

[image: Image 1]

[image: Image 2]

[image: Image 3]

[image: Image 4]

Although every effort has been made to ensure that website addresses are correct at time of going to press, Hodder

Education cannot be held responsible for the content of any website mentioned in this book. It is sometimes possible to find a relocated web page by typing in the address of the

home page for a website in the URL window of your browser.

Hachette UK’s policy is to use papers that are natural,

renewable and recyclable products and made from wood

grown in well-managed forests and other controlled sources.

The logging and manufacturing processes are expected to

conform to the environmental regulations of the country of origin.

To order, please visit www.HachetteLearning.com or contact

Customer Service at education@hachette.co.uk / +44

(0)1235 827827.

ISBN: 978 1 0360 0900 7

eISBN: 978 1 0360 0884 0

© Paul Baumgarten, Ioana Ganea, Carl Turland 2025

First published in 2025 by Hachette Learning,

An Hachette UK Company

Carmelite House

50 Victoria Embankment

London EC4Y 0DZ

www.HachetteLearning.com

Impression number 10 9 8 7 6 5 4 3 2 1

Year 2029 2028 2027 2026 2025

All rights reserved. Apart from any use permitted under UK

copyright law, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying and recording, or held

within any information storage and retrieval system, without

[image: Image 5]

permission in writing from the publisher or under licence

from the Copyright Licensing Agency Limited. Further details of such licences (for reprographic reproduction) may be

obtained from the Copyright Licensing Agency Limited,

www.cla.co.uk

Cover photo © sdecoret - stock.adobe.com

Typeset in ITC Berkeley Oldstyle Std 10/14pt by DC Graphic Design Limited, Hextable, Kent

Printed and Bound in Great Britain by Bell & Bain Ltd, Glasgow

A catalogue record for this title is available from the British Library.

Contents

Introduction

How to use this book

About the authors

A CONCEPTS OF COMPUTER SCIENCE

A1 Computer fundamentals

A1.1 Computer hardware and operation

A1.2 Data representation and computer logic

A1.3 Operating systems and control systems

A1.4 Translation

A2 Networks

A2.1 Network fundamentals

A2.2 Network architecture

A2.3 Data transmissions

A2.4 Network security

A3 Databases

A3.1 Database fundamentals

A3.2 Database design

A3.3 Database programming

A3.4 Alternative databases and data warehouses

A4 Machine learning

A4.1 Machine learning fundamentals

A4.2 Data preprocessing

A4.3 Machine learning approaches

A4.4 Ethical considerations

B COMPUTATIONAL THINKING AND PROBLEM

SOLVING

B1 Computational thinking

B1.1 Approaches to computational thinking

B2 Programming

B2.1 Programming fundamentals (part 1)

B2.3 Programming constructs

B2.1 Programming fundamentals (part 2)

B2.2 Data structures

B2.4 Programming algorithms

B2.5 File processing

B3 Object-oriented programming (OOP)

B3.1 Fundamentals of OOP for a single class

B3.2 Fundamentals of OOP for multiple classes

B4 Abstract data types (ADTs)

B4.1 Fundamentals of abstract data types

CASE STUDY

INTERNAL ASSESSMENT

Acknowledgements

Glossary

Index

[image: Image 6]

Introduction

Welcome to Computer Science for the IB Diploma, written to meet the criteria of the new International Baccalaureate (IB) Diploma Programme Computer science guide (published 2025, first exams May 2027). This text addresses the full

scope of the syllabus, both the Standard Level and Higher

Level components, and caters for both the Python and Java

programming language options.

It has been said that computer science is a modern-day

superpower, and rightly so. It has a profound impact on

society and has driven much of the transformational change we have experienced in recent years. It has advanced fields as diverse as agriculture, finance, manufacturing, health

and medicine, transportation, education and global

communications. Contemporary living has been forever

altered thanks to changes enabled by advances in

computing. This impact will only continue to grow

exponentially in the years ahead, and the opportunities are limited only by your imagination.

We hope you are excited about the journey ahead and ready

to embrace the challenges and opportunities it brings!

The “In collaboration with IB” logo signifies that the content of this book has been reviewed by the IB to ensure it fully aligns with the current IB curriculum and offers high-quality guidance and support for IB teaching and learning.

How to use this book

The following features of this book will help you consolidate and develop your understanding of Computer Science,

through concept-based learning:

 These are key prompts from the IBDP Computer science

 guide that frame each section with the purpose of

 promoting inquiry.

SYLLABUS CONTENT

• This coursebook follows the order of the contents of the IB Computer Science Diploma syllabus, with two

exceptions.

• B2.3 is inserted between B2.1 part 1 and B2.1 part 2.

This allows us to introduce the programming

fundamentals of selection, loops and functions before

B2.2, which introduces data structures. B2.2 would have been far more theoretical and abstract if we sought to

introduce data structures prior to concepts such as if-

statements and loops.

• B3.1.3 appears after B3.1.5. This allows us to introduce the idea of static methods and properties after learning

how to write code that implements objects.

In both cases, we felt a small reordering created a better flow and provided for a more practical teaching and

learning sequence. The alternative would have resulted in

attempting to teach programming ideas before

introducing the concepts on which they depend.

• At the beginning of each chapter is a list of the content to be covered, with all subsections clearly linked to the

content statements, and showing the breadth and depth

of understanding required.

Key information

These boxes highlight essential knowledge needed for the

examination.

ACTIVITY

Approaches to learning (ATL), including learning through

inquiry, are integral to IB pedagogy. These activities are

designed to get you to think about real-world applications of Computer Science.

Definitions appear throughout in the margin to provide

context and help you understand the language of

Computer Science. There is also a glossary of all the key

terms at the end of the book.

Common mistake

These boxes detail some common misunderstandings and

typical errors made by students, so that you can avoid

making the same mistakes yourself.

Top tip!

This feature includes advice relating to the content being discussed and tips to help you retain the knowledge you

need. These boxes also include advice on how to approach

various common programming scenarios – whether in

programming code or in written form, such as in the

exams.

TOK

Links to Theory of Knowledge allow you to develop your

critical-thinking skills and deepen your understanding of

Computer Science by bringing in discussions about the

subject beyond the scope of the content of the curriculum.

Linking questions

Each section has a set of linking questions that connect to other parts of the syllabus or TOK. They are designed to

facilitate connections and promote conceptual

understanding. The list in this coursebook is not

exhaustive; you may encounter other connections between concepts, leading you to create your own linking questions.

REVIEW QUESTIONS

Self-assessment questions appear throughout the chapters,

phrased to assist comprehension and recall.

PROGRAMMING EXERCISES

Programming exercises appear at the end of chapters.

Their purpose is to provide practical, hands-on experience in applying the concepts and principles of Computer

Science to a programmed solution. Being able to solve

exercises so they work on the computer will be essential to gaining the confidence needed to solve similar problems in exam settings, when you only have paper and pen to work

with.

Finally, these programming exercises will help build your

expertise for the internal assessment.

Sample answers to the programming exercises in Sections

B2 and B3 can be found at

www.hachettelearning.com/answers-and-extras

EXAM PRACTICE QUESTIONS

Author-written exam-style questions appear at the end of

each section. These simulate scenario-based questions of

the breadth and depth that can be anticipated in your

examinations. They are intended to serve as a revision and preparation tool to assist you in identifying areas of

strength and weakness, as well as to refine your problem-

solving skills.

It is recommended that you use these practice questions

under exam conditions to make the most of them. Each

[image: Image 7]

[image: Image 8]

question has a marks allocation, which also approximates

the number of minutes it should take for you to complete.

Once you have completed a batch, check the answers

while the material is fresh (answers can be found at

www.hachettelearning.com/answers-and-extras). Create a log of recurring mistakes for you to review and practise

further.

For the programming questions, do make sure you take the

time to practise hand-writing your responses. Typing code

on the computer is very different from hand-writing it, so you want to have plenty of practice at hand-writing code

before your IB examinations. Pay particular attention to

consistency of spelling; use of upper and lowercase; and

clear lines of indentation.

International mindedness is indicated by this icon. It

explores how the exchange of information and ideas across

national boundaries has been essential to the progress of

Computer Science and illustrates the international aspects of the subject.

The IB learner profile icon indicates material that is

particularly useful to help you towards developing the

following attributes: to be inquirers, knowledgeable,

thinkers, communicators, principled, open-minded, caring,

risk-takers, balanced and reflective. When you see the icon, think about what learner profile attribute you might be

demonstrating – it could be more than one.

About the authors

Paul Baumgarten

Paul is a Computer Science teacher who has had a life-long fascination with all things geeky. He started tinkering with electronics at age 8 and has been programming since 13,

when he taught himself BASIC. Holding a BSc (Computer

Science) from Edith Cowan University and a Graduate

Diploma in Education from University of Western Australia, he has been teaching Computing since 2006. He moved to

Switzerland in 2015, where he began teaching the

International Baccalaureate Diploma programme, and is

currently teaching in Hong Kong. Passionate about

promoting diversity in the tech field, he is committed to

increasing representation of women and minorities in

Computer Science, believing that societal advances through technology are only truly possible when the contributions

and perspectives of everyone are included. Beyond

teaching, he is an avid science-fiction reader and

enthusiast, particularly relating to space and time travel. He is also the founder of CodingQuest.io, an annual online

programming competition for secondary Computer Science

students globally.

Ioana Ganea

Ioana Ganea is an experienced educator, having taught

Computer Science for over 15 years in different

international environments, such as Romania, Germany, the

United Kingdom, Egypt and Luxembourg. Her passion for

Computer Science started at the age of 11 when her father

purchased her very first device and encouraged her to explore both hardware and software concepts without

thinking that something can go wrong, as a computer can

always be replaced. She graduated from the Academy of

Economic Studies in Bucharest, Romania, with a bachelor’s

degree in Economic Cybernetics, Statistics and Informatics, specializing in Economic Informatics, and she obtained a

master’s degree in Civil Engineering from the Technical

University of Civil Engineering of Bucharest (Computer

Assisted Technologies – Department of Teacher Training).

She is an experienced examiner, moderator and team

leader for various exam boards, and she has collaborated

with Oxford Study Courses, offering Computer Science

revision courses for IB DP Computer Science, both Standard Level and Higher Level. As an educator, she strives to raise each student’s potential and encourage them to believe in

themselves. She enjoys teaching students to apply their

knowledge, so they can face the challenges of life with

confidence, integrity, compassion, creativity and love of

peace.

Carl Turland

Originally from Chessington in the United Kingdom, Carl has spent much of his career abroad, teaching in Indonesia,

Thailand and Switzerland. He began his professional journey as a programmer for Sky Television in the UK, and now

serves as the Head of Design and Computer Science at the

International School of Lausanne. Carl holds an HND in

Computer Science from Nottingham Trent University, and

earned a BA (Hons) in Information Communication

Technology with QTS from Brighton University. He was one

of the pioneering teachers of the reintroduced Computer

Science curriculum in the UK in 2016 and, during that time, helped establish his school as a UK lead in the subject, while contributing to the Compute-IT series (Hodder Education).

He later moved abroad to help establish Computer Science programmes at several schools, before joining the

International School of Lausanne, where he is now in his

sixth year. Carl continues to innovate within the curriculum, expanding into robotics. Outside of the classroom, he is

passionate about running, travelling, spending quality time with his wife and young daughter, and cheering on his

beloved Crystal Palace football team from the comfort of his sofa.

[image: Image 9]

A1 Computer

fundamentals

A1.1 Computer hardware

and operation

 What principles underpin the operation of a computer, from low-level hardware functionality to operating systems’

 interaction?

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

• A1.1.1 Describe the function and interaction of the main central processing unit (CPU) components

• A1.1.2 Describe the role of a graphics processing unit (GPU)

• A1.1.3 Explain the difference between the CPU and the GPU

(HL)

• A1.1.4 Explain the purposes of different primary memory types

• A1.1.5 Describe the fetch, decode and execute cycle

• A1.1.6 Describe the process of pipelining in multi-core architectures (HL)

• A1.1.7 Describe the internal and external types of secondary memory storage

• A1.1.8 Describe the concept of compression

• A1.1.9 Describe the different types of services in cloud implementation

A1.1.1 Function and interaction

of the main central processing

unit components

[image: Image 10]

[image: Image 11]

A central processing unit (CPU) from above and underneath

What is the central processing

unit?

The central processing unit (CPU) is often referred to as the

“brain” of the computer. It is a critical component that carries out the majority of the processing inside a device.

The CPU is made up of two main units: the control unit (CU) and the arithmetic logic unit (ALU).

A model of the CPU

Control unit (CU)

The control unit directs the operations of the processor. It is responsible for the fetch–decode–execute cycle, managing all three operations and directing the computer’s memory, ALU and input/output devices to respond appropriately.

Arithmetic logic lnit (ALU)

This unit is responsible for performing arithmetic and logic operations. These include basic arithmetic operations such as addition, subtraction, multiplication and division, as well as logic operations including AND, OR, XOR and NOT.

What are registers?

Registers are very small amounts of storage that are available directly on the CPU to hold temporary data that the CPU may be working on. The registers are instruction register (IR), program counter (PC), memory address register (MAR), memory data

register (MDR) and accumulator (AC).

Instruction register

When an instruction is fetched from memory, it is held in the IR

within the CPU. This register holds the instruction that is currently being executed by the CPU.

Program counter

The PC holds the address of the next instruction that is to be fetched from memory. Once the instruction has been fetched, the PC updates to point to the next instruction that will be needed.

Memory address register

The MAR holds the memory address that is currently being

fetched. The content from the PC is copied to the MAR, and the MAR provides this address to the memory unit, so that data and instructions can be read from or copied to that location.

Memory data register

This holds the data that has been fetched or is about to be written to the memory address currently in the MAR.

Accumulator (AC)

This stores the intermediate arithmetic or logical results produced by the ALU.

What are buses?

Buses are a critical component of the computer system, as they transfer data between various devices, including the CPU,

memory, storage and peripherals. Buses have widths that are measured in bits. The bigger the width of the bus, the more data it can transmit at one time. There are three main types of buses: control bus, data bus and address bus.

Control bus

The control bus is used to transmit command and control signals from the CPU to other components of the system, and vice

versa. Due to the need for signals to be sent and received, this bus is bidirectional. Some of the signals that would be transmitted via the control bus are read / write operations, interrupt requests, clock signals for synchronization and status signals from hardware components.

Bidirectional bus: a bus that can transfer data in both directions.

Data bus

The data bus carries the data being processed between the CPU, memory and other peripherals. The width of the data bus is important for determining the amount of data it can transfer at one time. Common data bus widths are 8, 16, 32 and 64 bits. As data needs to be read from and written to memory, data buses are usually bidirectional.

Address bus

The address bus is used to transmit the address that is to be read from or written to in memory. The width of this bus

determines the memory capacity of the system. For example, a 32-bit address bus can address 232 memory locations.

What are cores?

CPUs come in a number of different configurations. These

include single-core processors, multi-core processors and co-processors.

Single-core processors

This CPU has a single processing unit, meaning it can only handle one task at a time. These are more often found in low-end computers or older machines. They are adequate for simple tasks that do not require heavy multitasking. Single-core

processors are able to run more than a single application at a time, but the CPU has to be shared between these applications, which can impact performance.

Multi-core processors

A CPU with multi-core processors has two or more cores that can run multiple instructions simultaneously. These are often

referred to as dual-core (two processors), quad-core (four processors), hexa-core (six) or octa-core (eight). Their

performance is significantly faster than single-core processors and they are ideal for multitasking, gaming and servers.

However, software has to be written to take advantage of these extra cores. Older software that does not do this would likely run at a similar speed as on a single-core processor.

Co-processors

A co-processor is a special type of processor that has a specific job to support the main CPU. These are built with a distinct purpose to achieve optimal performance compared to a general-

purpose CPU. Tasks are offloaded by the CPU to the co-processor so they can run in parallel, enhancing the system’s performance.

Examples of co-processors are graphics processing units

(covered in Section A1.1.2), audio processors and digital signal processors (DSPs), which are used in telecommunications and image compression.

Common mistake

A common mistake is thinking that adding more cores to a CPU

always makes it faster in a straightforward way – like assuming a dual-core CPU is twice as fast as a single-core, or a quad-core is four times faster. This isn’t always true, because the speed increase depends on how well the software can use multiple cores at the same time. Many programs aren’t designed to take full advantage of multiple cores, so the extra cores may not make a noticeable difference. Other factors, such as memory speed and how the CPU is designed, also affect how fast it can run. So, just having more cores doesn’t automatically mean much faster processing.

REVIEW QUESTIONS

1 What is the primary function of the arithmetic logic unit (ALU) in a computer’s CPU?

2 How does the control unit (CU) direct the operations of the CPU?

3 Why is the program counter (PC) important for executing a sequence of instructions?

4 What roles do the data bus and address bus play in the functioning of the CPU?

5 How does the memory address register (MAR) work in conjunction with other CPU components to access memory?

6 How do multi-core processors differ from single-core processors in handling tasks?

[image: Image 12]

A1.1.2 Role of a graphics

processing unit

A graphics processing unit (GPU) is a specialized electronic circuit designed to accelerate the rendering of images, videos and animations by performing rapid mathematical calculations.

Initially developed to handle the demanding graphics workloads of video games and visual applications, GPUs have evolved to play a crucial role in various fields beyond graphics rendering.

Their structure, consisting of thousands of small, efficient cores, allows them to process multiple tasks simultaneously, making them exceptionally well-suited for computationally intensive applications. This capability has led to their widespread adoption in scientific research, machine learning, artificial intelligence and cryptocurrency mining. By offloading these intensive tasks from the CPU, GPUs enhance overall system performance, enabling faster and more efficient data processing and visualization.

A graphics processing unit (GPU)

Graphics processing

[image: Image 13]

Video game graphics

GPUs are designed with a highly parallel structure, enabling them to perform many calculations simultaneously. This makes them exceptionally well-suited for rendering the complex and resource-intensive graphics seen in modern video games and applications. They also handle the application of shaders and textures to 3D models, which includes lighting, shading and texture mapping, enhancing the realism of the scene.

Shaders and textures: techniques used in 3D rendering to apply effects, lighting and details to models.

Parallel processing: the ability of the GPU to perform many calculations simultaneously due to its highly parallel structure.

Matrix and vector multiplications: fundamental operations in machine learning and graphics that involve complex

mathematical calculations.

Video processing

GPUs assist in the decoding and encoding of video files, making processes such as playback, streaming and editing more

efficient and faster. This is particularly helpful for those working with high-resolution video files of 4k or higher.

Artificial intelligence and machine

learning

GPUs were originally created for graphical processing; however, in the early 2000s, researchers and engineers began to

recognize their potential for handling general-purpose

calculations, including those required for machine learning and AI. The shift towards using GPUs for this was largely due to their ability to perform many simple calculations simultaneously, and because many GPUs can be run in parallel. Many AI models rely heavily on matrix and vector multiplications, and GPUs far outperform a CPU when trying to process these quickly.

This realization gained momentum as machine learning models, especially deep learning models, became more complex and required significant computational power for training. By the mid-2000s, GPUs had become essential tools in the field of AI and machine learning, transforming how data scientists and researchers approached problems, significantly reducing the time it took to train complex models.

Deep learning: a subset of machine learning that uses an artificial neural network to imitate the design of the human brain to find generalizations in complex data that can be used for decision-making.

Proof of work: a consensus mechanism requiring

cryptominers to solve complex problems to add a new block to the blockchain.

Blockchain and cryptocurrency

mining

[image: Image 14]

[image: Image 15]

The cryptocurrency boom – at its peak in November 2021,

the total market capitalization of cryptocurrencies reached approximately $3 trillion

In 2010, the use of GPUs for Bitcoin mining surged as miners discovered that GPUs significantly outperformed CPUs in solving cryptographic puzzles, such as finding the nonce in the hashing algorithm for the proof-of-work system. This realization led to a dramatic shift towards GPU mining. The cryptocurrency boom between 2017 and 2021 further escalated the demand for GPUs, resulting in skyrocketing prices and global shortages.

As of 2023, this demand had reduced somewhat and prices of GPUs were becoming more stable. This was for a number of

reasons:

• The volatility and reduced profitability of cryptocurrency mining had led to less demand for GPUs, specifically for mining purposes.

• Big manufacturers had increased production to meet the

demands.

• Application-Specific Integrated Circuits (ASICs), which are specifically designed for mining, had largely replaced the use of GPUs in many mining operations.

REVIEW QUESTIONS

1 What is the role of a graphics processing unit (GPU) in a computer?

2 How do GPUs enhance the performance of video games and video processing tasks?

3 Why have GPUs become essential in fields such as artificial intelligence, machine learning and cryptocurrency mining?

A1.1.3 Differences between the

CPU and the GPU (HL)

The central processing unit (CPU) and the graphical processing unit (GPU) are both core components of modern computers.

They are designed differently, which is why they are used for different kinds of tasks. The CPU is great for handling various jobs, but the GPU is better for doing the same job many times on a lot of data at once.

Design philosophies

CPUs are generally called “general-purpose processors” because they can handle many types of tasks. They are designed to run the operating system, process user input and manage programs.

CPUs are good at tasks where decisions need to be made

quickly, and where different types of work are being done at the same time.

GPUs are specialized processors because they focus on specific types of tasks. They are made for processing large amounts of data in parallel. This means they can work on many calculations at the same time. For example, GPUs are used to process

images and videos because they can work on thousands of

pixels at once.

Core architecture

The CPU has only a few cores, but these cores are very powerful.

Each core can handle many different instructions, but it works

best when doing one task at a time. This makes the CPU very good for such tasks as running the operating system, where quick responses are needed. CPUs also have features including branch prediction (where the CPU tries to guess what will

happen next) and out-of-order execution (where the CPU can work on tasks that are ready before others).

The GPU has many smaller cores. These cores are not as

powerful as the CPU cores, but there are thousands of them, and they all work at the same time. This is why the GPU is very good for tasks such as rendering 3D images, where many similar

calculations need to happen at once. The GPU’s architecture is designed to work on large sets of data all at the same time.

Memory access and power

efficiency

The CPU and GPU access memory differently. The CPU uses a

smaller, high-speed memory cache to get data quickly. This is useful when the CPU needs to access small amounts of data

many times, such as when running programs or handling user inputs.

The GPU uses its own special memory called VRAM (video RAM).

VRAM has a very high bandwidth, meaning it can move large

amounts of data at once, such as images and videos. However, the GPU uses more power because it must process a lot of data at the same time, especially when rendering videos or running complex simulations.

Comparison of central processing units (CPUs) and graphics processing units (GPUs)

Processor Processing

Architecture

Functionality

CPU

It is a general CPUs generally

Allows the user

purpose

have fewer cores. to switch

processor,

General user

between

capable of

devices tend to

multiple tasks

handling

have between 4

and

Processor Processing

Architecture

Functionality

many

and 8 cores;

applications.

different

however, there

This makes it

tasks. It

are some

ideal for

executes the

advanced CPUs

running the

instructions of that now have 64 operating

computer

cores or more.

system and

programs,

Each core is very

general

involving

versatile, making

software

operations

it capable of

applications.

such as

handling complex

arithmetic,

computations that

logic and

require sequential

controlling

processing.

input / output

(I/O)

operations, as

directed by

the operating

system.

GPU

It is a

Composed of

Suited for tasks

specialized

hundreds or

that require

processor,

thousands of

simultaneous

with a focus

small cores that

processing of

on handling

are well-suited for large blocks of

graphics,

tasks that can be

data, such as

rendering

run in parallel.

rendering

images, video While each core is images, video

and

not as powerful

processing and

animations.

as a standard CPU deep learning

core, the high

applications.

number of cores

allows them to

perform a large

number of

calculations

simultaneously,

Processor Processing

Architecture

Functionality

making them

perfect for

graphical

processing.

Rendering: the process of generating an image from a model by means of computer programs.

Key information

To summarize, CPUs are better for tasks that require high-

speed, complex decision-making and versatility. GPUs are

better when the same operation needs to be performed on

many data points simultaneously. This means that for tasks such as gaming, video editing and computational research (AI and machine learning), GPUs often significantly outperform CPUs.

How the CPU and GPU work

together to increase video-game

performance

When playing video games, the CPU and GPU work together to deliver a seamless and immersive experience. The CPU handles the game’s core logic, including rules, physical calculations and AI behaviour. It processes the inputs from the player (processing the outcomes of their actions and updating the game state

accordingly). The GPU’s primary role is to render the game’s visuals. It processes vertex and pixel data to draw images on to the screen, including 3D objects, textures and effects such as lighting and shadows.

Vertex and pixel data: data used by the GPU to render 3D

objects and images.

Frame: a single image in a sequence of images that makes up a video or animation.

PROGRAMMING EXERCISE

Run benchmark software on your device to see your overall

system performance. There are many options out there that

you can search for; https://novabench.com and

www.userbenchmark.com have free versions.

Typical scenario

1 Player input: The player presses a key to move a character.

The CPU processes this input, updates the character’s position based on game physics and determines the new game state.

2 Data preparation: The CPU prepares the new position and state data and sends it to the GPU.

3 Rendering: The GPU updates the frame with the character’s new position, applies lighting and shading and renders the scene.

4 Display: The rendered frame is displayed on the screen, providing immediate feedback to the player.

REVIEW QUESTIONS

1 How do the CPU and GPU work together to enhance video-game performance?

2 Why is a GPU better suited than a CPU for tasks such as video rendering or AI computations?

3 What are shaders and textures, and how do they contribute to the rendering process handled by the GPU?

A1.1.4 Purposes of different

primary memory types

Memory types

The primary memory of the computer stores data and

instructions that the CPU needs in order to process tasks.

