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Artificial Intelligence in Heat

Transfer

 Artificial  Intelligence  in  Heat  Transfer  shows  how  artificial

intelligence  (AI)  tools  and  techniques,  such  as  artificial

neural  networks,  machine  learning  algorithms,  genetic

algorithms,  etc.,  provide  practical  benefits  specific  to

thermal  sciences.  It  presents  case  studies  involving  heat

and  mass  transfer,  multi-objective  optimization,  conjugate

heat  transfer,  nanofluids,  thermal  radiation,  heat  transfer

through porous media (metal foam), and more. 

Drawing  on  the  collective  expertise  of  leading  researchers

and experts in multiple fields, the book provides an in-depth

understanding  of  the  possibilities  that  emerge  when  these

tools are applied to problems related to thermal sciences. AI

is  an  ever-evolving  discipline  that  has  created  new  and

groundbreaking  opportunities  to  advance  the  mechanical

engineering field, particularly in the area of numerical heat

transfer. This volume,  Advances in Numerical Heat Transfer, 

explores  various  ways  AI  is  used  in  heat  transfer  to  solve

engineering problems. 

This book will serve as an important resource for upper-level

undergraduate  students,  researchers,  engineers,  and

professionals,  equipping  them  with  the  knowledge  and

inspiration  to  push  the  boundaries  of  the  thermal  sciences

through AI-driven tools and techniques. 
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Preface

Artificial  intelligence  (AI)  is  an  ever-evolving  discipline  that

has  created  new  and  groundbreaking  opportunities  to

advance  the  mechanical  engineering  field,  particularly  in

the area of numerical heat transfer. This volume,  Advances

 in Numerical Heat Transfer, explores various ways in which

AI  is  used  in  heat  transfer  to  solve  engineering  problems. 

Through  a  series  of  insightful  chapters,  this  book  aims  to

show  how  AI  tools  and  techniques  are  currently  providing

practical  benefits  specific  to  thermal  sciences.  Drawing  on

the  collective  expertise  of  leading  researchers  and  experts

in  multiple  fields,  we  aim  to  provide  an  in-depth

understanding  of  the  possibilities  that  emerge  when  these

tools  are  applied  to  problems  related  to  heat  and  mass

transfer,  multi-objective  optimization,  conjugate  heat

transfer, and more. 

Chapter  1  explores  physics-informed  neural  networks

(PINNs),  which  have  gained  popularity  across  different

engineering  disciplines  as  an  alternative  to  conventional

numerical  techniques  for  solving  partial  differential

equations  (PDEs).  PINNs  are  physics-based  deep  learning

frameworks  that  seamlessly  integrate  the  measurements

and  the  PDE  in  a  multitask  loss  function.  In  forward

problems, these measurements are initial (IC) and boundary

conditions (BCs), whereas in the inverse problems, they are

sparse  measurements  such  as  temperature  recorded  by

thermocouples. The scope of PDEs applicable in PINNs could

include  integer-order  PDEs,  integrodifferential  equations, 

fractional  PDEs,  or  even  stochastic  PDEs.  This  chapter

includes  a  state-of-the-art  overview  of  PINNs  for  solving

PDEs  and  focuses  on  solutions  to  parametric  problems, 

approaches  to  tackle  stiff  PDEs,  and  problems  involving

complex geometries. The advantages and disadvantages of

several PINN frameworks are also discussed. 

In  Chapter  2, the  authors  focus  on  multi-objective

optimization  principles  in  complex  thermal  engineering

problems. As heat transfer problems grow in sophistication, 

numerical  tools  become  vital,  especially  when  including

different  heat  transfer  mechanisms  like  conduction, 

convection,  and  radiation,  which  require  customized

analysis  methods.  A  detailed  system  analysis  opens  the

door  to  possible  improvements,  i.e.,  optimization.  Choosing

between gradient-based and gradient-free techniques, e.g., 

genetic  algorithms  (GAs),  depends  on  system  size  and

complexity.  Large-scale  systems  like  industrial  heat

exchangers  benefit  from  GAs,  prioritizing  thermal

performance  optimization;  they  effectively  navigate

complex  design  spaces.  Conversely,  small-scale  systems

like  microfluidic  devices  favor  precision,  making  gradient-

based techniques more suitable. 

This chapter serves as a comprehensive guide for readers

in  defining  and  selecting  an  appropriate  optimization  tool

based  on  modeling  and  the  system/component  scale.  It

begins by emphasizing the significance of a clear objective

setting  and  constraint  identification  during  the  preliminary

phase.  Throughout  the  discussion,  diverse  examples  from

literature,  such  as  heat  exchanger  systems,  illustrate  the

complex 

nature 

of 

engineering 

challenges. 

Once

classifications 

are 

provided, 

attention 

shifts 

to

understanding  multi-objective  optimization  principles, 

particularly  focusing  on  GAs.  At  the  core  of  the  exploration

lies  the  crucial  decision  of  selecting  the  most  suitable

optimization  method.  Through  a  systematic  evaluation  of

current  optimization  techniques  and  modern  approaches, 

readers  are  equipped  to  make  informed  choices.  Emphasis

is placed on the benefits and bottlenecks of the approaches

presented based on the desired solution. Thus, the chapter

culminates in a detailed examination of several optimization

examples,  guiding  readers  toward  successful  resolutions  of

heat  transfer  challenges  and  offering  insights  and  practical

advice on methodologies, solvers, and constraints. 

Chapter  3  presents  a  case  study  of  machine

learning/artificial  intelligence  (ML/AI)  approaches  that

characterize  single-phase  fluid  flow  and  heat  transfer

characteristics  of  metal  foams.  Metal  foams  were  scanned

using  high-resolution  microcomputed  tomography.  The

scanned  images  were  numerically  investigated  using

OpenFOAM  for  combined  heat  conduction  and  convection

characteristics. The overall pressure drop and heat transfer

results  agreed  well  with  experimental  data  and  the

empirical  correlations  in  the  literature.  Longitudinal  flow

mixing across pores due to the blockage of nodes has been

analyzed  and  depicted  for  different  porosities.  The

temperature distribution, local heat transfer coefficient, and

heat flux on the metal foam fluid interface are characterized

to reveal the underlying physical reasons for different metal

foams 

exhibiting 

distinct 

thermal 

characteristics. 

Additionally,  the  variation  of  these  parameters  with  height

has  been  examined  for  different  velocities.  The  results

showed  higher  local  heat  transfer  coefficients  for  thinner

filaments. However, the temperature difference between the

fluid and solid portions is marginal due to the lower effective

thermal conductivity for higher porosity (low-density) metal

foams. 

The  study  also  showed  that  the  effective  interfacial  area

used  for  heat  transfer  decreases  with  inlet  velocity  and

porosity.  The  local  heat  transfer  coefficients  and  local  heat

fluxes on the interface are analyzed in detail. The regions of

strong  heat  transfer  are  reported.  The  integrated  values

from  the  computational  fluid  dynamics/heat  transfer

(CFD/HT) solutions were used to train a deep neural network

(DNN) algorithm. Three-dimensional (3D) surface plots were

generated to show the agreement of the numerical data and

the  predictions  obtained  by  using  the  DNN  algorithm.  The

computational time can be reduced from several hours to a

few  minutes  by  using  the  DNN  model.  This  study  can

provide  guidance  in  improved  channel  design  and  metal

foam selection for high-performance heat exchangers. 

Chapter  4  uses  AI  as  an  important  tool  to  overcome  the difficulties  of  traditional  modeling  approaches  in  simulating

the  complex  structure  of  nanofluids.  In  this  chapter’s  case

study,  the  usability  of  AI  techniques  was  investigated  to

understand  nanofluids’  thermophysical  properties  and  flow

properties,  which  are  very  important  for  various  industrial

and  engineering  applications.  In  the  research,  various  AI

methodologies,  including  artificial  neural  networks  (ANNs)

and  machine  learning  algorithms,  were  examined  in

predicting  basic  thermophysical  properties  such  as  thermal

conductivity, viscosity, and specific heat capacity, as well as

heat  transfer  characteristics  in  various  applications  where

nanofluids  are  used.  As  demonstrated  in  this  chapter,  AI-

supported  models  appear  to  exhibit  a  higher  prediction

performance than traditional numerical techniques. 

Chapter  5  studies  the  influence  of  thermal  radiation  and thermophoretic  particle  deposition  influence  on  heat  and

mass  transport  of  ternary  hybrid  nanofluid  flow  in  a

stretching/shrinking  convergent  channel.  The  modeling

expressions  for  the  considered  mathematical  model  are

addressed  with  the  aid  of  Galerkin  finite  element  analysis, 

and  obtained  results  are  compared  with  existing  literature

under  the  limiting  instances.  The  results  disclosed  that  an

enhancement  in  thermal  radiation  term  accelerates  the

warmth  of  the  fluid.  As  the  thermophoretic  parameter

enhances,  the  concentration  decreases  because  the

thermophoretic  force  draws  additional  particles  to  the

surface  when  there  is  a  large  heat  difference.  An  ANN  is

trained  on  simulated  data  using  the  Levenberg–Marquardt

technique  to  enable  it  to  identify  and  comprehend  the

underlying  structures.  The  mass  and  heat  transfer  in  the

convergent  channels  that  are  stretching  and  shrinking  are

then  computed  using  the  trained  neural  network.  This

approach  offers  a  workable  replacement  for  traditional

parametric research, enabling more precise predictions and

comprehension of the behavior of complex systems. Ternary

hybrid  nanofluid  flow  has  the  highest  mass  and  heat

transfer  rates  in  the  stretched  channel.  Throughout  all

examined  situations,  the  ANN  algorithm’s  mean-squared

error  (MSE)  values  range  from  0  to  0.03972.  The  heat  and

mass transfer properties of the ternary hybrid nanofluid are

predicted  through  this  algorithm,  and  also  the  regression

plot,  error  histograms,  performance  plot,  and  learning

curves are presented for the predicted model. The research

results  enhance  our  comprehension  of  the  properties  and

behavior  of  ternary  hybrid  nanofluid  flow  in  convergent

channels,  which  helps  with  mass  and  heat  transfer  design

and optimization. 

Chapter 6 uses physics-informed deep learning (PIDL) as a

new  modeling  framework  to  combine  physics-based  and

data-driven  models  to  overcome  limitations  and  take

advantage of both these modeling approaches. Recent work

on  various  PIDL  approaches  like  physics-informed  neural

networks  (PINNs),  domain  decomposition  and  transfer

learning  of  PINNs,  hypernetwork-based  PINNs  for  adapting

the  models  easily  for  different  boundary  conditions, 

symbolic  regression  (SR),  physics-informed  symbolic

networks  (PISNs),  and  symbolic  regression  via  pruning

based  differential  program  architecture  (DPA)  for  deriving

interpretable  mathematical  models  are  presented  in  this

chapter.  These  modeling  methodologies  are  demonstrated

for  an  air  preheater  (APH),  a  critical  heat  exchanger  in

thermal power plants. A computational fluid dynamics (CFD)

model  for  representing  heat  transfer  in  the  APH  is  also

presented.  The  performance  of  PIDL  approaches  is

compared  with  numerical  simulation  results  with  the  CFD

model  and  found  to  be  reasonably  satisfactory.  More

importantly,  the  inference  times  of  the  PIDL  models  are

quite  low,  indicating  their  suitability  for  real-time

applications  and  the  design  of  complex  processes  that

require many simulations. 

In  Chapter  7,  the  impact  of  Joule  heating,  Soret  Dufour factors, 

and 

chemical 

reaction 

effects 

on

convergent/divergent  channel  flow  using  supervised  and

unsupervised physics-informed machine learning algorithms

are  investigated.  The  governing  coupled  system  of  partial

differential equations (PDEs) is transformed into a nonlinear

system  of  ordinary  differential  equations  (ODEs)  through

appropriate  transformations.  Further,  the  ODEs  are

transformed  into  fitness  functions  based  on  physics-

informed machine learning. The optimal value of the fitness

function  utilized  the  meta-heuristic  algorithms,  especially

particle  swarm  optimization  hybrid  with  neural  network

algorithms.  The  obtained  results  of  the  proposed  algorithm

are  compared  with  the  NDSolve  Mathematica  solver  as  a

reference  solution  for  algorithm  validation.  In  addition,  200

independent  runs  are  conducted  for  the  efficiency  of  the

propped approach. Further, the ANN-BLMT technique is used

for  the  analysis  of  supervised  learning.  The  statistical

analysis is undertaken for 50 independent runs to check the

convergence  of  the  proposed  algorithm.  The  obtained

optimal biases and weights are seen in the range of −10 to

10  using  hybrid  PSO-NNA.  The  physics-informed  machine

learning algorithms are found to be much better than ANN-

BLMT supervised learning. 

Chapter  8  studies  the  average  Nusselt  number  (Nu)  and the  average  Sherwood  number  (Sh)  of  a  double-diffusive

natural  convection  flow  of  Fe3O4–water  nanofluid  in  a

parallelogram-shaped  cavity  by  using  neural  networks.  The

data for modeling is obtained from the numerical simulation

of the problem in different problem parameter combinations

of  Rayleigh  (Ra),  Lewis  (Le)  numbers,  buoyancy  ratio

parameter  (Nr),  nanoparticle  concentration  (φ),  and  the

inclination  angle  of  the  parallelogram  (θ).  The  governing

dimensionless  equations  are  numerically  solved  by  cubic

polyharmonic spline radial basis function collocation method

using Gauss–Chebyshev–Lobatto node distribution. Modeling

of  important  problem  features  enables  one  to  interpret  the

enhancement  in  convective  heat  and  mass  transfer

immediately  in  some  parameter  concert  instead  of

performing  numerical  calculations  many  times.  The

collaboration  between  CFD  and  ANNs  shows  a  promising

way  to  control  heat  and  mass  transfer  characteristics

quickly and efficiently. 

In  compiling  this  collection  of  chapters,  we  extend  our

sincere  gratitude  to  the  authors  whose  expertise  and

dedication  have  made  this  endeavor  possible.  Their

contributions  demonstrate  the  remarkable  potential  AI  has

to contribute to the thermal sciences, both in research and

practical problem-solving. 

As we look into the future, the potential of AI in the field of

heat  transfer  seems  limitless.  It  is  our  hope  that  this  book

will  serve  as  an  important  resource  for  students, 

researchers,  engineers,  and  professionals,  equipping  them

with  the  knowledge  and  inspiration  to  push  the  boundaries

of  the  thermal  sciences  through  AI-driven  tools  and

techniques. 
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1 Physics-informed Neural

Networks for Solving

Partial Differential

Equations

 Prakhar Sharma, Michelle Tindall, and

 Perumal Nithiarasu

DOI: 10.1201/9781032688121-1

1.1 INTRODUCTION

Conventional  numerical  techniques  for  solving  partial

differential  equations  (PDEs)  have  been  a  cornerstone  in

engineering 

design 

for 

years. 

However, 

their

implementation poses challenges for a variety of problems. 

Some  of  the  common  issues  encountered  include:  mesh

dependency  of  solutions,  computational  expense  in  high-

dimensional  parametric  solutions,  stress  concentration  at

sharp  corners,  challenges  in  achieving  convergence  and

stability, and difficulties in generating adaptive meshes. 

Conventional  numerical  techniques  such  as  finite

elements  and  finite  volumes  were  primarily  developed  for

forward  problems;  however,  significant  challenges  were

encountered  when  solving  inverse  problems.  The  ill-

conditioned  nature  of  inverse  problems,  the  need  to

integrate noisy experimental data, and the existence of non-

unique  solutions  makes  these  problems  intractable  for

conventional  numerical  techniques.  This  chapter  does  not

cover  these  challenges  associated  with  inverse  problems, 

instead it focuses on the advancements and applications of

physics-informed  neural  networks  (PINNs)  in  forward

problems. 

Although  early  efforts  were  made  to  solve  differential

equations  with  neural  networks,  these  were  constrained  by

the  limitations  of  smaller-scale  neural  networks  (NNs)  and

less  efficient  optimisers  [1,  2, 3,  4]. The  recent advancement  in  existing  algorithms  and  computing  power

have led to significant achievements in the field [5, 6, 7]. 

Recently,  study  discussed  in  reference  [8]  introduced  the groundbreaking  concept  of  PINNs,  a  method  to  seamlessly

integrate  both  data  and  PDE  within  a  deep  learning

framework.  They  demonstrated  its  capability  to  effectively

solve  both  forward  and  inverse  problems.  Unlike

conventional  numerical  techniques,  PINNs  are  inherently

meshless,  effectively  addressing  several  aforementioned

issues  such  as  mesh  dependency  and  adaptive  mesh

generation.  In  addition,  by  utilising  information  from

previously solved problems, one can accelerate the solution

to  newer  problems  through  the  so  called  transfer  learning

method. 

The PINNs are particularly noteworthy due to their ability

to  solve  PDEs  without  the  need  of  additional  ground  truth, 

unlike  standard  training-based  approaches.  This  represents

a  significant  advantage  over  traditional  NN-based  PDE

solvers,  which  typically  requires  a  large  number  of  ground

truth, such as simulation results, for model training. 

1.2 PHYSICS-DRIVEN VS. DATA-DRIVEN

APPROACHES

There exist a plethora of methodologies for tackling physics-

based  problems,  leveraging  both  conventional  numerical

solvers  and  machine  learning  (ML)  models.  Before  the

advent  of  PINNs,  the  predominant  approaches  were  either

physics-driven  or  data-driven.  As  depicted  in  Figure  1.1, physics-driven  techniques  such  as  conventional  numerical

solvers,  are  on  the  left,  whereas  purely  data-driven

methods, including traditional supervised ML models, are on

the right. 
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FIGURE 1.1  A broad classification of different approaches for solving physics problems. 

There  are  two  distinct  data-driven  methods  for  enforcing

the  underlying  physics:  physics-guided  NN  (PGNN)  and

physics-encoded  NN  (PENN).  PGNNs  follow  a  classical

supervised  learning  framework,  constructing  surrogate

models  from  the  data  derived  from  experiments  and

simulations.  These  models  typically  necessitate  extensive

datasets to achieve generalisation [9, 10]. 

PENN-based  models  aim  to  directly  encode  underlying

physical  principles  within  the  NN’s  architecture,  offering  an

advantage  when  the  explicit  forms  of  the  differential

equations  are  not  well-defined.  Among  these,  two  notable

approaches 

stand 

out: 

physics-encoded 

recurrent

convolutional  NN  (PERCNN)  [11]  and  neural  ordinary

differential equations (NeuralODE) [12]. 

The  PERCNN  approach  integrates  the  nonlinear  systems

directly  into  the  NN  by  replacing  the  traditional  activation

function  with  a  novel  element-wise  product  operation.  This

modification allows the NN to directly encode the dynamics

of physical systems into its computational process, enabling

it to handle complex, nonlinear behaviours more effectively

than traditional NNs. 

In contrast, NeuralODE approach reimagines the structure

of  NNs  to  parallel  the  behaviour  of  ordinary  differential

equations  (ODEs)  that  can  be  solved  using  Euler’s  method. 

By  designing  the  NN’s  layers  to  represent  discrete  steps  in

solving an ODE, NeuralODE allows for the direct application

of  numerical  methods  within  the  NN.  This  architecture

creates a bridge between numerical analysis and ML. 

PINNs  belong  to  the  region  between  physics-driven  and

hybrid approach. This signifies that PINNs are capable of not

only  solving  PDEs  without  needing  additional  ground  truth, 

but  they  can  seamlessly  integrate  noisy  experimental  data

which  is  a  significant  advantage  over  conventional

numerical solvers. 

1.3 HOW PINNS ARE DIFFERENT FROM

CONVENTIONAL NUMERICAL TECHNIQUES? 

Conventional  numerical  techniques  such  as  finite  elements

method  (FEM)  and  finite  volumes  method  (FVM)  were

primarily  developed  for  forward  problems  [13, 14, 15].  In these  methods,  the  domain  is  discretised  into  a  mesh

consisting of elements (in FEM) or control volumes (in FVM), 

with  corners  or  boundaries  defined  by  nodes.  In  FEM,  each

element  uses  a  basis  function,  often  described  by  a

piecewise  polynomial  function,  to  interpolate  the  solution

within  the  element  based  on  the  nodal  values  of  the  field

variable.  In  contrast,  FVM  divides  the  domain  into  control

volumes  and  the  solution  is  directly  approximated  within

these volumes. 

The PINNs are NNs that model the forward problem as an

optimisation problem. Instead of discretising the PDE, PINNs

formulate  them  as  a  part  of  the  loss  function.  Traditional

mesh-based  discretisation  is  replaced  with  a  point  cloud

throughout  the  domain.  The  solution  is  then  inferred  at

these  points  once  the  network  has  been  fitted  to  minimise

the loss function. The key distinctions between conventional

numerical  techniques  and  the  PINNs  are  summarised  in

Table 1.1. 

TABLE 1.1

Conventional Numerical Techniques vs. PINNs

Conventional Numerical

Techniques

PINNs

Basis function

Piecewise polynomial

Neural network

Solution

Numerical approximation and

Optimisation

methodology

iterative methods

problem

PDE embedding

Discretised equations

Loss function

Geometric

Mesh

Point cloud

representation

 Abbreviation: PDE, partial differential equation. 

1.4 THE BASELINE PINN

Consider a well-posed PDE problem:

u t + N x[u] = 0, 

x ∈  Ω,  t ∈ [0,  T ]

u(x, 0) =  h(x), 

x ∈ ∂ Ω

u(x,  t) =  g(x,  t), 

x ∈ ∂ Ω,  t ∈ [0,  T ]

(1.1)

where the first equation represents the PDE with a temporal

derivative  ut and a spatial derivative operator N x [ u]. Here, u( x,  t) is the dependent variable, where  x and  t denote the independent  spatial  and  temporal  variables,  respectively. 

The  Ω and ∂  Ω denote the spatial domain and the boundary

of  the  problem.  The  function   g ( x)  specifies  the  BCs  and h ( x,0) denotes the IC at  t = 0. 

The  inputs  to  a  PINN  for  a  two-dimensional  (2D)  time-

dependent  problem  are  the  spatio-temporal  coordinates

denoted  by   x,  y,  z,  and   t.  Unlike  the  mesh  generation  in conventional  numerical  methods  like  FEM,  where  the

structure of the grid can significantly influence solution, the

sampling  of  coordinates  for  a  PINN  can  be  conducted  in  a

more  arbitrary  manner.  There  are  certain  techniques  to

effectively  reduce  the  number  of  random  points  needed

while  still  ensuring  comprehensive  domain  coverage  as

discussed  in  Section  1.5.1. These  random  points  are  then fed  into  the  NN,  as  illustrated  in  Figure  1.2. The  baseline PINN employs a feed-forward NN (FNN), which is composed

of  several  fully  connected  layers  leading  to  the  predicted

output, represented by ˆ

 u [16]. 
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FIGURE 1.2  The architecture of a PINN with two hidden layers for a 3D spatiotemporal forward problem. Here the inputs are  x,  y,  z, and  t,  σ is the activated neuron and ˆ

 u is the predicted output or the solution to the PDE. 

Similar  to  traditional  supervised  ML  techniques,  in  PINNs, 

the predicted output ˆ

 u plays a crucial role in formulating the

constraints  which  are  represented  through  a  loss  function

[17]. Unlike  simpler  models,  PINNs  require  multiple  loss functions  to  simultaneously  satisfy  the  PDE,  the  BCs,  and

the IC, if the problem is transient. This approach results in a

multitask  loss  function,  comprising  the  total  loss  (L )  and

the  individual  loss  terms  (L PDE,  L BC,  L IC),  which  are defined as follows:

∣L= λPDE L PDE+ λBC L BC+ λIC L IC(1.2) Nr L∑ PDE=1ˆ uNt(x i,  ti)+N x[ˆ u(x i,  ti)]2 ri=1 Nb L∑ BC=1ˆ u( Nx i,  ti)− g(x i,  ti)2 bi=1 N 0L∑ IC=1ˆ Nu(x i,0)− h(x i)20 i=1(1.3)In these equations,  Nr,  Nb, and  N 0 represent the numberof data points sampled to satisfy the PDE, BCs, and IC,respectively, as mentioned in Eqn. 1.2. The coefficients λPDE,  λBC and  λIC are weighting factors in Eqn. 1.2 thathelp in achieving better convergence and accuracy in themodel. The PDE loss L PDE is the mean squared error (MSE)of the residual of the PDE. Similarly, the BC loss L BC andthe IC loss L IC are MSEs of the difference betweenˆ u( x,  y,  z,  t) and the known BC and IC at their respectivelocations. Figure 1.2 illustrates the overall architecture of aPINN for a three-dimensional (3D) spatio-temporal problem.In the baseline PINN framework, gradient-basedoptimisers are employed to minimise the total loss L, by

adjusting the weights of the NN during the training process

[18]. Among these optimisers, adaptive moment estimation

(Adam)  and  limited  memory  Broyden–Fletcher–Goldfarb–

Shanno  (L-BFGS)  are  frequently  utilised  due  to  their

efficiency in handling large-scale optimisation problems. 

Both  Adam  and  L-BFGS  bring  distinct  advantages  to  the

training  process  of  PINNs.  Adam’s  adaptive  learning

mechanism can lead to faster convergence, especially in the

early stages of training. Whereas, L-BFGS is often preferred

in  the  later  stages  of  training  when  fine-tuning  around

minima is required, as it can provide more accurate updates

by approximating second-order curvature information. 

Given  that  the  problem  is  well-posed,  there  exists  a

unique  solution  [19]. The  enforcement  of  the  loss  terms L PDE,  L BC,  and  L IC  within  the  PINN  framework

contributes  to  maintaining  the  well-posedness  of  the

problem,  thereby  facilitating  the  convergence  towards  a

unique solution. 

1.4.1 NATURE OF SOLUTIONS IN PINNS

The PINNs were originally developed as solvers for PDEs. In

conventional  applications,  once  a  PDE  is  solved  within  the

specified  domain  with  prescribed  BCs  and  IC,  further

inference  on  new  spatio-temporal  locations  is  typically

unnecessary.  However,  by  incorporating  validation  dataset, 

PINNs  can  be  generalised  to  interpolate  or  extrapolate  the

field  variables  at  new  spatio-temporal  locations.  This

predictive  capacity  aligns  with  the  conventional  ML

techniques,  where  the  availability  of  ground  truth  enables the  model  to  learn  and  make  accurate  predictions  on  new

spatio-temporal  locations.  It  is  important  to  note  that  this

generalisation  approach  deviates  from  the  traditional  use-

case of PDE solvers, which do not rely on ground truth data. 

1.5 DEVELOPMENTS IN THE PINN

FRAMEWORKS

The  PINNs  have  rapidly  evolved,  with  significant

advancements  in  each  of  their  core  components  such  as

sampling strategy, network architecture, activation function, 

etc.  These  enhancements  have  not  only  improved  the

accuracy  and  efficiency  of  PINNs  but  also  have  contributed

to  the  broader  field  of  ML.  This  section  will  briefly  discuss

these  developments,  highlighting  how  they  address

previous limitations of the PINNs. 

1.5.1 SAMPLING

Sampling plays a crucial role in the training of PINNs, just as

it  does  in  other  ML  techniques.  For  the  PINNs  this  involves

generating a point cloud within the domain of interest which

serves  as  the  training  data.  Various  strategies  can  be

employed to sample these points effectively. 

A common practice in PINNs is to employ low-discrepancy

quasi-random 

sequences. 

These 

sequences 

are

advantageous  as  they  require  fewer  points  than  uniformly

distributed random points to achieve a comparable level of

domain coverage. Essentially, these sequences “spread out” 
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the  points  in  such  a  way  that  they  are  evenly  distributed

across  all  the  dimensions. Figure  1.3  demonstrates  the

distribution  of  10  points  within  a  unit  square  for  various

sampling methods, including random, grid, Latin hypercube

sampling  (LHS),  Sobol,  Halton,  and  Hammersley  sequence. 

The  random  sampling  shows  no  pattern,  which  can  lead  to

clustering  and  gaps.  The  grid  pattern  does  not  randomise

the locations, which may not capture the local variations in

the  solution.  In  contrast,  quasi-random  sequences  such  as

the Sobol, Halton, and Hammersley methods provide a more

uniform  distribution  without  clustering,  which  is  beneficial

for capturing the local variations in the solution [20, 21]. 

FIGURE 1.3  The comparison of various sampling methods. 

Importance  sampling  can  be  seen  as  substitute  of

adaptive  mesh  refinement  in  PINNs.  Rather  than  using  the

same  sampled  points  in  each  training  iteration,  the  points are drawn from a distribution that is proportional to the total

loss,  L .  Consequently,  regions  with  higher  pointwise  total

loss  are  sampled  more  densely,  thereby  focusing  areas

where the model needs the most improvement [22, 23, 24]. 

Figure  1.4  illustrates  the  evolution  of  sampling  strategies in a one-dimension (1D) feature space,  x, ranging from 0 to

1.  Initially,  1000  sample  points  are  distributed  uniformly

across  the  feature  space  using  LHS,  as  depicted  by  the

evenly  spaced  histogram  in  blue  in  the  top  plot.  As  the

training  progresses,  samples  are  drawn  from  a  distribution

that  aligns  with  the  total  loss  L .  This  distribution, 

represented  by  the  histogram  in  orange,  is  concentrated

around regions where the pointwise total loss L , shown in

the  bottom  plot,  is  higher.  By  dynamically  adjusting  the

sampling density in accordance with the pointwise total loss

L ,  the  PINN  effectively  focuses  on  learning  complex

dynamics within the feature space. 
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FIGURE 1.4  The comparison of initial and importance sampling strategies in a 1D feature space  x. The top histogram shows initial samples obtained via LHS, and the target distribution of samples derived from importance sampling. The

bottom plot shows the pointwise total loss L  across the 1D feature space  x, highlighting regions of higher loss where more points are sampled. 

1.5.2 IMBALANCED LOSS TERMS

The  individual  loss  terms  in  a  PINN  can  exhibit  significant

differences 

in 

magnitude, 

leading 

to 

imbalanced

contributions  to  the  total  loss.  For  instance,  the  L PDE, 

which  often  includes  higher-order  derivatives,  might  be

substantially  lower  than  the  L BC. This disparity can result

in the PINN predominantly learning to satisfy the BCs while

ignoring  the  PDE.  Such  an  imbalance  can  yield  erroneous

behaviour, as the problem effectively becomes ill-posed. 

A  predominant  approach  to  address  this  issue  is  the

introduction  of  balancing  coefficients  for  each  loss  term. 

These  coefficients  denoted  as   λPDE,  λBC,  and   λIC  are multiplied  with  the  respective  terms  in  the  total  loss

function  (Eqn.  1.2).  By  adjusting  these  coefficients,  the

relative magnitude of respective loss terms can be balanced

[25]. 

Efforts to automatically adjust these coefficients have led

to  notable  developments,  such  as  self-adaptive  PINNs  [26]

and  the  self-adaptive  weight  PINN  [27],  and  the

implementation  of  algorithms  like  learning  rate  annealing

[28] and neural tangent kernel [29]. 

1.5.3 ACTIVATION FUNCTION

An activation function, denoted as  σ, imparts nonlinearity to

a NN enabling it to learn complex input–output relationships. 

Selection  of  a  suitable  activation  function  can  affect  the

convergence.  The  choice  of  an  appropriate  activation

function is crucial for convergence in PINNs, as they require

smooth  activation  functions  to  compute  higher-order

derivatives present in PDEs. Thus, activation functions with

discontinuities,  such  as  the  rectified  linear  unit  (ReLU), 

exponential  linear  unit  (ELU),  or  scaled  exponential  linear

units (SELU), should generally be avoided [30]. 

Mathematically,  a  NN  is  a  function,  where  the  linear

combination  of  network’s  weights   w  and  previous  layer’s

input  is  passed  through  the  activation  function   σ  which

serves  as  the  input  to  the  next  layer  (Eqn.  1.4).  Reference

[31]  proposed  the  concept  of  a  global  adaptive  activation function  (GAAF),  where  a  trainable  parameter   A  is  also

passed  through  the  activation  function  (Eqn.  1.5).  This

parameter,  acting  as  the  slope  of  the  activation  function, 

allows  for  more  sophisticated  feature  transformations

between the hidden layers. Later, reference [32], developed

the layer-wise locally adaptive activation functions (L-LAAF), 

incorporating  a  distinct  trainable  parameter,  denoted  as

 A(2),  in  each  hidden  layer  (Eqn.  1.6).  This  layer-specific

adaptability  further  enhances  the  NN’s  capacity  to  capture

complex  behaviours.  The  standard  GAAF  and  L-LAAF

structures are given as:

ˆ u =  w(3) σ( w(2) σ( w(1) X)) (1.4)

ˆ u =  w(3) σ ( Aw(2) σ( Aw(1) X)) (1.5)

and ˆ u =  w(3) σ( A(2) w(2) σ( A(1) w(1) X)). 

(1.6)

1.5.4 SPECTRAL BIAS IN THE NN

Spectral  bias  is  a  learning  bias  of  NNs  towards  low-

frequency  functions.  This  is  a  challenge  when  dealing  with

high-frequency  functions  that  represent  sharp  variations, 
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especially  in  solutions  within  low-dimensional  domains.  In

Figure  1.5, we  present  a  histogram  of  the  magnitude

spectrum  derived  from  a  Fourier  transform  of  2D  spatial

data exhibiting discontinuities. While the distribution mostly

consists of low-frequency components, there are a few high-

frequency  components  attributable  to  the  discontinuities. 

These  high-frequency  components  pose  a  challenge  for

traditional  FNN  architectures,  potentially  leading  to  non-

convergence issues during training. 

FIGURE 1.5  Histogram of the magnitude spectrum obtained from the Fourier transform of 2D spatial data, indicating a the presence of high-frequency

components due to discontinuities. 

Reference [33] proposed the Fourier NN, an approach that

employs  input  encoding  to  project  data  from  low-

dimensional  domains  into  a  higher-dimensional  Fourier

space  using  a  frequency  matrix.  Eqn.  1.7  shows  the  high-

dimensional  training  dataset,  mitigating  the  effects  of

spectral bias. 

[sin(2 πfX)

cos(2 πfX)] T X

(1.7)

where  f is trainable frequency matrix and  X is the the data

in  low-dimensional  domains.  Similar  input  encodings  have

been  utilised  in  modified  Fourier  network  [29],  sinusoidal representation  networks  (SiReNs)  [34], and  the  deep

Galerkin  method  (DGM)  network  [35]. A  comprehensive

survey  by  Sharma  et  al. [36]  discusses  solutions  to

discontinuous  problems  with  PINNs,  detailing  these

architectures among others. 

1.6 APPLICATIONS OF PINNS TO FORWARD

PROBLEMS

In  this  section,  we  will  briefly  discuss  the  application  of

PINNs  to  forward  problems.  We  highlight  scenarios  where

PINNs  offer  solutions  to  challenges  commonly  faced  by

conventional  numerical  methods,  such  as  handling

parametric  problems,  complex  geometries,  and  transfer

learning. 

1.6.1 PARAMETRIC PROBLEMS

The PINNs can be easily extended to solve the problem over

a  range  of  parameters  by  including  them  as  additional

features  in  the  training  dataset.  These  parameters  can

encompass  BCs,  IC,  coefficients  of  the  PDE,  and  even  the
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geometry of the domain. Consider a training dataset where

 X  represents  the  input  features  [ x,  y,  t]  for  a  2D  time-dependent  problem,  alongside  a  range  of  parameters   ki, 

where   i  ranges  from  1  to   n.  To  learn  the  parametric

solutions,  the  PINN’s  training  dataset  is  constructed  by

concatenating  the   X  with  each  instance  of   ki  as  shown  in

Figure 1.6 [37]. 

FIGURE 1.6  Schematic representation of the training dataset with varying parameter  k. 

Recently,  reference  [38]  proposed  physics-informed  deep

operator  network  (PIDeepONets),  an  operator  learning

architecture to solve parametric problems. Similar to PINNs, 

PIDeepONets  only  require  the  PDE,  IC,  and  BCs.  While  a

discussion  on  PIDeepONets  is  beyond  the  scope  of  this

chapter, those interested can refer to a survey in reference

[39]. 

1.6.2 COMPLEX GEOMETRY

Reference  [40]  proposed  a  so-called  conservative  PINN,  a space  decomposition  for  the  PINNs.  This  is  similar  to  the

concept  of  elements  in  FEM,  where  each  element  has  its

own  trail  function.  However,  the  domain  can  be

decomposed  in  any  arbitrary  way  without  needing  any

special  algorithm  as  opposed  to  FEM.  Specifically,  two

additional  loss  terms  were  introduced  to  account  for  the

mismatch  in  the  L PDE  and  ˆ

 u  at  the  interface  of  two

neighbouring sub-domains. XPINNs further advanced this by

handling  space-time  domain  decomposition  (DD)  for  any

irregular  geometry  [41]. The  XPINNs  were  able  to  handle problems with sharp gradient over complicated geometry at

the  cost  of  longer  training  time.  Parallel  PINNs  addressed

this  by  introducing  efficient  parallel  algorithms  [42].  The work in reference [43] developed theoretical insights on the

convergence  and  generalisation  properties  of  PINNs, 

enabling  accurate  modelling  of  discontinuities,  like

shockwaves, with prior knowledge of their locations. 

1.6.3 TRANSFER LEARNING

Transfer  learning  stands  out  as  a  key  advantage  of  PINNs

when  compared  to  conventional  numerical  methods.  It

allows  the  utilisation  of  a  model  trained  on  one  problem, 

referred to as the base task, to solve similar problem, known

as target task. The base task is generally a simpler problem, 

which  may  differ  from  the  target  task  in  terms  of  the

geometry,  BC,  or  PDE.  By  utilising  a  PINN  trained  on  the

base  task,  we  can  approach  more  complicated  target  task, 

leveraging the pretrained model and avoid the lengthy and

computationally intensive training from scratch [44, 45]. 

Figure  1.7  illustrates  transfer  learning  of  a  pretrained model to solve the target task with a different geometry and

BCs  denoted  by  “*”.  We  refer  the  reader  to  comprehensive

overview  of  transfer  learning  with  PINNs  presented  in

reference [46]. 
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FIGURE 1.7  Transfer learning from a base task to a target task with different geometry and BC, indicated by “*”. 

1.7 EXAMPLES

We  present  three  test  cases:  1D  Burgers’  equation,  Allen–

Cahn  equation,  and  lid  driven  cavity  to  showcase  the

capability of various tools that we have discussed so far. In

all  the  test  cases,  we  used  Adam  optimiser,  with  Xavier

normal  weight  initialisation  and  hyperbolic  tangent

activation function. We sampled the initial set of collocation

points with Sobol sequence in all the test cases. 

1.7.1 1D BURGERS EQUATION

The 1D Burgers’ equation is a time-dependent problem with

details given in Eqn. 1.8. 

 ut +  uux − (0.01/ π) uxx = 0,  x ∈ [−1, 1],  t ∈ [0, 1], u(0,  x) = − sin( πx), 

 u( t, −1) =  u( t, 1) = 0

(1.8)

The  Burgers’  equation  is  a  second-order  nonlinear

convection-diffusion  problem  with  an  analytical  solution

available  in  reference  [47].  The  presence  of  a  nonlinear convection term  uux exhibits a discontinuity over time. 

We  employed  an  FNN  architecture,  i.e.,  a  baseline  PINN, 

and  trained  the  model  for  10k  iterations. Figure  1.8  shows the PINN-predicted solution and the absolute pointwise error

between the analytical solution and PINN-predicted solution. 
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FIGURE 1.8  Baseline PINN-predicted solution of 1D Burgers’ equation is shown on the top and absolute pointwise error between the analytical solution and

PINN-predicted solution is shown at the bottom. 

The  observed  discontinuity  in  the  solution  may  be

attributed  to  the  spectral  bias  inherent  to  FNNs,  which  we

have previously discussed. Thus, the network is not able to

capture  the  discontinuity  as  shown  in  Figure  1.8.  This limitation  is  reflected  in  the  computed  relative  L2  error  of

5.17%. 

1.7.2 1D ALLEN–CAHN EQUATION

The  Allen–Cahn  equation  is  used  to  model  the  process  of

phase  separation  and  is  characterised  by  a  diffusion  term

and  a  nonlinear  reaction  term  that  drives  the  system

towards  minimising  its  free  energy,  often  resulting  in  the

creation  of  interfaces  between  phases  over  time.  Consider

the Allen–Cahn equation along with periodic BC (Eqn. 1.9). 

 ut − 0.0001 uxx + 5 u 3 − 5 u = 0,  x ∈ [−1, 1],  t ∈ [0, 1], u(0,  x) =  x 2 cos( πx), 

 u( t, −1) =  u( t, 1), 

 ux( t, −1) =  ux( t, 1)

(1.9)

The  ground  truth  was  generated  using  spectral  Fourier

discretisation  and  fourth-order  explicit  Runge–Kutta  time

integrator. The solution  u( x,  t) evolves over time due to the combined  effects  of  diffusion  and  reaction.  The  diffusion

term −0.0001 uxx tends to smooth out variations in  u, while

the  cubic  nonlinear  reaction  term   u 3 − 5 u  can  create

multiple stable states over time. 

The  initial  condition   u(0,  x) =  x 2 cos( πx)  is  smooth  and contains  no  discontinuities.  However,  as  time  progresses, 

the solution develops sharp transitions between the phases

due to the nonlinear dynamics, which resembles a stiffness

in the numerical solution. 

Similar  to  the  1D  Burgers’  equation,  the  baseline  PINN

couldn’t capture the regions with stiff solution, as shown in

Figure 1.9, leading to a relative L2 error of 1.32%. However, with  the  application  of  Fourier  NN  the  PINN  was  able  to

[image: Image 12]

accurately capture the stiff regions in the solution, as shown

in Figure 1.10, thus reducing the relative L2 error to 0.06%. 

This  example  underscores  how  employing  a  high-

dimensional  training  dataset  can  effectively  mitigate  the

spectral bias. 

FIGURE 1.9  Baseline PINN-predicted solution of 1D Allen–Cahn equation is shown on the top and absolute pointwise error between the analytical solution

and PINN predicted solution is shown at the bottom. 

[image: Image 13]

FIGURE 1.10  Fourier NN-predicted solution of 1D Allen–Cahn equation is shown on the top and absolute pointwise error between the analytical solution

and PINN predicted solution is shown at the bottom side. 

1.7.3 LID-DRIVEN CAVITY

The lid-driven cavity is a well-known benchmark problem in

computational fluid dynamics. It consists of a square cavity

with  of  three  rigid  walls  having  no-slip  conditions  and  the

top  lid  moving  with  a  tangential  unit  velocity   u = 1.  The

lower left corner of the domain has a reference pressure  p of

0 as shown in Figure 1.11. 

[image: Image 14]

FIGURE 1.11  Geometry of the lid-driven cavity problem. 

The  lid-driven  cavity  uses  the  2D  steady-state

incompressible Navier–Stokes equations to model fluid flow, 

as detailed in Eqn. 1.10. 

∂ u

∂ + ∂ v = 0

 x

∂ y

 u ∂ u

)

∂ x +  v ∂ u

∂ y = − ∂ p

∂ x +  ν ( ∂2 u

∂ x 2 + ∂2 u

∂ y 2

 u ∂ v

)

∂ x +  v ∂ v

∂ y = − ∂ p

∂ y +  ν ( ∂2 v

∂ x 2 + ∂2 v

∂ y 2

(1.10)

where   u  and   v  are  velocities  in   x  and   y  direction,  p  is  the pressure,  ν is the kinematic viscosity, and  ρ is the density of

the fluid. Focusing on a Reynold’s number of 100 to simulate

laminar  flow  conditions,  we  set   ρ = 1  and   ν = 0.01.  The

numerical  solution  was  acquired  through  the  semi-implicit

[image: Image 15]
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method  for  pressure-linked  equation  (SIMPLE)  algorithm

[48], and Figure 1.12 shows this solution. 

FIGURE 1.12  Numerical solution for the lid-driven cavity problem obtained using the SIMPLE algorithm, showcasing the velocity field and pressure

distribution. 

The conflicting BCs on top left and top right corners result

in sharp discontinuities. Similar to the Burgers’ equation, the

baseline  PINN  struggles  to  accurately  capture  these

discontinuities due to spectral bias. This limitation is shown

in Figure 1.13. 

FIGURE 1.13  Baseline PINN-predicted solution of the lid-driven cavity. 

To  mitigate  the  issue  of  spectral  bias,  we  employed  the

DGM  architecture  [35],  coupled  with  self-adaptive  PINN’s

[image: Image 17]

weight  balancing  algorithm,  L-LAAF,  and  importance

sampling.  This  approach  resulted  in  a  reduction  of  the

relative  L2  error  by  nearly  50%  compared  to  the  baseline

PINN,  as  shown  in  Table  1.2. Figure  1.14  showcases  the solution  predicted  by  DGM,  highlighting  the  improved

accuracy. 

TABLE 1.2

Relative L2 Error (in %) for Lid-

Driven Cavity

 u

 v

 p

Baseline PINN

47.7

26.3

80.4

DGM architecture

26.8

18.3

41.3

DGM with three sub-domains

8.6

9.7

12.6

FIGURE 1.14  DGM-predicted solution of the lid-driven cavity. 

Following the DGM-based model, we integrated it with the

XPINN  framework,  dividing  the  domain  into  three  equally

spaced  sub-domains  along  the   x-direction.  This  division

resulted  in  three  fold  reduction  in  the  relative  L2  error

compared to the DGM-based model, as detailed in Table 1.2

and  Figure  1.15. This  shows  the  effectiveness  of  domain

[image: Image 18]

decomposition  technique  while  solving  problem  involving

discontinuities. 

FIGURE 1.15  DGM-predicted solution of the lid-driven cavity with three subdomains equally spaced along the  x-direction. 

1.8 CONCLUSIONS

PINNs  have  emerged  as  a  powerful  framework  for  solving

problems involving PDEs. By seamlessly integrating physical

laws  into  deep  learning  model,  they  allow  exploring  a  wide

range of scientific and engineering challenges. This chapter

has  provided  a  comprehensive  overview  of  PINNs,  covering

the core components, advancements in sampling strategies, 

multitask  loss  function  challenges,  adaptive  activation

functions,  and  the  issues  with  spectral  bias,  enhanced

accuracy  and  efficiency  of  PINNs.  Notably,  PINNs  offer

significant advantages over traditional numerical techniques

enabling:

The application of transfer learning to leverage insights

from solved problems on new and similar challenges. 

Efficiently  addressing  high-dimensional  parametric

problems. 

Simplified  domain  decomposition  for  stiff  problems, 

avoiding  complex  algorithms  required  for  mesh

generation. 

We  solved  the  1D  Burgers’  equation,  1D  Allen–Cahn

equation, and the lid-driven cavity problem to showcase the

various  improvements  over  the  baseline  PINN  that  allowed

for 

effective 

handling 

of 

discontinuities. 

These

improvements  mark  PINNs  as  a  powerful  tool  for  efficiently

solving complex problems. As we enhance PINNs further, we

believe  their  full  potential  is  yet  to  be  realised,  promising

more innovative solutions in the future. 
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2.1 INTRODUCTION

The  success  of  the  transition  from  a  world  of  uncontrolled

urbanization, energy poverty, and global warming to a world

of  sustainability  nowadays  depends  in  part  on  whether  the

optimization of energy systems is performed or not. Luckily, 

in  the  past  decades  the  global  awareness  for  climate

change  provided  a  quick  development  of  sustainable

technologies to manage such problems. Nevertheless, there

is  still  much  progress  to  be  made,  representing  a  breeding

ground  for  scientific  progress.  In  this  context,  the

optimization – seen as a process to improve a system from

its  initial  state  –  is  a  significant  tool  in  engineering  for

determining  the  best,  or  optimal,  value  for  the  decision

variables of a system. For various reasons, it is important to

optimize  processes/systems  so  that  a  desired  quantity, 

known  as  the  objective  function,  is  maximized,  or

minimized,  e.g.,  the  output,  profit,  productivity,  product

quality,  and  so  on,  to  be  maximized,  or  the  cost  per  item, 

investment,  energy  input,  and  so  on,  to  be  minimized. 

Therefore,  for  improved  performance,  such  engineering

devices  must  be  optimized  for  designs  that  are,  e.g.,  more

compact,  lighter,  with  fewer  frictional  losses,  and  have

increased  thermal  efficiency.  The  most  crucial  and  difficult

stage  in  this  process  is  typically  formulating  a  suitable

optimization  problem,  for  which  there  are  numerous

elements  that  need  to  be  defined,  i.e.,  system  boundaries, 

optimization  criteria,  decision  variables,  and  objective

functions. Depending on the application, all these elements

may notably differ. 

The choice of optimization techniques is a crucial decision, 

with profound implications for the success of a project. Two

prominent methodologies, gradient-free and gradient-based

techniques [1], have emerged as key players in this domain. 

Each  has  its  strengths  and  weaknesses,  and  the  selection

between  them  often  hinges  on  the  size  and  complexity  of

the  system  under  examination  and  the  desired  level  of

design  freedom.  This  chapter  offers  considerations

surrounding  the  use  of  these  optimization  techniques, 

emphasizing  the  preference  for  genetic  algorithms  (GA)  in

large-scale  systems  while  highlighting  the  advantages  of

gradient-based  methods  in  small-scale  systems  that

demand  high  degree  of  thermo-fluid-dynamic  precision. 

Figure 2.1 gives a visual idea of how – moving from large to

small  scales  –  the  component  complexity  increases  while

the  system  one  decreases.  When  dealing  with  micro-

channels  (tiny  fluid  passages),  attention  to  small  features

and  geometric  intricacies  becomes  crucial.  Micro-channels

are  commonly  used  for  cooling  purposes  in  electronics  or

microfluidic  devices.  In  contrast,  thermal  storage  systems

(e.g., large-scale water tanks) do not require the same level

of  detail.  The  reason  lies  in  the  scale:  micro-channels

operate  at  a  miniature  level,  where  even  minor  variations

significantly  impact  the  performance.  On  the  other  hand, 

large-scale  systems  can  tolerate  some  simplification  in

numerical simulations without compromising accuracy. 

[image: Image 19]

FIGURE 2.1  From small to large scale systems: a trade-off between system and component complexities. 

Large-scale  heat  transfer  systems,  e.g.,  industrial  heat

exchangers  and  power  plant  components,  present  typical

challenges.  These  systems  often  feature  complex

geometries  and  detailed  thermal  interactions,  making  it

impractical  to  go  in  depth  into  the  details  of  the  fluid

dynamics.  In  such  cases,  treating  the  system  as  an  energy

system  is  a  pragmatic  approach  and  GAs  are  preferred

choice.  These  algorithms  typically  find  a  comprehensive

solution  to  optimization  challenges,  albeit  with  a  slow

convergence  rate  –  due  to  the  high  number  of  decision

variables – just needing the assessment of cost functions. In

addition,  they  do  not  require  smoothness  in  the  objective

function.  GAs  focus  on  optimizing  parameters  that  directly

impact thermal/fluid performance. They excel in large-scale

systems  where  the  computational  burden  associated  with

detailed  computational  fluid  dynamics  (CFD)  simulations  or complex  numerical  formulations  is  prohibitive.  This

approach is more scalable, and it maintains a sharp focus on

energy  efficiency,  which  is  a  crucial  factor  in  large-scale

heat  transfer  applications.  GAs  offers  a  pragmatic  solution, 

optimizing  performance  without  an  exhaustive  exploration

of all possible configurations. 

In  contrast,  small-scale  heat  transfer  systems,  such  as

microfluidic  devices  or  compact  electronic  components, 

require precision and detail. Here, entering the field of fluid

dynamics is imperative to take advantage of the system full

of  thermo-fluid-dynamic  potential.  This  is  where  gradient-

based  techniques  –  particularly  for  shape  and  topology

optimization – become useful. 

Gradient-based  optimization  methods  move  towards  best

solution  within  the  influence  of  how  sensitive  the  objective

and  constraints  are  to  the  design  variables.  These

sensitivities  come  at  an  extra  computational  expense. 

Specifically,  the  adjoint  method  helps  calculate  these

sensitivities  with  a  cost  that  is  almost  unaffected  by  the

quantity of design parameters, achieved by solving a series

of  adjoint  equations  matching  the  number  of  objective  and

constraint  functions.  In  this  way,  they  enable  a  detailed

control  over  design  parameters,  allowing  to  optimize  fluid

pathways  and  heat  transfer  surfaces  with  precision.  The

approach  ensures  that  every  aspect  of  the  system  is  fine-

tuned to achieve maximum heat transfer efficiency. 

One of the key advantages of gradient-based techniques, 

especially if used for shape and topology optimization, is the

affordability  and  robustness.  One  can  explore  innovative

configurations  and  geometric  patterns,  optimizing  not  only

for energy efficiency but also for innovative form factors and

structural  considerations.  This  level  of  design  flexibility  is

invaluable,  particularly  in  small-scale  systems  where  every

element  must  be  meticulously  tuned  for  optimal

performance. 

The choice between GAs and gradient-based techniques in

heat transfer analysis is far from arbitrary, as it centers on

the  size  and  complexity  of  the  system  under  investigation. 

GAs,  with  their  energy-centric  approach,  are  the  preferred

choice  for  large-scale  systems,  where  the  emphasis  is  on

enhancing  heat  transfer  efficiency  without  deeply  getting

into  fluid  dynamics.  Ultimately,  the  selection  of  the  most

suitable optimization technique should be a well-considered

decision  that  aligns  with  the  specific  goals  and  constraints

of the heat transfer problem at hand. By carefully weighing

the scale, complexity, and design requirements, researchers

can  control  these  powerful  optimization  tools  to  achieve

superior  heat  transfer  performance  across  a  wide  range  of

applications. 

2.1.1 THE OPTIMIZATION PROBLEM

The  optimization  process  is  a  dynamic  and  iterative  path

that  grows  from  the  initial  problem  formulation  to  the

achievement  of  optimality  or  the  fulfillment  of  termination

criteria. It comprises various essential stages, each of which

contributes to refining the solutions in pursuit of  an optimal

outcome.  At  the  outset,  the  optimization  begins  with  a

comprehensive  problem  formulation  [2]. This  phase  entails the  explicit  delineation  of  design/decision  variables  and

objective  functions  that  necessitate  minimization  or

maximization,  coupled  with  the  assessment  of  constraints

that  must  be  satisfied.  If  the  optimization  does  not  include

constraints,  it  is  called   unconstrained  optimization.  Design

variables  are  also  explicitly  defined  with  their  permissible

ranges  during  this  critical  stage.  A  general  optimization

statement (minimization) can be formulated as follows:

minimize

 f( x)

 x

 c

subject to  i( x) ≤ 0  i = 1, ....,  n

 cj( x) = 0  j = 1, ....,  m

(2.1)

where  f( x) is the objective function, and  ci( x) and  cj( x) are the  constraints.  For  instance,  a  heat  exchanger  (HX)  is  a

system  through  which  heat  goes  from  one  fluid  stream  to

another  with  or  without  merging.  HX  are  used  to  facilitate

heat  transfer  in  a  myriad  industrial  processes,  from

refrigeration  to  power  generation.  Within  this  system  lies

the  heart  of  the  optimization  problem  challenge:  to

maximize 

heat 

transfer 

while 

minimizing 

energy

consumption  and  cost.  Every  journey  begins  with  a  map, 

and  in  optimization  that  map  takes  the  form  of  a  well-

defined  problem  statement.  The  task  is  to  schedule  the

complexities of heat exchanger design into a mathematical

framework  ready  for  optimization.  Consider  the  following

variables:

 Geometry: dimensions of the heat exchanger, including

length, diameter, and surface area. 

 Fluid  properties:  thermal  conductivity,  viscosity,  and

specific heat capacity of the fluids. 

 Operating  conditions:  inlet  temperatures,  flow  rates, 

and pressure differentials. 

 Material  selection:  choice  of  materials  for  heat

exchanger  construction,  impacting  both  performance

and cost. 

 Constraints: physical limitations, e.g., space availability, 

pressure ratings, and material compatibility. 

With  these  variables  in  hand,  the  objective  function  can

now be crafted. In the case of a heat exchanger, a suitable

but  not  unique  goal  should  be  to  maximize  heat  transfer

efficiency  while  minimizing  energy  consumption  and  cost. 

Here,  the  heat  transfer  rate  represents  the  amount  of  heat

exchanged  per  unit  time,  while  energy  consumption  and

cost  encompass  the  operational  and  capital  expenses

associated  with  the  heat  exchanger,  respectively.  These

contrasting  objectives  clearly  define  the  need  for  a  multi-

objective  approach  that  aims  at  balancing  this  trade-off, 

offering a set of candidate solutions to be selected. The way
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performance  indicators  are  linked  to  design  variables  is

matter of the simulation model: it can be a physically based

model, software, or a surrogate model. Figure 2.2 shows this

classification  with  reference  to  a  common  case,  i.e.,  the

heat rate as a function of volumetric heat rate. 

FIGURE 2.2  Simulations model: the link between variables and objectives. 

Example of heat rate as a function of volumetric heat rate. 

Physically  based  modeling  represents  a  system  that  uses

fundamental physical principles and equations. This method

offers  a  detailed  understanding  of  the  system’s  behavior

and  relationships  between  variables.  Physically  based

models  are  advantageous  for  accurate  predictions  within

their  validity  range  and  for  gaining  insights  into  physical

phenomena.  Nonetheless,  they  may  be  impractical  for

highly  nonlinear  or  complex  systems  due  to  their

computational 

demands 

and 

need 

for 

extensive

experimental validation. Software model, on the other hand, 

often  requires  complex  mathematical  equations  or

simulations  –  as  it  performs  the  resolution  of  differential

equations  by  means  of  numerical  schemes  –  making  it

computationally  intensive  and  time-consuming.  Surrogate

modeling  offers  a  simplified  approximation  of  the  system, 

typically  made  with  statistical  techniques  or  machine

learning algorithms. Surrogate models are built on the basis

of  input-output  data  from  the  original  system  and  can

capture  complex  relationships  without  explicitly  modeling

underlying 

physical 

principles. 

They 

provide 

a

computationally  efficient  alternative  to  physically  based

models,  allowing  for  rapid  evaluation  and  faster

optimization. However, surrogate models rely heavily on the

quality  and  representativeness  of  training  data  and  may

lack  accuracy  outside  the  range  of  the  training  data  or  in

regions of high uncertainty. 

2.1.2 OPTIMIZATION FRAMEWORK

The  definition  of  the  model  is  crucial  for  the  subsequent

selection of optimization technique: going back to the heat

exchanger,  using  a  physically  based  model  with  a  CFD

approach  with  the  aim  of  changing  its  design  to  increase

thermal  performance,  a  challenge  emerges.  While

computational  simulation  offers  exceptional  capabilities  for

design  exploration,  achieving  the  best  design  necessitates

the  integration  of  automated  optimization  procedures. 

These  tools  can  drive  innovation  and  create  advanced

designs,  but  at  what  cost?  From  classical  methods  such  as

gradient descent [3] to modern metaheuristics such as GAs

[4],  a  wide  spectrum  of  choices  appears  as  possible  tools

[1].  Opting  for  gradient-free  techniques  could  lead  to  an optimal solution, but with prohibitive computation time, just

as  a  gradient-based  approach  could  quickly  lead  to  a  local

optimum. So, which one to choose? 

As  previously  specified,  classical  optimization  methods, 

rooted  in  the  calculus,  offer  a  solid  foundation  for  tackling

complex  problems.  Gradient-based  techniques  such  as

gradient  descent  and  Newton’s  method  allow  to  solve  the

problem, while trying – without always succeeding – to avoid

local  optima.  However,  their  reliance  on  smooth,  convex

functions  may  prove  inadequate  on  the  difficult  ground  of

real-world optimization problems. 

In  contrast,  metaheuristic  algorithms  offer  multiple

solutions, from principles of evolution, swarm behavior, and

simulated annealing to explore the optimization possibilities. 

