Registry
Signaling ., Modity System Unsecure I
s cradentiak M Remote Suctem

OEBPS/image/B19549_3_19.jpg
Run analysis

Tk
Papk
DataTypek domain

Data ¥

Analyzers

* Required field

OEBPS/image/B19549_3_10.jpg
status Select~

User details

Login: rajneesh@haxcamp.local
Organization: haxcamp.com

Login: rajneesh
Organization: cortex

——— B3 o

Full name: Rajneesh
Roles: read, analyze, orgadmin

Full name: Rejneesh Gupta
Roles: superadmin

Password

Edit password

Edit password

APl Key