Primary memory includes several different types: RAM (random access memory), ROM (read-only memory), caches and registers (covered in Section A1.1.1). These are all types of primary memory, meaning they are used directly by the CPU.

RAM

RAM (random access memory) holds instructions and data for programs that are currently running. For example, when you open an app on your phone or computer, it loads into RAM so that is can be accessed quickly by the CPU.

RAM is volatile, meaning that it loses its contents when the power to the computer is turned off. This is why, when playing a game, you lose your progress unless you save the game (which is then stored in secondary memory).

Volatile: a type of memory or storage that loses its data when the power is turned off.

One real-world example of using RAM is in smartphones, which use RAM to switch quickly between apps. When you leave an

app, it stays in the RAM, so you can return to it quickly without reloading it from scratch.

[image: Image 16]

[image: Image 17]

Sticks of random access memory (RAM)

ROM

ROM (read-only memory) is used for storing instructions that are very rarely modified. ROM is used for the BIOS (basic input /

output system) of the computer, which is located on the

motherboard. The BIOS’ main role is to initialize and test the system hardware components on startup, and to load the

operating system (OS) software from the secondary memory

storage into the RAM, ready for the CPU to fetch, decode and execute the instructions.

Read-only memory (ROM) attached to a motherboard

[image: Image 18]

ROM is non-volatile memory, meaning it does not lose its

contents when the computer does not have power. While ROM is

“read only”, meaning it cannot easily change its data, most modern computers use flash memory, which allows for updates and reprogramming. This allows motherboard companies to

update their software when required.

A real-world example of using ROM is in smartphones, where ROM stores the operating system and core applications, which do not change unless you perform an update. This ensures that your phone can boot up reliably every time.

Cache (L1, L2 and L3)

The order a CPU goes through when trying to retrieve data

Cache memory is small, but provides high-speed access to the CPU compared to the RAM. It acts as a buffer between the CPU

and the slower RAM, storing frequently used data and

instructions.

There are three types of cache: L1, L2 and L3, each with

different sizes and speeds. The closer to the CPU, the faster it is.

• L1 cache is located directly on the CPU, making it the fastest type of cache. It can be accessed almost instantly due to its location. However, it is also the smallest, often only a few kilobytes in size (32KB to 128KB per core). Each CPU core

usually has its own L1 cache, which is typically split into two sections: L1i to store instructions and L1d to store data.

• L2 cache can either be on the CPU, like L1, or situated very close to the CPU. L2 cache is larger than L1 and can be up to several megabytes in size (256KB to 2MB per core), providing

more storage for frequently used instructions. It is faster than L3, but slightly slower than L1, though it still significantly speeds up processing by reducing the need to fetch data from the slower RAM.

• L3 cache is often located the furthest from the CPU chip. L3

cache may be shared on multiple-core CPUs, whereas L1 and

L2 are usually exclusive to a single core. It is the largest of the three, and can be up to tens of megabytes in size (2MB to

64MB shared across all cores). It is the slowest of the three types of caches, but is still significantly faster than RAM.

The terms cache hit and cache miss are used to describe the efficiency of the CPU’s cache memory when retrieving data. A cache hit is the ideal scenario, where the CPU requests data and it is found in the cache memory. A cache miss means it was not found, necessitating retrieval from the slower main memory (RAM) or even slower storage (SSD / HDD).

Cache hit: when the CPU requests data and it is found in the cache memory.

Cache miss: when the CPU requests data and it is not found in the cache memory, necessitating retrieval from slower main memory or storage.

The percentage of hit rate determines the efficiency and

effectiveness of the cache. A low percentage means the system would suffer more from latency, where the data has to be

fetched from elsewhere, hindering performance speed. Systems with a larger cache size will generally perform better, as well as systems with more intelligent prefetching techniques that can predict which data will be needed soon and load it into cache ahead of time.

Top tip!

Imagine an onion with its layers representing the levels of cache:

• L1 cache is the smallest and fastest, like the very centre of the onion, where everything is tightly packed and closest to the core of the CPU.

• L2 cache is slightly larger and slower, like the next layer out

– still close to the centre, but not as quick to access as the very core.

• L3 cache is the largest and slowest, like the outer layers of the onion. It’s still important, but it takes a bit longer to get to, just like how the CPU takes a bit more time to access data in L3 cache compared to L1 and L2.

Optimizing CPU performance with cache

The cache plays a critical role in ensuring that the CPU can access data as quickly as possible. When the CPU finds the searched-for data in the cache (a cache hit), the data can be processed very quickly. However, when there is a cache miss, the CPU has to look for the data in the slower memory, which causes a delay.

Imagine you are playing a video game on a computer. The CPU

frequently checks the L1, L2 and L3 cache to find the data it needs to run the game smoothly. The game’s core functions, such as player controls and game logic, might be stored in the L1 cache, while the less frequently accessed data, such as background textures, may be in the L3 cache. The layering

system helps to ensure that the game runs smoothly, without interruptions.

A CPU with a larger cache or more advanced prefetching (a

technique where the CPU predicts what data it will need and loads it into cache ahead of time) has fewer cache misses and performs better overall.

REVIEW QUESTIONS

1 What is the main purpose of RAM in a computer system, and why is it considered volatile?

[image: Image 19]

2 How does ROM differ from RAM in terms of its function and volatility?

3 Why is cache memory important for CPU performance, and how do the different levels of cache memory (L1, L2, L3) vary in terms of speed and size?

4 What happens during a cache hit and a cache miss, and how do these events impact system performance?

A1.1.5 The fetch–decode–

execute cycle

The fetch–decode–execute cycle, also known as the “instruction cycle”, is the fundamental process that a CPU uses to execute instructions. The cycle consists of three main stages:

1 Fetch: The CPU fetches an instruction from the memory.

2 Decode: The CPU interprets the instruction and prepares the necessary operations to execute it.

3 Execute: The CPU performs the actions required by the instruction.

The fetch–decode–execute cycle

Little Man Computer

An easier way to see these stages carried out in more detail is to use an educational CPU model known as Little Man Computer, which you can search for online or use the one available here:

https://peterhigginson.co.uk/lmc. This model uses assembly

language – a simple set of instructions, each represented by three letters, which is stored as a three-digit code in the memory. The full set of instructions is:

Instruction Code Description

INP

901

Input a value and store it in the

accumulator

OUT

902

Output the value from the accumulator

DAT

N/A

Used to define data values directly in

memory at the point of declaration, often

for constants or variables.

LDA

5XX

Load the value from the specified memory

address into the accumulator

STA

3XX

Store the value in the accumulator at the

specified memory address

ADD

1XX

Add the value from the specified memory

address to the accumulator

SUB

2XX

Subtract the value from the specified

memory address from the accumulator

HLT

000

Halt the program

BRA

6XX

Branch (jump) to the specified memory

address

BRZ

7XX

Branch to the specified memory address if

the accumulator is zero

BRP

8XX

Branch to the specified memory address if

the accumulator is positive

Enter the following program into the left-hand column and

assemble into RAM. You will see the three-digit representation for each instruction stored at a memory address on the right. For example, LDA 4 has been stored as 504 in memory address 0.

[image: Image 20]

[image: Image 21]

Your LMC should look like this:

Peter Higginson’s LMC model

First cycle

Click step.

1 Fetch: The PC (program counter) is currently set to 0, so the instruction at memory location 0 is fetched (504) by opening the 0 address in RAM using the address bus and fetching the instruction on the data bus. The control bus sends a read

signal to initiate this process. 5 is stored in the instruction register and 04 in the address register.

While this happens, you will see the PC gets incremented to 1

via the ALU, ready for the next instruction.

2 Decode: Once the instruction is fetched, the CPU decodes the instruction. The control unit uses the control bus to coordinate this process. The instruction stored in the instruction register is 5, which decodes as “load into the accumulator”.

The address register 04 indicates the address of the data to load.

3 Execute: The command is then carried out. Address 4 is opened on the address bus, and the control bus sends the

appropriate signals to retrieve the data (23) from that location on the data bus and store it into the accumulator.

Second cycle

Click step.

1 Fetch: The CPU now uses the PC to know which instruction to fetch next: 1 is currently stored. Address 1 is opened, and the instruction 105 is fetched. The control bus sends a read signal to initiate this. 1 is stored in the instruction register and 05 in the address register.

The PC is incremented to 2 by the ALU.

2 Decode: The instruction 1 is decoded as “add to accumulator”; the address register is the address of the data to add (5). The control unit uses the control bus to co-ordinate this.

3 Execute: Address 5 is opened, the data 12 is fetched and both the accumulator (currently 23) and the fetched data (12) are passed to the ALU. The result of 23 + 12 is stored in the accumulator (35).

Third cycle

Click step.

1 Fetch: The PC is currently 2, so the instruction at memory address 2 is fetched (305). The control bus sends a read signal

to initiate this. 3 is stored in the instruction register, and 05 is stored in the address register.

The PC is incremented to 3 via the ALU.

2 Decode: The instruction 3 decodes as “store accumulator to address” and the address register gives the location of where to store the data (05). The control unit uses the control bus to co-ordinate this.

3 Execute: Memory address 5 is opened via the address bus, and the control bus sends the appropriate signals to send the accumulator contents down the data bus and store them at

address 5 (overwriting the current data).

Fourth cycle

Click step.

1 Fetch: The PC is currently 3, so the instruction at memory address 3 is fetched (000). The control bus sends a read signal to initiate this. 0 is stored in the instruction register, and 00 is stored in the address register.

The PC is incremented to 4 via the ALU.

2 Decode: The instruction 0 decodes as “halt”. The control unit uses the control bus to signal this operation.

3 Execute: The computer halts all operations and ends the program.

Common mistake

A common mistake is assuming that the program counter (PC) gets updated after the execute stage of the fetch–decode–

execute cycle. The PC is usually updated during or immediately after the fetch stage, so it points to the next instruction in memory before the current instruction is even decoded or

executed. This ensures that the CPU always knows where to

find the next instruction in the sequence.

PROGRAMMING EXERCISES

[image: Image 22]

Write an LMC program to:

1 input two numbers, add them, and output the result 2 input a number and output whether it is positive or zero 3 calculate the sum of the first five natural numbers 4 input two numbers and output the larger one

5 input three numbers and output them in ascending order.

REVIEW QUESTIONS

1 What are the main steps in the fetch–decode–execute cycle, and why is this cycle fundamental to CPU operations?

2 How does the CPU use the address, data and control buses during the fetch–decode–execute cycle?

3 Why is the interaction between memory and registers crucial during the fetch phase of the CPU cycle?

A1.1.6 The process of

pipelining in multi-core

architectures (HL)

Pipelining is a powerful technique used in multi-core

architectures to enhance CPU performance by overlapping the execution of multiple instructions. To understand this concept, imagine a carwash service that processes cars through several stages: initial wash, detailed cleaning, rinse and drying. Each stage takes five minutes.

A carwash team operating in parallel execution to get the job done faster

Multi-core architectures: systems with multiple CPU cores on a single chip, allowing parallel execution of instructions and tasks.

In a non-pipelined operation, each car must complete all stages before the next car begins:

Car

A

initial detailed rinse drying

wash cleaning

B

initial detailed rinse drying

wash cleaning

The total time it takes to process two cars is 5 × 8 = 40 minutes.

So the time to clean one car is 40 / 2 = 20 minutes.

The problem with this system is that, once car A has had the initial wash, that stage is then left idle, waiting for car A to complete, before car B enters. This is not efficient and, if we continue with this system, the only way we can improve the operation is to increase the speed of each stage.

It is the same situation with the performance of a CPU, where we are limited by the speed of the hardware, and improving this can be very expensive. Being more efficient with what we have is more beneficial.

In a pipelined solution, as soon as car A finishes a stage, car B

enters that stage:

Car

A

initial

detailed

rinse

drying

wash

cleaning

B

initial wash

detailed

rinse

drying

cleaning

The total time it takes to process two cars is 5 × 5 = 25 minutes.

So the time to clean one car is 25 / 2 = 12.5 minutes.

In this pipelined solution, rather than one stage sitting idle until the cycle is complete, the moment it is finished with car A, car B

enters that stage.

Design of a basic pipeline

In a pipelined processor, the pipeline consists of multiple stages or segments situated between an input end and an output end.

Each stage performs a specific operation, and the output of one stage becomes the input for the next. Intermediate outputs are held in interface registers, also known as “latches” or “buffers”.

All stages and interface registers are synchronized by a common clock, ensuring co-ordinated operation across the entire pipeline.

In the CPU, the fetch–decode–execute cycle is divided into distinct stages:

1 Fetch: The instruction is retrieved from memory.

2 Decode: The instruction is interpreted to understand the required operation.

3 Execute: The operation is carried out.

4 Memory access: Any necessary data is read from or written to memory.

5 Write back: The result is written back to the CPU register.

Rather than measuring performance in minutes, as in the

carwash example, pipeline performance in CPUs is measured in cycles. To manage the five stages mentioned, the CPU is

constructed with a five-stage instruction pipeline, ensuring continuous and efficient processing of instructions. A well-optimized pipeline can achieve close to one instruction per cycle, maximizing the CPU’s performance by reducing idle times and ensuring continuous instruction processing.

[image: Image 23]

Example of a pipeline cycle

How cores in multi-core

processors work independently

and in parallel

In multi-core architectures, each core can independently execute its own pipeline of instructions. This is similar to having multiple carwash teams, each capable of processing cars simultaneously but independently. They are also capable of parallel execution when dealing with larger, more complex tasks, where each team completes a part of a larger task to improve execution time. This combination of pipelining and parallelism significantly boosts computational efficiency, enabling modern processors to handle complex and resource-intensive tasks more effectively.

Independent execution

Each core in a multi-core processor has its own set of pipelines, allowing it to fetch, decode, execute and write back instructions independently of the other cores. This independence means

that, even if one core is handling a computationally intensive task, other cores can continue to execute their tasks without waiting for the first core to finish. This increases overall efficiency and utilization of the CPU resources.

Consider our carwash with multiple bays:

Team 1 (Core 1): Car A undergoes initial wash – detailed cleaning – rinse – drying

Team 2 (Core 2): Car B undergoes initial wash – detailed cleaning – rinse – drying

While Team 1 is drying car A, Team 2 might be rinsing car B.

Both bays operate independently.

Parallel execution

Parallel execution takes the concept further, by allowing multiple cores to work on different parts of a single large task or multiple tasks simultaneously. For instance, in a multi-threaded

application, different threads can be scheduled on different cores, with each core processing its thread in parallel. This drastically reduces the time needed to complete complex

computations.

Imagine a large car that needs washing, detailing and interior cleaning. Multiple teams (cores) can work on different sections of the car at the same time:

Team 1 (Core 1): Washes the exterior

Team 2 (Core 2): Details the interior

Team 3 (Core 3): Cleans the wheels and undercarriage.

Each team works in parallel on different parts of the same car, drastically reducing the overall time required to complete the job.

Top tip!

Think of pipelining like an assembly line in a factory. Each stage in the pipeline handles a different part of the process and, once a stage finishes its task, it passes the work to the next stage and immediately starts on a new task. This way, multiple

instructions are being processed simultaneously, just at

different stages. In a multi-core architecture, imagine multiple assembly lines (cores) working in parallel, each running its own

pipeline. This set-up greatly increases efficiency because more tasks are completed in less time, and the CPU can handle

multiple instructions or even different programs at one time.

REVIEW QUESTIONS

1 What is pipelining and how does it improve performance?

2 How does a non-pipelined CPU differ from a pipelined CPU in terms of instruction execution?

3 What are the stages of a basic instruction pipeline, and how do they function together in a CPU?

4 How do multi-core processors use pipelining and parallel execution to improve computational efficiency?

A1.1.7 Internal and external

types of secondary memory

storage

Internal storage

Hard disk drive (HDD) and solid state

drive (SSD)

[image: Image 24]

The internals of an HDD and an SSD

Hard disk drives (HDD) and solid state drives (SSD) are the most typical storage solutions for personal computers. HDDs are older technology but are still often used, especially in non-mobile devices, as they are relatively cheap compared to the amount of storage they offer. HDDs utilize a spinning magnetic disk to read

/ write data. They are suitable for storing large volumes of data, such as media files, backups and documents, where speed is not so critical.

SSDs have no moving parts. They use flash memory to store

data, offering high-speed data access and durability. This makes them very popular in portable devices such as laptops and

tablets. They are ideal for operating systems, software

applications and games due to their fast read / write speed, which enhances the overall system performance.

HDD vs SSD

Feature

HDD (hard disk

SSD (solid state drive)

drive)

Storage

Magnetic storage

Flash memory with no

technology

with spinning disks

moving parts

and read / write

heads

Feature

HDD (hard disk

SSD (solid state drive)

drive)

Speed

Slower read / write

Faster read / write

speeds (generally

speeds (generally 200–

50–150 MB/s)

500 MB/s)

Durability

More prone to

More durable; resistant

physical damage due to physical shock

to moving parts

Noise

Produces noise due

Silent operation

to moving parts

Power

Higher power usage

Lower power

consumption

due to mechanical

consumption

parts

Cost

Generally cheaper

More expensive per GB

per GB

Capacity

Available in larger

Typically available in

capacities (up to

smaller capacities (up to

several TB)

several TB, but at a

higher cost)

Weight

Heavier due to

Lighter

mechanical

components

Heat

Generates more heat Generates less heat

generation

due to moving parts

There is another form factor for SSDs that is currently popular and offers various advantages. M.2 SSDs look like a stick of chewing gum. They are very small and thin, and take up a lot less space than a standard SSD. M.2 NVMe SSDs are also faster than 2.5” SATA SSDs and are considered easier to install – you just slot them into the motherboard and use a single screw to keep them in place.

[image: Image 25]

[image: Image 26]

M.2 SSD

eMMC (Embedded MultiMediaCard)

In low-cost devices, such as entry-level smartphones and budget laptops, where all the benefits of SSDs are not essential, eMMCs are a popular choice. They are also a type of flash storage that utilizes NAND flash memory. They are soldered directly on to the motherboard of the device. While the capacity and speed do not match a standard SSD, their performance is adequate for basic computing needs and simple applications.

Two eMMCs

External storage

Hard disk drive (HDD) and solid state

drive (SSD)

As external storage solutions, both HDD and SSD are popular choices. Their performance and comparison are identical to the internal versions. Which is used depends on the requirements of the user. If you require quick file transfers, backups and a portable solution that is less likely to be impacted by being carried around, SSDs are the best choice. If you need to do

[image: Image 27]

[image: Image 28]

extensive backups, store media files or transport large files, but speed is less critical, you may decide an HDD is the better option.

An external SSD

Optical discs and optical drives

From left to right: CD, DVD and Blu-Ray

Optical drives that read / write optical discs, such as CDs, DVDs or Blu-Rays, are becoming less popular, but are still a

consideration for external media storage. The cost of an optical disc is low compared to an HDD or SSD and, while their read /

write speeds may be slower, they are sufficient for data

archiving and playback. However, the discs are prone to

scratches, especially if they are not stored correctly, and they require an optical drive to read and write to them, and these are becoming less common in devices these days.

Memory cards

Memory cards are compact storage devices often used in cameras, smartphones and other portable devices. They are

ideal for expanding storage in mobile devices and for storing photos and videos in cameras, using NAND flash memory. They come in multiple sizes, such as SD, microSD and CompactFlash, catering to different devices and space requirements. They are known for their durability – they are resistant to physical shocks, extreme temperatures and water, making them ideal for

portable devices. Their read / write times are generally slower than SSDs, but outperform those of optical discs.

Network Attached Storage (NAS)

NAS is a dedicated file storage connected to a network that allows multiple users to access data. It is often used in homes or businesses for centralizing data storage, file storage and data backup. NAS is usually made up of multiple HDDs or SSDs

configured in RAID (Redundant Array of Independent

Disks) configuration. It is normally connected to the network via Ethernet, and runs a lightweight operating system designed for file storage, and the management and sharing of files. As it uses multiple HDDs or SSDs, its capacity is usually high, and it is possible to expand the system further by adding additional drives.

RAID (Redundant Array of Independent Disks): a data storage technology that combines multiple physical drives into a single logical unit to improve performance, provide

redundancy and ensure data protection.

[image: Image 29]

[image: Image 30]

Memory cards

NAS storage solution

REVIEW QUESTIONS

1 What are the primary differences between an HDD and an SDD in terms of performance and durability?

2 Why might a low-cost device, such as an entry-level smartphone, use eMMC storage instead of an SSD?

3 What advantages do NAS (Network Attached Storage) systems offer for home or business environments?

4 How do memory cards compare to optical discs in terms of durability and data storage capabilities?

A1.1.8 Describe the concept of

compression

Compression is the process of encoding information using fewer bits than the original representation. Making file sizes smaller has two main advantages: it takes less room on secondary

storage and it is faster to transfer across a network. There are two main types of compression: lossless and lossy.

Lossless vs lossy compression

Lossless compression is when data is compressed to a smaller size, but can be restored back to the original without any loss of information. This is important for files such as text files and databases, where a loss of information would be critical. This technique works by identifying and eliminating statistical redundancy within the data, and this process can be reversed when needed.

Statistical redundancy: the repetition of information within a data set that does not contribute to its uniqueness.

Lossy compression generally outperforms lossless compression when it comes to file sizes; however, it reduces files by

permanently eliminating certain information. This information is redundant or less critical data, resulting in a compressed version that is not identical to the original but is, ideally,

indistinguishable from the original to human senses. Lossy compression is commonly used for compressing multimedia files such as images, audio and video, where some loss of quality is acceptable in exchange for significantly reduced file sizes.

[image: Image 31]

This can be seen in the images below. While it may be pretty difficult to visually distinguish the difference in quality, the lossy version uses 50 per cent less data than the original.

Run-length encoding (RLE)

Run-length encoding is an effective lossless data-compression technique used to reduce the size of files containing many consecutive repeated characters.

For example, take this string:

AAAAABBBCCDAA

RLE looks for “runs” where a character is repeated. In the example above, we have five runs:

AAAAA BBB CC D AA

Once RLE has identified these, it encodes the run by replacing it with a pair: the character that repeats and the number of

repetitions. So, the runs above become:

5A 3B 2C 1D 2A

The encoded string is then stored as:

5A3B2C1D2A

If we assume each letter stores 8 bits of information, the initial data is 13 × 8 = 104 bits, or 13 bytes.

After compressing with RLE, the data is 10 × 8 = 80 bits or 10

bytes: a 23 per cent reduction in size.

RLE is straightforward to implement and it is very effective for data with lots of repetitions, such as simple graphics and certain

[image: Image 32]

types of text files. RLE was often used on fax machines, which would send text documents via the telephone line. This was because they contained a lot of white space, which meant RLE

could achieve compression ratios of up to 8:1. However, for data that does not contain many repeated characters, like a portrait photograph, RLE may not be very effective and, in some cases, may even increase the file size.

PROGRAMMING EXERCISE

Create an RLE application that has two options: compress or decompress.

The compress option should receive a string and output the encoded version using the RLE algorithm.

The decompress option should do the opposite.

Transform coding

The stages of transform coding

Transform coding is a form of lossy compression often used in JPEG image compression or MP3 audio compression.

Using JPEG compression as an example:

• Transform coding takes an image of N × N size and sections it into smaller sub-images of size n × n.

• Then the forward transform is carried out on each of the sub-images. The forward transform can use different algorithms, depending on the type of file compression, but for JPEGs DCT

(discrete cosine transform) is used. This takes the image data from the spatial domain (pixel values) to the frequency

domain. The output breaks the sub-image down into low- and high-frequency coefficients.

• These frequency coefficients are then passed to the quantizer.

This step significantly reduces file size by simplifying the

frequency coefficients obtained from the DCT. The purpose of quantization is to reduce the precision of high-frequency

components (the fine details) rather than low-frequency

components. This is because the human eye is less sensitive to high-frequency data loss compared to low-frequency detail.

The extent of the quantization determines the compression

level and the quality of the final image.

• The final step of transform coding is the symbol encoder. This is where the quantized coefficients are further compressed using entropy coding techniques. This runs through three

further algorithms to reduce the file size by efficiently

representing the frequency of occurrence of each symbol. The algorithms used at this stage are (in this order):

1 Zigzag scan

2 Run-length encoding (RLE)

3 Huffman coding.

Once this stage has finished, the final compressed image is complete.

Low-frequency data: correspond to slow changes in pixel values, such as broad areas.

High-frequency data: correspond to rapid changes in pixel values, representing fine details, edges and textures.

REVIEW QUESTIONS

1 What are the two main advantages of compressing files?

2 Explain the difference between lossless and lossy compression.

3 How does run-length encoding (RLE) work, and in what types of files is it most effective?

4 Describe the process of transform coding in JPEG image compression and explain why it is considered a lossy

compression method.

A1.1.9 Types of services in

cloud implementation

Cloud computing has revolutionized how organizations manage and deploy IT resources, offering flexible and scalable solutions to meet diverse business needs. There are three primary cloud service models: Software as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS). Each one provides distinct levels of control, flexibility and management solutions.

Software as a Solution (SaaS)

SaaS delivers software applications over the internet. Users can access these applications through web browsers without needing to install, maintain or update the software locally. SaaS provides a cost-effective and convenient solution for businesses and individuals, offering a wide range of applications from

productivity tools to customer-relationship management

systems.

SaaS allows users to access their software from anywhere, on any device, as long as they have an internet connection. This eliminates the need for complex software installations. Many SaaS providers charge a subscription fee, which is often less than the cost of purchasing software licences. Additionally, updates and new features are automatically added by the

provider, ensuring that users always have the most up-to-date version of the software.