GAs, for instance, simulate the process of natural selection, 

breeding  successive  generations  of  solutions  until  an

optimal  specimen  emerges.  Similarly,  particle  swarm

optimization  (PSO)  exploits  the  collective  intelligence  of  a

swarm of particles to converge on promising regions of the

search  space.  Following  the  problem  formulation  –  which  is

described in Figure 2.3 – the optimization loop proceeds with an  initialization  step.  Here,  a  set  of  candidate  solutions  is
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introduced  to  the  process.  These  initial  solutions  can  be

generated  randomly  or  based  on  prior  domain  knowledge, 

setting  the  stage  for  subsequent  iterations.  In  the  heart  of

the  optimization  loop  lies  the  evaluation  of  the  objective

function  and  the  associated  constraints.  In  each  iteration, 

the  objective  function  is  scrutinized  for  each  candidate

solution, along with any pertinent constraint functions. 

FIGURE 2.3  General scheme of a multi-objective optimization. 

The  objective  function  serves  as  the  benchmark  for

assessing  the  performance  of  each  solution  in  its  quest  to

achieve  the  desired  goal,  while  constraint  functions

determine  whether  the  solution  meets  the  problem’s

limitations  [5].  Once  the  objective  and  constraint evaluations are completed, the optimality of each candidate

solution  is  considered.  At  this  point,  the  objective  function

values  and  the  degree  of  constraint  violations,  if  any,  are

considered.  Two  possible  scenarios  emerge:  the  feasible

solution,  wherein  all  constraints  are  met  and  the  desired

objective  is  reached;  or  the  infeasible  or  suboptimal

solution,  which  fails  to  fulfill  either  or  both  criteria.  In  the

latter  case,  the  optimization  process  persists  in  pursuit  of

better  solutions.  The  optimization  algorithm  employs

various  strategies  and  methodologies  to  recalibrate

candidate  solutions  that  fall  short  in  terms  of  feasibility  or

optimality.  These  optimization  techniques,  ranging  from

gradient-based methods to stochastic methods, such as GAs

or simulated annealing, guide the search towards improving

the  objective  function  while  adhering  to  the  constraints. 

Following each iteration, a convergence check arises, aimed

at  determining  whether  the  optimization  algorithm  is

progressing  towards  an  optimal  solution.  The  assessment

depends  on  factors  such  as  changes  in  objective  function

values, constraint violation reductions, or the attainment of

predefined  tolerance  levels.  The  optimization  process

culminates  when  convergence  is  achieved  or  when

predefined  termination  criteria  are  met.  These  termination

criteria  encompass  parameters  such  as  reaching  a

maximum  number  of  iterations,  adhering  to  a  time

constraint,  or  securing  a  satisfactory  solution  within  an

established  tolerance  range.  Once  the  criteria  are  met,  the
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optimization  loop  concludes  and  the  best-found  solution  is

unveiled. 

2.1.3 OPTIMIZATION CHALLENGES: NAVIGATING LOCAL

MINIMA/MAXIMA

One  of  the  foremost  challenges  encountered  in  the  field  of

optimization  is  the  presence  of  local  minima  and  maxima

[6]. This issue adds a layer of complexity to the optimization process  and  underscores  the  importance  of  a  systematic

and thoughtful approach to problem-solving. 

A local minimum refers to a point within the search space

of  an  optimization  problem  where  the  objective  function

reaches  its  lowest  value  within  a  small  neighborhood  (see

Figure 2.4). 

FIGURE 2.4  Example of local minimum for a 2D variables function. 

It  indicates  a  solution  that  outperforms  nearby  solutions but  may  not  necessarily  be  the  best  solution  in  the  entire

search  space,  akin  to  a  dip  or  valley  in  the  function’s

landscape.  Gradients,  which  are  vectors  indicating  the

direction  of  steepest  ascent  or  descent  of  a  function  at  a

specific point, play a crucial role in locating local optima in

optimization.  Gradient  descent,  a  commonly  used

optimization  algorithm,  uses  gradients  to  minimize  the


objective  function  iteratively.  Starting  with  an  initial  guess

for the parameters, the algorithm calculates the gradient of

the  objective  function  with  respect  to  these  parameters  at

the  current  point  (see  Figure  2.5).  The  negative  gradient points  in  the  direction  of  steepest  decrease,  enabling

parameter  adjustments  to  minimize  the  function.  This

process  continues  until  convergence  to  a  local  minimum. 

While gradients are fundamental for finding local minima, a

potential drawback is that if the optimization starts with an

initial  guess  too  close  to  a  local  minimum,  it  may  get

trapped without exploring the broader parameter space (see

Figure  2.5).  Consequently,  a  better  global  minimum  or

alternate local minima may remain undiscovered. 
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FIGURE 2.5  Gradient descendent search: local minima. 

To  counteract  this  issue  and  enhance  the  likelihood  of

discovering  the  global  minimum  or  superior  local  minima, 

employing  multiple  starting  points  is  a  recommended

strategy  [1].  Randomly  initializing  the  optimization

algorithm  with  various  initial  guesses  promotes  the

exploration of different regions within the parameter space. 

Each  of  these  starting  points  may  lead  to  distinct  local

minima  or  the  global  minimum.  After  optimizing  the

objective  function  from  each  starting  point,  ensemble

methods  can  be  employed  to  aggregate  the  results.  This

may  involve  selecting  the  best  solution  from  all  runs  or creating  an  ensemble  of  models  trained  on  the  solutions

obtained  from  different  starting  points.  This  approach

enhances  the  robustness  of  the  optimization  process, 

diminishing  the  risk  of  converging  to  suboptimal  local

minima. 

2.1.4 GRADIENT-FREE OPTIMIZATION

Gradient-free  optimization,  also  known  as  derivative-free

optimization  (DFO),  is  a  class  of  optimization  techniques

used to find the minimum or maximum of a function without

relying  on  its  gradient  information  [7].  Traditional

optimization  methods  often  require  knowledge  of  the

function’s  gradient  (a  vector  of  partial  derivatives  with

respect  to  each  input  variable)  to  guide  the  search  for  the

optimal  solution.  However,  gradient-free  optimization

methods do not make this assumption and are designed to

work  with  functions  that  may  be  non-smooth,  noisy,  or

computationally  expensive  to  evaluate.  In  gradient-free

optimization,  the  primary  goal  is  to  find  the  optimal  input

values  that  minimize  or  maximize  the  objective  function, 

typically  by  iteratively  exploring  the  input  space  and

adjusting  the  input  values.  These  methods  rely  on  various

strategies,  such  as  sampling  points,  approximating  the

function  locally,  or  using  heuristics  to  make  informed

decisions  about  where  to  search  for  the  optimum.  Among

the  several  types  of  DFO  algorithms  [7]  the  following  are discussed here:

 Random  search:  it  is  a  straightforward  method  that randomly  samples  input  values  from  the  search  space

and  evaluates  the  objective  function.  Over  time,  it

accumulates  information  about  the  function’s  behavior

and refines the search [8]. 

 Nelder–Mead algorithm: it is also known as the downhill

simplex  method,  and  is  an  iterative  optimization

method  that  builds  a  simplex  (a  geometrical  shape)  in

the  input  space.  It  then  contracts,  expands,  or  reflects

the simplex to explore the space and converge towards

an optimal solution [9]. 

 Simulated  annealing:  it  is  a  probabilistic  optimization

technique  inspired  by  the  annealing  process  in

metallurgy.  It  explores  the  input  space  by  accepting

moves that reduce the objective function value, even if

they  occasionally  increase  it.  Over  time,  it  gradually

decreases  the  acceptance  probability,  allowing  it  to

escape local optima [10]. 

 Genetic  algorithms:  these  are  optimization  methods

inspired by the process of natural selection. They keep a

population of candidate solutions and iteratively evolve

them through selection, crossover (recombination), and

mutation  operations.  GAs  can  handle  both  continuous

and discrete search spaces [11]. 

 Particle  swarm  optimization:  it  is  a  population-based

optimization algorithm inspired by the social behavior of

birds  or  fish.  Particles  in  the  population  explore  the

search  space,  adjusting  their  positions  based  on  their
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own experience and the experiences of their neighbors

[12]. 

 Bayesian  optimization:  it  is  a  probabilistic  optimization

approach  that  builds  a  surrogate  model  (typically  a

Gaussian  process)  to  approximate  the  objective

function.  It  iteratively  selects  points  in  the  input  space

based  on  the  surrogate  model’s  uncertainty  to  balance

exploration and exploitation [13]. 

These gradient-free optimization methods are valuable in

scenarios  where  the  gradient  of  the  objective  function  is

unknown,  expensive  to  compute,  or  noisy.  They  have

applications  in  various  fields,  including  machine  learning

hyperparameter  tuning,  engineering  design,  finance,  and

simulations.  A  resume  of  yearly  scientific  contributions  on

heat  transfer-related  optimization  problem  done  with

different  approach  and  found  via  Web  of  Science™  is

reported in Figure 2.6. 

FIGURE 2.6  Comparison between genetic algorithm and particle swarm optimization. Citations (bottom panel) and publications (top panel). (Source:

Web of Science™). 

The  choice  of  method  depends  on  the  problem’s

characteristics  and  computational  resources  available. 

However,  the  overall  cost  of  gradient-free  optimization  is

sensitive  to  the  cost  of  the  function  evaluations  because

they  require  many  iterations  for  convergence,  and  the

number  of  iterations  scales  poorly  with  the  number  of

design variables. In the following section, the primary focus

or  emphasis  is  placed  on  the  GA  among  the  various

discussed. 

2.1.5 MULTI-OBJECTIVE OPTIMIZATION

Multi-objective  optimization  (MOO)  [14]  is  a  powerful

mathematical  and  computational  technique  that  addresses

problems involving multiple, often conflicting, objectives. In

the  context  of  engineering  and  heat  transfer,  MOO  is

indispensable  for  finding  optimal  solutions  that  balance

various competing goals. This chapter explores the concept

of  MOO,  with  a  focus  on  its  relevance  to  heat  transfer

problems. In addition, it introduces the concept of the Pareto

front,  which  is  a  fundamental  concept  in  MOO,  and

highlights  the  significance  of  MOO  in  addressing  multi-

physics problems in heat transfer. 

In heat transfer applications, we often encounter problems

where  multiple  objectives  need  to  be  considered

simultaneously. Consider a heat sink design as an example. 

A  generic  task  may  want  to  simultaneously  optimize  the

base  temperature  of  the  heat  sink  (to  ensure  efficient

cooling)  and  minimize  its  weight  (to  reduce  material  costs

and  improve  portability).  These  objectives  are  typically

conflicting;  decreasing  the  base  temperature  may  require

adding  more  material,  which  increases  weight.  Therefore, 

traditional  single-objective  optimization  approaches  are

inadequate,  as  they  prioritize  one  goal  at  the  expense  of

others.  Another  common  scenario  is  the  trade-off  between

pressure  drop  and  thermal  resistance  in  a  heat

exchanger/microchannels  design.  Reducing  pressure  drop

may  require  using  larger  flow  channels,  which  in  turn  can

increase  thermal  resistance.  These  competing  objectives

must be considered together to find an optimal design that

suits  the  specific  requirements  of  the  application.  In  a

general  view,  MOO  is  particularly  crucial  in  scenarios

involving  multi-physics  problems,  which  regards  the

interplay of multiple physical phenomena, such as fluid flow, 

heat conduction, and radiation, among others. By employing

MOO  techniques,  it  becomes  possible  to  explore  a  vast

solution space. 

2.1.6 PARETO FRONT/SURFACE

Central  to  MOO  is  the  concept  of  the  Pareto  front/surface. 

The  Pareto  front  represents  the  set  of  optimal  solutions, 

where  no  single  solution  is  superior  to  another  in  all

objectives  [15].  Instead,  each  solution  on  the  Pareto  front

represents  a  trade-off  between  the  conflicting  objectives. 

The  term  front  is  used  when  referring  to  a  bi-objective

analysis.  Conversely,  the  term  surface  is  used  when  three

objective  functions  are  involved  (Figure  2.7).  Advanced visualization  techniques  ensure  the  identification  of  the

dominance  relationship  between  solutions  when  optimizing

with more than three objective functions [15]. Once a Pareto front has been defined, the solution space can be divided in

two groups:

 Dominated  solutions:  In  an  MOO  problem,  a  solution  is

said to be dominant if there exists another solution that

is at least as good in all objectives and strictly better in

at  least  one  objective.  Dominated  solutions  are  not  on

the  Pareto  front  and  can  be  “virtually”  eliminated. 

Dominated solutions are evidenced in red in Figure 2.7. 

 Non-dominated  Solutions:  Solutions  that  are  not

dominated  by  any  other  solutions  are  considered  non-

dominated  and  lie  on  the  Pareto  front.  These  are  the

optimal  solutions  that  provide  the  best  trade-offs

between  the  competing  objectives  that  are  highlighted

in blue in Figure 2.7. 
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FIGURE 2.7  Pareto front for a two-objective optimization (left). Pareto surface for a three-objective optimization. 

2.2 GENETIC ALGORITHMS

The  classic  GA  operates  with  a  collection  of  candidate

solutions  that  serve  as  representations  for  potential

solutions to the optimization problem at hand. Each solution

represents a possible candidate for achieving an optimum in

the  optimization  problem.  The  chosen  representation  of

these  solutions  plays  a  pivotal  role  because  it  dictates  the

selection  of  genetic  operators.  These  representations

typically  take  the  form  of  lists  of  values  and  are  generally

founded  on  sets  of  symbols.  When  these  representations

involve  continuous  values,  they  are  referred  to  as  vectors, 

and  when  composed  of  binary  digits,  they  are  termed  bit

strings.  In  the  case  of  combinatorial  problems,  solutions

often  consist  of  symbols  that  are  present  within  a  list.  For

instance,  consider  the  representation  of  a  path  for  solving

the  traveling  salesman  problem.  Genetic  operators  come

into  play  by  generating  fresh  solutions  within  the  selected

representation  and  facilitating  exploration  within  the

solution  space.  The  encoding  of  a  solution  as  a

[image: Image 26]

representation,  which  undergoes  the  evolutionary  process, 

is commonly known as the genotype or chromosome (Figure

2.8). 

FIGURE 2.8  Individual encoding. 

2.2.1 GA WORKING PRINCIPLES

The  idea  is  to  create  the  next  generation  (and  the

successive ones) in this way:

Best individuals from the previous generation. 

Individuals  resulting  from  the  crossover  of  individuals

with average performance. 

Individuals  resulting  from  the  mutation  of  individuals

with mediocre performance. 

The  idea  of  the  GA  was  initially  conceived  by  Turing  in

1950  [16], who  recognized  the  potential  of  possible

optimization based on bio-evolutionary algorithms. The first

successful  implementation  of  a  GA  was  carried  out  by

Holland  in  1969  [17], and  in  the  following  years,  efforts began  to  be  made  towards  the  integration  of  enhanced

mechanics  into  the  typical  GA.  Each  individual  is

[image: Image 27]

characterized  by  a  specific  set  of  parameters  (finite  values

of variables). 

For  instance,  if  one  were  to  optimize  a  heat  exchanger, 

the  relevant  design  variables  could  be  the  material  of  the

tubes, the diameter of the tubes, the number of tubes, etc. 

Each individual needs encoding in order to be evaluated and

to  enable  the  crossover  and  mutation  functions  to  occur. 

One  possible  encoding  is   direct  vector  encoding  where  the

individual  is  identified  through  a  vector  containing  the

values  of  the  variables  as  they  are.  An  example  of  direct

vector encoding is shown in Figure 2.9. 

FIGURE 2.9  Example of direct encoding. 

This  method  has  the  advantage  of  being  direct  and

intuitive,  but  canonical  operations  such  as  crossover  and

mutation may be challenging to implement in the algorithm

using  this  type  of  encoding.  Therefore,  binary  vector

encoding [18] is preferred, where each variable is converted into  binary  format  based  on  the  number  of  values  the

variable  can  take.  For  instance,  if  the  tube  diameter  can

assume four values (0.05, 0.08, 0.01, 0.02), two bits will be

needed to represent the individual. If there are eight values, 

three  bits  will  be  required.  In  general,  the  number  of  bits

required is equal to  log 2  n, where  n is the number of values a single variable can assume. 

[image: Image 28]

The individual binary value associated with the individual

real  value  will  be  assigned  based  on  cardinality.  In  other

words, considering this set of values (0.05, 0.08, 0.01, 0.02), 

the  0.05  value  will  be  associated  with  the  binary  value  00, 

the  value  0.08  with  the  value  01,  and  so  on.  This  method, 

even  though  less  intuitive  and  direct  in  implementation, 

offers  significant  advantages  in  facilitating  crossover  and

mutation operations. Furthermore, it allows for the encoding

of “non-numerical” values. For instance, using direct vector

encoding does not allow to directly insert the material of the

heat exchanger tubes (what numerical value would it take?), 

but  one  would  need  to  insert  all  its  properties  instead. 

However, through binary encoding, one can assign a binary

number to each tube material, providing greater flexibility in

optimization. 

Figure  2.10  shows  the  classic  GA  framework,  divided  in multiple  steps,  that  are  now  discussed  in  the  following

sections. 

FIGURE 2.10  GA framework. 

2.2.2 INITIAL POPULATION

In  a  GA  the  initial  population  is  a  crucial  starting  point  for

the  evolutionary  process.  It  comprises  of  individual

solutions,  represented  as  chromosomes,  which  hold

potential  answers  to  the  optimization  problem  being

addressed. Here is an overview of how the initial population

is  typically  established  and  selected  in  a  GA.  First,  one

needs to decide on the size of the initial population, which is

a  user-defined  parameter.  This  size  can  vary  depending  on

the  problem’s  complexity.  A  larger  population  size  can

enhance  diversity  but  might  also  increase  computational

requirements. The order of magnitude of the population size

has to be one order of magnitude higher than the number of

design variables. 

The next choice is on how to represent potential solutions

as 

chromosomes. 

As 

aforementioned, 

common

representations  include  binary  strings,  integer  arrays,  real-

valued vectors, or custom structures tailored to the specific

problem domain. To create the initial population, individuals

(chromosomes)  can  be  generated   randomly.  Within  each

chromosome,  values  are  chosen  randomly  from  the

problem’s search space. This randomization helps ensure a

diverse starting population. 

Depending on the nature of the problem and optimization

goals,  various  strategies  can  be  employed  to  create  the

initial  population.  These  strategies  may  include  completely

random  selections  (uniform  random),  using  domain-specific

knowledge  or  heuristics  (heuristic  initialization),  or  starting

with  promising  individuals  from  previous  runs  or  expert

guidance (seed population). In this frame, a suitable option

to  create  an  initial  population  for  GA  is  Latin  hypercube

sampling (LHS). It was initially developed to create a diverse

distribution  of  parameter  values  from  a  multidimensional

distribution.  It  achieves  this  goal  by  ensuring  that  the

sample points are arranged in a Latin square, meaning that

each  row  and  column  contain  only  one  sample.  The

versatility  of  LHS  becomes  evident  when  applied  to

problems involving a multitude of dimensions. It generalizes

the  Latin  square  concept  to  handle  an  arbitrary  number  of

dimensions  effectively.  When  LHS  is  used  to  sample  a

function  with   k  variables,  it  divides  the  range  of  each

variable  into   n  equally  probable  intervals.  Subsequently,  it

selects   n  sample  points  in  such  a  way  that  a  Latin

hypercube  is  constructed.  One  of  the  key  advantages  of

Latin  hypercube  sampling  is  its  ability  to  provide  more

efficient  estimates  of  desired  parameters  compared  to

simple  Monte  Carlo  sampling  methods.  This  efficiency

derives  from  the  careful  arrangement  of  sample  points, 

which  ensures  that  the  exploration  of  the  parameter  space

is  systematic,  diverse,  and  representative  (as  in  Figure

2.11). 
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FIGURE 2.11  Latin hypercube sampling principle. 

2.2.3 SELECTION

Among  the  various  techniques  used  to  establish  the

selection  process,  one  of  the  most  widespread  is  the

 tournament  selection.  It  is  designed  to  emulate  the

competitive  dynamics  of  a  tournament  setting.  The

following  is  an  outline  of  its  operation.  Initially,  the

tournament  size  is  set  as  a  user-defined  parameter.  This

value  dictates  how  many  individuals  participate  in  each

tournament  round,  offering  flexibility  to  adapt  to  the

problem’s  nature  and  desired  selection  intensity.  In  each

round  of  selection,  a  random  subset  of  the  population, 

comprising  of  the  specified  tournament  size,  is  assembled. 

This  grouping,  termed  a  “tournament,”  ensures  that  each

individual  is  involved  once  and  only  once.  Within  each

tournament,  individuals  compete  based  on  their  fitness

scores. The individual with the highest fitness score (in the

context of maximizing fitness) or the lowest fitness score (in

minimizing  fitness)  is  declared  the  tournament  winner.  The

selected tournament champion assumes the role of a parent

for the subsequent generation. This preference leans toward
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individuals  with  higher  fitness  scores,  aligning  with  the

fundamental principle of “survival of the fittest.” 

This  iterative  process  repeats  to  choose  multiple  parents

for  reproduction,  with  the  key  point  that  each  tournament

operates  independently.  Consequently,  the  same  individual

may participate in multiple tournaments, offering numerous

opportunities  for  selection.  Tournament  selection’s  appeal

lies in its capacity to strike a balance between diversity and

selection  pressure  while  introducing  an  element  of

randomness  into  the  selection  process.  This  stochastic

nature helps prevent premature convergence and promotes

exploration of a broader solution space within GAs. 

2.2.4 CROSSOVER

The  crossover  operation  involves  the  interaction  between

two individuals (parents) to generate a new individual (kid)

with  characteristics  belonging  to  both  parents.  An  example

of crossover using binary vector encoding is shown in Figure

2.12. 

FIGURE 2.12  Example of crossover. 

The  two  parents  can  combine  to  generate  a  child

characterized by the first variable being the same as that of

parent 1 and the second variable being the same as that of
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parent  2,  and  vice  versa.  In  addition,  there  are  also

combinations where crossover doesn’t actually occur, so the

kid will be identical to one of the two parents. 

2.2.5 EXPLORING DESIGN SPACE: MUTATION

In  GAs  the  mutation  process  is  a  fundamental  genetic

operator  that  introduces  small,  random  changes  into  the

genetic information of individuals (chromosomes) within the

population. These changes help diversify the population and

explore new regions of the solution space. 

During  mutation,  a  random  subset  of  genes  within  an

individual’s  chromosome  is  selected.  Then,  these  selected

genes undergo random alterations (Figure 2.13). 

FIGURE 2.13  Example of mutation. 

The  nature  and  extent  of  these  alterations,  such  as

flipping  a  bit  in  a  binary  representation  or  adding  a  small

random  value  in  a  real-valued  representation,  are

determined  by  the  mutation  rate,  which  is  a  user-defined

parameter.  Mutation  serves  as  a  vital  source  of  genetic

diversity in GAs, complementing other genetic operators like

crossover.  It  helps  prevent  premature  convergence  by

occasionally  introducing  novel  genetic  material  into  the

population,  enabling  the  algorithm  to  discover  potentially

better  solutions.  The  mutation  rate  can  be  adjusted  to

control the intensity of this diversification, striking a balance between exploration and exploitation. 

2.2.6 ELITISM

Elitism  is  a  strategy  that  ensures  that  the  best-performing

individuals  from  one  generation  are  preserved  and  carried

over to the next generation without undergoing any genetic

operations like crossover or mutation. These top-performing

individuals  are  often  referred  to  as  “elites.”  By  preserving

elites,  GA  aims  to  maintain  the  best  solutions  found  so  far

and prevent them from being lost due to genetic operations

that  may  introduce  randomness  or  errors.  Elitism  helps

improve  the  convergence  and  overall  performance  of  a  GA

by  consistently  keeping  the  best  individuals  in  the

population. 

2.2.7 CONVERGENCE

The idea of the algorithm is to let the best individuals, those

with a higher or lower objective function value depending on

whether the problem is about maximization or minimization, 

“survive.” These individuals will either be taken as they are, 

or  recombined  with  other  individuals  through  crossover,  to

form the next generation. However, this logic could present

a drawback, which is the convergence towards local optima. 

Within  the  context  of  heat  exchangers,  if  the  best

individuals  all  shared  a  common  characteristic,  i.e.,  tube

material,  for  instance,  aluminum,  only  that  characteristic

would continue. If there were combinations of variables that

could  make  steel  or  copper  heat  exchangers  efficient  as well, they wouldn’t be explored. Consequently, the inclusion

of  mutation  within  the  algorithm  is  of  fundamental

importance  to  increase  its  variability  and  make  the

optimization as global as possible. 

As an example, the steps leading to the creation of a new

generation from the previous one will be shown. In this case, 

the  chosen  population  consists  of  five  individuals,  the

problem requires the minimization of the objective function

value,  and  the  new  generation  will  comprise  40%  elite

individuals,  40%  individuals  derived  from  crossover,  and

20%  mutated  individuals.  The  evaluation  of  the  objective

function  is  carried  out  using  a  fitness  function,  which  is

responsible  for  taking  the  parameters  that  make  up  the

individual  and  evaluating  it.  After  calculating  the  value  of

the  objective  function,  a  ranking  operation  must  be

performed to order the population. The next generation will

then  consist  of  the  best  individuals  from  the  previous

generation  as  they  are,  the  intermediate  individuals  will

undergo  crossover,  and  the  last  individuals  will  undergo

mutation.  This  is  just  one  of  many  approaches.  It  is  also

possible  to  have  only  one  individual  undergoing  mutation

and three elite individuals, for example. Finally, a sketch of

how a GA evolves is represented in Figure 2.14. 
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FIGURE 2.14  Sketch of GA evolution. 

2.3 CASE STUDIES

This  section  is  dedicated  to  exploring  the  multifaceted

branch  of  MOO  in  heat  transfer  problems,  with  a  specific

focus  on  relevant  case  studies  about  heat  sinks,  heat

exchangers,  porous  channels,  and  more.  In  the  pursuit  of

enhancing  efficiency,  reducing  costs,  and  mitigating

environmental  impacts,  researchers  face  the  challenge  of

optimizing  heat  transfer  processes  while  concurrently

addressing  multiple  objectives.  This  chapter  aims  to  guide

readers  in  the  landscape  of  case  studies,  to  explain  useful

insights  and  major  complexities  that  derive  from

optimization  approaches.  From  the  explanation  of

theoretical  frameworks  to  the  application  of  cutting-edge

optimization  algorithms,  each  case  study  offers  a  unique

vantage  point  from  which  insights  collected  provide  the

challenges  and  opportunities  inherent  in  optimizing  heat

transfer  processes  across  diverse  objectives. Table  2.1

outlines  –  depending  on  the  case  study  –  the  involved

design  variables,  relevant  constraints,  objective  functions, 

and predictive model used. 

TABLE 2.1

Case Studies of Multi-Objective Optimization Problems

Solved with Gradient-Free Tools. Only the Work from

Shridan et al. [13] Uses PSOA Instead of GA for the Optimization. Predictive Models Labelled with Direct

Means that a CFD Solver Is Directly Coupled with the

Optimized. In All the Other Cases, Regression Models

Have Been Derived from CFD Computations. Variables

to Be Minimized Have Been Labelled with the Minus

Sign. 

Case

Studi

Design

Relevant

Objective

Predictive

es

Reference

Variables

Constraint

Function

Model

 Heat sink (HS)

Air

Bianco et al. 

 e, PPI, 

Plate size

[ Q, − L]

Direct

[20]

 uin, tf, 

 Nf, d, H

Liquid

Radmard et

 tf, sf, H(y)

 Tw,  Pmax

[ Rth, 

ANN/RA

al. [21]

− DP]

PCM

Bianco et al. 

 e, PPI, tf, 

Plate size

[ topt, − €]

Direct

[22]

 N, H

Sridharan et

 tf, H, D, d, 

Device and

al. [23]

 N

fins

volumes

Fins

[ tch, − tdis]

ANN

volum

Maleki et al. 

 N, H, Vf*

Plate size

[ Ech, 

GMDH

es

[24]

− tch]

Srikanth et

 L, H

Device and

al. [25]

fins

volume

Fins

[ t*ch, − t*dis]

ANN

volum

Case

Studi

Design

Relevant

Objective

Predictive

es

Reference

Variables

Constraint

Function

Model

e

 Thermal energy storage (TES)

Sensible

Li et al. [26]

 dt,i*, dt,j*, 

TES height

[− d, − A]

SVM

 dt,i –

 dt,j

Liu et al. [27]

 Nf, Nt, 

TES sizes

[ tch,  Ech, 

RSM

 Tin, uin, 

 h]

 Tini

Latent

Bianco et al. 

 uin, Tin

TES sizes

[ tch, 

Direct

[28]

− tdis]

Bianco et al. 

 dt, Lt, D

PCM

[ A,  Dt]

Direct

[28]

amount

Bianco et al. 

 dext, uin, 

Max. 

[29]

 pf, t, 

velocity, 

 Tmelt

Time

[ Q, -€, − DP]

Direct

interv

al

 Heat exchanger (HX)

Plate fin

Liu et al. [30]

 Hf, pf, sf, 

HX sizes

[ j, − f]

KRI

 tf

Plate fin

Han et al. 

 tf,i, tf,j, 

HX sizes

[ Q, − DP]

KRI

[31]

 pf,i, pf,j, 

 qf

Shell

Daneshparvar

 uin, qf, pf

HX size

[ h, − DP]

RA

and

et al. [32]

tube

Shell

Wen et al. 

 Hf*, qf, 

HX size

[ h, − DP]

RSM

and

[33]

 uin

tube

Case

Studi

Design

Relevant

Objective

Predictive

es

Reference

Variables

Constraint

Function

Model

Tubular

Zhang et al. 

 Re, dt*

HX size

[ h, − DP]

ANN

[34]

 Porous channel (PC)

Channel

Shi et al. [35]

 PPI(y), 

Channel

[ Nu, − f]

KRI

 e(y)

size, e, 

PPI

Channel

Mauro et al. 

 PPI(y), 

Channel

[ Nu, − f]

Direct

[36]

 e(y), H*, 

size

 Re, k*

Tube

Ge et al. [37]

 e(y), Da, 

[ Nu, − f]

Direct

 H1, H2

Tube

Keykhah et

 e(y), Da, 

[ Nu, − f]

Direct

al. [38]

 H1, H2

 Abbreviations: ANN, artificial neural network; GMDH, grouped method of

data  handling;  KRI,  kriging  model;  RA,  regression  analysis;  RSM, 

response surface model; SVM, support vector machine. 

2.3.1 HEAT SINK

The  challenges  in  thermal  management  of  electronic

devices,  particularly  high-performance  chips,  are  nowadays

no longer negligible due to the significant increase in power

density  and  non-uniform  power  dissipation.  Old  projections

for  maximum  power  dissipation  and  heat  flux  from  high-

performance  microprocessor  chips  were  expected  to  reach

about  360  W  and  190  W/cm2,  respectively  by  2020  [19]. 

Nowadays  heat  flux  generation  of  many  high-performance

electronic  devices  already  exceed  these  projections.  In

addition,  the  trend  of  miniaturization  and  increasing

transistor  density  leads  to  high  power  densities  and

operating temperatures in electronic devices. The impact of

the  classical  Moore’s  law  progression  toward  shrinking

feature  size,  increasing  transistor  density,  faster  circuit

speeds,  and  higher  chip  performance,  emphasizes  that

while  the  trend  of  smaller  and  faster  electronic  devices  is

desirable,  it  also  leads  to  high  power  densities,  high

operating  temperatures,  and  reduced  performance  and

longevity  of  the  devices.  This  aspect  is  strictly  associated

with  the  failure  rate  of  electronic  devices,  which  increases

exponentially 

with 

rising 

operating 

temperatures, 

highlighting the critical importance of efficient heat removal

to  maintain  device  reliability  and  performance.  When

performing  optimization  on  heat  sink  designs,  there  is

usually a trade-off to balance the need for high heat transfer

performance and reducing power consumption to move heat

transfer  fluid.  An  example  of  balancing  fluid  flow  and  heat

transfer in a heat sink by performing an MOO on is shown in

Figure  2.15. As  design  variables  are  inlet  velocity,  solid material  displacement  and  quantity,  objective  functions

change accordingly. 
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FIGURE 2.15  Example of a heat sink balance when performing multi-objective optimization on fluid flow and heat transfer. 

Furthermore, limitations of traditional coolants such as air, 

oil, and water in meeting the escalating cooling demands of

modern  electronic  devices  due  to  poor  heat  transfer

properties  are  now  overcome  by  consolidated  cooling

techniques, such as microchannel-based liquid cooling, two-

phase  liquid  cooling,  heat  pipe  cooling  systems,  and

thermoelectric  cooling,  as  promising  solutions  to  address

the  thermal  challenges  of  high-performance  computing

architectures. 

2.3.1.1 Air

When  dealing  with  the  task  of  enhancing  thermal

management  in  electronic  component  miniaturization,  a

viable  solution  is  to  propose  metal  foam  heat  sinks.  The

main challenge in this case is to improve heat transfer while

minimizing  pressure  drop,  which  is  a  typical  MOO  problem
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[20]. The  investigation  can  be  on  both  non-finned  and finned  metal  foam  heat  sinks,  through  numerical  thermofluid  dynamics  analysis,  to  maximize  heat  dissipation  and

minimize  pumping  power.  In  the  specific  case  [20], 

governing  equations,  based  on  porous  media  theory  with

local thermal non-equilibrium assumptions, are solved using

a finite element tool. The numerical model is coupled with a

multi-objective  genetic  algorithm  (MOGA)  to  find  optimal

solutions  considering  various  design  parameters.  Figure

2.16 shows a scheme of the investigated domain. 

FIGURE 2.16  Sketch of the heatsink concept and computational domain: heat that comes from the plate via foam struts and/or fins ( tf = fin thickness,  sf = fin spacing) is dissipated with an air flow that comes via a circular nozzle inlet

section of diameter  d [19]. 

[image: Image 35]

Morphological  and  geometrical  variables,  along  with  inlet

flow velocity, are treated as design parameters. Specifically, 

for  the  finned  configuration  foam  porosity,  pores  per  inch

(PPI),  dimensionless  inlet  section  diameter  inlet  velocity, 

heat  sink  height,  fin  numbers,  and  fin  thickness  are

considered  decision  variables.  Values  that  can  take  are

shown in Figure 2.17. The objective functions in the design

of porous media heat sinks pose a critical challenge. On the

one  hand,  we  aim  to  maximize  the  heat  rate  ( Q),  for

efficient heat transfer augmentation. On the other hand, to

minimize the pumping power ( Lp) to mitigate pressure drop

limitations.  Balancing  these  two  objectives  is  essential  for

optimal performance. 

FIGURE 2.17  Comparison between investigated solutions for the finned and non-finned systems [19]. 
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Results indicate that the heat rate of the finned foam heat

sink  is  approximately  3.3–3.5  times  higher  than  that  of  the

non-finned  counterpart  under  equal  pumping  power  (see

Figure  2.17). Comparison  with  experimental  data  suggests that  optimization  can  increase  heat  rates  by  about  2.5-3

times  for  non-finned  heat  sinks  and  up  to  5-6  times  for

finned ones under equal pumping power conditions. 

According to existing knowledge, there are limited papers

[39]  that  offer  correlations  of  Pareto  fronts  for  similar applications. To address this, researchers have proposed two

types  of  correlations  for  comparing  dimensionless  heat

transfer  and  pressure  drop.  These  correlations  are

expressed  in  a  dimensionless  form  to  enhance  the  overall
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validity  of  the  investigated  problem,  and  their  trends  are

showed  in  Figure  2.18.  Specifically,  the  Nusselt  number  is presented  as  a  function  of  the  Poiseuille  number,  allowing

for  a  correlation  in  terms  of  dimensionless  heat  rate  based

on the dimensionless pressure drop (Eqs. 2.4 and 2.5a.). 

 Q

 D

 Nu = ( Afin +  Afoam)( TW −  T 0)  kf

(2.4)

 D 2

 f Re = 2 Δ P

 H μw 0

(2.5)

FIGURE 2.18  Correlations of Pareto fronts. On the left Nusselt vs.  f Re; on the right dimensionless heat rate  j Re vs.  f Re3 [19]. 

In addition, other correlations are related to the Colburn  j-

factor,  which  represents  a  dimensionless  heat  rate  concept

similar to the Nusselt number. These correlations are linked

to the dimensionless pumping power  f Re3, where the nozzle

diameter  serves  as  the  characteristic  length  for  the

Reynolds  number.  The  dimensionless  heat  rate  ( j  Re)  and

the  dimensionless  pumping  power  factor  ( f  Re3)  are  shown

in Eqs. 2.6 and 2.7:

Pr2/3  D

 j Re =

 Q

( Afin +  Afoam)( TW −  T 0)  cp μ

(2.6)
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 D  2

 ρu
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0 D )

 w 0 Ain H ρw 2

 μ

0
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These 

dimensionless 

relationships 

provide 

a

comprehensive  understanding  of  the  heat  transfer  and

pressure drop phenomena in the investigated context. 

The  findings  suggest  that  optimization  techniques

significantly  enhance  the  performance  of  such  devices. 

Furthermore,  results  indicate  that  finned  metal  foam  heat

sinks  significantly  enhance  heat  dissipation  compared  to

non-finned  ones.  Optimization  improves  heat  rates  while

minimizing 

pumping 

power, 

yielding 

substantial

performance enhancements. Pareto front correlations aid in

designing 

optimized 

devices. 

Overall, 

the 

study

demonstrates  the  effectiveness  of  optimization  procedures

in enhancing the performance of metal foam heat sinks for

various applications. 

2.3.1.2 Liquid

The  bottleneck  of  using  air  as  heat  transfer  fluid  is  the

relatively  low  heat  transfer  coefficient  compared  to  liquids. 

Therefore,  many  works  focused  on  investigating  solutions

employing  liquids,  for  instance  analyzing  heat  transfer  in  a

chip-attached  micro  pin  fin  cooling  device  under  water  jet

impingement,  aiming  to  reduce  thermal  resistance  and

pressure drop [21]. By directly attaching fins to the chip, the traditional  thermal  interface  resistance  is  reduced.  MOO

techniques  are  employed  to  minimize  thermal  resistance

and  pressure  drop,  considering  various  design  parameters

like  fin  spacing  and  height.  The  heat  flux  from  the  chip  is

assumed of 125 W/cm2. CFD and experimentation are used

to  analyze  the  impact  of  these  parameters.  Geometric

parameters  such  as  the  pin  fin  cross-section,  fin  spacing, 

and  fin  height  profile  are  analyzed  for  their  impact  on  the

thermal  and  hydraulic  performance  of  a  cooling  device

through  the  full  factorial  design  of  experiments  (FFD).  A

multi-objective  geometric  optimization  is  conducted  in  two

parts:  (1)  Optimizing  pin  fin  cross-section  and  spacing  to

minimize  thermal  resistance  and  pressure  drop,  using  both

traditional and modern optimization algorithms; and (2) Fin

height  profile  optimization  is  performed  using  an  artificial neural  network  (ANN)  with  an  elitist  NSGA-II  algorithm. 

Shape optimization is used to reduce pressure drop without

compromising 

thermal 

resistance. 

Compared 

to

conventional  cold  plate  designs,  the  chip-attached

configuration significantly decreases thermal resistance. 

2.3.1.3 PCM

Liquid  cooling  systems,  despite  having  superior  heat

transfer coefficients, entail additional complexity due to the

requirement  of  pumps  and  associated  components.  These

pumps  are  necessary  to  circulate  the  coolant  through  the

system,  adding  an  extra  layer  of  complexity  and  potential

points of failure. Moreover, the compatibility of liquid cooling

setups  can  be  limited  by  the  need  for  sufficient  space  to

accommodate  the  components  and  potential  modifications

to the hardware. This complexity and dependence on pumps

and  space  requirements  further  add  to  the  drawbacks  of

liquid  cooling,  making  alternatives  like  phase  change

material (PCM) more appealing for thermal management in

certain  scenarios.  Therefore,  a  thermal  management

approach using PCM integrated into heat sinks emerges as a

viable solution for controlling temperature peaks without the

added  complexity  and  maintenance  demands  of  liquid

cooling  systems.  For  instance,  the  optimization  of  finned

heat  sinks  integrated  with  PCMs  and  metal  foams  for

enhanced  thermal  management  has  been  exhaustively

explored [22]. 

A mathematical model based on volume-averaged porous

media  equations  is  used  to  predict  a  transient  process

shown  in  Figure  2.19.  Multi-objective  Pareto  optimization employing  a  GA  balances  cost  minimization  and  operation

time maximization. The maximum allowable temperature is

assumed equal to 90°C. The time required for the device to

reach this temperature is represented as  topt. Consequently, 

the optimization efforts focus on maximizing the operational

time  to  extend  the  period  during  which  the  device  can

function  effectively  without  surpassing  the  specified

temperature limit and minimizing the total investment cost

per device. This cost includes both the expenses related to

foam (€foam) and the PCM (€PCM). Results presented in Figure

2.20  reveal  a  trade-off  between  operation  time  and  device

cost, with Pareto front solutions ranging from 2000 to 6000

seconds  and  €200  to  €275  per  device,  respectively.  The

utopia  criterion  identifies  an  optimal  solution  with  an

operation  time  of  3780  seconds  and  a  cost  of  €235  per

device.  Lower  porosity,  thicker  fins,  and  reduced  device

height contribute to a decreased operation time. 
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FIGURE 2.19  Investigated domain: heat sink features metallic fins and is equipped with both phase change material (PCM), specifically docosane (a type

of paraffin wax), and metal foam. Heat is delivered from the bottom of the

device and dissipated through the combination of PCM, metal foam, and the fins

[21]. 
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FIGURE 2.20  Resulting Pareto front: trade-off between costs to be minimized

and operation times to be maximized [21]. 

The study highlights the effectiveness of fins in aiding the

melting  process  and  emphasizes  the  importance  of  natural

convection  effects.  Overall,  the  findings  provide  valuable

insight  for  designing  cost-effective  and  efficient  heat

management  devices,  with  implications  for  future  research

focusing  on  complete  charging/discharging  cycles  and

experimental validation of optimized solutions. 

As  mentioned  above,  a  bottleneck  of  PCMs  is  the

exploration of solutions to increase their thermal diffusivity. 

Various shape and materials have been explored to optimize

the  geometric  configuration  of  a  cylindrical  heat  sink

containing  a  PCM  and  thermal  conductivity  enhancers

(TCEs)  [23]. The  aim  is  to  maximize  the  charging  time  and minimize the discharging time while maintaining a constant

volume for both the TCEs and the cavity. Experimental and

numerical  simulations  were  conducted  to  assess  the  heat

transfer  coefficient  and  charging/discharging  times  for

various  geometric  configurations  of  TCEs.  The  results

indicated that MOO is feasible, as charging and discharging

times 

are 

orthogonal, 

allowing 

for 

simultaneous

maximization  and  minimization,  respectively.  The  multi-

objective  PSO  (MOPSO)  algorithm  demonstrated  stability  in

obtaining optimal solutions. Furthermore, the study revealed

that  the  obtained  optimal  solutions  represent  a  trade-off

between  charging  and  discharging  times,  providing

flexibility  in  selection  based  on  user  priorities.  Significant

improvements  were  observed  in  the  discharging  cycle

performance  compared  to  the  charging  cycle,  highlighting

the  practical  importance  given  the  intermittent  nature  of

heat sink operation. Overall, the findings of this study serve

as a benchmark for future optimization studies on cylindrical

heat  sinks  and  can  potentially  be  extended  to  address

different  constraints  and  objectives  in  similar  optimization

problems. 

Overall, the high complexity involved in the simulation of

PCMs means that it is often convenient to use several tools

simultaneously  to  facilitate  the  optimization  process  and

obtain  reliable  results  in  a  reasonable  timeframe.  An

example is the optimization of a finned latent heat thermal

energy storage (LHTES) unit to minimize phase change time

and maximize stored energy [24]. This is achieved through a

hybrid  approach  involving  CFD,  grouped  method  of  data

handling  (GMDH)  type  of  ANN,  non-dominated  sorting  GAs

(NSGA-II),  and  multi-criteria  decision-making  (MCDM)

methods. 

The  design  variables  considered  are  geometrical

parameters  of  fins,  including  number,  length,  and  volume

fraction. CFD simulations are first used to study the effect of

these  variables  on  objective  functions.  Then,  GMDH-type

ANN  models  are  employed  to  predict  objective  function

response  based  on  design  variables.  Pareto  optimal  points

are determined using NSGA-II and GMDH predictive models. 

MCDM methods like TOPSIS and VIKOR are used to suggest

design points per weight of objectives. Results show that the

proposed  hybrid  approach  is  effective  in  optimizing  TES

systems,  with  most  of  the  optimal  cases  having  specific

characteristics  such  as  high  dimensionless  fin  length  and

low  volume  fraction  of  fins.  Future  research  will  explore

other geometries and boundary conditions for LHTES units. 

Finally, the optimization of a PCM based composite pin fin

matrix  heat  sink  [25]  is  presented  to  extend  the  operation time  during  the  heating  cycle  and  minimize  it  during  the

discharging  cycle.  The  heat  sink  is  made  of  aluminum  with

n-eicosane  PCM.  Through  numerical  simulations  using  CFD

software,  temperature  time  histories  for  charging  and

discharging  cycles  are  obtained  for  40  different  geometric

configurations.  These  results  are  then  used  as  inputs  for  a

neural network for MOO to determine the optimal heat sink

configuration.  Experimental  validation  is  conducted  to

match  numerical  simulations  under  uniform  heat  input

conditions. 

Authors reported that NSGA II MOO effectively extends the

charging cycle by 5% and reduces the discharging cycle by

12.5%  simultaneously.  Non-dominated  solutions  reveal  a

trade-off between objectives, aiding in an understanding of

the impact of input variables on heat sink performance. 

2.3.2 THERMAL ENERGY STORAGE

The  rising  demand  for  thermal  energy  driven  by  modern

lifestyle  applications  necessitates  optimized  systems  to

address  global  energy  supply  and  demand  challenges. 

Recent  years  have  seen  a  growing  focus  on  designing  new

systems to meet increasing competition and the imperative

for  improved  efficiency.  Innovation  aims  for  high-quality, 

environmentally  friendly  products,  and  multiple  viable

designs 

must 

be 

explored, 

emphasizing 

process

optimization  to  maximize  or  minimize  objective  functions

under constraints. This optimization is particularly crucial for

components  that  enhance  thermal  system  performance, 

such  as  air  conditioning  and  solar  energy  systems.  Well-

established and emerging approaches aim to boost thermal

energy  system  efficiency  through  optimized  thermal

storage,  notably  sensible  thermal  energy  storage  (STES)

and  LHTES.  These  options  differ  depending  on  whether  the

latent  heat  of  the  storage  material  is  exploited  or  not.  The

latter uses PCMs, which undergo phase transition – typically

solid/liquid  –  to  store/release  thermal  energy.  The  selection

of  PCM  is  critical,  requiring  materials  with  specific

thermophysical  properties.  Studies  employ  experimental

and  numerical  analyses  to  explore  various  PCM  types  in

different  contexts.  There  exists  a  challenge  between  the
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need  for  high  storage  capacity  and  thermal  performance, 

specifically  related  to  thermal  diffusivity.  Storage  capacity

refers  to  the  amount  of  thermal  energy  that  a  system  can

store, typically measured in terms of energy density or total

energy  stored.  A  higher  storage  capacity  can  be  beneficial

for  applications  requiring  large  amounts  of  energy  over

extended periods. On the other hand, thermal performance, 

often  quantified  by  thermal  diffusivity,  measures  how

quickly  a  material  can  spread  heat.  Higher  thermal

diffusivity  can  lead  to  faster  heat  transfer  rates.  These  two

aspects  require  –  depending  on  the  application  –

optimization 

techniques 

to 

modify 

the 

system

design/operation.  An  example  showing  a  possible  balance

between energy storage and thermal power for a heat sink

is presented in Figure 2.21. 

FIGURE 2.21  Example of a thermal storage balance when performing multiobjective optimization on energy storage and thermal power. 

2.3.2.1 Sensible Heat

Optimization  of  a  STES  system  involves  exploring  and

evaluating  various  designs  to  select  an  optimal  one.  Each

design  is  characterized  by  operational,  geometrical, 

thermophysical, 

and 

performance 

parameters 

[40]. 

Operational  parameters  are  influenced  by  the  specific

application.  Geometrical  parameters  are  typically  arbitrary

but  must  adhere  to  structural  constraints.  Thermophysical

parameters  depend  on  the  materials  used  and  are

influenced by temperature and pressure, while performance

parameters are used for assessing and comparing different

designs. The design space becomes highly dimensional due

to the numerous geometric parameters. Given the high cost

and  time  associated  with  experimental  investigations  at  an

industrial  scale,  TES  designs  are  often  evaluated  using

simulations. However, brute-force evaluations of all possible

designs are computationally expensive. To address this, the

reduction of design variables is essential. 

For  instance,  optimizing  a  set  of  unequal  diameter  radial

diffusers in stratified thermal energy storage (TES) tanks is

crucial  for  enhancing  electric  power  peak  load  shifting  and

integrating  renewable  energy  sources  [26].  Initially, 

numerical  experiments  are  conducted  based  on  an

orthogonal  experimental  design  to  build  a  performance

database. A support vector machine (SVM) is then employed

to create a data-driven surrogate model from this database. 

Subsequently,  mono-objective,  and  MOO  are  carried  out

using  a  GA,  evaluating  fitness  functions  via  the  surrogate

model.  The  surrogate  model  based  on  SVM  exhibits  high

accuracy  (squared  correlation  coefficient  of  0.96  and  a

mean  squared  error  near  zero),  with  computational

efficiency  comparable  to  numerical  simulations.  Single-

objective  optimization  reveals  an  optimized  thermocline

thickness  of  0.829  m,  resulting  in  a  4.2%  improvement  in

thermal  stratification  performance  and  an  increase  in  heat

storage  space  by  11.6  m3.  MOO  yields  Pareto  optimal

solutions  that  predict  a  thermocline  thickness  of  0.866  m

and  reduced  steel  cost  by  88.1%,  while  maintaining

comparable  thermocline  thickness  to  the  benchmark. 

Overall,  these  findings  aid  in  designing  efficient  and

economical unequal diameter radial diffusers for TES tanks, 

enhancing their performance while minimizing costs. 

A  similar  approach  has  been  used  for  the  numerical

investigation  of  a  concrete  thermal  energy  storage  (CTES)

system  utilizing  air  as  the  heat  transfer  fluid  (HTF)  [27].  To efficiently  analyze  the  complex  interactions  between

parameters,  response  surface  models  (RSMs)  for  multiple

responses  are  established  based  on  27  specific  design

points  determined  by  a  central  composite  rotation  design

(CCRD).  The  effect  of  design  parameters  on  the  CTES

system’s performance are analyzed using these models. The

results highlight the significance of HTF velocity on charging

time  and  efficiency,  and  the  substantial  influence  of  HTF

inlet  temperature  on  energy  storage.  Interactions  among

parameters  also  play  a  crucial  role  in  performance  indices. 

Optimization  is  conducted  to  simultaneously  minimize

charging  time  and  maximize  energy  storage  and  charging

energy  efficiency.  The  optimal  parameter  combination  is

determined  using  a  desirability  function.  Additionally,  the

discharging  process  is  considered  to  optimize  the  overall

cycle performance. The study concludes that a configuration

with 22 tubes and 4 fins under selected operating conditions

is appropriate for the CTES unit. This method offers a viable

approach to CTES unit design. 

Temperature profiles of the CTES and charging/discharging

completion  status  are  observed,  with  heat  transfer  being

more  uniform  radially  than  axially.  The  heat  transfer  rate

decreases  along  the  flow  direction  with  decreasing

temperature between air and concrete. 

RSMs  are  established  for  charging  time,  energy  storage, 

and charging energy efficiency, requiring fewer simulations. 

These 

models 

demonstrate 

reasonable 

accuracy, 

effectiveness,  and  good  prediction  capability,  as  verified

through ANOVA. Various factors influence different response

indices,  with  interactions  playing  a  significant  role. 

Optimization  considering  the  charging  process  yields  an

optimal  parameter  combination,  including  4  fins  and  22

tubes, an HTF inlet temperature of 672.8 K, HTF velocity of 4

m/s,  and  initial  temperature  of  463  K.  The  optimal  number

of tubes and fins align with considerations from the charging

process, optimizing the overall cycle performance. 

2.3.2.2 Latent Heat

Optimizing  a  thermal  system  that  operates  depending  on

the  transient  response  of  PCM  strongly  depends  on  the

application.  One  noticeable  constraint  observed  in  many

referenced studies is the limited analysis of comprehensive

enhancement  techniques  for  systems  that  employs  PCM  in

thermal storage. Typically, these studies focus on individual

techniques  or  combine  only  two  methods,  without

comprehensively  explore  the  synergistic  effects  of  various

enhancement  strategies.  Moreover,  a  noticeable  gap  exists

in research concerning the comparison of PCM melting times

for  different  geometric  configurations  of  LHTES  units.  This

lack of comprehensive analysis poses a significant challenge

in  understanding  and  optimizing  the  overall  storage

performance  of  PCM-based  systems.  Recognizing  these

limitations,  recent  efforts  have  been  directed  toward

addressing  this  gap  to  search  for  the  combined  impact  of

PCM 

heat 

transfer 

enhancement 

and 

geometric

optimization.  The  goal  is  to  develop  a  robust  optimization

framework  aimed  at  improving  the  thermal  energy  storage

performance  of  PCM-based  shell-and-tube  heat  exchangers

(STHXs) [28]. 

The  proposed  methodology  represents  a  significant

departure  from  traditional  approaches,  introducing  a  novel

MOO  framework.  Applied  to  a  chiller  system  serving  a

single-family  cooling  load,  this  simulation  methodology

integrates  GAs  and  experimental  validation  to  offer  insight

into  PCM  behavior  and  prompting  further  optimization

stages to increase PCM utilization. At the heart of this effort lies a detailed investigation into the effects of varying chiller

operating conditions and key geometric parameters through

a  detailed  parametric  analysis.  This  analysis  not  only

identifies  feasible  objective  functions  but  also  aims  to

accelerate  the  PCM  melting  process,  thus  driving

optimization  efforts.  Central  to  the  optimization  process  is

the  selection  of  solutions  that  minimize  both  charging  and

discharging  times  while  ensuring  compatibility  with  the

utopia  point.  This  multi-step  approach  involves  assessing

the final configuration to reach minimum heat transfer area, 

thereby  addressing  the  limitations  in  PCM  exploitation.  The

benefits  of  this  proposed  framework  extend  beyond  classic

optimization.  By  optimizing  PCM  utilization  and  reducing

system  size,  driven  by  a  multi-objective  approach,  this

framework  holds  the  potential  to  contribute  significantly  to

energy efficiency and sustainability efforts. 

The selection of objective functions for systems employing

PCM for high thermal storage potential is strongly influenced

by  the  application.  For  instance,  many  strategies  include

reducing  heat  loss  via  PCM  layers,  implementing  heat

recovery  and  ventilation  (HRV)  systems  to  maintain  air

quality, and integrating thermal storage to minimize energy

consumption.  Despite  numerous  proposals  for  optimizing

heat  recovery  systems  with  embedded  PCMs,  a  significant

knowledge  gap  exists  regarding  the  optimization  of  wall-

type  HRV  systems.  These  systems,  distinguished  by  their

compactness and inclusion of various storage media such as
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PCMs,  require  a  tailored  optimization  approach.  One  viable

option is to address this gap by developing an optimization

methodology focusing on factors like fan speed, PCM phase

change temperature, and tube arrangement [29]. By means

of  numerical  simulation  and  optimization  techniques,  the

study introduces a framework for optimizing a decentralized

PCM-based  HRV  unit.  The  investigated  unit  is  shown  in

Figure 2.22. 

FIGURE 2.22  Main heat recovery and ventilation (HRV) system components: when warm air from the outside (hot inlet) passes over the heat exchanger, it

cools down (cold outlet) because it transfers heat to the PCM inside the tubes. 

When air from the inside (cold inlet) flows around the tubes, it cools the PCM

since its temperature is lower than the PCM’s melting point, and then exits the system as warmer air (hot outlet) [28]. 

Through  a  MOGA,  the  study  achieves  enhanced  thermal

performance  while  simultaneously  reducing  investment

costs and pressure drop, with results obtained in a 3D space

shown  in  Figure  2.23. The  validation  of  the  model  against experimental  data  demonstrates  its  accuracy.  This  study

demonstrates  a  constrained  MOO  with  the  following

procedure:

 Problem  definition:  the  process  begins  by  defining

design variables, equations, and constraints. 

 Multi-objective  genetic  algorithm  (MOGA):  a  random

initial  population  is  generated.  Then,  each  individual  in

the  population  is  evaluated  against  an  objective

function by using the governing equations using a finite

element  tool.  Thus,  a  MATLAB®  code  produce

individuals  in  each  generation,  which  are  fed  into  the

finite  element  tool.  The  finite  element  model  (FEM)

analysis  provides  the  fitness  values,  transferred  to

MOGA,  which  performs  evolution  through  conversion, 

mutation,  and  selection  functions.  The  GA  iteratively

improves tentative solutions. 
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FIGURE 2.23  Constrained 3D Pareto front: solutions with higher pressure drop than 8.5 Pa and higher investment costs than 1880 €, and lower average

storage rate than 22.05 W (reference values) are excluded [28]. 

Key  findings  include  the  ability  to  model  the  reference

design  accurately  using  a  2D  conduction-based  model  and

the  outperformance  of  the  optimal  design  in  terms  of

average storage rate. 

The  study  also  identifies  economically  viable  solutions

with  low  pressure  drop  and  heat  storage  rates.  Moreover, 

improvements  in  HRV  efficiency  are  observed  through  this

optimization approach. Overall, the study concludes that the

optimized  configuration  offers  comparable  operating  costs

to  household  appliances  and  underscores  the  growing

viability  of  HRV  systems  with  PCMs.  Future  research

directions  include  exploring  various  PCMs  and  system

configurations  to  address  seasonal  requirements  and

improve heat diffusion. 

2.3.3 HEAT EXCHANGERS

Heat  exchangers,  e.g.,  shell  and  tube  heat  exchangers

(STHEs)  and  plate-fin  heat  exchangers  (PFHEs),  are  in

widespread  use  due  to  their  capacity  to  facilitate  effective

heat  transfer  across  diverse  applications.  However,  the

design  of  heat  exchangers  is  a  complex  task,  requiring  a

comprehensive  understanding  of  principles  spanning

thermodynamics,  fluid  dynamics,  cost  estimation,  and

optimization.  The  primary  objectives  of  heat  exchanger

design are dual: maximizing thermodynamic efficiency while

minimizing  costs.  Traditionally,  the  design  process  for  heat

exchangers  has  been  labor-intensive,  involving  the

evaluation  of  numerous  geometric  configurations  against  a

backdrop  of  operational  constraints.  While  thorough,  these

methods  often  fall  short  of  achieving  optimal  solutions  and

consume  significant  time  and  resources.  To  address  these

challenges,  researchers  have  turned  to  nature-inspired

optimization  algorithms  such  as  GAs  and  PSO.  In  this

context,  the  balance  between  thermal  power  and  pumping

power  (see  Figure  2.24)  depends  on  several  factors,  e.g. , 
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geometrical ones as pitches, diameters, length and so on, or

external ones, e.g., velocity, heat source, etc. 

FIGURE 2.24  Example of a heat exchanger balance when performing multiobjective optimization on pumping power and thermal power. 

A  theoretical  optimization  method  using  3D  CFD

simulations  combined  with  MOO  can  significantly  enhance

design 

capabilities 

compared 

to 

costly 

physical

experiments.  While  traditional  methods  relying  on

experiments can be time-consuming and may not guarantee

the  best  optimization  program,  various  research  have

demonstrated  a  more  efficient  and  reliable  optimization

process. For instance, a multi-objective framework has been

used  on  optimizing  the  performance  of  a  PFHE  named

95JC1803  for  use  in  a  hydraulic  retarder  [30]. Initially,  the heat transfer factor increased by 12.83% and friction factor

decreased  by  26.91%  after  optimization,  indicating

significant 

performance 

improvements. 