However, SaaS software relies on the user having an internet connection; without it, they cannot run the software, unlike locally installed software. Data security is also a concern, as users rely on the provider’s security measures to protect

sensitive data.

Example

Google Workspace is an example of SaaS. This suite provides productivity tools, including Gmail, Google Docs and Google Drive, used by businesses and educational institutions for communication, collaboration and storage.

Platform as a Service (PaaS)

PaaS provides a cloud-based platform that allows developers to build, test and deploy applications without managing the

underlying infrastructure. PaaS includes tools and services to facilitate application development, such as databases,

middleware and development frameworks.

Middleware: software that connects different applications, allowing them to communicate and share data. It helps

different parts of a computer system work together smoothly.

PaaS accelerates software development by allowing developers to focus on coding rather than infrastructure management. It also makes it easier and cheaper to scale hardware as the user base increases. However, this solution can lead to vendor lockin, making it difficult to move applications to different platforms and offering less control over the hosting environment.

Example

Microsoft Azure App Service is an example of PaaS. It is a platform for building, deploying and scaling web apps and APIs, used by developers to create scalable and reliable applications without managing the underlying servers.

Infrastructure as a Service (IaaS)

IaaS provides virtualized computing resources over the internet, such as virtual machines, storage and networks. This allows businesses to rent IT infrastructure instead of buying and managing physical servers.

Unlike PaaS, IaaS gives users full control over their virtual machines and networks. This reduces the need for upfront

investment in hardware and allows businesses to rent solutions at a lower initial cost using a subscription model. IaaS is also scalable, making it easy to adjust resources as the user base grows. However, IaaS requires more technical knowledge than PaaS, as users must manage their own devices and secure their own data and applications.

Example

Amazon Web Services (AWS) EC2 is an example of IaaS.

Businesses use AWS EC2 to create and manage virtual servers, providing the flexibility to run applications without owning physical hardware.

REVIEW QUESTIONS

1 What is Software as a Service (SaaS) and how does it differ from traditional software installation?

2 Explain how Platform as a Service (PaaS) benefits software developers.

3 Why might a business choose Infrastructure as a Service (IaaS) over purchasing physical hardware?

EXAM PRACTICE QUESTIONS

Note: All the exam practice questions are representative of those that will be found on Paper 1 for the International

Baccalaureate Diploma in Computer Science.

1 Describe the function of the arithmetic logic unit (ALU).

[2]

2 Outline the role of the program counter (PC).

[2]

3 Explain the advantages of multi-core processors compared to single-core processors.

[3]

 4 Describe how the architecture of a GPU differs from a CPU, and why it is better suited for tasks such as video rendering.

[3]

5 Compare the processing power of a CPU and a GPU in handling complex computations.

[4]

6 Explain the role of L1 cache in a computer system.

[2]

7 Describe the fetch–decode–execute cycle that a CPU uses to process instructions.

[4]

8 Explain the concept of pipelining in multi-core processors.

[3]

9 Describe the differences between solid state drives (SSD) and hard disk drives (HDD).

[4]

10 Describe the method of lossy compression and give an example of its use.

[3]

[image: Image 33]

A1.2 Data representation and

computer logic

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

• A1.2.1 Describe the principal methods of representing data

• A1.2.2 Explain how binary is used to store data

• A1.2.3 Describe the purpose and use of logic gates

• A1.2.4 Construct and analyse truth tables

• A1.2.5 Construct logic diagrams

A1.2.1 Principal methods of

representing data

Binary (base-2) is the language for modern-day computers; however, this was not always the case. When developing early computers, several number systems were trialled. Charles Babbage, the inventor of the Analytical Engine, used decimal for his inventions. This seemed a logical choice as people already commonly used base-10.

The Analytical Engine, conceived by Charles Babbage in the 19th century

[image: Image 34]

The ternary system (base-3) was also explored. The Setun computer, developed in the Soviet Union in 1958, used this system. Over 50 of these were produced for educational and scientific institutions to help explore the benefits of ternary logic in computing. Despite its innovative approach, the practical challenges and the widespread adoption of binary logic eventually led to its replacement.

The Setun computer, developed in 1958

Other scientists and inventors also explored quaternary (base-4) and other number systems. However, practical implementations of these systems were rare due to the increased complexity in hardware design and the limited benefits compared to binary.

Modern computing ultimately settled on binary (base-2) as the primary number system. The base-2 system represents two possible states: 1 or 0. This is in contrast to the number system we are all comfortable with, the decimal system (base-10), which has ten possible states: 0 to 9. The binary system is particularly well-suited to represent the state of electrical switches within a computer system: on (1) and off (0). This simplicity reduces hardware complexity and enhances reliability.

Binary reduces the complexity in hardware design because digital electronics, such as transistors, naturally operate in binary mode. Transistors act as switches that can be turned on or off, aligning perfectly with the binary system’s two-state logic. Additionally, Boolean algebra, the mathematical framework for logical circuit design and operation, enables straightforward implementation of complex operations using simple logic gates with binary inputs: 1 (on / true) or 0 (off / false).

The increased reliability of binary systems stems from their use of only two states. Small variations in signal strength do not affect data integrity as much as in systems using larger bases, making binary more robust in noisy environments.

Noise: unwanted electrical disturbances that can affect the integrity of signals being processed by a computer; this noise is not related to sound, but to variations in voltage or current that can disrupt the accurate transmission and processing of digital data.

Bit: binary digit; a single digit, either 1 or 0.

Byte: 8 bits.

As all data on a computer system is stored in binary, we need systems to represent numerous types of data, such as integers, strings, characters, images, audio and video, in binary form.

Representation of integers in binary

To represent numbers in binary, it is useful to remember the basics of our decimal system (base-10).

In the decimal system, as we count, we start with a single digit and increment it by 1 until we reach 9. After 9, we introduce a new digit to the front to represent larger numbers. Let’s break down the decimal number 1024: 1000s

100s

10s

1s

1

0

2

4

This can be expressed as:

(1 × 1000) + (0 × 100) + (2 × 10) + (4 × 1) = 1024

Each decimal place value increases by a multiple of 10 as we move to the left because we are working in base-10.

Binary, and other base systems, work in a similar way but, instead of 10

possible states per digit, binary has only two (0 and 1). Consequently, each digit increases by a multiple of 2. Let’s break down the binary number 0110: 8s

4s

2s

1s

0

1

1

0

This can be expressed as:

(0 × 8) + (1 × 4) + (1 × 2) + (0 × 1) = 6

In this example, we have no 8s, one 4, one 2 and no 1s. Adding 4 + 2 gives us the decimal (base-10) equivalent of the binary (base-2) number 0110. To clearly denote whether we are showing a binary or decimal number, we usually put the base as a subscript, to avoid confusion:

01102 = 610

When working with computer systems, we usually deal with 8-bit binary numbers. A bit can be defined as a “binary digit”, and 8 bits is equivalent to 1

byte. If the number does not require 8 bits to represent it, we usually pad out

[image: Image 35]

the extras with 0s. For example, the decimal number 33 would be represented as:

128s

64s

32s

16s

8s

4s

2s

1s

0

0

1

0

0

0

0

1

This means that with 8 bits, we can represent 256 different numbers, from 0

to 255. If we want to represent larger numbers, we need more bits to represent this.

Common mistake

When seeing the number 111111112, a common mistake is to say this is 256.

However, remember that while there are 256 number possibilities, 255 is the largest number we can represent in 1 byte (as 0 can also be represented).

When referring to bits and bytes, a lowercase “b” is used to represent bits and an uppercase “B” is used to represent bytes. We then use a prefix system as the numbers increase.

There are two types of prefixes when referring to bits and bytes: one for base-10 (e.g. kilo, mega, giga) and another for base-2. There was a time when base-10 prefixes were also used for base-2 quantities due to their similarity (e.g.

1024 is close to 1000). However, the confusion this generated led to calls for change. To address this, in 1999 the IEC introduced new prefixes (e.g. kibi, mebi, gibi) specifically for base-2 multiples (1024, 1,048,576, 1,073,741,824).

Kibibyte Mebibyte Gibibyte Tebibyte Pebibyte Exbibyte Zebibyte KiB

MiB

GiB

TiB

PiB

EiB

ZiB

1 KiB =

1 MiB =

1 GiB =

1 TiB =

1 PiB =

1EiB =

1 ZiB =

1024

1024 KiB

1024 MiB 1024 GiB 1024 TiB

1024 PiB 1024 EiB

bytes

Kilobyte Megabyte Gigabyte Terabyte Petabyte Exabyte Zettabyte KB

MB

GB

TB

PB

EB

ZB

1 KB =

1 MB =

1 GB =

1 TB =

1 PB =

1 EB =

1 ZB =

1000

1000 KB

1000 MB

1000 GB

1000 TB

1000 PB

1000 EB

bytes

REVIEW QUESTION

Bits and byte notation are worth knowing when dealing with mobile-phone and internet companies.

[image: Image 36]

or

If the two advertisements above were from two different internet companies, assuming the cost is the same, which one offers faster speeds and by how much?

Converting binary numbers to decimal

There are two main methods for converting a binary number to decimal: the positional notation method and the doubling method.

Positional notation method:

This is possibly the most straightforward method, where you assign the place values and sum.

1 Starting from the right, assign the place values for each binary bit.

2 Sum each of the place values that has a 1 underneath it.

For example, to convert 101110112 to decimal:

128

64

32

16

8

4

2

1

1

0

1

1

1

0

1

1

128 + 32 + 16 + 8 + 2 + 1 = 187

Doubling method:

1 Start with the leftmost bit (the most significant bit).

2 Double the current total and add the next bit.

3 Repeat until all bits are processed.

Top tip!

When converting to and from binary, it is always a good idea to write the digit place values down first. Trying to remember these in your head can lead to silly mistakes.

128

64

32

16

8

4

2

1

For example, to convert 101110112 to decimal:

Step

Binary digit

Current total

Calculation

1

1

1 Initial value

2

0

2 1 × 2 + 0 = 2

Step

Binary digit

Current total

Calculation

3

1

5 2 × 2 + 1 = 5

4

1

11 5 × 2 + 1 = 11

5

1

23 11 × 2 + 1 = 23

6

0

46 23 × 2 + 0 = 46

7

1

93 46 × 2 + 1 = 93

8

1

187 93 × 2 + 1 = 187

Common mistake

If you use this method, remember to start with the most significant bit (MSB), not the least significant bit (LSB).

Least significant bit (LSB): the rightmost bit in a binary number, representing the smallest value position (0 or 1).

Quotient: the result obtained when one number is divided by another, e.g. in the division of 15 by 3, the quotient is 5.

REVIEW QUESTIONS

Convert the following binary (base-2) numbers to decimal (base-10): 1 110010102

2 011011012

3 101100112

4 000111102

5 111000012

Converting decimal numbers to binary

There are two main methods for converting a decimal number to binary: the division method and the subtraction method.

Division method:

1 Divide the decimal number by 2.

2 Write down the quotient and the remainder.

The remainder will be either 0 or 1. This represents a digit of the binary number (the LSB on the first division).

3 Update the quotient.

4 Repeat until the quotient is 0.

5 Construct the binary number (this is read from the remainders from the first to the last).

For example, to convert 4210 to binary:

Division step

Quotient

Remainder

42 / 2

21

0

21 / 2

10

1

10 / 2

5

0

5 / 2

2

1

2 / 2

1

0

1 / 2

0

1

Construct the binary number from the remainders and pad to 8-bits: 001010102

Common mistake

Remember to construct the remainders in the correct order to format your binary number. The first remainder is the least significant bit (LSB).

Subtraction method:

Write down the place values for an 8-bit binary number:

128 64 32 16 8 4 2 1

Starting with the largest place value (128):

1 Try and subtract it from the number you are converting.

• If the place value is larger than the number, write a 0 below it.

• If it is smaller or equal to it, write a 1 and calculate the remainder of the subtraction, carrying the result to the next place value.

2 Repeat.

For example, to convert 4210 to binary:

12810 and 6410 are larger than 4210, so we write 0 below these.

128

64

32

16

8

4

2

1

0

0

3210 is smaller, so we write a 1 below it and calculate the remainder from the subtraction, the result of which will carry to the next place value: 4210 – 3210 = 1010

128

64

32

16

8

4

2

1

0

0

1

0

16 is larger than 10, so write a 0

8 is smaller, so write a 1 and calculate the remainder:

1010 – 810 = 210

410 is larger than 210, so write a 0

210 is equal, so calculate the remainder (0) and write a 1

128

64

32

16

8

4

2

1

0

0

1

0

1

0

1

0

REVIEW QUESTIONS

Convert the following decimal (base-10) numbers to binary (base-2): 1 2010

2 8710

3 12310

4 19910

5 25010

PROGRAMMING EXERCISE

Write a binary-to-decimal and decimal-to-binary application in either Python or Java.

Representation of integers in hexadecimal

Hexadecimal (often abbreviated as hex) is a base-16 number system that uses 16 distinct symbols to represent values, rather than the 10 of decimal or 2 of binary. The symbols include the digits 0 to 9 and then the letters A to F, where A represents 10, B represents 11, C represents 12, D represents 13, E

represents 14 and F represents 15.

Hexadecimal is used with computers for several reasons. The ease of conversion between binary and hexadecimal is straightforward because each hex digit maps directly to a 4-bit binary sequence. For example, the binary number 1111 can be represented as F in hex. Another reason is that it provides a more compact way to represent a binary value. This makes it much easier for us to read and communicate large binary numbers. This is why you often see hex used in debugging tools, memory dumps and assembly language programming.

Debugging tools: software applications or utilities used by developers to identify, analyse and fix bugs or issues within a program by inspecting code, variables and execution flow.

Memory dump: a process where the contents of a computer’s memory are captured and saved, typically for the purpose of diagnosing and debugging software issues.

Nibble: 4 bits.

Converting binary numbers to hexadecimal

Converting binary to hexadecimal is a straightforward calculation.

1 Split the binary byte (8 bits) into two nibbles (2 × 4 bits).

2 Calculate the decimal value of these 4 bits.

3 Convert the decimal values into their hexadecimal equivalents and rejoin them.

For example, to convert 011010112 to hexadecimal:

1 Split the byte into 2 nibbles:

01102 10112

2 Calculate the decimal value:

610 1110

3 Convert both decimal values to their hexadecimal equivalents and rejoin them:

6B16

REVIEW QUESTIONS

Convert the following binary (base-2) numbers to hexadecimal (base-16): 1 101011002

2 110101102

3 110100012

4 001110102

5 100111012

Converting hexadecimal numbers to binary

Moving from hex to binary is just a reverse of the binary-to-hexadecimal process:

1 Split the two hexadecimal digits.

2 Convert each of them to a 4-bit binary number using the same integer-to-binary method.

3 Join the two 4-bit numbers together to form 1 byte.

For example, to convert F216 to binary:

1 Split the two hexadecimal digits:

F16 216

2 Convert each of them to a 4-bit binary number using the same integer-to-binary method:

11112 00102

3 Join the two 4-bit numbers together to form 1 byte: 111100102

REVIEW QUESTIONS

Convert the following hexadecimal (base-16) numbers to binary (base-2): 1 3F16

2 A916

3 1016

4 7C16

5 E216

Converting decimal numbers to hexadecimal

To move between decimal and hexadecimal is one of the trickier calculations to perform, as you need to be comfortable with your 16 times table. To convert a decimal number to hex:

1 Divide the decimal number by 16 and record the remainder.

2 Repeat the process with the quotient until the quotient is 0.

3 Form the hex number from the remainders, with the last remainder obtained being the most significant bit (the number on the left).

For example, to convert 25410 to hexadecimal:

1 Divide the decimal number by 16 and record the remainder: 25410 / 1610 = 1510 remainder 1410

quotient = 1510

remainder 1410 = E16

2 Repeat the process with the quotient until the quotient is 0:

1510 / 1610 = 010 remainder 1510

quotient = 010

remainder 1510 = F16

3 Form the hex number from the remainders, with the last remainder obtained being the most significant bit (the number on the left):

FE16

REVIEW QUESTIONS

Convert the following decimal (base-10) numbers to hexadecimal (base-16): 1 4210

2 15710

3 8910

4 20010

5 12310

Converting hexadecimal numbers to decimal

To convert from hexadecimal to decimal:

1 Convert hex digits to their decimal equivalents.

2 Multiply them by 16 raised to the power of its position index, starting from 0

on the right.

3 Sum the results.

For example, to convert 2F16 to decimal:

1 Convert hex digits to their decimal equivalents: 216 = 210

F16 = 1510

2 Multiply them by 16 raised to the power of its position index, starting from 0

on the right:

2 × 161 = 2 × 16 = 3210

15 × 160 = 15 × 1 = 1510

3 Sum the results:

32 + 15 = 4710

PROGRAMMING EXERCISE

[image: Image 37]

Add hexadecimal conversion functionality to the binary converter app you created before.

A1.2.2 How b inary is used to store

data

The binary system underpins everything from numerical values and textual information to complex multimedia files, ensuring efficient and reliable data processing. In this section, we are going to discover the mechanisms that are used to store such data as characters, strings, images, audio and video in binary form.

Characters and strings

Characters and strings are stored using standardized binary encoding schemes, enabling consistent storage, retrieval and processing across different systems and applications. The most common encoding standards are ASCII (American Standard Code for Information Interchange) and Unicode.

ASCII encoding

The development of ASCII began in 1960 and was officially standardized in 1963. It was developed because there was no standardized way to encode text characters, which led to compatibility issues between devices and systems.

Each manufacturer used its own proprietary encoding system, which made it very difficult for devices to communicate with each other. ASCII was designed to provide a common standard for the interchange of text data.

ASCII initially started out as a 7-bit encoding system, which gave it the ability to represent 128 (27) different characters, which was considered sufficient for most basic text data (letters, numbers, punctuation and control characters).

However, as computing became more global and applications required support for additional characters, an 8-bit extension to ASCII was developed, giving it the ability to represent 256 (28) characters. This was referred to as extended ASCII, and the new characters were mainly used for Western European languages.

ASCII uses a simple but clever system to represent characters in binary (as long as we are only considering the Latin (English) alphabet). The first five bits from the right are used to represent the letter by its numerical place in the alphabet.

For example:

[image: Image 38]

The first three bits from the left represent whether it is an uppercase or lowercase letter. 011 = lowercase; 010 = uppercase:

011000012

=

a

010000012

=

A

Top tip!

If the first five bits from the right are 00000 (five zeros), it is almost certainly a space (00100000).

If the first three bits from the left are not 011 or 010, it is likely to be a punctuation mark.

REVIEW QUESTION

Convert the following binary back into text to reveal the hidden message.

01000110 01101111 01101100 01101100 01101111 01110111 00100000

01110100 01101000 01100101 00100000 01110111 01101000 01101001

01110100 01100101 00100000 01110010 01100001 01100010 01100010

01101001 01110100

PROGRAMMING EXERCISE

Create an application so that you can send secret messages to your friends.

Write an application that accepts either a string of characters or a stream of binary. It should either encode the characters using ASCII and binary or convert the binary back into text.

To make the binary less easy to decode by hand, you could remove all spacing between the 8-bit characters.

Unicode encoding

In the 1960s, the United States and the majority of English-speaking countries had a system in 7-bit ASCII that worked for the English alphabet. Other non-English speaking countries had their own unique encoding systems to work with their own languages. When the ASCII system was increased to 8 bits (extended ASCII), allowing for 256 characters for use in modern computers, countries did not agree on the same standard. Nordic countries started using the extra space to encode characters for their own languages, and Japan used four different systems that were not even compatible with each other. This was not a huge issue as communication between these systems was rare, but then the internet was launched and compatibility became very important as more

[image: Image 39]

[image: Image 40]

[image: Image 41]

and more information was being shared between systems in different countries.

In 1991, the Unicode Consortium was created to try and solve this problem.

The organization was established to develop, maintain and promote the Unicode Standard, which provides a unique number for every character, regardless of platform, program or language. It needed to create a system that was capable of storing all the characters and punctuation marks from all the languages in the world, but also wanted it to be backwards compatible with ASCII. At the time of writing, the current Unicode Standard version 15.0, released in September 2022, encodes 149,186 different characters. Unicode includes the Latin, Cyrillic, Greek and Arabic alphabets, and Chinese characters, as well as many others, and also includes emojis and mathematical and other technical symbols. In Unicode, each letter or symbol is assigned a unique number, for example:

• A = 65

•

•

You can find the numerical representation for any character or symbol using the code below:

Python

Java

[image: Image 42]

How did they manage this? The story is that it was conceived in a café on the back of a napkin when Joe Becker (Xerox), Lee Collins (Apple) and Mark Davis (Apple and later Google) met and designed the encoding scheme in 1987.

There are a few different versions of Unicode: UTF-8, UTF-16 and UTF-32. Each has its own uses:

UTF-8

UTF-16

UTF-32

Variable

1–4 bytes per

2 or 4 bytes per

4 bytes per

length

character

character

character

encoding

Note

Compatibility:

Surrogate pairs: for

Simplicity: easier

backward

characters outside the

to process because

compatible with

Basic Multilingual

each character is

ASCII

Plane (BMP), two 16-

exactly 4 bytes

bit code units are used

Usage

Most commonly

Often used in Windows Less common due

used encoding on

and Java environments to higher storage

the web and in

requirements

many applications

Basic Multilingual Plane (BMP): the most commonly used characters and symbols for almost all modern languages.

[image: Image 43]

[image: Image 44]

Let’s examine UTF-8, the most commonly used encoding system, and understand its functionality.

Instead of merely expanding the size to accommodate over 100,000

characters, which would have adversely impacted most online content, a more efficient solution was devised. Had all characters been standardized to use 32

bits, each letter in the ASCII system would have quadrupled in size. This would have resulted in significantly larger documents and web pages, leading to increased storage requirements and slower transfer times. The system also needed never to send eight zeros (00000000) in a row, as many older systems would see this as the end of communication and would stop listening.

So the UTF-8 system kept the ASCII system the same. The letter “A” is encoded as:

01000001 = A

However, if the character needed went beyond the standard ASCII system, “é”

for example, more than one byte would be required:

11000011 10101001 = é

The bits in bold are important. The first three significant bits “110” on the first byte represent that this character is made up of two bytes in total (a 0 is needed at the end to show when this information is finished). The second byte starts “10”, which means this is a continuation. If you remove those 5 bits and then put both bytes together:

000 1110 1001 = 233 = é

Another example is:

This emoji requires four bytes using the UTF-8 system. The first byte communicates that this character is made up of four bytes (“11110”) and the next three bytes start with “10”, showing they are continuation bytes. If we remove that information:

UTF-8 has been adopted by the internet as the main character encoding system; however, it doesn’t come without some issues. Due to the variable length, some characters (especially those from Asian languages or emojis) take more space compared to single-byte encodings. This can lead to larger file sizes in certain contexts. The processing required to handle variable-length encoding also requires more complex processing compared to fixed-length systems such as UTF-32.

Despite these issues, UTF-8 has proved to be a versatile and effective encoding standard that meets the needs of the modern internet. Its backward compatibility, efficiency and broad support make it an enduring choice for encoding text. While it does have some challenges, particularly with handling non-ASCII characters and variable-length encoding, these are not significant

[image: Image 45]

enough ever to warrant a wholesale replacement. Therefore, it’s likely that UTF-8 will continue to be the dominant text encoding standard for the foreseeable future.

Shift cipher: a type of substitution cipher, where each letter in the plaintext is shifted a certain number of positions down or up the alphabet.

PROGRAMMING EXERCISES

The code below uses a Caesar cipher to encrypt the string that is input using a key. A Caesar cipher is a simple shift cipher, where each letter is considered to be an integer (a = 1, b = 2, c = 3, and so on) and the key is added to this to find the encrypted letter, for example:

String input: “Hello”

Key input: 1

Output: Ifmmp

Python

Java

[image: Image 46]

1 After studying how this code works, write the decrypt function for someone who receives an encrypted message.

2 Write a function that is able to brute force an encrypted message so you can identify the key used.

Brute force: a method of breaking a cipher by systematically trying every possible key until the correct one is found.

[image: Image 47]

Images

In 1957, Russel Kirch scanned an analogue photo of his son Walden, converting the picture into a digital file. This was the first ever digital image created. It was a significant milestone in the evolution of visual technology, revolutionizing the way we capture, store and manipulate pictures. The development of early digital cameras and scanners, which enabled devices to convert light into digital data, started the trend that has now become commonplace, and the transition from film to digital has transformed numerous industries, from photography and medical imaging to telecommunications and entertainment.

The first ever digital image: Russel Kirch’s son, Walden, in 1957

Bitmap images

Bitmap images, also known as “raster” images, are one of the most fundamental forms of digital graphics. They reproduce images by using a grid of pixels, with each pixel assigned a specific colour and intensity.

[image: Image 48]

At the bottom of the page is a bitmap image with an image resolution dimension of 13×10 (13 pixels wide by 10 pixels high). Each pixel is

“described” using 1 bit of data: either 1 or 0. In this case, 1 = black and 0 =

white (a monochrome image), and the amount of bits used to describe the colour is known as the “bit depth” or colour depth. So, we have a 13×10

image with a 1-bit colour depth in this example.

Analogue: a continuous signal that represents varying physical quantities, such as sound waves, which varies smoothly over a range; digital represents data in discrete binary values (0s and 1s), enabling precise and error-resistant processing.

Bitmap: a type of digital image composed of a grid of pixels, each holding a specific colour value, representing the image in a rasterized format.

Pixel: short for “picture element”; the smallest unit of a digital image or display, representing a single point in the image with a specific colour and intensity.

To calculate the size of this image, the formula is:

image size = width (pixels) × height (pixels) × colour depth (bits per pixel) 13 × 10 × 1 = 130 bits (or 130 / 8 = 16.25 bytes)

However, in reality, this calculation is not completely accurate, as the image would require more data to store metadata and other header information. This could include information such as dimensions, colour depth and other attributes that allow the CPU to read the image data accurately so it displays the image correctly to the screen.

To improve the quality of a bitmap image, we have two options: We can increase the number of pixels (resolution) or we can increase the colour depth.

Resolution – increasing the number of pixels: Increasing the number of pixels in a bitmap image increases the image quality.

A higher resolution allows for greater detail and clarity, and images with lower resolutions can lead to a loss of detail and a pixelated appearance. However, the quantity of pixels is not the only consideration: the size of the screen they are displayed on is also important. Images with a higher PPI (pixels per inch) look clearer than those with a lower PPI. Imagine having an image with a resolution of 1024×768 shown on your phone compared to on a cinema screen.

The higher PPI on the phone will give a clearer image due to the increased pixel density. The trade-off for a higher resolution image is larger file size, which can impact storage and transfer efficiency.

Image resolution: the number of pixels contained within a digital image, typically expressed as the dimensions (width × height) in pixels, and sometimes as the pixel density (PPI / DPI) for print quality.

Colour depth: also known as “bit depth”; the number of bits used to represent the colour of each pixel in a digital image, determining the range and precision of colours that can be displayed.

Metadata: information that describes other data, providing context and details about the data’s content, structure and attributes. In the context of digital images, metadata includes such information as the image’s dimensions, colour depth, creation date, author, camera settings and other properties that help with managing, understanding and using the image effectively.

Common image resolutions

Resolution

Pixel

Common usage

name

dimensions

VGA

640 × 480

Early computer screens, basic web

graphics

SVGA

800 × 600

Standard computer monitors, web

graphics

HD (720p)

1280 × 760

HD video, basic HD television

Full HD (1080p)

1920 × 1080

Full HD video, modern monitors and

televisions

2K

2048 × 1080

Digital cinema, some monitors

Quad HD

2560 × 1440

High-resolution monitors, gaming,

(1440p)

professional use

4K (Ultra HD)

3840 × 2160

Ultra HD televisions, high-end monitors,

video

Resolution

Pixel

Common usage

name

dimensions

8K

7680 × 4320

Cutting-edge televisions, professional

video

Colour depth – increasing the amount of colours:

When we increase the colour depth, it allows for a wider range of colours to be represented, resulting in more vibrant and accurate images. If an image’s colour depth is low, this can lead to banding, where gradients appear as distinct steps rather than smooth transitions. However, just like image resolution, we must also consider the impact of file size for storage and transfer times. The higher the colour depth, the larger the file size.

To work out the number of colours available, we calculate 2 to the power of the colour depth of the image; for example, for an image with an 8-bit colour depth:

28 = 256

Common colour depths

Colour depth (bits Number of

Common usage

per pixel)

colours

1 bit

2

Simple graphics, monochrome displays

4 bit

16

Early computer graphics, icons

8 bit

256

GIF images, simple web graphics

16 bit

65,536

High-colour images, some video

formats

24 bit (true colour)

16.8 million

Standard for most images and video,

digital photography

30 bit (deep colour)

Over 1 billion

Professional photography, high-end

monitors and televisions

36 bit

Over 68 billion Medical imaging, professional graphics

48 bit

Trillions

High-end personal applications,

detailed scientific imaging

The majority of modern-day screens are 24 bit, allowing for 16.8 million colours. They have three lights per pixel: a red, a green and a blue light, otherwise known as “RGB”, and have a value range from 0 to 255 (1 byte per colour channel). This is sufficient for most applications, as most human eyes can only distinguish between around 10 million distinct colours. Monitors that go beyond 24 bit are normally only necessary in professional fields where precision is crucial.

[image: Image 49]

On the left is a high-resolution image. If we zoom in to the dress on this image, we can see the breakdown of the individual pixels and the values of the distinct colour channels. When working with graphics, these values are often shown in hexadecimal. If we take the top left pixel of the dress as an example: R: 216, G: 190, B: 199 = #d8bec7

A high-resolution image with a resolution of 2268 × 4032, a 24-bit colour depth and a file size of 1.77 MB

[image: Image 50]

[image: Image 51]

A zoomed-in area of the image above, showing the value of each pixel –

created using www.csfieldguide.org.nz/en/interactives/pixel-viewer

The colour values for the top left pixel of the dress in the photo – created using www.w3schools.com/colors/colors_rgb.asp

We can also see the impact of lower colour depths on the same image:

[image: Image 52]

The same image using multiple colour depths: 24 bits to 0 bits – created using www.csfieldguide.org.nz/en/interactives/image-bit-comparer

REVIEW QUESTIONS

1 A bitmap image uses a colour depth of 3 bits, allowing for eight distinct colours.

How many bits are needed to represent the colours if the bitmap image uses 32 distinct colours?

2 Raj is creating a bitmap graphic for a game. The image dimensions are 10

pixels wide and 12 pixels tall.

How many pixels are there in total in the image?

3 Alice is organizing her digital artwork collection that she has created over the years.

While transferring her artwork files to a new cloud storage service, she notices that each file is larger than she anticipated. This is because, aside from the actual image data, the file includes extra information necessary for accurate reproduction of the image. What is this additional information, which contains details about the pixel data, called?

4 Determine the storage capacity needed for a bitmap image with dimensions of 800 × 600 pixels that supports 512 different colours.

[image: Image 53]

Then, calculate the file size in kilobytes (kB) if the file metadata occupies an additional 25 per cent of the space. Present your answer as a real number, including the decimal values.

PROGRAMMING EXERCISES

Here are some fun ways to explore images in more depth using Python or Java.

1 Extract and print RGB values.

Java

For Python, you need to install the Pillow library first. Run this command in your terminal to install the necessary libraries:

[image: Image 54]

pip install pillow

Python

2 Apply a grayscale filter.

Warning:

This code processes the image pixel by pixel, which means it iterates through every pixel in the image to apply the grayscale filter. For very large images (e.g. high-resolution photos), this process can be computationally intensive and take a significant amount of time to complete. Consider testing this code on smaller images first (e.g. 100x100 pixels) to observe its behaviour before applying it to larger files.

Python

[image: Image 55]

Java

[image: Image 56]

3 After studying how the grayscale filter works, are you now able to create your own unique filters?

Audio

Audio in its analogue form is a continuous signal that represents sound waves through variations of air pressure. These sound waves can be captured through input devices, such as microphones, which convert the sound waves into a digital signal, which is stored as binary. This process involves several steps:

[image: Image 57]

Analogue-to-digital conversion (ADC)

Sound is a continuous analogue signal. An ADC samples the amplitude (loudness) of the sound at discrete intervals in a process known as sampling.

The rate at which this happens is measured in Hertz (Hz) – the higher the Hertz, the more samples are recorded per second. CD-quality audio uses 44.1

kHz, but professional quality audio is sampled at 48 kHz.

This sample is then stored and represented as a numerical value in binary. The precision is determined by the bit depth. The larger the bit depth, the more possible values that can be used to describe the sample. For example, the bit depth of CD-quality sound is 16 bit, which gives 216, or 65,536, values.

Professional audio, which uses 24 bit, has 224, or 16,777,216, values.

A single second of a 44.1 kHz, 16-bit stereo (meaning two channels) audio has:

• 44,100 samples per second

• each sample represented by 16 bits

• a total storage need per second of 44,100 samples / second × 16 bits /

sample × 2 channels = 1,411,200 bits per second, or 176,400 bytes per second.

Amplitude: the magnitude of change in a sound wave, representing the loudness or intensity of the sound.

Sampling: the process of converting a continuous analogue signal into a series of discrete digital values by measuring the signal’s amplitude at regular intervals.

kHz (kilohertz): a unit of frequency equal to 1000 cycles per second, commonly used to measure the sampling rate of audio signals.

The blue continuous waveform represents an analogue signal, which is a smooth and continuous representation of sound. The digital signal consists of discrete samples taken at regular intervals (sampling rate), illustrating how the continuous analogue signal is converted into a series of discrete points in digital form.

Storage formats

There are many different types of file formats for storing audio. The most common are WAV, AIFF, MP3 and FLAC. They mainly differ by whether they are compressed or uncompressed. Uncompressed formats store the raw binary data, whereas compressed formats use algorithms to reduce the file size for storage or transmission. Just like with image compression, audio compression attempts to reduce the file size by removing parts of the audio signal that are less noticeable to human senses, in this case the ears. There are both lossy and lossless types of compression used with audio. Lossless algorithms compress the data without any loss of quality, whereas lossy algorithms permanently remove audio that is less noticeable to the human ear on the recording.

• WAV (Waveform Audio File Format): uncompressed

• AIFF (Audio Interchange File Format): uncompressed

• MP3 (MPEG Audio Layer III): compressed (lossy)

• FLAC (Free Lossless Audio Codec): compressed (lossless) Stereo: a method of sound reproduction that uses two or more audio channels to create the perception of sound coming from different directions, enhancing the sense of spatial depth and dimension.

REVIEW QUESTIONS

1 What is the main difference between an analogue signal and a digital signal in the context of audio?

2 What is the process of converting an analogue audio signal into a digital signal called, and what does it involve?

3 Calculate the storage needed per minute for a 44.1 kHz, 16-bit stereo audio file.

4 Explain the difference between lossy and lossless audio compression and give an example of each type of format.

PROGRAMMING EXERCISE

Explore audio files further using the code below. This will allow you to analyse the amplitude of any MP3 file.

You will need to install the following libraries:

• soundfile

[image: Image 58]

• numpy

• matplotlib

• scipy.

Run this command in your terminal:

pip install soundfile numpy matplotlib scipy

Python

Video

Videos are made up of various components that are all contained within an encapsulated container format such as MP4, MKV or AVI. The components are:

• frames (visual data)

• audio tracks

• metadata

[image: Image 59]

• subtitles and closed captions.

Audio is stored as described in the Audio section above, and metadata and subtitles are stored as text, so this section will focus only on how the video data is stored.

Video is essentially stored as a sequence of still images, otherwise known as

“frames”. When played in quick succession (usually 24 to 60 frames per second), these frames create the illusion of motion. This is very similar to the technique you may have used to create a flipbook. The frames are stored and encoded in binary format, utilizing various techniques to optimize space and ensure efficient playback.

Digital video playback is similar to a flipbook: a number of images that are shown quickly, creating the illusion of motion

Frames

In their raw form, frames are stored the same as images, with each pixel having a value that can be represented using a colour model such as RGB. To improve colour efficiency, frames are often converted from the RGB colour model to a different one such as YUV. This helps with compression, as this colour model emphasizes luminance (brightness), which the human eye is more sensitive to than changes in colour detail.

However, we cannot store frames in the same way as we store photos because, in this format, they would be too large. They need to be compressed, and there are two main techniques used for this: spatial (intraframe) and temporal (interframe).

Compression techniques

Spatial compression is particularly effective and commonly used for video that has significant detail variation in each frame. It reduces file size by

eliminating redundant information within each frame, such as colour depth or detail levels. This approach is important for videos with a lot of detail that may change significantly between frames, such as animations, nature documentaries and live news broadcasts.

Temporal compression is particularly effective and commonly used for video that has consistent motion across frames. It reduces file size by eliminating redundant information between consecutive frames, capturing only the changes or movements from one frame to the next. As a predictive compression technique, it predicts frame content based on the preceding and sometimes following frames, only storing the differences. This approach is important for videos with a lot of detail that may change significantly between frames, such as animations, nature documentaries and live news broadcasts.

REVIEW QUESTIONS

1 What is the role of frames in a video, and how do they create the illusion of motion?

2 Explain the difference between spatial compression and temporal compression in video storage.

3 Describe how converting video frames from the RGB colour model to the YUV colour model can improve compression efficiency.

4 Calculate the total storage needed for a 10-minute video with a frame rate of 30 frames per second, using 24-bit colour depth and a resolution of 1920×1080 pixels. Assume no compression.

Different binary methods for storing

integers

Unsigned binary

This is the system we covered in Section A1.2.1. This system only represents positive integers using straightforward binary digits (0s and 1s).

Signed binary

This includes methods for representing both positive and negative integers.

Two’s complement:

Two’s complement is a method for representing signed integers in binary, where the most significant bit (MSB) indicates the sign (0 for positive, 1 for negative). To convert a positive binary number to its negative counterpart in two’s complement, you first invert all the bits (change 0s to 1s and 1s to 0s) and then add 1 to the least significant bit (LSB).

For example:

00000101 = +5

Invert the bits

11111010

Add 1

11111011 = –5

However, a limitation of two’s complement is that, in an 8-bit system, it reduces the range of representable numbers. Instead of being able to represent 0 to 255, as with unsigned binary, two’s complement allows for numbers ranging from –128 to +127, effectively halving the number of positive values that can be represented.

One’s complement:

One’s complement is a binary representation method for signed integers, where the most significant bit (MSB) indicates the sign (0 for positive, 1 for negative). To obtain the one’s complement of a positive number, you simply invert all the bits (change 0s to 1s and 1s to 0s).

For example:

00000101 = +5

11111010 = –5

Unlike two’s complement, one’s complement has two representations of the number zero: positive zero (00000000) and negative zero (11111111). This is one of its main limitations and can cause confusion when using arithmetic and logical operations. This means two’s complement is normally the preferred system to use. Similarly to two’s complement, one’s complement also has a limited range, representing numbers from –127 to +127.

Sign-magnitude:

Sign-magnitude is a binary representation method for signed integers where the most significant bit (MSB) serves as the sign indicator, with 0 representing positive numbers and 1 representing negative numbers. The remaining bits represent the magnitude of the number, like how unsigned binary numbers work.

For example:

00000101 = +5

10000101 = –5

This system also has two representations for zero: positive zero (00000000) and negative zero (10000000). It also has the same range as one’s complement, from –127 to +127. It is a simple system but, like one’s complement, is less efficient compared to two’s complement.

Binary-coded decimal

Binary-coded decimal (BCD) is a method of representing decimal numbers where each digit of the decimal number is encoded separately into its own binary form. Unlike pure binary representation, which converts the entire decimal number into a single binary sequence, BCD assigns a 4-bit binary code to each decimal digit (0–9).

For example:

0100 0101 = 45

as 0100 represents 4, and 0101 represents 5

This system is useful where exact decimal representation is crucial, such as financial applications or digital clocks, as it avoids the rounding errors that can occur in other systems. However, due to using four bits per digit, more bits are required to store numbers, making it less space efficient than pure binary representations. Calculations using BCD are also more complex as they require additional steps to handle carry and overflow, so they are not good choices for general-purpose computing.

Gray code (reflected binary code)

Gray code is a binary system where two successive values are only allowed to differ by one bit. That makes this system particularly useful in situations where data integrity during transitions is important. An example system is a robotic arm where we want to monitor its position. As the arm rotates, the rotary encoder generates a sequence of binary outputs corresponding to the arm’s angle. If the encoder used standard binary code, small mechanical vibrations or inaccuracies could cause multiple bits to change simultaneously, leading to incorrect readings. However, by using Gray code, the risk of these transition errors is minimized.

Comparison of Gray code to standard binary for the numbers 0–7

Numbers

Standard binary

Gray code

0

000

000

1

001

001

2

010

011

3

011

010

4

100

110

5

101

111

6

110

101

7

111

100

Excess-N (biased representation)

Excess-N is a system where a fixed bias (N) is added to the actual value to form an encoded value, and you subtract this bias to decode it. This is used to make all signed integers appear as non-negative binary numbers to allow for easier comparisons and arithmetic operations.

For example, with Excess-3:

The decimal number 2 would be encoded as:

2 + 3 = 5

0101

The decimal number –2 would be encoded as:

–2 + 3 = 1

0001

In an 8-bit system, Excess-127 is often used, which adds 127 to encode an 8-bit number and subtracts 127 to decode it. If you consider trying to order a set of signed binary numbers, this can be difficult as the negative numbers are larger binary numbers than the positive.

For example, take 127 and –127 (using sign-magnitude):

Pre-encoded numbers:

01111111 = 127

10000001 = –127

When we encode these numbers with Excess-127, the positive numbers now appear larger than the negative numbers, making them easier to put in order: Encoded numbers (Excess-127):

127 + 127 = 254

11111110

–127 + 127 = 0

00000000

After this process has been completed, we decode the numbers again to return them to their original form:

Decoded numbers (Excess-127):

254 – 127 = 127

11111110

0 – 127 = –127

00000000

Fixed-point representation

[image: Image 60]

[image: Image 61]

[image: Image 62]

[image: Image 63]

[image: Image 64]

[image: Image 65]

[image: Image 66]

[image: Image 67]

Fixed-point representation is a method used to store real numbers (numbers with fractional parts) in binary by fixing the position of the binary point. In a fixed-point system, the binary point is placed at a predetermined position, either between certain bits or at a specific location in the binary sequence. This allows for a straightforward representation of fractional numbers, though with some trade-offs in terms of precision and range.

For example, if we want to represent 5.25 in an 8-bit system where four bits represent the integer and four bits represent the fractional part: Integer part (four bits): 0101 = 5

Fractional part (four bits): 0100 = 0.25

Combined: 0101.0100

Note: Binary fractions are used for the fractional part, where the first bit to the right represents the second bit represents the third and the fourth So, in the example above, we have ,

and

The number of bits assigned in this system limits the range and precision. In this example, with a 4-bit signed integer, we only have the range of –8 to 7.9375, with the smallest representable value being 0.0625

This means this

system is unable to handle very large or very small numbers effectively.

However, it is a simpler and faster system compared to floating-point arithmetic (see below), and does not require any complex operations to adjust the position of the binary point.

Floating-point representation

Floating-point representation is a method used to represent real numbers that can have a very large range or fractional parts. It does this by storing numbers in a format that includes a sign, an exponent and a mantissa (or significand).

This format allows computers to efficiently handle very large numbers, very small numbers and numbers with fractional parts, all with a reasonable degree of precision.

Using the IEEE 754 standard for single-precision floating-point numbers (which uses 32 bits):

1 Sign bit (one bit):

The sign bit determines whether the number is positive or negative.

2 Exponent (eight bits):

This is used to scale the number by a power of two and is stored using the Excess-127 system in its “biased” form; in other words, 127 is added to the actual exponent value.

3 Mantissa (23 bits):

This represents the significant digits of the number. The mantissa does not store leading ones (in normalized form).

For example, this is how we could represent the decimal number –5.75: Convert the number to binary:

101.11

Normalize this number to the form of 1.xxxxx × 2n:

1.0111 × 22

Determine the components:

Sign bit: 1 (as it is a negative number)

Exponent: 2 + 127 (Excess-127) = 129 = 10000001

Mantissa: 01110000000000000000000 (ignoring the leading 1) So, the IEEE 754 single-precision binary representation of –5.75 is: 1 (sign) 10000001 (exponent) 01110000000000000000000 (mantissa) This system allows for the representation of both very large and very small numbers, which is essential in scientific computing, engineering and graphics, and is more precise than fixed-point representation.

However, it is still not precise enough to represent all decimal numbers, and this can lead to rounding errors. The complexity of the system also makes it slower than others, often requiring special handling in hardware.

A1.2.3 Purpose and use of logic gates

The history of logic gates

In the mid-19th century, a British mathematician named George Boole developed an algebraic system known as “Boolean algebra”. This provided a mathematical framework for representing logical statements and operations that laid the foundations for modern digital logic.

[image: Image 68]

George Boole, the British mathematician who developed Boolean algebra, laying the groundwork for digital logic and modern computer science In the early 20th century, an American mathematician and electrical engineer named Claude Shannon was the first person to recognize the potential of Boolean algebra for electrical circuit design. He demonstrated how the design of electrical relay circuits could be optimized using Boolean algebra, and then the development of semiconductor technology further propelled the evolution of logic gates.

The transistor was then invented in 1947 at Bell Labs, which made it possible to build compact and efficient logic gates. By the 1960s to 1970s, integrated circuits were incorporating multiple transistors on a single chip, which led to the development of microprocessors. Logic gates are the building blocks of modern digital systems, from the basic calculator to advanced supercomputers.

Basic gates

Logic gates are fundamental components in digital electronics, crucial for building various types of circuits within computers and other digital devices.

The basic types of logic gates include AND, OR and NOT gates, each performing

[image: Image 69]

a specific logical function. These gates take one or more binary inputs and produce a binary output based on the logical operation they perform. To understand and verify the behaviour of these gates, we use truth tables, which systematically list all possible input combinations and their corresponding outputs, providing a clear representation of the gate’s function. Additionally, each gate has a corresponding Boolean algebra representation that simplifies complex logical expressions.

Logic gates are made up of transistors, which act as electronic switches, allowing or blocking the flow of electrical current. In a transistor, the control wire (or “gate”) regulates the current between the two electrodes, known as the “source” and the “drain”. When voltage is applied to the gate, it allows current to flow from the source to the drain, enabling the transistor to switch states and perform logical operations.

A Buffer gate that shows the inner workings of the gate – when the control wire is off, no electricity can flow between the electrodes

[image: Image 70]

[image: Image 71]

When electricity flows down the control wire, the transistor allows for the flow of electricity between electrodes

Above is a simple Buffer gate, where we can consider the control wire as the input and the electrode drain as the output. If the input is on, the output is on; and if the input is off, the output is off. We can show this using a truth table: Buffer gate truth table

Input A

Output X

1

1

0

0

AND gate

The diagram on the left shows an AND gate implemented using transistors. The gate has two inputs and one output. If only one of the inputs is on, one of the transistors without an input would stop the current passing through. It is only when both inputs are high (1) that the transistors allow current to pass through, resulting in a high output (1).

AND gate

Input and output rules: The AND gate outputs 1 only if both inputs are 1

AND gate truth table

Input A

Input B

Output X

0

0

0

0

1

0

[image: Image 72]

[image: Image 73]

AND gate truth table

Input A

Input B

Output X

1

0

0

1

1

1

Boolean algebra: X = A · B

Transistor-level schematic of an AND gate

OR gate

The diagram on the left shows an OR gate implemented using transistors. The gate has two inputs – A and B – and one output. When either input A or B is high (1), the corresponding transistor turns on, allowing current to flow through the circuit and resulting in a high output (1). When both inputs are low (0), neither transistor conducts and the output remains low (0).

OR gate

Input and output rules: The OR gate outputs 1 if at least one input is 1

OR gate truth table

Input A

Input B

Output X

0

0

0

0

1

1

[image: Image 74]

[image: Image 75]

OR gate truth table

Input A

Input B

Output X

1

0

1

1

1

1

Boolean algebra: X = A + B

Transistor-level schematic of an OR gate

NOT gate

The diagram below illustrates a NOT gate (inverter) using a transistor. In this configuration, the input line is connected to the gate of the transistor, the output line is connected to the source and the drain is connected to ground.

NOT gate

[image: Image 76]

[image: Image 77]

Transistor-level schematic of a NOT gate

When the input is high (1), the transistor turns on, allowing current to flow from the source to the drain, effectively grounding the output and resulting in a low voltage at the output (0). When the input is low (0), the transistor turns off, preventing current from flowing to the ground. In this state, the output then outputs a high voltage (1).

Input and output rules: The NOT gate outputs the opposite value of the input

NOT gate truth table

Input A

Output X

0

1

1

0

Boolean algebra: X =

Derived (complex) gates

The following gates – NAND, NOR, XOR and XNOR – are examples of derived gates. Derived gates are combinations of the basic gates and provide more complex logic functions. To show these, we will move up a level of abstraction

[image: Image 78]

[image: Image 79]

[image: Image 80]

[image: Image 81]

[image: Image 82]

and, rather than examine the transistor schematic, we will look at how the basic gates are combined to create them.

NAND gate (NOT AND)

A NAND gate is constructed with an AND gate followed by a NOT gate. Due to this, it gives the opposite output to an AND gate. If both inputs are high (1), the output is low (0). In all other cases, the output is high (1).

How a NAND gate is constructed: an AND gate followed by a NOT gate NAND gate

Input and output rules: The NAND gate outputs 1 unless both inputs are 1

NAND gate truth table

Input A

Input B

Output X

0

0

1

0

1

1

1

0

1

1

1

0

Boolean algebra:

NOR gate (NOT OR)

An NOR gate gives the opposite output to an OR gate as it is constructed using an OR gate followed by a NOT gate. This means that it is only when both inputs are low (0) that the output is high (1). In all other cases, the output is low (0).

How a NOR gate is constructed: an OR gate followed by a NOT gate A NOR gate

Input and output rules: The NOR gate outputs 1 only if both inputs are 0

[image: Image 83]

[image: Image 84]

[image: Image 85]

NOR gate truth table

Input A

Input B

Output X

0

0

1

0

1

0

1

0

0

1

1

0

Boolean algebra:

XOR gate (exclusive OR)

The XOR (exclusive OR) gate differs from the OR gate in one key way: its output is true only when the inputs are different. This means the XOR gate outputs true when exactly one of the inputs is true, but false when both inputs are the same. For example, if both inputs are high (1), the XOR gate’s output is low (0).

This is unlike the OR gate, which would output high (1) in this case.