Qualitative

comparisons  of  internal  flow  fields  involving  temperature, 

pressure,  and  velocity  further  highlight  the  optimization

effects,  resulting  in  reduction  of  the  hot  flow  temperature, 

increases  in  cold  flow  temperature,  and  significant

improvements  in  pressure  drops  and  velocities.  The  study

emphasizes  the  importance  of  MOO  in  heat  exchanger

design  due  to  conflicting  objectives  and  uncorrelated

mathematical  relationships  between  parameters  and

thermal  performance.  MOO  aims  to  balance  various  target

parameters  efficiently,  and  it  is  considered  a  development

trend in optimization. 

The concept of the field synergy principle, used to explain

local  heat  transfer  augmentation,  was  employed  in  the

study  to  elucidate  optimization  results.  In  this  research,  an

MOO  based  on  CFD  simulations  was  conducted  to  optimize

the structure of an oil-to-water PFHE. The maximum Colburn

factor ( j) and the minimum friction factor ( f) were treated as

conflicting  objectives.  Design  parameter  variables  such  as

plate-fin  height,  pitch,  spacing,  and  thickness  were

optimized,  and  their  influence  on  PFHE  performance  was

evaluated. The field synergy principle was then analyzed to

validate  the  optimization  results  based  on  the  studied

geometrical  parameters  and  flow  field  considerations. 

However, it is noted that the optimization focused solely on

improving  heat  transfer  performance  without  considering

economic  factors  such  as  cost,  technology,  and

maintenance. 

The  use  of  polymeric  materials  in  heat  exchanger  design

offers  advantages  such  as  lightweight  construction, 

resistance to corrosion, and low production costs. However, 

the  low  thermal  conductivity  of  polymers  has  traditionally

hindered their performance in heat transfer applications. To

address this limitation, the authors propose a novel polymer

heat  exchanger  design  with  five  optimal  design  variables

[31]. By  optimizing  the  geometry  and  arrangement  of  the heat  exchanger  components,  they  aim  to  improve  thermal

performance  while  minimizing  airside  pressure  drop.  The

design  process  involves  employing  analytical  and  CFD

models  to  analyze  the  impact  of  material  changes  on  heat

transfer  efficiency  and  other  performance  metrics.  The

proposed design incorporates modifications such as altering

the shape of the heat exchange tubes to a teardrop-shaped, 

which increases heat transfer area while minimizing airside

pressure drop. 

Optimization is performed using a MOGA, considering both

thermal  and  hydraulic  performance  criteria.  Through  a

combination  of  design  of  experiments  (DOE),  meta-

modeling, and optimization techniques, the authors identify

Pareto  optimal  design  points  that  balance  competing

objectives.  The  results  show  significant  improvements  in

thermal-hydraulic  performance  compared  to  baseline  heat

exchangers,  with  the  newly  designed  polymer  heat

exchanger  achieving  92.7%  to  162.8%  of  the  baseline’s

performance.  However,  challenges  remain,  particularly

regarding  the  higher  airside  pressure  drop  associated  with

the  new  design.  Further  research  is  needed  to  address  this

issue and to explore manufacturing techniques, such as 3D

printing,  for  producing  polymer  heat  exchangers  with

extremely  thin  profiles.  In  conclusion,  the  study

demonstrates  the  feasibility  of  polymer  heat  exchanger

application in industrial settings, showing promising thermal

performance improvements. 

When  faced  with  optimization  of  a  heat  exchanger,  the

main  challenge  is  to  realize  a  change  in  the  design  that

allows to increase overall performance, while preserving its

functionality  and  satisfying  the  relevant  constraints.  For

STHXs,  a  fundamental  feature  is  the  baffle  shape  and

location. Its design strictly influences fluid motion and heat

transfer,  thus  has  been  subject  of  extensive  studies,  for

which the focus lies on optimizing the performance of STHXs

featuring  the  baffle  shape,  i.e.,  helical  baffles.  These

components  are  crucial  for  regulating  flow  distribution  and

enhancing heat transfer within the exchanger. 

One  approach  is  to  evaluate  the  thermal-hydrodynamic

performance  of  such  heat  exchangers  using  CFD  modeling

[32]. Key  geometric  parameters  like  baffle  pitch  and  baffle angle  are  investigated  for  their  effect  on  heat  transfer

coefficient  and  pressure  drop.  From  an  experimentally

validated  CFD  model,  predictive  correlations  are  developed

to estimate the heat transfer coefficient and pressure drop. 

Optimization  using  MOGA  is  then  applied  to  determine

optimal  baffle  geometries,  considering  the  trade-offs

between the heat transfer coefficient and pressure drop. 

A  second  approach  is  to  the  combine  benefits  of  MOGA

optimization  coupled  with  the  numerical  simulation  of  a

central  composite  design  (CCD)  and  response  surface.  The

aim  is  to  optimize  the  performance  of  STHXs  with  helical

baffles  [33].  The  CCD  is  used  to  generate  test  points, ensuring  precision  and  efficiency.  CFD  simulations  are  then

conducted based on these points to acquire objective data. 

Subsequently, a response surface, derived from CFD results, 

predicts  heat  transfer  coefficients  and  pressure  drops.  This

combination  of  CCD  and  response  surfaces  enhance

optimization  by  reducing  reliance  on  empirical  correlations. 

Validation of the surrogate model is crucial and is achieved

by  comparing  predicted  values  from  the  response  surface

with  CFD  simulation  results.  Structural  parameters  such  as

the  helix  angle  and  overlapped  degree  are  optimized, 

considering  conflicting  objectives  of  maximizing  the  overall

heat  transfer  coefficient  while  minimizing  the  shell-side

pressure  drop.  Sensitivity  analysis  reveals  a  correlation

between  these  parameters  and  the  performance  metrics. 

Through  optimization,  improvements  are  achieved  in  both

overall  heat  transfer  coefficient  and  pressure  drop, 

showcasing  the  effectiveness  of  the  optimized  heat

exchanger configuration. 

Finally,  the  application  of  machine  learning  and  GAs  has

been tested in the MOO of tube fin heat exchangers (TFHE)

[34]. CFD  simulations  are  conducted  across  various

Reynolds  numbers  and  tube  ellipticities  to  optimize  heat transfer  and  pressure  drop  performance.  Back-Propagation

neural  networks  (NNs)  are  trained  using  simulation  data  to

predict  heat  transfer  coefficients  and  pressure  drops.  The

non-dominated MOGA NSGA-II is then employed to optimize

the  NN  predictions,  resulting  in  optimal  Pareto  fronts. 

Findings  indicate  that  elliptical  tubes  in  TFHEs  enhance

thermal-hydraulic  characteristics,  with  NNs  effectively

establishing  relationships  between  design  variables  and

performance.  The  combination  of  CFD,  NNs,  and  GAs  offer

efficient optimization, yielding a range of optimal solutions. 

Through MOO, a significant enhancement in performance is

achieved, with a 20% decrease in flow resistance observed

at  specific  Reynolds  numbers  and  tube  ellipticities.  This

approach  offers  insight  into  improving  TFHE  design  and

underscores the potential of combining artificial intelligence

techniques  with  optimization  algorithms  in  heat  exchanger

design. 

2.3.4 POROUS CHANNELS

In porous channels, optimizing heat transfer and minimizing

pressure  drop  pose  conflicting  objectives  due  to  inherent

trade-offs  shown  in  Figure  2.25.  Increasing  heat  transfer often  involves  maximizing  surface  area  or  enhancing  fluid-solid  interactions,  which  in  turn  typically  increases  flow

resistance  and  thus  pressure  drop.  Conversely,  reducing

pressure  drop  usually  entails  enlarging  flow  area  or

minimizing  resistance,  which  may  decrease  surface  area
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and compromise heat transfer efficiency. This conflict arises

from  the  fundamental  relationship  between  fluid  flow  and

heat  transfer  within  the  porous  medium.  A  challenge  for

porous  channels  is  to  find  a  balance  between  these

objectives to achieve optimal channel performance. 

FIGURE 2.25  Example of a porous channel balance when performing multiobjective optimization on fluid flow and heat transfer. 

Various  optimization  techniques,  e.g.,  MOO,  can  help

explore  the  design  space  and  identify  solutions  that  best

satisfy  the  competing  demands  of  pressure  drop  and  heat

transfer.  Effective  design  strategies  aim  to  achieve  an

optimal  compromise,  considering  the  specific  requirements

and  constraints  of  the  application  at  hand,  as  for  the

investigation of the effects of gradient porous media on flow

and  heat  transfer  characteristics  in  a  tube  [35]. Gradient porous  media  are  materials  where  properties  such  as  pore

size  and  porosity  vary  along  a  spatial  gradient.  The  study employs  numerical  simulations  to  analyze  fully  developed

flow  in  a  tube  partially  filled  with  such  gradient  porous

media.  Different  configurations  of  gradient  porous  media, 

characterized  by  variations  in  pore  size  and  porosity  along

the radial direction, are compared [35]. The fluid enters the pipe  with  a  velocity  profile  that  follows  a  parabolic

distribution.  It  is  observed  that  configurations  with  a

simultaneous  increase  in  porosity  and  pore  size  along  the

radius  exhibit  the  best  heat  transfer  performance  (Nusselt

number),  while  configurations  with  simultaneous  decrease

show 

minimum 

flow 

resistance 

(friction 

factor). 

Configurations with opposing gradients (increasing pore size

and decreasing porosity) perform similarly to homogeneous

porous media. For a given spatial gradient in pore size, both

the friction factor (flow resistance) and the Nusselt number

(heat transfer coefficient) decrease as the porosity gradient

increases. 

However, this effect becomes less significant as the pore

size gradient decreases. Increasing the filling ratio (radius of

porous  inserts/radius  of  tube)  of  gradient  porous  media

enhances  both  flow  resistance  and  heat  transfer  efficiency. 

Moreover,  the  sensitivity  of  these  parameters  to  gradient

variations  also  increases  with  the  filling  ratio.  The  study

performs  MOO  considering  maximum  Nusselt  number  and

minimum  friction  factor.  Optimal  configurations  are

obtained,  showing  improvements  in  flow  resistance

reduction  and  heat  transfer  efficiency  compared  to

[image: Image 44]

homogeneous  porous  media,  especially  at  higher  filling

ratios. 

In  general,  graded  foam-filled  channels  are  promising  for

improving  heat  sink  efficiency  due  to  their  customizable

structures  that  facilitate  heat  transfer  enhancement.  A

viable  and  effective  approach  can  be  an  optimization

framework  that  considers  both  mono-  and  multi-objective

approaches  to  identify  the  best  combinations  of  design

variables  for  the  foam’s  fluid  dynamics,  geometry  (see

Figure 2.26), and morphology [36]. 

FIGURE 2.26  The domain of a graded foam, with PPI increasing along the height, and the problem boundary conditions [35]. 

In  the  mono-objective  optimization,  the  performance

evaluation  criterion  (PEC)  is  maximized  to  enhance  the

thermal  efficiency  of  graded  foams.  The  PEC  serves  as  the
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objective  function,  and  optimizations  are  performed  by

parameterizing  the  spatial  distributions  of  porosity  and/or

PPI of the foam. For MOO, Pareto optimization is used to find

optimal  trade-off  solutions  between  heat  transfer

enhancement  and  pressure  drop  reduction.  Different

objective  functions  are  considered  to  explore  various

aspects  of  the  foam’s  performance.  The  optimizations

assume  a  local  thermal  non-equilibrium  in  the  foam, 

allowing  for  more  accurate  modeling  of  heat  transfer

processes.  The  optimal  design  variables,  such  as

dimensionless  foam  height  ( H*),  Reynolds  number  (Re), 

porosity  distributions  ( ε),  PPI  variations,  and  thermal

conductivity  ( k*),  are  determined  through  the  optimization

process.  Design  variables  include  fluid  velocity,  foam

morphology,  and  channel  geometry.  A  resume  of  design

variables  is  represented  in  Figure  2.27  and  other  variables shown there will be introduced later through the text here. 

FIGURE 2.27  Design variables and their ranges [35]. 

Authors  assume  porosity  and  PPI  varying  according  to  a

power  law  with  indices   iε and  iPPI, varying in ranges typical of  commercial  metal  foams.  Graded  foams  are  also

compared to uniform foams with porosity and PPI the same

as  their  averaged  values,  #  and  PPI,  computed  via  the

following correlations:

 ε(1) −  ε(0)

 ε =

+  ε(0)

 iε + 1

(2.8)

 PPI(1) −  PPI(0)

 PPI =

+  PPI(0)

 iPPI + 1

(2.9)

Mono-objective  optimization  aims  to  maximize  the  PEC, 

while  MOO  explores  various  objective  functions  related  to

heat  transfer  and  pressure  drop.  A  GA  (NSGA-II)  coupled

with  MATLAB®  and  COMSOL  Multiphysics®  is  used  for

optimization. The study reports significant improvements in

heat  transfer  efficiency  compared  to  uniform  foam

configurations. For instance – see Figure 2.28 – a maximum

PEC value of 1.51 is achieved, representing a 51% increase

in  heat  transfer  efficiency  compared  to  uniform  foam
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(through the mono-objective optimization). The Pareto front

for  the  multi-objective  case  (Figure  2.28)  ranges  from  413

W/m2  K  to  667  W/m2  K  in  the  averaged  heat  transfer

coefficient  and  from  42  Pa  to  420  Pa  in  the  pressure  drop. 

Utopia optimum values are  h = 502 W/m2 K and ΔP = 80 Pa. 

FIGURE 2.28  Mono- and multi-objective optimization results [35]. 

The  considered  performance  indicators  of  the  optimal

solutions  undergo  significant  variation  as  a  function  of  the

employed  optimization  approach.  The  same  occurs  for  the

optimal values of the design variables. Therefore, the reader

is  strongly  recommended  to  carefully  choose  the  objective

function depending on actual needs and wills. 

The  convergence  of  the  Pareto  front  and  various

percentages  of  the  generations  number  (GEN)  reveals  how

optimal  solutions  are  achieved  gradually  along  the

optimization  (Figure  2.29).  The  authors  show  how  solutions reach  the  final  non-dominated  ones  after  GEN75%  (75%  of

individuals  analyzed  before  reaching  convergence).  Finally, 
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the  utopia  point  criterion  is  employed  for  multi-criteria

decision  making  to  determine  the  main  performance

indicators  for  optimal  solutions,  balancing  heat  transfer

coefficient  and  pressure  drop.  When  employing  the  same

set  of  design  variables  for  different  objective  functions, 

distinct  optimal  performance  indicators  are  obtained.  This

emphasizes  that  the  utopia  optimal  solution  is  contingent

upon  the  chosen  objective  function,  necessitating  careful

consideration  for  its  selection  to  achieve  the  desired

outcome. 

FIGURE 2.29  Multi-objective optimization convergence with generations [35]. 

2.4 CONCLUDING REMARKS

This  chapter  presents  an  overview  of  MOO  of  heat  transfer

problems,  with  a  special  emphasis  on  GAs.  The  main

concepts and methods of MOO have been introduced, such

as  Pareto  optimality,  dominance,  preference  articulation, 

and performance indicators. The advantages and challenges

of  using  GAs  for  MOO  have  been  discussed,  such  as

diversity 

preservation, 

convergence 

speed, 

and

computational cost. 

We have also reviewed the application of these algorithms

to  several  case  studies  involving  heat  transfer  problems, 

 e.g. , heat sink, thermal storage, heat sink optimization, and

thermal management of electronic devices. The results have

shown that GAs can effectively find a set of Pareto optimal

solutions  that  trade  off  different  objectives,  such  as

minimizing  the  heat  transfer  area,  maximizing  the  heat

transfer  rate,  or  minimizing  the  entropy  generation.  These

Pareto optimal solutions can be used to guide engineers and

researchers  in  making  informed  decisions  regarding  the

design  and  optimization  of  heat  transfer  systems.  By

providing  a  comprehensive  understanding  of  the  trade-offs

between  various  objectives,  e.g. ,  thermal  efficiency,  cost, 

these  Pareto  optimal  solutions  enable  stakeholders  to

explore the design space more effectively. Overall, we have

provided  a  comprehensive  and  up-to-date  introduction  to

the  field  of  MOO  of  heat  transfer  problems  using  GAs. 

However,  several  challenges  remain,  including  the  proper

fine-tuning  of  algorithm  parameters,  the  handling

constraints,  and  uncertainties  of  the  prediction  require

further  investigation,  especially  when  integrated  with  the

well-established  machine  learning  techniques  and  hybrid

optimization methods. 

This chapter is intended to serve as a catalyst for deeper

exploration  of  MOO  of  heat  transfer  problems,  inspiring

future researcher, and practitioners within interested in this

challenging area. 

2.5 NOMENCLATURE

2.5.1 SYMBOLS

 A

area (m2)

 c

specific heat (J/kg/K)

 d

inner diameter (m)

 D

outer diameter (m)

 E

energy (J)

 f

friction factor

 F

finned

 g

gravitational acceleration (m/s2)

 h

heat transfer coefficient (W/m2 K)

 H

height (m)

 i, j

counter

 j

Colburn j-factor

 k

thermal conductivity (W/m/K)

 L

length (m)/pumping power (W)

 N

number

 Nu

Nusselt number

 p

pitch (m)

 P

pressure (Pa)

 Q

heat rate (W)

 Rth

thermal resistance (K/m2 W)

 s

spacing (m)

 t

thickness (m)

 u

velocity (m/s)

 T

temperature (K)

 V

volume (m3)

˙

 V

volumetric flow rate (m3/s)

 x, y, z

rectangular coordinates (m)

 Greek Symbols

 e

porosity

 d

thermocline thickness

 Δ

Interval

 q

theta

 h

efficiency

 µ

dynamic viscosity (Pa s)

 ρ

density (kg/m3)

 t

time (s)

 Subscripts

 c

cold


 ch

charging

 dis

discharging

 eff

effective

 f

fin/baffles/fluid

 h

hot

 in

inlet

 ini

initial

 opt

operation

 s

solid

 t

tubes

 Superscripts

 *

dimensionless

 Acronyms

 CFD

computational fluid dynamics

 GA

genetic algorithm

 HRV

heat recovery and ventilation unit

 HS

heat sink

 HX

heat exchanger

 KRI

kriging model

 LHTES

latent heat thermal energy storage

 MCDM

multi-criteria decision making

 MOO

multi-objective optimization

 NN/ANN

neural network/artificial neural network

 NSGA-II

non-dominated sorting genetic algorithm

 PCM

phase change material

 PEC

performance evaluation criteria

 PPI

pore per inches

 PSO

particle swarm optimization

 RA

Regression analysis

 RSM

response surface method

 STHE

shell-and-tube heat exchanger

 SVM

Support vector machines

 TES

thermal energy storage

 TFHE

tube fin heat exchanger
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3.1 INTRODUCTION

3.1.1 METAL FOAMS

Stochastic  metal  foams  (MF)  have  been  the  focus  of

significant  research  due  to  their  superior  heat  transfer

performance compared to conventional finned designs [1, 2]

due  to  higher  surface-area-to-volume  ratio  [3]  and

continuous  disruption  of  viscous  and  thermal  boundary

layers  on  the  structure  [4].  Furthermore,  the  tortuous  fluid

flow  path  within  the  structure  contributes  to  thermal

dispersion in the fluid [5]. The research on MFs goes back to the  1990s  when  manufacturing  these  structures  became

possible  [6].  Many  studies  on  modeling  the  flow  and  heat transfer  in  MFs  are  based  on  porous  media  transport

equations.  The  physical  parameters  such  as  porosity, 

filament  diameter,  and  pore  diameter  determine  the

parameters  defined  in  the  porous  media  equations, 

including  permeability  and  interfacial  heat  transfer

coefficient.  Therefore,  many  studies  have  attempted  to

reveal the relationships between these parameters. 

Du Plessis et al. [7] defined permeability and form factor, 

depending on porosity and pore diameter, with the help of a

cubic  representative  unit  cell.  Calmidi  [8]  defined  these based  on  porosity,  filament  diameter,  and  pore  diameter. 

Bhattacharya  et  al.  [9]  conducted  a  more  comprehensive study  and  proposed  correlations  for  effective  thermal

conductivity,  permeability,  and  form  coefficient.  They  also

pointed  out  that  the  cross-section  of  the  filaments

transforms from circular to concave shape with the increase

of the porosity. 

Some  studies  simplified  and  parametrized  the  foam

structure  using  representative  geometries  to  study  their

micro-level fluid flow and heat transfer characteristics. Yang

et al. [10] investigated pore-scale heat transfer by modeling MFs  with  the  Weaire-Phelan  model.  Boomsma  et  al. [11]

created an idealized periodic cell structure to represent MF, 

and  numerically  investigated  the  flow  and  heat  transfer

characteristics.  Kopanidis  et  al.  [12]  numerically  simulated the  MF  geometry  extracted  from  Surface  Evolver  software, 

and  modeled  the  foam  geometry  as  a  combination  of

filaments,  without  modeling  the  nodes  between  the

filaments.  Although  this  simplified  model  made  the

simulations easier and facilitated the parametrization of the

foam  geometries,  some  of  the  critical  aspects  of  the

geometry were missing, such as the effects of nodes on the

fluid flow. 

Few  studies  have  investigated  the  complex  micro-level

flow and heat transfer around stochastic structured MFs. Al-

Athel  [13]  modeled  the  foam  geometry,  and  investigated the internal temperature distribution using a thermal model, 

defining  the  efficiency  of  the  MF  fins.  Ranut  et  al. [14]

studied  the  permeability  and  effective  thermal  conductivity

by  modeling  scanned  MFs  via  high-resolution  X-ray  micro-

computed tomography (μCT) and performing computational

fluid dynamics/heat transfer (CFD/HT) simulations. Dixit and

Ghosh [15] simulated the airflow through 10 pores per inch

(PPI)  aluminum  foam  using  images  scanned  with  μCT  and

identified  the  intricacies  related  to  the  simulations.  Iasiello

et  al. [16]  investigated  the  anisotropy  of  aluminum  MFs  by conducting  simulations  on  the  μCT  scanned  geometries. 

Park et al. [17] experimentally and numerically investigated flow,  heat  transfer,  and  the  transition  from  Darcy  to  the

Forchheimer  regime  in  MFs  using  μCT.  Yu  et  al. [18]

investigated the effect of the anisotropy of MF structures on

the  flow  and  heat  transfer  characteristics.  In  a  subsequent

study,  Yang  et  al.  [19]  investigated  the  flow  and  heat transfer in MFs having micropores in different directions. 

Limited  studies  in  the  literature  compare  MFs  having

different  porosities  by  direct  CFD/HT  modeling  and  provide

micro-level physical insights into flow and heat transfer with

the change of porosity and filament diameter. In the present

study,  two  MF  structures  with  the  same  PPI  values  but

different porosities and filament diameters are investigated

experimentally and numerically. Numerical simulations were

made  by  using  actual  geometries  obtained  by  μCT  scans. 

This  study  investigates  the  effect  of  porosity,  filament

diameter,  and  nodes  on  fluid  flow  and  heat  transfer. 

Accordingly,  results  are  analyzed  through  detailed

computational 

visualization 

of 

local 

heat 

transfer

coefficients  and  local  temperature  differences  on  the  solid–

fluid  interface.  New  insights  are  obtained  by  comparing

micro-level  transport  physics  within  actual  geometries

having  varied  porosity  and  filament  diameter.  A  DNN

machine learning (ML) algorithm is used to predict the heat

transfer  coefficient,  solid  and  fluid  temperatures,  and  heat

flux  between  solid  and  fluid,  significantly  reducing

computational  time.  The  results  are  also  helpful  for

designing  heat  exchanger  channel  geometries  through  an

improved  understanding  of  the  regions  where  the  heat

exchange  between  the  solid  and  the  fluid  domains

effectively takes place. 

3.1.2 HEAT TRANSFER AND AI/ML

In  recent  years,  the  use  of  artificial  intelligence/machine learning (AI/ML) techniques in heat transfer simulations has

gained  attention.  AI  is  an  umbrella  term  that  refers  to

software  that  mimics  how  humans  think  and,  analyze, 

reason,  and  learn.  On  the  other  hand,  ML  is  a  subset  of  AI

that  can  employ  algorithms  that  are  able  to  learn  from

datasets.  The  main  attractiveness  of  AI/ML  comes  from  the

fact that it has been successfully implemented and has the

potential to save computational time and energy in different

fields, such as healthcare, education, marketing, and natural

language  processing.  AI/ML  is  being  implemented  in

engineering  fields,  such  as  mechanical,  civil,  electrical, 

biomedical,  and  materials.  These  advancements  gave  rise

to the idea that AI/ML techniques can also be implemented

in heat transfer applications such as thermal management. 

Therefore, many studies have been carried out on the use of

AI/ML  in  heat  transfer,  especially  after  2015,  as  seen  in

Figure  3.1. As  can  be  seen,  there  will  be  continuing exponential growth in the number of studies at the start of

2024. The application areas of the studies on AI/ML can be

seen in  Figure 3.2. Different topics in fundamental areas of heat  transfer  can  be  seen  in  Figure  3.3, where  most  of  the studies  are  on  convection  heat  transfer.  This  chapter

focuses on the use of AI/ML on convection heat transfer, and

excludes discussions of nanofluids studies. 
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FIGURE 3.1  Publication counts per year between 1993 and 2024 [20]. 

FIGURE 3.2  AI/ML studies on different application areas between 1993 and 2024 [20]. 
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FIGURE 3.3  AI/ML studies on different fundamental topics between 1993 and 2024 [20]. 

3.1.3 STUDIES ON AI/ML USE IN HEAT TRANSFER

One of the most common AI/ML methods is neural networks. 

Neural  networks  were  first  proposed  in  1943  by  Warren

McCullough  and  Walter  Pitts  [21].  Today,  artificial  neural networks  (ANN)  is  a  broader  term  for  different  neural

network  models.  ANNs  consist  of  interconnected  nodes

called  neurons,  inspired  by  the  neurons  in  a  human  brain. 

The data is introduced into the algorithm via input neurons. 

Neurons  in  different  layers  are  connected  to  each  other. 

Each  connection  has  its  own  weight,  representing  the

strength  of  the  connection.  Therefore,  data  is  processed

through different layers. Finally, it reaches the output layer, 

which  is  called  the  prediction  of  the  algorithm.  In  the

training  process,  the  algorithm  trains  itself  by  using  the

given  data  by  adjusting  the  weights  between  neurons  to

minimize  the  loss  function,  which,  in  simple  terms,  is  the difference  between  the  predicted  and  actual  data.  A

summary  of  AI/ML  studies  on  convective  heat  transfer  is

provided in Table 3.1. 

TABLE 3.1

AI/ML Studies on Convective Heat Transfer

Algorithm

Task

Objective

Reference

Year

Algorithm

Task

Objective

Reference

Year

Artificial

Prediction of the heat

Regression

Pacheco-Vega

2001

neural

transfer of humid

et al. [22]

network

air–water heat

(ANN)

exchangers

Algorithm

Task

Objective

Reference

Year

Prediction of

Regression

Athavale et al. 

2018

temperature and

[23]

flow profile in data

centers

Prediction of  Nu,  f, 

Regression

Souayeh et al. 

2021

and thermohydraulic

[24]

efficiency of a flow

in a circular channel

with corrugated

spring tape inserts

Prediction of friction

Regression

Bhattacharyya

2021

factor, Nusselt

et al. [25]

number, 

irreversibility, 

exergy efficiency, 

and thermohydraulic

efficiency

Prediction of  Nu in a

Regression

Berber and

2023

rectangular channel

Gurdal [26]

with a curved

winglet vortex

generator

Prediction of  Nu on

Regression

Oh and Guo

2023

microscale pin fin

[27]

heat sinks

Prediction of pressure

Regression

Huang et al. 

2023

drop and heat

Optimization

[28]

transfer rate in

microchannels and

optimization

Prediction of thermal

Regression

Sikirica et al. 

2023

resistance and

[29]

pumping power in

microchannels

Prediction of the skin

Regression

Rehman and

2023

friction coefficient in

Shatanawi

Algorithm

Task

Objective

Reference

Year

a non-Newtonian

[30]

stagnation point

fluid flow towards

two different

inclined heated

surfaces

Prediction of friction

Regression

Pai and Weibel

2023

factor and Nusselt

[31]

number for flow

through an in-line

array of square pin

fins under

developing flow

conditions

Prediction of Nu and

Regression

Shuqi et al. 

2023

pressure drop in

Optimization

[32]

microchannel heat

sinks having baffle

geometries

Prediction of frictional

Regression

Mauro et al. 

2024

pressure gradient

[34]

during two-phase

flow

ANN-TL

Prediction of the heat

Regression

Zhu et al. [35]

2024

transfer coefficient

in a mini-channel

two-phase heat

exchanger having

micro pin fins by

using transfer

learning model in

new domains

ANN-DE

Prediction of

Regression

Kumar et al. 

2023

convection and

[36]

radiation heat

Algorithm

Task

Objective

Reference

Year

transfer of wavy

porous fins

DNN

Prediction of the LED

Regression

Merenda et al. 

2020

junction temperature

[39]

Prediction of fouling

Regression

Sundar et al. 

2020

resistances of a

[40]

cross-flow heat

exchanger

Prediction of pressure

Regression

Shaeri et al. 

2023

drop and heat

Optimization

[41]

transfer coefficient

in air-cooled parallel

plate-finned heat

sinks

DNN

Controlling of

Regression

Wang et al. 

2024

DRL

conjugate heat

Control

[42, 43]

transfer in a 3-

dimensional open

cavity with an

immersed single

heating source

CNN

Prediction of turbulent

Regression

Kim and Lee

2020

heat transfer

[44]

coefficient

Prediction of effective

Regression

Adam et al. 

2024

thermal conductivity

Optimization

[45]

of solids

PINN

Solving the heat

Regression

Zobeiry and

2021

transfer PDEs with

Humfeld

convective boundary

[48]

conditions

Prediction of

Regression

Xu et al. [49]

2023

temperature and

heat flux fields in

porous media

Algorithm

Task

Objective

Reference

Year

MLPNN

Prediction of mixed

Regression

Acikgoz et al. 

2022

and forced

[50]

convection heat

transfer coefficients

for a radiant cooling

system

Prediction of

Regression

Alhakami et al. 

2022

convective, 

[51]

conductive, and

radiative heat

transfer of a porous

longitudinal fin

Prediction of flow

Regression

Agustiarini et

2023

boiling heat transfer

al. [53]

coefficient of

R1234yf in a

multiport mini

channel tube

CS-ANN

Prediction of

Regression

Waseem et al. 

2020

temperature

Optimization

[54]

distribution in

rectangular-shaped

porous fins and

optimization

ELM

Prediction of fin

Regression

Prakash et al. 

2023

temperature for

[55]

rectangular and

wavy fins. 

BAFIS

Prediction of outlet

Regression

Alotaibi et al. 

2023

velocity of water

[58]

flow inside a pipe

filled with copper

porous media

FL

Prediction of  Nu and  f

Regression

Soltanian and

2023

in conical spiral

Beigzadeh

tubes

[59]

Algorithm

Task

Objective

Reference

Year

RF

Prediction of heat

Regression

Kwon et al. 

2020

transfer coefficient

[62]

for variable rib

roughness

RF

Prediction of pressure

Regression

Suzuki et al. 

2023

ANN

drop and

[63]

temperature

increment in lattice-

structured heat sinks

RF

Prediction of pressure

Regression

Nguyen et al. 

2023

GA

drop and heated

Optimization

[64]

surface temperature

in a cooling channel

having pin-fin array

GBR

Prediction of pumping

Regression

Ma et al. [65]

2022

power and  Nu, and

Optimization

assessment of the

relationship between

different geometric

parameters and heat

transfer performance

for a microchannel

heat sink

MLPNN

Prediction of  Nu on

Regression

Kim et al. [66]

2022

XGBoost

micro-pin fin heat

LightGBM

sinks

ANN

Prediction of flow

Regression

Zhou et al. 

2020

XGBoost

condensation heat

[67]

RF

transfer coefficient

AdaBoost

in mini/micro-

channel. 

ExtraTrees

Prediction of the flow

Regression

He et al. [70]

2022

DTR

boiling heat transfer

AdaBoost

coefficient of liquid

RF

hydrogen

GBR

Algorithm

Task

Objective

Reference

Year

XGBoost

k-NN

Bagging

MLR

Prediction of  Nu for

Regression

Nagesha [71]

2023

turbulent jet

impingement cooling

k-NN

Prediction of the heat

Regression

Krishnayatra

2020

transfer coefficient

et al. [73]

for different

geometric

parameters. 

SVM

Prediction of  Nu and

Regression

Hughes et al. 

2022

GBR

friction factor during

[78]

RF

condensation in

ANN

micro- and macro-

channels

LS-SVM

Prediction of heat

Regression

Shivanian et

2023

transfer and fin

al. [80]

efficiency for

different fin shapes

SVM

Prediction of two-

Regression

Shourehdeli et

2023

ANN

phase friction factor

al. [81]

GBR

and Chisholm

RF

parameter in

condensing and

adiabatic flow in

micro, mini, and

macro channels. 

RF

Prediction of

Regression

Hughes et al. 

2021

SVM

condensation

[82]

ANN

frictional pressure

drop and heat

transfer coefficient

for horizontal

microchannel and

macrochannel flow

Algorithm

Task

Objective

Reference

Year

of different

refrigerants

DNN

Prediction of the heat

Regression

Saeed et al. 

2023

MLR

transfer coefficient

Optimization

[83]

k-NN

and pressure drop in

MLPNN

minichannel heat

DTR

sinks. 

RF

GBR

GA

Enhancement of

Optimization

Castellanos et

2023

convective turbulent

al. [86]

heat transfer in TBL

SVM

Prediction of flow

Regression

Parveen et al. 

2020

GEP

boiling heat transfer

[90]

ANN

coefficient of R134a

in micro/mini-

channels

3.1.3.1 Neural Networks-Based Algorithms

Pacheco-Vega  et  al.  [22]  used  ANN  to  predict  the  heat transfer  of  humid  air–water  heat  exchangers,  and  reported

more  accurate  predictions  than  conventional  correlations. 

They emphasized that the network can capture the complex

physics in a heat exchanger very well, but does not provide

physical  insight  into  the  phenomena.  Athavale  et  al. [23]

used ANN to predict the temperature and flow profile in data

centers.  They  reported  good  agreement  between  the  ANN

predictions  and  CFD/HT  simulations  with  an  average  error

below  0.6°C  for  rack  inlet  temperatures  and  0.7%  for  tile

flow rate. Souayeh et al. [24] used ANN to predict the  Nu,  f, 

and  thermohydraulic  efficiency  of  a  flow  in  a  circular

channel  with  corrugated  spring  tape  inserts.  Their  model

was able to predict the  Nu,  f, and thermohydraulic efficiency

with  97%  accuracy.  Bhattacharyya  et  al. [25]  examined

turbulent flow and heat transfer through a circular tube with

grooved  tape  inserts.  They  employed  an  ANN  model  for

regression  analysis  to  predict  heat  transfer,  pressure  drop, 

thermohydraulic  efficiency,  irreversibility,  and  exergy

efficiency.  Berber  and  Gurdal  [26]  used  an  ANN  model  to predict  the   Nu  by  using  the  input  values  of   Re,  angle  of wing, and heater plate temperature in a rectangular channel

with a curved winglet vortex generator. The model predicted

the  Nu with a correlation coefficient (R2) of 0.9879. Oh and

Guo [27] used ANN to predict  Nu for forced convection heat transfer  of  microscale  pin  fin  heat  sinks  for  different

geometries. They trained their model with the experimental

data in the literature and reported better accuracy than the

correlations  in  the  literature.  Huang  et  al. [28]  used  ML  to optimize  microchannel  design.  They  improved  the  heat

transfer  rate  by  5%,  and  decreased  the  pressure  drop  by

37%  compared  to  their  initial  structure.  They  also  reported

that using the ANN model increased the prediction speed 63

times compared to traditional numerical models with a high

prediction  accuracy.  Sikirica  et  al.  [29]  performed

microchannel  heat  sink  optimization  by  using  different  ML

algorithms.  They  reported  that  neural  networks  can  make

accurate  predictions,  and  be  used  to  create  an  acceptable

surrogate  model.  They  also  noted  that  the  proposed

methodology  can  generate  acceptable  solutions  and

requires one-fifth of computational time. 

Rehman  and  Shatanawi  [30]  used  an  ANN  model  to

predict  the  skin  friction  factor  in  a  non-Newtonian

stagnation  point  fluid  flow  towards  two  different  inclined

heated  surfaces,  where  velocities  ratio  parameter, 

temperature  Grashof  number,  Casson  fluid  parameter, 

solutal  Grashof  number,  and  magnetic  field  parameter  are

the  inputs.  They  reported  an  average  mean  squared  error

(MSE) of 0.52%. Pai and Weibel [31] used ANN to predict the

friction factor and Nusselt number for flow through an in-line

array  of  square  pin  fins  under  developing  flow  conditions. 

They  found  that  ANNs  with  one  hidden  layer  having  20

nodes exhibit excellent performance for their case. 

Shuqi  et  al.  [32]  performed  a  study  on  optimizing  baffle geometries  for  maximized  heat  transfer  efficiency  in

microchannel  heat  sinks  using  ANN.  They  used  ANN  to

predict   Nu  and  pressure  drop.  They  reported  R2  values

around  0.98,  and  46%  enhancement  in  the  overall

performance after the optimization is reported compared to

a reference study [33]. Mauro et al. [34] used ANN to predict the  frictional  pressure  gradient  during  two-phase  flow  and

compared  it  with  the  predictions  of  conventional

correlations.  They  used  an  extensive  database  with  8000

data  points  from  49  sources  to  train  their  ANN  model  with

two hidden layers. 

The  transfer  learning  (TL)  method  is  an  ML  technique

where a model trained with a previous dataset is reused or

used  as  the  starting  point  for  another  model  to  predict another  dataset.  This  approach  saves  time  and  resources

and can be applied to different but related datasets. Zhu et

al. [35] used ANN-TL to predict the heat transfer coefficient in  a  mini-channel  two-phase  heat  exchanger  having  micro-pin fins. They compared the conventional ML model and the

TL  model.  The  results  showed  that  the  conventional  ML

model  performs  well,  with  an  overall  deviation  of  4.11%. 

However,  their  TL  model  showed  an  overall  deviation  of

4.28% with 70% dataset from the new domain. This showed

that TL frameworks can extend conventional ML models into

different domains with reasonable prediction accuracy. 

Kumar et al. [36] developed a hybrid model that combines

the  differential  evolution  (DE)  algorithm  with  an  ANN  to

predict  the  convection  and  radiation  heat  transfer  from

wavy porous fins. They stated that one of the drawbacks of

ANN  is  that  it  converges  to  a  local  solution,  instead  of  a

global  one.  They  proposed  combining  DE,  developed  by

Storn  [37],  with  the  ANN  method.  The  DE-ANN  forecasting model  showed  consistent  performance,  while  conventional

ANN methods often provided overfit. 

ANNs  can  be  used  by  implementing  different  methods. 

Deep neural networks (DNN) are ANNs that can learn more

complex  data  and  relationships  using  multiple  hidden

layers.  A  significant  advantage  of  DNNs  is  that  they  can

capture  the  relationships  in  data,  irrespective  of  the

complexity or nonlinearity of the dataset, due to their higher

number of hidden layers [38]. Therefore, they are preferred

in  engineering  applications  in  which  datasets  have  high

complexity and nonlinearities. Merenda et al. [39] used DNN

to  predict  the  light-emitting  diode  (LED)  junction

temperatures. They reported good accuracies (±2°C) for the

temperature range of interest (50–110°C). Sundar et al. [40]

used DNNs to predict fouling resistances in a cross-flow heat

exchanger used in waste heat recovery. They reported good

accuracies,  having  R2  values  over  99%.  Shaeri  et  al. [41]

used  DNN  to  predict  the  heat  transfer  coefficient  and

pressure  drop  in  air-cooled  parallel  plate-finned  heat  sinks

subjected  to  laminar  flow.  They  conducted  an  optimization

through DNN-based models and a greedy search algorithm. 

Deep  reinforcement  learning  (DRL)  is  a  learning  method

often used with DNNs. This learning approach uses an agent

to  explore  the  environment.  The  agent  learns  from  the

consequences of its actions, and updates itself accordingly. 

Wang  et  al. [42]  used  DRL  to  achieve  efficient  forced convection control over an open cavity model with single or

multiple  heat  sources  immersed.  Compared  to  intuitive

control,  they  reported  a  reduction  of  8°C  due  to  improved

cooling  with  the  DRL  agent.  Wang  et  al.  [43]  used  the  DRL

for  intelligent  control  of  conjugate  heat  transfer  in  a  3D

open  cavity  with  an  immersed  single  heating  source.  They

proposed  a  novel  strategy  that  uses  the  policy  learned  in

two-dimensions  and  transfers  it  into  a  3D  environment, 

reducing the high computational cost of DRL agent training. 

Convolutional  neural  networks  (CNN)  are  another  type  of

neural  network  primarily  used  for  image  processing.  The

main idea behind the CNNs is to extract significant features

from the input data by filtering the data in the connections. 

Kim  and  Lee  [44]  used  CNN  to  predict  the  turbulent  heat transfer.  They  reported  that  CNN  can  predict  the  heat  flux

with  a  correlation  coefficient  of  0.98,  compared  to  direct

numerical  simulation  (DNS).  They  also  reported  that  the

model  shows  a  similar  accuracy  even  at   Re  values  three

times higher than the trained domain. Adam et al. [45] used

CNN  to  predict  effective  thermal  conductivity.  The  model  is

inspired by the visual geometry group (VGG) networks. They

trained  their  model  using  130,000  unique  binary  images, 

and  they  achieved  MAPE  of  0.35%  when  the  thermal

conductivity  of  the  solid  was  ten  times  higher  than  that  of

the fluid. However, they reported MAPE of 2.35% when the

thermal  conductivity  of  solid  and  fluid  is  closer  to  each

other. They reported that the prediction time is 15 ms for a

single  image  with  128  ×  128  pixels,  3  to  5  orders  of

magnitude faster than the finite volume method (FVM). 

Another  type  of  ANN  is  the  physics-informed  neural

network (PINN). PINNs use the governing partial differential

equations  (PDEs)  of  the  physical  phenomena  as  a  loss

function,  along  with  other  loss  functions  with  the

measurements,  boundary  conditions,  and  initial  conditions

[46]. Although PINNs can work on a coarser mesh compared

to numerical solvers, speed is an issue for these algorithms, 

since  they  use  gradient  descent  optimization  [47]. Zobeiry and Humfeld [48] used PINN to solve the heat transfer PDE

with  convective  boundary  conditions.  They  reported  that, 

unlike neural networks, PINNs with engineered features can

capture  the  physics  of  the  problem  to  make  accurate

predictions  beyond  the  training  zone.  Xu  et  al.  [49]  used PINN  to  predict  the  temperature  and  heat  flux  fields  in

porous media. They reported only a 2.49% average relative

error for effective thermal conductivity with respect to FVM. 

They  also  reported  five  orders  of  magnitude  acceleration

with respect to numerical simulations. 

Multilayer perceptron neural networks (MLPNNs) generally

refer to neural networks with one or more hidden layers with

perceptron  neurons.  Acikgoz  et  al. [50]  used  MLPNN  to predict  the  mixed  and  forced  convection  heat  transfer

coefficients  of  a  radiant  cooling  system.  They  trained  their

model with 10 neurons in the hidden layer, and 35 datasets. 

They  reported  excellent  agreement  between  the  predicted

and numerical results, with R values close to unity. Alhakami

et  al. [51]  used  MLPNN  to  predict  convective,  conductive, and  radiative  heat  transfer  of  porous  longitudinal

functionally  graded  fins  having  linear,  quadratic,  and

exponential  thermal  conductivity  profiles.  They  also  used

the  Tiki-Taka  algorithm  [52]  and  sequential  quadratic

programming to train the weights or the neurons in the NN

architecture  to  minimize  the  loss  function.  They  reported

percentages  of  absolute  errors  and  the  MSE  of  between

10−4 to 10−5, and 10−8 to 10−10, respectively. Agustiarini et

al. [53] used MLPNN to predict the flow boiling heat transfer coefficient of R1234yf inside a multiport mini-channel tube. 

The  model  predicted  the  boiling  heat  transfer  coefficient

with  a  mean  deviation  of  7.12%.  They  reported  that  this value  is  better  than  those  of  others,  such  as  the

superposition, asymptotic, and flow pattern models. 

Cuckoo  search  ANN  (CS-ANN)  is  a  method  that  uses

cuckoo search optimization to train the ANN. Waseem et al. 

[54]  used  a  CS-ANN  to  predict  the  temperature  distribution in  rectangular-shaped  porous  fins  and  optimize  the

parameters. 

Extreme learning machines (ELM) are also a specific type

of  ANN.  Their  distinctive  feature  is  that  they  have  a  single

hidden  layer,  where  they  initialize  the  input  weights

randomly  and  directly  calculate  the  output  weights.  Since

they  don’t  use  an  iterative  approach,  ELMs  are  faster  than

ANNs. Prakash et al. [55] used an ELM model to predict the

fin  temperature  for  rectangular  and  wavy  fins.  They  stated

that  ELMs  have  better  capabilities  and  are  less  prone  to

overfitting than traditional neural networks. 

3.1.3.2 Fuzzy Logic-Based Algorithms

Adaptive network-based fuzzy inference system (ANFIS) is a

hybrid ANN/ML algorithm that combines neural network and

fuzzy logic (FL) [56], when dealing with fuzzy datasets. The ANFIS algorithm is computationally costly compared to other

methods since it has several fuzzy rules. Seyedashraf et al. 

[57] used ANFIS and MLPNN to predict the water depth and

velocity. Alotaibi et al. [58] used an AI algorithm to learn and map  their  CFD  data  for  water  flow  inside  a  pipe  filled  with

copper  porous  media.  They  used  a  bee  algorithm-based

fuzzy  inference  system  (BAFIS)  and  reported  the  highest

intelligence  as  R2  =  0.97.  Soltanian  and  Beigzadeh  [59]

used FL models to predict  Nu and  f with different geometric

and  velocity  input  parameters  in  conical  spiral  tubes.  They

used  the  Takagi-Sugeno  Fuzzy  Inference  System  [60],  and reported  good  agreement  between  the  FL  prediction  and

numerical  results  with  a  maximum  mean  relative  error  of

6.2%. 

3.1.3.3 Tree-Based Algorithms

Random  forest  (RF),  first  proposed  by  Tin  Kam  Ho  in  1995

[61], is  one  of  the  most  used  algorithms  in  the  literature. 

The RF algorithm creates several randomized decision trees

and  makes  a  decision  by  averaging  the  decisions  from

them.  RF  models  are  useful,  especially  in  engineering

applications,  due  to  their  simplicity  and  accessibility. 

Another  advantage  of  RF  is  that  it  can  show  the  feature

importance,  which  is  helpful,  especially  for  engineering

problems. Kwon et al. [62] used an RF algorithm to predict

the  convection  heat  transfer  coefficients  for  a  high-order

nonlinear  heat  transfer  problem  with  an  R2  higher  than

0.966.  Suzuki  et  al.  [63]  first  analyzed  the  heat  transfer properties  of  lattice-structured  heat  sinks  by  CFD/HT

simulations.  Then,  they  let  their  ML  model  learn  the

relationship  between  results  and  eleven  structural  features

using  RF  feature  importance.  Using  this  model,  they

obtained the important features for pressure drop and heat

transfer. They then used neural networks to predict pressure

drop and temperature increment. Nguyen et al. [64] used RF

algorithm  to  predict  the  pressure  drop  and  the  heated

surface  temperature  in  a  cooling  channel  having  pin  fin

array.  Therefore,  they  easily  obtained  a  large  number  of

datasets  for  use  in  the  subsequent  genetic  algorithm  (GA)

optimization.  They  reported  an  R2  value  of  0.98  for  the

testing dataset. 

Gradient boosting (GB) methods such as extreme gradient

boosting  (XGBoost),  light  gradient  boosting  machine

(LightGBM),  or  gradient  boosting  regression  (GBR)  differ

from  the  RFs  in  terms  of  ensembling  methods.  Unlike

classical  RFs,  GB  methods  combine  the  series  of  weak

learner trees sequentially; therefore, each new tree corrects

the  error  coming  from  the  previous  tree.  The  loss  function

calculates  the  error,  and  the  negative  gradient  of  the  loss

function defines the next tree. Ma et al. [65] used the GBR

algorithm  to  assess  the  relationship  between  different

geometric  parameters  and  heat  transfer  performance  for  a

microchannel heat sink. They predicted pumping power and

 Nu  with  R2  values  greater  than  0.999.  Kim  et  al. [66]

collected  906   Nu  data  points  from  15  studies  on  micro-pin

fin  heat  sinks  and  used  the  collected  data  to  train  three

different  ML  methods  listed  as  MLPNN,  XGBoost,  and

LightGBM.  They  reported  superior  prediction  for  all  ML

models compared to their newly proposed correlation. Zhou

et al. [67] performed a study in which they used four ANN, 

RF,  AdaBoost,  and  XGBoost,  to  predict  flow  condensation

heat  transfer  coefficient  in  mini/micro-channel.  They  used

4,882  data  points  from  37  sources  from  the  literature  to train  the  algorithms.  It  is  reported  that  ANN  and  XGBoost

models  showed  the  best  predicting  accuracy  with  MAEs  of

6.8% and 9.1%, respectively. 

Decision Tree Regression (DTR) uses a single tree. It splits

the  dataset  to  reduce  the  variance,  and  finally  ends  up

dividing  the  dataset  into  several  regions.  Extremely

Randomized  Trees  (ExtraTrees)  [68]  algorithm  is  another decision  tree  algorithm.  This  algorithm  is  similar  to  RF  but

has differences in data selection. RT uses bootstrap replicas, 

but  ExtraTrees  uses  the  entire  original  sample.  Moreover, 

while  RF  chooses  the  optimal  split,  ExtraTrees  chooses

randomly  [69]. This  makes  ExtraTrees  faster  in  terms  of computation. 

He et al. [70] used eight different ML algorithms to predict the  flow  boiling  heat  transfer  coefficient  of  liquid  hydrogen

using a dataset having 864 data points from three sources. 

The algorithms are listed as DTR, AdaBoost, RF, ExtraTrees, 

GBR,  XGBoost,  k-nearest  neighbor  (k-NN),  and  bootstrap

aggregation  (Bagging).  They  reported  that  ExtraTrees

showed  the  best  performance  among  the  different  models

with an R2 value of 0.9933. 

3.1.3.4 Other Regression Algorithms

Multiple Linear Regression (MLR) is a statistical method that

extends  linear  regression  to  a  higher  number  of  features. 

Nagesha  [71]  proposed  eight  MLR  machine-learning

algorithms  to  assess  the  heat  transfer  performance  of

turbulent  jet  impingement  cooling.  They  reported  that  the ML  models  improved  the  prediction  accuracy  ranging  from

20.4%  to  66.5%,  compared  to  the  conventional  regression

models in estimating heat transfer performance. 

k-NN,  developed  in  1951  by  Fix  and  Hodges  [72], is  an  ML

algorithm  used  for  classification  and  regression  problems. 

The  k  is  the  number  of  data  points  chosen  nearest  to  the

predicted data point. The k-NN algorithm stores the training

data, and uses it to predict the results using the k number of

nearest  data  points.  Krishnayatra  et  al.  [73]  used  the  k-NN

algorithm to predict the thermal performance of fins for an

axial  finned-tube  heat  exchanger,  and  reported  high

prediction accuracies. 

Gaussian  process  regression  (GPR)  [74]  is  another  ML

algorithm that can be used for regression. Unlike traditional

regression  methods,  the  Gaussian  process  provides  a

probability distribution over possible functions that fit a set

of points. Also, instead of precise predictions. GPR provides

a  range  of  possible  values,  with  a  confidence  level  around

each possible value. 

Response surface methodology (RSM) is an ML regression

method  introduced  by  Box  and  Wilson  in  1951  [75]. It  is often  used  for  optimization  problems.  This  method  usually

involves  conducting  experiments  or  numerical  simulations, 

and defining the effects of independent variables as factors

on  the  response  variable.  Often,  it  uses  two  independent

variables.  The  mathematical  model  defines  the  relation

between  the  factors  and  the  response  variable.  The

regression model then optimizes the independent variables. 

Support  vector  machine  (SVM)  is  known  mainly  as  a

solution  for  binary  classification  problems  by  conducting

convex optimizations [76]. However, they can also be used

for regression analysis. The main idea behind the SVM is to

find  a  hyperplane  in  an  N-dimensional  space,  and  classify

the  data  in  which  N  shows  the  number  of  features.  This

hyperplane  can  also  be  used  for  regression  data  as  it

transforms to a ε-tube for the regression [77]. Hughes et al. 

[78]  used  four  ML  models  (SVM,  RF,  GBR,  and  ANN)  to predict   Nu  and  frictional  pressure  gradient  during

condensation  of  three  zeotropic  mixtures  (ethane/propane, 

R245fa/pentane, and R410A) in micro- and macro-channels. 

They  reported  that  the  SVM  made  the  best   Nu  prediction

with  a  mean  absolute  percent  error  (MAPE)  of  5%,  and  GB

made  the  best  friction  factor  prediction  with  a  MAPE  of

5.5%, among other algorithms. The Least Squares SVM (LS-

SVM) algorithm, proposed by Suykens and Vandewalle [79], 

differs  from  traditional  SVMs  in  that  it  directly  focuses  on

minimizing the sum of squared errors between the data and

predictions. Shivanian et al. [80] used the LS-SVM model to

predict  fin  efficiency  and  heat  transfer  rate  on

convection/radiation heat transfer of rectangular, triangular, 

trapezoidal,  and  concave  parabolic-shaped  fins.  They

reported  a  good  agreement  between  the  numerical  results

and predictions. 

Shourehdeli  et  al. [81]  used  four  ML  algorithms,  namely, ANN, SVM, GBR, and RF, to predict two-phase friction factor

and Chisholm parameter in condensing and adiabatic flow in

micro, mini and macro channels. They collected 11,411 data

points  from  80  sources  to  train  the  algorithms.  They

reported that GBR performs better than other models, with

a  mean  absolute  relative  deviation  of  3.24%  for  the

prediction  of  frictional  pressure  drop.  Hughes  et  al. [82]

used  4,000  data  points  to  train  SVM,  RF,  and  ANN

algorithms  to  predict  the  condensation  frictional  pressure

drop  and  heat  transfer  coefficient  for  horizontal

microchannel  and  macrochannel  flow  of  refrigerants, 

including  synthetic  refrigerants,  hydrocarbons,  and  natural

refrigerants.  They  reported  that  the  RF  performs  the  best

among others, with an absolute average deviation of about

4% both for pressure drop and heat transfer. 

Saeed  et  al.  [83]  used  different  ML-based  regression

techniques, namely, MLR, k-NN, MLPNN, DTR, RF, GBR, and

DNN,  to  predict  the  heat  transfer  coefficient  and  pressure

drop  in  minichannel  heat  sinks.  They  reported  that  DNN

provided  the  best  predictions  for  both  heat  transfer

coefficient  and  pressure  drop.  They  also  reported  that  the

best R2 value is obtained by a 3-layer network. 

3.1.3.5 Gene-Based Algorithms

GA,  developed  by  Holland  and  collaborators  in  the  1960s

and  1970s  [84, 85], is  a  search  and  optimization  algorithm inspired by natural selection and genetics in nature. Hence, 

GAs  are  usually  used  for  optimization  problems  in  heat

transfer.  Castellanos  et  al. [86]  used  a  GA  to  enhance  the convective  heat  transfer  in  the  turbulent  boundary  layer

(TBL) of a flat plate. They reported a 17.5% enhancement in

heat transfer with respect to the unperturbed TBL. 

Gene expression programming (GEP), invented by Ferreira

[87], and  genetic  programming  (GP),  developed  by  Koza

[88], are  other  variations  of  GA.  GEP  also  uses  populations of  individuals,  selects  them  according  to  fitness,  and

introduces  genetic  variation  using  genetic  operators.  The

three  algorithms  differ  in  the  nature  of  the  individuals.  GA

uses  linear  strings  of  fixed  length  (chromosomes),  GP  uses

nonlinear entities of different sizes and shapes (parse trees), 

and  GEP  also  uses  nonlinear  entities  of  varying  size  and

shapes  (expression  trees),  but  these  complicated  entities

are  encoded  as  simple  strings  of  constant  length  [89]. 

Parveen  et  al.  [90]  used  GEP,  ANN,  and  SVM  to  predict  the flow boiling heat transfer coefficient of R134a in micro/mini

channels. They reported SVM is the best model among other

AI-based  models  for  predicting  the  heat  transfer  coefficient

of R134a with an R2 value of 0.9749. 

Different AI/ML methods used in heat transfer studies are

shown in Figure 3.4. ANN is excluded here, since it includes various  types  of  neural  network  methods.  The  most

common  AI/ML  methods  are  DNN  and  SVM  algorithms, 

which are slightly more intuitive than others. GA is the most

common  optimization  tool,  followed  by  RF.  RFs  are  mostly

preferred  due  to  their  ability  to  show  the  importance  of
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features  in  datasets.  This  ability  makes  them  attractive  for

engineering  problems.  Overall,  it  can  be  deduced  that

neural networks have significant dominance in the literature

of AI/ML, since many of the algorithms in the list are a type

of neural network. The distribution of methods in the studies

on  different  fundamental  topics  is  depicted  in  Figure  3.5. 

Generally, the methods are distributed similarly in different

topics.  However,  some  methods  are  preferred  for  some

specific fields. GA is preferred for multi-phase transport, and

conduction.  DNNs,  which  are  suitable  for  more  complex

problems, are preferred in studies on multi-phase transport

and  combustion.  PINNs  are  mostly  preferred  in  studies

where phase change is present. 

FIGURE 3.4  Different AI/ML methods used in the studies between 1993 and 2024 [20]. 
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FIGURE 3.5  Different methods used in AI/ML studies between 1993 and 2024

[20]. 

3.1.4 STUDIES ON AI/ML USE IN METAL FOAM HEAT

TRANSFER

There are also several studies on the use of AI/ML to predict

different parameters of MFs as summarized in Table 3.2. 

TABLE 3.2

AI/ML Studies on Convective Heat Transfer

Algorithm

Task

Objective

Reference

Year

DNN

Prediction of the

Regression

Jafarizadeh et

2023

SVM

constants representing

al. [91]

OLS

Darcy and non-Darcy

Regression

Jafarizadeh et

2023

terms in metal foams

RRR

al. [92]

LRR

RF

Algorithm

Task

Objective

Reference

Year

ACOFIS

Prediction of turbulence

Regression

Babanezhad

2020

ANFIS

eddy dissipation of

et al. [93]

water flow in a heated

metal foam tube

ANFIS

Prediction of axial

Regression

Babanezhad

2020

velocity in a metal

et al. [94]

foam tube that is

exposed to a constant

heat flux

ANN

Prediction of the ratio of

Regression

Otaru et al. 

2023

 Re to maximum  Re

[95]

SVM

Prediction of  Nu and  f in

Regression

Tikadar and

2022

ANN

metal foam heat sinks

Kumar [96]

 k-NN

RF

XGBoost

ANN

Prediction of  Nu and  f for

Regression

Tikadar and

2023

RF

an integrated pin fin-

Kumar [97]

XGBoost

metal foam heat sink

SVM

MLPNN

Prediction of transient

Regression

Li et al. [98]

2023

melting fraction and

heat storage

ANN

Prediction of transient

Regression

Xiao et al. 

2023

(LSTM-

PCM temperature in a

[99]

BP)

multi-channel thermal

storage tank with metal

foam

SVM

Prediction of cell

Regression

Zhang et al. 