How an XOR gate is constructed

An XOR gate

Input and output rules: The XOR gate outputs 1 if the inputs are different XOR gate truth table

Input A

Input B

Output X

0

0

0

0

1

1

1

0

1

1

1

0

Boolean algebra: X = A ⊕ B

XNOR gate (exclusive NOT OR)

The XNOR gate is constructed using an XOR gate followed by a NOT gate. This means the output is the opposite to an XOR gate, only outputting high (1) when both inputs are the same (either high or low).

[image: Image 86]

[image: Image 87]

[image: Image 88]

How an XNOR gate is constructed: an XOR gate followed by a NOT gate An XNOR gate

Input and output rules: The XNOR gate outputs 1 if the inputs are the same XNOR gate truth table

Input A

Input B

Output X

0

0

1

0

1

0

1

0

0

1

1

1

Boolean algebra:

A1.2.4 Constructing and analysing

truth tables

Truth tables to predict the output of

simple logic circuits

The following diagram shows a logic circuit, where a number of logic gates are connected together. In this scenario, you need to be able to handle circuits with up to three inputs.

[image: Image 89]

When creating a truth table, first enter the three inputs and their possible input states; in this case, A, B and C. As there are three inputs, you can calculate the number of rows you will need by 2n, where n represents the number of inputs.

In this example:

23 = 8

Populate the furthest right column, alternating between 0 and 1.

Populate the middle column by alternating, every two rows, between 0 and 1.

Populate the left-hand column by alternating, every four rows, between 0 and 1.

Following this pattern will give you every possible input state.

A

B

C

0

0

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

1

1

1

0

1

1

1

Once this is complete, we then add the intermediate values to make it easier to remember the state at each stage of the circuit. In this example, we have three intermediate values: P, Q and R. Finally, we add the output column, X.

[image: Image 90]

A

B

C

P

Q

R

X

0

0

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

1

1

1

0

1

1

1

Now, starting with the intermediate values, work through the logic circuit.

A

B

C

P

Q

R

X

(A AND B)

(B NOR C)

(P OR Q)

(C XOR R)

0

0

0

0

1

1

1

0

0

1

0

0

0

1

0

1

0

0

0

0

0

0

1

1

0

0

0

1

1

0

0

0

1

1

1

1

0

1

0

0

0

1

1

1

0

1

0

1

1

1

1

1

1

0

1

0

REVIEW QUESTIONS

Produce the truth tables for the following logic circuits.

1

2

[image: Image 91]

[image: Image 92]

3

4

[image: Image 93]

Truth tables to determine outputs from

inputs for a problem description

Problem description: A baby alarm that goes off when the alarm is switched on and the baby is crying or the room is too cold.

With a problem description, we first need to identify the inputs. Here we have three: alarm switch, baby crying and room temperature, which we can represent as A, B and C and set up our truth table.

We know the alarm goes off if the device is switched on AND the baby is crying OR the room is too cold. From here, we can identify the logic gates in the description. We can determine from this that the device must be switched on before the alarm can go off, so if the switch is off, all outputs would be 0. If the device is switched on, at least one of the other two inputs must be on for the alarm to trigger. We have one intermediate value (baby crying OR room is cold), represented with P.

A

B

C

P

X

(switch)

(crying)

(cold)

(B or C)

(A and P)

0

0

0

0

0

0

0

1

1

0

0

1

0

1

0

0

1

1

1

0

1

0

0

0

0

1

0

1

1

1

1

1

0

1

1

1

1

1

1

1

REVIEW QUESTIONS

Complete the truth tables for the following problem descriptions: 1 A traffic light control system that changes to green only if the pedestrian button is not pressed and the road sensor detects no cars waiting on the side road.

2 A water irrigation system that activates if the soil is dry or the temperature is high, provided the system is manually enabled.

3 A nuclear missile launcher: the missile should only launch if the president and two of his three cabinet ministers flip the switch.

Logical expressions

We can represent logic circuits using Boolean algebra. If we use the baby alarm scenario again, we can represent this as:

 X = A · (B + C)

In Boolean algebra, parentheses are often used to indicate which operations should be performed first. However, there is a standard order of operations, similar to PEMDAS (or BODMAS) in mathematics. If no parentheses are present, follow this sequence:

• NOT

• AND (including NAND)

• OR (including NOR and XOR)

This ensures that operations are executed in the correct order for accurate results.

REVIEW QUESTIONS

Using the Boolean algebra from the gates in Section A1.2.3, write the Boolean

algebra for the three logic circuits created in the previous problem descriptions:

1 Traffic light control system

2 Water irrigation system

3 Nuclear missile launcher

Karnaugh maps and algebraic

simplification

Karnaugh maps (K-maps) are a tool that helps simplify Boolean expressions, making it easier to create simpler and more efficient digital circuits. Instead of using complicated algebraic methods, K-maps allow you to visually group terms from a truth table, which makes it faster to find a simplified expression. This

[image: Image 94]

[image: Image 95]

[image: Image 96]

[image: Image 97]

[image: Image 98]

[image: Image 99]

process is useful because it reduces the number of logic gates needed in a circuit, saving time, space, cost and power consumption.

Two inputs

This two-input K-map is used for expressions with two variables. In this map, variable A is placed along the side and variable B across the top. However, the order of the variables doesn’t matter – B could be along the side and A across the top. Both possible states (0 and 1) for each variable are shown in the map, representing all combinations of their values.

Expression: A + B

We split the expression at the OR operator and focus first on the term involving A. We populate the K-map where A is 1, which, in this case, corresponds to the entire bottom row. At this stage, we ignore B and only fill in the cells where A is 1.

We now do the same for the second part of the expression: B.

This completed K-map now shows the expression A + B.

This is another example of a completed map for the expression Expression:

This is a more complicated expression, but still has only two inputs. Using this expression, the circuit would look like this:

[image: Image 100]

[image: Image 101]

[image: Image 102]

[image: Image 103]

[image: Image 104]

[image: Image 105]

The table map structure is still the same:

We again split the expression at the OR symbol, focusing initially on A ∙ B. In this case, we insert a 1 into only one cell, where both A and B are 1.

Next, we focus on the second part of the expression,

In this case, we insert

a 1 into the cell where A is 1 and B is 0.

The K-map is now complete and shows that the value of B has no impact on the outcome, allowing us to simplify the expression to just A. If we create the circuit using this simplified expression, we can see that the circuit is significantly more efficient, while still performing the same function.

[image: Image 106]

[image: Image 107]

[image: Image 108]

[image: Image 109]

[image: Image 110]

[image: Image 111]

[image: Image 112]

Three inputs

Expression:

With three inputs, we use a similar K-map but, this time, we place two of the inputs across the top. The digits across the top may seem out of order compared to standard binary counting (00, 01, 10, 11). Instead, they follow the Gray code convention (see Section A1.2.2 for more information), where only one digit changes at a time. It is important to set the map up this way to ensure correct grouping and simplification.

We now follow similar steps as with the two-input K-map. We separate the expression by the OR operator and focus on the first term: ∙ B ∙ C. In this step, we populate the K-map by inserting a 1 into the cells where A is 0, B is 1

and C is 1.

Followed by: A ∙ ∙ C

And finally: A ∙ B ∙ C

Grouping the 1s and simplifying the expression

Although it wasn’t explicitly stated before, you may have noticed the boxes drawn around groups of 1s in the K-maps. These boxes help simplify the Boolean expression, but there are some important rules that must be followed when grouping 1s:

[image: Image 113]

[image: Image 114]

• Groups must contain powers of 2: One, two, four, eight or sixteen 1s can be grouped together.

• Groups must be rectangular or square: Each group should form a rectangle or square shape.

• Groups cannot be diagonal: Adjacent 1s can only be grouped horizontally or vertically, not diagonally.

• Groups must be as large as possible: Always aim to make the largest groups to simplify the expression further.

• Groups can overlap: Some 1s may be included in more than one group if it helps form larger groups.

• Minimize the total number of groups: The goal is to use the smallest number of groups to cover all the 1s.

To determine the expression from the groups, we look at each group of cells and refer to the variables. If a variable’s value stays the same across all the cells in the group, we keep that variable in the simplified expression. However, if the variable’s value changes across the group, we discard it from the expression.

The first group is entirely along the bottom row, meaning C stays the same (C

= 1), so we keep it in the expression. A changes from 0 to 1 between the cells in the group, so we discard A. B remains 1 in both cells, so we keep B.

Therefore, the first part of our final expression is:

 B ∙ C

The second group, like the first, is located along the bottom row, meaning that C stays as 1 because it does not change across the group. In this case, A remains 1 in both cells, while B changes from 0 to 1. Since B changes, we discard B from this part of the expression. As a result, we keep A and C, giving us the second part of our expression:

 A ∙ C

We then combine these expressions with an OR operator, giving us the final expression:

 B ∙ C + A ∙ C

[image: Image 115]

[image: Image 116]

[image: Image 117]

[image: Image 118]

Common mistake

When setting up your K-map for three inputs, make sure to use Gray code for the headings, not standard binary. Gray code ensures that only one bit changes between adjacent cells, which helps when grouping 1s and simplifies the expression more effectively.

Wrapping around edges in K-maps

Here is the K-map for the expression:

+ A ∙ B ∙ C

To group these 1s, you may assume this is the answer:

However, K-maps are considered three-dimensional, and groups can be formed from left to right and top to bottom (although only left to right is possible with three inputs). In this example, it is possible to build a larger group by combining the two groups on the edges, forming a square group of four 1s.

[image: Image 119]

[image: Image 120]

[image: Image 121]

[image: Image 122]

[image: Image 123]

K-map drawn on a torus and in a plane – the dot-marked cells are adjacent Using these groups, we can form the simplified expression: A ∙ C +

REVIEW QUESTIONS

1 Draw the truth table for the above expression.

2 Draw the Karnaugh map for the expression and write the simplified expression.

3 Draw the truth table for the above expression.

4 Draw the Karnaugh map for the expression and write the simplified expression.

5 Draw the truth table for the above expression.

6 Draw the Karnaugh map for the expression and write the simplified expression.

[image: Image 124]

[image: Image 125]

[image: Image 126]

[image: Image 127]

A1.2.5 Constructing logic diagrams

Designing digital circuits from Boolean

algebra expressions

By understanding the principles of Boolean algebra, we can simplify complex logic expressions and translate them into circuit diagrams. This journey from abstract mathematical notation to circuit design is essential for creating efficient and reliable digital systems. We will start by creating the digital circuit from the expression below:

1 Start with two inputs: A and B.

2 Work on the first parenthesis by introducing an AND gate and joining both A and B to it.

3 Work on the second parenthesis, connecting A to a NOT gate and B to a NOT

gate.

4 Connect both the outputs to an AND gate.

[image: Image 128]

[image: Image 129]

[image: Image 130]

[image: Image 131]

[image: Image 132]

[image: Image 133]

5 Now work outside the parentheses and introduce the OR gate to link them together.

REVIEW QUESTIONS

Create the digital circuits from the following Boolean expressions.

1

2

3

4

5

A1.3 Operating systems

and control systems

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

• A1.3.1 Describe the role of operating systems

• A1.3.2 Describe the functions of an operating system

• A1.3.3 Compare different approaches for scheduling

• A1.3.4 Evaluate the use of interrupt handling and polling

• A1.3.5 Explain the role of the operating system in

managing multitasking and resource allocation (HL)

• A1.3.6 Describe the use of the control system

components (HL)

• A1.3.7 Explain the use of control systems in a range of real-world applications (HL)

A1.3.1 The role of operating

systems

An operating system (OS) is the fundamental software that

manages computer hardware and software resources and

provides common services for computer programs. It acts as an intermediary between the user and the computer

hardware, ensuring efficient and secure operation of the

system.

Operating systems simplify user interactions with computer hardware by abstracting the underlying complexities. This

means users and applications do not need to understand the detailed workings of hardware components such as

CPUs, memory and input / output devices. Instead, the OS

provides a set of high-level services and interfaces that hide these complexities, making the system easier to use and

program.

The primary role of an operating system is to manage the

computer’s resources effectively. This includes:

• CPU management: allocating CPU time to various

processes and ensuring efficient execution

• memory management: handling the allocation and de-allocation of memory to applications, and managing virtual memory to extend physical memory capacity

• storage management: organizing and managing data on storage devices, ensuring reliable data storage and

retrieval

• device management: controlling and co-ordinating hardware devices, providing drivers and interfaces for

seamless operation.

Some of the most famous modern operating systems are

Microsoft Windows, Apple macOS and Linux on larger

computers and laptops, with Android and iOS being more

popular for smaller portable devices such as smartphones.

A1.3.2 Functions of an

operating system

Operating system functions are multifaceted, ensuring that the system runs smoothly, efficiently and securely. Here, we will delve into the various critical functions of an operating system, illustrating how it maintains system integrity while running background operations and managing resources.

Memory management

Memory management is a fundamental function of an

operating system (OS), involving the control and co-

ordination of a computer’s primary memory (RAM). The OS

ensures that memory is allocated efficiently to processes

and applications, maintains system stability and protects

memory areas from unauthorized access.

When you open / run an application, the OS will load it into RAM. First, it will locate the application on the storage

device (likely a hard disk drive or solid state drive) and read the executable file (.exe on Windows or .app on Mac). This file contains all the application’s code and initial data.

The OS then allocates the necessary memory space for the

application. This includes space for the code, data and any other required resources. The OS ensures that the

application has enough space to execute without interfering with other processes.

Once the application is loaded into RAM, the OS

continuously manages memory to ensure efficient operation

and system stability. While the application is running, the OS

can dynamically allocate and de-allocate memory as needed

by the application. The OS also ensures that each process

operates within its own memory space. This prevents

processes from interfering with each other, which enhances the security and stability of the system.

If the applications require more memory than is available in the RAM, the OS can use virtual memory to keep the

system running smoothly. Virtual memory is when the OS

allocates some space on the hard disk drive (HDD) or solid state drive (SSD) to use as RAM. This is not an ideal

situation, as reading from a storage device is much slower than accessing RAM but, by switching processes with a

higher priority into RAM, and those with lower priority into

virtual memory, the OS is able to continue to run the system at an optimal level.

Virtual memory: a memory-management technique that

allows a computer to use more memory than is physically

available by temporarily transferring data from RAM to disk storage, enabling the execution of larger programs and

multitasking.

Top tip!

Think of memory management as organizing books on a

bookshelf. The operating system allocates each book

(process) its own space on the shelf (memory). Just as you wouldn’t let books overlap or mix up, the OS ensures that

each process has its own protected area in memory.

[image: Image 134]

Relationship between virtual memory and physical

memory

File management

File management is a crucial function of an OS, involving the storage, retrieval, organization and manipulation of data on storage devices. The OS provides a structured way to

manage files and directories, ensuring system stability and security.

The OS employs a hierarchical file system to organize files in a logical and structured manner. Files are organized into directories (or folders), which can contain further

directories, creating a tree-like structure. This organization makes it easier for users and applications to locate and

manage data.

The OS allows a number of set file operations that users and applications can perform on the files and directories,

including creating new files and directories; reading and

writing data to files; deleting files; renaming files; and moving or copying files and directories to different locations.

To ensure consistency and avoid conflicts, the OS enforces rules for naming files, ensuring no two files in the same

directory have the same name. Files often have

extensions, like .jpg or .exe, to indicate the file type and associated application although, depending on the OS

settings, these may be hidden from the user.

[image: Image 135]

[image: Image 136]

Windows File Explorer view displaying a hierarchical

directory structure

MacOS finder view displaying a hierarchical directory

structure

[image: Image 137]

Some of the most commonly used file extensions

When managing the storage of files, the OS uses various

methods to improve performance; this includes how it

allocates files on the physical storage medium, manages

free space and performs maintenance on the saved data.

One important maintenance task is defragmentation,

which reorganizes fragmented data on a hard disk drive

(HDD). Fragmentation occurs over time as files are created, modified and deleted, causing them to be scattered across

different sectors of the disk. Defragmentation aims to

rearrange these file fragments into contiguous sequences,

so improving system performance.

File extension: a suffix at the end of a filename that indicates the file type and the program associated with

opening or processing that file (e.g. .docx for Word

documents, .jpg for images).

Defragmentation: the process of reorganizing the data on a hard drive so that files are stored in contiguous

blocks, reducing fragmentation and improving access

speed and overall system performance.

Device management

Operating system device management ensures that

hardware devices operate efficiently and interact seamlessly

with software applications. The OS controls and co-ordinates the use of hardware components such as printers, disk

drives, display screens, keyboards and network interfaces

through specialized software called device drivers. Device drivers are essential programs that enable the OS to

communicate with connected hardware. Each piece of

hardware requires a specific driver to function correctly and efficiently. The OS uses these drivers to provide a uniform interface, allowing applications to interact with the

hardware without needing to understand the hardware’s

specifics.

Device drivers: specialized software programs that allow the operating system to communicate with and control

hardware devices, e.g. printers, graphics cards or network adapters, by providing the necessary instructions and

protocols.

Buffering: the process of temporarily storing data in a memory area (buffer) while it is being transferred between two devices or processes, helping to manage differences in data-flow rates and ensuring smooth, uninterrupted

operation.

Caching: the process of temporarily storing frequently accessed data in a high-speed storage area (cache) to

reduce access time and improve system performance by

enabling quicker retrieval of the data.

Spooling: the process of queuing data or tasks in a buffer, typically for input / output devices such as printers, so that they can be processed sequentially and at their own pace,

allowing the system to continue working on other tasks in

the meantime.

Plug and Play (PnP): a technology that allows the

operating system to detect, configure and install drivers

automatically for new hardware devices when they are

connected to the computer, enabling them to work without

requiring manual set-up by the user.

The OS also handles input/output (I/O) management to co-

ordinate data transfer between the computer and peripheral devices. It employs techniques such as buffering, caching and spooling to optimize performance and reliability.

Buffering involves using temporary storage areas to hold

data while it is being transferred between devices,

accommodating speed differences between the CPU and

peripheral devices. Caching stores frequently accessed data

[image: Image 138]

to reduce access times, improving overall system efficiency.

Spooling queues data and sends it in a manageable order to devices such as printers that cannot handle interleaved data streams.

Modern operating systems have introduced user-friendly

ways of connecting devices, such as Plug and Play (PnP) technology. With PnP, the OS can automatically identify a

device that has been attached and install the necessary

drivers and configure settings without the need for user

interaction. The OS is also capable of detecting errors and taking action to recover from them, by resetting the device, reinitializing drivers or notifying the user of the issue.

Additionally, the OS provides security and access control to ensure that only authorized users and processes can access certain devices, maintaining system integrity and security.

Device drivers act as intermediaries between the

operating system and hardware devices, enabling

software to communicate effectively with hardware components

Scheduling

The OS schedules the process of managing the execution of

multiple processes by determining which process runs at

any given time. The scheduler is responsible for allocating CPU time to processes, ensuring efficient and fair use of

system resources. This function is crucial for multitasking environments, where multiple applications and background

processes run concurrently. By implementing various

scheduling algorithms, the OS aims to optimize

performance, reduce wait times and maintain system

stability.

In Section A1.3.3, we will delve deeper into specific scheduling approaches, including first come first served,

round robin, multilevel queue scheduling and priority

scheduling. Each method has its own advantages and trade-

offs, and its suitability depends on the specific requirements and goals of the system.

Security

The OS security is designed to protect the integrity,

confidentiality and availability of information and resources within the computer system. It has mechanisms to

safeguard against threats, prevent unauthorized access and ensure that users and applications can operate securely.

User authentication

User authentication can be used in multiple ways. Initially, the OS may require the user to authenticate themselves to

log in to the system. It would require the user to provide credentials such as a username and password, biometric

data or security tokens. Once logged on, based on the user settings, the OS can then grant or prevent access to

certain files, folders or applications on the system. This allows systems to have multiple users with different access credentials, such as an administrator and a standard user.

Security tokens: physical or digital devices that generate or store authentication credentials, such as one-time

passwords or cryptographic keys, used to verify a user’s

identity and secure access to systems, networks or online

services.

Encryption

The OS can provide tools and frameworks for encrypting

files, communication channels and devices. The encryption

ensures that the data, even if it is intercepted or accessed by unauthorized individuals, cannot be read without the

decryption key.

Auditing and monitoring

All system activities, such as users logging in, file access, system errors and administrator actions, are tracked by the OS in a log. These logs are used for auditing and monitoring purposes and can help administrators detect suspicious

activities and potential security breaches. They can also be used to help identify issues and areas for improving the

system performance.

[image: Image 139]

Windows Event Viewer

Malware protection

The OS includes mechanisms to detect and prevent

malware infections and intruders. These include antivirus software, firewalls and intrusion detection systems (IDS).

These tools scan for malicious software, monitor network

traffic and block unauthorized access attempts, protecting the system from viruses, worms, trojans and other malicious threats.

Malware: a general term for any software designed with malicious intent, e.g. viruses, worms, trojans, spyware and ransomware, which can damage systems, steal data or

disrupt operations.

Viruses: malicious software programs that attach

themselves to legitimate files or programs and spread to

other files or systems, often causing damage or disruption.

Worms: self-replicating malware that spreads across networks without needing to attach to other programs,

exploiting vulnerabilities to infect multiple systems.

Trojans: deceptive programs that appear legitimate but carry hidden malicious code, which can create backdoors,

steal data or cause harm once executed by the user.

Accounting

Operating system accounting functions are essential for

monitoring and managing the usage of system resources.

These functions track resource consumption by users and

processes, providing valuable data for system

administrators to analyse performance, allocate costs and

optimize resource utilization. The key aspects of OS

accounting functions include:

• Resource usage tracking

The OS continuously monitors the consumption of various

resources by users and processes; this includes tracking:

• CPU usage: the amount of CPU time consumed by

each process or user

• memory usage: the amount of RAM allocated and

used by each process

• disk usage: the amount of storage space occupied by files and directories owned by each user

• network usage: the volume of data sent and received over the network by each process or user.

• Process accounting

Process accounting involves maintaining detailed records

of each process that runs on the system; this includes

information such as:

• process ID: a unique identifier for each process

• user ID: the identifier of the user who initiated the process

• execution time: the total CPU time used by the

process

• start and end times: the timestamps indicating when the process started and finished

• resource consumption: details on the amount of

memory, disk I/O and other resources used by the

process.

• User accounting

User accounting tracks the resource usage by individual

users or user groups; this information is crucial for:

• cost allocation: in multi-user environments, such as universities or enterprises, resource usage data can be

used to allocate costs to different departments or

projects based on their consumption

• quota management: enforcing resource usage limits for users to prevent any single user from monopolizing

system resources; this can include disk quotas, limiting

the amount of storage a user can use and memory

quotas.

• Performance monitoring

The OS accounting functions are integral to performance

monitoring; by analysing resource usage data, system

administrators can identify:

• bottlenecks: areas where resources are being

overutilized, causing performance degradation

• underutilization: resources that are underused,

indicating potential areas for optimization

• trends: patterns in resource usage over time, which can inform capacity planning and system upgrades.

• Auditing and reporting

The OS generates detailed reports based on the collected

accounting data; these reports can be used for:

• auditing: ensuring compliance with organizational policies and regulatory requirements by reviewing

resource usage and access patterns

• security analysis: detecting unusual or suspicious activity by analysing resource usage anomalies

• resource management: making informed decisions

about resource allocation, system configuration and

future investments.

• Billing and chargeback

In environments where resource usage needs to be billed

to individual users or departments, such as cloud-

computing services or academic institutions, OS

accounting functions enable:

• usage-based billing: charging users based on their actual resource consumption, such as CPU hours,

memory usage and network bandwidth

• chargeback: allocating costs to different departments or projects based on their resource usage, promoting

accountability and efficient resource use.

Graphical user interface

[image: Image 140]

By offering visual elements such as windows, icons, menus

and pointers, the OS provides a user-friendly environment

for interacting with the computer and allows the user to

execute commands, manage files and run applications.

The Ubuntu GUI

User interface elements

The user interface elements provided by the OS allow the

user to interact with the system intuitively. These elements include windows, which display the contents of applications, documents or system information. Icons give graphical

representation to applications, files and system functions, providing quick access to frequently used items. Menus offer lists of commands or options to access various functions,

making navigation and operation straightforward. Pointers, usually represented by an arrow or cursor, can be controlled with an input device like a mouse, enabling users to select, drag and interact with GUI elements seamlessly.

Application management

The GUI facilitates the management of and interaction with multiple applications, enhancing user productivity and

experience. Task switching allows users to move quickly

between open applications, with features like the taskbar or application switcher (Alt + tab) enabling efficient

navigation. Window management helps users organize their

workspace by arranging, overlapping and tiling windows.

Features such as snapping windows to edges or corners

create a split-screen effect for multitasking. The desktop environment, where users can place icons, shortcuts and

widgets, allows for a personalized and organized workspace, catering to individual preferences.

File and system management

The GUI simplifies file and system management tasks

through visual tools and interfaces. A GUI-based file

management tool, like the File Explorer, allows users to

navigate directories, view file properties and perform

operations such as copying, moving, deleting and renaming

files and folders. This tool often includes features such as search, sort and filter to facilitate file management. The GUI also provides access to system settings and control panels, enabling users to configure hardware, software and system

preferences through intuitive graphical interfaces. Drag-and-drop functionality offers a user-friendly method for

transferring files and data between applications and

directories.

Accessibility

The GUI includes features that enhance accessibility for

users with disabilities, ensuring that the system is usable by everyone. Screen readers convert text and GUI elements

into speech or Braille, helping visually impaired users to navigate the system. High-contrast themes and screen

magnifiers improve readability for users with low vision.

[image: Image 141]

Keyboard shortcuts allow users to perform actions quickly

without relying on a mouse or touchpad, benefiting users

with limited mobility.