2020

GA

performance of a

Optimization

[100]

proton exchange

membrane fuel cell and

optimization of

geometrical

parameters. 

Many  studies  are  conducted  to  predict  the  constants

representing Darcy and non-Darcy terms in MFs. Jafarizadeh

et  al. [91]  trained  DNN  and  SVM  algorithms  with  CFD

simulation  data  of  MF,  and  used  those  models  for  the

prediction  of  the  constants  representing  Darcy  and  non-

Darcy  terms.  They  reported  R2  values  of  0.9836  and  0.978

for  DNN  and  SVM,  respectively.  Jafarizadeh  et  al. [92]

performed  pressure  drop  predictions  of  MFs  by  ML  models. 

They used ordinary least squares (OLS), Lasso regularization

regression (LRR), Ridge regularization regression (RRR), and

RF.  It  is  reported  that  RRR  and  OLS  have  better  accuracy

than the others, and give the lowest MAE and RMSE values

for the coefficients for pressure drop. 

Some  studies  focused  on  the  use  of  AI/ML  for  the

prediction  of  hydrodynamic  characteristics  of  the  MFs. 

Babanezhad et al. [93] studied the prediction of turbulence

eddy dissipation of water flow in a heated MF tube using AI. 

They  integrated  the  ant  colony  optimization-based  fuzzy

inference  system  ACOFIS  with  CFD/HT  modeling.  They

reported  good  agreement  with  CFD/HT  data,  and  faster

learning  compared  to  the  adaptive  network-based  fuzzy

inference  system  (ANFIS).  Babanezhad  et  al. [94]

investigated axial velocity in a MF tube that is exposed to a

constant heat flux, using the ANFIS model. Otaru et al. [95]

used  ANN  to  predict  the  ratio  of  pore-diameter   Re  to

maximum  pore-diameter   Re  in  aluminum  foams.  They

stated  that  the  three-layer  ANN  model  is  the  best  for

predictions  and  reported  that  the  predictions  using  this

approach  were  within  experimental  scatter,  with  deviations between 0.3% and 9%. 

The prediction of  Nu and  f in MFs is another objective for

AI/ML  algorithms.  Tikadar  and  Kumar  [96]  predicted  the thermal/hydraulic performance of MFs by using five different

ML models. They reported that SVM and ANN outperformed

other  models  in  the  predictions.  In  a  subsequent  study, 

Tikadar and Kumar [97] used RF, XGBoost, SVM, and ANN to

predict the pressure drop and heat transfer of an integrated

pin  fin-MF  heat  sink.  They  reported  that  the  ANN  model

performed the best among others in predicting the thermal-

hydraulic performance of the heat sinks with a lower mean

absolute percentage error. 

MFs  can  be  used  with  phase  change  materials  (PCM). 

Therefore, some studies used AI/ML methods to predict the

parameters  related  to  PCM  applications.  Li  et  al.  [98]  used MLPNN  to  predict  the  transient  melting  fraction  and  heat

storage  of  a  vertical  latent  heat  thermal  energy  storage. 

They  used  204  groups  of  datasets  and  reported  2.0195%

and  1.9578%  mean  relative  deviations  for  melting  fraction

and  heat  storage,  respectively.  Xiao  et  al.  [99]  used  long short-term  memory  back  propagation  (LSTM-BP)  neural

networks to predict liquid fraction and average temperature

of PCM versus time in a multi-channel thermal storage tank

filled with MF. They reported a good agreement between the

predicted and simulated values. 

Zhang  et  al.  [100]  used  SVM  to  predict  the  cell

performance  of  a  proton  exchange  membrane  fuel  cell  at

various  MF  porosities.  Then,  they  used  GA  to  optimize  the geometrical parameters. They obtained R2 values of 0.99 for

both training and test sets for SVM algorithm. 

3.2 CONJUGATE TRANSPORT MODEL FOR

METAL FOAMS

3.2.1 MODEL AND GOVERNING EQUATIONS

In order to illustrate results of practical interest, commercial

MFs  used  in  heat  exchanger  applications  were  analyzed  in

the  present  study.  As  seen  in  Figure  3.6,  µCT  scans  were used to obtain the internal structure of MFs for the CFD/CHT

simulations.  Using  the  µCT  data,  the  characteristics  of  the

MFs have been defined, such as the pore diameter ( dp), and

filament  diameter  ( df).  Additionally,  specific  surface  area  (

 asf) is calculated from the stereolithographic images of the

MFs. The permeability and form coefficient are derived using

the  experimental  pressure  drop  data  inside  the  MF. 

Derivation details for these parameters are explained in the

following section. All the geometric and derived parameters

of the MFs have been listed in Table 3.3. 

[image: Image 53]

FIGURE 3.6  Preparation of µCT scans for CFD analysis. 

TABLE 3.3

Geometric Parameters of the MFs

Parameter

Symbol

Low Density

High Density

Porosity

Ε

0.946

0.879

Pore density

–

10

10

Permeability (m2)

 K

1.22 × 10−7

0.87 × 10−7

Form coefficient

 F

0.090

0.079

Filament diameter (mm)

 df

0.40

0.48

Pore diameter (mm)

 dp

3.26

3.33

Interfacial area density (m-1)

 asf

477

732

The MFs utilized for CFD/HT simulations are cubes of side

8  mm.  The  computational  domain  is  extended  12  mm

upstream  and  36  mm  downstream  to  avoid  any  backflow

effects  and  ensure  the  flow  is  fully  developed.  Inlet  and

outlet boundary conditions were applied from the upstream

and  downstream  faces  of  the  enclosure.  Periodic  boundary

conditions were applied from both sides. Heat flux boundary

condition  was  applied  from  the  upper  side  of  the  heat

spreader.  Water  is  selected  as  the  coolant,  with  density, 

viscosity,  and  Prandtl  number  as  997.78  kg/m3,  9.772  ×

10−4 kg/ms, and 6.587, respectively. A mesh sizing study is

conducted  to  ensure  mesh  size  independence. Figure  3.7

shows  the  pressure  drop  and  average  heat  transfer

coefficients  with  varying  numbers  of  mesh  elements.  As  a

compromise  between  accuracy  and  computational  effort, 

773.4  K  mesh  elements  have  been  chosen.  Numerical

simulations were conducted for velocities in the 0.005 m/s–

0.06  m/s  range.  The  parameters  of  the  numerical

simulations can be seen in Table 3.4. 

[image: Image 54]

FIGURE 3.7  Mesh independence for pressure drop and heat transfer. 

TABLE 3.4

Parameters of the Numerical

Simulations

Parameter

Value

MF dimensions

8 × 8 × 8 mm3

Velocity range

0.005–0.06 m/s

Reynolds range (based on  H)

40–490

Heat flux

5.65 W/cm2

Convection in the fluid and coupled conduction in the solid

were  solved  by  the  finite  volume  method  with  OpenFOAM

with  the  chtMultiRegionFoam  module.  Laminar  flow  is

assumed  since  viscous  effects  are  dominant  due  to  the

stochastic  structure  of  the  MFs,  and   Re  based  on  the permeability  is  assessed  between  2  and  27,  and  the

transition  of  laminar  to  turbulent  is  usually  defined  around

50 in the literature [101, 102]. The governing equations are: The continuity:

∇. ( ρV ) = 0

(3.1)

The momentum transport:

∇. ( ρV V ) = −∇ p + ∇. ( μ∇ V )

(3.2)

The energy conversation:

∇. ( V ρCPT) = ∇. ( k∇ T)

(3.3)

The  numerical  calculations  were  conducted  at  TUBITAK

ULAKBIM,  High  Performance  and  Grid  Computing  Center

located in Türkiye. 

3.2.2 EXPERIMENTAL VALIDATION THROUGH PRESSURE DROP

A flow loop seen in Figure 3.8 is assembled to measure the

pressure  drops  for  the  examined  MFs.  A  Cole–Parmer  gear
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pump  with  a  flow  rate  range  of  0-4550  mL/min  is  used  for

circulating  the  fluid.  The  flow  rate  was  measured  by  a

McMillan  S-112  flowmeter  located  just  before  the  test

section.  A  plate  heat  exchanger  connected  to  a  chiller

ensures  constant  temperature  coolant  delivery  of  20°C  at

the  inlet.  The  MF  was  cut  and  placed  inside  the  inlet

manifold  as  a  flow  straightener.  An  inclined  manometer

measured  the  pressure  drop  between  two  holes  with  a  60

mm  distance  on  the  side  of  the  channel.  Accordingly, 

pressure  drop  per  meter  in  the  MFs  were  obtained.  Key

parameters of the experimental setup are provided in Table

3.5. 

FIGURE 3.8  Flow loop for the pressure drop measurements. 

TABLE 3.5

Measurement Parameters

Parameter

Value

Uncertainty

MF dimensions

94 × 94 × 8 mm

±0.1 mm

Velocity range

0.01–0.06 m/s

±0.0018 m/s

 Re range (based on  H)

80–490

±27

Pressure  drop  per  meter  were  also  obtained  from  the

numerical solutions. A comparison of the computed pressure

drop  values  with  the  experimental  data  can  be  seen  in

Figure  3.9,  where  there  is  generally  a  good  agreement between 7% and 12% for low density (LD) and high density

(HD), respectively. 

[image: Image 56]

FIGURE 3.9  Validation of the numerical model by the experimental pressure drop data. 

3.2.3 EMPIRICAL VALIDATION OF HEAT TRANSFER

COEFFICIENTS

The numerical model is a representative unit cell in the MF

region. Validation can be done using empirical models in the

literature.  Calmidi  et  al. [103]  used  the  following  equation for the local heat transfer coefficient:

 k

 h

 f CT Re 0.5 P r 0.37

 fs =

 df

(3.4)

 Re  in  Eqn.  3.4  is  based  on  filament  diameter.  CT   is  an empirical  coefficient  that  varies  between  0.5-0.9  in  the

literature  [103,  104]. In  this  study,  CT = 0.7  showed  the best agreement with the obtained data. Eqn. 3.4 is based on

the  Zukauskus  correlation  for  the  average  Nusselt  number, 

 Nu,  for  flow  over  cylinders  in  forced  convection  [105]. 

Another  correlation  for  the  average   Nu  for  flow  over  a

circular  cylinder  for  forced  convection  is  defined  by  Hilpert

for  Re in the range of 4–40 [106]:

 Nu = 0.911 Re 0.385 Pr 1/3

(3.5)

The empirical correlations shown in Eqs 3.4 and 3.5 were

used  to  validate  heat  transfer  results,  as  shown  in  Figure

3.10.  These  are  seen  to  be  in  good  agreement  with  the

numerical predictions. 
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FIGURE 3.10  Agreement between the numerical results and empirical correlations in the literature. 

3.3 RESULTS AND DISCUSSION

3.3.1 NUMERICAL SIMULATION RESULTS

[image: Image 58]

3.3.1.1 Flow Visualization

Flow  patterns  for  MFs  of  10  PPI  having  different  porosities

are depicted in Figure 3.11 for the inlet velocity of 0.02 m/s at  the  macro  level.  The  flow  locally  accelerates  in  the

structure up to 0.06 m/s for HD and 0.04 m/s for LD. 

FIGURE 3.11  Streamlines for (a) high-density ( ε = 0.879) and (b) low-density ( ε = 0.946) MFs. 

Since  the  temperature  gradient  is  present  only  in  the

vertical direction of the fluid, mixing of fluid in this direction

is desired. Figure 3.12 shows the longitudinal mixing of the fluid  around  the  nodes  and  filaments.  As  seen  for  both

porosities, 

filaments 

don’t 

significantly 

affect 

the

longitudinal  mixing  in  laminar  flow.  However,  the  nodes

block  the  flow  and  promote  longitudinal  mixing  along  the

flow. There is a significant effect of longitudinal mixing due

to  the  blockage  of  the  nodes  for  the  high-density  MF.  This

phenomenon can also be seen in the low-density MF but is

less  pronounced.  Flow  mixing  is  usually  included  in  the
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porous  media  equations  by  introducing  a  dispersion

coefficient  [107],  correlated  with  the  MF  parameters  [5, 

103]. However,  these  models  don’t  include  the  effect  of nodes  on  the  flow  mixing.  Instead,  the  permeability  is

included.  Permeability  is  defined  empirically  from  the

measured  pressure  drop  data  and  doesn’t  account  for  the

form  effects.  Instead,  the  form  coefficient  appears  in  the

quadratic  term  of  the  Hazen–Dupuit–Darcy  equation  [108, 

109]  and  accounts  for  the  pressure  drop  due  to  the  form effects:

Δ P =  μ V

2

Δ x

 K in +  CρVin

(3.6)

FIGURE 3.12  Longitudinal mixing within foam due to blockage of nodes in the flow field for (a) high-density ( ε = 0.879) and (b) low-density ( ε = 0.946) MFs. 

Thus, the correlations for the dispersion coefficient should

incorporate the impact of nodes that are directly accounted

[image: Image 60]

for.  This  is  an  area  that  could  be  explored  further  in  future

studies. 

3.3.1.2 Heat Transfer Results

Figure  3.13  shows  the  temperature  distribution  for  the  two MFs. The temperature normal to the heated surface is more

homogenous  in  the  high-density  MF  due  to  the  higher

effective  thermal  conductivity.  Therefore,  regions  with  a

temperature  close  to  20°C  occupy  more  space  in  a  low-

density  MF.  This  results  in  more  unused  interfacial  area  for

heat transfer. 

FIGURE 3.13  Temperature contours of (a) high-density ( ε = 0.879) and (b) low-density ( ε = 0.946) MFs. 

Figures  3.14  and  3.15  show  the  local  heat  transfer coefficients  for  the  high-density  MF.  The  local  and  average

heat transfer coefficients are defined as follows:
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˙ q

 h

 local

 sf,  local = ( T −  Tinlet)

(3.7)

∫  hlocaldA

 h

 A

 sf,  ave =

 A

(3.8)

FIGURE 3.14  Front and rear view of  hsf,local for high-density ( ε = 0.879) MF. 

[image: Image 62]

FIGURE 3.15  Side and isometric view of  hsf,local for high-density ( ε = 0.879) MF. 

Since the flow impinges on the front side, a higher  hsf,local

is  observed  there.  The  rear  side  of  the  nodes  has  lower

 hsf,local due to the formation of wake regions. However, the

 hsf,local  on  the  rear  side  of  thinner  filaments  is  higher  than that of others, since the flow separation is less pronounced. 

This  can  be  seen  in  the  side  view  in  Figure  3.15.  Also,  the areas  in  the  vicinity  of  the  walls  have  lower   hsf,local  due  to the lower velocities. 

Figures 3.16 and 3.17 show the  hsf,local for low-density MF. 

The difference in  hsf,local between the front and rear sides of

the filaments is less pronounced since thinner filaments and

smaller  nodes  are  present  in  a  low-density  MF.  Since  the

rear  side  of  the  filaments  contributes  to  heat  transfer,  the

 have is slightly higher than for high-density MF. 
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FIGURE 3.16  Front and rear view of  hsf,local for low-density ( ε = 0.946) MF. 


FIGURE 3.17  Side and isometric view of  hsf,local for low-density ( ε = 0.946) MF. 

Figure  3.18  shows  the  side  view  of  the  fluid  and  solid portions of the high-density MF. The black lines in the figure

illustrate  the  solid–fluid  interface.  As  can  be  seen,  the

temperatures  of  solid  and  fluid  are  nearly  the  same  at  the

bottom. This shows the ineffective portion of the MF, where

the foam structure doesn’t contribute to heat transfer. This

can  be  addressed  using  the  appropriate  channel  height,  or
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by  introducing  surface  enhancements  such  as  pin  fins  that

direct  the  heat  to  the  bottom  areas  of  the  MF.  Similarly, 

Figure 3.19 shows the temperature distribution for the fluid and solid portions of the low-density MF. For the low-density

MF,  the  temperature  difference  between  the  fluid  and  solid

portions  is  less  pronounced  due  to  the  lower  effective

thermal conductivity. 

FIGURE 3.18  Temperature distribution in fluid and solid portions for high-density ( ε = 0.879) MF (Black-white lines show the solid–fluid interface). 

[image: Image 66]

FIGURE 3.19  Temperature distribution in fluid and solid portions for low-density ( ε = 0.946) MF (Black-white lines show the solid–fluid interface). 

Figure 3.20, Figure 3.21, Figure 3.22, Figure 3.23 show the heat  flux  on  the  surface  of  the  MFs.  As  can  be  seen,  the

heat  transfer  is  more  pronounced  at  the  upper  part  of  the

MFs and on the surfaces facing the flow. The rear surface of

the thinner filaments also contributes to heat transfer, since

the  flow  separation  is  less  pronounced.  Thus,  for  the  low-

density  MF,  the  contribution  to  heat  transfer  of  front  and

rear  surfaces  is  more  homogenous  compared  to  the  high-

density MF. 
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FIGURE 3.20  Front and rear view of ˙

 qlocal for high-density ( ε = 0.879) MF. 

FIGURE 3.21  Side and isometric view of ˙

 qlocal for high-density ( ε = 0.879)

MF. 
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FIGURE 3.22  Front and rear view of ˙

 qlocal for low-density ( ε = 0.946) MF. 

FIGURE 3.23  Side and isometric view of ˙

 qlocal for low-density ( ε = 0.946) MF. 

3.3.1.3 Heat Transfer Coefficient, Wall Heat Flux, 

and Temperature Profiles

The  variation  of  the  average  heat  transfer  coefficient,  wall

heat flux, solid temperatures, and fluid temperatures by the

height  at  the  inlet  velocities  of  0.02  m/s  and  0.06  m/s  for

high and low-density MFs were obtained to reveal the height

effects  on  the  overall  heat  transfer  in  the  MFs.  The  plane-

averaged  solid  and  fluid  temperatures  were  calculated  by slicing  the  domain  by  XY  planes  at  height  z  and  by

integrating  them  along  the  cross-section  and  dividing  it  by

the cross-section area as follows:

∫  TdA

 T

 A

 solid  pl  ave =

 Asolid

(3.9)

∫  TdA

 T

 A

 fluid  pl  ave =

 Afluid

(3.10)

Heat transfer coefficient and heat flux quantities occur at

the interface between solid and fluid. When the interface is

sliced  similarly,  the  intersection  of  the  interface  and  the

slice  plane  gives  contour  lines.  The  plane-average  of  the

heat  transfer  coefficient  and  heat  flux  were  calculated  by

integrating  them  along  these  contour  lines  and  dividing

them by the total length of the contour lines as follows:

∫  hsf,  localdL

 h

 L

 sf  pl  ave =

 L

(3.11)

∫  qlocaldL

˙ q

 L

 pl  ave =

 L

(3.12)

Figure 3.24, Figure 3.25, Figure 3.26, Figure 3.27 show the variation of the averages of the mentioned parameters with

height for two different MFs and velocities.  hsf  pl  ave shows a similar  trend  for  all  cases  where  it  decreases  due  to  the

lower  velocities  near  the  wall.  Moving  away  from  the  wall, 

 Tfluid  pl  ave  decreases  more  rapidly  when  compared  to Tsolid  pl  ave  and  that  enhances  heat  transfer.  Although  the sudden decrease in the fluid temperature increases the heat

transfer,  the  temperature  difference  between  the  solid  and

fluid  starts  to  decrease  after  some  point,  resulting  in  the

 qpl  ave  beginning  to  decline  after  its  peak  point.  Moving further  away  from  the  wall  decreases  the  temperature

difference  as  the  solid  and  fluid  temperatures  come  closer. 

Finally,  temperature  difference  and  heat  flux  reach  zero  at

some  point  depending  on  the  velocity  and  porosity,  except
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for  high-density  MF  at  0.02  m/s  inlet  velocity.  hsf  pl  ave increases  with  velocity  as  expected.  Although  two  different

MFs  have  different  ˙

 qpl  ave for a given velocity,  hsf  ave stays

at  similar  values.  Thus,  the  difference  in  ˙

 qpl  ave  for  two

different MFs at a given velocity results from the difference

in the temperature profiles of  Tsolid  pl  ave and  Tfluid  pl  ave. 

FIGURE 3.24  Variation of  hsf  pl  ave, ˙

 qpl  ave,  Tsolid  pl  ave, and  Tfluid  pl  ave with height for high-density ( ε = 0.879) MF at 0.02 m/s inlet velocity. 
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FIGURE 3.25  Variation of  hsf  pl  ave, ˙

 qpl  ave,  Tsolid  pl  ave, and  Tfluid  pl  ave with height for high-density ( ε = 0.879) MF at 0.06 m/s inlet velocity. 

FIGURE 3.26  Variation of  hsf  pl  ave, ˙

 qpl  ave,  Tsolid  pl  ave, and  Tfluid  pl  ave with height for low-density ( ε = 0.946) MF at 0.02 m/s inlet velocity. 

FIGURE 3.27  Variation of  hsf  pl  ave, ˙

 qpl  ave,  Tsolid  pl  ave, and  Tfluid  pl  ave with height for low-density ( ε = 0.946) MF at 0.06 m/s inlet velocity. 

When  the  velocity  increases,  the  temperatures  equalize

closer  to  the  heated  surface.  Thus,  the  effective  heat

transfer area reduces. When the two MFs are compared, the

intersection point of solid and fluid temperatures is closer to

the  heated  surface  for  low-density  MF,  due  to  the  lower

effective conductivity. 

Since  some  studies  have  reported  anisotropy  for  the  MFs

[16,  18,  19],  the  scanned  geometries  were  simulated  in three different directions. The results for the inlet velocity of

0.04  m/s  are  listed  in  Table  3.6  for  different  directions.  As can  be  seen  from  the  table,  the  maximum  difference  is

∼4%. 

TABLE 3.6

The Average Heat Transfer Coefficient of Different

Directions for 0.04 m/s Inlet Velocity

Parameter

X-Direction

Y-Direction

% Diff. 

Z-Direction

% Diff. 

High density

8179

8372

2.3

8515

4.1

Low density

8676

8701

0.3

8518

1.8

3.3.2 DNN RESULTS

3.3.2.1 DNN Modelling Parameters

Two separate models were developed for two different MFs. 

Each model consists of two input nodes, eight hidden layers, 

and  four  output  nodes,  as  seen  in  Figure  3.28.  Input  nodes take  velocity  and  height  parameters  as  float  numbers. 

Similarly  model  gives   hsf  pl  ave,  ˙

 qpl  ave,  Tfluid  pl  ave  and

 Tsolid  pl  ave parameters as float numbers. Eight hidden layers
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with a total of 375 nodes learn the conjugate heat transfer

relationship between input and output parameters. 

FIGURE 3.28  DNN input, output, and layer information. 

However, since the ML algorithms need a lot of data to be

trained,  the  obtained  data  from  CFD/HT  simulations  was

initially  normalized  and  then  augmented  by  a  B-Spline

surface  fitting  [110]. 6,270  input  and  output  pairs  were created by data augmentation to train the model. 

Dropout  layers  between  each  hidden  layer  and  L1-L2

regularizers are used to prevent underfitting and overfitting. 

3.3.2.2 DNN Training and Results

After the training of the DNN model, R2 values of 0.996 and

0.995  have  been  obtained  for  low-density  and  high-density
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foams,  respectively. Figure  3.29  shows  the  error  histogram for  low-density  and  high-density  foams  for  all  parameters. 

This figure shows that the error sits mainly in the 2% band. 

In Figure 3.30, the fitting of real and predicted values for all parameters is shown, where it can be seen that the trained

model  does  not  have  underfitting,  overfitting,  or  prediction

separation. 
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FIGURE 3.29  Error histogram of DNN algorithm for (a) high-density and (b) low-density MFs. 
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FIGURE 3.30  CFD data versus predictions of DNN for (a) high-density and (b) low-density MFs. 

The predictions of  hsf  pl  ave can be seen in Figure 3.31 for low-density and high-density MFs. A good agreement can be

seen, except for some sharp oscillations of  hsf  pl  ave towards the  z-direction,  which  are  not  captured  very  well.  The

predictions  of  ˙

 qpl  ave  also  shows  good  agreement  with  the

CFD/HT data, as shown in Figure 3.32. 

[image: Image 80]

[image: Image 81]

[image: Image 82]

FIGURE 3.31  DNN prediction of  hsf  pl  ave for (a) high-density and (b) low-density MFs. 
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FIGURE 3.32  DNN prediction of ˙

 qpl  ave for (a) high-density and (b) low-density

MFs. 

A  good  agreement  with  the  CFD  data  and  the  DNN

predictions for fluid and metal temperatures is also shown in

Figures 3.33 and 3.34. 
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FIGURE 3.33  DNN prediction of  Tfluid  pl  ave for (a) high-density and (b) low-density MFs. 
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FIGURE 3.34  DNN prediction of  Tsolid  pl  ave for (a) high-density and (b) low-density MFs. 

3.4 CONCLUSION

MFs  with  the  same  PPI  but  different  porosity  values  were

investigated numerically to explore the pore-level fluid flow

and  heat  transfer  characteristics,  and  to  find  ways  to

improve  their  heat  transfer  performance.  Accordingly,  the

contours  of  temperature,  interfacial  heat  transfer

coefficients, and heat flux distributions have been obtained. 

The  change  in  fluid  and  solid  temperature,  interfacial  heat

transfer  coefficient,  and  heat  flux  with  height  have  been

shown  by  computing  integrated  values  of  these  variables. 

The  integrated  values  have  been  used  to  train  a  DNN

algorithm to predict them without using CFD/HT simulations. 

The following key features have been found:

Fluid mixing due to the nodes is an important factor for

local  heat  transfer  at  the  pore  level,  which  should  be

included in the dispersion coefficient correlations. 

Increasing  porosity  decreases  the  effective  thermal

conductivity.  Therefore,  unused  interfacial  areas  for

heat transfer increase with porosity. 

The decrease in the heat transfer coefficient at the rear

sides  of  the  filaments  is  more  pronounced  for  high-

density  MFs  due  to  the  thickness  of  the  filaments.  This

results  in  a  lower  average  interfacial  heat  transfer

coefficient for high-density MFs. 

The temperature difference between the solid and fluid

portions,  which  is  the  main  factor  of  heat  transfer,  is

observed  to  be  marginal  in  the  regions  away  from  the

heated surface. This situation must be considered in the

channel design, especially for selecting the right height. 

Critically important zones for heat transfer are the solid–

fluid interfaces in the upper region where the interface

faces  the  flow,  as  shown  in  local  heat  flux  calculations

on the interfacial area. 

The  bottom  parts  of  the  MF  do  not  significantly

contribute  to  heat  transfer  since  the  temperature

differences  are  marginal.  This  situation  is  even  more

pronounced for the lower-density (higher porosity) MFs. 

Increasing  the  porosity  reduces  the  effective  interfacial area for the heat transfer at a given velocity. 

Anisotropy does not significantly impact heat transfer. 

3D  surface  plots  showed  good  agreement  between  the

numerical  data  and  the  predictions  obtained  by  using

the DNN algorithm for high-density and low-density MFs, 

as the R2 values are 0.996 and 0.995, respectively. 

The  computational  time  can  be  drastically  reduced  by

using DNN algorithms from several hours to minutes. 
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3.5 NOMENCLATURE

 A

area (m2)

 asf

interfacial area density (m−1)

 CP

specific heat (kJ/kgK)

 C

empirical  coefficient  related  to  the  heat

 T

transfer coefficient between fluid and solid

 df

filament diameter (m)

 dp

pore diameter (m)

 f

form coefficient

 H

height of the channel (m)

 hfs

interfacial heat transfer coefficient (W/m2K)

 K

permeability (m2)

 k

thermal conductivity (W/mK)

 Nu

Nusselt number

 P

pressure (Pa)

 Pr

Prandtl number

 Re

Reynolds number

˙ q

heat flux (W/m2)

 V

velocity (m/s)

 T

temperature (°C)

 Greek symbols

ε

porosity

 μ

dynamic viscosity (Pa s)

 ρ

density (kg/m3)

 Abbreviations

AI

artificial intelligence

ACO

ant colony optimization

adaptive 

network-based 

fuzzy 

inference

ANFIS

system

ANN

artificial neural network

CNN

convolutional neural networks

CFD

computational fluid dynamics

DE

differential evolution

DNN

deep neural network

DNS

direct numerical simulation

DRL

deep reinforcement learning

DTR

decision tree regression

ELM

extreme learning machines

FL

fuzzy logic

GA

genetic algorithm

GB

gradient boosting

GBR

gradient boosting regression

GEP

gene expression programming

GP

genetic programming

GPR

Gaussian process regression

HT

heat transfer

k-NN

k nearest neighbor

MF

metal foam

ML

machine learning

MLR

multiple linear regression

MLPNN

multilayer perceptron neural network

MPR

multivariate polynomial regression

MSE

mean squared error

PINN

physics-informed neural network

PPI

pores per inch

RF

random forest

RMS

response surface methodology

RMSE

root mean square error

SVM

support vector machine

TBL

turbulence boundary layer

TL

transfer learning

μCT

micro-computed tomography
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4.1 INTRODUCTION

Nanofluids,  colloidal  suspensions  of  nanoparticles  in  base

fluids, have garnered significant interest in various industrial

and 

engineering 

sectors 

due 

to 

their 

enhanced

thermophysical  properties  compared  to  conventional  fluids. 

These  properties  include  improved  thermal  conductivity, 

viscosity,  and  specific  heat,  making  nanofluids  promising

candidates  for  applications  in  electronic  cooling,  heat

exchangers,  energy  systems,  and  biomedical  fields. 

However,  accurately  predicting  the  complex  behavior  of

nanofluids  poses  challenges  for  traditional  modeling

approaches  due  to  their  dynamic  nature.  In  recent  years, 

artificial  intelligence  (AI)  has  emerged  as  a  powerful

alternative in modeling complex structures of nanofluids. AI

techniques,  such  as  artificial  neural  networks  (ANN)  and

machine learning, provide the ability to distinguish complex

patterns  and  relationships  within  large  datasets,  enabling

high-accuracy prediction of the properties of nanofluids. 

In  this  chapter,  important  thermophysical  properties  of

nanofluids  such  as  thermal  conductivity,  viscosity,  and

specific  heat  are  investigated,  along  with  applications  of  AI

tools in predicting the heat transfer properties of their use in

different  applications.  Through  a  comprehensive  review  of

current  studies,  the  availability  of  AI  techniques  and

advances in using AI tools to model and predict the behavior

of nanofluids are examined. 

4.2 AI APPLICATIONS IN DETERMINING

THERMOPHYSICAL PROPERTIES OF

NANOFLUIDS

In  the  rapidly  developing  field  of  nanotechnology,  the

integration  of  AI  tools  facilitates  the  determination  of

nanofluids  and  their  thermophysical  properties.  Nanofluids, 

which  are  colloidal  suspensions  of  nanoparticles  in  base

fluids,  exhibit  unique  and  improved  thermal  conductivity, 

viscosity,  and  specific  heat  properties  compared  to

conventional 

fluids. 

Accurate 

prediction 

of 

these

thermophysical  properties  is  crucial  for  a  variety  of

industrial  and  engineering  applications,  including  electronic

cooling,  heat  exchangers,  energy  systems,  and  biomedical

applications. The complex and dynamic nature of nanofluids

creates  challenges  for  traditional  modeling  approaches, 

making AI an important tool for its ability to discern complex

patterns and relationships within large datasets. Leveraging

the  advantages  of  AI  in  predicting  the  thermophysical

behavior  of  nanofluids  can  not  only  facilitate  the  design  of

more  efficient  and  innovative  technologies,  but  can  also

contribute  to  the  ongoing  research  of  nanomaterials  for

various applications in science and engineering. 

4.2.1 THERMAL CONDUCTIVITY

Çolak  [1]  created  five  distinct  ZrO2  nanofluids  using  water as  a  base,  with  volumetric  contents  of  0.0125%,  0.025%, 

0.05%,  0.1%,  and  0.2%.  A  two-step  process  including  the

use of a magnetic stirrer and an ultrasonic homogenizer was

recommended  for  the  manufacturing  of  nanofluids.  Their

thermal  conductivity  was  empirically  tested  within  the

temperature  range  of  10°C  to  65°C.  A  multi-layer

perceptron feed-forward back-propagation ANN was created

using the acquired experimental data. Furthermore, a novel

correlation  was  suggested  to  compute  the  thermal

conductivity  values  of  the  ZrO2/water  nanofluid.  The

findings  indicated  that  the  ZrO2/water  nanofluid  exhibited

superior  thermal  conductivity  in  comparison  to  the  base

fluid. Moreover, the thermal conductivity showed an upward

trend  with  rising  temperature  and  concentration.  The  ANN, 

trained  using  experimental  data,  accurately  predicted  the

thermal  conductivity  of  ZrO2/water  nanofluid  with  an

average  error  of  −0.41%.  However,  the  newly  constructed

correlation achieved an even higher level of accuracy, with

an  average  error  of  −0.02%.  These  numbers  indicate  that

the  findings  acquired  from  the  created  ANN  and  the

correlation  are  in  complete  accord  with  the  experimental

data. 

Çolak [2] examined the impact of neuron quantity on the

predicting accuracy of ANN using empirical data. Six distinct

ANNs were created specifically for this objective, utilizing a

combined  dataset  of  60  experimental  data  points  of

ZrO2/water  nanofluid  sourced  from  existing  literature.  An

ANN  was  constructed  with  varying  numbers  of  neurons:  5, 

10,  15,  20,  25,  and  30.  All  other  parameters  were  held

constant,  and  the  only  focus  was  on  examining  the  impact

of  the  number  of  neurons  on  prediction  performance.  The

performance  of  each  ANN  was  evaluated  individually,  and

then  their  performance  was  assessed  by  comparing  them

with one another. The investigation revealed that the model

with  the  most  optimal  predictive  performance  was

constructed  using  5  neurons,  resulting  in  an  average  error

rate  of  0.001%.  Conversely,  the  model  with  the  biggest

margin of error was built using 15 neurons, yielding an error

rate  of  0.026%.  Based  on  the  acquired  data,  it  was

determined  that  ANNs  are  typically  effective  predicting

tools.  However,  it  is  not  feasible  to  establish  a  fixed correlation to determine the optimal number of neurons for

optimizing ANNs. 

Öcal  et  al.  [3]  examined  the  thermal  conductivity  of  a hybrid  nanofluid  consisting  of  TiO2-CaCO3  particles

dispersed  in  water.  The  nanofluid  was  generated  using  a

two-step  technique  and  five  different  concentrations  were

used.  The  KD2  Pro  gadget  was  utilized  to  conduct  thermal

conductivity  measurements  within  a  temperature  range

spanning  from  10°C  to  60°C.  A  mathematical  correlation

and an ANN model were created using experimental data to

forecast  thermal  conductivity  based  on  concentration  and

temperature.  The  multilayer  perceptron  model,  which

utilized  a  feed-forward  back-propagation  ANN  with  10

neurons  in  its  hidden  layer,  was  chosen.  The  coefficient  of

determination  (R)  for  the  suggested  novel  mathematical

correlation was 0.9999, whereas it was 0.99913 for the ANN

model. The average error rate was computed as 0.005% for

the mathematical model and −0.02% for the ANN. 

Sahin  et  al. [4]  developed  two  distinct  ANNs  to  forecast the  thermal  conductivity  and  zeta  potential  of  Fe3O4/water

nanofluid. The experimental measurements were conducted

to determine the thermal conductivity and zeta potential of

the Fe3O4/water nanofluid at three distinct concentrations. A

novel  mathematical  correlation  is  suggested  to  compute

thermal  conductivity  by  utilizing  experimental  data  of

temperature  and  concentration.  The  suggested  model  is

particularly  notable  due  to  its  uniqueness,  as  it  allows  for

the  calculation  of  correlations  based  on  concentration, 

which  is  a  common  approach  in  the  literature.  The  thermal

conductivity and zeta potential values obtained by the ANN

and  the  proposed  mathematical  correlation  were  compared

to  the  experimental  data.  Furthermore,  a  thorough

performance  study  was  conducted  by  computing  several

performance  metrics.  The  neural  network  models  achieved

R values exceeding 0.99, with mean-squared error values of

1.47E-05  and  1.58E-06,  respectively.  The  mean  deviation

values  for  the  thermal  conductivity  of  the  network  model

were estimated to be 0.03%, but for the new mathematical

correlation, it was 0.05%. The study findings show that ANN

models  have  the  capability  to  accurately  forecast  the

thermal  conductivity  and  zeta  potential  of  Fe3O4/water

nanofluid.  The  newly  suggested  mathematical  correlation

exhibited  greater  error  rates  in  comparison  to  the  ANN

model,  despite  its  ability  to  accurately  compute  thermal

conductivity values. 

Çolak [5] did a study where they experimentally measured

the  thermal  conductivity  values  of  a  new  nanofluid.  The

nanofluid  was  synthesized  by  introducing  yttrium  oxide

nanoparticles into pure water, which acted as the underlying

fluid.  The  thermal  conductivity  values  of  the  nanofluid, 

which  is  composed  of  yttrium  oxide  and  water,  were

obtained  experimentally  at  five  different  concentrations. 

The measurements were done within the temperature range

of  10–65°C.  The  experimental  findings  revealed  a  1.47%

increase  in  the  thermal  conductivity  of  the  nanofluid

composed  of  yttrium  oxide  and  water,  compared  to  the

original fluid. The experimental results were compared with

correlations  that  are  often  employed  in  the  literature.  A

multilayer neural network model and a unique mathematical

correlation  were  developed  using  a  dataset  of  60

experimental  observations  to  determine  the  link  between

temperature, concentration, and the thermal conductivity of

yttrium  oxide-water  nanofluid.  The  network  model  was

verified  using  nine  datasets,  and  its  performance  was

assessed  using  multiple  performance  criteria.  The  values

obtained  from  the  network  model  and  mathematical

correlation  were  compared  with  both  the  empirical  findings

and  the  results  recorded  in  existing  literature.  The  network

model’s  R  value  was  determined  to  be  0.99980,  while  the

MSE  value  was  5.89E-07.  The  network  model  had  an

average  deviation  rate  of  −0.0007%,  whereas  the

mathematical correlation resulted in a value of 0.049%. The

study’s findings showcased the creation of a neural network

model  and  a  unique  mathematical  correlation  for  precisely

determining the thermal conductivity of yttrium oxide–water

nanofluid. 

The study done by Lin et al. [6] examines and predicts the

thermal  conductivity  of  a  WO3–CuO–Ag  (35:40:25)/water

nanofluid  using  an  ANN  and  the  back-propagation

technique. The aim of this research is to create an advanced

data  analysis  model  capable  of  assessing  complex

correlations  that  influence  the  thermal  conductivity  of

hybrid nanofluid, specifically in relation to temperature and

solid volume fraction. This investigation is conducted at six

different  temperatures  ranging  from  25  to  50°C,  and  four

different  volume  fractions  ranging  from  1%  to  0.4%.  The

regression  figure  exhibits  a  striking  similarity  to  unity, 

suggesting  a  strong  connection  between  the  projected

values  from  the  ANN  and  the  actual  values.  The  predicted

values  in  the  ANN  were  very  close  to  0.998,  suggesting  a

high  level  of  similarity  between  the  projected  and  real

values.  The  findings  indicate  that  augmenting  the  volume

fractions of nanoparticle and temperature has resulted in an

elevation  in  the  thermal  conductivity  of  the  examined

nanofluid.  Furthermore,  at  a  high  temperature  level,  the

thermal  conductivity  reaches  its  greatest  value  when  the

volume  fraction  is  extended  to  its  utmost  extent. 

Furthermore,  the  findings  suggest  that  the  impact  of

temperatures  sensitivity  on  the  increase  in  the  thermal

conductivity  of  WO3–CuO–Ag  (35:40:25)/water  nanofluid  is

more  substantial  than  that  of  volume  fractions.  The

sensitivity  analysis  for  temperature  in  five  ANNs  yielded  a

range of values from a maximum of 177.4501 to a minimum

of  431.489098.  Similarly,  the  sensitivity  study  for  volume

fractions  resulted  in  a  range  of  values  from  a  maximum  of

16.2539901 to a minimum of 37.2332646. Based on several

trained ANNs, it has been shown that the optimal number of

neurons in the hidden layer was eight. 

The  primary  objective  of  the  work  done  by  Cui  et  al.  [7]

was  to  uncover  the  impact  of  influencing  elements  on  the

effective  thermal  conductivity  of  nanofluids  using  a

combination  of  experimental  investigation  and  AI.  The

researchers  created  TiO2/water  nanofluids  using  four

different  forms  of  TiO2  nanoparticles:  spherical,  ellipsoidal, 

clubbed,  and  sheet.  They  then  assessed  the  effective

thermal  conductivities  of  the  samples  at  various

temperatures  ranging  from  20  to  60°C,  with  nanoparticle

concentrations  ranging  from  0.5  to  4.0  vol%.  In  addition,  a

total  of  389  experimental  datasets  sourced  from  literature

and 80 datasets obtained from the experiment were utilized

to  ascertain  the  optimal  configuration  of  AI-driven  models. 

The  independent  factors  chosen  were  temperature, 

concentrations,  shape  factor,  and  thermal  conductivity  of

nanoparticles.  The  dependent  variable  selected  was  the

relative  thermal  conductivity  of  nanofluids.  The  study

analyzed  six  models  based  on  AI,  which  consisted  of  four

types of ANNs (multi-layer perceptron, cascade feedforward, 

radial  basis  function,  and  generalized  regression  neural

network),  adaptive  neuro-fuzzy  inference  systems,  and

least-squares support vector machines. The study compared

the  performance  of  these  models  in  estimation.  The

experimental  findings  demonstrated  that  elevating  the

temperature and concentrations of nanoparticles resulted in

a  significant  enhancement  in  the  relative  thermal

conductivity  of  nanofluids.  This  improvement  can  be

attributed  to  the  intensified  Brownian  motion  of

nanoparticles  at  higher  temperatures  and  the  increased

frequency  of  effective  collisions  between  nanoparticles  at

higher concentrations. In addition, nanoparticles that have a

significant  difference  in  length  and  width  offer  a  direct  and efficient  route  for  heat  transmission  in  nanofluids.  This  is

because  they  seldom  encounter  obstacles  such  as

antiparticle  boundaries  or  junction  points.  As  a  result, 

nanofluids  containing  such  nanoparticles  exhibit  a  greater

relative  thermal  conductivity.  The  statistical  analysis

validated  that  the  optimal  AI-based  model  for  calculating

the  relative  thermal  conductivity  of  nanofluids  is  the

cascade  feed-forward  neural  network  with  ten  hidden

neurons and the Levenberg–Marquardt training procedures. 

Esfe  et  al.  [8]  developed  a  model  and  conducted  an

investigation  on  an  ANN  and  the  thermal  conductivity  of  a

nanofluid that includes TiO2 nanoparticles. The training and

estimation  of  the  ANN  rely  on  experimental  data,  namely

the  thermal  conductivity  measurements  of  the  nanofluid  at

various  volume  fractions  and  temperatures.  The  ANN

architecture was determined to include of two hidden layers, 

each  consisting  of  five  neurons.  In  order  to  select  the

optimal training function, an analysis was conducted on the

various training functions offered in the ANN. Based on the

analysis of the highest regression coefficient and the lowest

mean  square  error  (MSE),  the  trainbr  training  function

demonstrated  superior  performance.  The  2.5%  maximum

error  in  approximating  test  data  throughout  the  estimate

phase  demonstrates  the  accuracy  of  the  developed  ANN. 

The findings also indicate that ANN were able to accurately

predict  the  thermal  conductivity  of  TiO2/water  nanofluid  at

various  temperatures,  demonstrating  high  precision.  In

contrast,  theoretical  models  such  as  Pak  and  Cho  were

unable  to  provide  accurate  estimations  of  the  thermal

conductivity. 

Tian et al. [9] employed ANN to examine how temperature

and  volume  percentage  of  nanoparticles  affect  the  thermal

conductivity  of  a  hybrid  nanofluid  consisting  of  graphene

oxide-Al2O3,  water,  and  ethylene  glycol.  Nanofluids  were

synthesized  using  nanoparticles  at  volume  fractions  of

0.1%,  0.2%,  0.4%,  0.8%,  and  1.6%  within  a  temperature

range  of  25–55°C.  The  thermal  conductivity  data  of  the

nanofluid  was  obtained  by  analyzing  six  distinct

nanoparticle 

volume 

fractions 

and 

seven 

varying

temperatures.  Subsequently,  the  Perceptron  feed-forward

ANN  was  employed  to  generalize  the  data  and  derive  a

function,  effectively  replicating  the  output  parameter.  The

results  indicate  that  the  ANN  was  well  trained  using  the

trainbr method, with a MSE of 1.67e-6 and a high correlation

coefficient  of  0.999  for  thermal  conductivity.  Ultimately, 

they determined that the impact of raising the temperature

of the nanofluid was smaller compared to the proportion of

nanoparticles, particularly at low concentrations. The impact

of  this  phenomenon  was  insignificant,  and  without  the

presence  of  nanoparticles,  raising  the  temperature  from

20°C  to  55°C  results  in  a  6%  improvement  in  thermal

conductivity.  Nevertheless,  when  nanoparticles  are  present

in  large  quantities,  raising  the  temperature  results  in  a

subsequent  increase  in  thermal  conductivity.  At  a  volume

proportion  of  1.6%,  raising  the  temperature  from  20°C  to

55°C  resulted  in  an  increase  in  thermal  conductivity  from 0.45 to 0.54 W/m.K. 

Ghazvini et al. [10] used ANN techniques to simulate the

thermal  conductivity  ratio  of  a  nanofluid  consisting  of

modified  copper  nanoparticles  and  water.  They  achieved

this  by  analyzing  experimental  data.  The  thermal

conductivity of the nanofluids was experimentally assessed

using  KD2Pro,  considering  different  fluid  temperatures, 

nanoparticle  concentrations,  and  diameters.  In  order  to

represent the relationship between the thermal conductivity

of  the  nanofluid  and  variables  such  as  temperature,  solid

volume percent, and diameter, a correlation was developed

using  ANNs  and  taking  into  account  the  experimental

results.  Based  on  statistical  accuracy  analysis,  the  optimal

approach  for  modeling  this  problem  was  a  two-layer  feed-

forward ANN model with 6 hidden neurons. The comparative

findings indicate that the ANN model successfully predicted

the  favorable  increase  in  the  thermal  conductivity  of

nanofluids. 

The  current  study  done  by  Esfe  et  al.  [11]  involved estimating  and  predicting  the  thermal  conductivity  of

functionalized  Graphene  generated  using  the  alkaline

approach  in  water.  This  was  achieved  by  utilizing  an  ANN

and  analyzing  experimental  data.  The  thermal  conductivity

of four varieties of functionalized graphene-water nanofluid

was  simulated  at  five  distinct  temperatures,  spanning  from

10  to  50°C,  as  the  input  for  an  ANN.  The  results  indicated

that  the  Relative  Thermal  Conductivity  of  nanofluids  in

sample 1 slightly decreased as the temperature decreased, 

but  the  other  samples  exhibited  an  increase  in  relative

thermal  conductivity  as  the  temperature  increased. 

Furthermore,  following  the  training  of  the  network  and  the

subsequent  testing  of  the  related  data,  the  disparity

between the experimental data and the values derived from

the  modeling  process  was  determined.  The  results

demonstrated the satisfactory accuracy of the modeling and

validated its findings. 

In their groundbreaking study, Jamei et al. [12] introduced

three 

novel 

soft 

computing 

approaches: 

genetic

programming,  model  tree,  and  multilinear  regression

models. These techniques were employed to provide precise

predictions  of  the  thermal  conductivity  of  several  ethylene

glycol-based  hybrid  nanofluids.  A  grand  total  of  275

datasets  sourced  from  various  publications  were  gathered

and  subsequently  partitioned  into  separate  testing  and

training  groups.  The  outcomes  derived  from  the  suggested

methodologies were evaluated against several performance

indicators  and  empirical  correlations.  The  performance

criteria  shown  that  the  genetic  programming  model

outperformed  the  model  tree  and  multilinear  regression

models  in  predicting  the  relative  thermal  conductivity  of

hybrid nanofluids, based on the test dataset. The sensitivity

analysis  revealed  that  the  nanoparticle  volume  percent

exerted  the  greatest  influence  among  all  the  input

parameters in the model. 

In their study, Peng et al. [13] employed an ANN method to  ascertain  the  thermal  conductivity  of  a  mixture

containing  Al2O3–Cu  and  ethylene  glycol,  with  equal

volumes. To achieve this objective, a blend of Al2O3 and Cu

nanoparticles  was  introduced  into  ethylene  glycol  at

different  percentages  ranging  from  0.125  to  2.0,  while

maintaining  temperatures  between  25  and  50°C.  The  two-

step procedure was utilized to incorporate nanoparticles into

the  base  fluid.  Furthermore,  the  feedforward  multilayer

perceptron  of  ANN  was  analyzed  to  replicate  the  heat

conduction  coefficient  of  Al2O3–Cu  nanofluid.  A  total  of  36

measured  points  were  obtained  from  the  experiments.  Out

of  these,  25  points  were  selected  for  the  ANN,  while  the

remaining  eleven  points  were  used  to  verify  the  network. 

The  suggested  technique  using  ANN  demonstrated  the

ability  to  accurately  determine  the  heat  conduction

coefficient  of  hybrid  nanofluids,  showing  strong  agreement

with existing empirical data. 

Wang et al. [14] performed studies with hybrid nanofluids

consisting of 1.0 wt% Cu/Al2O3 in a combination of ethylene

glycol  and  water.  The  experiments  were  conducted  at

temperatures  ranging  from  20  to  50°C,  with  varying  ratios

of  the  base  fluid  mixture  ranging  from  20:80  to  80:20.  In

order  to  enhance  the  accuracy  of  the  anticipated  thermal

conductivity,  a  combination  of  a  genetic  algorithm  and  a

mental  evolutionary  algorithm,  along  with  a  back-

propagation  neural  network,  was  employed  to  search  for

people  with  ideal  weights  and  thresholds.  The  findings

indicate  that  the  thermal  conductivity  exhibits  a  nonlinear increase  when  the  ratio  of  water  to  ethylene  glycol  and

temperature  rise.  This  may  be  attributed  to  the  superior

thermal  conductivity  of  water  and  the  heightened  collision

frequency  between  molecules  and  nanoparticles.  This

suggests  that  the  combination  of  back-propagation  neural

networks  improves  the  accuracy  of  predictions,  with  the

evolutionary  algorithm-back-propagation  neural  network

doing the best. 

4.2.2 VISCOSITY

Çolak [15] examined the viscosity of five distinct ZrO2/water nanofluids with concentrations of 0.0125%, 0.025%, 0.05%, 

0.1%, and 0.2%. These nanofluids were generated using the

two-step  procedure.  A  multi-layer  perceptron  feed-forward

back-propagation ANN and a novel mathematical correlation

were  created  based  on  the  experimental  data  to  forecast

the  viscosity  of  ZrO2/water  nanofluid.  The  experimental

findings  demonstrated  an  inverse  relationship  between

temperature and viscosity, indicating that viscosity reduces

as  temperature  increases.  In  addition,  the  results  indicated

a  direct  relationship  between  concentration  and  viscosity, 

with  viscosity  increasing  as  concentration  increases.  The

findings  acquired  from  the  ANN  that  was  created  and  the

newly  built  correlation  were  compared  with  the

experimental 

data 

and 

examined. 

The 

findings

demonstrated that the created ANN successfully forecasted

the  viscosity  of  ZrO2/water nanofluid with an average error

rate  of  -0.11%.  The  newly  created  mathematical  model

accurately determined the viscosity of ZrO2/water nanofluid

with a negligible error rate of –0.74%. 

Sahin  et  al.  [16]  assessed  the  stability  of  Fe3O4-water magnetic  nanoparticles  at  different  mass  ratios  (0.1,  0.25, 

0.5,  0.75,  and  1)  using  zeta  potential  testing.  The  thermal

conductivity  and  viscosities  of  magnetic  nanoparticles  with

sufficient stability were tested within the temperature range

of  20–60°C  for  all  mass  ratios.  Furthermore,  by  utilizing

experimental  data,  two  distinct  ANN  models  were

constructed.  The  first  model  predicts  thermal  conductivity

and  viscosity  based  on  temperature  (20–60°C)  and  mass

ratio values, while the second model predicts zeta potential

based  on  pH  and  mass  ratio.  Ultimately,  by  utilizing  the

acquired  ANN  data,  two  novel  mathematical  connections

were  formulated  to  forecast  thermal  conductivity  and

viscosity.  The  study  found  that  the  constructed  ANN  model

correctly predicted the thermal conductivity and viscosity of

Fe3O4-water  magnetic  nanofluids  using  innovative

mathematical  correlations.  The  model  had  a  MSE  of  4.51E-

06 and a R of 0.99968. 

In this study conducted by Heidari et al. [17], a thorough

literature  search  was  conducted  to  gather  1490

experimental data points on the relative viscosity of several

nanofluids.  A  feed-forward  back-propagation  multilayer

perceptron  ANN  was  created  and  evaluated  using  the

Levenberg–Marquardt  training  technique  to  forecast

nanofluid  viscosity  across  a  wide  range  of  operational

parameters.  The  input  parameters  of  the  model  were

temperature, nanoparticle size, density, volume percentage, 

and base fluid viscosity. The regression statistical analysis of

the training and test data, together with the comparison of

the  projected  values  from  the  ANN  with  the  corresponding

experimental  data,  showed  that  the  constructed  neural

network has a strong prediction capability. This was further

supported  by  the  maximum  average  relative  deviation  and

the comparison with existing theoretical models. 

In  this  investigation  conducted  by  Dalkilic  et  al.  [18], graphite  particles  were  used  to  form  a  nanofluid

combination with clean water as the foundation fluid. Their

concentrations  ranged  from  0  to  2%  in  clean  water.  After

preparing  the  stabilized  nanofluid  using  a  sonicator  and

ultrasonic  bath,  the  viscosity  was  measured  using  a

viscosity meter at temperatures ranging from 20°C to 60°C. 

The  experiments  were  validated  by  comparing  them  with

the  32  empirical  correlations  found  in  the  literature. 

Subsequently, ANN evaluations were conducted to establish

a  more  robust  empirical  correlation  compared  to  existing

research. 

The 

publication 

included 

comprehensive

information on the manufacture of nanofluids, measurement

of  viscosity,  a  list  of  measured  data,  a  numerical  model

using  MATLAB  software,  and  the  effect  of  temperature  and

concentration  on  viscosity.  The  analysis  indicated  that

viscosity  correlations  found  in  existing  literature  may

accurately forecast the viscosity of various nanofluids, even

if they were developed based on certain types and sizes of

nanoparticles and their corresponding base fluids. 

Gholami  et  al. [19]  identified  the  key  factors  that  affect the  viscosity  of  nanofluids  and  created  many  AI  models  to

forecast  the  viscosity  of  alumina  nanoparticles  in  different

base  fluids.  Subsequently,  the  predicted  accuracy  of  the

produced models was assessed by comparing them with the

existing empirical correlations, and the most optimal model

was  chosen.  Correlation  matrix  analyses  verified  that  the

viscosity of nanofluids is primarily influenced by the reduced

pressure,  the  reciprocal  of  the  reduced  temperature,  the

acentric  factor  of  the  base  fluids,  and  the  diameter  and

volume concentration of the nanoparticles in the base fluids. 

Different  statistical  criteria  were  employed  to  numerically

assess  the  correctness  of  different  models.  The  results

indicated  that  the  multi-layer  perceptron  neural  network

exhibited  superior  prediction  accuracy  compared  to  other

intelligence and empirical models. As a consequence, it was

deemed the most effective solution for the given job. 

The major objective of the study done by Vakili et al. [20]

was  to  forecast  the  viscosity  of  graphene  nanoplatelets

nanofluid using a multi-layered perceptron ANN and genetic

algorithm.  In  order  to  get  the  experimental  outcomes,  a

nanofluid  comprising  of  graphene  nanoplatelets  and

deionized  water  at  temperatures  ranging  from  20  to  60°C

and concentrations of 0.025, 0.05, 0.075, and 0.1 wt% was

employed.  Moreover,  genetic  algorithms  were  employed  in

ANNs  to  enhance  the  learning  process.  Put  simply,  varying

weights were selected for the connections between neurons. 

Furthermore,  the  fixation  on  bias  was  rooted  on

advancements  made  in  the  genetic  algorithm.  Conversely, 

many  indices  were  employed  to  evaluate  the  precision  of

the  model  proposed,  which  provides  predictions  for

nanofluid  viscosity.  Regarding  the  comparison,  the  findings

demonstrated  that  the  proposed  model,  which  integrated

evolutionary  algorithms  and  ANNs,  was  congruent  with  the

experimental study. 

Esfe et al. [21] sought to forecast the viscosity of a hybrid nanofluid  consisting  of  10%  MWCNT  and  90%  Al2O3  in  a

lubricant  with  a  viscosity  grade  of  5W50.  They  employed

ANNs  for  this  purpose.  An  ANN  model  was  developed  to

simulate temperature variations from 5 to 55°C. The model

considered  volumetric  fractions  ranging  from  0.05%  to  1%

and  was  trained  using  174  experimental  data  points.  The

ANN  was  evaluated  using  three  input  variables  and  one

output  variable,  which  represents  viscosity.  The  findings

demonstrated  the  precision  and  dependability  of  the

suggested  model  based  on  the  evaluation  criteria  of  R-

squared  and  MSE.  Based  on  the  findings  from  both  one

factor  and  two  factor  analyses,  it  can  be  concluded  that

temperature  change  had  the  most  significant  impact  on

viscosity  when  compared  to  shear  rate  and  solid  volume

fractions.  A  correlation  was  suggested  to  forecast  the

viscosity of the hybrid nanofluid, which has a 5W50 fluid as

its  base  fluid,  based  on  temperature,  solid  volume

percentage, and shear rate. 

Esfe et al. [22] employed ANNs to simulate the viscosity of an  aqueous  nanofluid  containing  TiO2,  based  on

experimental  data.  ANNs  accurately  predicted  the  changes

in dynamic viscosity based on temperature and nanoparticle

mass  fraction.  A  network  employing  a  single  hidden  layer

consisting  of  four  neurons  was  utilized.  The  regression

coefficient  achieved  a  value  of  0.9998  in  this  modeling, 

indicating  the  exceptional  accuracy  of  neural  networks

despite their simplistic structure. Furthermore, a correlation

between the mass fraction and temperature was introduced

to  forecast  the  viscosity  of  this  nanofluid.  This  correlation

provides  an  estimation  of  the  viscosity  of  TiO2-water

nanofluid  across  a  broad  range  of  nanoparticle  mass

fractions, with a maximum error of 0.5%. 

Toghraie  et  al. [23]  examined  the  dynamic  viscosity  of Ag/Ethylene  glycol  nanofluid  at  temperatures  between  25

and  55°C,  using  different  volume  fractions  of  nanoparticles

ranging  from  0.2%  to  2%.  The  dataset  comprised  42

samples.  Initially,  an  ANN  was  created  with  the  purpose  of

forecasting  the  dynamic  viscosity  of  this  nanofluid. 

Subsequently,  the  outcomes  of  the  ANN  were  juxtaposed

with  those  of  the  correlation.  A  novel  technique  was

introduced to determine the optimal architecture of an ANN. 

The  most  effective  ANN  model  was  then  employed  to

accurately 

forecast 

the 

dynamic 

viscosity 

of 

a

silver/ethylene glycol nanofluid. The study revealed that the

ANN had a high level of accuracy in predicting the viscosity

of Ag/Ethylene glycol nanofluid, surpassing the performance

of the correlation approach. In the correlation approach, the

MSE  was  0.0012,  the  sum  of  squared  errors  (SSE)  was

0.0512, and the maximum error value was 0.0858. 

Li  et  al.  [24]  sought  to  determine  the  stability  of  Al2O3-ethylene  glycol  nanofluids  by  analyzing  the  particle  size

distribution and velocity ratio. The thermal conductivity and

viscosity  were  determined  using  ultrasonic  techniques  for

different time durations, mass percentages (ranging from 0

to  2.0 wt%),  and  temperature  ranges  (from  25  to  60°C). 