MacOS accessibility features

Visual feedback

The GUI provides immediate visual feedback to user actions, enhancing the overall user experience. Progress indicators, including progress bars and loading animations, inform

users about the status of ongoing operations such as file

transfers or software installations. Notifications, in the form of pop-up messages and alerts, keep users informed about

important events, updates or errors. Tooltips – small

informative text boxes that appear when users hover over

icons or interface elements – provide additional information or guidance.

Customization and personalization

The GUI allows users to personalize their computing

environment to suit their preferences, making the system

more enjoyable and efficient to use. Users can change the

appearance of the GUI by selecting different themes,

wallpapers and window styles, creating a more customized

experience. Widgets and gadgets – small applications that

provide quick access to information and tools such as

weather updates, calendars and system monitors – enhance

the functionality and aesthetics of the desktop. These

customization options enable users to tailor their workspace to their needs and preferences, improving overall

satisfaction and productivity.

Virtualization

Virtualization is a key feature of modern operating systems that allows multiple virtual machines (VMs) to run on a

single physical machine. Each VM operates independently,

with its own OS and applications. The operating system

manages this through hypervisor, which allocates CPU

time, memory and storage to each VM, ensuring efficient

use of resources and allowing each VM to function as if it were on a separate physical machine.

Hypervisor: software that creates and manages virtual machines by allowing multiple operating systems to run

simultaneously on a single physical machine, sharing the

underlying hardware resources.

Load balancing: the process of distributing network or application traffic across multiple servers or resources to ensure optimal performance, reliability and availability,

preventing any single server from becoming overwhelmed.

Virtualization enhances security and stability by isolating VMs from each other, preventing issues in one VM from

affecting others. It also allows for snapshots and backups, enabling administrators to save the current state of a VM

and revert to it if necessary. Live migrations, which move VMs from one physical host to another without interrupting services, are another crucial feature, aiding in load

balancing and hardware maintenance.

Additionally, virtualization supports disaster recovery and cloud services. By allowing VMs to be easily backed up and restored, the OS ensures that critical applications and data can be quickly recovered in case of failure. Virtualization also enables dynamic scaling of IT infrastructure in cloud environments, allowing businesses to adapt quickly to

changing demands.

Networking

Operating systems manage and facilitate network

communication. One of the primary functions of an OS in

networking is to establish and maintain network

connections. The OS manages network interfaces and

protocols, enabling devices to connect to local area

networks (LANs), wide area networks (WANs) and the

internet. It configures network settings, assigns IP addresses

through DHCP (Dynamic Host Configuration Protocol) and handles the underlying hardware, such as network interface cards (NICs), ensuring that devices can communicate

effectively.

The OS also provides essential services for data

transmission and communication between devices. It

implements various networking protocols, such as TCP/IP

(Transmission Control Protocol/Internet Protocol), which

govern how data is packetized, addressed, transmitted,

routed and received. The OS ensures data integrity and

efficient transmission by handling error checking, flow

control and congestion avoidance. Additionally, the OS

supports higher-level protocols and services, such as HTTP

for web browsing, FTP for file transfers and SMTP for email communication, facilitating seamless interaction between

applications and network resources.

Security and access control are critical network functions managed by the OS. The OS employs firewalls, encryption

and authentication mechanisms to protect data as it travels across networks. Firewalls monitor and control incoming and outgoing network traffic based on predetermined security

rules, helping to prevent unauthorized access and attacks.

The OS also supports virtual private networks (VPNs), which encrypt data and create secure connections over public

networks, ensuring privacy and security for remote users.

These security features safeguard network communication

and ensure that only authorized users and devices can

access network resources.

REVIEW QUESTIONS

1 What is the primary role of an operating system in a computer?

2 How does the operating system abstract hardware

complexities for users? Provide an example.

[image: Image 142]

3 Explain how the operating system manages multitasking and resource allocation. Why is this important?

4 What are some of the key challenges the operating system faces in resource management?

5 What is memory management, and how does the

operating system ensure efficient use of memory?

6 Describe the role of device drivers in operating system device management.

7 How does the operating system manage files and

directories? Give examples of file-management

operations.

8 What is the importance of process scheduling, and what are some common scheduling algorithms used by

operating systems?

9 Explain how the operating system handles security and access control. Why are these functions critical?

ACTIVITY

Risk-taker: Research and information literacy

In this task, you will improve your research and information literacy skills by installing Ubuntu, a popular Linux

distribution, and comparing it with another operating

system of your choice.

1 Install Ubuntu on to a device (this could be a spare PC, a Raspberry Pi, a virtual machine or even a USB drive).

Document the installation process, noting how the OS

manages hardware and interacts with the user.

2 Research and compare:

a Choose another OS you are familiar with (for example Windows or macOS).

b Research the difference in how Ubuntu and your

chosen OS handle key aspects such as:

i user interface (including accessibility features) ii file management

iii memory management

iv software installation and updates.

3 Present your findings:

a Create a comparison table or chart to visually present the differences.

b Include a reflection on what you learned.

PROGRAMMING EXERCISES

1 Run the simple Python “Memory Hog” program below, which continuously allocates memory until the system

runs out.

Important note: Running this script may cause your

system to become unresponsive, as it will use up all

available memory. It’s recommended to run this in a

controlled environment, such as a virtual machine. You

can use Ctrl + C (Windows) or Cmd + C (Mac) to stop the

program running.

Python

[image: Image 143]

[image: Image 144]

This script creates a large list and appends a million

zeros each time it loops. When the system can no longer

allocate memory (due to running out of available RAM), a

“MemoryError” exception is raised and will be output. You

can monitor your system memory using Task Manager on

Windows or Activity Monitor on macOS.

Windows Task Manager showing the memory usage of the program above as it runs

2 File-management tasks

a Creating directories and files:

Step 1: Open the File Explorer (Windows) or Finder

(macOS) on your computer.

Step 2: Navigate to a location where you can create a new directory (for example your desktop or documents

folder).

• Windows: Right-click > New > Folder

• MacOS: Right-click or Ctrl-click > New Folder

Step 3: Inside “ProjectFiles”, create three subfolders named “Reports”, “Data” and “Images”.

Step 4: Within the “Reports” folder, create three text files named “Report1.txt”, “Report2.txt” and

“Summary.txt”. Use a text editor (for example Notepad

or TextEdit) to create these files, and include a few

lines of sample text in each file.

b Moving files:

Step 1: Move “Report2.txt” from the “Reports” folder to the “Data” folder.

• Windows: Drag and drop the file to the new location

or right-click > Cut, then right-click in the destination folder and select Paste

• MacOS: Drag and drop the file or use Cmd + C

(copy) and Cmd + V (paste).

Step 2: Move “Summary.txt” from the “Reports”

folder to the “Images” folder using the same methods.

c Renaming files:

Step 1: Rename “Report1.txt” to “FinalReport.txt”.

• Windows: Right-click the file > Rename

• MacOS: Click the file name once to select, then click

again to edit.

Step 2: Rename the “Data” folder “ProjectData”.

d Deleting files and directories:

Step 1: Delete the “Images” folder along with its

contents.

• Windows: Right-click the folder > Delete

• MacOS: Drag the folder to the Trash or right-click > Move to Trash.

Step 2: Recover the deleted “Images” folder from the Recycle Bin (Windows) or Trash (macOS).

• Windows: Open the Recycle Bin, right-click on the

“Images” folder, and choose “Restore”

• MacOS: Open the Trash, locate the “Images” folder,

right-click it, and choose “Put Back” to restore it to

its original location.

3 Research how to complete the same tasks away from the GUI using the OS terminal (Command Prompt / cmd

on Windows or Terminal on macOS).

4 Accessibility features

Complete one of the following tasks on your chosen OS.

a Explore accessibility features on Windows:

Step 1: Open the Control Panel by pressing Windows

+ R, typing control, and pressing Enter.

Step 2: Navigate to Ease of Access Center.

Step 3: Explore various accessibility features, such as Narrator (screen reader), Magnifier, High Contrast

Mode, Speech Recognition and On-Screen Keyboard.

Step 4: Activate and interact with at least two of these features, for example turn on Narrator and

Magnifier, and navigate through the desktop or a web

page to understand how these features assist users.

b Explore accessibility features on macOS:

Step 1: Open System Preferences by clicking on the

Apple menu and selecting System Preferences.

Step 2: Go to the Accessibility section.

Step 3: Explore various features, such as VoiceOver (screen reader), Zoom, Display (for colour filters,

invert colours), Speak Selection and Dictation.

Step 4: Activate and interact with at least two of

these features, for example enable VoiceOver and

Zoom and use them to navigate the system or read

through a document.

A1.3.3 Approaches for

scheduling

An operating system needs scheduling methods to

efficiently manage the execution of multiple processes,

ensuring optimal use of the CPU and other resources.

Scheduling determines the order in which processes are

granted access to the CPU and their duration, balancing the needs of various applications and maintaining system

responsiveness. Without effective scheduling, processes

could experience significant delays or monopolize

resources, leading to poor performance and user

frustration. In the following section, we will examine several different scheduling methods, including first come first

served, round robin, priority scheduling and multilevel

queue scheduling, each with its own advantages and trade-offs.

Monopolize resources: the control or domination of the use of system resources (e.g. CPU, memory or network

bandwidth) by a single process or user, often to the

detriment of other processes or users, leading to

inefficiency or system slowdowns.

First come first served

First come first served (FCFS) is one of the simplest

scheduling algorithms used by operating systems to

manage the execution of processes. In FCFS scheduling, the processes are executed in the order they arrive in the ready queue. When a process arrives, it is added to the end of the queue. The CPU scheduler selects the process at the front of the queue and assigns it to the CPU until it completes its execution or moves to an I/O wait state. Once the current

process is finished, the next process in the queue is

selected, and this continues until all processes have been executed.

The simplicity of FCFS makes it easy to implement and

understand. However, it has some drawbacks, such as the

“convoy effect”, where short processes may be delayed by

long-running processes, leading to increased waiting time

and lower system throughput. This method is non-pre-

emptive, meaning that once a process is assigned to the

CPU, it cannot be interrupted until it completes, which can cause inefficiency in certain scenarios.

[image: Image 145]

FCFS: waiting in line to be served

Advantages

Disadvantages

Simple and easy to

Convoy effect can cause

implement

significant delays

Fair, as it processes

Non-pre-emptive nature can lead

requests in the order

to inefficiency and longer than

they arrive

average waiting times

In this example, P1 arrives first and is executed

immediately, followed by P2 and P3 in the order they arrive.

Each process runs to completion before the next process

begins.

Process

Queue

P1 arrives

P1

Process

Queue

P2 arrives

P1, P2

P3 arrives

P1, P2, P3

Process

Time

0

1

2

3

4

5

6

7

8

9

P1

P2

P3

Round robin

Round robin (RR) is a pre-emptive scheduling algorithm

designed to provide fair time-sharing among processes.

Each process is assigned a fixed time slice, known as a

“quantum”, during which it can execute. When a process’s

quantum expires, the CPU scheduler pre-empts the process

and places it at the end of the ready queue, then selects the next process in line for execution. This cycle continues until all processes are completed.

The primary advantage of round robin scheduling is that it ensures a high level of responsiveness, as no process can

monopolize the CPU for an extended period. This approach

is especially effective in time-sharing systems where

multiple users or applications need to interact with the CPU

frequently. The length of the time quantum is critical: if it is too short, the system spends too much time switching

between processes; if it is too long, it resembles FCFS

scheduling.

[image: Image 146]

Round robin: each task takes a turn in a continuous

cycle, ensuring that each one gets equal time

Advantages

Disadvantages

Fair allocation of CPU

Time quantum selection is

time between processes crucial for performance

High responsiveness

High context-switching overhead

and improved system

if the time quantum is too short

interactivity

Prevents any single

Potential inefficiency if processes

process from

frequently complete their tasks

monopolizing the CPU

within a single quantum

In this example, process P1 runs from time 0 to 2, then is pre-empted. Process P2 runs from time 2 to 4, then is pre-empted. Then, process P3 runs from time 4 to 6 and is pre-

empted. The cycle repeats, with P1 running again from time 6 to 8, P2 from 8 to 10 and P3 from 10 to 12.

Process

Queue

P1 arrives

P1

P2 arrives

P1, P2

P3 arrives

P1, P2, P3

Process

Time

0

1

2

3

4

5

6

7

8

9

10

11

P1

P2

P3

Priority scheduling

Priority scheduling is a method where each process is

assigned a priority level, and the CPU is allocated to the process with the highest priority. Processes with higher

priority levels are executed before those with lower priority levels. If two processes have the same priority, they are

scheduled according to their arrival order, typically using FCFS. Priority can be either static (meaning it is assigned when the process is created and does not change) or

dynamic (meaning it can change over time based on various

factors such as ageing).

The main goal of priority scheduling is to ensure that critical tasks are executed as soon as possible, enhancing the

responsiveness of high-priority processes. However, a

significant drawback is the potential for low-priority

processes to suffer from starvation if high-priority processes continually dominate CPU time. To mitigate this, some

[image: Image 147]

systems implement ageing, which gradually increases the

priority of waiting processes to ensure they eventually

receive CPU time.

An example of a priority lane at an airport, where

passengers with higher priority (such as first class

ticketholders or those with a disability) are given faster service

Advantages

Disadvantages

Prioritizes important

Risk of starvation for low-priority

tasks, improving system processes

responsiveness for

critical applications

Flexible, as priorities

More complex to implement and

can be adjusted

manage than simpler scheduling

Advantages

Disadvantages

dynamically based on

methods

system needs

Priority inversion, where a lower-

priority process holds a resource

needed by a higher-priority

process, can be an issue if not

handled properly

In this example, P1 and P4, both high-priority processes, are executed first. After the high-priority processes are

completed, the medium-priority process P2 is executed,

followed by the low-priority process P3.

Process

Arrival time

Priority level

P1

0

High

P2

1

Medium

P3

2

Low

P4

3

High

Process

Time

0

1

2

3

4

5

6

7

P1 (High)

P2 (Medium)

P3 (Low)

P4 (High)

Multilevel queue scheduling

Multilevel queue scheduling is a scheduling algorithm that partitions the ready queue into several separate queues,

each with its own scheduling algorithm and priority level.

Processes are permanently assigned to one of these queues

based on certain characteristics, such as process type,

priority or memory requirements. Each queue may use a

different scheduling algorithm, such as FCFS or round robin, and the queues themselves are scheduled in a specific

order, often based on priority.

In this approach, higher-priority queues are given more CPU

time compared to lower-priority queues. For example,

interactive processes might be placed in a high-priority

queue scheduled with round robin, while batch processes

are placed in a lower-priority queue scheduled with FCFS.

The CPU scheduler selects processes from the highest-

priority queue first, moving to lower-priority queues only when the higher-priority queues are empty.

Advantages

Disadvantages

Flexibility in handling

Starvation of lower-priority

different types of

processes if higher-priority

processes

queues are frequently

occupied

Prioritizes critical and

Complex implementation and

interactive processes,

management

improving responsiveness

for important tasks

Different scheduling

Processes are permanently

algorithms can be tailored assigned to queues, which

to the needs of each

might not be optimal if their

queue

behaviour changes over time

In this example, processes in the high-priority queue (P1

and P2) are scheduled first using round robin. Both P1 and

P2 complete. The scheduler then moves to the medium-priority queue (P3), and then to the low-priority queue (P4) only when the high-priority queue does not have processes

ready to run. However, it frequently checks back to the

high-priority queue, which is why P2 (high) runs again after P4 (low).

Queue

Process

Scheduling

Process

priority

type

algorithm

queue

Q1 – High

Interactive

Round robin (time

P1, P2

quantum = 2)

Q2 –

Batch

FCFS

P3

Medium

Q3 – Low

Background / FCFS

P4

idle

Process

Time

0 1 2 3 4 5 6 7 8 9 10 11 12

P1 (High)

P2 (High)

P3 (Medium)

P4 (Low)

Common mistake

Don’t forget that context switching – when the CPU

switches from one task to another – can slow things down.

Even though it allows for multitasking, too much switching can reduce how efficiently the system runs because the

CPU spends time saving and restoring tasks.

REVIEW QUESTIONS

1 Explain the difference between first come first served (FCFS) scheduling and round robin scheduling. How does

the choice of time quantum in round robin affect process

performance?

2 What is the purpose of priority scheduling, and how does it differ from multilevel queue scheduling? Provide an

example of where each might be preferred.

3 In the context of operating systems, what is meant by context switching, and why is it important in process

scheduling?

4 Describe how multilevel queue scheduling works and discuss its advantages and disadvantages.

5 How does the operating system ensure fairness in scheduling while also optimizing performance? Discuss

this in the context of round robin and priority scheduling.

6 What are the potential drawbacks of using a first come first served scheduling algorithm in a multi-user

environment?

7 Why might an operating system choose to implement a hybrid scheduling approach, and what benefits does this

provide?

PROGRAMMING EXERCISE

Write a program to simulate different CPU scheduling

algorithms and analyse their performance on process

execution. Here is an example of how you could implement

FCFS scheduling in Python.

Python

[image: Image 148]

A1.3.4 Interrupt handling

and polling

Interrupt handling and polling are two fundamental

techniques used by operating systems to manage

communication between the CPU and peripheral devices.

Each method has its own advantages and drawbacks that

can affect system performance and efficiency, depending on the context in which they are used.

Interrupt handling

Interrupt handling is a mechanism where peripheral devices signal the CPU to gain its attention and request service.

When an event occurs, such as an input from a keyboard or

data from a network interface, the device sends an interrupt signal to the CPU. The CPU then pauses its current

operations, saves its state and executes an interrupt

service routine (ISR) to address the event. This method allows the CPU to remain idle or perform other tasks until an event actually occurs, making it highly efficient in

environments where events happen sporadically or

unpredictably. Interrupt handling ensures that the CPU only deals with events when necessary, reducing unnecessary

CPU cycles spent on checking for events.

Interrupt service routine (ISR): a special function in a computer system that automatically executes in response

to an interrupt signal, handling specific tasks, e.g.

processing input from hardware devices or managing

system events, before returning control to the main

program.

Latency: the delay between the initiation of an action and the corresponding response, often referring to the time it takes for data to travel from its source to its destination in a network or system.

However, the frequent occurrence of interrupts can

introduce processing overheads due to the context

switching involved. Each time an interrupt is handled, the CPU must save its current state and later restore it, which can be time-consuming and resource-intensive if interrupts are too frequent. Additionally, handling a high volume of

interrupts can lead to increased power consumption, which

is particularly critical for battery-powered devices. Despite these potential drawbacks, the efficiency of interrupt

handling in managing sporadic events and minimizing CPU

idle time makes it a preferred method in many real-time and interactive systems where immediate response to events is

crucial.

Top tip!

An interrupt is like a doorbell ringing while you’re busy

working. You stop what you’re doing (pause the current

process), answer the door (handle the interrupt) and then

return to your task. The operating system manages these

interruptions efficiently so that your work (the main

process) isn’t significantly delayed.

Polling

Polling, on the other hand, involves the CPU periodically

checking each peripheral device to see whether it requires attention. This method is straightforward and can be

efficient in systems where events occur at regular,

predictable intervals. Polling ensures controlled latency, as the CPU checks devices at predetermined times, making it

suitable for real-time applications where timely response is crucial. Polling can be implemented easily and provides a

simple mechanism to ensure that devices are checked

regularly.

However, polling can lead to significant CPU processing

overheads, as the CPU spends a considerable amount of

time repeatedly checking devices instead of performing

useful work. This continuous checking is resource-intensive and can detract from the system’s overall efficiency.

Additionally, polling is less power-efficient compared to

interrupt handling, as the CPU remains active even when

there are no events to process. This constant activity can drain the battery in portable devices more quickly than

systems that utilize interrupt handling. In environments

where event frequency is low or unpredictable, polling can be highly inefficient and wasteful, consuming CPU cycles

without necessarily detecting any new events.

Interrupts vs polling

Criteria

Interrupts

Polling

Event

Efficient for

More effective for

frequency

infrequent or

regular, predictable

unpredictable events, events, as the CPU

as the CPU only

checks devices at

set intervals

Criteria

Interrupts

Polling

responds when an

regardless of event

event occurs

occurrence

CPU

Lower overhead for

Higher overhead

processing

infrequent events but due to constant

overheads

can increase with

checking of devices,

high-frequency

consuming CPU

interrupts due to

cycles even when no

context switching

events occur

Power source More power-efficient, Less power-efficient,

especially for

as the CPU remains

battery-powered

active and

devices, as the CPU

continuously checks

remains idle until an

devices, leading to

event occurs

higher power

consumption

Event

Best for

Suitable for

predictability unpredictable events, predictable events,

as the system

ensuring regular

responds

checks at set

immediately to any

intervals

event occurrence

Controlled

Can provide quick

Provides controlled

latency

response times but, if latency with

interrupts are too

predictable response

frequent, it can lead

times, as checks

to variability in

occur at regular

response times

intervals

Security

Potentially more

Less secure if polling

concerns

secure as the system intervals are too

can quickly respond

long, as it may delay

to critical events,

Criteria

Interrupts

Polling

reducing the window the detection of

for malicious activity critical events

The choice between interrupt handling and polling depends

on the specific requirements and constraints of the system.

Interrupt handling is generally more efficient for sporadic events and battery-powered devices, but can introduce

overheads with high-frequency events. Polling offers

predictable latency and is straightforward to implement, but can lead to inefficiencies and higher power consumption.

Understanding the trade-offs between these methods is

crucial for designing effective and efficient systems.

Common mistake

Remember that specific context is very important when

deciding whether polling or interrupt handling is a better system solution. It is not a simple choice of one being

better than the other. Interrupts are great for events that happen unpredictably, while polling is better for regular, predictable events. Make sure you understand the

difference so you can choose the right method for each

situation.

Real-world scenarios

Mouse and keyboard

When a user moves the mouse or presses a key, these

devices generate interrupt signals that prompt the CPU to

immediately pause its current tasks and execute the

appropriate interrupt service routine (ISR). This ensures that user inputs are processed in real-time, providing instant

feedback and seamless interaction. For example, as a user

types, each keystroke generates an interrupt that the OS

handles promptly, ensuring that characters appear on the screen without delay. Conversely, using polling for these

devices would require the CPU to continuously check the

status of the mouse and keyboard, leading to unnecessary

processing overheads and increased power consumption,

especially in battery-powered devices like laptops. Polling could also result in delayed responses if the CPU is busy

with other tasks when a user input occurs.

For basic embedded systems like simple data-entry

terminals or kiosks, where user interaction is infrequent and the system is primarily idle, polling might be sufficient.

Polling at regular intervals to check for user input can

simplify the system design and avoid the overhead of

setting up and handling interrupts. This is acceptable in low-activity environments where immediate response is not

critical.

Network communications

When data packets arrive at a network interface card (NIC), they generate interrupt signals that alert the CPU to process the incoming data immediately. This prompt handling

ensures that data is quickly received, processed and passed to the appropriate application, maintaining smooth and

efficient network performance. For instance, during a video conference, interrupts enable real-time processing of audio and video data, ensuring minimal latency and high-quality

communication. Conversely, using polling for network

communications would require the CPU to continually check

the NIC for new data, leading to increased processing

overheads and potentially missing incoming packets if the

CPU is occupied with other tasks. This could result in delays, reduced network performance and higher power

consumption, especially in devices like smartphones or

tablets.

In scenarios where network traffic is minimal and predictable, such as a remote monitoring system that

periodically sends small data packets, polling can be more efficient. Polling at regular intervals to check for network activity reduces the complexity of interrupt handling and is sufficient to handle the infrequent, predictable

communication needs.

Disk input / output operations

When a disk drive completes a read or write operation, it

generates an interrupt signal that alerts the CPU to handle the data transfer immediately. This approach allows the CPU

to execute other tasks while waiting for the disk operation to complete, enhancing overall system efficiency. For

example, when a file is saved, the CPU can continue

processing other applications until the disk signals that the write operation is finished, at which point the CPU promptly transfers the data to the appropriate location. Conversely, using polling for disk I/O operations would require the CPU

to continuously check the status of the disk drive, leading to significant processing overheads and reduced efficiency. The CPU would waste valuable cycles repeatedly checking for

completion, especially during lengthy disk operations,

resulting in slower system performance and increased

power consumption.

In a system where disk access is predictable and infrequent, such as a data logger that writes to a disk at fixed intervals, polling can be appropriate. Polling the disk for readiness before scheduled writes can simplify the implementation

and eliminate the need for interrupt-driven complexity,

making the system easier to manage.

Embedded systems

Embedded systems, such as those in automotive control units or industrial machinery, often need to respond quickly to sensor inputs and external signals. For example, in an

automotive airbag system, sensors detecting a collision

generate interrupt signals that prompt the CPU to

immediately deploy the airbags. This rapid response is

crucial for the safety and effectiveness of the system.

Conversely, using polling in this scenario would require the CPU to continuously check sensor statuses, leading to

increased processing overheads and potentially missing

critical events if the CPU is occupied with other tasks. This delay in response could be catastrophic in time-sensitive

applications.

In situations where events occur at regular, predictable

intervals and the overhead of handling interrupts is not

justified, polling can be a better approach. For example, in a climate-control system for a building, the temperature

sensors might need to be checked at regular intervals to

maintain a constant environment. Here, polling would be

advantageous.

Real-time systems

In real-time systems, the choice between polling and

interrupt handling depends on the specific requirements of the application. While interrupts are typically preferred for their quick response times, there are scenarios where

polling can be more suitable.