Furthermore,  many  criteria  were  introduced  to  assess  the

thermal  efficiency  of  convective  heat  transmission.  Novel

correlations and optimum ANN models were proposed based

on various sets of experimental data. The findings indicated

that  Al2O3-EG  nanofluids,  produced  using  a  60-minute

ultrasonication 

process, 

exhibit 

highly 

promising

characteristics.  Furthermore,  both  the  experiment  and  ANN

models  shown  strong  correlations  in  predicting  these  two

values.  Nevertheless,  the  ANN  model  exhibited  more

precision.  The  results  were  anticipated  to  have  use  in

further investigations on nanofluid stability, particularly due

to  their  provision  of  appropriate  selection  criteria  derived

from  heat  transfer  behavior,  which  may  be  applied  in

practical scenarios. 

Ali  et  al.  [25]  examined  the  viscosity  characteristics  of TiO2  nanotubes  that  were  distributed  in  a  nanofluid

consisting  of  ethylene  glycol  and  water.  They  studied  the

impact  of  several  process  factors,  including  the  mass

concentration  of  nanotubes,  temperature,  and  shear  rate. 

The  findings  demonstrated  a  significant  rise  in  viscosity  of 30%  at  55°C  when  the  mass  concentration  of  nanotubes

was  increased  from  0  to  1%.  Similarly,  a  22%  increase  in

viscosity  was  seen  at  25°C.  The  second  half  of  the  study

employed  a  multivariable  correlation  and  ANN  to  forecast

the  viscosity  at  different  temperatures  and  shear  rates, 

utilizing the available experimental data. Statistical analyses

were  conducted  to  examine  the  precision  of  both  empirical

correlation and ANN modeling. The results indicate that the

accuracy  of  ANN  prediction  is  significantly  higher  than  that

of empirical correlations. 

Singh  et  al.  [26]  introduced  a  novel  single  feed-forward multilayer  perceptron  neural  network  that  utilizes  a  data

transformation technique. They also proposed mathematical

models  for  predicting  the  density  and  dynamic  viscosity  of

Al2O3/distilled  water,  MWCNT/distilled  water,  and  graphene

nanoparticle/distilled  water  nanofluids.  The  density  and

dynamic viscosity of nanofluids were empirically determined

within  the  temperature  range  of  30–80°C.  The  network

received nanofluids, volume concentration, and temperature

as  input,  and  produced  density  and  dynamic  viscosity  as

output. A statistical study was done to forecast the accuracy

of  both  models.  The  investigations  demonstrated  that  the

density  and  viscosity  of  the  nanofluid  increase  as  the

concentration  of  nanoparticles  increases,  and  drop  as  the

temperature  rises.  An  increase  of  41.59%  in  dynamic

viscosity  and  5.06%  in  density  was  observed  for  the

Al2O3/distilled water nanofluid. The results indicate that the

ANN  model  has  been  effectively  trained  using  12

perceptrons  in  the  hidden  layer  using  the  Levenberg–

Marquardt  method.  A  comparison  was  made  between  the

findings  generated  via  ANN  and  the  mathematical  model, 

and  the  experimental  data.  Both  models  had  a  maximum

error  of  less  than  0.2%  in  density  measurement  and  less

than 1% in viscosity measurement. 

Esfe  et  al. [27]  examined  the  viscosity  of  MWCNT-

TiO2/SAE40  nanofluid  by  employing  an  ANN.  The  ANN  was

developed  at  temperature  ranges  ranging  from  25  to  50°C

and with varying solid volume percentages of nanoparticles. 

A total of 174 data points from laboratory experiments were

utilized.  The  work  involved  the  utilization  of  the  MLP

technique  and  the  Levenberg–Marquardt  training  algorithm

for  ANN  modeling.  The  most  suitable  configuration  chosen

for  the  MWCNT-TiO2/SAE40  nanofluid  involves  an  ANN  with

two  hidden  layers.  The  best  structure  of  this  network

consists  of  10  neurons  in  the  first  hidden  layer  and  4

neurons  in  the  second  hidden  layer.  The  correctness  of  the

suggested  model  is  confirmed  by  the  R  and  MSE

coefficients,  which  were  determined  to  be  0.9999507  and

0.004599708,  respectively,  in  the  final  step.  The  margin  of

deviation  (MoD)  in  the  grid  dataset  ranges  from  –3%  to

+3%.  According  to  research  that  examined  the  association

between  ANN  and  computational  data  in  comparison  to

laboratory  data,  the  findings  of  this  comparison  indicate

that the ANN is a more precise and dependable method for

calculating  viscosity.  The  focal  focus  of  this  research  is  to

develop  and  forecast  the  viscosity  of  MWCNT-TiO2/SAE40

nanofluid  using  ANN  as  a  cost-effective  and  time-efficient

alternative to repeated and time-consuming tests. 

4.2.3 SPECIFIC HEAT

Çolak  et  al.  [28]  developed  an  ANN  model  to  predict  the specific heat of Cu-Al2O3/water hybrid nanofluid. The model

was  based  on  temperature  and  volume  concentration.  The

specific heat values of the Cu-Al2O3/water hybrid nanofluid, 

generated  with  a  concentration  of  five  volumes,  were

experimentally  measured  within  the  temperature  range  of

20°C  to  65°C.  The  dataset  was  divided  into  three  main

segments,  consisting  of  901  samples  for  training,  257

samples  for  testing,  and  129  samples  for  validation.  Upon

comparing  the  model’s  predictions  with  experimental

results,  it  was  determined  that  the  model  accurately

predicts  specific  heat  with  an  R-value  of  0.99994  and  an

average  relative  error  of  around  5.84E-9.  Furthermore,  a

mathematical  correlation  was  formulated  to  calculate  the

specific  heat  of  the  Cu-Al2O3/water  hybrid  nanofluid.  The

results  obtained  from  the  mathematical  correlation

exhibited  a  strong  connection  with  all  the  experimental

values, with an average variance of −0.005%. The findings

indicated  that  the  mathematical  correlation  created  was  a

suitable model for accurately calculating the specific heat of

the Cu-Al2O3/water hybrid nanofluid. 

Çolak  [29]  conducted  an  experiment  to  determine  the

specific  heat  values  of  a  nanofluid  made  of  yttrium  oxide

and  water.  The  nanofluid  was  created  with  Y2O3

nanoparticles  and  its  volumetric  content  was  varied  in  five

different  levels.  The  specific  heat  values  were  evaluated

using  the  DTA  technique.  A  multilayer  perceptron  was

created  using  the  experimental  data,  employing  a  feed-

forward back-propagation ANN with 15 neurons in its hidden

layer. Out of the total 60 experimental data, 42 were utilized

for the training phase, 12 for the validation phase, and 6 for

the  test  phase.  Furthermore,  a  novel  mathematical

correlation has been suggested to compute the specific heat

values of yttrium oxide-water nanofluid. The ANN accurately

predicted  the  specific  heat  values  of  yttrium  oxide-water

nanofluid with a negligible average error of −0.0007%. The

average  error  rate  of  the  suggested  new  correlation  was

determined to be −0.011%. 

Çolak  [30]  examined  the  impact  of  several  techniques

utilized in the training of ANNs on the predictive accuracy of

ANNs. For this investigation, three distinct ANN models were

created  utilizing  the  Levenberg–Marquardt,  Bayesian

regularization,  and  scaled  conjugate  gradient  training

techniques, which are often employed in academic research. 

The  training  of  ANNs  utilized  the  experimentally  recorded

specific  heat  values  obtained  using  the  differential  thermal

analysis  method  for  ZrO2/water  nanofluid  produced  in  five

distinct 

volumetric 

concentrations. 

The 

multilayer

perceptron  feed-forward  back-propagation  ANN  model

utilized  temperature  and  volumetric  concentration  as  input

parameters.  The  model  consisted  of  15  neurons  in  the

hidden  layer  and  predicted  particular  heat  values  in  the output  layer.  The  findings  demonstrated  that  ANNs  were

very 

suitable 

for 

forecasting 

the 

thermophysical

characteristics  of  nanofluids.  Nevertheless,  it  was

discovered  that  the  ANN  created  using  the  Bayesian

regularization  training  approach  exhibits  the  most  superior

predictive  capability,  with  an  average  deviation  margin  of

just 0.00009%. The ANN trained using the scaled conjugate

gradient  training  approach  had  the  lowest  prediction

performance, with an average error of –0.0032%. 

In  their  study,  Deymi  et  al. [31]  employed  sophisticated machine  learning  methods  to  forecast  the  specific  heat

capacity of nanofluids. The target variable was assessed as

a  function  of  the  mean  nanoparticle  size,  particle  volume

fraction,  temperature,  specific  heat  of  nanoparticles,  and

specific  heat  of  the  base-fluids.  2084  experimental  data

pertaining  to  10  distinct  types  of  nanoparticles  and  6

different  types  of  base-fluids  were  gathered  from  the

literature  to  forecast  the  specific  heat  values  of  various

nanofluids.  The  results  showed  that  the  random  forest

model  had  the  best  accuracy  among  the  others,  with  an

average  absolute  percent  relative  error  of  0.1928%  and  an

R2  value  of  0.9995.  In  addition,  a  sensitivity  analysis  was

conducted  to  establish  the  connections  between  the  input

and output parameters for the optimal model. The Leverage

statistical  approach  was  utilized  to  identify  the  legitimate

data  points,  outliers,  and  data  points  that  are  beyond  the

expected range. 

Alade  et  al.  [32]  demonstrated  the  modeling  of  the specific heat capacity of CuO/water nanofluids using support

vector  regression  and  ANN.  The  models  provided  were

derived  from  experimental  data  on  the  specific  heat

capacity of CuO nanoparticles, the volume fractions of CuO

nanoparticles,  and  the  fluid  temperature.  The  CuO

nanoparticles  were  evaluated  at  volume  fractions  ranging

from  0.4%  to  2%,  and  the  temperature  range  spans  from

293  K  to  338  K.  The  findings  indicated  that  the  support

vector regression model has marginally superior accuracy in

comparison  to  the  ANN  model.  Nevertheless,  both  the

support  vector  regression  and  ANN  models  exhibited

superior predictive capabilities for the specific heat capacity

of  CuO/water  nanofluids  in  comparison  to  the  current

theoretical  models.  The  findings  of  this  work  demonstrated

that  machine  learning  models  offer  a  more  precise

assessment  of  the  specific  heat  capacity  of  CuO/water

nanofluids. 

Seawram  et  al. [33]  created  an  ANN  prediction  model  to forecast  specific  heat  capacity.  They  utilized  feedforward

and  cascade  forward  propagation  networks  together  with

the  Levenberg–Marquardt  learning  method.  The  optimal

topology  of  the  ANN  model  was  chosen  to  forecast  the

specific  heat  capacity  of  a  hybrid  nanofluid.  The  R  values

obtained  for  training,  validation,  and  testing  were  0.9919, 

0.9473, and 0.9673, respectively. Subsequently, the specific

heat  capacity  value  obtained  from  the  ANN  model  was

utilized  to  assess  and  examine  the  rates  at  which  heat  is

transferred.  The  hybrid  nanofluid  consisting  of  Al2O3  and CuO  suspended  in  water  demonstrated  superior  heat

dissipation  properties  when  used  as  a  heat  exchanger

medium. 

4.3 AI APPLICATIONS IN DETERMINING FLOW

CHARACTERISTICS OF NANOFLUIDS

Shafiq  et  al.  [34]  developed  a  new  intelligent  numerical computer  solver  using  ANN  and  the  Levenberg–Marquard

algorithm.  This  solver  was  used  to  analyze  heat

generation/absorption  and  radiation  in  an  unsteady

electrically conducting Williamson liquid flow along a porous

stretched  surface.  The  investigation  of  the  heat

phenomenon  involved  considering  a  convective  boundary

condition, as well as including both velocity and thermal slip

phenomena. The initial nonlinear coupled partial differential

equations  that  describe  the  fluidic  model  were  converted

into  a  corresponding  nonlinear  ordinary  differential

equations system by integrating suitable transformations. A

dataset for the proposed ANN was created by systematically

varying  the  relevant  parameters  of  the  fluidic  model  using

the  Galerkin  weighted  residual  approach.  An  ANN  was

constructed to forecast the values. The prediction accuracy

of  the  ANN  model  was  evaluated  by  comparing  the

outcomes  generated  by  the  ANN  model,  which  utilized  the

Levenberg-Marquard  algorithm  as  the  training  procedure, 

with the desired target values. The current investigation has

revealed that the ANN technique is very accurate, efficient, 

and  easily  usable  for  modeling  the  slip  flow  of  Williamson fluid  towards  a  stretched  plate  with  heat  production  or

absorption. 

Shafiq  et  al.  [35]  demonstrated  the  phenomenon  of

magnetohydrodynamic squeezing flow, where fluid is forced

through  a  non-Darcian  medium  towards  a  stretched

permeable  surface.  An  examination  was  conducted  on  the

thermal  and  mass  transfer  processes  under  convective

circumstances  and  nonlinear  stratification.  The  heat

transmission  was  improved  by  including  the  radiation  and

viscous  dissipation  processes.  The  nonlinear  simplified

equations  were  assessed  using  a  numerical  Runge–Kutta

fourth-order  method  through  the  shooting  process.  Graphs

depicting  crucial  metrics  were  shown  to  illustrate  the

variability  in  the  pertinent  domains.  Numerical  calculations

were  performed  to  determine  the  Sherwood  number, 

Nusselt  number,  and  skin  friction  coefficient  for  different

parameters. Subsequently, three distinct ANNs were created

using  the  collected  data.  The  findings  gained  demonstrate

that  ANNs  have  the  capability  to  accurately  forecast  and

optimize various tasks. 

In the current study, Shafiq et al. [36] investigated the slip and  Darcy–Forchheimer  phenomena  in  a  Powell–Eyring

nanofluid  model.  The  study  focused  on  bioconvective

implementations  on  a  stretched  surface,  using  ANNs. 

Throughout  the  investigation,  the  unique  influences  of

activation  energy,  convective  boundary  condition,  and

thermal radiation phenomena were taken into account. The

regulating terms were devised in accordance with essential

principles.  The  answer  was  obtained  using  numerical

simulations  utilizing  a  fourth-order  Runge–Kutta  approach

with a shooting operation, and then an ANN was applied. A

dataset  was  generated  to  encompass  different  flow

situations,  and  an  ANN  model  was  constructed  to  forecast

values  for  skin  friction  coefficient,  local  Sherwood  number, 

local  motile  density  of  microorganisms,  and  local  Nusselt

number.  The  study’s  findings  demonstrate  that  the  created

ANN  models  had  the  capability  to  make  very  accurate

predictions,  with  an  average  error  rate  not  surpassing

0.53%. 

Shafiq  et  al. [37]  examined  the  forced  convective  heat and mass transfer of a nanofluid by applying the Buongiorno

model. They studied the movement of the nanofluid through

a thin needle using the Runge–Kutta fourth-order technique

with a firing approach. The study focused on examining the

impact  of  thermo-diffusion  and  diffusion-thermo  effects  on

the  flow.  Specifically,  the  Dufour  and  Soret  effects  were

explored.  In  addition,  the  mass  transport  phenomena  were

analyzed  using  activation  energy.  The  flow  model  was

derived  as  a  system  of  partial  differential  equations  using

the  boundary-layer  technique.  These  equations  were  then

changed through suitable transformations to be linked with

nonlinear  ordinary  differential  equations.  The  Runge–Kutta

method  was  the  predominant  approach  for  getting

numerical solutions to differential equations. It is capable of

assessing numerical solutions of higher order and delivering

very accurate results. Hence, by employing the Runge–Kutta

fourth-order technique together with a shooting approach, a

dataset  was  generated  for  various  flow  scenarios  of  the

intricate  and  inclusive  nanofluid  model  (Boungiorno’s

model),  which  encompasses  Brownian  motion  and

thermophoresis.  An  ANN  model  was  constructed  using  the

given  dataset  to  forecast  the  values  of  skin  friction

coefficient, Sherwood number, and Nusselt number. Seventy

percent of the data utilized in ANN models, generated with

varying  amounts  of  datasets,  were  allocated  for  training, 

validation, and testing purposes. The findings demonstrated

that ANN models have the capability to accurately forecast

the values of skin friction coefficient, Sherwood number, and

Nusselt number. 

Shafiq  et  al.  [38]  developed  a  theoretical  bioconvective model  within  the  current  framework  to  study  the  flow  of

thermally  developed  thixotropic  nanoparticles.  The  model

incorporates 

various 

flow 

features, 

including

thermophoresis,  Brownian  motion,  convective  condition, 

radiation features, and ANN models. The nonlinear complex

equations  were  computed  numerically  using  the  Runge–

Kutta fourth-order shooting method. The Sherwood number, 

microorganism  motile  density,  skin  friction  coefficient,  and

Nusselt  number  were  computed  using  various  parameters. 

Based on the results, four distinct ANNs were created. The R

values  for  the  constructed  neural  network  models  were

found to be more than 0.99. The findings demonstrated that

ANNs yield highly accurate results when analyzing the flow

of thermally generated thixotropic nanoparticles. Theoretical

results 

have 

uncovered 

applications 

in 

industry, 

engineering,  and  thermal  processes  related  to  heat

transport. 

Shafiq  et  al. [39]  investigated  the  synergistic  impact  of activation energy and binary chemical reactant on a steady

magnetohydrodynamic 

mixed 

convective 

third-grade

nanofluid  flow.  The  study  focused  on  a  radially  radiative

stretching  plate  and  employed  an  AI  methodology.  A  heat

transfer  study  was  performed,  taking  into  account  heat

generation, Joule heating, and the Soret and Dufour effects. 

The  initial  nonlinear  coupled  partial  differential  equations

representing  the  fluid  model  were  transformed  into  a

system  of  equivalent  nonlinear  ordinary  differential

equations  by  applying  suitable  transformations.  Three

distinct  ANN  models  were  suggested  to  forecast  the  skin

friction,  Nusselt  number,  and  Sherwood  number  values  of

the  fluid  model  using  the  Shooting  Runge–Kutta  Fehlberg  4

approach.  This  was  accomplished  by  employing  a  dataset

that  encompassed  diverse  values  of  the  pertinent

parameters.  It  is  worth  mentioning  that  the  average

deviation  values  for  each  output  parameter  stayed  below

5%.  The  results  demonstrate  that  ANNs  are  a  precise

engineering  tool  for  accurately  estimating  the  combined

impacts of activation energy and binary chemical reaction in

a fixed magnetohydrodynamic mixed convective third-grade

nanofluid flow with a radial radiative stretched plate. 

Shafiq et al. [40] studied the behavior of a bio-convective Walter’s  B  nanofluid  with  thermophoresis  and  Brownian

diffusion. The study focused on a cylindrical disk and utilized

ANNs  for  analysis.  Furthermore,  the  analysis  accounted  for

the  thermal  conductivity,  radiation,  and  motile  density  of

microorganisms.  The  Buongiorno  model  was  employed  to

examine  the  characteristics  of  nanofluids  in  mobile

microorganisms.  A  dimensionless  system  of  a  differential

system  was  achieved  by  employing  suitable  similarity

variables.  The  system  of  nonlinear  equations  was  solved

numerically  using  the  fourth-order  Runge–Kutta  shooting

method. The impact of flow parameters on the velocity field, 

temperature  distribution,  species  volumetric  concentration, 

and microorganism fields were also examined. Two separate

ANN models were created utilizing numerical data, and their

predictive  accuracy  was  extensively  evaluated.  Based  on

the  error  histograms,  it  was  observed  that  the  training

phase  of  the  ANN  model  had  minimal  error.  Based  on  the

measured  performance  parameters,  both  ANN  models

demonstrated a high level of accuracy in their predictions. 

Shafiq  et  al. [41]  examined  the  Darcy–Forchheimer  flow paradigm,  a  valuable  framework  utilized  in  industries  like

petroleum  engineering  where  the  impact  of  high  flow

velocities  is  prevalent,  using  an  AI  methodology.  The  study

focused  on  analyzing  the  Darcy–Forchheimer  flow  of  Ree–

Eyring  fluid  on  a  permeable  stretching  surface.  The

investigation  included  the  examination  of  heat  and  mass

transfer  mechanisms,  taking  into  account  factors  such  as

chemical  processes,  heat  generation/absorption,  and

activation  energy.  The  Cattaneo–Christov  heat  flow  model

was  employed  to  examine  the  characteristics  of  heat

transmission.  Three  distinct  ANN  models  were  created  to

forecast  the  values  of  Nusselt  number,  Sherwood  number, 

and  skin  friction  coefficient  within  the  context  of  improving

Darcy–Forchheimer flow of Ree-Eyring fluid. The ANN model

that  was  created  demonstrated  exceptional  accuracy  in

predicting  values  for  Nusselt  number,  Sherwood  number, 

and  skin  friction  coefficient.  The  study’s  findings

demonstrate  that  ANNs  are  a  very  suitable  method  for

modeling  the  flow  of  Darcy–Forchheimer  Ree–Eyring  fluid

towards  a  permeable  stretch  layer,  considering  activation

energy and a convective boundary condition. 

In their study, Çolak et al. [42] utilized an AI approach to estimate  the  significant  components  of  the  process,  which


included  the  number  of  tubes,  the  cleanliness  factor,  and

the  total  cost.  This  estimation  was  based  on  the  utilization

of  339  data  points.  An  investigation  was  conducted  to

determine  how  the  outputs  were  affected  by  the  Reynolds

number,  thermal  conductivity,  specific  heat,  viscosity,  and

total  fin  surface  efficiency  of  the  individual  input

components.  According  to  the  solution  with  six  inputs,  the

total tube number, cleanliness factor, and total cost analysis

were  calculated  with  variations  of  –0.66%,  0.001%,  and

0.12%,  respectively.  These  deviations  were  recorded  as  a

consequence of the solution. 

The  Sisko  fluid  model  was  initially  proposed  by  Shafiq  et al.  [43]  as  a  means  of  assessing  lubricating  greases’  high shear rates. They found that our model accurately predicted

shear  thickening  and  thinning,  and  for  some  fluids,  they

were  able  to  just  choose  three  of  its  constants.  The

nanomaterial  flow  of  the  Darcy–Forchheimer  Sisko  fluid

model  was  examined  in  this  study  using  the  Levenberg-

Marquardt  approach  with  backpropagated  neural  networks. 

The  development  of  the  nanofluid  model  took  into  account

the  effects  of  thermophoresis  and  Brownian  motion.  A

nonlinear  ordinary  differential  system  that  is  similar  to  the

original  one  was  obtained  by  transforming  the  fluidic

model’s  nonlinear  coupled  partial  differential  system.  By

adjusting the relevant variables using the Galerkin weighted

residual  method,  a  dataset  for  the  suggested  multilayer

perceptron  ANN  was  generated  for  various  fluid  model

situations. A multilayer perceptron, a type of ANN, has been

developed  for  the  purpose  of  making  predictions  about

these values. 

In  their  study,  Shafiq  et  al.  [44]  improved  the  thermal performance  of  base  solvents  by  adding  small-sized  metal

solids  to  the  base  fluids.  They  used  a  machine  learning

technique  to  assemble  numerical  data  on  the  thermal

application behavior of nanofluids based on graphene oxide

water/ethylene 

glycol 

in 

the 

presence 

of

electromagnetohydrodynamic 

and 

Darcy–Forchheimer

medium.  A  convective  boundary  condition  and  heat

radiation were also utilized in the investigation of nanofluid

flow.  The  system  of  equations  was  calculated  using  the

Runge–Kutta  fourth-order  shooting  technique.  After  running

simulations  with  different  values  for  the  skin  friction

coefficient and Nusselt parameter, two separate ANNs were

built  from  the  results.  A  big  Biot  number  was  useful  for

estimating the fluid temperature. The created ANNs had an

R-value  greater  than  0.99.  In  addition,  extremely  modest

numbers  were  used  to  compute  the  deviation  rate.  Skin

friction  coefficient  and  Nusselt  number  may  be  reliably

predicted using the suggested models of ANNs, according to

the results. 

The  Darcy–Forchheimer  Williamson  nanofluid  model  was

tested  by  Shafiq  et  al. [45]  on  the  flow  of  nanomaterials using  the  Levenberg-Marquardt  method  in  conjunction  with

backpropagated  neural  networks.  The  nanofluid  model  was

enhanced by include thermophoresis and Brownian motion. 

The  required  transformations  were  applied  to  this  system, 

transforming  it  into  a  similar  nonlinear  ordinary  differential

system. The suggested multilayer perceptron ANN’s dataset

was  created  by  using  a  Runge–Kutta  fourth-order  shooting

technique  to  change  the  relevant  variables.  In  order  to

predict  the  values  of  the  multiple-layer  perceptron,  it

constructed an ANN. The parameter with the smallest mean

deviation and the one with the largest mean deviation were

both found. 

Shafiq et al. [46] sought to utilize an ANN to analyze the

velocity of heat, mass, and motile microbe migration in the

convective  flow  of  magnetohydrodynamic  second-grade

nanofluid  towards  a  vertical  surface.  The  suspension  of

nanoparticles  was  successfully  stabilized  by  the  process  of

bioconvection,  helped  by  microorganisms.  Both  the

characteristics  of  the  nanoparticles  and  the  forces  of

buoyancy  had  an  impact  on  this  process.  The  model  takes

into  account  not  just  thermophoretic  dynamics  and

Brownian motion, but also includes radiation and Newtonian

heating  effects.  The  nonlinear  equation  systems  were

derived  using  suitable  transformations.  The  simplified

equations,  which  were  nonlinear,  were  subjected  to

numerical computations using the fourth-order Runge–Kutta

shooting technique. The Sherwood number, Nusselt number, 

and  coefficient  of  motile  microbe  density  were  calculated

using  different  parameters,  and  three  separate  ANNs  were

constructed based on these results. 

4.4 USE OF AI IN NANOFLUID APPLICATIONS IN

HEAT EXCHANGER SYSTEMS

Çolak  et  al.  [47]  created  three  distinct  ANN  models  to forecast  the  radiative,  convective,  and  total  heat  transfer

coefficients  on  the  floor  surface  of  a  radiant  floor  heating

system  in  an  actual-sized  room,  using  three  different

working  fluid  scenarios.  The  working  fluids  used  were  pure

water, multiwall carbon nanotube with a volume fraction of

0.7%  and  0.07%,  and  aluminum  oxide  with  a  volume

fraction of 1.26%. The input temperatures ranged from 30°C

to 60°C, and the mass flow rates were 0.056 kg/s, 0.09 kg/s, 

and  0.125  kg/s.  The  study  involved  developing  multilayer

perceptron  networks  using  three  different  training

algorithms:  Levenberg−Marquardt,  Bayesian  regularization, 

and  scaled  conjugate  gradient.  The  networks  were  trained

with varying numbers of neurons. After conducting detailed

computational  numerical  analyses,  it  was  found  that  the

Levenberg–Marquardt  algorithm  had  the  highest  prediction

performance, achieving an accuracy of 99%. Therefore, this

algorithm was selected as the optimal choice. 

Kamsuwan  et  al.  [48]  conducted  a  sophisticated

computation  that  combines  AI  with  easily  accessible

computational  software,  resulting  in  an  advanced

calculation system. A response surface approach, based on

statistical  mathematics,  was  employed  to  establish  a

correlation  between  the  calculation  model  and  the  data. 

This  method  was  utilized  to  determine  the  design

parameters  that  optimize  the  performance  of  the  system

under different operating situations. The optimized findings

demonstrated  that  the  integration  of  a  polymer-based

microchannel  heat  exchanger  with  nanofluid  showed  great

potential  as  an  innovative  solution.  The  use  of  TiO2/water

resulted  in  a  noteworthy  enhancement  in  heat  transfer, 

leading  to  a  12%  augmentation  in  the  total  heat  transfer

coefficient  as  compared  to  the  use  of  water  alone.  In

addition,  the  use  of  CuO/water  nanofluid  resulted  in  a

performance  index  of  1.03.  Furthermore,  a  horizontal

parallel  connection  of  66  polymer-based  microchannel  heat

exchangers  demonstrated  that  they  can  achieve  the  same

heat  transfer  performance  as  metal-based  microchannel

heat  exchangers  when  using  TiO2/water  nanofluid.  This

suggests  a  balance  between  enhancing  heat  transfer  and

minimizing energy consumption. 

Sundar et al. [49] conducted an experimental analysis on

the efficacy and quantity of transfer units of water-dispersed

Fe3O4–SiO2  hybrid  fluids  passing  through  a  plate  heat

exchanger.  The  Fe3O4–SiO2/water  hybrid  nanofluids  in  the

plate  heat  exchanger  maintained  laminar  flow  conditions. 

The  experimental  investigations  were  conducted  using

particle concentrations varying from 0.2% to 1.0% and flow

speeds ranging from 0.05 kg/s to 0.1166 kg/s. The efficacy

and  quantity  of  transfer  units  produced  from  these  tests

were  anticipated  using  the  scaled  conjugate  gradient

approach,  which  is  based  on  ANNs.  The  Fe3O4–SiO2

nanoparticles were synthesized using chemical reaction and

in-situ growth techniques, and subsequently analyzed using

x-ray  diffraction  and  vibrating  sample  magnetometer

apparatus. Hybrid nanofluids, which were diluted with water, 

were 

created 

and 

utilized 

for 

the 

experimental

investigations.  The  results  demonstrated  that  when  the

volume  loadings  and  Reynolds  number  increased,  both  the

efficacy  and  number  of  transfer  units  were  improved.  The

efficiency  and  quantity  of  transfer  units  were  enhanced  by

13.23%  and  24.51%  respectively,  while  using  a  hybrid

nanofluid at a volume concentration of 1.0% and a Reynolds

number  of  571.89,  compared  to  the  values  obtained  with

water. 

Zakeri  [50]  employed  a  water-based  nanofluid  containing graphene  oxide  in  a  heat  exchanger  with  a  twin  pipe

configuration,  where  the  flow  of  fluids  occurs  in  opposite

directions.  The  inner  conduit  transported  the  heated

substance. The cold fluid was circulated via the outer pipe, 

and  the  tests  were  conducted  separately  using  deionized

water-based  fluid  and  graphene  oxide  nanofluid.  The

findings  indicated  that  augmenting  the  flow  velocity  and

concentration  of  nanoparticles  resulted  in  an  enhancement

in the heat transfer coefficient. The impact of the intake hot

fluid  temperature  on  this  coefficient  was  found  to  be

insignificant  in  comparison  to  the  concentration  and  flow

rate.  In  addition,  radial  basis  function  neural  networks  and

multilayer  perceptron  neural  network  models  were

developed specifically for the purpose of predicting the heat

transfer coefficient. The radial basis function neural network

model  demonstrated  superior  accuracy  compared  to  the

multi-layer  perceptron  neural  network  model,  but  both

models  successfully  predicted  the  coefficient.  The  results

further  demonstrated  that  the  nanofluid  exhibited  superior

performance  compared  to  the  base  fluid  in  relation  to  the

heat transfer coefficient. 

In  order  to  mitigate  the  substantial  expenses  and  time

required for examination, Kamsuwan et al. [51] opted for a

novel  simulation  technique  that  is  both  efficient  and  cost-

effective.  This  approach  was  employed  to  examine  the

performance  of  a  microchannel  heat  exchanger  using

nanofluids. In order to examine the heat recovery process at

low  temperatures,  namely  in  the  range  of  100–200°C, 

prediction  models  for  nanofluid  properties  were  created

using  an  ANN.  Subsequently,  the  prognostic  models  were

included and merged into computational fluid dynamics with

the  purpose  of  developing  a  microchannel  heat  exchanger. 

The  utilization  of  nanofluids  has  been  seen  to  enhance  the

thermal  conductivity  of  this  heat  exchanger,  hence

improving  its  heat  transfer  efficiency.  The  appropriate

nanofluid  kinds  and  concentrations  were  chosen  based  on

their  thermal-hydraulic  efficiency.  Among  the  tested

nanofluids,  the  fluid  containing  3%  weight  of  TiO2  in  water

had  the  most  promising  performance  in  terms  of  thermal-

hydraulic  ratio,  with  a  value  of  1.03.  This  nanofluid  shows

great potential for use in the given setting. 

Kamsuwan  et  al.  [52]  presented  a  new  approach  that

combines  ANNs  with  traditional  process  modeling  to  study

heat  transfer  in  a  heat  exchanger  utilizing  nanofluid. 

Furthermore,  an  analysis  was  conducted  to  examine  the

responsiveness  of  factors  in  the  design  and  evaluation  of

heat exchangers. The construction of the ANN involved the

utilization  of  2723  datasets  including  a  wide  range  of

nanofluid  kinds  and  their  respective  attributes.  The  novel

ANN nanofluid predictive model exhibited superior accuracy

compared to alternative numerical techniques, as evidenced

by  the  simulation  results.  The  result  had  a  maximum

inaccuracy  of  just  4.1%.  The  approach  replicated  the

traditional  simulation  to  enhance  its  flexibility  and

performance,  while  maintaining  acceptable  levels  of

inaccuracy.  Ultimately,  the  study  utilized  both  ANN  and

traditional  process  modeling  techniques  to  thoroughly

analyze  the  impact  of  nanofluid  augmentation  on  heat

exchangers.  The  parameter  sensitivity  test  was  conducted

on  a  plate  heat  exchanger,  focusing  on  the  impact  of

increasing  the  heat  transfer  coefficient  by  approximately

7%,  while  keeping  the  pressure  drop  constant  and

evaluating the performance efficiency coefficient. 

Through  the  use  of  a  three-dimensional  shell  and  tube

heat exchanger, Fuxi et al. [53] studied the effects of hybrid nanofluids and of helical coil pitch. Phase Coupled SIMPLE is

the  algorithm  that  was  utilized  in  this  investigation,  and

Eulerian  was  the  approach  that  was  utilized.  The  current

research  demonstrates  that  in  order  to  achieve  a  positive

gain in efficiency, it was possible to combine the utilization

of  hybrid  nanofluids  with  the  modification  of  the  geometry

of shell and tube heat exchangers. Finally, the findings were

utilized in the process of training an ANN. The optimal feed-

forward  network  was  obtained  in  this  respect  in  order  to

anticipate  the  effectiveness  of  the  material.  This  was  done

in  order  to  identify  the  optimal  number  of  neurons  in  the

hidden layer. 

Said  et  al.  [54]  employed  multi-walled  carbon  nanotubes (MWCNT)/water  nanofluids  to  enhance  the  efficiency  of  a

shell  and  tube  heat  exchanger,  while  simultaneously

decreasing  energy  consumption  and  total  expenses.  When

the volume percentage was increased to 0.3%, there was a

significant  enhancement  in  the  heat  transfer  coefficient, 

with  an  approximate  improvement  of  31.08%  compared  to

the original fluid. Tests were performed on a shell and tube

heat  exchanger,  and  the  findings  indicate  that  employing

nanofluid  with  a  volume  percentage  of  0.3%  enhances  the

efficiency of the heat exchanger by 5.49% in comparison to

the  base  fluid.  A  high  level  of  concordance  was  achieved

between  the  experimental  and  analytical  findings.  In

addition,  a  numerical  model  was  created  using  the  ANSYS

commercial  software  to  investigate  the  incorporation  of

semicircular baffles with nanofluid. Numerical data indicates

that  the  addition  of  MWCNT/water  nanofluid  at  a  volume

percentage  of  0.3%,  along  with  semicircular  baffles, 

increased  the  overall  efficiency  of  the  shell  and  tube  heat

exchanger  by  15.4%.  The  temperature  variation  data

obtained  from  the  experiment  was  used  to  develop  an  AI-

driven  prognostic  model.  An  ANN  of  the  multilayer

perceptron type was used to model and predict the thermal

behavior  of  MWCNT  nanofluids  on  the  tube  side  and  water

on  the  shell  side.  The  tube  side  model  had  exceptional  R

and  R2  values  of  0.998  and  0.996,  respectively,  while  the

shell side model demonstrated R and R2 values of 0.994 and

0.988, respectively. These values indicate the presence of a

strong and reliable predictive model. 

In their study, Jery et al. [55] performed a simulation of a geothermal  heat  exchanger  to  examine  the  most  effective

diameter  and  nanoparticle  concentration  for  reducing

entropy  formation.  The  findings  indicated  a  positive

correlation  between  the  increase  in  thermal  resistance  of

the inner wall and the rise in outlet temperature. The study

extensively examined the impact of thermal resistance and

diameter,  and  the  findings  were  utilized  to  choose  the

option  with  the  lowest  entropy  generation.  The  findings

indicate  that  the  diameter  at  which  entropy  is  reduced

expands  as  the  heat  resistance  of  the  inner  wall  rises.  The

optimal  scenario  entailed  a  significant  level  of  thermal

resistance  in  the  outside  walls,  while  exhibiting  little

resistance  in  the  inside  walls.  Employing  inner  walls  with

strong  heat  resistance  might  mitigate  the  detrimental

consequences  of  entropy  formation  in  situations  with  large

diameters.  Furthermore,  the  researchers  examined  the

impact of including nanoparticles, which resulted in a nearly

10%  rise  in  the  average  Nusselt  number  and  a

corresponding  drop  in  entropy  production.  Proposed  were

ANN  models  to  forecast  the  Nusselt  number  and  entropy

production,  utilizing  numerical  outcomes.  The  models

successfully  attained  mean  absolute  error  (MAE)  below  3%

and R2 above 0.95. 

4.5 USE OF AI IN NANOFLUID APPLICATIONS IN

RENEWABLE ENERGY SYSTEMS

Chilambarasan et al. [56] examined how the combination of

an  absorber  tube  with  internal  grooves  and  a  nanofluid

based on Al2O3-WEG may enhance the performance of solar

flat  plate  collectors.  A  comparison  was  made  between  the

results  obtained  by  using  Al2O3-WEG-based  nanofluid  and

ordinary working fluid. The solar flat plate collector models 1

and  2  achieved  the  best  efficiency  while  operating  with mass  flow  rates  of  0.036  kg/s  and  0.2%  volume.  The

efficiency improvement of model 2 compared to model 1 of

plain  fluid  was  46.37%,  54.13%,  and  33.83%  at  mass  flow

rates of 0.024, 0.036, and 0.048 kg/s, respectively. Model 2

achieved  a  54.1%  higher  efficiency  compared  to  Model  1, 

when  operating  at  a  mass  flow  rate  of  0.036  kg/s  with  a

volume  concentration  of  0.2%.  The  ANN  models  accurately

forecasted the real-time output values of the solar flat plate

collector experiment. 

Jakeer  et  al. [57]  investigated  the  heat  transfer

characteristics  of  a  Sutterby  hybrid  nanofluid  flow  with

magnetohydrodynamics, 

using 

a 

non-uniform 

heat

source/sink and linear thermal radiation across a non-Darcy

curved  permeable  surface.  The  current  study  presented  a

new intelligent numerical computing solution that utilizes an

MLP  feed-forward  back-propagation  ANN  with  the

Levenberg-Marquardt  method.  Data  were  collected  for

testing,  certifying,  and  training  the  ANN  model.  Graphs

depicted how various physical elements influenced variables

such  as  pressure,  velocity,  and  temperature.  The  thermal

energy was enhanced more by the SiO2–Au hybrid nanofluid

compared to the SiO2–TiO2 hybrid nanofluid throughout the

investigation.  Higher  values  of  the  internal  heat

generation/absorption  parameter  led  to  an  increase  in

temperature. 

Rawat et al. [58] examined the heat transfer of a ternary

hybrid nanofluid flowing inside a receiver tube in a parabolic

trough solar collector. The flow inside the receiver tube was

mathematically approximated using spinning parallel plates. 

The  investigation  examined  the  impact  of  the  Hall  effect, 

the Cattaneo–Christov model, suction/injection, and thermal

radiation  (linear  and  quadratic).  Conventional  methods  for

analyzing parameters might struggle to produce meaningful

results  when  dealing  with  sophisticated  models  and

numerical techniques. This study assessed the effectiveness

of  soft  computing  approaches  in  predicting  the  behavior  of

an issue with several interconnected factors. The simulated

data  was  utilized  to  train  the  ANN  and  particle  swarm

optimization  technique.  An  ANN  and  particle  swarm

optimization  technique  were  used  to  accurately  predict  the

Nusselt  number  values  at  the  lower  and  top  plates.  The

algorithms’  prediction  ability  was  assessed  using  mean

squared  error,  average  forecasting  error  rate,  and

coefficient of correlation. The examination demonstrated the

benefits  of  utilizing  soft  computing  approaches  for

accurately studying complicated flow models. 

Alnaqi  et  al.  [59]  studied  the  impact  of  utilizing  an  off-center  finned  absorber  tube  on  the  performance  of  a  two-

fluid  parabolic  trough  solar  collector  containing  a  nanofluid

with  various  nanoparticle  shapes  and  sizes.  The  energy

efficiency  of  the  two-fluid  parabolic  trough  solar  collector

was  determined  to  be  greater  than  that  of  the  single-fluid

parabolic  trough  solar  collector.  Furthermore,  the  results

showed  that  the  energy  efficiency  of  the  parabolic  trough

solar collector improves when an off-center finned absorber

tube  is  used,  by  increasing  the  Reynolds  number  and

reducing  the  solid  volume  portion.  The  highest  energy

efficiency observed in the study was 58.9%. It was achieved

by the two-fluid parabolic trough solar collector with an off-

center finned absorber tube filled with nanofluid containing

spherical nanoparticles with a diameter of 40 nm at a solid

volume  fraction  of  1%  and  a  Reynolds  number  of  5000.  An

ANN was used to evaluate how sensitive energy efficiency is

to changes in the Reynolds number. 

Ibrahim  et  al. [60]  simulated  an  80-W  photovoltaic

technology  with  its  cooling  system.  The  cooling  system

comprises  a  copper  pipe,  with  a  copper  plate  of  1  mm

thickness  positioned  beneath  the  panel.  Copper/water-

ethylene nanofluids were circulated at various flow rates via

the  cooling  system  while  being  subjected  to  varying  heat

flux  levels  at  different  times  of  the  day.  A  neural  network

was  used  to  predict  the  thermal  characteristics  of  a  solar

system that generates heat. An optimization was conducted

on  the  variables  of  pipe  diameter,  heat  flux,  and  nanofluid

flow  rate,  as  well  as  the  output  parameters  of  maximum

temperature and pressure drop to enhance the analysis. The

simulation  results  demonstrated  the  exceptional  capability

of the neural network in predicting the output variables. The

optimization  findings  indicated  that  the  pipe  with  the

smallest  diameter  and  lowest  heat  flux  should  be  used  to

achieve  the  highest  fluid  flow  and  reduce  the  maximum

temperature. The highest unwanted panel temperature was

recorded at the opposite location. The lowest pressure drop

was  seen  when  the  panel  included  the  pipe  with  the

greatest  diameter,  and  the  fluid  flowed  through  it  at  the

slowest speed. 

Delfani et al. [61] used an ANN based system to forecast

the thermal efficiency of a nanofluid-based direct absorption

solar  collector.  Nine  collector  prototypes  with  varying

geometries  were  tested  under  different  conditions  in  the

experimental phase of the project to analyze the impact of

collector  depth  and  length  on  thermal  performance.  The

input  parameters  of  the  network  chosen  to  estimate  the

collector efficiency and Nusselt number are collector depth, 

length, working fluid flowrate, concentration, and decreased

temperature  differential.  The  Nusselt  number  of  the

collector  significantly  increased  due  to  the  collector  depth

and  nanofluid  flow  rate.  The  network  performed  best  in

predicting  collector  efficiency  when  the  nanofluid

concentration  was  set  at  1000 ppm.  The  Nusselt  number

prediction  had  the  highest  performance  while  using  a

collector  length  of  300 mm.  The  agreement  between  the

actual  and  anticipated  findings  demonstrated  the  ANN’s

strong  capability  in  forecasting  the  thermal  performance  of

direct absorption solar collectors. 

Tomy et al. [62] utilized an ANN to simulate the efficiency

of  a  flat  plate  solar  collector  using  silver/water  nanofluid. 

The solar radiation heat flux ranged from 900 W/m2 to 1000

W/m2.  The  Reynolds  number  ranged  from  5,000  to  25,000. 

Analyzed  the  impact  of  radiation  heat  flux,  mass  flow  rate, 

and  input  temperature  on  the  heat  transfer  coefficient  and

thermal  efficiency.  The  ANN  findings  were  compared  with

actual data. In addition, the ANN was utilized to forecast the

thermal  efficiency  of  a  flat  plate  solar  collector  up  to  a

Reynolds number of 100,000. The study found that the ANN

findings  closely  matched  the  experimental  results,  with  a

difference of less than ±2%. 

Moghadam  et  al. [63]  utilized  entropy  generation

minimization,  quadratic  optimization  method,  and  ANN  to

determine  the  ideal  operating  conditions  for  turbulent  flow

of  Al2O3-EG/W  nanofluid  within  the  absorber  tube  of  a

parabolic trough solar collector. A three-input ANN was used

to estimate the appropriate volume fraction. The procedure

aimed  to  optimize  nanoparticle  concentration,  nanoparticle

diameter,  nanofluid  average  flow  temperature,  and

Reynolds  number.  The  study  found  that  the  entropy

production  rate  reduces  when  the  volume  percentage  falls, 

particle  diameter  increases,  and  average  flow  temperature

increases.  Introducing  nanoparticles  to  the  base  fluid

elevates  frictional  entropy  production  and  reduces  thermal

entropy production. It enhanced heat transfer efficiency but

led to a rise in viscous irreversibility. It was noted that there

is a definite ideal volume fraction for each particle size and

average  flow  temperature,  regardless  of  the  number.  An

ideal volume fraction existed for all numbers with a constant

particle size and mean flow temperature. 

Fuxi et al. [64] studied the numerical simulation and ANN

modeling  of  turbulent  flow  in  a  pipe  with  two  spring

turbulator  samples  of  various  sizes  and  a  segmental  cross-

section.  A  spring  turbulator  was  expected  to  enhance  heat transfer in a TiO2–Cu–Water hybrid nanofluid using a single-phase  model,  feed-forward  ANN,  and  fitting  approach.  The

study  analyzed  the  impact  of  Reynolds  number,  size,  and

volume  fraction  on  Nusselt  number,  pressure  drop, 

performance 

evaluation 

coefficient, 

solar 

collector

efficiency, and the field synergy principle in comparison to a

basic  pipe  using  the  finite  volume  approach.  The  findings

indicated  that  enlarging  the  spring  turbulator  scale

enhanced  the  contact  area  between  the  working  fluid  and

the  spring  turbulator.  The  enhanced  flow  turbulence

resulted in improved mixing of the nanofluid within the solar

collector  absorber  pipe.  The  outputs  and  fitting  results  of

the  ANN  were  compared,  revealing  that  the  ANN  could

properly anticipate the targets. 

4.6 CONCLUSION

The  use  of  AI  techniques  can  lead  to  increased  efficiency

and innovation in multiple fields, offering a promising option

to  overcome  challenges  arising  from  the  complex  and

dynamic  nature  of  nanofluids.  In  this  comprehensive

research,  the  use  of  AI  to  understand  various  aspects  of

nanofluidic heat transfer was analyzed. Within the scope of

the analysis, different applications were taken into account, 

including  thermophysical  properties  of  nanofluids,  flow

properties, heat exchanger systems, and renewable energy

applications.  In  the  study,  firstly,  the  use  of  AI  in

determining  the  thermophysical  properties  of  nanofluids

was  examined,  focusing  on  thermophysical  properties  such

as  thermal  conductivity,  viscosity,  and  specific  heat.  By

applying  ANNs  and  other  AI-enabled  models,  remarkable

accuracy 

has 

been 

achieved 

in 

predicting 

the

thermophysical 

properties 

of 

various 

nanofluid

compositions.  Subsequently,  AI  applications  in  determining

the flow properties of nanofluids were investigated and the

potential  of  AI  in  modeling  complex  fluid  dynamics  events

was  demonstrated.  From  analyzing  heat  generation  in

unsteady  fluid  flows  to  estimating  surface  friction

coefficients  and  Nusselt  numbers,  AI-based  approaches

have  demonstrated  robustness  and  efficiency  in  capturing

complex  flow  behaviors.  The  versatility  of  ANNs  has  been

exemplified  in  the  optimized  design  and  operation  of

nanofluidic  systems  in  various  engineering  applications. 

Integration  of  AI  into  heat  exchanger  systems  and

renewable  energy  applications  plays  an  important  role  in

increasing  energy  efficiency  and  performance  optimization. 

As a result, the use of AI tools in applications of nanofluidic

heat  transfer  can  offer  an  innovative  approach  to

overcoming  complex  challenges  and  unlocking  new

opportunities in various science and engineering disciplines. 

4.7 NOMENCLATURE

AI

artificial intelligence

ANN

artificial neural network

MAE

mean absolute errors

MLP

multilayer perceptron

MSE

mean-squared error

MWCNT

multi-walled carbon nanotubes

R

coefficient of determination

SSE

sum of squared errors

WEG

water/ethylene glycol mixture
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5.1 INTRODUCTION

The  metallurgical,  chemical  and  petroleum  engineering

industries  are  just  a  few  major  industrial  examples  that

highlight  the  essence  of  fluid’s  magnetohydrodynamic

(MHD)  flow  over  a  deforming  structure.  The  grasp  of  the

physical repercussions that occur in MHD is closely linked to

understanding  MHD.  According  to  Lenz’s  law,  a  conductor

moving  through  a  magnetic  field  (MF)  induces  an  electric

current,  which  produces  its  MF.  The  lines  of  the  MF  will  be

eliminated  from  the  conductor  because  the  induced  MF

seeks  to  erase  the  initial  and  external  supported  field. 

Meanwhile,  the  induced  field  increases  the  applied  field

when the MF moves the conductor out of the field. Overall, 

this procedure gives the impression that the conductor and

the lines of force are being pulled. The repercussion of MHD

on  the  nanofluid  flow  (NFF)  via  a  stretchable  sheet  was

examined by Hamid et al. [1]. Yusuf et al. [2] inspected the stream of MHD liquid past an inclined wall in the presence of

porous media. In the presence of an MHD, the performance

of a rough slider bearing coated with fluid was elaborated by

Cyriac  et  al. [3]. The  MHD  liquid  stream  across  a  vertical channel with the Dufour and Soret effects was investigated

by  Shilpa  et  al.  [4]. The  flow  of  nanoliquid  via  a  vertical surface with MHD heat transport was debriefed by Kumar et

al. [5]. 

Air  purifiers,  heat  exchangers,  nuclear  reactor  safety, 

building ventilation systems, and powdered coal burners are

just  a  few  technical  applications  that  depend  on

thermophoretic  particle  deposition  (TPD).  Different  kinds  of

particles behave differently when subjected to temperature

gradients, which is how the phenomenon of thermophoresis

originated.  Thermophoresis  increases  the  velocity  of

minuscule  particles  placed  in  a  gas  that  isn’t  isothermal, 

increasing  their  accumulation  speed  towards  lower

temperatures.  Larger  particles  are  unaffected  by  this

method.  TPD  causes  small  particles  to  settle  on  a  cold

surface  because  the  flow  of  molecules  of  gas  in  the  colder

zone is usually slower than that of particles arriving from the

warmer region. Consequently, high-velocity particles collide

with  one  another  throughout  this  process.  The  influence  of

TPD  on  the  liquid  stream  across  a  stretchable  surface  was

delineated  by  Gowda  et  al.  [6].  The  stream  of  Oldroyd-B

liquid  through  the  moving  surface  with  the  TPD  was

scrutinized by Wang et al. [7]. Prasannakumara and Gowda

[8]  probed  the  heat  transport  analysis  of  the  liquid  flow across a gyrating disk with TPD impact. Madhukesh et al. [9]

examined the flow of nanoliquid via a Riga surface with the

influence  of  TPD.  The  impact  of  Soret  and  Dufour  on  the

liquid stream past a stretchy cylinder with TPD was explored

by Yasir et al. [10]. 

Heat  transfer  and  flow  processes  fall  under  the  broad

category  of  thermal  radiation  (TR),  which  has  several  uses

in industry and science. This behavior is frequently seen in

several  industries,  such  as  spacecraft,  power  production, 

nuclear  reactor  cooling,  aerospace  technology,  hypersonic

flights,  gas  turbines,  combustion  applications,  high-

temperature  operations,  etc.  The  relationships  between

densities  and  the  linear  variations  in  the  temperature

difference  between  the  wall  and  remote  sites  were

established  via  many  investigations.  In  recent  years,  the

study  has  focused  on  linear  TR,  with  the  linear  Rosseland

approximation being used to analyze the effect of radiative

flow  at  the  surface.  However,  certain  thermal  systems  still

show very high-temperature differences, which significantly

impact  fluid  flow  characteristics  due  to  the  nonlinear

fluctuation  of  the  density  relation  with  temperature.  The

thermal  analysis  in  a  dovetail  fin  with  the  influence  of  TR

was  delineated  by  Nimmy  et  al.  [11].  The  heat  transport attributes  of  the  wavy  extended  surface,  along  with  the

impact of TR, were explored by Prakash et al. [12]. Wang et

al. [13] inspected the flow of nanoliquid across the disk and cone  with  the  impact  of  TR.  The  TR  effect  on  the  flow  of

liquid across a Riga plate was scrutinized by Nadeem et al. 

[14]. An ideal investigation of TR’s impact on the convective flow of fluid contained in carbon nanotubes was carried out

by Yu and Wang [15]. 

A new class of fluids called nanofluids (NFs) emerged due

to the development of metal particles. NFs are composed of

small  materials  with  a  dimension  of  1  to  100  nanometers. 

These fluids have substantially higher thermal conductivities

than  the  base  liquid.  NFs  have  been  shown  to  possess

superior  thermal  and  physical  properties  compared  to

ordinary fluids. In nanotechnology innovation, a unique class

of  heat-transmission  fluids  known  as  hybrid  NFs  with

improved  thermal  conductivity  has  been  developed, 

resulting in global technological improvements. Distributing

two or more nanoparticles smaller than 100 nm results in a

hybrid  NF,  an  improvement  over  a  regular  NF.  The

researchers discovered a new NF called ternary nanofluid (T-

NF)  when  they  mixed  three  different  kinds  of  nanoparticles with the base fluid. In response to the growing demand for

cooling  agents  with  superior  thermal  features  at  the

industrial  level,  researchers  have  altered  existing  NFs  to

boost  their  thermal  qualities,  leading  to  the  discovery  of  T-

NF.  To  enhance  the  thermal  characteristics  of  ternary

nanoparticles  that  are  now  available  on  the  market,  more

experimental  research  has  been  conducted  to  suspend

three  different  types  of  solid  nanoparticles  in  liquids.  Using

computational  modeling,  Khan  et  al.  [16]  investigated  T-NF

flow  via  a  stretchable  sphere.  Sarada  et  al.  [17]  examined the flow of T-NF through a curved surface with an impact on

heat  generation  using  the  heat  flux  model.  Nagapavani  et

al. [18]  discussed  the  flow  of  T-NF  over  a  gyrating

stretchable  cylinder  in  its  state  of  torsional  motion.  Using

numerical  analysis,  Sharma  et  al.  [19]  explored  the  T-NF

steam  via  a  microchannel.  Karthik  et  al. [20]  probed  the consequence of radiation on the T-NF stream via a wedge. 

The artificial neural network (ANN) is a common machine

learning  method,  which  can  extract  related  attributes  from

input  with  higher  dimensions.  A  neural  network  is  an

algorithm  that  simulates  the  composition  and  functions  of

the human brain. There are several advantages to applying

ANNs to solve complicated problems. An ANN’s autonomous

learning  characteristic  enables  it  to  optimize  across  many

cycles  and  extract  features  from  data  without  prior

knowledge or understanding. ANNs may be used for a wide

range  of  variables  and  can  quickly  estimate  the  statistics

supplied  during  the  training  phase  since  they  are  universal approximators.  ANN  is  trained  using  the  Levenberg–

Marquardt  (LM)  optimization  technique  for  complex

problems.  The  LM  methodology  is  a  supervised  training

strategy that uses any feedforward neural network. The LM

technique  has  been  utilized  for  curve  fitting  because  it

combines  the  decreasing  amount  of  error  obtained  by

gradient descent with the higher convergence of the Gauss–

Newton  technique  at  the  minima.  The  LM  algorithm  (LMA)

works on the principle of integrated process training within

and  outside  a  complexly  curved  region.  The  LMA  uses  the

steepest  descent  method  initially  to  construct  a  quadratic

approach.  By  converting  the  LMA,  the  Gauss–Newton

method is achieved, leading to a considerable convergence

acceleration. To train the network, both the input and output

levels  are  populated  with  the  inputs  and  corresponding

outputs. The initial step in creating an NN-BLMA model is to

choose  its  input  and  output  data  efficiently.  The  impact  of

heat source on the liquid stream across a surface using NN-

BLMA  was  studied  by  Raja  et  al.  [21].  Using  the  ANN, Srilatha et al. [22] inspected the stream of NF via a porous disk.  The  NN-BLMA  was  employed  by  Kumar  et  al. [23]  to study  the  thermal  transport  attributes  of  the  wavy  profiled

extended  surface.  Goud  et  al.  [24]  explored  thermal

transmission  in  a  trapezoidal  fin  in  permeable  media  using

NN-BLMA.  Sowmya  and  Kumar  examined  the  influence  of

heat generation on thermal dispersal in a moving extended

surface using NN-BLMA [25]. Recently, Shilpa et al. [26, 27, 

28]  and  Rani  et  al. [29]  have  adopted  LM  backpropagating algorithm  to  analyze  the  heat  and  mass  transfer  of  NF, 

nanolubricant  in  various  channels  under  the  influence  of

various physical phenomena. 

The Soviet researcher Boris Galerkin is the inspiration for

the  name  Galerkin  techniques  in  numerical  analysis.  By

applying linear constraints established by finite sets of basic

functions, they transform a continuous operator issue – such

as a differential equation – into a discrete problem, often in

a  weak  formulation.  The  Maxwell  liquid  flow  via  a  vertical

annulus with a heat source using the Galerkin finite element

approach was deliberated by Shilpa and Leela [30]. Rekha et

al. [31]  investigated  how  the  solute  transport  in  an

unsaturated  zone  varies  exponentially  with  time  using  the

finite  element  approach.  Pasha  et  al.  [32]  studied  the statistical  evaluation  of  viscous  hybridized  NFF  using

Galerkin’s  finite  element  approach.  Bejawada  et  al. [33]

addressed the flow of NF across an inclined plate using the

Galerkin  finite  element  technique.  Using  the  Galerkin  finite

element scheme, Bouslimi et al. [34] scrutinized the flow of Sutterby  NF  on  a  slippery  surface.  Recently,  Shilpa  et  al. 

[35, 36, 37] have applied the CFD technique to analyze the

heat  and  mass  transfer  of  NF  and  nanolubricant  in  distinct

regions,  the  authors  illustrated  and  presented  the  results

graphically. 

In  addition,  this  study  evaluates  how  well  the  soft

computing approach predicts the behavior of a problem with

several  interdependent  parameters.  Because  parametric

studies  are  difficult  by  nature  and  require  various

procedures, traditional methods frequently struggle to yield

meaningful 

results. 

This 

chapter 

investigates 

the

possibilities  of  machine  learning  techniques  to  forecast  the

performance  of  a  flow  model  with  several  interconnected

parameters  to  solve  the  previously  discussed  problem.  The

study  uses  numerical  findings  to  instruct  an  ANN,  focusing

on  finding  methods  that  provide  reasonably  accurate

predictions. The ANN algorithm can now reliably predict the

desired  parameters  across  a  wide  range  owing  to  this

training.  Furthermore,  the  Nusselt  and  Sherwood  number

values  on  the  shrinking/stretching  convergent  channel  are

precisely determined using the ANN method. The fields that

use  NFF  via  a  channel,  such  as  medicine,  architectural

design  systems,  nuclear  waste  treatment,  conveyance

processes,  etc.,  will  benefit  from  the  present  findings.  The

items  below  outline  the  uniqueness,  purpose,  and  primary

research questions addressed in this study:

a. A  stretching/shrinking  convergent  channel  is  subjected

to  the  mathematical  flow  model  of  THNF  (Al2O3–Cu–

CuO/water). 

b. Examining  the  effects  of  TPD  and  heat  radiation  on

THNF flow. 

c. Using the existing modeling, analyze the heat and mass

transfer  rate  of  THNF  flow  across  a  channel  and

determine the conditions under which THNF exhibits the

maximum heat and mass transfer rates. 

d. Creating  an  algorithm  for  machine  learning  (ANN)  to

forecast  the  rates  of  mass  and  heat  transport  at  the

surface. 

5.2 MATHEMATICAL FORMULATION

Consider  a  laminar,  viscous,  incompressible  flow  of  (Al2O3–

Cu–CuO/water) 

T-NF 

in 

a 

stretchable/shrinkable

convergent/divergent  channel  as  shown  in  Figure  5.1.  The main  presumptions  of  this  heat  and  mass  transport  model

are  that  the  velocity  of  the  fluid  layer  in  adjacent  walls  is

equal  to  the  velocity  of  the  wall  and  that  variably  shaped

nanoparticles are equally disseminated in the base fluid. It is

supposed  for  the  walls  to  be  expanding  or  contracting  at  a

rate   s.  It  is  possible  to  write  the  velocity  at  the  wall  as

 ur =  Uw =  s/ r.  Furthermore,  the  angle  α  is  greater  than zero for the divergent channel and less than zero (α < 0) for

the converging channel. Our study also considers the impact

of  buoyancy  forces  and  thermal  equilibrium  between  the

base fluid and the nanoparticles. To study flow, a transverse

uniform MF with strength  B 0 =  B 0 ( r) is applied across the channel. The shape factors and thermophysical properties of

nanofluid are mentioned in Tables 5.1 and 5.2. Below is a list of  the  physical  equations  that  describe  how  T-NFs  inside

stretchable  convergent/divergent  channels  when  they  are

affected by TR, TPD, and MF properties:
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FIGURE 5.1  Physical configuration. 

TABLE 5.1

Shape Factors of Distinct

Nanoparticles

Shape of Nanoparticles

Shape Factor Values

Bricks

3.7

Cylinder

4.9

Platelets

5.7

Blades

8.6

TABLE 5.2

Thermophysical Values of

Nanoparticles and the Base Fluid

Components

 ρ

 cp

 k

 σ

CuO

6500

540

18

6.9  ×  10−2

H2O

997.1

4180

0.6071

5.5  ×  10−6

Cu

8933

385

400

59.6  ×  106

Al2O3

3970

765

40

35  ×  106

Using Roseland approximation for radiation

4 σ* ∂ T  4

4 σ* ∂ T  4

 qr,  rad = −

 and  q

3 k* ∂ r

 θ,  rad = − 3 k* ∂ θ

(5.6)

The thermophoretic deposition velocity in  θ - direction is

 V dT

 V

 θ

 T = − k Tr dθ

(5.7)

Due to the symmetry assumption at the channel centerline
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Because 

of 

the 

plates 

stretching/shrinking

convergent/divergent wall conditions, 

 S

 T

 C

 θ = ± α,  u =

,  T =  w ,  C =  w

 r

 r 2

 r 2

(5.9)

 f( θ)

The radial velocity is  u( r,  θ) =  r

(5.10)

The  stretching  pressure  can  be  expressed  as  follows  once

the azimuthal velocity equation is integrated:

 p
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Non-dimensional quantities
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Reduced equations
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Boundary conditions are

 F(0) = 1,  F ′(0) = 0,  F(1) =  λ,  Θ′(0) = 0,  Θ(1) = 1,  Φ′(0

(5.17)

Thermophysical properties of T-NF
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(5.18)

 ρ( Al

) ρ

2 O 3− CuO− Cu) H 2 O = (1 −  ϕCu) [(1 −  ϕCuO) {(1 −  ϕAl 2 O 3

(5.19)

(1 −  ϕA

( ρcp)( Al 2 O 3− CuO− Cu) H 2 O = (1 −  ϕCu) [(1 −  ϕCuO){ ϕAl ( ρ

2 O 3

(5.20)

 k( Al

 k

2 O 3− CuO− Cu) H 2 O =  Cu + ( n − 1) k( Al 2 O 3− CuO) H 2 O − ( n k( Al 2 O 3− CuO) H 2 O

 kCu + ( n − 1) k( Al 2 O 3− CuO) H 2 O +

(5.21)

 k( Al

 k

2 O 3− CuO) H 2 O =  CuO + ( n − 1) knf − ( n − 1) ϕCuO( knf knf

 kCuO + ( n − 1) knf +  ϕCuO( knf −  k

(5.22)

 knf

 k

+ ( n − 1) k

( k

=  Al 2 O 3

 H 2 O − ( n − 1) ϕAl 2 O 3

 H 2 O −  kAl 2

 kf

 kAl

+ ( n − 1) k

( k

)

2 O 3

 H 2 O +  ϕAl 2 O 3

 H 2 O −  kAl 2 O 3

(5.23)

 σ( Al

 σ

2 O 3− CuO− Cu) H 2 O =  Cu + 2 σ( Al 2 O 3− CuO) H 2 O − 2 ϕCu ( σ

 σ( Al 2 O 3− CuO) H 2 O

 σCu + 2 σ( Al 2 O 3− CuO) H 2 O +  ϕCu ( σ(

 σ( Al

 σ

 σ

2 O 3− CuO) H 2 O =  CuO + 2 σnf − 2 ϕCuO( σnf −  σCuO) σnf

 σCuO + 2 σnf +  ϕCuO( σnf −  σCuO)  σH

(5.24)

Skin friction, Nusselt, and Sherwood numbers:

 μ

 τ =  thnf f ′′(0), 

 μf

(5.25)

 Nu = − (  kthnf +  N) Θ′(0), 

 kf

(5.26)

 Sh = − Φ′(0). 

(5.27)

5.3 NUMERICAL METHOD

High  nonlinearities  in  the  developed  thermal  and  solutal transport  model  prevent  it  from  computing  its  closed-form

solutions.  As  a  result,  residual  techniques  are  helpful  for

these 

models, 

which 

are 

highly 

accurate 

and

computationally  efficient.  Consequently,  the  GFEM  handles

the  current  model.  The  main  components  of  GFEM

implementation  are  the  choice  of  residue  functions,  trial

solutions, and weight functions that take the form of linearly

autonomous functions. After that, a set of integral equations

was produced, and from that integral model, indeterminate

coefficients  could  be  correctly  computed.  Ultimately,  when

those  known  coefficients  were  introduced,  there  was

remarkable  precision  in  the  model’s  solution  and  the  trial

solution. 

Figure 

5.2 

provides 

the 

whole 

GFEM

implementation  procedure  for  the  current  T-NF  model  in

convergent/divergent channels under the physical effects of

TR and TPD and with distinct shape factors of NF. 

[image: Image 89]

FIGURE 5.2  GFEM implementation. 

5.4 VALIDATION

The results acquired by GFEM are compared with the results

of  Turkyilmazoglu  [38]  under  a  limiting  case.  A  good

agreement  between  both  results  can  be  noticed  in  Figure

5.3. 

[image: Image 90]

FIGURE 5.3  Comparison of present work with existing results. 

5.5 RESULTS AND DISCUSSION

Figure 5.4 represents the effect of  Re on the velocity profile in  both  expanding/shrinking  convergent  channels.  Re

illustrates  the  significance  of  the  inertial-to-viscous  force

ratio for a flow. Physically, an increase in Re results in a rise

in  the  inertial  force  inside  the  current  flow  system, 

generating  a  velocity  increment.  The  velocity  profile  gets

intensified  by  increasing  the  value  of  the  Reynolds  number

in  the  stretching  channel,  whereas  the  velocity  profile  gets

diminished  for  the  increased  Reynolds  number  in  the

shrinking channel. However, when Re enhances, the forced

convection  weakens,  resulting  in  a  decline  in  the  transport

in T-NF. Figure 5.5 represents the effect of  M on the velocity profile  in  a  shrinking/stretching  convergent  channel.  The

Hartmann  number  reduces  the  velocity  of  the  T-NF  in  both

stretching and shrinking channels. The MF can greatly affect

a  fluid’s  temperature  and  velocity,  especially  if  the  fluid  is

electrically  conducting,  like  liquid  metal  or  plasma.  It  can

potentially  cause  variations  in  the  temperature  and  flow

velocity by exerting a Lorentz force on the charged particles

inside  the  fluid.  When  an  MF  is  present,  the  fluid  may  take

on  a  distinctive  flow  pattern  that  includes  vortices  and

eddies that point in the same direction as the MF. This may

modify  the  fluid’s  flow  structure  and  velocity  profile.  Figure

5.6 represents the influence of radiation parameters on the

ternary  hybrid  NF  temperature  in  shrinking/stretching

convergent  channels.  The  radiation  parameter  defines  the

proportionate  impact  of  conductive  heat  transmission  on

radiation’s 

heat 

transfer. 

Both 

stretching/shrinking

convergent channels’ boundary layers warm up in response

to  an  increase  in  the  radiation  parameter. Figure  5.7

illustrates  the  effect  of  TPD  parameter  influence  on  the

ternary 

hybrid 

NF 

concentration 

profile. 

As 

the

thermophoretic  parameter  augments,  the  concentration  of

the fluid diminishes since when there is a significant thermal

variance, the concentration decreases as more particles are

drawn  to  the  surface  by  the  thermophoretic  force.  The

Schmidt number impact on ternary hybrid NF concentration

profile can be seen in Figure 5.8.  Sc is defined as the ratio of viscosity  and  mass  diffusivity.  So,  concentration  intensifies

with the rise of  Sc. 

[image: Image 91]
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FIGURE 5.4  Influence of Re on velocity profile in shrinkable and stretchable convergent channel. 

FIGURE 5.5  Influence of  M on velocity profile in shrinking and stretching convergent channel. 

[image: Image 93]
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FIGURE 5.6  Influence of  N on temperature profile in shrinking and stretching convergent channel. 

FIGURE 5.7  Influence of  K on concentration profile in shrinking and stretching convergent channel. 

[image: Image 95]

FIGURE 5.8  Influence of  Sc on concentration profile in shrinking and stretching convergent channel. 

5.6 ARTIFICIAL NEURAL NETWORK MODEL

ALGORITHM

Biological  neural  networks  influenced  the  computational

prototypes  known  as  ANNs.  They  are  made  up  of  artificial

neurons  that  are  coupled.  Because  ANNs  can  accurately

simulate  complicated  and  nonlinear  functions,  they  have

become  increasingly  popular  recently.  The  authors  can

predict  the  Nusselt  and  Sherwood  number  in  the  present

flow  model  using  a  model  built  on  an  ANN.  The  multilayer

perceptron  (MLP)  network  is  one  of  the  most  effective

models.  The  input,  hidden,  and  output  layers  make  up  the

three  layers  of  MLP  networks,  which  are  feedforward  NN

(see  Figure  5.9). Neurons  in  the  input  layer  gather

information,  process  it,  and  transfer  it  to  the  hidden  layer, 

which then processes it even more before passing it to the

output  layer.  Each  layer  is  fully  networked,  and  each

[image: Image 96]

network  has  been  given  a  unique  weight  (see  Figure  5.9). 

Both  the  hidden  and  output  layers  use  activation  functions

to  turn  on  the  neurons.  They  can  be  added  if  more  hidden

layers  are  needed  to  handle  more  difficult  tasks.  The

connection weight is applied to the input signal (Xi) that the

 j th  neuron  in  the  hidden  layer  receives,  and  the  result  is

added  up.  The  resultant  sum  is  then  supplied  into  an

activation  function  to  excite  the  neurons.  The  same  data

processing  pattern  is  followed  from  the  hidden  layer  to  the

output  layer.  The  following  is  an  expression  for  the   j th

neuron’s output:

FIGURE 5.9  ANN model schematic diagram. 

(  n

)

 Yj =  f ∑  W nijXi +  bnj

 i=1

(5.28)

where “Wji” stands for the weight of the connection from the

 i th  neuron  in  the  previous  layer  and  “f”  stands  for  the activation  function  in  Eqn.  (5.28).  Reducing  errors  between

the  generated  and  required  output  is  the  main  goal  of  the

ANN’s training procedure. 

Various activation functions, such as exponential, logistic, 

and hyperbolic functions, can be applied when expressed by

the variable “f”. Neural network training frequently uses the

error  propagation  algorithm.  The  weights  between  network

layers are changed during this supervised learning process. 

The learning error rate is ascertained by comparing the NN

outcomes  with  the  predicted  results  from  the  training

dataset.  It  is  significant  to  consider  that  the  MLP  network’s

configuration  greatly  impacts  its  performance.  Generally, 

the  best  network  setup  is  found  by  repeatedly  testing

various  options  to  reduce  the  error  rate.  This  procedure

comprises carrying out tests with various parameter values, 

such as selecting the number of neurons in the middle layer

and the activation functions used in the output and hidden

layers.  The  model’s  error  value  is  computed  for  various

parameter values during these tests. The primary structural

arrangement of the ANN model put out in the present work

is  seen  in  Figure  5.9.  The  neural  network  architecture  for
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heat  and  mass  transport  is  presented  in  Figure  5.10. This work  presents  an  ANN  prediction  model  with  four

parameters  in  the  first  layer,  one  resultant  parameter

(Nusselt number) in the output layer, and six parameters in

the input and one output parameter (Sherwood number). An

essential  component  of  an  ANN  model’s  performance  is  its

neuron  count.  The  correct  number  of  neurons  to  utilize  in

ANNs  is  not  a  widely  accepted  strategy.  Therefore,  several

models  with  varied  numbers  of  layers  were  used  in  the

design  phase  of  both  MLP  networks.  Numerous  neurons

have been tested, and the accuracy of their predictions has

been assessed. The ideal number of neurons to produce the

accurate  prediction  performance  has  been  determined

based  on  the  analysis  data.  The  number  of  neurons  in  the

hidden  layer  is  one  of  the  input  parameters  used  by  the

authors.  The  following  section  contains  the  remaining

specifics of the ANN model created for this investigation. 

FIGURE 5.10  Neural network architecture for (a) heat transport and (b) mass transport. 

Other  metrics  used  to  evaluate  the  effectiveness  of  ANN

training status include the correlation factor and regression

diagram  between  the  target  values  and  the  output  data. 

Regression  analysis  measures  the  relationship  between  the

two datasets ( R).  R is a number ranging from 0 to 1. Cap R

equals 1 indicates a reasonable overlap, while cap R equals

0 indicates no relationship between the two data sets. With

the  aid  of  Figures  5.11(a)  and  5.12(a),  the  authors  have demonstrated  the  alignment  between  the  actual  outcomes

of the ANN and the intended values. The desired values are

shown  on  one  horizontal  axis  in  these  figures,  while  the

outcomes  of  the  ANN  are  shown  on  the  other  axis.  This

figure  highlights  three  critical  factors:  the  “bias   (B),  slope

value  (M), and correlation coefficient value  (R)”. The output

of  an  ideal  ANN  model  should  coincide  exactly  with  the

desired values. In that case, the bias value will be zero, and

the  slope  and  correlation  values  will  be  one.  Regression

analysis  of  the  (i)  training,  (ii)  validation,  (iii)  testing,  and

(iv) total data concerning significant parameters is displayed

in Figures 5.11(a) and 5.12(a). Regression values are found to  be  either  1  or  very  near  to  1.  The  data  points  nearly

match  the  regression  line  when  the  regression  (R)  value  is

near  1.  In  addition,  the  graph’s  points  show  very  little

dispersal  and  are  all  exactly  on  the  plane’s  bisector.  This

shows  that  the  analyzed  data  and  the  intended  outputs

strongly  correlate.  This  finding  suggests  that  the  machine learning algorithm (ANN) described in this study may predict

the Nusselt number with remarkable accuracy and low error

rates.  The  established  ANN  model’s  error  distributions  are

presented  through  the  error  histograms  in  Figures  5.11(d)

and  5.12(d).  The  graphic  depiction  shows  how  consistently low the error numbers are at every step of the ANN model. 

However,  the  zero-error  line  is  where  most  of  these  faults

are  concentrated.  The  fact  that  this  pattern  appears  in  the

error  histogram  graphs  confirms  that  the  ANN  model  was

built to produce accurate predictions with little error. 
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FIGURE 5.11  Heat transfer rate (a) regression plot, (b) training state performance plot, (c) validation performance plot, and (d) error histogram. 

[image: Image 101]

[image: Image 102]

[image: Image 103]

[image: Image 104]

FIGURE 5.12  Mass transfer rate analysis (a) regression plot, (b) training state performance plot, (c) validation performance plot, and (d) error histogram. 

5.7 CONCLUSIONS

The  current  chapter  explores  an  in-depth  examination  of

heat  and  mass  transfer  in  ternary  hybrid  NFF  past  a

stretching/shrinking  channel.  Several  variables,  including

buoyancy  effects,  TPD,  and  heat  radiation,  are  included  in

the  mathematical  model.  Traditionally,  parametric  research

and computationally demanding methodologies are used to

tackle  such  a  complicated  problem.  By  using  machine

learning approaches based on the ANN algorithm, this work, 

in contrast, adopts a novel strategy to analyze the heat and

mass  transmission.  Metrics,  including  mean-squared  error

(MSE),  error  histograms,  and  coefficient  of  regression,  are

used to assess the algorithm’s performance. 

According  to  the  investigation,  comparable  physically

connected  problems  can  be  resolved  using  the  suggested

machine  learning  technique  that  uses  the  ANN  algorithm. 

The coefficient of regression (R) for every case studied using

the  ANN  algorithm  is  greater  than  0.97135,  indicating  a

strong  correlation  between  the  numerical  and  predicted

data.  Throughout  all  examined  situations,  the  ANN

algorithm’s  MSE  values  range  from  0  to  0.0048.  These

results  show  that  the  MSE  values  are  very  close  to  zero, 

suggesting  that  the  machine  learning  (ANN)  method

developed can accurately predict the Sherwood and Nusselt

numbers  with  little  error.  The  study’s  concluding  remarks

also include the major results, such as a rise in the radiation

parameter  increases  the  warmth  within  the  boundary  layer

of  both  stretching/shrinking  convergent  channels  and  also, 

as the thermophoretic parameter rises, the concentration of

the fluid diminishes since when there is a significant thermal

variance,  the  thermophoretic  force  draws  more  particles  to

the surface, which reduces the concentration. 

The current chapter examines the flow behavior of a T-NF, 

focusing on the flow characteristics without considering the

effect  of  the  aggregation  of  nanoparticles.  The  effect  of

nanoparticle aggregation may also be included, broadening

the  research’s  potential  use.  This  could  be  achieved  by

using accurate thermophysical correlations shown to model

fluid flow accurately. 
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6.1 INTRODUCTION

Manufacturing  and  process  industries  transform  raw

materials  into  products  through  various  interconnected

operations  employing  a  variety  of  equipment.  Process

monitoring,  optimization  and  control  are  important  to

achieve the targeted performance goals such as maximizing

profitability,  minimizing  emissions,  ensuring  safety  of

personnel, etc. Plant availability or equipment health is also

intrinsically  linked  to  these  goals.  Mathematical  modeling

has  been  employed  not  only  for  design  of  processes  and

equipment  but  also  for  optimization  and  control  of

operations.  Rigorous  physics-based  models  such  as

computational  fluid  dynamics  (CFD)  and  discrete  element

models  are  used  for  design,  simulation  and  analysis

whereas  simplified  lumped  parameter  physics-based

models,  reduced  order  models  and  data-driven  models  are

more  commonly  used  for  process  optimization  and  control. 

As  availability  of  data  from  manufacturing  processes  in

digital  form  has  improved  considerably  over  the  years, 

artificial  intelligence  (AI)  techniques  such  as  machine

learning  (ML)  and  deep  learning  (DL)  have  emerged  as

powerful tools for addressing the industrial needs, especially

for  process  monitoring,  simulation,  analysis,  optimization

and  control.  Since  rigorous  physics-based  models  are

computationally  intensive  and  require  considerable  time, 

effort and domain expertise to develop, there is also a drive

towards  utilizing  AI  techniques  for  design  as  well.  These

techniques have evolved significantly since the initial use of

artificial  neural  networks  (ANNs)  in  the  1990s  [1],  with advances in computational hardware like graphic processing

units  (GPUs)  propelling  the  development  of  more

sophisticated models such as convolutional neural networks

(CNNs)  [2, 3,  4,  5]  and  deep  reinforcement  learning  (DRL)

[6, 7]. The  application  of  CNNs  has  proven  particularly effective  for  high-dimensional  problems,  for  example, 

analysis  of  image-like  data  to  predict  local  heat  flux  and patterns  related  to  turbulent  heat  transfer  [5]. DRL,  on  the other  hand,  has  shown  promise  in  controlling  thermal

systems  [6]  by  learning  to  stabilize  thermal  regimes  under various  conditions  and  in  improving  traditional  control

methods [7]. One of the key developments is the application

of  AI  techniques  for  development  and  deployment  of  soft

sensors and digital twin systems that can enhance real-time

monitoring,  optimization  and  control  of  production

operations [8, 9, 10]. 

Despite  their  successes,  pure  data-driven  approaches

have  inherent  limitations.  These  models  rely  heavily  on

quality  and  quantity  of  relevant  data.  Furthermore, 

predictions  made  by  purely  data-driven  models  can  be  in

conflict  with  established  physical  principles,  underscoring

the  need  for  hybrid  models  that  integrate  data-driven

models  with  physics-based  models  to  ensure  physically

plausible  predictions  and  enhance  reliability  in  practical

applications  [8,  11].  To  overcome  the  limitations  of  data-driven  models  and  leverage  the  availability  of  established

physics-based  models,  hybrid  digital  twins  that  combine

physics-based and data-driven models have been developed

and deployed for industrial systems [8]. 

To  address  the  need  to  combine  physics-based  and  data-

driven  models,  physics-informed  deep  learning  (PIDL)  has

recently  evolved  into  a  new  field  of  research.  Physics-

informed  neural  networks  (PINNs)  have  been  developed  to

address  the  limitations  of  pure  data-driven  models  by

incorporating  physics-based  models,  typically  expressed  as partial differential equations (PDEs), directly into the neural

network’s  architecture  [12].  By  including  the  residuals  of governing PDEs and boundary conditions in the training loss

function, PINNs ensure physically consistent solutions while

learning  from  both  data  and  underlying  physical  principles. 

This  semi-supervised  approach  is  particularly  valuable  for

industrial  problems,  where  complete  datasets  with  good

variability  are  not  readily  available.  PINNs  have  been  used

for  solving  various  scientific  and  engineering  problems  in

several  domains  [13]  including  fluid  flow  [14]  and  heat transfer [15]. 

One  of  the  main  limitations  of  PINNs  is  the  need  for

retraining  of  models  as  the  system  boundary  conditions

change  either  in  space  or  in  time.  Recently,  Cuomo  et  al. 

[13]  reviewed  the  current  work  on  PINNs  and  highlighted  a few  of  their  limitations.  Even  though  the  inference  time  for

PINN  models  is  low,  high  training  time  and  significant

convergence  difficulties  in  complex  scenarios  limit  their

implementation  for  real-life  applications  [16]. Shukla  et  al. 

[17]  suggested  a  distributed  framework  for  training  PINN

models  to  reduce  the  training  time.  Moseley  et  al. [18]

proposed the domain decomposition approach to solve large

multiscale  problems.  Another  limitation  of  the  current  PINN

architectures is that they fail to generalize over dynamically

changing  boundary  conditions  [13]  for  the  governing

differential  equations,  a  scenario  often  found  in  industrial

applications.  PINNs  trained  using  a  single  set  of  boundary

conditions  cannot  be  used  if  the  parameters  change

dynamically  [19].  Wang  et  al.  [19]  proposed  a  ‘train  once use  forever’  algorithm  comprising  a  combination  of  GFNet

and mosaic flow predictor that enables one time training of

a  neural  network  that  can  generalize  over  arbitrary

boundary  conditions  as  well  as  arbitrary  domain  shapes. 

Chakraborty [20] suggested the use of transfer learning for

training  of  multi-fidelity  PINNs.  Desai  et  al.  [21]  proposed application  of  transfer  learning  with  pre-trained  neural

network  for  one-shot  inference  of  a  linear  system  of  both

ordinary  and  PDEs.  Meta  learning  [22]  and  hypernetwork

[23]  approaches  have  also  been  suggested  for  adapting PINNs to dynamic boundary conditions. 

Hypernetworks [24] integrated with PINNs (HxPINNs) [25]

offer  a  solution  to  several  limitations  of  basic  PINNs.  By

separating  the  tasks  of  parameter  space  handling  and

solution function approximation, hypernetwork-based PINNs

enable  dynamic  adaptation  to  new  boundary  conditions

without  retraining,  significantly  reducing  computational

costs  and  training  time.  Hypernetwork-based  PINNs  have

been applied for prediction of internal temperatures in an air

preheater  (APH),  quickly  adjusting  to  changing  operating

conditions  of  the  APH  based  on  external  sensor  data  while

maintaining  accuracy  comparable  to  conventional  physics-

based simulations [14]. 

Neural  operators  belong  to  the  general  class  of  neural

networks  designed  to  learn  mappings  between  function

spaces, providing rapid, scalable, and efficient solutions for

complex  or  high-dimensional  PDEs.  Current  research  in

neural operators, particularly their physics-informed variant, 

physics-informed  neural  operators  (PINOs)  [26], focuses  on addressing challenges such as training time, computational

resources,  and  generalization  to  unseen  data.  Techniques

like  self-training  and  incorporation  of  physics-informed

losses improve PINO’s performance by leveraging both data-

driven  and  physics-based  approaches  [27].  Recent  studies have  explored  replacing  predefined  transform-based  layers

with  learnable  linear  transformations,  for  simplifying  the

architecture and for reducing computational demands while

maintaining performance in terms of accuracy [28]. 

Symbolic regression (SR) is another approach that is being

attempted  to  solve  PDEs.  The  aim  is  to  uncover  intrinsic

mathematical  relationships  within  data  and  generate

interpretable  models.  Recent  advancements  such  as

physics-informed  symbolic  networks  (PISNs)  [29]  utilize context-free  grammar  and  differentiable  programming  to

enforce  physically  valid  solutions.  The  preliminary

application  of  SR  to  model  phenomena  within  an  APH  has

shown  promise  in  deriving  practical  mathematical  models

that elucidate heat transfer [30]. 

Heat exchangers play a vital role in enhancing the energy

efficiency of unit operations in process and utility industries. 

Fouling  of  heat  exchangers  is  a  common  problem  across

industries.  It  results  in  low  thermal  efficiency  and,  in  some

cases,  expensive  unplanned  plant  stoppages.  According  to

Müller–Steinhagen  and  Malayeri  [31], the  total  cost  of

fouling  –  including  increased  fuel  consumption,  additional maintenance  and  lost  production  due  to  equipment

downtime  –  is  estimated  to  be  0.25%  of  the  GDP  of

industrialized  countries.  Fouling  refers  to  the  accumulation

of  unwanted  materials  on  heat  transfer  surfaces,  which

diminishes  heat  transfer  efficiency  and  increases  pressure

drop.  Several  factors  like  quality  of  fluids  being  processed, 

process operating conditions, and environmental conditions

significantly influence fouling. Detecting fouling is essential

for  taking  preventive  measures  in  time.  However,  direct

measurement  is  challenging  due  to  the  lack  of  appropriate

inline  fluid  quality  sensors  and  the  difficulty  of  installing

sensors  to  assess  the  equipment’s  internal  condition.  The

present  authors  have  been  exploring  the  application  of

physics-based  models  and  AI  techniques  for  predicting

fouling in industrial APHs. Different PIDL approaches that we

have applied to study heat transfer in an APH are described

in this chapter. 

Since  physics-based  models  are  the  heart  of  any  PIDL

approach,  we  start  with  the  description  of  a  detailed  CFD

model  for  heat  transfer  in  the  APH  first  in  Section  6.2. The PINN approach is then demonstrated to predict the thermal

profile for the APH in Section 6.3.1. Section 6.3.2 discusses the use of hypernetwork-based PINNs for quick inference for

varying  design  and  operation  conditions  of  APHs.  The

symbolic  regression  approach  for  solving  PDEs  is  explained

in  Section  6.3.3  and  its  application  to  predict  APH  thermal profiles  is  demonstrated.  Finally, Section  6.4  summarizes

the current work and discusses potential research directions

for the future. 

6.2 PHYSICS-BASED MODELING OF AN AIR

PREHEATER

The  APH  is  a  critical  heat  exchanger  in  a  thermal  power

plant. It is employed to recover waste heat from boiler flue

gas  and  improve  the  overall  plant  efficiency.  Generally, 

every  22°C  rise  in  air  temperature  by  APH  is  considered

equivalent to an improvement of 1% in thermal efficiency of

a  boiler  [32].  A  typical  regenerative  APH  consists  of  a central  rotor  housing  a  heat  transfer  matrix  (metallic  or

ceramic),  surrounded  by  a  stationary  housing  divided  into

sectors  for  the  counter-current  flow  of  flue  gas  and  air

streams  (see  Figure  6.1).  As  the  rotor  slowly  rotates,  the matrix elements are alternately exposed to hot flue gas and

cold air which facilitates efficient heat transfer. The flue gas

enters the APH from the top, typically at high temperatures

(300–400°C),  while  ambient  air  enters  from  the  bottom.  As

the  gas  flows  downward  from  the  hot  end  of  the  matrix,  it

transfers  heat  to  the  matrix  before  exiting  at  a  lower

temperature,  usually  around  120–150°C.  Simultaneously, 

the  ambient  air  flows  upward  through  the  cold  end  of  the

matrix,  absorbs  heat  from  the  matrix,  and  reaches

temperatures in the range of 250–300°C before entering the

boiler for combustion of coal. 

[image: Image 105]

FIGURE 6.1  Schematic of an air preheater (APH). 

The fouling of APH is primarily caused by the deposition of

ammonium  bi-sulphate  (ABS)  and  fly  ash  on  the  internal

heat  transfer  surfaces  or  the  metal  matrix.  ABS  forms

through  complex  chemical  reactions  involving  flue  gas

constituents like SO3 and NH3, in the temperature range of

190–240°C  [33],  predominantly  through  the  mechanism

shown below:

 NH 3 +  SO 3 +  H 2 O →  NH 4 HSO 4

(6.1)

 SO 3  +   H 2 O  →   H 2 SO 4

(6.2)

 NH 3 +  H 2 SO 4 →  NH 4 HSO 4

(6.3)

As  the  flue  gas  cools  further  in  the  APH,  the  liquid  ABS

absorbs  fly  ash  and  condenses  on  the  heat  transfer

surfaces, forming a solid fouling layer. This fouling impedes

heat  transfer,  increases  pressure  drop,  and  can  lead  to

unplanned  plant  shutdowns  for  cleaning,  resulting  in

significant economic losses [34]. 

The  formation  of  ABS  and  the  resultant  APH  fouling  are

significantly  influenced  by  the  operating  conditions  within

the  APH  such  as  internal  temperatures  and  chemical

composition  of  the  gas  that  are  largely  governed  by  the

stringent  constraints  of  APH  operation  and  the  fuel  used. 

The  internal  temperatures  are  also  influenced  by  external

conditions  such  as  operating  load  and  ambient  air

characteristics.  Previous  studies  [33,  35]  have  shown  that the  internal  thermal  profile  not  only  affects  the  magnitude

of  fouling  but  the  location  of  fouling  as  well,  which

ultimately  determines  the  real  impact  on  the  operation  of

APH  [36]. Therefore,  monitoring  the  internal  temperature profile  in  real  time  is  critical  to  decide  appropriate

preventive  actions  such  as  online  cleaning  (called  soot-

blowing) or water cleaning. More importantly, monitoring is

essential  to  determine  the  appropriate  time  to  initiate

cleaning.  It  is  difficult  to  install  sensors  to  monitor  the

internal  thermal  or  fouling  conditions  within  the  APH.  The

complex  physico-chemical  phenomena  and  the  interplay  of

operating  conditions  makes  fouling  very  difficult  to  predict

intuitively  even  for  an  expert.  In  such  a  situation,  a

computational  model-based  monitoring  tool  would  be  of

great  utility  in  improving  visibility  in  real  time.  However, 

modeling  these  complex  interactions  is  challenging  due  to

the lack of internal sensors, the slow progression of fouling, 

and  the  influence  of  numerous  operating  parameters  and

fluctuating ambient conditions that vary with time. 

To study heat transfer and fouling phenomena in an APH, 

various  modeling  approaches  were  explored  including  pure

physics-based modeling like CFD [37, 38, 39] and pure data-driven  modeling  such  as  ANNs  [40,  41],  recurrent  neural networks (RNNs) like LSTM ([36, 42]) and ensemble DL [43]. 

While CFD models provide detailed insights into the complex

thermal and fluid flow phenomena, they are computationally

intensive  and  require  accurate  input  parameters.  Data-

driven models, on the other hand, can learn from historical

operational  data  without  explicitly  incorporating  physical

equations but they rely heavily on the quality and quantity

of training data. 

Hybrid  approaches  that  combine  the  advantages  of  the

first  principles-based  models  with  those  of  data-driven

techniques  [44]  are  gaining  popularity.  The  utility  of  PINNs

has been demonstrated recently, as they offer faster (mesh-

free)  inference  and  exhibit  low  reliance  on  sensor  data  for

training  [12].  Additionally,  the  ability  to  quickly  learn  from limited  data  while  adhering  to  physical  laws  makes  PINNs

highly  appealing.  They  have  also  been  effective  in  solving

inverse problems with limited data [12]. Their compatibility with  generalization  techniques  such  as  transfer  learning

[20]  makes  them  suitable  alternatives  to  both  first

principles-based  models  and  pure  data-driven  models  for

real-time  applications.  As  mentioned  earlier,  we  have

explored  PINNs  coupled  with  transfer  learning  [11], 

hypernetworks  [25]  and  symbolic  regression  [29, 30]  to model  heat  transfer  in  an  APH.  A  two-dimensional  physics-based model for heat transfer in an APH was developed first

[45]  for  benchmarking  these  approaches.  Details  of  the physics-based model are provided next. 

6.2.1 GOVERNING EQUATIONS OF AN AIR PREHEATER

A schematic of the APH with dimensions including height ( H

),  outer  diameter   do,  inner  diameter   di  and  sector  angles βg,  βa 1,  βa 2  for  the  flow  of  flue  gas,  primary  air,  and secondary  air,  respectively,  is  depicted  in  Figure  6.1. The flue gas enters the APH from the top, while the primary air

and  secondary  air  enter  from  the  bottom.  The  metallic

packing rotates at a rate of  ω revolutions per minute (rpm). 

The high-temperature flue gas heats up the rotating metallic

packing,  which  transfers  this  heat  to  the  cold  ambient  air

entering  from  the  bottom.  While  convection  governs  heat

transfer  between  the  fluids  and  the  metal  matrix, 

conduction  significantly  contributes  to  heat  transfer  within

the matrix. We have adopted a two-dimensional formulation

[46], considering  the  tangential  and  axial  directions,  to solve  the  governing  equations  within  the  APH,  represented

by Eqns. (6.4)–(6.9). 

The following assumptions are made to simplify the model

development:

Heat  transfer  in  the  radial  direction  is  constant  and

hence  temperature  does  not  vary  along  the  radial

direction. 

Convective  heat  transfer  is  more  dominant  than

conductive  heat  transfer  in  the  tangential  direction

within the metal matrix. 

Thermal properties of fluids and metal matrix vary with

temperature. 

Convective  heat  transfer  coefficients  vary  with

temperature and the Reynolds number. 

Flow  of  air  and  gases  through  the  metal  matrix  follow

plug flow, and air leakages can be neglected. 

The  effect  of  deposition  on  heat  transfer  efficiency  is

insignificant [47]. 

Heat transfer in an APH is represented by a set of coupled

PDEs  derived  from  energy  conservation  principles  and  the

Fourier’s  law  of  heat  conduction.  [46]  The  following

equations  describe  the  spatial  and  temporal  temperature
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variations  in  gas,  air,  and  metal  matrix  domains  for

computational domain shown in Figure 6.2. 

FIGURE 6.2  Computational domain used for the numerical simulation of the APH. 
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Primary air sector:

∂ Tm

∂2 T

 a 1 =  NTU

( T

) +   +   1

 ma 1

∂ ϕ

 ma 1

 a 1 −  Tma 1

 Pem

∂ z 2

 a 1

(6.6)

∂ Ta 1 =  NTU

−  T

∂ z

 a 1 ( Tma 1

 a 1)

(6.7)

Secondary air sector:
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 a 2 ( Tma 2
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(6.9)

In  the  above  equations,  T   represents  temperature,  θ  is angular  coordinate  in  the  rotational  direction,  z  is  axial

coordinate,  and  subscripts   m,  g,  a 1,  and  a 2  denote  metal matrix,  gas,  primary  air,  and  secondary  air,  respectively.  In

addition,  subscripts   mg,  ma 1, and  ma 2  represent  metallic packing  within  the  gas,  primary  air,  and  secondary  air

sectors,  respectively.  The  key  parameters  are  Number  of

Transfer  Units  ( NT U),  which  quantifies  the  heat  transfer

effectiveness,  and  the  Peclet  number  ( P e),  which

characterizes  the  relative  importance  of  convection  and

conduction.  A  set  of  boundary  conditions,  interface

conditions,  and  gradient  conditions  must  be  specified  to

solve these governing PDEs. The boundary conditions define

the  inlet  temperatures  of  gas  and  air  streams  (Eqn.  6.10–

6.12)  while  the  interface  conditions  ensure  temperature

continuity  between  adjacent  sectors  (Eqns.  6.13–6.15).  The

gradient  conditions  impose  zero-gradient  constraints  on

metal  matrix  temperatures  at  the  inlet  and  outlet  of  each

sector (Eqns. 6.16–6.18). 

Boundary Conditions:

 Tg ( ϕ,  z = 0) =   Tgin

(6.10)

 Ta 1 ( ϕ,  z = 0) =  Ta 1 in

(6.11)

 Ta 2 ( ϕ,  z = 0) =  Ta 2 in

(6.12)

Interface Conditions:

 Tm ( ϕ = 0,  z) =  T

( ϕ = 1,  1 −  z)

 g

 ma 2

(6.13)

 Tm ( ϕ = 1,  z) =  T

( ϕ = 0,  1 −  z)

 g

 ma 1

(6.14)

 Tm ( ϕ = 1,  z) =   T

( ϕ = 0,  z)

 a 1

 ma 2

(6.15)

Gradient Conditions:
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∂ T

( ϕ,  z = 1)

 a 2

=

 ma 2

= 0

∂ z

∂ z

(6.18)

6.2.2 MODEL VALIDATION WITH EXPERIMENTAL DATA

The governing equations along with the boundary conditions

are  solved  using  the  finite  difference  method  ([45])  to predict  the  temperature  profiles  of  gas,  air,  and  metal

matrix inside the APH. They are only solved in the axial and

tangential  directions  using  an  equivalent  Cartesian

coordinate system. The design specifications and operating

conditions of the APH and thermo-physical properties of the

metallic  packing  used  for  simulation  were  taken  from

literature  ([48])  and  reproduced  in  Tables  6.1  and  6.2. The APH  comprises  of  three  layers  of  metallic  packing  in  the

axial direction and three sectors in the tangential direction. 

The  metallic  packing  used  in  all  layers  and  sectors  was

assumed  to  have  a  density  of  753.35  kg/m³,  a  thermal

conductivity of 52.92 W/m-K, a heat capacity of 456 J/kg-K, 

and  a  specific  surface  area  of  420.21  m2/kg  [48].  These values  were  consistently  applied  throughout  the  study  to

maintain  uniformity  in  the  material  properties.  A

computational grid comprising 57,600 cells was found to be

sufficient based on the grid independence simulations. 

TABLE 6.1

APH Design

Specifications [48]

Parameter

Value

Matrix

Inner radius (m)

1.63

Outer radius (m)

8.21

Height of matrix (m)

2.05

Sector Angles

 βg

180°

 βa 1

70°

 βa 2 

110°

TABLE 6.2

APH Operating Data [48] and Predictions of the

Present Model

Flue Gas

Primary Air

Secondary Air

Flow rate, tons/h

2774.37

965.25

1629.12

Inlet temperature, °C

400

32

33

Outlet temperature, °C

118.3

360.2

340.6

Predicted outlet temperature, °C

121.58

373.84

344.03

Relative deviation, %

2.78

3.79

1.01

The  predictions  from  the  thermal  model  were  compared

against  the  experimental  results  from  literature  [48]  as shown in Table 6.2. The predictions from the thermal model

are  in  good  agreement  with  the  results  reported  in  the

literature.  The  internal  temperature  profiles  were  also

qualitatively similar to the profiles reported in the literature

[49]. These results can be utilized for simulating the thermal performance  and  inferring  the  fouling  behavior  of  an  APH

under various operating scenarios. This information is useful

not  only  for  designing  the  APH  appropriately  but  also  for

optimizing  its  performance  in  actual  operation,  which

ultimately  leads  to  improved  power  plant  efficiency  and

reduced emissions. 

While such physics-based models are useful for simulation

and  analysis  of  the  phenomena,  their  utility  for  real-time

operations  is  limited  because  they  are  computationally

intensive  and  require  accurate  values  of  input  and  output

variables and model parameters. Moreover, convergence is

also  not  guaranteed  for  all  operating  conditions  of  an

industrial  APH.  Similarly,  although  rigorous  CFD  models

have been used for equipment and process design, need for

computationally  efficient  models  is  well-known  because

design  involves  a  large  number  of  simulation  experiments

with the models to explore the design space. 

6.3 PHYSICS-INFORMED DEEP LEARNING

APPROACHES

PIDL is evolving as a new field of study to leverage the well-

established principles of physics and take advantage of the

latest developments in AI in general and DL in particular for

scientific  and  engineering  applications.  Recent  work  by  the

present  authors  on  this  topic  is  discussed  in  detail  in  this

section with appropriate references to related literature. 

6.3.1 PHYSICS-INFORMED NEURAL NETWORKS

PINNs  [12]  are  gaining  popularity  as  a  viable  alternative  to address  the  limitations  and  to  harness  the  power  of  both

physics-based and data-driven models. PINNs belong to the

class of universal function approximators that are trained by

imposing  governing  PDEs  as  constraints.  These  constraints

are applied by introducing governing equation residuals and

boundary  or  initial  conditions  in  the  loss  function.  This

approach enables incorporation of domain knowledge in the

learning process and also in learning without any data in a

semi-supervised manner. PINNs make the model flexible by

eliminating  a  fixed  mesh  typically  required  for  a  physics-

based  numerical  solver,  while  remaining  physically

consistent.  Lagaris  et  al.  [50]  were  the  first  to  introduce neural  networks  to  solve  boundary  value  problems

represented  by  PDEs.  Raissi  et  al.  [12]  incorporated  the governing  PDEs  into  the  loss  function  of  a  deep  neural

network (DNN) to solve both forward and inverse problems. 

Since  then,  PINNs  have  been  used  for  solving  various

scientific and engineering problems in several domains [13, 

14] and [15]. 

6.3.1.1 Mathematical Formulation and Training

Strategies

PINNs  leverage  the  universal  function  approximation

capabilities  of  neural  networks  while  incorporating  physical

laws, typically in the form of PDEs, directly into the network

structure  and  in  the  training  process.  This  allows  PINNs  to

generate  physically  consistent  solutions  even  with  limited training  data.  PINNs  leverage  the  power  of  automatic

differentiation  [51]  that  enables  efficient  computation  of derivatives  of  the  network  outputs  with  respect  to  the

inputs.  The  required  derivatives  of  the  PDEs  can  be

calculated  through  automatic  differentiation  without  the

need  for  numerical  discretization  or  manual  derivation  of

the  gradients.  The  resulting  physics-informed  loss  function

includes  terms  that  penalize  the  residuals  of  the  governing

PDEs as well as deviations from the boundary and interface

conditions. This allows PINNs to handle complex geometries

and  boundary  conditions  as  well  as  to  solve  both  forward

and  inverse  problems.  During  training,  PINNs  learn  to

approximate  the  solution  of  the  PDEs  while  respecting

physical  principles  by  minimizing  the  composite  loss

function. 

The  fundamental  concept  of  PINNs  is  to  represent  the

solution  u ( x,  t) of a PDE using a neural network and include the residual of the PDE in the loss function used for training

the  network.  For  example,  consider  a  general  PDE  of  the

form:

∂ u   +   f [ u] =   g( x,  t)

∂ t

(6.19)

where   f  is  a  linear  or  nonlinear  differential  operator  and

 g ( x,  t) is a known forcing function. In the PINNs framework, 

∣the solution  u( x,  t) is approximated by a neural networkû( x,  t;  θ) where  θ denotes the set of network parameters(weights and biases). The residual of the PDE is then definedas:F: = ∂û +  f[∂û] –  gt(6.20)This residual, evaluated at a set of collocation points inthe domain, is included in the loss function along with theterms that capture the boundary and initial conditions: MSE =  MSE F +  MSEbc +  MSEini(6.21)where  MSE F is mean squared residual,  MSEbc is meansquared error of the boundary conditions, and  MSEini ismean squared error of the initial conditions. These MSEterms are evaluated using following equations (Eqns. 22–25):1 MSE∑ N FF=F( xi,  ti) 2 Ni=1FFF(6.22)
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∣1 MSE∑ N ini ini= uNini−ˆ u( xiini,  tiini)2ini i=1(6.23)1 MSE∑ Nbcbc= uNbc−ˆ u( xibc,  tibc)2 bci=1(6.24)The PINN simultaneously fits any available training databy minimizing this composite loss function while respectingthe physical constraints encoded in the PDE (see Figure 6.3,for illustration of PINN training with governing equations ofAPH as loss function). FIGURE 6.3 Illustrative architecture of the PINN for governing equations ofAPH. 

One  of  the  key  advantages  of  PINNs  is  their  mesh-free

nature, that is, collocation points can be arbitrarily placed in

the domain without the need for a structured grid. However, 

for  complex  problems  with  steep  gradients  or  multiscale

phenomena, many collocation points are needed which can

make 

training 

computationally 

expensive. 

Domain

decomposition  strategies  have  been  proposed  to  mitigate

this issue. The idea is to split the computational domain into

multiple  subdomains,  employ  separate  PINNs  for  each

subdomain, and couple them at the interfaces. Methods like

conservative-PINN  (cPINN)  [16]  and  extended  PINN  (xPINN)

[52] follow this approach to enable the solution of complex

nonlinear PDEs. 

Another  challenge  with  PINNs  is  incorporation  of  varying

boundary  conditions,  material  properties,  and  PDE

parameters.  The  base  PINN  must  be  re-trained  if  any  of

these  factors  change.  To  overcome  this  limitation, 

approaches  based  on  transfer  learning  [11]  and

hypernetworks  [25]  have  recently  been  attempted.  These approaches are discussed next. 

6.3.1.2 Domain Decomposition of PINNs

Domain decomposition (DD) of PINNs [16, 52] leverages the inherent  parallelism  in  large-scale  scientific  computing.  By

splitting the domain into smaller subdomains, DD promotes

localized  learning  by  lightening  the  load  on  individual

networks and enhances learning dynamics. Each subdomain

is  modeled  by  a  distinct  neural  network  with  appropriate

interface  conditions  to  ensure  continuity  and  smoothness

across  adjacent  subdomains.  These  conditions,  enforced

through  penalties  in  the  loss  function,  maintain  solution

coherence and continuity across domains. The DD approach

not  only  facilitates  parallelization  but  also  enables

independent  training  of  networks  on  different  subdomains, 

making it ideal for distributed computing. This is particularly

advantageous  for  high-dimensional  PDEs  for  which

traditional 

PINNs 

face 

challenge 

of 

convergence. 

Additionally,  DD  allows  networks  to  specialize  for  various

subdomain  which  enhances  accuracy  and  stability  of  the

solution. 

6.3.1.3 Transfer Learning of PINNs

Transfer  learning  enhances  the  efficiency  of  PINNs  by

repurposing  a  model  developed  for  one  task  to  another

related task. This reduces computational costs and improves

accuracy without the need for developing the PINN from the

start  all  over  again.  It  includes  two  key  strategies:  Initial

Condition  Transfer,  where  a  pretrained  model  is  applied  to

new  initial  conditions  while  maintaining  the  same  physical

laws,  useful  for  quick  and  accurate  predictions  under

different  scenarios;  and  Potential  Transfer  Learning,  where

the model adapts to both new initial conditions and changes

in  physical  potential  [20, 53,  54]. Common  methods  of implementing transfer learning in PINNs involve freezing the

base layers of the network to speed up learning by reducing

the  number  of  parameters  that  need  adjustment  and

applying Singular Value Decomposition (SVD) to simplify the

network’s weights. These methods help in generalization of

the PINNs. 

The  basic  PINNs,  domain  decomposition  and  transfer

learning  were  applied  for  simulation  of  heat  transfer  in  an

APH. Details of implementation and the results obtained are

presented next. 

6.3.1.4 Application of PINNs for an Air Preheater

In the context of an APH, the governing PDEs, presented in

Section  2,  represent  the  spatio-temporal  variations  of

temperature in the gas, air, and metal matrix domains. The

PINN architecture employed for modeling heat transfer in an

APH  leverages  a  domain  decomposition  approach  in  which

separate  DNNs  are  used  for  each  subdomain:  gas  ( Ωg), 

primary  air  ( Ωa 1), and secondary air ( Ωa 2). Coordinates of

each  subdomain  are  normalized  from  0  to  1  for  both  axial

and  tangential  directions.  It  should  be  noted  that  positive

axial  direction  for  the  gas-side  subdomain  is  from  top  to

bottom which is same as the direction of gas flow. Similarly, 

for  the  primary  and  the  secondary  air-side  subdomains, 

positive axial direction is from bottom to top which is same

as  the  direction  of  flow  for  primary  and  secondary  air. 

Positive  tangential  direction  is  considered  from  left  to  right

for all subdomains, which is same as rotational direction of

the metal matrix. For simplicity, all metal matrix layers are

assumed  to  be  made  of  a  single  homogeneous  material. 

However,  the  current  approach  can  be  readily  extended  to

an APH with a multi-material matrix as well as the matrix is

discretized into separate layers and sectors. 

 6.3.1.4.1 Neural Network Architecture

The domain-decomposed PINN model consists of a DNN for

each  of  the  subdomains   p  in  the  APH  (i.e.,  Ω g,  Ω a 1,  Ω a 2). 

The  spatial  co-ordinates  ( ϕ,  z)  are  the  inputs  to  each

network  and  the  outputs  are  fluid  temperature  ( Tf)  (air  or

gas)  and  matrix  temperature  ( Tm)  for  each  subdomain, 

respectively. Let N  L :  R Di  →  R Do be a DNN of  L layers and  Nk neurons in  kth layer ( N 0 =  Di and  NL =  Do). The weight  matrix  and  bias  vector  in  the   kth layer (1 ≤  k ≤  L) are  denoted  by  W k  ∈  R Nk × Nk−1  and  b k ∈ R Nk, respectively. The input vector is denoted as x ∈ R Di, output vector at  kth layer is denoted as N  k (x) and N 0 (x) =  x. 

The activation function is denoted as Ψ. DNN is defined by

Eqn. (6.22):

N  k (x) =  Ψ (W k N  k−1 (x) + b k),  1 ≤  k ≤  L

(6.25)

Let  Θ = {W k, b k}  be  a  collection  of  all  weights  and biases.  The  output  of  neural  network  is  then  given  by  Eqn. 

(6.26). 

 u Θ (x) =  N  L (x; Θ)
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(6.26)

A schematic of the domain-decomposed PINN architecture

is  shown  in  Figure  6.4, wherein  three  DNNs  are  used  for each  subdomain,  respectively.  For  each  subdomain,  the

output of individual DNN is given as:

 ui Θ (x) =  N  L

 i (x; Θ ),  ∀  i = 1, 2, 3

(6.27)

FIGURE 6.4  Architecture of domain decomposition-based PINN. 

The final solution is given by:

∣ u Θ(x)=U3 i=1 ui Θ(x)(6.28) 6.3.1.4.2 Subdomain Loss Function The total loss for a PINN comprises of the mean-squarederror ( MSE) due to residuals of the governing equationscalculated using the collocation points ( MSE F), loss due p to boundary conditions calculated using the boundary points( MSEbc),  MSE loss due to interface condition calculated at p the interface points ( MSEic) and  MSE loss due to matrix p temperature gradient calculated at the top and bottompoints of each subdomain ( MSEgrad). The mean squared p error for different components of subdomain  p is calculatedusing Eqns. (6.29–6.32):1 MSE∑ N F pii F=F( θpNi=1F p,  z F p)2F p(6.29)1 MSE∑ Nicpiiiic= TpNmp( θicp,  zicp)−  Tmp+( θicp,  zicici=1 p(6.30)

∣1 MSE∑ Nbcpiibc= Ti−  T( θpNffpbcp,  zbcp)2 bci=1 pp(6.31)()21∂ Tmθi,  zipgradgradMSE∑ Ngradpppgrad= pNgradi=1∂ zp(6.32)where, F is residual of the governing PDEs. Subscript  p+indicates the neighboring subdomain to subdomain  p.  N F,  N,  N, and  N represent number of picpbcpgradp collocation points, number of interface condition points,number of boundary condition points and number of matrixtemperature gradient condition points in the  pth subdomain,respectively. ( θiiii)F p,  z F p), ( ϕbcp,  zbcp) and ( θigrad,  zipgradp represent coordinates of the residual points, boundarycondition points and gradient condition points for the  pth sub-domain, respectively. ( θiiicp,  zicp) represents commoninterface points of two neighboring subdomains  p and  p+.The loss for  pth subdomain is given by Eqn. (6.33).L(Θ) p=  MSE F+ MSE+ MSE+ MSEpicpbcpgradp

(6.33)

The  total  loss  for  the  PINN  is  given  by  Eqn.  (34)  where

subscripts   g,  a 1,  and  a 2  represent  subdomains  for  gas, primary air, and secondary air, respectively. 

L (Θ) =  L (Θ) g + L (Θ) a 1 + L (Θ) a 2

(6.34)

The  DNN  for  each  subdomain  consists  of  one  input  layer

(two  neurons),  two  hidden  layers  (with  16  neurons  in  each

layer)  and  one  output  layer  (two  neurons).  The  activation

function used for the hidden layers and for the output layer

is   tanh.  The  gradients  for  evaluating  the  residual  equation

were  calculated  using  the  auto-differentiation  feature  [51]. 

The  Adam  optimizer  was  used  to  train  the  PINN  model  and

mean-squared  error  (MSE)  was  used  as  the  loss  metric.  In

addition, reducing learning rate callback and early stopping

callback features from  TensorFlow were employed for better

control while training. If the loss does not reduce compared

to  the  best  loss  value  for  50  epochs,  learning  rate  was

reduced  by  a  factor  of  0.1  with  reducing  learning  rate

callback. Also, early stopping callback was used to stop the

training if the training loss did not improve for 100 epochs. 

All  the  computations  were  performed  on  a  computer  with

the  specifications:  AMD  Ryzen  5  2500U  processor  with

Radeon Vega Mobile Gfx 2.00 GHz, RAM of 24 GB and 64-bit

operating system. 

The  domain-decomposed  PINN  model  was  trained  using

the  architecture  described  above  with  15,000  collocation

points,  15,000  boundary  points  and  15,000  subdomain

interface points [8]. The training process was carried out for 788 epochs until an acceptable loss value was achieved, as

determined by the early stopping criteria. The temperature

profiles  obtained  using  the  physics-based  model  and  the

trained  PINN  model  for  the  gas,  primary  air,  secondary  air

and metal matrix domains are compared in Figure 6.5. The

close agreement between the two solutions is evident, with

the  PINN  model  accurately  capturing  the  thermal

phenomena across all subdomains, including the interfaces. 

A  quantitative  assessment  of  the  PINN  model’s  accuracy

revealed  a  mean  absolute  error  of  8.1×10−3  and  a

maximum  absolute  error  of  0.03  for  the  normalized

temperature  values.  In  terms  of  the  non-normalized

solution,  these  errors  correspond  to  a  mean  absolute  error

of 2.7°C and a maximum absolute error of 10°C. While the

finite  difference  method  employed  for  solving  the  physics-

based  model  required  1076  seconds  to  compute  the

temperature  profiles,  the  trained  PINN  model  generated

predictions  in  just  1.8  seconds,  a  reduction  of  over  99%. 

This  substantial  improvement  in  computational  efficiency

highlights the potential of PINNs for real-time monitoring of

industrial APHs. 
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FIGURE 6.5  Comparison of internal temperature profiles obtained with the physics-based model through numerical simulation and with a domain

decomposition-based PINN. 

To  address  the  limitation  of  PINNs  being  trained  only  for

specific  boundary  conditions,  the  transfer  learning

framework  was  employed.  This  framework  leverages

knowledge from a pre-trained base PINN to quickly adapt to

new  boundary  conditions.  In  the  specific  case  of  APHs,  the

weights  of  a  base  PINN  trained  for  a  benchmark  condition

(e.g.,  inlet  gas  temperature  of  359°C  and  inlet  air

temperature  of  25°C)  were  used  to  initialize  a  new  PINN. 

During  retraining  for  the  new  boundary  condition,  the

weights  and  biases  of  the  input  layer  and  the  first  hidden

layer were frozen for each subdomain’s DNN, based on the

assumption  that  these  layers  capture  the  fundamental

physical  phenomena  (see  Figure  6.6).  This  approach

significantly  reduced  the  training  time  while  maintaining
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accuracy  comparable  to  the  base  PINN.  As  shown  in  Table

6.3,  the  transfer  learning  approach  achieved  an  average

combined  training  and  inference  time  that  is  78%  lower

than  the  corresponding  numerical  simulation,  without

compromising  on  accuracy.  In  contrast,  PINNs  trained  from

scratch  often  require  more  time  than  the  numerical

simulation.  By  enabling  rapid  adaptation  to  new  boundary

conditions,  transfer  learning  enhances  the  practicality  of

PINNs  for  real-time  monitoring  and  predictive  maintenance

of  industrial  heat  exchangers,  paving  the  way  for  more

efficient and reliable operation. 

FIGURE 6.6  Illustrative architecture for transfer learning of PINNs. 

TABLE 6.3

Inference Times for Numerical Simulation and for Tran

PINN Trained with R

Numerical

Initialization (withou

Simulation

Base PINN)

Inlet Gas

Inlet Air

Training

Inference

Temperature

Temperature

Inference

time

time

Case

BC (°C)

BC (°C)

Time (sec)

(sec)

(sec)

1

329

19

1028

3716

3.6

2

354

48

922

2782

3.7

3

331

38

1122

3314

3.9

4

330

31

915

3174

4.0

5

390

36

1066

2895

3.5

6

320

37

1076

2847

3.3

7

399

23

1179

3370

3.7

8

388

13

1188

2878

3.7

9

363

43

1038

2726

3.7

6.3.2 HYPERNETWORKS

Hypernetworks  belong  to  the  class  of  meta-learning

methods  that  divide  learning  into  two  networks:  a  main

network  and  a  hypernetwork  ([24, 55,  56]). The  main network  performs  the  task  like  a  typical  neural  network. 

However,  its  parameters  are  not  learned  during  training. 

Instead,  the  hypernetwork  generates  the  main  network’s

parameters at the time of evaluation. Formally, let NΘ  be

 h

the  hypernetwork  with  input   xh  and  NΘ   be  the  main

 m

network  with  input   xm.  The  parameter  Θ m  of  the  main

network is given by:

Θ m  =  NΘ ( x

( x

 h

 h ),  ˆ

 y  =  NΘ m m) 

(6.35)

where  Θ h  are  learnable  parameters  of  the  hypernetwork. 

This  structure  enables  the  hypernetwork  to  meta-learn  a

space  of  tasks  defined  by   xh,  generating  an  appropriate

main network for each task. 