For instance, in a real-time system that controls an

industrial robot performing repetitive tasks at fixed

intervals, polling can be more predictable and easier to

manage. The robot might perform sensor checks and

actuator adjustments at precise, regular intervals, ensuring that the tasks are executed in a controlled manner. This use of polling can simplify the design and avoid the overhead

associated with frequent context switching that comes with interrupts, ensuring that the system meets its timing

requirements consistently. In this scenario, the predictability and regularity of the events make polling a viable option, as it ensures that the system performs checks and adjustments at the exact required intervals without the complexity of

handling numerous interrupts.

In a real-time system like an automotive airbag deployment system, interrupt handling is crucial. The system must

respond immediately to sensor inputs indicating a collision.

When sensors detect a rapid deceleration or impact, they

generate interrupts that prompt the CPU to execute the

airbag deployment routine instantly. This immediate

response is essential to ensure the airbags deploy in time to protect the occupants. In such critical applications, the

ability of interrupts to provide an immediate and high-

priority response to specific events makes them the

preferred choice, as any delay in processing could result in catastrophic consequences.

REVIEW QUESTIONS

1 Explain the fundamental difference between interrupt handling and polling in terms of how they manage CPU

attention for peripheral devices.

2 In what scenarios might polling be more efficient than interrupt handling, and why?

3 Describe a situation in which interrupt handling could be preferred over polling, considering factors such as power

consumption and response time.

4 How does the frequency of events affect the choice between interrupt handling and polling?

5 What are the potential drawbacks of using interrupt handling in a system with high event frequency?

6 Discuss how power source (battery vs mains power) can influence the choice between using interrupts or polling

in a system.

7 How does the need for controlled latency impact the decision between using interrupt handling and polling?

Provide an example of a system where controlled latency

is critical.

8 Explain how security concerns could affect the choice between interrupt handling and polling in a networked

system.

A1.3.5 The role of the

operating system in

managing multitasking and

resource allocation (HL)

The operating system (OS) plays a critical role in managing multitasking and resource allocation, ensuring that multiple processes can run concurrently and efficiently on a

computer system. Multitasking allows a system to perform

multiple tasks seemingly simultaneously by quickly

switching between them, while resource allocation ensures

that each task receives the necessary resources (CPU time, memory, I/O devices) to execute properly. This involves

several key functions and faces numerous challenges.

Task scheduling

Task scheduling is one of the primary responsibilities of the OS in a multitasking environment. The scheduler decides

the order in which processes are executed, aiming to

maximize CPU utilization and system responsiveness. As

discussed in Section A1.3.3, there are various scheduling algorithms, such as first come first served (FCFS), round

robin, priority scheduling and multilevel queue scheduling, each with advantages and drawbacks. The scheduler must

balance the need to provide quick response times for

interactive processes with the efficient processing of

background tasks. This balancing act is crucial for

maintaining system performance and user satisfaction.

Resource contention

Resource contention occurs when multiple processes

compete for the same resources, such as CPU time, memory

or I/O devices. The OS must manage this contention to

prevent conflicts and ensure fair and efficient resource

usage. Techniques like mutual exclusion are used to manage access to shared resources. Mutual exclusion is a key

concept used in concurrent programming to prevent

multiple processes from accessing a shared resource or

critical section simultaneously. This ensures that only one process can use the resource at a time, preventing data

corruption and ensuring consistency. Techniques for

achieving mutual exclusion include using semaphores, locks and monitors.

Improper management can lead to such issues as resource

starvation, where a process is constantly denied necessary resources, or priority inversion, where a lower-priority

process holds a resource needed by a higher-priority

process. The OS must implement strategies to handle these

conflicts effectively to maintain system stability and

performance.

Semaphores

Semaphores are synchronization tools used to control

access to shared resources in a concurrent system. A

semaphore is an integer variable that can be incremented (signal) or decremented (wait) atomically. There are two

types of semaphores:

• Binary semaphores (mutex): Can only be 0 or 1,

effectively acting as a lock to ensure mutual exclusion.

For example: There are two processes that need to write to the same log file. To prevent both processes from

writing to the file at the same time (which could cause

data corruption):

1 The semaphore is initially set to 1, indicating that the log file is available.

2 When Process A wants to write to the log file, it checks the semaphore. If the semaphore is 1, Process A sets it

to 0 (locking the resource) and proceeds to write to the

log file.

3 If Process B tries to write to the log file while Process A is still writing, it will find the semaphore set to 0 and will be blocked until Process A is finished.

4 Once Process A finishes writing, it sets the semaphore back to 1, allowing Process B to proceed.

5 Process B then sets the semaphore to 0, writes to the log file, and finally sets the semaphore back to 1 when

done.

• Counting semaphores: Can take any non-negative

value, allowing multiple instances of a resource to be

managed.

For example: There is a limited number of database

connections (e.g. three connections) available to a group

of processes:

1 The semaphore is initialized with a value of 3,

representing the three available connections.

2 When Process A needs a connection, it checks the semaphore. If the value is greater than 0, Process A

decrements the semaphore by 1 and gains access to a

connection.

3 Process B and Process C do the same, decrementing the semaphore by 1 each time they gain access, leaving the

semaphore value at 0 once all three connections are in

use.

4 If Process D then requests a connection, it finds the semaphore at 0 and must wait until one of the other

processes releases a connection.

5 When Process A finishes using its connection, it increments the semaphore by 1, signalling that a

connection is now available. Process D can then proceed

to use the connection.

Locks

Locks are tools used to make sure that only one process can use a shared resource at a time. For example, if two

programs want to write to the same file, the first one must

“lock” the file before it can start writing. If the file is already locked by another program, the second program has to wait

until the lock is released. There are different types of locks, such as binary locks (also called “mutexes”), which allow

only one process at a time, and readers-writer locks, which let multiple processes read a resource but only one process write to it.

Monitors

Monitors are tools used in programming to help manage

access to shared resources safely. They ensure that only one process can use certain variables or methods at a time,

preventing conflicts. A monitor acts like a container that holds shared variables and the code (methods) that works

with them. When a process uses a monitors method, it automatically locks the monitor, so no other process can

use it until the first one is done. Monitors also have

condition variables that let processes wait for certain events to happen and notify others when those events occur. This

makes it easier to manage and co-ordinate tasks between

different processes safely.

Deadlock

Deadlock is a problem in multitasking systems where

processes get stuck because each one is waiting for a

resource that another process has, creating a cycle with no way to move forward. To handle deadlocks, the OS can use

different strategies:

• Deadlock prevention involves designing the system so that deadlocks can’t happen.

• Deadlock avoidance, such as using the Banker’s

algorithm, ensures a system only allocates resources if it can guarantee that all processes can eventually complete

without entering an unsafe state.

• Deadlock detection means regularly checking for stuck processes and then taking steps to fix the problem.

• Deadlock recovery might involve stopping one or more processes to break the cycle or reallocating resources

differently.

Multitasking challenges

The challenges of multitasking extend beyond task

scheduling and resource contention. The OS must also

manage context-switching efficiently, where the state of a currently running process is saved so that another process can be executed. Frequent context switches can introduce

overheads, reducing overall system performance. The OS

must also ensure data consistency and integrity, particularly when multiple processes access shared data. This involves

implementing robust synchronization mechanisms to

prevent data corruption and ensure that processes do not

interfere with each other.

REVIEW QUESTIONS

1 Explain how the operating system uses task scheduling to manage multitasking. Why is it important for

maintaining system performance?

2 What is resource contention, and how does the

operating system resolve it to prevent issues such as

resource starvation and priority inversion?

3 Describe the role of semaphores in managing resource allocation in a multitasking environment. How do binary

and counting semaphores differ?

4 How does the operating system handle deadlock in multitasking systems, and what strategies can be used

to prevent, avoid or resolve deadlocks?

5 What challenges does the operating system face in managing context-switching, and how does this impact

overall system performance?

A1.3.6 The use of the control

system components (HL)

Control systems are fundamental in automating and

regulating processes across a wide range of industries, from manufacturing to robotics and environmental control. At the core of any control system are various components that

work together to achieve desired outcomes by managing

inputs, processing data and generating outputs. These

systems rely on a precise feedback mechanism to ensure that the process remains stable and meets the set

objectives.

This section explores the key elements of control systems, including the roles of the input, process, output and

feedback mechanisms, as well as the critical components

such as controllers, sensors, actuators and transducers, and the control algorithms that drive them. Understanding these components and their interactions is essential for designing effective and efficient control systems.

Input, process, output and

feedback mechanism

Input

In a control system, the input is the initial signal or data received by the system, representing the desired condition or target that the system aims to achieve. This input could be anything from a set temperature in a heating system to

the desired speed in a motor-control application. The input is typically generated by a user, another system or an

environmental condition, and serves as the reference point for the system’s operation.

Output

The output is the result produced by the control system

after processing the input. It represents the actual state or action of the system, such as turning on a heater to reach a set temperature or adjusting the speed of a motor. The

output is directly influenced by the input and the control process, and it is typically the element that can be observed or measured to determine the effectiveness of the system in achieving its desired goals.

[image: Image 149]

[image: Image 150]

Feedback mechanism (open-loop and

closed-loop)

Open-loop control system

Closed-loop control system

The feedback mechanism is a critical component in

determining how a control system operates and adjusts

itself to maintain desired performance.

• Open-loop control: In an open-loop system, there is no feedback from the output back to the input or process. The system operates solely based on the initial input without

any correction or adjustment based on the actual output.

This type of control is simple and used in situations where the relationship between input and output is

straightforward and predictable, such as in basic timers or simple heating systems.

• Closed-loop control: A closed-loop system, also known as a “feedback control system”, continuously monitors the

output and feeds this information back into the system to

adjust the process accordingly. If the output deviates from the desired input, the system makes corrections in real

time to bring the output back in line with the target. This type of control is essential in applications requiring high accuracy and adaptability, such as temperature control in

[image: Image 151]

HVAC systems, where the system must adjust heating or

cooling based on actual temperature readings.

Key components

Controller

The controller is the central component of a control system that governs the operation by processing inputs and

generating appropriate outputs. It acts as the “brain” of the system, implementing the control algorithm to make

decisions based on the input data and feedback. The

controller compares the input (desired value) with the

feedback from the output (actual value) and determines the necessary actions to minimize the difference, or error,

between them. This decision-making process can involve

complex calculations, adjustments or commands that are

sent to actuators or other system components to achieve

the desired outcome. Controllers can range from simple

devices such as thermostats to complex microprocessors

used in industrial automation.

Sensors

Different types of sensors

Sensors are devices that detect and measure physical quantities from the environment or the system itself, such as temperature, pressure, speed or light. These

measurements are then converted into electrical signals

that can be interpreted by the controller. Sensors serve as the “eyes and ears” of the control system, providing the

necessary data for the controller to make informed

decisions. The accuracy and reliability of the sensors

directly impact the performance of the control system, as

they provide the critical feedback needed to adjust the

system’s operations. For example, a temperature sensor in

a climate-control system constantly monitors the room

temperature, allowing the controller to adjust heating or

cooling to maintain the desired setpoint.

Actuators

Actuators are the components in a control system that carry out the physical actions or adjustments in response to

commands from the controller. They are responsible for

converting the controller’s electrical signals into mechanical motion or other forms of energy, such as turning a valve,

moving a robotic arm or adjusting a motor’s speed.

Actuators are the “muscles” of the control system,

executing the tasks that directly impact the system’s

output. The performance and precision of actuators are

critical in applications where exact control of movements or processes is required, such as in manufacturing equipment

or robotics.

Transducers

Transducers are devices that convert one form of energy

into another, typically used to bridge the gap between

sensors and actuators and the control system. In many

cases, a sensor or actuator may not directly provide the

type of signal that the controller can process or that is

needed to drive the actuator. A transducer converts these signals into a compatible form. For example, a pressure

sensor might detect mechanical pressure and convert it into an electrical signal that the controller can interpret.

Similarly, an actuator might require a specific voltage or current that is supplied by a transducer. Transducers play a crucial role in ensuring that all parts of the control system can communicate effectively, enabling accurate and

efficient operation.

Control algorithm

The control algorithm is the set of rules or mathematical

procedures that the controller uses to determine the

appropriate output based on the input and feedback it

receives. It is the logic that drives the decision-making

process within the controller. Control algorithms can vary in complexity, from simple proportional control, where the

output is adjusted in direct proportion to the error, to more advanced methods like Proportional-Integral-Derivative (PID) control, which considers past, present and future errors to make precise adjustments. The choice of control algorithm

depends on the specific requirements of the system, such as the desired accuracy, speed of response and stability. A

well-designed control algorithm is essential for achieving optimal performance and ensuring that the system meets

its objectives efficiently and reliably.

REVIEW QUESTIONS

1 Explain the role of the controller in a control system.

How does it interact with sensors and actuators to

maintain system stability?

2 Describe how a feedback mechanism works in a closed-loop control system. Why is feedback essential for

maintaining accuracy and stability?

3 Differentiate between open-loop and closed-loop control systems with examples. Which type is more suitable for

complex, dynamic environments?

4 What is the function of a transducer in a control system?

Provide an example of a transducer used in industrial

automation.

5 Explain the importance of the control algorithm in a control system. How does it impact the performance and

reliability of the system?

Common mistake

Avoid oversimplifying the roles of control-system

components.

For example, don’t just say that sensors and actuators are important – explain how they work together within

feedback loops to maintain system stability.

When discussing multitasking, don’t just say that resource allocation is challenging – discuss specific risks, such as deadlock or priority inversion, to show a deeper

understanding.

A1.3.7 Uses of control

systems (HL)

Home thermostat

A home thermostat controls the room temperature by

processing data from a temperature sensor that

continuously monitors the environment. This sensor

provides input to the thermostat, which compares the

current temperature to the desired set point. If the

temperature deviates from the set value, the thermostat’s

controller processes this information and decides whether to activate the heating or cooling system to bring the

temperature back to the desired level.

The system uses a closed-loop feedback mechanism, where

the temperature sensor continually feeds updated data back to the controller. As the heating or cooling system adjusts the temperature, the sensor monitors the changes and

provides real-time feedback to the thermostat.

Automatic elevator control

An automatic elevator control system manages the

movement of an elevator by processing input from various

sensors, such as those detecting the elevator’s current

position, floor requests and door status. These inputs are fed into the controller, which processes the data to

determine the elevator’s next action, such as moving up or down, stopping at a requested floor or opening and closing the doors.

The system operates using a closed-loop feedback

mechanism. As the elevator moves, sensors continuously

provide real-time updates to the controller about the

elevator’s position and speed. If the elevator needs to stop at a specific floor, the controller adjusts the motor’s

operation to slow down and halt the elevator precisely at

the correct floor.

Autonomous vehicles

Autonomous vehicles rely on a sophisticated control system that integrates key components such as sensors, controllers, actuators and transducers to navigate and operate safely

without human input. The system begins with various

sensors, including cameras, LiDAR, radar and GPS, which

gather critical data about the vehicle’s environment, such as

obstacles, road conditions and traffic signals. This data serves as the input for the vehicle’s control system. The

controller, often powered by advanced AI algorithms,

processes this input using control algorithms to make realtime decisions about the vehicle’s speed, direction and

braking. The controller then sends commands to the

actuators, which carry out these decisions by controlling the steering, acceleration and braking systems.

The control system operates within a closed-loop feedback

mechanism, where sensors continuously monitor the

vehicle’s actions and environment, feeding updated data

back to the controller. This allows the system to adjust its actions in real time, ensuring the vehicle can adapt to

changes such as sudden obstacles or shifting traffic

conditions. Transducers play a crucial role in converting

sensor data into signals that the controller can process and in translating controller commands into the appropriate

actions by the actuators.

[image: Image 152]

The sensors used for input and output by an

autonomous vehicle

Automatic washing machine

An automatic washing machine uses a control system to

manage the washing process by processing input from

sensors that monitor water levels, load size and cycle

progress. These inputs are sent to the controller, which

determines the appropriate actions, such as filling the drum

with water, agitating the clothes (the motion used by the washing machine to move the clothes around in the water)

or draining the water after the wash cycle.

The system operates with a closed-loop feedback

mechanism, where sensors continuously update the

controller on the current state of the washing process. For instance, when the water reaches the required level, the

sensor signals the controller to stop filling and begin the washing cycle. Similarly, the controller adjusts the duration and intensity of the spin cycle based on the load size

detected by the sensors.

Traffic signal control system

A traffic signal control system manages the flow of vehicles at intersections by processing input from sensors that

detect the presence of vehicles and pedestrians and

sometimes traffic conditions. These inputs are fed into the controller, which processes the data to determine the timing and sequence of the traffic lights – when to turn red, amber or green for each direction.

The system operates using a closed-loop feedback

mechanism. As vehicles approach the intersection, sensors

detect their presence and provide real-time updates to the controller. The controller then adjusts the signal timing

based on current traffic conditions, such as extending the green light for a congested lane or triggering a pedestrian crossing light when needed. By continuously adapting to

real-time data, the system optimizes traffic flow and

reduces congestion, contributing to smoother and safer

movement through intersections.

Irrigation control system

An irrigation control system automates the watering of agricultural fields or gardens by processing input from

sensors that monitor soil moisture levels, weather

conditions and sometimes the time of day. These inputs are sent to the controller, which determines when and how

much water should be delivered to the plants.

The system utilizes a closed-loop feedback mechanism,

where the sensors continuously update the controller on the current moisture levels in the soil. If the soil becomes too dry, the controller activates the irrigation system to deliver the appropriate amount of water. Once the desired moisture level is reached, the system shuts off the water supply. By responding dynamically to the actual needs of the soil and plants, the irrigation system conserves water and ensures

optimal growing conditions, avoiding both under- and over-

watering.

Home-security system

A home-security system uses a control system to monitor

and protect a property by processing input from various

sensors, such as door and window sensors, motion detectors and cameras. These sensors provide real-time data to the

controller, which assesses potential security threats and

determines the appropriate response, such as sounding an

alarm, sending notifications to the homeowner or contacting emergency services.

The system operates within a closed-loop feedback

mechanism, where the sensors continuously send updates

to the controller about the status of the home. If a sensor detects an intrusion, the controller immediately triggers the security protocols, such as locking doors or activating

cameras to record the event.

Automatic doors

An automatic-door system uses a control system to manage the opening and closing of doors by processing input from

sensors that detect the presence of people or objects near the entrance. These sensors, such as infrared motion

detectors or pressure mats, send signals to the controller, which then decides when to open or close the doors.

The system operates using a closed-loop feedback

mechanism. As soon as the sensors detect movement or

pressure, they trigger the controller to open the doors. Once the person or object has passed through and the sensors no longer detect any presence, the controller signals the doors to close.

REVIEW QUESTIONS

1 Describe how a control system operates in an

autonomous vehicle. What components are involved,

and how do they interact to ensure safe and efficient

operation?

2 Compare the control system used in a home thermostat with that of an irrigation control system. What are the

similarities and differences in how these systems

maintain the desired environmental conditions?

3 Explain the importance of a closed-loop feedback mechanism in the operation of an automatic elevator

control system. How does it ensure accurate and safe

operation?

4 In the context of a traffic-signal control system, discuss how the control system adapts to changing traffic

conditions. How does the use of sensors and feedback

help in optimizing traffic flow?

5 Describe how a smart home-lighting system operates as a control system. Identify the key components, including

the controller, sensors, actuators and feedback

mechanism, and explain how they interact to automatically adjust the lighting in the home based on

the time of day and occupancy.

PROGRAMMING EXERCISES 1

1 Simulate a traffic-light control system. If you have access to an Arduino and the components, you can build

this for real. Otherwise, you can use simulation software

such as Tinkercad.

Tinkercad instructions:

Step 1: Click on Circuits from the dashboard, and then click on Create new Circuit.

Step 2: From the component library, search for and add the following components to your workspace:

• One Arduino Uno R3 with breadboard

• Three LEDs (Red, Yellow, Green) for one traffic light

• Three resistors (220 ohms each)

• Breadboard (optional, for better organization)

• Pushbutton (optional, for triggering sensors)

Step 3:

• Red LED:

• Connect the longer leg (anode – the bent leg) of the

red LED to pin 13 on the Arduino.

• Connect the other end of the resistor to the ground

(GND) on the Arduino.

• Yellow LED:

• Connect the anode of the yellow LED to pin 12.

• Connect the cathode to one end of a 220-ohm

resistor.

• Connect the other end of the resistor to GND.

[image: Image 153]

• Green LED:

• Connect the anode of the green LED to pin 11.

• Connect the cathode to one end of a 220-ohm

resistor.

• Connect the other end of the resistor to GND.

Step 4 (optional):

• Place a pushbutton on the breadboard.

• Connect one side of the pushbutton to 5V.

• Connect the other side to a digital pin on the Arduino

(e.g. pin 7).

• Add a 10k-ohm resistor connecting the same side of

the pushbutton to GND (which acts as a pull-down

resistor).

Set-up 1:

C++

[image: Image 154]

Set-up 2 (with optional pushbutton):

[image: Image 155]

C++

[image: Image 156]

2 Observe how the control system manages the traffic-light sequence and adapts to changes (if a sensor is

used).

3 Discuss how the components (LEDs, controller, optional sensor) work together as part of the control system.

4 Discuss the effectiveness of your traffic-light control system and how it could be improved or extended.

PROGRAMMING EXERCISES 2

1 Simulate a motor control system where the speed of the motor is adjusted based on feedback from a sensor. It

also has a maximum speed that is set in code and

should not be exceeded by the motor. If you have access

to an Arduino and the components, you can build this for

real. Otherwise, you can use simulation software such as

Tinkercad.

Tinkercad instructions:

Step 1: Click on Circuits from the dashboard, and then click on Create new Circuit.

Step 2: From the component library, search for and add the following components to your workspace:

• One Arduino Uno R3 with breadboard

• One potentiometer

• H-Bridge motor driver (L293D)

• One DC motor

• One 9V battery

Step 3:

• Arduino:

• Connect 5V to the bottom positive (red) power rail

on the breadboard.

• Connect GND to the bottom negative (black) ground rail on the breadboard.

• Connect the bottom negative (black) ground rail on

the breadboard to the top negative (black) ground

rail on the breadboard.

• Potentiometer:

• Connect Terminal 1 to the ground (GND) on the

Arduino.

• Connect Terminal 2 to the 5V on the Arduino.

• Connect Wiper to A0.

• 9V battery:

• Connect the positive terminal of the battery to the

top positive (red) power rail on the breadboard.

• Connect the negative terminal of the battery to the

top negative (black) ground rail on the breadboard.

• H-Bridge motor driver (L293D):

• Place it, ensuring that it straddles the centre gap

between the two sides of the breadboard.

• Connect “Enable 1 & 2” to the 5V on the Arduino.

• Connect Power 1 to the 9V on the battery.

• Connect all four ground pins to the GND.

• Connect Power 2 to the top positive (red) rail on the

breadboard.

• Connect Input 1 to pin 5 on the Arduino.

• Connect Input 2 to pin 6 on the Arduino.

• DC motor:

• Connect Terminal 1 to Output 2 on the L293D.

• Connect Terminal 2 to Output 1 on the L293D.

[image: Image 157]

C++

[image: Image 158]

2 Observe how the motor speed changes as the sensor value changes. For example, turning the potentiometer

should increase or decrease the motor speed, depending

on the direction.

3 Modify the maximumSpeed in the code to see how the system responds to different target speeds or positions.

EXAM PRACTICE QUESTIONS

1 Describe the role of an operating system in organizing files within a directory structure.

[2]

2 Outline the steps an operating system takes to load an application into memory.

[3]

3 Describe the function of memory management within an operating system.

[3]

4 Describe the function of process scheduling in an operating system.

[3]

5 Describe how an operating system ensures security through user authentication.

[2]

6 Compare the advantages and disadvantages of using first come first served (FCFS) and round robin (RR)

scheduling algorithms in operating systems.

[4]

7 Explain how priority scheduling can cause some

processes to be ignored or delayed in an operating

system. Describe a way to prevent this problem.

[4]

8 Discuss how event frequency and CPU processing

overheads influence the choice between interrupt

handling and polling.

[4]

9 Describe the role of the operating system in preventing deadlock during multitasking.

[3]

10 Describe how an irrigation control system operates as a control system. What components are involved, and

how do they interact to ensure optimal watering

conditions?

[4]

[image: Image 159]

A1.4 Translation

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

• A1.4.1 Evaluate the translation processes of interpreters and compilers A1.4.1 Translation processes of

interpreters and compilers

Understanding the translation processes of interpreters and compilers is essential for grasping how programming languages are executed by computers. Interpreters and compilers both transform high-level code into machine-readable instructions, yet they do so through different methods, each with unique implications for performance, error handling and development efficiency. This section delves into the specifics of how interpreters and compilers function, examining their respective strengths and weaknesses and how these impact the choice of translation method for different programming scenarios.

Interpreters

The interpreter process

Mechanics

Interpreters translate high-level programming code into machine code line-by-line or statement-by-statement, executing each line as it is translated. Unlike compilers, interpreters do not generate an intermediate machine-code file; instead, they directly execute the source code on the fly. This means that the interpreter reads the code, translates it and runs it

[image: Image 160]

immediately, repeating this process for each line or block of code until the entire program has been executed.

One key characteristic of interpreters is their ability to start executing a program without needing to process the entire codebase upfront. This allows for immediate feedback, which is particularly useful during the development and debugging phases. However, this line-by-line execution can result in slower overall performance compared to compiled code, as the interpreter must repeatedly translate and execute code during each run of the program.