The  main  idea  behind  hypernetwork-based  PINNs

(HxPINNs)  is  learning  a  mapping  between  the  operating

conditions  and  the  parameters  of  the  PINN  model  [25].  By training  a  hypernetwork  on  a  diverse  set  of  pre-trained

PINNs  corresponding  to  different  boundary  conditions,  it  is

possible to capture the underlying relationships between the

operating  parameters  and  the  PINN  weights  effectively. 

During inference, the hypernetwork takes the new operating

conditions  as  input  and  generates  the  appropriate  PINN

parameters  on  the  fly,  allowing  the  model  to  adapt  to

unseen  scenarios  with  minimal  computational  overhead. 

Hypernetwork-based  PINNs  were  explored  recently  for  APH

temperature profile predictions [25]. A brief summary of this work  is  presented  here.  The  steps  involved  in  training  and

inference  scheme  for  the  HxPINNs  are  shown  in  Figure  6.7. 

Initially, several base PINNs  u Θ( x; λ) are trained for specific tasks  λ which represents typical operating conditions of an

APH. These PINNs predict  ˆ

 u, the thermal profile of APH. The

parameters  Θ  of  these  base  PINNs  are  extracted.  A

hypernetwork  NΘ   meta-learns  the  parameters  Θ  in  a

 h

supervised manner as a function of the operating conditions

 λ. During the inference stage, a new set of tasks (operating

conditions)   λnew  is  input  to  the  hypernetwork,  which
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predicts the parameters Θ λ  of the PINN corresponding to

 new

 λnew.  These  parameters  when  applied  to  the  base  PINN

architecture predict the thermal profile  uΘ

. 

𝛌 new

FIGURE 6.7  Training and inference methodology for hypernetwork-based PINNs. 

To  generate  training  data  for  the  hypernetwork,  multiple

domain decomposed base PINN models were created under

varying  operating  conditions,  as  shown  in  Table  6.4. These conditions  include  inlet  temperatures  and  flow  rates  of

process streams entering APH. Parameters from these PINNs

were  used  to  train  the  hypernetwork.  The  training  tasks

were based on a full factorial design of operating conditions

for  the  APH.  The  considered  operating  conditions  include

inlet  gas,  primary  air,  and  secondary  air  temperatures, 

which  vary  due  to  changing  boiler  and  ambient  conditions. 

Primary  and  secondary  air  temperatures  were  considered

identical,  as  observed  in  the  field.  Gas  flow  rate,  varying with plant load, was also an input. A total of 315 PINNs were

trained  for  315  different  operating  conditions.  The

hypernetwork  architecture  (see  Figure  6.8)  consisted  of  an input  layer  with  3  neurons  (corresponding  to  the  inlet

temperatures  and  mass  flow  rates),  2  hidden  layers  with

256  neurons  each,  and  3  output  layers  with  354  neurons

each (corresponding to the weights of the base PINNs). The

hypernetwork was trained using the Adam optimizer with a

learning  rate  of  1.0  ×  10−4  and  an  early  stopping  criterion

based on the validation loss. The weights of the pre-trained

PINNs  were  extracted  and  paired  with  their  corresponding

operating  conditions  to  form  the  input-output  pairs  for  the

hypernetwork. 

TABLE 6.4

Variables and Range of APH Operating Conditions

Considered for Full Factorial Design

Inlet Gas

Gas Flow

Temperature  Tgin, 

Inlet Air Temperature

Rate  mg

(° C

 Ta 1 in =  Ta 2 in, (° C) (kg/s)

Minimum

200

10

600

Maximum

400

80

800

Step size

25

10

50
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FIGURE 6.8  Architecture of hypernetwork for domain decomposition-based PINN of APH. 

The  performance  of  the  hypernetwork  based  PINN  model

was  evaluated  on  a  test  set  of  19  unseen  operating

conditions  and  compared  against  the  physics-based  model

and  the  basic  PINN.  The  hypernetwork  based  PINN

demonstrated  excellent  accuracy,  with  a  mean  absolute

error of less than 5°C and a mean absolute percentage error

below 10% across all subdomains. Thermal profiles obtained

with the hypernetwork based PINN is shown in Figure 6.9. In

terms  of  computational  efficiency,  the  hypernetwork  based

PINN  provided  near-instantaneous  inference,  with  a
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prediction  time  of  approximately  5  seconds,  compared  to

200  seconds  for  the  physics-based  simulation  and  180

seconds  for  the  standalone  PINN  with  transfer  learning. 

Moreover,  the  hypernetwork  based  PINN  exhibited

remarkable  adaptability  to  varying  operating  conditions, 

accurately  predicting  the  thermal  profiles  without  the  need

for retraining. 

FIGURE 6.9  Comparison of APH internal temperatures predicted through numerical simulation, domain decomposed PINN and hypernetwork-based

domain decomposed PINN (HxPINN). 

The  successful  application  of  hypernetwork  based  PINNs

for real-time monitoring of the industrial APH has significant

implications 

for 

fouling 

detection 

and 

predictive

maintenance. By providing accurate and timely insights into

the  internal  thermal  conditions  of  the  APH,  the  model

enables  early  detection  of  fouling-prone  zones  and

facilitates  proactive  cleaning  interventions.  This  can  help

prevent  unplanned  shutdowns,  reduce  maintenance  costs, 

and extend the lifespan of the APH. Furthermore, integrating

the hypernetwork based PINN model with the plant’s control

system  can  enable  dynamic  optimization  of  operating

parameters,  such  as  air  and  gas  flow  rates,  to  mitigate

fouling and improve overall plant efficiency. The case study

highlights  the  potential  of  hypernetwork  based  PINNs  as  a

powerful  tool  for  real-time  monitoring  and  optimization  of

industrial  heat  exchangers,  paving  the  way  for  more

efficient, reliable, and sustainable power generation. 

The integration of hypernetworks with PINNs offers several

significant  advantages  for  industrial  heat  exchanger

applications. 

First, 

it 

considerably 

reduces 

the

computational  costs  associated  with  retraining  PINNs  for

every new set of boundary conditions, making the approach

more  efficient  and  scalable.  Second,  hypernetworks  enable

real-time  inference  capabilities,  as  they  can  instantly

generate  PINN  parameters  for  any  given  operating

condition, enabling swift decision-making and control. This is

especially  useful  for  monitoring  and  optimizing  the

performance  of  heat  exchangers  in  dynamic  industrial

environments.  Furthermore,  the  meta-learning  nature  of

hypernetworks  allows  them  to  leverage  knowledge  from  a

wide  range  of  operating  conditions,  potentially  improving

the generalization and robustness of the PINN models. 

While  hypernetwork  based  PINNs  have  demonstrated

significant 

potential 

for 

real-time 

monitoring 

and

optimization  of  industrial  heat  exchangers,  several

challenges 

and 

opportunities 

remain 

for 

further

development and deployment. One key limitation of current

hypernetwork  based  PINN  approaches  is  the  need  for  a

comprehensive  bank  of  pre-trained  PINNs  spanning  a  wide

range of operating conditions. Generating this training data

can  be  computationally  expensive  and  time-consuming, 

requiring 

numerous 

physics-based 

simulations 

or

experimental measurements. Moreover, the accuracy of the

hypernetwork  predictions  relies  significantly  on  the  quality

and diversity of the base PINNs. Any errors or biases present

in the base PINNs can propagate through the hypernetwork, 

leading  to  suboptimal  performance.  These  limitations  will

require  further  research  with  focus  on  developing  efficient

sampling  strategies  for  selecting  the  most  informative  and

representative operating conditions, minimizing the required

number of base PINNs while maintaining adequate coverage

of the parameter space. 

Hypernetworks  often  struggle  when  dealing  with  base

networks  that  possess  an  excess  of  weights,  given  that

predicting  the  weights  of  a  neural  network  involves

addressing  a  high-dimensional  regression  problem.  This

issue becomes particularly evident when hypernetworks are

tasked  with  predicting  parameters  for  large  base  networks. 

However,  there  exists  an  alternative  approach  wherein  one

can  represent  the  adaptation  of  a  large  network  through

parameter-efficient  tuning  [57, 58]. This  method  involves training a hypernetwork using adaptation parameters rather

than the entire network, as demonstrated in prior works on

image  generation  [59]  and  instruction  tuning  of  large language  models  (LLMs)  [60].  A  case  study  in  the  field  of material  science  conducted  by  the  current  authors

highlights  the  efficacy  of  such  techniques  in  rapidly

adapting solutions of parameterized PDEs from one instance

to another [61]. This case study showcased that optimal low

rank adapted PINNs outperform others. 

6.3.3 SYMBOLIC REGRESSION

Symbolic  regression  (SR)  is  the  process  of  identifying  a

mathematical  expression  that  most  accurately  represents

data.  This  technique  is  pivotal  in  deciphering  complex

relationships  within  data  across  various  domains  such  as

scientific  research  [62,  63],  engineering  [64,  65],  and financial  forecasting  [66].  SR  not  only  simplifies  model structures  but  also  enhances  the  interpretability  of

solutions,  thus  fostering  greater  transparency  in  AI-driven

systems.  Recent  studies,  including  those  by  Virgolin  et  al. 

[67], have  classified  SR  as  an  NP-hard  problem, 

underscoring  its  computational  intensity.  Traditionally, 

approaches to SR have included genetic programming [68], 

DL  techniques  like  sequence  generation  [69, 70], tree search methods [71, 72, 73], and hybrids of DL with genetic programming  [74, 75]. Applications  of  SR  are  diverse, ranging  from  discovering  equations  for  PDEs  using  genetic

programming  [76]  to  the  innovation  of  replacing  neural network  activation  functions  with  primitive  functions  [77]

and  employing  transformers  for  sequence-to-sequence

equation generation [78]. 

A significant advancement in the field was marked by the

introduction  of  PISNs  by  Majumdar  et  al.  [29]. Inspired  by the  work  on  differentiable  programs  [79], PISN  utilizes  a context-free  grammar  to  approximate  production  rules

linearly,  enhancing  the  ability  to  generate  analytical

expressions  for  PDEs.  This  approach  not  only  streamlines

the derivation of mathematical models for complex systems

but  also  aids  in  the  practical  application  of  these  models, 

such as modeling the thermal profiles of APHs. This section

further explores the intricacies of PISNs, elaborating on the

differentiable  program  architecture  (DPA)  that  underpins

symbolic  regression  and  its  practical  applications  to

temperature profile expression estimation for APH. 

6.3.3.1 Physics-Informed Symbolic Networks

Physics-informed  symbolic  networks  (PISNs)  integrate

physics-informed  methodologies  with  the  capabilities  of

symbolic regression. This integration aims to solve complex

systems  of  differential  equations,  particularly  PDEs  by

embedding  inherent  physical  laws  into  the  learning

mechanisms of neural networks. The objective is not only to

predict  but  also  to  ensure  that  predictions  are  consistent

with  the  underlying  physical  principles,  thus  enhancing  the

models’  reliability  and  interpretability.  PISNs  comprise

symbolic  networks  designed  to  discover  and  represent

mathematical  expressions  that  adhere  to  a  specified

grammar of algebraic operations, such as sine, exponential, 

addition,  and  multiplication.  These  expressions  are

dynamically  structured  and  refined  during  the  training

process to best encapsulate the target physical phenomena. 

The  approach  leverages  a  context-free  grammar  that

outlines  the  potential  forms  expressions  might  take, 

facilitating a systematic exploration of the symbolic space. 

Mathematical formulation of PISNs is described below:

Context-free grammar, G consists of symbolic expressions

defined  by  Eqn.  36,  where   x,y,t,c  are  terminal  symbols.  A

continuous relaxation of G is achieved by taking a weighted

sum over all the production rules as illustrated in Eqn. 37. 

 Grammar Definition

 α :≔ sin( α 1)|exp( α 1) |  Add( α 1,  α 2) |  Multiply( α 1,  α 2) |  x (6.36)

 α :≔  w 1 sin ( α 1) +   w 2 exp ( α 2) +   w 3  ( α 3  +  α 4) +   w 4  ( α

(6.37)

 Network Architecture

Eqn.  37  facilitates  the  induction  of  a  symbolic  network

with a depth  d + 2, where  d represents the total number of

hidden layers. The network configuration is further detailed

as below:

Input and weight configuration

Input  x = [ x,  y,  t, 1]

First hidden layer weights  W  0 = [

]

 k

 w 0 k 1,  w 0 k 2,  w 0 k 3,  w 0 k 4

Subsequent 

hidden 

layer 

weights

 W j = [

]

 k

 wjk 1,  wjk 2,  wjk 3,  wjk 4,  wjk 5,  wjk 6,  wjk 7,  wjk 8

Output layer weights  W d

Layer Configuration

Output of the network

 upisn  =   W d  ⋅   hd

(6.38a)

First hidden layer

 h 0 = [sin ( W  01.  x), exp ( W  02 ⋅  x),  W  03 ⋅  x +  W  04 ⋅  x,  W

(6.38b)

Subsequent Hidden layers

 hj+1 = [sin ( W j 1.  hj), exp ( W j 2 ⋅  hj),  W j 3 ⋅  hj +  W j 4

(6.38c)

Majumdar et al. [18] designed a network, as described by

Eqn.  38,  that  ensures  a  linear  increase  in  parameter  count

with network depth. This approach sacrifices the capacity to

perfectly  represent  wider  expressions,  potentially  limiting

the network’s ability to handle complex symbolic forms. This

design was chosen over the DPA based on prior studies [79], 

which, although capable of exact expression representation, 

result  in  an  exponential  increase  in  parameters  with

increasing network depth. It was reported that, while PISNs

performed  on  par  with  PINNs,  the  analytical  expressions

generated were large and weren’t interpretable. 

6.3.3.2 Pruned Differentiable Programs

In a later work by Majumdar et al. [34], it was demonstrated that  symbolic  regression,  when  coupled  with  DPAs  and

executed  with  pruning  in  a  depth-first  manner,  results  in

sparse  and  easily  interpretable  expressions.  This  approach

enhances  the  interpretability  of  mathematical  models

derived from complex systems, particularly those described

by  PDEs.  The  methodology  employed  by  Majumdar  et  al. 

[34] involves a sequential two-step process (as illustrated in Algorithm  #  1  (Figure  6.10)  and  #2,  (Figure  6.11)), 
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beginning  with  the  solution  of  a  given  PDE  setup  using  a

PINN.  This  choice  of  solver  is  not  restrictive,  any  suitable

numerical  PDE  solver  can  be  utilized  depending  on  the

specific requirements of the problem. 

FIGURE 6.10  Symbolic regression for partial differential equations with pruned differentiable program architecture. 

FIGURE 6.11  Depth first search pruning strategy for differentiable program architecture. 

Following  the  data  generation,  symbolic  regression  is

implemented  using  a  DPA.  This  architecture  is  constructed

based  on  a  context-free  grammar,  which  includes  unary
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operators  such  as  sine,  exponential,  logarithmic  functions

and  power  functions,  as  well  as  binary  operators  such  as

addition  and  multiplication  (as  shown  in  Eqn.  39).  An

illustrative example of this expansion process to a depth of

two  is  provided  here,  which  showcases  the  potential

complexity  and  reach  of  the  architecture  through  basic

operations  and  terminal  symbols  ( x,  y,  t,  c)  (refer  to  Figure

6.12). 

FIGURE 6.12  Symbolic regression with pruned differentiable program architecture. 

 α :   ≔ sin ( α 1) | exp ( α 1)| log  α 1 |  pow 2  α 1| pow 3  α + 1  |  Ad (6.39)

Table 6.5 showcases the comparative performance of the

DPA  in  the  context  of  APH  temperature  profile  predictions, 

assessing  the  efficacy  of  the  pruned  versus  unpruned

models  against  a  trained  PINN.  The  evaluation  is  anchored

on  the  L2  relative  error  metrics  derived  from  numerical simulations  using  the  finite  difference  method  ([45]), serving  as  the  ground  truth  for  temperature  distribution. 

The  results,  presented  in  Table  6.5  indicate  nuanced

differences in performance across the various models:

 PINN: Shows consistent baseline performance across all

temperature variables. 

 Unpruned  DPA:  Generally  exhibits  slightly  higher  error

rates, suggesting some overfitting or model complexity. 

 Pruned  DPA:  Demonstrates  error  rates  that  are

comparable  and  occasionally  superior  to  the  PINN, 

reflecting  the  effectiveness  of  the  pruning  process  in

enhancing model accuracy and simplicity. 

TABLE 6.5

Comparison of Fluid and Metal

Matrix Temperature Predictions

Obtained Using Domain

Decomposed PINN and

Unpruned DPA and Pruned DPA

Architecture

PINN

DPA-Unpruned

DPA-Pruned

 Tg

2.03

2.14

2.06

 Tmg

2.53

2.55

2.54

 Ta 1

3.08

3.27

3.09

 Tma 1

2.81

3.02

2.85

 Ta 2

2.97

3.1 

3  

 Tma 2

3.02

3.08

3.04
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The  pruned  expressions  derived  for  the  APH  temperature

profile  (shown  in  Figure  6.13)  are  illustrative  of  the simplification achieved through the pruning process. 

FIGURE 6.13  Symbolic expressions obtained with pruned differentiable program architecture for governing equations of APH. 

6.4 SUMMARY AND OUTLOOK

Mathematical  models  are  useful  for  the  design  and

operation  of  manufacturing  processes.  Physics-based

models conform to the physical laws governing the process, 

but  they  are  computationally  intensive,  require  accurate

input  data  and  face  convergence  issues.  They  are  more

suitable  for  design,  simulation  and  off-line  optimization. 

Data-driven  models,  on  the  other  hand,  are  more  suitable

for  manufacturing  operations  and  take  advantage  of  the

availability  of  real-time  sensor  data.  However,  their

performance depends heavily on the quality and availability

of  relevant  data.  PIDL  represents  a  hybrid  approach  that

combines physics-based models with DNNs. 

Various  PIDL  approaches  such  as  PINNs,  domain

decomposition 

based 

PINNs, 

transfer 

learning, 

hypernetworks,  symbolic  regression  with  DPAs,  PISNs  were

described  in  this  chapter.  Their  application  for  an  APH,  an

important  heat  exchanger  in  thermal  power  plants,  was

demonstrated  with  data  from  an  industrial  unit.  In  order  to

evaluate  their  performance,  a  rigorous  CFD  model  for  heat

transfer  in  an  APH  was  also  presented  and  results  of  the

PIDL  models  were  compared  with  the  CFD  model.  The

predictions  of  various  PIDL  models  were  fairly  close  to  the

numerical  simulation  results  obtained  with  the  CFD  model. 

Expectedly,  the  inference  times  of  the  PIDL  models  were

much  lower  than  the  simulation  time  required  for  the  CFD

model. 

A  domain  decomposition-based  PINN  was  developed  to

capture  thermal  phenomena  within  an  APH,  using  a

segmented  approach  where  different  subdomains  were

modelled  using  individual  DNNs  that  are  unified  through  a

common  loss  function  which  incorporates  both  governing

differential  equations  and  continuity  constraints  at  the

subdomain  interfaces.  Transfer  learning  significantly

enhances the model’s responsiveness to dynamic boundary

conditions.  It  not  only  provides  rapid  predictions  compared

to  traditional  numerical  solvers  but  also  can  be  integrated

seamlessly  into  digital  twin  technologies  for  continuous

system performance optimization. 

Hypernetworks facilitate the learning of physical behavior

without  the  need  for  retraining  when  boundary  conditions

change,  offering  substantial  improvements  in  inference

times  while  maintaining  accuracy.  The  application  of

domain-decomposed, 

hypernetwork-based 

PINNs 

to

complex  industrial  heat  exchangers  like  the  APH

demonstrates the potential of these models to enhance real-

time 

monitoring 

within 

industrial 

settings. 

Such

advancements  underscore  the  adaptability  of  PINNs  to  the

rigorous demands of industrial applications, paving the way

for broader adoption in digital twin environments. 

Furthermore,  the  application  of  PISNs  to  discover

analytical  expressions  for  solutions  to  PDEs  was  attempted

and  preliminary  results  were  presented.  Exploration  of  DPA

highlights  the  innovative  use  of  pruning  strategies  to

simplify  the  expressions  generated  by  DPAs.  Although  the

current  pruning  approach,  which  is  based  on  a  depth-first

search,  may  be  sub-optimal  due  to  its  greedy  nature,  it

provides  a  foundational  technique  for  reducing  model

complexity.  This  strategy  underscores  the  ongoing  need  to

refine  computational  techniques  to  achieve  more  concise

and computationally efficient models, essential for real-time

applications. 

Despite the power of advanced models such as PINNs and

hypernetwork-based  PINNs,  applying  them  for  industrial

processes  is  still  expertise-intensive  (both  domain  and  DL

knowledge). Future research should focus on simplifying and

automating the application of these techniques for complex

engineering  systems.  Special  attention  should  be  given  to

reducing  the  computational  footprint  of  these  models  by

intelligent  architecture  search.  With  rapid  advances  in  the

field  of  DL,  it  is  imperative  that  the  power  of  advanced

techniques,  such  as  transformers  and  neural  operators,  is explored to improve the modeling of industrial processes. 

It  is  expected  that  AI  techniques  that  combine  the

advantages  of  physics  and  data  science  will  continue  to

advance.  Neural  network  models  for  entire  industrial

systems,  e.g.,  a  complete  power  plant  or  a  pharmaceutical

manufacturing  plant,  will  be  desirable.  However,  several

challenges  will  have  to  be  solved  to  achieve  such  a  goal. 

The scale of the models will be large and hence modularity

as  well  as  composition  of  trained  neural  network  modules

will  be  important.  Hypernetworks  are  required  to  make  a

high-dimensional prediction and to overcome this drawback, 

parameter  efficient  representation  of  model  adaptation

(e.g.,  using  low-rank  adaptation  [61])  will  have  to  be explored.  Foundational  models,  and  possibly  instruction

tuned  hypernetworks,  which  require  only  description  of  the

problem  as  input,  are  also  likely  to  evolve.  The  search  for

explainable models will advance beyond just regression and

classification as LLMs are likely to play an important role in

future. 

6.5 LIST OF SYMBOLS

 di

inner diameter of the APH

 do

outer diameter of the APH

 H

height of the APH

 MSE

mean  squared  error  associated  with

 bcp

boundary conditions

 MSE

mean  squared  error  associated  with

 icp

interface equality constraints

 MSE

mean  squared  error  of  the  residuals

F p

of the governing equations

 MSE

mean  squared  error  associated  with

 gradp

gradient constraints

 N

number of boundary condition points

 bcp

in subdomain  p

 N

number  of  interface  condition  points

 icp

in subdomain  p

 N

number  of  collocation  points  in

F p

subdomain  p for the residual F

number 

of 

metallic 

packing

 Ngrad

temperature 

gradient 

condition

 p

points in subdomain  p

NΘ ( λ)

hypernetwork  mapping   λ  to  PINN

 h

weights

 Tf

fluid temperature (air or gas)

 Tm

metallic packing temperature

( ϕ i

 i

 bcp,  zbcp)

coordinates 

of 

the 

boundary

condition points in subdomain  p

( ϕ i

 i

 icp,  zicp)

coordinates  of  the  common  interface

points of subdomains  p and  p+

( ϕ i

 i

F  p,  z F  p)

coordinates  of  the  residual  points  in

subdomain  p

( ϕi

) coordinates of the gradient condition

 grad ,  zi

 p

 gradp

points in subdomain  p

u

thermal profile of the heat exchanger

 u

thermal profile predicted by the base

Θ𝛌new

PINN for  λnew

 z

axial coordinate

G

context free grammar

 x,y,t,c

terminal symbols

 Greek Symbols

sector  angle  for  the  flow  of


 βa 1

primary air

sector  angle  for  the  flow  of

 βa 2

secondary air

sector  angle  for  the  flow  of  flue

 βg

gas

 λ

set of operating conditions

 λnew

new set of operating conditions

residual  of  the  governing  partial

F

differential equations

Ω

computational domain

Ω

primary  air  subdomain  of  the

 a 1

computational domain

Ω

secondary  air  subdomain  of  the

 a 2

computational domain

Ω

gas 

subdomain 

of 

the

 g

computational domain

Θ

parameters 

of 

domain

decomposed PINNs  u Θ( x;  λ)

Θ λnew

parameters of the PINN for  λnew

Θ

parameters  of  the  hypernetwork

 h

NΘ h( λ)

 ϕ

tangential coordinate

rotational  speed  of  the  metallic

 ω

packing 

(in 

revolutions 

per

minute)

 Subscripts

 a 1

primary air

 a 2

secondary air

 g

gas

 m

metallic matrix packing

metallic matrix packing within the

 ma 1

primary air sector

metallic 

packing 

within 

the

 ma 2

secondary air sector

metallic  packing  within  the  gas

 mg

sector

 p

subdomain in domain Ω

 p+

neighboring 

subdomain 

to

subdomain  p

boundary  condition  in  subdomain

 bcp

 p

 gradp

gradient condition in subdomain  p

 icp

interface condition in subdomain  p

residual  of  the  governing  PDEs  in

F p

subdomain  p
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7.1 INTRODUCTION

The  behavior  of  fluid  flow  in  Jeffery–Hamel  (JH)  problem  specifically  in converging  and  diverging  (CD)  configurations  pertains  to  the  passage  of fluids  within  channels  that  either  converge  or  diverge.  This  fluid  flow pattern  is  used  in  numerous  scientific  and  engineering  systems,  and

comprehending  its  characteristics  is  essential  for  numerous  applications

in  different  scientific  era.  The  investigation  of  CD  fluid  flow  involves studying the fluid dynamics for velocity, temperature, and concentration

properties  in  these  channels.  CD  JH  fluid  flows  play  an  important  role  in the  best  designing  of  nozzles.  The  JH  fluid  flow  phenomena  in  both

channels  were  firstly  introduced  by  Jeffery  [1]  and  Hamel  [2].  This  flow laminar or turbulence pattern holds significance in various scientific fields

including fluid mechanics, mechanical engineering, chemical engineering, 

and  bio-mechanical  engineering.  JH  flow  finds  applications  in  various areas such as chemical vapor deposition reactors [3, 4], high-current arcs in  plasma  generators,  industrial  machines  [5,  6],  gas  compressors  and pipe  sections  [7].  The  JH  flow  has  garnered  considerable  attention nowadays  by  using  machine  learning  algorithms  because  the  governing

Navier–Stokes equations have no exact solution. 

Sobamowo  et  al. [8]  examined  the  magnetohydrodynamic  (MHD)  flow characteristics of an upper convective Maxwell viscoelastic nanofluid via

a  permeable  medium.  The  broader  significance  of  MHD  is  evident  in

numerous  scientific  applications.  Sucharitha  et  al. [9]  explored  the utilization of MHD in nanomaterial flow within an aligned channel, with a

particular emphasis on Joule heating scenario. Extending this exploration, 

Sucharitha et al. [10] analyzed on the impact of MHD on Jeffery nanofluid peristaltic flow via a flexible channel. In addition, Reddy et al. [11] carried out an analysis of double diffusion features in nanofluid flow by including

a magnetized field. Ullah et al. [12] studied the effects of Lorentz forces on  magnetized  nanofluids  and  Coriolis  forces  through  a  porous  space. 

Reddy et al. [13] further focused to the discourse by examining the flow characteristics of radiation Williamson nanomaterial utilizing MHD. 

Furthermore, both CD channels hold significance across various thermal

and  flow  era.  Barzegar  Gerdroodbary  et  al. [14]  investigated  on  the influence  of  thermal  radiation  on  these  CD  channels  to  comprehend  its

impact  on  thermal  and  configurations  under  numerous  flow  conditions. 

Yarmand  et  al.  [15]  analyzed  a  hybrid  nanofluid  comprising  activated carbon  and  grapheme  though  in  CD  channels.  In  addition,  Makinde

examined fluid flow irreversibility in CD channels with viscosity and non-

uniform  temperatures  [16],  while  Beǵ  and  Makinde  [17]  delved  into  the inherent irreversibility in non-uniform channels. 

Rosenhead [18] initiated early investigations into the traditional JH flow, formulating  the  solution  using  Jacobian  elliptic  functions.  Millsaps  and Pohlhausen  [19],  along  with  Riley  [20], obtained  exact  solutions  for  the energy equation when incorporating heat transfer within the JH flow. In a

broader  asymmetric  context,  Fraenkel  [21]  delved  into  the  existence  of multiple solutions. Terrill [22] demonstrated the behavior of slow laminar flow in a CD channel, considering suction at one wall and blowing at the

other. Schlichting [23] briefly explored these issues. Roy and Nayak [24]

investigated 

continuous 

two-dimensional 

incompressible 

laminar

viscoelastic flow in CD channels, accounting for suction and injection. The

three-dimensional  extension  of  the  JH  flow  was  thoroughly  explored  and

realized  in  reference  [25]. Numerous  experiments  have  been  conducted to gain insights into the physical mechanisms underlying the JH flow and

its hydrodynamic stability properties. 

At  present,  various  methods  such  as  the  least  square  method  (LSM), 

differential  transform  method  (DTM),  weighted-residual  method  (WRM), 

and  homotopy  analysis  method  (HAM)  have  been  employed  for

investigating  MHD  JH  flow  [26, 27].  Researchers  have  explored  the significance  of  fluid  in  CD  channels  in  separate  studies  [28,  29,  30, 31]. 

Ullah  et  al.  [32]  conducted  a  study  examining  the  influence  of  chemical reactive  and  Soret/Dufour  characteristics  on  MHD  JH  flow  through  CD

channels.  The  investigation  includes  the  incorporation  of  radiation, 

Lorentz forces, and heat source effects to analyze thermal aspects in the

CD channel. In addition, cross-diffusion aspects arising from concentration

and  temperature  profiles  are  considered.  The  system  of  transformed

differential equations (DEs) solves using NDSolve. 

In recent years, researcher tackle to find the solution of JH fluid flow in

both  channels  that  converge  and  diverge  using  machine  learning

techniques. If the system of DEs becomes highly nonlinear, then we can’t

find  the  solution  using  traditional  analytical  or  numerical  methods  to

address  this  complexity.  In  such  cases,  researchers  applied  artificial

neural networks (ANNs) for solution of these complexities [33]. Raja and Samar  [34]  studied  the  JH  problem  using  unsupervised  neural  networks integrated  with  interior  point  optimization  algorithm,  and  compared  the

obtained  results  with  other  well-established  techniques  for  validation  of the  ANNs  prediction.  Chandra  and  Das  [35]  investigated  the  JH  problem using  machine  learning  technique  merged  with  ANNs  with  two  metaheuristic  optimization  hybrid  techniques  in  CD  channels  with  copper

nanoparticles.  Aslam  et  al. [36]  studied  the  MHD  JH  flow  problem  with Soret and Dufour effect using ANNs with artificial bee colony hybrid with

recently  introduced  neural  networks  algorithm  (NNA)  and  compare  their

results  with  Keller  box  method  for  validation  of  the  neural  networks prediction. 

Recent  advancements  in  global  optimization  techniques  especially

stochastic  optimization  algorithms,  particularly  within  the  domain  of

artificial intelligence, have unlocked new possibilities for tackling intricate

DEs,  especially  fractional  derivatives  [37, 38]. Stochastic  optimization techniques have found utility across various scientific disciplines, such as

astrophysics [39], plasma physics [40], bioinformatics modeling [41], fluid dynamics [42, 43, 44, 45], and so on. Nature-inspired algorithms, notably particle  swarm  optimization  (PSO),  genetic  algorithms  (GA),  have

emerged as a potent approach for stochastic optimization. GA represents

global optimization approach and has been extensively applied to solve a

variety of nonlinear problems in engineering field [46, 47, 48, 49]. These approaches  come  with  several  advantages  in  different  fields  including

ease  of  implementation,  broad  stability,  applicability,  prevention  of

divergence, and high reliability. The integration of stochastic optimization

within artificial intelligence frameworks has not only broadened the scope

of problem-solving but has also significantly enhanced the efficiency and

reliability of solutions across diverse scientific domains. 

While  the  existing  literature  extensively  covers  CD  channels,  no

attempt  has  been  made  to  investigate  the  interplay  of  Joule  heating, 

chemical reactions, and Soret/Dufour effects in the flow of JH viscous fluid

through  these  channels  using  machine  learning  algorithms  for  accuracy. 

In  this  chapter,  we  are  applying  the  ANNs  along  with  nature-inspired

algorithms  especially  PSO  hybrid  with  NNA  for  better  accuracy.  The

prediction  of  ANNs  results  is  compared  with  NDSolve  from  Mathematica

11  for  accuracy  and  validation  of  the  hybrid  approach.  Also,  we  are

conducting 200 independent runs for efficiency of the proposed approach. 

7.2 PROBLEM FORMULATION

Study the two-dimensional (2D) MHD JH flow from a source via channels

that are expanding as well as contracting at an angle of 2 a (Figure 7.1). 

The following presumptions are included in the current problem:

[image: Image 118]

It  is  anticipated  that  the  walls  of  the  channels  shall  expand  or

contract radially by the radial velocity  u  =   Uw  =   sr −  1, where  s denotes the rate of expansion and contraction. 

The channels are thought to be expanding or contracting at an angle

of 2 α. 

Since  the  velocity  field  only  runs  parallel  to  the  radial  direction  and depends  on  r  and  θ,  we  may  proceed  with  the  liquid  velocity  as

 V   =  ( u( r,  θ),  0,  0); 

Furthermore, it is assumed that the channels are either divergent or

convergent, meaning that  α  >  0  and  α  <  0 correspondingly. 

A stable, 2D, incompressible viscous fluid is taken into consideration. 

A magnetic field perpendicular to the divergent and convergent walls

is applied. 

We  address  the  heat  source,  Joule  heating,  Soret  and  Dufour  traits, 

and chemical reactions. 

 Tw  and  C *w  stand  for  the  channel  wall  temperature  and concentration, respectively. 

FIGURE 7.1  Geometry of the problem. 

 Θ =  α 

Given the assumptions indicated before, the determining expressions are:
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In this case, the variables  P ,  T ,  and  ρ stand for pressure, temperature, and  fluid  density,  respectively.  The  variables  µ  and  v  represent  fluid dynamic  viscosity  and  kinematic  viscosity  measurement;  and  heat

generation/absorption  Q, magnetic field B0, mass diffusivity coefficient  D

,  fluid  mean  temperature   T m,  chemical  reaction  coefficient  K,  and thermal diffusion ratio  KT  are used. Similarly,  q and  cp stand for specific

heat  and  heat  flux,  respectively.  The  two  concepts  that  determine  heat flux are conduction and radiation. 

 q =  qr,  rad +  qθ,  rad, 

(7.6)

4 σ* ∂ T  4
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 qr,  rad = −

 and  q

3 K* ∂ r
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The  radiative  heat  flux  along  ( r,  θ)   coordinates  is  represented  as qr,  rad  qθ,  rad,  and   σ*  indicates  the  Stephan–Boltzmann  constant  in  this case.  K * stands for the mean absorption coefficient. After applying the Taylor series and decomposing, we obtain:

 T  4 =  T  4∞ + 4 T  3∞ ( T −  T∞) + 6 T  2∞( T −  T∞)2 + … , (7.8)

dismissing the more complex terms, one has

 T  4 ≅ T  4∞ + 4 T  3∞ T − 3 T  4∞, 

(7.9)

In Eqn. (7.9) and Eqn. (7.7) becomes:
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Assuming at centerline ( θ  =  0) and channels are symmetrical then the obtained boundary conditions are:

∂ u = ∂ T = 0,  u =  uc ,  ∂ C = 0

∂ θ

∂ θ

 r

∂ θ
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Wall conditions at the problem are ( θ  =   ±  α) :

 T

 s

 C

 T =  w = 0,  u =  u

,  C* =  w . 

 r 2

 w =  r
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The dimensionless variables are defined as:
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By  substituting  these  variables  in  the  governing  equations,  we  obtained set of ordinary differential equations (ODEs):

 F ’’’( ω) + 2 αReF( ω) F ’( ω) + (4 −  M) α 2 F ’( ω) = 0, (7.14)

(1 +  Nr)Θ’’( ω) + 2 α 2 (2 +  Nr +  PrF ( ω))Θ( ω) +  PrEc (

 Re

4 α 2 F  2 ( ω) +  F

 α 2  PrMEc

 Re
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 λS

 ϕ’’( ω) + 2 α 2 (2 +  S
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 rF ( ω) −

 ϕ( ω) = 0. 

2

(7.16)

 F (0) = 1,  F ′ (0) = 0,  Θ’ (0) = 0,  ϕ′ (0) = 0,  F (±1) =  C,  Θ (±1) = 1

(7.17)

In  this  case,  C =  S

 U   acts  to  stretch  when   C  >  0  and  to  shrink  when

 c

 C  <  0 .  Ec =  αU 2 c

 C

stands for Eckert number, while  P r =  UcρCp

 pTw

 K

stands

for Prandtl number. The Reynold number is  Re =  αUc

 v , the Dufour number

is   Du =  DKTCwα

 ρU

,  the  chemical  reaction  parameter  is   λ =  K ,  the

 cCpCsTw

 Uc

radiation  variable  is   Nr =  kK* ,  Sr =  DKTTw  is the soret number the 4 σ*T  3∞

 UcTmCw

heat source/sink variable is  Hs =  Q 0

 k , the magnetic strength is  M =  σB 20

1

 μ

, and the Schmidt number is  Sc =  Uc

 D . 

7.3 SOLUTION OF THE PROBLEM

We  are  using  a  combination  of  machine  learning  algorithm  especially

physics-informed  machine  learning  and  evolutionary  meta-heuristic

algorithms  to  solve  a  set  of  DEs  governing  hydro-magnetic  thermal

transport with Joule heating, Soret and Dufour effects in CD channels. The

solution methodology consists of the following steps:

Formulating  the  set  of  nonlinear  partial  differential  equations  (PDEs)

by  physical  phenomena  of  the  problems  and  transforming  the  PDEs

into ODEs using similarity transformation. 

Utilizing 

unsupervised 

physics-informed 

machine 

leaning

methodology to transform the ODEs into fitness function. 

Optimizing  the  fitness  function  through  PSO  hybrid  with  NNA  as

optimizer  for  determining  the  optimal  weights  and  biases  within  the

range [−10,  10]. 

Further, ANN-BLMT will be utilized for deep analysis of the problem. 

7.3.1 UNSUPERVISED PHYSICS-INFORMED NEURAL NETWORKS

In  the  advancement  of  feed-forward  physics-informed  neural  networks

(PINNs), a widely adopted approach is to approximate the solution of DE. 

The  solution  of  the  DEs  and  its  nth  time  derivatives  are  represented  as F ′ ( ω),  F ′′ ( ω),  F ′′′ ( ω), … ,  F n ( ω),  Θ′ ( ω),  Θ′′ ( ω),  Θ′′′ ( ω), … ,  Θn ( ω) and     ϕ′ ( ω),  ϕ′′ ( ω),  ϕ′′′ ( ω), … ,  ϕn ( ω)  for  a  given  set  of  DEs.  (7.14–

7.16) that transform into physics-informed machine leaning model. These

continuous  mappings  (transform)  serve  as  fundamental  architectural

components of the neural network, enabling it to effectively emulate the

desired  approximated  solution  of   F ( ω),  Θ( ω)  and   ϕ( ω).  The unsupervised physics-informed machine learning based on sigmoid as an

activation functions are following equations for velocity:
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The  physics-informed  machine  learning  transformation  for  temperature

and concentration equations are following:
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The  above  Eqns.  (7.18–7.20)  provide  the  representation  of  an  activation function and its derivatives for velocity, temperature, and concentration. 
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neurons weights and biases of corresponding ANN architecture. The ANN

weights and biases, denoted as set  W, play an important role in physics-

informed ANNs architecture that define the behavior and accuracy of the

fitness function based approximating the solution to the JH nonlinear DEs. 

Utilizing of these weights and biases into the fitness function, expressions

converge  to  zero,  the  fitness  function  for  velocity,  temperature  and

concentration with associated boundary condition are follows:

 ε

∑ N (ˆ

1 = 1

 F ’’’( ω) + 2 αRe  ˆ

 F( ω) ˆ

 F ’( ω) + (4 −  M) α 2 ˆ

 F ’( ω) )2, 

 N

 i=1

(7.21)

 ε

∑ N (

2 = 1

 N

(1 +  N

 i=1

 r) ˆ

 Θ′′( ω) + 2 α 2 (2 +  Nr + Pr ˆ

 F( ω)) ˆ Θ( ω) + Pr Ec

Re

ˆ F′2( ω))− α 2 H  ˆ

ˆ

 sΘ( ω) +  α 2 Pr  MEc

Re

 F  2( ω) + Pr  Du( ϕ′′′( ω) + 4 αM) ϕ( ω)) (7.22)

1

 λS

 ε

∑ N (ˆ

ˆ

 c )ˆ

3 =

 ϕ’’( ω) + 2 α 2 (2 +  S F ( ω) −

 ϕ( ω))2, 

 N

 i=1

 r

2

(7.23)

1

 ε

(

4 =

∑ N (ˆ F(0)−1)2 +(ˆ F’(0))2 +(ˆ F’(±1) − C)2 +(ˆ Θ(±1

 N

 i=1

(7.24)

 E =  ε 1 +  ε 2 +  ε 3 +  ε 4. 

(7.25)

7.3.1.1 Evolutionary Algorithm (Meta-heuristic)

Evolutionary algorithms tackle the complex optimization problems. These algorithms  are  nature-inspired  and  find  the  approximate  solution  of  the problems.  Among  the  various  available  evolutionary  techniques,  swarm

intelligence  (SI)  has  gained  popularity  as  a  preferred  method  for

addressing  optimization  problems.  Several  algorithms  have  made

significant  advancements  in  this  field,  including  the  genetic  algorithm, firefly  algorithm,  water  cycle  algorithm,  PSO,  ant  colony  optimization, 

Levy  flight,  artificial  bee  colony,  hunting  search,  simulated  annealing, NNA, and others. In this study, our aim is to enhance the optimization of

Eqn.  (7.25)  by  synergistically  combining  the  PSO  and  NNA  (PSO-NNA)

through  hybridization.  Our  proposed  PSO-NNA  hybridization  technique

holds  promise  for  achieving  improved  performance  in  solving  these

nonlinear DEs. 

7.3.1.2 Particle Swarm Optimization

PSO  is  a  nature-inspired  meta-heuristic  (evolutionary)  algorithm

especially inspired by the collective dynamical behavior of flocks of birds

serving as an effective approach for finding optimal solutions of problems. 

It  utilizes  a  population  of  swarms  (particles),  each  representing  a

potential  solution,  which  traverse  the  search  domain,  in  this  study  from

−10  to  10  and  continuously  update  their  positions  based  on  the  best

solutions  found  individually  and  globally  within  the  swarm  (particles)

population.  The  algorithm  uses  two  main  parameters,  the  cognitive

component  ( c 1)  reflecting  the  particle’s  memory  of  its  personal  best solution and the social component ( c 2) that finds the best solution found by other particles. PSO has become widely used in different scientific and

engineering  domains,  including  machine  learning,  data  analytics,  and

technical  design.  The  PSO  algorithm  versatility  is  evident  in  its  useful applications,  such  as  high-dimensional  data  clustering,  parameter

estimation of chaotic systems, and optimization tasks related to different

engineering fields including nuclear reactors, reactive power distribution, 

and optical properties of thin films [50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 

60]. 

The swarm’s initial particles are chosen randomly from −10 to 10, and

each  iteration  updates  the  positions  and  velocities  of  each  particle  if

stopping  criteria  are  not  met,  based  on  its  most  recent  best  local   P x−1

 LB

and global  P x−1

 GB  positions. The two general updating formulas for particle

position and velocity for PSO as follows:

 vxi =  wvt−1

)
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 i

+  c 1 r 1 ( P x−1

 LB −  X x−1

 i

+  c 2 r 2 ( P x−1

 GB −  X x−1

 i
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 Xxi =  Xx−1

 i

+  vx−1

 i

. 

(7.30)

In the swarm,  i = 1,   … ,  p where  p is the total number of particles. The vectors   Xi  and   Vi  represent  the  ith  particle’s  position  and  velocity, respectively.  V  denotes  inertia  weight,  c 1  and   c 2  are  local  and  global acceleration constants, and the weight linearly decreases between 0 and

1. Random vectors  r 1 and  c 2 have values ranging from [0,  1]. 

7.3.1.3 Neural Network Algorithm

The NNA leverages innovatively ANNs and biological nervous phenomena. 

Unlike  traditional  evolutionary  methods,  NNA  relies  solely  on  population size  and  termination  criteria,  eliminating  the  need  for  additional

parameters  [61].  Leveraging  the  inherent  architecture  (structure)  of neural  networks,  NNA  exhibits  robust  global  optimization,  making  it

suitable  for  addressing  various  complex  optimization  problems  in

scientific  domains.  The  NNA  is  characterized  by  four  crucial  important

components that are discussed in given subsections [61]. 

 7.3.1.3.1 Update Population

Through  NNA  scenarios,  the  population   Yt = { yt 1,  yt 2,  yt 3, … ,  yt }

 M

undergoes 

updates 

via 

the 

weight 

matrix

 wi

}

 t = { wti,1,  wti,2,  wti,3, … ,  wti,  M   that  represents  the  weight  matrix  of the  ith individual and  yi

}

 t = { yti,1,  yti,2,  yti,3, … ,  yti,  E  that represents the

∣position of the  jth individual. Where,  E represents the number ofvariables. The generation of a new population of NNA as follows: Myt∑ new,  j= wtj,  k× ytj,  j=1,2,3,…,  M,  k=1,2,3,…,  M,  j=1(7.31) ytj= ytj+ ytnew,  j,  j=1, 2, 3,…,  M.(7.32) M denotes the total population size and  t represents the current iterationnumber. The solution for  jth individual at time  t is denoted as   ytj, and ytnew,  j signifies the solution for the  jth individual at the equal time point,computed with best weights.  M∑ wtj,  k=1, 0<  wtj,  k<1,  j=1, 2, 3,…,  M,  k=1, 2, 3,…,  Mj=1(7.33) 7.3.1.3.2 Update Weight Matrix The weights matrix  Wt plays a crucial role in the NNA processed ofgenerating a new population. The dynamics of the weight matrix  Wt canbe enhanced follows: wtj= wti+2× λ 2( wtobj− wtj),  j=1,2,3,…,  M(7.34)Where  λ 2 is a randomly generated value from a uniform distribution [0,1], and  wtobj represents the objective weight vector. It is crucial to note

that  both    wtobj and the target solution  xtobj have corresponding indices. 

Specifically,  if   xtobj  matches   xtv,  ( v  ∈ [1,  M])  at  time  t,  then   wtobj  is equivalently aligned with   wtv. 

 7.3.1.3.3 Bias Operator

The  bias  operator  in  NNA  enhances  its  global  best  exploration

capabilities.  The  modification  factor,  represented  as   β 1,  is  crucial  for measuring  the  extent  of  bias  introduced,  and  it  undergoes  updates

through:

 βt+1

1

= 0.99 βt 1. 

(7.35)

In the bias population operator, two variables are involved – a randomly

create number  MP  and denoted as  P. Suppose  L = ( l 1,  l 2,  l 3,   … ,  lD) and   U = ( u 1,  u 2,  u 3,   … ,  uD)  represent  the  lower  bound  and  upper bound of the JH ANN based fitness function variables, respectively.  Mp is determined as  βt 1 ×  E, representing the ceiling value of the product of  βt 1

and   E.  The  set   P   consists  of   Mp   randomly  selected  integers  from  the range  [0,  E].  Therefore,  the  bias  population  can  be  precisely

mathematically defined as follows. 

 ytj,  P( S) =  ltP( S) + ( uP( S) −  lP( S)) ×  λ 3,  S = 1, 2, 3, … ,  MP

(7.36)

In this context,  λ 3 signifies a uniformly distributed random value within the  range  [0,  1].  The  bias  matrix  introduces  two  variables  –   Mw,  a randomly generated number and  R, a set. The calculation of  Mw involves taking the ceiling of [ βt 1 ×  M]. Simultaneously, the set  R comprises  Mw randomly selected integers from the interval [0,  M]. This precise definition characterizes the bias weight matrix. 

 wtj,  R( r) =  λ 4,  r = 1,2, 3, … ,  Mw (7.37)

Where   λ 4,  is  a  random  number  between  [0,  1]  with  respect  to  uniform distribution. 

 7.3.1.3.4 Transfer Operator

The  transfer  operator  aims  to  refine  the  current  optimal  solution  by

emphasizing  the  local  search  capability  of  NNA,  as  illustrated  in  the

following  equation.  This  operator  plays  a  crucial  role  in  generating  a superior solution within the local context. 

 yt+1

 j

=  xtj + 2 λ 5 ( ytobj −  ytj),  j = 1,  2,  3, … ,  M

(7.38)

where   λ 5  is  a  random  number  from  [0,  1]  uniform  distribution,  like  the other meta-heuristic optimization algorithms NNA is initialized by

 ytj,  k =  lk + ( uk −  lk) ×  λ 6.  j = 1,  2,  3, … ,  M  and  k = 1,  2,  3, … ,  E. 

(7.39)

where  λ 6 is a randomly from [0,  1]. The hybridization flow chart for PSO

and NNAs is structured in Figure 7.2. 
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FIGURE 7.2  Flow chart of hybrid PSO-NNA. 

7.4 RESULTS AND DISCUSSION

In  addressing  the  challenges  posed  by  complex  systems  where  exact

solutions  are  elusive,  an  intelligent  approach  of  PINNs  is  employed.  The combination  of  PSO  and  NNA  is  applied  for  finding  the  best  optimal

weights values and biases values of the PINNs. The flowchart of PSO-NNA

is  presented  in  Figure  7.2.  The  system  considers  various  parameters, including  Reynolds  number  (Re),  Magnetic  number  (M),  and  Channel

angle  ( α)  in  the  Eqns.  (7.24–7.26).  The  PINNs-based  objective  function was  formulated  in  Eqn.  (7.28)  and  is  optimized  using  hybrid  PSO  and

NNAs.  Reference  solution  is  obtained  from  NDSolve  and  compared  with

proposed PINNs method for validation. Solutions are computed for inputs

within the range from 0 to 1 with a discretization size of h = 0.05 and n =
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21. The optimized weights and biases, presented in Figure 7.3b, d, and f

and also tabulated in numerical form in Tables 7.1, 7.3, and 7.5, are used for computation of numerical solutions  ˆ

 f,  ˆ θ and ˆ

 ϕ. 

FIGURE 7.3  (a) Comparison solution of velocity obtained by NDSolve and ANN-PSO-NNA for

 Re = 0.10,  α = −2 o,  C = 0,  M = 1. (b). Optimized weights and biases for velocity through PSO-NNA for  Re = 0.10,  α = −2 o,  C = 0,  M = 1. (c, e) Comparison solution of temperature and concentration obtained by NDSolve and ANN-PSO-NNA for

 Re = 5,  α = −5 o,  C = 0.1,  M = 3,  Nr = 0.3,  P r = 0.1,  Ec = 0.2,  Hs = 0.0,  Du

, (d, f). Optimized weights and biases for temperature and concentration through PSO-NNA for

 Re = 5,  α = −5 o,  C = 0.1,  M = 3,  Nr = 0.3,  P r = 0.1,  Ec = 0.2,  Hs = 0.0,  Du

. 

TABLE 7.1

Optimized Weights and Biases for Velocity Obtained by PSO-NNA f

 Re = 0. 10,  α = −2 o,  C = 0,  M = 1,  Nr = 0. 3,  Pr = 0. 1,  Ec = 0

 wF

 b

 i

 Fi

−3.647630552

−4.679318131

−1.690672496

4.265722189

−1.975406623

5.158730993

0.197781304

3.734482538

−1.286886332

1.761267312

−1.501443485

−1.706829574

0.163283806

7.410238917

1.322990657

−4.371927229

−0.169980086

−2.695325741

2.603127037

−6.661544752

TABLE 7.2

Comparative Analysis for Velocity between Reference Solution and

 Re = 0. 10,  α = −2 o,  C = 0,  M = 1,  Nr = 0. 3,  Pr = 0. 1,  Ec = 0

ω

Reference

PINNs-PSO-NNA

 ANN −  BLMT

|Reference −

0.00

1.00000000000000

0.999999844913744

1.000258672

2

0.05

0.997500390476175

0.997500343400385

0.997536889

3

0.10

0.990001568611728

0.990001621484040

0.989982107

1

0.15

0.977503465428300

0.977503590929566

0.977455451

4

0.20

0.960005980703891

0.960006135325184

0.959997606

8

0.25

0.937508979003804

0.937509123463903

0.937549006

4

0.30

0.910012295666169

0.910012408524854

0.909976839

3

0.35

0.877515737100772

0.877515822460589

0.87755073

3

0.40

0.840019095066305

0.840019172272715

0.840013395

5

0.45

0.797522150848288

0.797522242101227

0.797497408

2

0.50

0.750024684635332

0.750024802554009

0.750059348

3

0.55

0.697526491755715

0.697526626660294

0.697528622

2

ω

Reference

PINNs-PSO-NNA

 ANN −  BLMT

|Reference −

0.60

0.640027390341845

0.640027510373760

0.639991355

3

0.65

0.577527233811016

0.577527294755557

0.577541255

1

0.70

0.510025934356012

0.510025886873493

0.510047754

2

0.75

0.437523463038780

0.437523277069077

0.437491122

3

0.80

0.360019886357699

0.360019551549468

0.360038031

1

0.85

0.277515379539382

0.277514901212397

0.277507131

8

0.90

0.190010237403873

0.190009630140203

0.190023394

1

0.95

0.0975049035367433

0.0975041702103549

0.097468204

3

1.00

0.0000000000000000

−8.88352212763E-07

6.81E-05

6

TABLE 7.3

Optimized Weights and Biases for Concentration Obtained by PSO

 Re = 5,  α = −5 o,  C = 0. 1,  M = 3,  Nr = 0. 3,  Pr = 0. 1,  Ec = 0. 2

 wF

 b

 i

 Fi

0.755930056

7.165823747

1.115608939

3.169072176

1.410135592

−5.581073811

0.783947086

−0.678821547

−1.429326042

2.647470054

−0.388255944

1.105045381

2.189775908

4.127485694

−0.114890556

−2.518871061

2.998365134

5.327353536

−0.676959995

1.661599030

TABLE 7.4

Comparative Analysis for Concentration between Reference and P

 Re = 5,  α = −5 o,  C = 0. 1,  M = 3,  Nr = 0. 3,  P r = 0. 1,  Ec = 0. 2

ω

Reference

 PINNs −  PSO −  NNA

 ANN −  BLMT

|Referenc

0.00

1.01570413769372

1.01570381297004

1.015724486

0.05

1.01566449638475

1.01566416874698

1.015664834

0.10

1.01554558443284

1.01554526958642

1.01554355

0.15

1.0153474355164

1.01534715314078

1.015327461

0.20

1.01507010621707

1.01506986375918

1.015115512

0.25

1.01471367580658

1.01471346608963

1.014623526

ω

Reference

 PINNs −  PSO −  NNA

 ANN −  BLMT

|Referenc

0.30

1.01427824636534

1.01427805236529

1.014369791

0.35

1.01376394289018

1.01376374513829

1.013669171

0.40

1.01317091342068

1.01317069695694

1.013228482

0.45

1.01249932918985

1.01249908823458

1.012468644

0.50

1.01174938478843

1.01174912432932

1.011740213

0.55

1.01092129834097

1.01092103264115

1.010985875

0.60

1.01001531168779

1.01001506033328

1.009910827

0.65

1.0090316905772

1.00903147309549

1.009197715

0.70

1.00797072484424

1.00797055518535

1.007773111

0.75

1.0068327285902

1.00683261080760

1.007049195

0.80

1.00561804034617

1.00561796672089

1.005411482

0.85

1.00432702321158

1.00432697579510

1.004485625

0.90

1.00296006496651

1.00296002108251

1.002811966

0.95

1.00151757814372

1.00151751981471

1.001625351

1.00

1.00000000005289

0.99999992659812

0.999934994

TABLE 7.5

Optimized Weights and Biases for Temperature Obtained by PSO-N

 Re = 5,  α = −5 o,  C = 0. 1,  M = 3,  Nr = 0. 3,  P r = 0. 1,  Ec = 0. 2

 wF

 b

 i

 Fi

0.669997033

0.713350949

0.901939055

−2.711528116

−0.343240500

1.598406179

0.860085002

0.427740786

0.107581279

−2.100302502

0.607421917

−0.909304547

−1.010385212

−0.682520842

−0.350878792

0.225634814

−1.863854098

−3.899741850

0.099723793

0.249896918

Figure  7.3a,  c,  and  d  depicts  a  comparison  between  the  reference solution and the PINNs approaches, revealing higher accuracy in velocity, 

temperature,  and  concentration  prediction.  The  numerical  outcomes  for

the  CD  channel  problem  for  velocity,  temperature  and  concentration

obtained  through  the  proposed  machine  learning  are  detailed  in  Tables
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7.2,  7.4,  and  7.6  including  their  absolute  errors  (AE).  The  results  from

ANN-PSO-NNA  closely  align  with  the  reference  solution  that  is  presented in  Tables  7.2, 7.4, and  7.6.  To  comprehensively  analyze  the  algorithm’s performance,  200  independent  trials  were  run  that  offering  insights  into its  convergence  behavior. Figure  7.4a, b, c, and  d  presents  the  fitness plots  and  mean-squared  error  (MSE)  for  velocity,  temperature,  and

concentration, illustrating the evolution of fitness scores throughout these

200 independent trials. 

FIGURE 7.4  (a) Fitness function evaluation with (200) independence runs. (b, c, and d) Mean squared error comparison between NDSolve and ANN-PSO-NNA over 200 independence runs for velocity, temperature, and concentration, respectively. 

TABLE 7.6

Comparative Analysis for Temperature between Reference and PIN

 Re = 5,  α = −5 o,  C = 0. 1,  M = 3,  Nr = 0. 3,  Pr = 0. 1,  Ec = 0. 2

ω

Reference

 P INNs −  P SO −  NNA ANN −  BLMT

|Refere

0.00

1.01077593588135

1.01077617513591

1.010887433

ω

Reference

 P INNs −  P SO −  NNA ANN −  BLMT

|Refere

0.05

1.01075073692105

1.01075098516125

1.010753098

0.10

1.01067509406122

1.01067535676267

1.010662757

0.15

1.01054886693966

1.01054913464235

1.010529502

0.20

1.01037182021684

1.01037207440852

1.010410556

0.25

1.01014362118802

1.01014384061448

1.010092279

0.30

1.00986383646353

1.00986400282616

1.009917434

0.35

1.00953192761233

1.00953203002668

1.009486908

0.40

1.00914724633291

1.00914728370108

1.009197457

0.45

1.00870902863094

1.00870900996591

1.008614038

0.50

1.00821638838489

1.00821633111961

1.00820331

0.55

1.00766831036179

1.00766823698966

1.007738892

0.60

1.00706364291460

1.00706357644431

1.007037668

0.65

1.00640109009357

1.00640104941975

1.006478658

0.70

1.00567920430387

1.00567919979052

1.005504324

0.75

1.00489637875975

1.00489640938191

1.00502118

0.80

1.0040508406148

1.00405089339012

1.003904621

0.85

1.00314064501213

1.00314069743930

1.003311883

0.90

1.00216367044693

1.00216369646616

1.002041597

0.95

1.00111761589229

1.00111759558296

1.001187116

1.00

1.00000000025082

0.99999993302936

0.999846685

The  statistical  analysis  of  the  numerical  values  for  velocity, 

temperature, and concentration are shown in Tables 7.7, 7.8, and 7.9 that offer  a  comprehensive  investigation  of  the  PINNs  algorithm’s

performance.  For  validation  of  ANN-PSO-NNA,  important  metrics  include

mean  value,  minimum  value,  maximum  value,  and  standard  deviation

value  calculated  from  200  independent  runs.  These  metrics  provide  a

quantitative analyzed overview of the proposed ANN-PSO-NNA algorithm

consistency  and  effectiveness  over  multiple  (200)  runs,  aiding  in  a

thorough understanding of its performance characteristics. 

TABLE 7.7

Statistical Analysis for Velocity of Absolute Errors

(AE) between NDSolve and PINNs-PSO-NNA

Algorithm for 200 Independence Runs for

 Re = 110,  β = 3 o,  We = 0,  n = 1,  M = 0. 

ω

Minimum

Maximum

Average

Standard Deviation

0.00

1.00705E-08

9.18193E-05

5.89845E-06

1.22751E-05

0.05

1.46466E-09

9.39584E-05

6.10711E-06

1.27273E-05

0.10

7.21790E-09

9.49881E-05

6.54979E-06

1.31574E-05

0.15

9.32920E-09

9.49211E-05

6.93685E-06

1.35480E-05

0.20

9.69796E-09

9.37827E-05

7.24577E-06

1.38115E-05

0.25

3.66235E-10

9.15778E-05

7.41926E-06

1.39080E-05

0.30

7.26703E-09

9.02178E-05

7.44100E-06

1.37961E-05

0.35

1.01189E-09

8.86845E-05

7.29931E-06

1.34420E-05

0.40

3.06530E-09

8.55659E-05

7.00843E-06

1.28130E-05

0.45

6.48176E-10

8.08456E-05

6.52661E-06

1.19222E-05

0.50

3.12579E-09

7.45206E-05

5.87016E-06

1.07697E-05

0.55

2.23323E-10

6.66025E-05

5.03206E-06

9.39733E-06

0.60

1.28755E-08

5.71064E-05

4.05358E-06

7.87167E-06

0.65

8.03540E-09

4.60433E-05

3.21064E-06

6.27092E-06

0.70

8.67161E-09

3.37287E-05

2.81453E-06

5.01496E-06

0.75

8.91602E-09

2.92400E-05

3.06375E-06

5.09378E-06

0.80

2.31442E-08

4.10687E-05

4.22352E-06

6.79906E-06

0.85

5.80133E-08

5.41565E-05

6.00867E-06

9.58229E-06

0.90

1.87290E-08

6.95921E-05

8.21932E-06

1.29988E-05

0.95

1.67532E-08

8.77497E-05

1.07818E-05

1.68474E-05

1.00

5.57029E-09

0.000107359

1.36142E-05

2.10707E-05

TABLE 7.8

Statistical Analysis for Temperature of Absolute Errors (AE) betwe

200 Independence Runs for

 Re = 5,  α = −5 o,  C = 0.1,  M = 3,  Nr = 0.3,  Pr = 0.1,  Ec = 0.2, ω

Minimum

Maximum

A

0.00

6.17508E-06

9.78261E-05

2.3

0.05

6.33604E-06

9.63904E-05

2.3

0.10

6.65956E-06

9.52031E-05

2.3

0.15

7.15758E-06

9.35414E-05

2.3

0.20

7.67049E-06

9.09335E-05

2.3

0.25

7.97612E-06

8.71353E-05

2. 

0.30

7.86065E-06

8.21063E-05

2.3

0.35

7.15953E-06

7.59676E-05

2.2

0.40

5.77609E-06

6.89556E-05

2.1

0.45

3.69147E-06

6.13767E-05

1.8

0.50

9.54101E-07

5.35672E-05

1.5

ω

Minimum

Maximum

A

0.55

1.80919E-06

4.58612E-05

1.2

0.60

9.69749E-07

3.85685E-05

8.6

0.65

8.31965E-08

3.19620E-05

4.8

0.70

1.17608E-08

2.62751E-05

1.9

0.75

2.05711E-07

2.17081E-05

3.9

0.80

1.33992E-06

1.86026E-05

6.8

0.85

1.31476E-06

1.94240E-05

8.6

0.90

1.43884E-06

1.83096E-05

8.6

0.95

6.49614E-08

1.84399E-05

6.1

1.00

4.02843E-09

2.26098E-05

1.4

TABLE 7.9

Statistical Analysis for Concentration of Absolute Errors (AE) betw

Independence Runs for

 Re = 5,  α = −5 o,  C = 0.1,  M = 3,  Nr = 0.3,  Pr = 0.1,  Ec = 0.2, ω

Minimum

Maximum


Av

0.00

8.70000E-08

5.14E-05

6.01

0.05

1.06124E-08

5.82E-05

7.10

0.10

4.58255E-08

6.36E-05

8.38

0.15

9.13199E-08

6.76E-05

9.41

0.20

1.71250E-07

7.01E-05

1.01

0.25

1.74160E-07

7.11E-05

1.05

0.30

1.24616E-07

7.08E-05

1.06

0.35

7.11732E-08

6.89E-05

1.03

0.40

2.88587E-08

6.56E-05

9.80

0.45

3.37137E-09

6.07E-05

8.90

0.50

1.12183E-08

5.43E-05

7.67

0.55

2.23323E-10

4.63E-05

6.10

0.60

1.68607E-08

3.68E-05

4.47

0.65

2.06202E-08

2.57E-05

3.91

0.70

1.10352E-08

1.87E-05

3.51

0.75

2.54155E-08

3.76E-05

3.50

0.80

3.08376E-08

5.67E-05

6.73

0.85

5.80133E-08

9.88E-05

1.03

0.90

1.17662E-07

6.85E-05

1.42

0.95

1.93392E-07

8.41E-05

1.84

1.00

2.62101E-07

2.67E-05

2.29

Furthermore,  the  discussion  focuses  on  the  cross-diffusion  effects  for convergent  and  divergent  channels  presented  in  Eqn.  (7.14)  to  Eqn. 

(7.16),  employing  the  supervised  framework  of  backpropagated

Levenberg–Marquardt  technique  (ANN-BLMT).  The  ANN-BLMT  utilizes  for

velocity, temperature, and concentration prediction. Datasets for velocity, 

temperature, and concentration profiles are generated using the NDSolve

scheme  with  a  step  size  of  0.001.  This  scheme  is  applied  to  all  three dynamics  of  the  convergent  and  divergent  channels  with  inputs  ranging

from  0  to  1.  The  resulting  datasets  for  velocity,  temperature,  and

concentration  profiles  serve  as  reference  or  targets  solutions  for  ANN-

BLMT.  ANN-BLMT  is  trained  using  the  “nftool”  command  of  the  neural

network  toolbox  in  MATLAB  software  to  approximate  solutions  for  the

convergent and divergent channels. A total of 1001 input and target data

points  are  employed  for  training,  validation,  and  testing  the  learning

process. These data points are randomly divided into 70% (701 points) for

training, 15% (150 points) for testing, and 15% (150 points) for validation

of the learning performance. 

The  convergence  analysis  and  learning  performance  of  ANN-BLMT

optimization algorithms are examined the mean squared error (MSE) and

transition  states  of  Jeffery  Hamel  fluid  flow. Figures  7.5a, b, 7.7a,  b, and

7.9a,  b  illustrate  the  dynamical  analysis  for  velocity,  concentration  and temperature. 

In 

addition, 

graphical 

representations 

comparing

approximate  results  with  referenced  solutions  from  the  NDSolve

approach, along with error histogram plots, are depicted in Figures 7.5c, 

d, 7.7c,  d, and  7.9c, d,  respectively,  of  JH  flow.  Regression  curves  are presented  in  Figures  7.6, 7.8  and  7.10. Moreover,  numerical  outcomes computed  from  training  1.04687E-09,  2.39889E-09  and  8.72481E-09, 

validation  1.30182E-09,  2.75862E-09  and  7.74916E-09  and  testing

1.58153E-09, 2.38561E-09 and 8.38135E-09 of data sets, as well as total

epochs and backpropagation parameters like gradient 9.88E-08, 4.12E-08

and  6.90E-08  and  step  size  1.0010E-09,  1.00E-11  and  1.00E-08  for

velocity,  concentration  and  temperature  respectfully.  The  convergence

analysis  reveals  that  for  three  scenarios  like  velocity,  concentration  and temperature,  exhibits  MSE  values  around  1.0812E−09,  1.1071E−08, 

7.460E−08. Error histograms from ANN-BLMT plots are provided for one of

[image: Image 122]

the three profiles in as depicted in Figures 7.5d, 7.7d, and 7.9d and Tables

7.2, 7.4 and 7.6. The efficiency of ANN-BLMT is further assessed through

comparison  with  NDSolve  and  ANN-PSO-NNA  approaches  for  velocity, 

concentration  and  temperature.  These  results  demonstrate  the

convergence  and  efficacy  of  the  proposed  ANN-PSO-NNA  approach  is

more accurate as compare to ANN-BLMT for DE based on JH fluid flow. The

proposed ANN-PSO-NNA algorithm does not require the target dataset. If

DEs  for  engineering  problems  are  highly  nonlinear,  then  analytical  and

numerical  methods  are  not  working  to  find  the  dataset  for  ANN-BLMT

scheme.  Thus  proposed  ANN-PSO-NNA  is  best  for  solving  DE-based  JH

engineering problem. 

FIGURE 7.5  (a) Mean squared error for velocity from ANN-BLMT for parameters

 Re = 0. 10,  α = −2 o,  C = 0,  M = 1,  Nr = 0. 3,  P r = 0. 1,  Ec = 0. 2,  Hs = 0. 0,  D

. (b) Transition states for velocity from ANN-BLMT for parameters

 Re = 0. 10,  α = −2 o,  C = 0,  M = 1,  Nr = 0. 3,  P r = 0. 1,  Ec = 0. 2,  Hs = 0. 0,  D

(c) Performance of prediction and target with error for velocity from ANN-BLMT for parameters

 Re = 0. 10,  α = −2 o,  C = 0,  M = 1,  Nr = 0. 3,  P r = 0. 1,  Ec = 0. 2,  Hs = 0. 0,  D

. (d) Error histogram for velocity from ANN-BLMT for parameters

 Re = 0. 10,  α = −2 o,  C = 0,  M = 1,  Nr = 0. 3,  P r = 0. 1,  Ec = 0. 2,  Hs = 0. 0,  D

. 

[image: Image 123]

FIGURE 7.6  Regression analysis for velocity from ANN-BLMT for parameters

 Re = 0. 10,  α = −2 o,  C = 0,  M = 1,  Nr = 0. 3,  P r = 0. 1,  Ec = 0. 2,  Hs = 0. 0,  D

. 
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FIGURE 7.7  (a) Mean squared error for temperature from ANN-BLMT for parameters

 Re = 5,  α = −5 o,  C = 0.1,  M = 3,  Nr = 0.3,  P r = 0.1,  Ec = 0.2,  Hs = 0.0,  Du

. (b) Transition states for temperature from ANN-BLMT for parameters

 Re = 5,  α = −5 o,  C = 0.1,  M = 3,  Nr = 0.3,  P r = 0.1,  Ec = 0.2,  Hs = 0.0,  Du

. (c) Performance of prediction and target with error for temperature from ANN-BLMT for parameters

 Re = 5,  α = −5 o,  C = 0.1,  M = 3,  Nr = 0.3,  P r = 0.1,  Ec = 0.2,  Hs = 0.0,  Du

. (d) Error histogram for temperature from ANN-BLMT for parameters

 Re = 5,  α = −5 o,  C = 0.1,  M = 3,  Nr = 0.3,  P r = 0.1,  Ec = 0.2,  Hs = 0.0,  Du

[image: Image 125]

FIGURE 7.8  Regression analysis for temperature from ANN-BLMT for parameters

 Re = 5,  α = −5 o,  C = 0. 1,  M = 3,  Nr = 0. 3,  P r = 0. 1,  Ec = 0. 2,  Hs = 0. 0,  D

. 
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FIGURE 7.9  (a) Mean squared error for concentration from ANN-BLMT for parameters

 Re = 5,  α = −5 o,  C = 0.1,  M = 3,  Nr = 0.3,  P r = 0.1,  Ec = 0.2,  Hs = 0.0,  Du

. (b) Transition states for concentration from ANN-BLMT for parameters

 Re = 5,  α = −5 o,  C = 0.1,  M = 3,  Nr = 0.3,  P r = 0.1,  Ec = 0.2,  Hs = 0.0,  Du

. (c) Performance of prediction and target with error for concentration from ANN-BLMT for parameters

 Re = 5,  α = −5 o,  C = 0.1,  M = 3,  Nr = 0.3,  P r = 0.1,  Ec = 0.2,  Hs = 0.0,  Du

. (d) Error histogram for concentration from ANN-BLMT for parameters

 Re = 5,  α = −5 o,  C = 0.1,  M = 3,  Nr = 0.3,  P r = 0.1,  Ec = 0.2,  Hs = 0.0,  Du

[image: Image 127]

FIGURE 7.10  Regression analysis for concentration from ANN-BLMT for parameters

 Re = 5,  α = −5 o,  C = 0. 1,  M = 3,  Nr = 0. 3,  P r = 0. 1,  Ec = 0. 2,  Hs = 0. 0,  D

. 

The velocity characteristics for various scenarios are depicted in Figures

7.11  and  7.12  during  the  stretching  processes  through  PINNs-PSO-NNA. 

Furthermore,  the  absolute  error  between  the  reference  solutions  for

different  scenarios  are  presented  in  Figures  7.11b, 7.12b, 7.13b,  7.14b, 

7.15b, 7.16b, 7.17b,  7.18b, 7.19b, 7.20b, 7.21b, and  7.22b.  This

illustration  reveals  that  velocity  intensifies  with  convergence  (Figure

7.11a),  while  an  inverse  trend  is  observed  for  velocity  in  the  case  of

divergence, as depicted in Figure 7.12a. Moreover, the highest velocity is observed  in  the  starting  region  of  the  channel,  gradually  diminishing

towards  the  upper  or  lower  walls.  The  gradual  decrease  in  velocity  near

[image: Image 128]

[image: Image 129]

the channel walls is attributed to the wall friction force. Furthermore, in a

divergent channel, the velocity decreases as the opening angle increases, 

owing to the amplified backflow of nanofluids. Conversely, in the case of

convergence, the velocity exhibits an opposite trend due to the narrowing

of  the  channel  walls. Figures  7.13a  and  7.14a  present  the  shrinking process  in  both  CD  channels,  the  velocity  profiles  increase  when  we

increase  the  angle  in  convergent  channel,  but  the  inverse  behavior  is

observed for divergent channels. 

FIGURE 7.11  (a) Velocity profile from PINNs-PSO-NNA for  Re = 5,  C = 0.1,  M = 1. (b) Absolute error between the reference solution and PINNs-PSO-NNA. 

FIGURE 7.12  (a) Velocity profile from PINNs-PSO-NNA for  Re = 5,  C = 0.1,  M = 1. (b) Absolute error between the reference solution and PINNs-PSO-NNA. 
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FIGURE 7.13  (a) Velocity profile from PINNs-PSO-NNA for  Re = −5,  C = 0.1,  M = 3. (b) Absolute error between the reference solution and PINNs-PSO-NNA. 

FIGURE 7.14  (a). Velocity profile from ANN-PSO-NNA for  Re = −5,  C = −0.1,  M = 3. (b) Absolute error between the reference solution and PINNs-PSO-NNA. 

FIGURE 7.15  (a) Temperature profile from PINNs-PSO-NNA for

 Re = 5,  α = −5 o,  C = 0.1,  M = 3,  Nr = 0.3,  P r = 0.1,  Ec = 0.2,  Hs = 0.0,  Sr

. (b) Absolute error between the reference solution and PINNs-PSO-NNA. 
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FIGURE 7.16  (a) Temperature profile from PINNs-PSO-NNA for

 Re = 5,  α = 5 o,  C = 0.1,  M = 3,  Nr = 0.3,  P r = 0.1,  Ec = 0.2,  Hs = 0.0,  Sr =

. (b) Absolute error between the reference solution and PINNs-PSO-NNA. 

FIGURE 7.17  (a) Temperature profile from PINNs-PSO-NNA for

 Re = 5,  α = −5 o,  C = 0.1,  M = 3,  Nr = 0.3,  P r = 0.1,  Ec = 0.2,  Du = 0.1,  Sr

. (b) Absolute error between the reference solution and PINNs-PSO-NNA. 

FIGURE 7.18  (a) Temperature profile from PINNs-PSO-NNA for

 Re = 5,  α = 5 o,  C = 0.1,  M = 3,  Nr = 0.3,  P r = 0.1,  Ec = 0.2,  Du = 0.1,  Sr =
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. (b) Absolute error between the reference solution and PINNs-PSO-NNA. 

FIGURE 7.19  (a) Concentration profile from PINNs-PSO-NNA for Re = 30,  α = −5 o,  C = 0.1,  M = 3,  Nr = 0.3,  Pr = 0.1,  Ec = 0.2,  Hs = 0.0,  Du =

. (b) Absolute error between the reference solution and PINNs-PSO-NNA. 

FIGURE 7.20  (a) Concentration profile from PINNs-PSO-NNA for

 Re = 0.10,  α = 5 o,  C = 0.1,  M = 3,  Nr = 0.3,  P r = 0.1,  Ec = 0.2,  Hs = 0.0,  D

. (b) Absolute error between the reference solution and PINNs-PSO-NNA. 

[image: Image 139]

FIGURE 7.21  (a) Concentration profile from PINNs-PSO-NNA for

 Re = 5,  α = −5 o,  C = 0.1,  M = 3,  Nr = 0.3,  P r = 0.1,  Ec = 0.2,  Hs = 0.0,  Du

. (b) Absolute error between the reference solution and PINNs-PSO-NNA. 

FIGURE 7.22  (a) Concentration profile from PINNs-PSO-NNA for Re = 0.10,  α = 5 o,  C = −0.1,  M = 3,  Nr = 0.3,  Pr = 0.1,  Ec = 0.2,  Hs = 0.0,  Du

. (b) Absolute error between the reference solution and PINNs-PSO-NNA. 

The  velocity  characteristics  for  stretching  and  shrinking  cases  are

examined  in  Figures  7.13a  and  7.14a  for  the  effect  of  Reynolds  number (Re)  in  CD  channels.  Remarkably,  the  velocity  patterns  appear  nearly

identical  for  both  scenarios.  Physically,  elevating  the  Re  induces  an

increase in drag force, leading to enhanced resistance to fluid movement

away  from  the  channel  walls  during  backward  motion. Figure  7.15a, 

Figure 7.16, Figure 7.17, Figure 7.18a represent the temperature profiles against  parameters   Du  and   Hs   for  both  CD  channels  using  machine learning  algorithms. Figure  7.15a  illustrates  the  effect  of   Du   in convergent  channels,  increase  the   Du   the  temperature,  decreases  in convergent channels but in divergent channels temperature also increase

shows in Figure (7.16). The effect of  Hs  is illustrated in Figures 7.17a and

7.18a  for  CD  channel  using  machine  learning,  increase  in  the   Hs 

decrease temperature in both channels. Figure 7.19a, Figure 7.20, Figure

7.21,  Figure  7.22a  represented  the  concentration  effect  against

parameters   Sr   and    λ,    when   Sr   increase  then  concentration  profiles also  increase  in  CD  channels  in  figures.  An  inverse  behavior  is  seen  in

both  CD  channels  when   λ   is  increased  as  shown  in  Figures  7.21a  and

7.22a. 

7.5 CONCLUSION

In  conclusion,  this  chapter  explored  the  hydro-magnetic,  incompressible

JH  fluid  flow  within  stretchable-walled  convergent/divergent  (CD)

channels, focusing on aspects that have received limited attention in the

existing  literature  –  namely,  mass  and  heat  transfer  analyses  using

machine  learning  algorithm.  The  investigation  uniquely  contributes  by

examining  the  influences  of  Soret/Dufour,  Joule  heating,  and  chemical

reaction  effects  on  JH  flow  through  the  transformation  of  the  governing coupled system of PDEs into ODEs using appropriate transformations. 

These  nonlinear  system  ODEs  were  converted  into  the  fitness

(objective) function using PINNs. 

The  optimization  of  the  ANN-based  fitness  function  used  the  PSO

hybrid with NNA for ANN optimized weights and biases. 

Used  the  ANN  optimized  weights  and  biased  in  sigmoid  function  to

predict  the  solution  of  velocity,  temperature  and  concentration

profiles. 

ANN-based results were compared with NDSolve for the validation of

the propped algorithm. 

To find the efficiency of the propped algorithm, 200 independent runs

were conducted. 

Further,  ANN-BLMT  approach  used  for  velocity,  concentration,  and

temperature profiles for dataset obtained from NDSolve. 

The comparisons are presented for both machine learning techniques

with  ANN-BLMT  and  proposed  PINNs-PSO-NNA  with  well-established

NDSolve methods for validation. 

The proposed PINNs-PSO-NNA is more accurate as compared to ANN-

BLMT. 

Complex  nonlinear  DEs-based  JH  flow  does  not  use  traditional

analytical  and  numerical  approaches,  therefore  ANN-BLMT  is  not

utilized.  Whereas  PINNs-PSO-NNA  does  not  require  target  dataset

therefore  it  is  more  useful  and  efficient  algorithm  as  compared  to supervised learning. 

The ANN-based computed results underscore the impact of the Lorentz

force generated by the magnetic field, revealing its dampening effect on

fluid motion in both CD channels. Furthermore, the incorporation of heat

source  and  Dufour  effects  leads  to  a  sustained  enhancement  in

temperature  distribution,  while  the  Soret  number  exhibits  contrasting

effects  on  concentration.  The  numerical  outcomes  highlight  significant

variations  in  the  Nusselt  number,  elucidating  the  dependence  on

magnetic and radiation parameters, as well as the Soret number. Overall, 

this study enhances our understanding of the intricate dynamics involved

in JH flow within CD channels and opens avenues for further exploration in

this field. In future we will use quantum-based optimization algorithm to

solve JH problems and minimize the computation cost. 

7.6 NOMENCLATURE

 CD

convergent/divergent channels

 P

pressure

 T

temperature

 ρ

density

 Bo

magnetic field

 D

mass diffusivity coefficient

 Tm

fluid mean temperature

K

chemical reaction coefficient

 KT

thermal diffusion ratio

 q

heat flux

 cp

specific heat

 K *

mean absorption coefficient

 C

stretching and shrinking parameter

 Pr

Prandtl number

 Re

Reynold number

 Du

Dufour number

 Ec

Eckert number

 λ

chemical reaction parameter

 Nr

radiation variable

 Sr

Soret number

 Sc

Schmidt number

ANN-BLMT

backpropagated Levenberg–Marquardt technique

ANN

artificial neural networks

PSO

particle swarm optimization

NNA

neural network algorithm

hybrid  particle  swarm  optimization  and  neural  network

PSO-NNA

algorithm

ANN-PSO-

artificial  neural  network  integrated  with  particle  swarm

NNA

optimization hybrid with neural network algorithm

PINNs

physics-informed neural networks
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8.1 INTRODUCTION

Double  diffusive  convection  (DDC)  occurs  in  existence  of  thermal  and  solutal  density differences.  DDC  has  attracted  the  interest  of  scientists  in  numerous  environmental  and industrial  applications,  including  nuclear  waste  storage,  magma  chambers,  solar  ponds, metal solidification, and star mixing etc. 

In  literature,  there  are  many  studies  on  DDC.  Morega  and  Nishimura  [1]  numerically solved the problem of DDC utilizing Chebyshev collocation method in a square cavity. They analyzed  the  effect  of  buoyancy  ratio  on  the  flow  structure  for  rectangular  closed  space. 

Nishimura et al. [2] studied the numerical solution on oscillatory DDC with the secondary cell  flow  structure  occurring  for  a  certain  range  of  buoyancy  ratio.  They  discussed  the bifurcation  structures  of  the  oscillatory  flow  in  the  considered  system.  Mamou  et  al.  [3]

presented an analytical and numerical study on DDC in a rectangular enclosure. Chamkha

[4]  investigated  the  unsteady  DDC  in  a  porous  cavity  by  finite  difference  method  (FDM). 

Results reveal that average Nusselt (Nu) and Sherwood (Sh) numbers are reduced by heat generation.  Bairi  [5]  used  air-filled  parallelogram-shaped  enclosures  with  discrete isothermal heat sources to investigate the effects of natural convection. He made transient analysis and found that the temporal evolution of the average Nu number at each band of the hot wall is determined for all treated configurations. Entropy generation due to DDC in a closed space with partial vertical heating and salting sources is analyzed by Oueslati et al. [6]  using  the  finite  volume  method  (FVM)  and  a  full  multigrid  technique.  Total  entropy generation and Bejan number were observed to oscillate with the same frequency. Qin et al. [7] made a numerical investigation of DDC in a rectangular closed space with horizontal temperature and concentration gradients. They used compact difference method with full fourth-order  accuracy  and  high  resolution  in  space.  The  influence  of  Prandtl  and  Lewis numbers  on  flow  structure,  the  temperature  and  concentration  distribution  are  studied. 

Geometry  is  important  to  analyze  the  double-diffusive  natural  convection  and  therefore, 

trapezoidal-shaped  enclosure  is  tested  by  Gholizadeh  et  al. [8]  with  a  partially  heated active right sidewall by using the FDM with adaptation of partial differential equation (PDE) technique to generate regular grid distribution. They observed that increment on the Lewis number  causes  improving  the  mass  transfer  performance.  DDC  in  a  rectangular  cavity  is examined  by  Aly  et  al. [9]  utilizing  the  incompressible  smoothed  particle  hydrodynamic (ISPH) method considering Soret and Dufour effects. The increase in Soret with a decrease in  Dufour  number  results  in  an  increment  in  average  Nu  and  a  decrement  in  average  Sh number. Effects of magnetic field on DDC in a square closed space are studied numerically by  Reddy  and  Murugesan  [10]  using  Galerkin’s  weighted  residual  finite  element  method (FEM)  using  velocity-vorticity  formulation.  They  found  that  changing  of  Ha  number  plays important  role  on  both  Nu  number  and  Sh  number  up  to  78%.  Stajnko  et  al. [11]  applied boundary  element  method  to  simulate  3D  DDC  in  a  cubic  porous  encloure.  Their  results report that the rise in absolute value of buoyancy coefficient enhances the overall heat and mass  transfer.  Another  study  on  effects  of  magnetic  field  on  DDC  is  investigated  by Mahapatra  et  al.  [12]  in  which  a  trapezoidal  cavity  filled  with  nanofluids  and  different aspect  ratios  are  chosen.  They  also  tested  the  inclination  angle  of  the  cavity  and  they found that the mass transfer ratio in case of nanofluids is more effective than that of base fluid.  ISPH  method  is  embraced  by  Raizah  et  al.  [13]  for  solving  magnetohydrodynamic DDC in a nanofluid filled square cavity having either an open straight pipe or V-pipe. Their results uncover that more convective flow and intense fluid are obtained in V-shaped pipe. 

Chakkingal et al. [14] performed OpenFoam to simulate 3D DDC in a fluid filled enclosure with  and  without  obstacles.  Their  results  delineate  that  heat  transfer  is  suppressed  by obstacles, and mass transfer is enhanced in the modification of flow and the distribution of concentration  by  cylinders.  Hussain  et  al. [15]  applied  FEM  to  solve  DDC  in  a  staggered cavity filled with Casson fluid considering the effect of an inclined uniform magnetic field. 

They found that the Hartmann number adversely affects the entropy generation. Eshaghi et al. [16] examined DDC in a H-shaped cavity filled with a hybrid nanofluid in the presence of an inclined baffle and with or without corrugations attached to the upper rib. Baffle angle 60 and -60 degree without corrugations result in the highest average Nu and Sh numbers. 

Numerical work of DDC in rectangular cavities with different aspect ratios is tested by Yang and  Zhao  [17]. Yan  et  al. [18]  tested  the  numerical  methods  on  2D  DDC  in  rectangular enclosures based on a high resolution upwind compact stream function model. Alomari et al. [19] performed FEM in order to simulate DDC in a curvilinear cavity involving fins and nanoparticles.  Their  results  reveal  that  the  optimal  mass  transfer  occurs  if  the  buoyancy ratio is at −4. 

As  indicated  above  that  the  geometry  is  the  most  important  parameter  on  DD  natural convection.  In  this  context,  one  of  the  oldest  study  is  found  in  reference  [20]  in  which natural convection flow in a differentially heated parallelogram. Their results demonstrate that the average Nu number is found maximum when the aspect ratio of the parallogram is close to zero. The effects of oblique angle on natural convection is also studied by Baytas and  Pop  [21].  Analysis  of  natural  convection  via  entropy  generation  approach  in  porous rhombic  enclosures  for  various  thermal  aspect  ratios  has  been  performed  by Anandalakshmi  and  Basak  for  heatline  visualization  [22]  and  entropy  generation  for  the

same  geometry  [23].  A  numerical  simulation  of  natural  convection  in  a  parallelogram shaped enclosure containing volumetric heat source with non-uniformly heated side walls has been performed by Hussain et al. [24]. Dutta et al. [25, 26] made a study on effects of rhombic cavity which is filled with nanofluids and under magnetic field. They showed that both  Hartmann  number  and  volume  fraction  of  nanofluids  are  effective  parameters  on natural convection as well as parameters of rhombic geometry. Dutta et al. [27] performed a numerical study to analyze thermofluids and entropy generation for a 2D rhombic closed space having a wavy non-uniformly heated top wall of two different number of undulations. 

It is shown that the values of average Nu number at the top wall are less for undulated top wall,  and  higher  concentration  of  nanoparticles  always  provide  higher  heat  transfer. 

Thermal entropy generation is the dominating factor for lower Rayleigh number. In Ghani et al. [28],  Cu–water  nanofluid  flow  of  natural  convection  is  investigated  in  a  parallelogram having an opening on the right wall and a heat source on the left wall by employing FVM. 

In the last year, artificial intelligence (AI) studies is rapidly integrated into heat transfer problems.  Adaptive  network  based  fuzzy  interface  system  is  used  by  Selimefendigil  and Oztop  [29]  for  average  Nu  number  modeling  in  MHD  forced  convection  flow  problem  of CuO–water  nanofluid  over  circular  cylinders  in  a  channel.  Using  COMSOL  results,  an artificial  neural  network  (ANN)  modeling  for  prediction  of  electric  potential,  temperature and power generation of thermoelectric generator device is performed in [30]. Alizadeh et al. [31]  implemented  multilayer  perceptron  in  Python  for  prediction  of  effective  heat transfer using ANSYS results simulating Cu–water nanofluid under uniform magnetic field. 

Shah  et  al.  [32]  modeled  local  Nu  number  and  entropy  generation  by  ANN  considering radiation  coefficient,  enclosure  angle  and  Rayleigh  number  as  inputs  and  utilizing  data from LBM numerical results. Colak et al. [33] conducted multilayer perceptron NN modeling based  on  Levenberg–Marquardt  (LM)  algorithm  in  a  shell  and  helically  coiled  tube  heat exchanger problem. Hussain et al. [34] concentrated on tree algorithms to model the whole fluid  flow  behavior  in  a  porous  media  involving  NEPCM,  bacteria,  centered  L-shaped adiabatic  baffle  simulating  the  problem  by  FEM.  Shilpa  and  Leela  [35]  modeled  heat  and mass transfer characteristics by ANN based on LM back-propagation algorithm using FDM

numerical  results  on  magnetohydrodynamics  mixed  convective  flow.  Elshehabey  [36]

employed ANN modeling on average Nu and Bejan numbers using FEM numerical data in solution  of  nanofluid  natural  convection  flow  in  an  inclined  cavity  involving  H-shaped obstacle. Shang et al. [37] investigated the multilayer NN modeling of thermal conductivity in a nanofluid flow problem. Shilpa et al. [38] applied FEM for solving mixed convection flow in  a  vertical  annulus  in  the  presence  of  induced  magnetic  field,  and  they  modeled  the average Nu number by ANN based on LM using the numerical results. Tikadar and Kumar

[39]  presented  random  forest,  extreme  gradient  boosting,  support  vector  regressor  and ANN for getting the best surrogate model in multiobjective optimization framework of a pin fin-metal  foam  problem.  Rachedi  et  al.  [40]  also  used  ANN  for  modeling  average  Nu number from numerical results obtained from FVM solution of natural convection flow in a cavity with a constant heat flux along the left vertical wall. 

In  this  study,  double  diffusive  natural  convection  flow  in  a  Fe3O4-water  filled paralellogram  is  numerically  and  statistically  investigated.  In  the  numerical  part,  global

[image: Image 140]

radial basis function (RBF) is implemented with cubic polyharmonic spline RBF and Gauss–

Chebyshev–Lobatto  (GCL)  grid  points.  The  outcomes  in  some  parameter  variations  are presented as well as quantitative results. In statistical part, a dataset is created in different dimensionless  parameter  variations  from  the  numerical  runs.  The  average  Nu  and  the average Sh numbers are modeled by neural networks. To the best of Authors’ knowledge, statistical  modeling  is  firstly  considered  on  a  DDC  problem  in  a  parallelogram-shaped cavity. 

8.2 PROBLEM DEFINITION

The two-dimensional, time-independent double diffusive natural convection flow of Fe3O4-water  nanofluid  is  considered  in  a  parallelogram-shaped  cavity  depicted  in  Figure  8.1  in which  x = 1 bottom length is maintained in inclined walls. The nanofluid is Newtonian and the  flow  is  laminar  and  incompressible.  The  base  fluid  and  nanoparticles  are  in  thermal equilibrium.  The  left  and  the  right  walls  are  the  adiabatic  walls.  The  bottom  wall  is  the heated wall and the top wall is the cold wall. The parallelogram has an inclination angle  θ. 

FIGURE 8.1  Problem configuration. 

Buoyancy  effect  is  included  by  Boussinessq  approximation  due  to  the  temperature  and concentration differences. The viscous dissipation and the radiation impact are neglected. 

Fe3O4 and water’s thermophysical characteristics, are tabulated in Table 8.1. 

TABLE 8.1

Thermophysical

Properties of Water

and Fe3O4 [41]

Property

Water

Fe3O4

 ρ ( kg/ m 3)

997.1

5200

 cp [ J/( kgK)]

4179

670

 k[ W/( mK)]

0.613

6

 β × 10−5 (1/ K)

21

1.3

Based on the single-phase model, physical characteristics of Fe3O4–water nanofluid may be expressed as:

 ρnf = (1 −  ϕ) ρf +  ϕρs, 

(8.1)

( ρcp) = (1 −

, 

 nf

 ϕ)( ρcp) f +  ϕ( ρcp) s

(8.2)

( ρβ) nf = (1 −  ϕ)( ρβ) f +  ϕ( ρβ) s, (8.3)

 k

 α

 nf

 nf =

, 

( ρcp) nf

(8.4)

 μnf =  μf(1 −  ϕ)−2.5, 

(8.5)

 knf

 k

=  s + 2 kf − 2 ϕ( kf −  ks) , 

 kf

 ks + 2 kf +  ϕ( kf −  ks)

(8.6)

where  nf,  f,  s denote the nanofluid, the fluid and the solid, respectively,  ρ is the density,  cp is  the  specific  heat  at  constant  pressure,  β is the thermal expansion coefficient,  α is the thermal  diffusivity,  μ  is  the  dynamic  viscosity  (model  by  Brinkman’s  model  [42]  for  a nanofluid),  k is the thermal conductivity (model by Maxwell’s model [43] for a nanofluid), and  ϕ is the concentration of nanoparticles. 

The dimensional physical equations as a combination of continuity, momentum, energy and concentration equations are

∇ ⋅  u = 0, 

(8.7a)

∂ p

∂ u

∂ u

 νnf∇2 u = 1

+  u

+  v

, 

 ρnf ∂ x

∂ x

∂ y

(8.7b)

1 ∂ p

∂ v

∂ v

 g

 νnf∇2 v =

+  u

+  v

−

(( ρβ

 ρ

 T ) nf ( T −  Tc) + ( ρβS) nf( C −  Cc)), nf ∂ x

∂ x

∂ y

 ρnf

(8.7c)

 αnf ∇2 T = ( u ⋅ ∇) T, 

 αf

(8.7d)

 Dc∇2 C = ( u ⋅ ∇) C, 

(8.7e)

where   u = ⟨ u,  v⟩ is the velocity vector,  T  is the temperature,  p is the pressure,  C is the concentration,  g  is  the  gravitational  acceleration  and   Dc  is  the  diffusivity  coefficient  of concentration. 

In order to get dimensionless equations, the non-dimensional variables are defined by: ( x,  y)

( u,  v) L

 pL 2

 T −  T

 C −  C

( x′,  y′) =

,( u′,  v′) =

,  p′ =

,  T ′ =

 c ,  C′ =

 c . 

 L

 α

 ρnfα 2

 T

 C

 f

 h −  Tc

 h −  Cc

(8.8)

These variables are replaced in dimensional equations and then the prime notations are removed. Once the non-dimensional form of  u −  v −  p −  T −  C equations are obtained, by definition of velocity components in terms of stream function  ψ as  u = ∂ ψ

∂ , 

 y v = − ∂ ψ

∂ x  and

by  applying  the  definition  of  vorticity   ω = ∇ ×  u  to  momentum  equations,  stream function-vorticity form of non-dimensional equations are deduced as follows:

∇2 ψ = − ω, 

(8.9a)

 αnf

∂ T

∂ T

∇2 T =  u

+  v

, 

 αf

∂ x

∂ y

(8.9b)

1 ∇2

∂ C

∂ C

 C =  u

+  v

, 

 Le

∂ x

∂ y

(8.9c)

 ν

∂ ω

∂ ω

( ρβ)

∂ C

 Pr nf ∇2 ω =  u

+  v

−

 nf RaPr ( ∂ T −  N

), 

 ν

 r

 f

∂ x

∂ y

 ρnfβf

∂ x

∂ x

(8.9d)

where the parameters  P r,  Ra,  Le,  Nr are defined by: ν

 gβ

 α

 β

 Pr =  f ,  Ra =

 f ( Th −  Tc) L 3 ,  Le =  f ,  N

 s( Ch −  Cc) . 

 α

 r =

 f

 αfνf

 Dc

 βT ( Th −  Tc)

(8.10)

Boundary conditions may be set down as follows:

 u =  v = 0 =  ψ, 

∂ T = ∂ C = 0  on  0 <  x < cos( θ), 0 ≤  y ≤ sin( θ), 

∂ n

∂ n

(8.11a)

 u =  v = 0 =  ψ, 

∂ T = ∂ C = 0 on 1 <  x < 1 + cos( θ), 0 ≤  y ≤ sin( θ), 

∂ n

∂ n

(8.11b)

 u =  v = 0 =  ψ,  Th =  Ch = 1 on  y = 0, (8.11c)

 u =  v = 0 =  ψ,  Tc =  Cc = 0 on  y = 1. 

(8.11d)

In  order  to  be  able  to  calculate  gradients  along  the  inclined  left  and  right  walls, parametrizations along these walls are firstly done as, 

 r( t) = ⟨ t  cot( θ),  t⟩, 0 ≤  t ≤ sin( θ)

(8.12)

 r( t) = ⟨1 +  t  cot( θ),  t⟩, 0 ≤  t ≤ sin( θ), (8.13)

and then the tangent vectors for both parametrized lines are calculated as

 r′( t) = ⟨cot( θ), 1⟩. 

(8.14)

Thus, rotating the tangent vector along the left wall 90∘ counter clockwise, and the tangent vector along the right wall 90∘ clockwise, normal vectors along the left and right inclined walls are found as

 n = ⟨−1, cot( θ)⟩,  n = ⟨1, − cot( θ)⟩. 

(8.15)

8.3 NUMERICAL AND STATISTICAL APPROACHES

8.3.1 NUMERICAL METHOD

In this part, a short explanation on the numerical approximation process is to be given. The radial basis function (RBF) collocation method on non-uniform GCL grid points is used. 

RBFs  are  formulated  based  on  the  radial  distance   r = √( x −  xj)2 + ( y −  yj)2,  with ( xj,  yj) representing the nodes used in the collocation method, and ( x,  y) denoting the field point  under  consideration.  Within  a  domain   Ω,  this  leads  to  the  creation  of  a  distance matrix  rij that measures the distances between points  xi and  xj. 

An unknown function  φ can be represented as follows

 Nb+ Ni

 φ

∑

 i =

 fijαj,  i = 1, … ,  Nb +  Ni; 

 φ =  Fα, 

¯

¯

 j=1

(8.16)

where  Nb is the total number of boundary nodes,  Ni is the number of interior nodes,  F is the  matrix  constructed  column-wise  from   r 3 ij,  and  with  dimensions  ( Nb +  Ni)2,  α  is  a

¯

vector of unknown coefficients. The calculation of spatial derivatives using this framework is straightforward and can be expressed as

∂ φ = ∂ F F−1 φ =  D

= ∂ F F −1 φ =  D

∂ x

∂ x

 xφ, 

∂ φ

∂ y

∂ y

 yφ, 

(8.17)

∂2 φ

∂2 φ

∂2 F

∇2 φ =

+

= ( ∂2 F +

) F−1 φ= D

∂ x 2

∂ y 2

∂ x 2

∂ y 2

2 φ. 

(8.18)

By  inserting  numerical  approximations  into  Eqn.  (8.9),  an  iterative  system  is  obtained  as follows:

 D 2 ψm+1 = − ωm

(8.19a)

 um+1 =  Dyψm+1,  vm+1 = − Dxψm+1, 

( αnfD

 α

2 −  M) T m+1 = 0, 

 f

(8.19b)

( 1  D

 Le  2 −  M) C m+1 = 0, 

(8.19c)

(  ν

( ρβ)

 Pr nf D

 nf RaPrD

 ν

2 −  M) ωm+1 = −

 x( T m+1 −  NrC m+1), 

 f

 ρnfβf

(8.19d)

where  m is the iteration level, and  M is the matrix  diag( u) Dx +  diag( v) Dy. 

Once  the  stream  function  equation  is  solved,  a  convergence  accelerator  parameter   τ  (

0 <  τ < 1) is used as

 ωm+1 =  τωm+1 + (1 −  τ) ωm. 

∣(8.20)The termination criterion is set as ψn+1− ψn∞ Tn+1− TnCn+1− Cnωn+1− ωn+∞+∞+∞<10−5|| ψn+1||∞|| Tn||∞|| Cn||∞|| ωn||∞(8.21)The used non-uniform GCL nodes are calculated by b+ ab− a−cos( iπ),  i=0,…,  N−1,  x,  y∈[ a,  b].22 N−1(8.22)In the current problem,  x∈[0,1],  y∈[0,sin( θ)].The average Nu number and the average Sh numbers, respectively, along the bottomheated wall are calculated by the formula k∂ T∂ CNu=− nf∫1 dx,  Sh=−∫1 dx.¯¯ kf 0∂ y 0∂ y(8.23)In numerical approximation of  Nu and  Sh along the bottom heated wall, Simpson’s rule

¯

¯

on non-uniform grids [44] is used. 

8.3.2 MACHINE LEARNING MODELING TECHNIQUES

In this section, two machine learning (ML) processes will be briefly explained. One of them is  very  popular  one  known  as  (artificial)  neural  networks,  and  the  other  one  is  the multivariate adaptive regression splines (Mars). 

The  metric  to  measure  the  goodness  of  fit  of  any  model  is  determined  by  the  mean squared error (MSE) defined by

 Nd

∑( yi−ˆ yi)2

 MSE =  i=1

, 

 Nd

(8.24)

where  Nd is the data size,  yi is the actual data and ˆ yi is the predicted data. 
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8.3.2.1 Neural Networks

The  information  in  a  multilayer  feedforward  NN  flows  from  left  to  right  between  the  first (input) layer and the last (output) layer passing through the hidden layers. 

An  example  demonstration  in  case  of  three  layer  neural  network  is  displayed  in  Figure

8.2. 

In 

input 

layer, 

 xi  denote  the  inputs  in  our  problem,  namely

 x 1 =  Ra,  x 2 =  Le,  x 3 =  Nr,  x 4 =  ϕ,  x 5 =  θ.  Hidden  layers  are  presented  by  layer  size  5

as  an  example  on  this  configuration.  In  output  layer,  two  outputs  are  illustrated  in  which zo

¯

¯

1 =  Nu and  zo 2 =  Sh. 

FIGURE 8.2  Trilayer neural network (TNN) example. 

The  mathematical  expressions  between  layers  to  get  one  output   zo 1  using  the  inputs x 1,  x 2,  x 3,  x 4,  x 5 may be written as follows: ( 5

)

 y(1) =

∑

, 

 k

 f

 W (1)

 ki xi +  bk

 i=1

(8.25a)

( Ls

)

 y(2) =

∑

+

, 

 k

 f

 W (2)

 kj y(1)

 k

 bk

 j=1

(8.25b)

( Ls

)

 y(3) =

∑

+

, 

 k

 f

 W (3)

 kj y(2)

 k

 bk

 j=1

(8.25c)

( Ls

)

 z( o)

∑

1 =  f

 W (4)

1

+

, 

 k y(3)

 k

 b

 k=1

(8.25d)

where  k = 1, … ,  Ls,  Ls is the layer size.  W is the weight matrix,  b is bias vector and  f is the  activation  function  which  is  chosen  as  rectified  linear  unit   f( x) = max( x, 0)  in  the current study. In the last equation, the bias  b is a number (1 × 1). The matrix  W and the bias  vector  are  initialized  randomly  and  updated  based  on  an  optimization  algorithm minimizing the residual. 

The dataset is obtained by performing numerical method in distinct combinations of  xi’s, and the computed results for  zo 1 and  zo 2 build the dataset with inputs. NN model is created by training a train data, and tested on a test data. Therefore, the first big data at hand is separated into train and test data. 

8.3.2.2 Multivariate Adaptive Regression Splines

Mars calculates a function  f which is defined as:

 Mb

 f = ∑ ˜ CiBi, 

 i=1

(8.26)

in which the basis functions are denoted by  Bi, the number of basis functions by  Mb, and the unknown coefficients by  ˜

 Ci. 

The piecewise continuous functions that define the basis functions  Bi are as follows

˜ z

 h[−( x − ˜ z

 i −  x

 if ˜ zi >  x

 i)] = (

, 

0

otherwise

 x − ˜ z

 h[+( x − ˜ z

 i

 if x > ˜ zi

 i)] = (

, 

0

otherwise

(8.27)

˜ zi’s are called as knots from the dataset. 

There  are  two  stages  to  Mars’  processing.  The  first  stage  is  called  the  forward  stage, during which an algorithm based on fast search creates an overfitted model and adds basis functions  to  it.  The  lowest  generalized  cross  validation  is  obtained  at  this  stage  by determining  a  collection  of  basis  functions.  Until  the  predetermined  maximum  number  of

basis  functions  is  achieved,  activities  are  halted.  The  overfitted  model  developed  in  the forward  stage  is  trimmed  in  the  second  stage,  known  as  the  backward  stage.  An  ideal model is created at the conclusion of these phases. 

This model function is configured as Friedman explains [45]

 Nc (  N in

 I + ∑ ˜ C ∏

 i

 sign( h(( Input( j) − ˜

 K) × ˜

 D), ˜

 D)), 

i=1

 j=1

(8.28)

where  ±1  indicates  the  right  or  left  direction  of  the  corresponding  basis  function,  N in denotes the number of inputs,  Nc denotes the number of coefficients,  K denotes the cuts (knots) which are the associated values in the  j th input, and  I = ˜

 C 0, the intercept, is the

first entry of  ˜

 C with  ˜

 D = 0 and  ˜

 K = 0. 

The functions  h and  sign are identified by

1  if ˜

 D = 0

 h( x) = max( x, 0), 

 sign( x, ˜

 D) = (

. 

 x if ˜

 D ≠ 0

(8.29)

8.4 NUMERICAL AND STATISTICAL CALCULATIONS

In this section, numerical and statistical observations are dictated. In-house codes and all computations are carried in MacOS computers using MATLAB R2024a. 

8.4.1 VALIDATION AND GRID INDEPENDENCY

The  current  numerical  approach,  global  RBF  method,  is  validated  on  a  benchmark  study presented  by  Quertatani  et  al.  [46]  in  which  FVM  combined  with  multigrid  technique  is applied.  Furthermore,  2562  number  of  fine  grids  are  used  in  that  reference.  In  Table  8.2, Nu values along the heated wall are compared. As is noted, global RBF with GCL grids and

¯

 f =  r 3 capture the good agreement with Ref.’s results using smaller number of grid points. 

TABLE 8.2

 Nu Comparison when

¯

 Ha = 0,  γ = 0

 Ra

Present ( N,  τ)

Ref. [46]

103

0.9999 (31, 0.01)

1.0004

104

2.1546 (37, 0.0075)

2.1581

105

3.9020 (37, 0.0075)

3.9103
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In  Table  8.3, the  current  numerical  approach  is  also  affirmed  by  a  DDC  flow  problem presented  by  Qin  et  al. [7]  in  which  a  fourth-order  accurate  FDM  is  used.  In  that  study, rectangular  cavity  has  height  2.  The  present  results  using  GCL  nodes  and   f =  r 3  are  in good agreement with the results in Ref. [7]. 

TABLE 8.3

 Nu and  Sh Comparisons

¯

¯

Keeping

 Pe = 0.71,  Nr = 0.8,  Ra= 105

Present

Ref. [7]

 Le

 Nu

 Sh

 Nu

 Sh

¯

¯

¯

¯

0.5

2.1638

1.5358

2.204

1.564

1

2.8277

2.8277

2.834

2.834

2

3.3145

4.2821

3.310

4.244

4

3.5140

5.8022

3.511

5.696

In the present investigation, an example GCL node distribution is displayed in Figure 8.3

fixing  the  angle   θ  at  45∘. Table 8.4 appraises the grid independence.  41 × 41 number of GCL grid points are performed at all calculations. 

FIGURE 8.3  A demonstration of GCL grid distribution at  θ= 45∘. 

TABLE 8.4

Grid Independence Analysis with

 Ra= 105,  Le = 1,  Nr = 0.5,  θ= 45∘,  ϕ = 0.04

 N

| ψ|

¯

¯

max

 Nu

 Sh

29

10.59

2.7650

2.6305
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 N

| ψ|

¯

¯

max

 Nu

 Sh

33

10.59

2.8253

2.6872

37

10.59

2.8705

2.7296

41

10.59

2.9054

2.7623

45

10.59

2.9331

2.7883

8.4.2 SOME NUMERICAL RESULTS

In numerical simulations, Prandtl number is fixed at 6.8. Nanoparticle concentration is also hold  at   ϕ = 0.04  unless  otherwise  declared.  The  other  parameters  range  in 102 ≤  Ra ≤ 105,  − 5 ≤  Nr ≤ 5, 1 ≤  Le ≤ 10, 30∘ ≤  θ ≤ 90∘.  The  visualized  contours are  displayed  by  streamlines   ψ,  isotherms   T ,  isoconcentration  lines   C  and  vorticity contours  ω. 

In 

Figure 

8.4, 

the 

variation 

in 

 Ra  number  is  examined  keeping

 Nr = 0.5,  Le = 1,  θ = 45∘. In streamlines, fluid flows faster as  Ra rises due to the rise in buoyancy  force.  Thermal  and  solutal  boundary  layers  along  the  heated  bottom  wall  are pronounced  at   Ra = 105  due  to  the  rise  in  buoyancy  force. Table  8.5  verifies  these outcomes.  As   Ra  increases,  absolute  stream  function  rises,  Nu  and   Sh  grow  at  186.7 %

¯

¯

and 197.7 %, respectively. 

FIGURE 8.4  Rayleigh number variation when  Nr = 0.5,  Le = 1,  θ = 45∘. 

TABLE 8.5

 Nu and  Sh Behavior in

¯

¯

Case of  Ra Variation

 Ra

| ψ|

¯

¯

max

 Nu

 Sh

102

0.0083

1.0135

0.9279
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 Ra

| ψ|

¯

¯

max

 Nu

 Sh

103

0.0870

1.0123

0.9267

104

1.4231

1.1251

1.0519

105

10.5870

2.9054

2.7623

In  Figure  8.5, the  alteration  in  buoyancy  ratio  parameter  is  inspected  holding Ra= 105,  Le = 1,  θ= 45∘. The central values at primary cells in streamlines point to the decrease  in  fluid  flow  with  the  increase  in   Nr  from  −5  to  5.  Convective  behavior  in isotherms and isoconcentration lines at  Nr = −5 turns into conductive behavior at  Nr = 5

. Table 8.6 demonstrates the crucial drop in fluid velocity at a larger  N

¯

¯

 r value.  Nu and  Sh

decreases 76.8 % and 76.8 %, respectively, as  Nr increments. 

FIGURE 8.5   Nr variation when  Ra = 105,  Le = 1,  θ = 45∘. 

TABLE 8.6

 Nu and  Sh Behavior in

¯

¯

Case of  Nr Variation

 N

¯

¯

 r

| ψ|max

 Nu

 Sh

−5

28.9345

5.4359

5.1549

0.1

13.5480

3.4272

3.2541

0.5

10.5870

2.9054

2.7623

5

1.1267

1.2630

1.1953

In 

Figure 

8.6, 

the 

change 

in 

Lewis 

number 

is 

tested 

carrying

 Ra = 105,  Nr = 0.5,  θ = 45∘.  As  expected   Le  variation  affects  significantly isoconcentration lines. Strong circulation in isoconcentration lines occurs. Table 8.7 upholds
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the  significant  rise  in  convective  mass  transfer  if   Le  is  increased  from  1  to  10  which increases 150.8 %. The convective heat transfer rises 12.9 % with the augmentation in  Le. 

FIGURE 8.6   Le variation when  Ra = 105,  Nr = 0.5,  θ = 45∘. 

TABLE 8.7

 Nu and  Sh Behavior in

¯

¯

Case of  Le Variation

 Le

| ψ|

¯

¯

max

 Nu

 Sh

1

10.5870

2.9054

2.7623

3

13.0276

3.1263

4.3872

6

13.4198

3.2234

5.7215

10

13.6154

3.2802

6.9290

In Figure 8.7, the distinct angles are controlled fixing  Ra = 105,  Nr = 0.5,  Le = 1. Due to increasing of volume of the closed space, domination of convection is also increased and wavy shaped isotherms are observed. Concentration and isotherms are very similar to each other.  Cat  eye  shaped  vorticity  is  found  for  the  highest  value  of  inclination  angle  of  the closed space. Flow strength is increased with increasing of inclination angle, too. Obviously, fluid  flows  very  fast  at   θ = 90∘.  The  thermal  boundary  layer  as  well  as  solutal  boundary layer along the bottom wall is pronounced as  θ varies from  θ = 30∘ to  θ = 90∘. Table 8.8

conducts  the  effect  of  the  rise  in   θ as quantitative results.  Nu and  Sh surge 63.2 % and

¯

¯

60.8 %, respectively. 
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FIGURE 8.7   θ variation when  Ra= 105,  Nr = 0.5,  Le = 1. 

TABLE 8.8

 Nu and  Sh Behavior in

¯

¯

Case of  θ Variation

 θ

| ψ|

¯

¯

max

 Nu

 Sh

30∘

5.9926

2.1041

2.0195

45∘

10.5870

2.9054

2.7623

60∘

14.3151

3.1644

3.0004

90∘

17.9162

3.4337

3.2481

8.5 ML MODELING ON  NU AND  SH

¯

¯

The data is collected from numerical calculations. The distinct parameter combinations are set 

firstly 

considering

 Ra(100, 500, 1000, 2500,  5000,  7500,  104,  25000,  50000,  75000,  105),  Le(1,  5,  10),  N

and   θ(30∘,  45∘,  60∘,  90∘)  as  inputs.  With  these  inputs,  the  numerical  computations  are utilized  for  getting   Nu  and   Sh  numbers  along  the  heated  bottom  wall.  The   convergent

¯

¯

numerical  outcomes  construct  the  dataset.  A  mixed  data  of  size  3353  is  created.  The random division of this dataset into train (80%) and test (20%) sets is done by syntax cvpartition(length(dataset), ‘Holdout’,0.2), 

which gives the train data of size 2683 × 7, and the test data of size 670 × 7. 

8.5.1 NN MODELING

Since  the  division  is  random,  considering  10  different  random  divisions,  model  resulting with  smallest  MSE  results  for  getting  output   zo 1  is  saved,  and  the  corresponding  divided

data is used for training the second model for  zo 2. The syntax for neural network modeling is as follows:

models = fitrnet(trainn(:,1:5), trainn(:,colno), ‘LayerSizes’,Ls, …

‘Activations’, ‘relu’, ‘Lambda’, 0, …

‘IterationLimit’, 1000, ‘Standardize’, true), 

where  the  true  standardization  means  the  normalization  is  carried  out  in  input  data,  and colno stands for the column number of output to be modeled. 

Table 8.9 conducts MSE results on train and test data in different layer sizes. The layer size involving two elements and three elements is referred to bilayer and TNN, respectively. 

As is noted that from one layer to three layers, MSE results on train data get smaller and smaller. MSE on test data is also found smaller in TNN than the other ones. The good fit in case  of  TNN  with   Ls = 100,100,100  is  also  depicted  in  Figure  8.8.  The  black  dots  lying around perfect prediction and small residual values confirm the good fit. 

TABLE 8.9

Train and Test MSE Results

MSE

Layer Size

Output

Train

Test

50

 Nu

0.0122

0.0146

¯

 Sh

0.0652

0.0844

¯

50,50

 Nu

0.0024

0.0025

¯

 Sh

0.0049

0.0112

¯

50,50,50

 Nu

0.0015

0.0022

¯

 Sh

0.0048

0.0084

¯

100,100,100

 Nu

0.0010

0.0021

¯

 Sh

0.0039

0.0097

¯
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FIGURE 8.8  TNN modeling on test data with  Ls = 100,100,100. 

8.5.2 MARS MODELING

In this modeling, the dataset used in TNN modeling with layer size 100 is employed. The model is figured out in R-Project using the module earth, and the syntax is:

model=earth(trainData[,1:5],trainData[,colout],nk=1000,degree=5, 

nprune=1000,thresh=1e-11,fast.k=100,penalty=-1,trace=2). 

In  this  syntax,  colout  corresponds  to  the  output  column,  nk  is  the  optimal  number  of model  terms  created  by  forward  pass,  nprune  is  the  optimal  number  of  terms  in  the pruned model,  degree is the maximum number of interacting input variables,  thresh is the threshold  used  in  forward  stepping.  fast.k  is  the  optimal  number  of  parent  terms  used  in the  forward  step.  penalty=-1  calculates  the  generalized  cross  validation  as  MSE.  trace=2

enables us to follow the iterations. It is observed that smaller  nk,  nprune,  fast.  k gives fast results  while  the  larger  ones  result  in  slower  iterations.  However,  particularly,  the  larger nk,  nprune make the MSE results better. 

In  Table  8.10, MSE  metric  results  on  train  and  test  data  are  addressed.  As  noted  the trained  model  with  Mars  is  as  good  as  TNN,  but  is  not  good  at  on  test  data  as  TNN.  This means that more data is necessary for getting better predictions on unseen data. However, the model function is always the same whenever the model is rerun on the same data. 

TABLE 8.10

MSE Results on

Train and Test Data

in Mars Modeling

Output

Train

Test

 Nu

0.00062

0.0044

¯

 Sh

0.00559

0.0168

¯

8.6 CONCLUSION

In  this  chapter,  double  diffusive  natural  convection  flow  of  Fe3O4–water  nanofluid  is numerically  and  statistically  investigated  inside  a  parallelogram-shaped  enclosure.  The differentially heated and concentrated cavity has insulated adiabatic inclined walls, the hot bottom wall, and the cold top wall. The numerical process is achieved by global radial basis function method based on cubic spline polyharmonic splines carrying GCL grids. A dataset from the numerical calculations in distinct problem parameter variations is also created for analyzing the machine learning modeling on average Nu and Sh numbers.  Nu and  Sh are

¯

¯

increasing functions of  Ra,  Le,  θ, but are decreasing with the rise in  N

¯

 r. For predicting  Nu, 

the trained model results in smaller MSE on test data in both TNN and Mars modeling. TNN

gives  better  predictions  than  Mars  on  test  data  in  view  of  smaller  MSE  metric  results obtained for both  Nu and  Sh. 

¯

¯
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