Use cases

Interpreters are commonly used in scenarios where quick testing and debugging are essential. Languages including Python, JavaScript and Ruby are often interpreted, making them popular choices for web development, scripting and rapid application development. The ability to execute code immediately without a lengthy compilation process allows developers to experiment and iterate quickly. Additionally, interpreters are ideal for educational purposes, as they enable beginners to see the results of their code in real time, making it easier to understand programming concepts.

Interpreters are also favoured in environments where portability is important. Since the interpreter itself handles the execution, the same source code can be run on different platforms without modification, provided the appropriate interpreter is available on each platform.

Compilers

The compiler process

Mechanics

Compilers, in contrast to interpreters, translate the entire high-level source code into machine code in a single, comprehensive process before the program is executed. This process involves several stages, including lexical analysis, syntax analysis, semantic analysis, optimization and code generation. The final output is a standalone executable file, typically in machine code or an intermediate form like bytecode, which can be run directly on the target machine.

Once compiled, the machine code does not need further translation, allowing the program to execute much faster than interpreted code.

However, the initial compilation process can be time-consuming, especially for large and complex programs. Additionally, because the entire code must be compiled before execution, any errors in the source code need to be addressed before the program can run, which can slow down the development cycle.

Use cases

Compilers are typically used in scenarios where performance is a critical concern. Languages including C, C++ and Java (which compiles to bytecode for the JVM) are compiled, making them well suited for system software, application development and situations requiring high-performance execution, such as video games or real-time processing systems.

Compiled code is also advantageous in environments where security and resource control are important. Since the machine code is pre-generated and optimized, it can be more difficult for malicious actors to reverse-engineer, and the execution is less dependent on external environments compared to interpreted code.

Compilers are often chosen when the software needs to be deployed across various environments with different hardware specifications. The compilation process can be tailored to optimize the executable for specific architectures, resulting in better performance and resource usage on the target system.

Top tip!

An interpreter is like someone who translates each sentence of a book for you as you read, providing immediate understanding but requiring them to translate each line every time you revisit it.

In contrast, a compiler is like a translator who first converts the entire book into your native language, allowing you to read it smoothly without needing further translation, but requiring you to wait until the whole book is translated before you can start reading.

Advanced compilers and interpreters

Bytecode interpreters

Mechanics:

Bytecode interpreters operate by first translating high-level source code into an intermediate form known as “bytecode”. This bytecode is not directly executed by the machine’s hardware, but is instead run on a

[image: Image 161]

virtual machine (VM) or an interpreter that understands the bytecode’s instructions. The bytecode serves as a compact, platform-independent representation of the program, which allows it to be executed on any system that has the appropriate VM or interpreter. The bytecode interpreter reads and executes the bytecode instructions, often with some optimization, though it typically does so at a slower pace than fully compiled machine code because each instruction is interpreted at runtime.

The Java Bytecode interpretation process

Use cases:

Bytecode interpreters are widely used in scenarios where portability and cross-platform compatibility are important. Java is a prime example, where code is compiled into bytecode that runs on the Java Virtual Machine (JVM). This allows Java applications to run on any platform with a JVM, making it ideal for enterprise applications, web services and mobile apps that need to operate across diverse environments. Python also uses a similar approach, where the source code is compiled into bytecode (with the .pyc extension) and then executed by the Python interpreter. This makes bytecode interpreters useful in educational settings, web development and scripting, where flexibility and ease of deployment are more critical than raw performance.

Just-in-time (JIT) compilation

Mechanics:

Just-in-time (JIT) compilation is a dynamic approach that combines elements of both interpretation and compilation. Initially, the source code is compiled into bytecode, which is then interpreted by a virtual machine.

As the program runs, the JIT compiler identifies frequently executed sections of the bytecode – often called “hot spots” – and compiles them into machine code on the fly. This machine code is then cached, so the next time the same code is executed, the system uses the compiled version instead of interpreting it again. This process allows JIT-compiled code to execute much faster than interpreted code, while still offering the flexibility and platform independence of bytecode.

Use cases:

JIT compilation is particularly beneficial in environments where performance is critical, but where the application also needs to be portable and dynamically optimized. The Java Virtual Machine (JVM) and the .NET runtime both use JIT compilation to improve the performance of applications. This approach is especially valuable in long-running applications, such as servers, where the overhead of JIT compilation is outweighed by the performance gains in subsequent executions of the same code paths. JIT is also used in web browsers for JavaScript execution, where it optimizes frequently used scripts to improve page load times and responsiveness. In general, JIT compilation is well suited for scenarios where applications need to balance the need for speed with the ability to run on multiple platforms.

Evaluation of different translation

processes

Error detection

Error detection varies significantly across these translation processes.

Compilers offer the most robust error detection because they analyse the entire source code before producing an executable. This analysis ensures that all syntax and some semantic errors are caught and must be resolved before the program can run, resulting in fewer runtime errors and a more stable final product.

Interpreters detect errors at runtime, as they execute code line by line.

This approach allows developers to quickly identify and correct errors during development, which is especially useful for testing and debugging.

However, because errors are only discovered when the specific problematic code is executed, there is a risk of encountering runtime errors that could disrupt program execution unexpectedly.

[image: Image 162]

Bytecode interpreters provide a middle ground. While they do compile source code into bytecode before execution, allowing for some upfront error detection, errors may still occur at runtime as the bytecode is interpreted. This combination of pre-runtime error-checking with runtime interpretation can reduce the frequency of runtime errors compared to traditional interpreters, but it does not offer the exhaustive error-checking of full compilation.

JIT compilation combines elements of both interpretation and compilation.

While some errors may still be detected at runtime, the JIT compiler’s ability to dynamically compile frequently executed bytecode into machine code during execution can catch and optimize issues in repeated executions, improving the reliability of long-running programs.

Common mistake

Be careful not to underestimate the differences in error detection between interpreters and compilers.

With interpreters, errors are caught as the code runs, which means they can occur unexpectedly during execution.

Compilers catch all syntax and some semantic errors before the program runs, preventing the program from executing until these errors are fixed.

PROGRAMMING EXERCISES

In these exercises, you will explore the differences in error detection between an interpreted language (Python) and a compiled language (Java). By running and compiling short programs in both languages, you will observe how and when errors are detected, providing insight into the advantages and challenges of each approach.

1 Run the Python script below and observe what happens when the interpreter encounters the error. What is the last line of output before the program crashes? What error message is displayed?

Python

2 Attempt to compile the program below and observe what happens when the compiler encounters the error. Does the program compile

[image: Image 163]

successfully? What error message is displayed?

Java

Compare the outcomes of running the Python script and compiling the Java program.

3 At what point is the error detected in each language?

4 How does the error-detection process affect the development workflow in each language?

5 What are the advantages and disadvantages of detecting errors at runtime vs at compile time?

Translation time

Compilers require a considerable amount of time initially to convert the entire source code into machine code before it can be executed. While this process may take longer, especially with large projects, the payoff is that the compiled program runs significantly faster once the translation is completed.

Interpreters, by contrast, execute code directly by translating it line by line. This allows the program to run almost immediately, which is advantageous for quickly testing and iterating code. However, because the code is translated during execution, programs with larger codebases may experience slower overall performance.

Bytecode interpreters provide a balance between these approaches. The initial step of compiling source code into bytecode is quicker than fully compiling it into machine code. The bytecode is then executed more efficiently than direct interpretation of source code, resulting in a compromise between start-up speed and execution efficiency.

JIT compilation goes a step further by converting bytecode into machine code dynamically as the program runs. Although this introduces some runtime overhead, it enables the system to optimize performance on the fly, particularly for code paths that are executed frequently. This dynamic

approach allows JIT to reduce initial translation time while improving execution speed as the program continues to run.

Portability

Portability is a significant advantage of interpreters and bytecode interpreters. Since interpreters execute source code directly, the same code can run on any platform with the appropriate interpreter, making it ideal for cross-platform applications. Bytecode interpreters extend this portability by compiling source code into a platform-independent bytecode, which can be executed on any system with the appropriate virtual machine (for example Java’s JVM). This makes bytecode interpreters particularly valuable in environments where applications must operate across diverse platforms without modification.

Compilers, however, produce machine code tailored to specific hardware architectures, resulting in highly efficient but less portable executables.

Each target platform may require separate compilation, limiting the flexibility of deploying the same code across multiple environments.

JIT compilation preserves the portability of bytecode while enhancing performance. The bytecode can be distributed across different platforms, and the JIT compiler dynamically optimizes the execution for the specific hardware at runtime. This combination ensures that applications remain portable while still benefiting from platform-specific optimizations.

Common mistake

It is easy to overlook the importance of portability. Interpreters and bytecode interpreters allow the same code to run on different platforms without modification, as long as the appropriate interpreter or virtual machine is available. Compiled code is optimized for specific hardware, making it less portable.

Applicability

The applicability of these translation processes varies depending on the requirements of the project. Compilers are best suited for applications where performance is critical, such as system software, high-performance computing and real-time systems. The upfront time investment in compilation is justified by the high execution speed of the compiled code.

Interpreters are ideal for scenarios where rapid development, testing and iteration are essential, such as in scripting, web development and educational environments. Their immediate execution and ease of use make them suitable for applications where flexibility and quick feedback are more important than raw performance.

Bytecode interpreters are commonly used in enterprise applications, web services and mobile apps where cross-platform compatibility is crucial.

They offer a flexible solution that balances the need for portability with efficient execution, making them suitable for environments that demand both.

JIT compilation is particularly valuable in long-running applications and complex systems where performance needs to improve over time. It is well suited for server environments, dynamic web applications and platforms such as Java and .NET, where the balance of portability, performance and dynamic optimization is critical.

Criteria

Compilers

Interpreters Bytecode

JIT

interpreters compilation

Error

Comprehensive, Runtime

Some errors

Combines

detection

with all errors

errors

are caught

runtime error

caught before

detected as

before

detection

execution

code is

execution,

with dynamic

executed line but others at optimization

by line

runtime

Translation

High initial

Immediate

Moderate

Balances

time

translation

execution,

initial

initial

time, but

low initial

translation

translation

results in fast

translation

time, with

with dynamic

execution

time, but

moderately

compilation

slower

fast

for optimized

overall

execution

execution

execution

Portability

Low; requires

High; code

High;

High;

separate

runs on any

bytecode is

maintains

compilation for

platform with platform-

portability

each platform

the

independent

with

appropriate

and runs on

platform-

interpreter

any system

specific

with the

optimizations

appropriate

at runtime

VM

Applicability Best for

Ideal for

Suited for

Well suited

performance-

rapid

cross-

for long-

critical

development, platform

running

applications

testing and

applications

applications

and system

cross-

with

requiring

software

moderate

Criteria

Compilers

Interpreters Bytecode

JIT

interpreters compilation

platform

performance dynamic

scripting

needs

optimization

Example scenarios

Scenario

Best

Explanation

translation

method

Rapid

Interpreters

• Interpreters allow immediate

development

execution of code, enabling quick

and testing

iterations, debugging and real-time

feedback

• Ideal for scripting languages such as

Python or JavaScript

Performance-

Compilers

• Compilers optimize the entire

critical

codebase into machine code before

applications

execution, resulting in highly

efficient and fast-performing

applications

• Suitable for system software,

gaming and real-time systems using

languages such as C or C++

Cross-platform

Bytecode

• Bytecode interpreters (e.g. Java’s

development

interpreters and

JVM) provide platform independence

JIT compilation

by compiling code into an

intermediate bytecode, which can

run on any platform with the

appropriate virtual machine

• JIT compilation enhances

performance by optimizing

frequently executed code at runtime,

balancing portability with execution

speed

• Ideal for applications such as

enterprise software, mobile apps and

web services

Rapid development and testing

Example: A startup developing a prototype web application using Python.

The team needs to quickly test and iterate on their codebase, making adjustments on the fly. An interpreter allows them to run their code immediately and see the results of changes without waiting for compilation.

Performance-critical applications

Example: A company developing a real-time trading system in C++ that requires high-speed data processing with minimal latency.

A compiler is used to translate the entire codebase into optimized machine code, ensuring the system performs at the highest efficiency possible.

Cross-platform development

Example: A software firm creating an enterprise-level application in Java that needs to run on Windows, macOS and Linux environments.

By compiling the code into bytecode, the application can be run on any platform with the Java Virtual Machine (JVM). To enhance performance, the JVM’s JIT compiler further optimizes the application’s execution on each specific platform.

EXAM PRACTICE QUESTIONS

1 Compare the advantages and disadvantages of using a compiler vs an interpreter in software development.

[4]

2 Describe the process of just-in-time (JIT) compilation and explain how it combines elements of both interpretation and compilation.

[4]

3 Compare the error-detection capabilities of compilers and interpreters, and discuss the implications for software development.

[4]

Linking questions

1 What role does multitasking in an operating system play in machine learning? (A4)

2 How might a conditional statement be constructed by Boolean logic gates in a circuit? (B2)

3 What role does task scheduling in an operating system play in managing network traffic and requests? (A1)

4 How does resource allocation in an operating system impact network performance and stability? (A2)

5 What role do GPUs play in non-graphics computational tasks? (A4) 6 To what extent should computer systems not cause harm? (TOK)

[image: Image 164]

A2 Networks

A2.1 Network

fundamentals

What are the principles and concepts that underpin how

networks operate?

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

• A2.1.1 Describe the purpose and characteristics of

networks

• A2.1.2 Describe the purpose, benefits and limitations of modern digital infrastructures

• A2.1.3 Describe the function of network devices

• A2.1.4 Describe the network protocols used for transport and application

• A2.1.5 Describe the function of the TCP/IP model (HL)

A2.1.1 The purpose and

characteristics of networks

Welcome to computer networks. In recent decades,

networks have become an all-pervasive and integral part of our modern lives. We use networks to:

• instantly communicate and collaborate with people

around the world

• access a wealth of information, entertainment and services at our fingertips

• conduct business transactions, banking and online

shopping with ease

• learn new skills, attend virtual classes and expand our knowledge

• remotely control and monitor our homes, cars and other

connected devices

• share photos, videos and stories with family and friends in real time.

Computer network: a system that connects computers

and other devices to share resources (digital or physical) and information.

Local area network: a system that connects computers and other devices within a small geographical area, such

as an office or home.

The power and ubiquity of computer networks have truly

transformed the way we live, work and play. In this chapter, we will delve into the inner workings of these complex

systems that have become so ubiquitous that we barely

give them a moment’s thought – except when things go

wrong.

Local area networks (LAN)

A local area network is a network of computers that are interconnected in a small geographical location, typically limited to a single property such as a home, building or

campus. These are the oldest types of networks, though the equipment used in modern versions looks nothing like the

historical versions.

The purpose of these networks is to facilitate sharing

resources between the different computers, such as files,

[image: Image 165]

printers, applications and access to external networks, such as the internet.

LANs typically have a high bandwidth internally, with speeds ranging from 100 Mbps (Megabits per second) to 10 Gbps

(Gigabits per second). Their small geographical range

means there are typically no issues with latency (the time delay for data to transmit across the network).

Most homes and many corporate LANs now use a mix of

wired Ethernet cables and wireless networking technologies.

Dedicated wireless LANs may sometimes be referred to as

WLANs.

Wide area networks (WAN)

A wide area network provides for the interconnection of multiple local area networks over a wider geographical

distance. This connection distance may be across town,

between different cities or even different continents. For example, this could be for sharing resources across different office branches of a company.

Wide area network: a system that connects computers and other devices across a large geographic area, usually

connecting multiple LANs together.

Personal area network: a network for personal devices within the range of an individual person, usually connected with Bluetooth.

Classically, a WAN does not use the internet for this

interconnection; instead it would have its own dedicated

networking infrastructure for long-distance connections,

such as fibre-optic cabling or point-to-point microwave

transmission.

In practice, most modern WANs use the existing

infrastructure of high-speed internet and establish a

virtualized WAN through the use of virtual private

networking technology, discussed below.

Personal area networks (PAN)

A personal area network refers to the devices that are interconnected, centred around an individual person. A PAN

covers a very small range, and is typically limited to about 10 metres.

While USB cable-connected devices could be said to be part of a person’s PAN, Bluetooth is the connectivity technology most commonly associated with PANs. The interconnected

nature of your headphones, phone, camera, watch and

whatever other devices you may be carrying on your person

is what forms your PAN.

[image: Image 166]

[image: Image 167]

Virtual private networks (VPN)

Virtual private networking refers to using public

networking infrastructure to establish a secure, private

tunnel for your own communication purposes. The encryption enables users to send and receive data across

the public internet, as if their computing devices were

directly connected on their own private network.

Virtual private network: a secure connection that runs across the internet to provide private communication

between your network and a remote server.

Internet: a global network of computer networks that are interconnected with each other and communicate through

standardized protocols.

There are many “VPN companies” that advertise their

services to retail consumers to make use of technology so

that their internet browsing activities can appear to be

taking place from a different geographical location from

where they truly are. While this is a useful technology for getting around geo-blocks and the like, it is a different use case from the corporate use of VPNs.

Companies use the secure tunnel of a VPN to provide

employees with remote access to their corporate networks

as if they were physically present at their corporate

headquarters.

VPNs help reduce the need for expensive dedicated

networking infrastructure over long distances, as would

historically have been required for a WAN.

A2.1.2 The purpose, benefits

and limitations of modern

digital infrastructures

Internet

[image: Image 168]

To suggest the internet is a core component of modern digital infrastructure is a bit like saying water is wet. The internet is the global network. It connects millions of private, public, academic, business and government

networks to one massive global network. It provides easy

access to a vast amount of information and services, as well as facilitating near-instant communications. Commerce,

businesses and global marketplaces are now extremely

dependent upon it.

That said, the internet is far from perfect. In the 1970s and 80s, as key components of what would become the internet

were being developed, there was no master plan, and the

sheer scale of the result would have been impossible to

imagine or foresee. This means there are vulnerabilities

baked into the core technologies on which the internet

depends. It is susceptible to hacking, denial of service,

phishing and many other threats that we will look at later in this chapter.

Cloud computing

The cloud is a mysterious-sounding name for a critical part of modern infrastructure devised by a marketing major

somewhere. In essence, it is computing services being made available for rent by large technology companies so that you don’t need to purchase your own physical computer

systems for servers and other infrastructure. Businesses

and individuals can use the internet to access the software and hardware provided by these technology companies in

their giant data centres.

There are some benefits to this approach. It means resource utilization can be easily scaled up or down without large

[image: Image 169]

financial investment. It also reduces the IT maintenance

costs for small companies, as it is all part of the rented service.

Due to communication with cloud-rented systems occurring

over the internet, that clearly means reliable, stable, high-speed internet connectivity is a must. Concerns about the

security and privacy of data held on these third-party

systems can also be a legitimate concern, as these systems are beyond your control.

Amazon Web Services, Google Cloud and Microsoft Azure

are three big cloud providers, at the time of writing.

TOK

Role of experts in consumption or acquisition of

knowledge

Computer networks, such as the internet, rely upon the

expertise of network engineers to keep the system stable,

efficient and effective. How has their contribution shaped the way we consume or acquire knowledge?

Linking question

How do cloud computing and distributed systems utilize

networking to deliver services?

Distributed systems

A distributed system connects multiple computers, or

networks of computers, together to achieve common goals.

They are more fault tolerant than other systems as, if one node fails, there are other paths of connectivity through

[image: Image 170]

which the rest of the network can continue to function. This resilience comes at the cost of complexity, meaning they

are more difficult to design, manage and maintain. In

particular, ensuring data consistency across the various

nodes can be a challenge.

Peer-to-peer networking tools, such as BitTorrent, are

examples of distributed systems, as are Blockchains.

Distributed systems used by some large corporate networks

include Content Delivery Networks to help distribute content to users worldwide.

With each dot representing a node on the network, a

distributed system has many different paths to traverse

between any two points

Edge computing

Edge computing brings the computational and data storage

capacity closer to the physical location where it is needed, to reduce latency and save bandwidth.

Large content delivery companies, such as Netflix, Spotify and the like, may use the edge computing model to deploy

clusters of servers in key cities so as to reduce the amount

[image: Image 171]

[image: Image 172]

of traffic that must travel back and forth to their main hubs.

These servers can cache the most commonly sought-after

files for each region, significantly speeding up the service for those customers, while preserving bandwidth for

obtaining occasionally requested files that are not in the local cache.

This increase in endpoints to the network presents an

increase in attack vectors for an adversary, so it comes with increased security and maintenance complexities.

Edge computing places computational resources closer

to the point of demand, which reduces network load for

the core servers in the cloud

Mobile networks

[image: Image 173]

Mobile telecommunications networks are now globally

ubiquitous. There are many parts of the world where mobile connectivity is the only connectivity available, as mobile networks can be deployed without the cost of digging up the ground for cabling installations.

The mobility that these networks facilitate allows

convenient access to information and communication while

on the go, and supports vast regions. That said, the

necessity to place towers everywhere and the complexities

of geography do mean that mobile-phone networks do have

 dead zones, which are areas without network coverage.

Signal strength can vary, which affects quality of service and bandwidth throughput.

At the time of writing, many countries are in the process of deploying fifth generation mobile networks (5G), which will increase speeds to up to 10 Gbps for peak data, with an

average of 100 Mbps.

Mobile telecommunications tower

A2.1.3 The function of

network devices

[image: Image 174]

Devices in a typical home or small office network

Many home or small office networks might have only a

single physical device that connects all their devices to their internet service provider. This single device might be

colloquially referred to as the router or modem. The reality is that there are several logical devices at work, even if they are all co-located in a single physical unit. We will examine the roles of these different devices now.

Top tip!

Understand the purpose!

There are a lot of different devices that serve different roles within a computer network. It can be easy to get them

confused because most home networks have one physical

device that plays many of these roles. Focus on

understanding each device type’s purpose and

functionality. Ask yourself why this device type is needed, and what problems it solves.

Gateway

A gateway is, as the name implies, the gate or connection between two networks. These networks may be

communicating with two different protocols, and the

gateway performs the translation task required to convert

between the protocols.

Gateway: a device that connects different networks

together and manages the traffic flow between them; often

used to connect a local network to the internet.

For instance, in a typical home environment where the

gateway connects to the internet service provider via a

fibre-optic cable, it may be translating between EPON

(Ethernet passive optical network) and regular Ethernet.

Because it converts from one network to another, it

primarily operates at the application layer of the TCP/IP

model (see Section A2.1.5).

Hardware firewall

The hardware firewall monitors and allows or denies incoming and outgoing network traffic based on a

predetermined set of security rules. The purpose is to be a safeguarding barrier between the locally trusted network

and the untrusted network of the internet.

Firewall: a security system (hardware or software) that monitors and controls incoming and outgoing network

traffic based on a set of security rules.

Router: a device that forwards data packets between computer networks, routing the traffic along the most

efficient path.

Network switch: a device that connects multiple other devices within a single segment of a computer network,

only forwarding data to the specific device it is intended for.

Firewall rules are typically a list of IP addresses and / or TCP/UDP ports to allow or deny traffic, based on the origin address or port and destination address or port.

The device functions at the transport and internet layers of the TCP/IP model (see Section A2.1.5).

Modem

A modem is a modulator–demodulator. It is used to convert

between digital and analogue signals. A digital signal is

modulated to encode digital data into an analogue form,

transmitted across the analogue medium, such as phone

lines, and then demodulated at the other end to extract the digital data.

The device functions at the physical, network interface layer of the TCP/IP model (see Section A2.1.5).

Network interface card

The network interface card is the hardware component on

an individual device, such as a laptop or mobile phone, that allows it to connect to the network. It may be a card that requires connecting a physical cable, such as Ethernet

[image: Image 175]

twisted pair or fibre optic, or it could have an antenna

attached for connecting to a wireless network.

The device functions at the physical, network interface layer of the TCP/IP model (see Section A2.1.5).

Router

The router directs the path packets of data take between networks. It inspects the network address information in the packet header to determine the ultimate destination and

uses that to send the packet on the optimal route.

The router typically operates at the network interface layer of the TCP/IP model, as it uses TCP/IP addresses to make its routing decisions (see Section A2.1.5).

ACTIVITY

Thinking skills: A network router on a rocket flight has been accidentally reset, so that it is blocking legitimate traffic between the rocket and mission control. The task to fix it falls to you. Search Coding Quest and select “Broken firewall”, or go to https://codingquest.io/problem/29, to complete this activity.

Switch

A network switch connects devices within a single

segment of a network. The switch effectively creates a

network; it is the central spoke in a star-based network. A switch receives incoming packets of data and sends them

on to their destination within the local area network using MAC addresses.

The switch operates at the network interface layer of the TCP/IP model (see Section A2.1.5).

Wireless access point

Wireless access points connect wireless devices together to form a network, in the same way that a switch does for a

physical network. They can also act as range extenders for wireless signals.

A wireless access point operates at the network interface

layer of the TCP/IP model (see Section A2.1.5).

A2.1.4 Network protocols

used for transport and

application

Linking question

How do the concepts of binary and hexadecimal data

structures relate to network communications? (B2)

Transmission Control Protocol

(TCP) and User Datagram

Protocol (UDP)

[image: Image 176]

[image: Image 177]

TCP protocol

UDP protocol

The Transmission Control Protocol (TCP) and User Datagram

Protocol (UDP) operate on the transport layer of the TCP/IP

model. That is, they are packets that are contained within the data portion of an IP packet. Where IP is responsible for getting a packet from one computer system to another, the

TCP or UDP is responsible for getting data from one

application to another.

These protocols facilitate multiple applications sharing a common network connection at once. For instance, if a

server is running both an email-server application and a

web-server application, the host operating system needs a

means of determining which application to send inbound

traffic to for processing. This is where port numbers come

in. Think of these as phone extensions, or apartment numbers within a building address. To assist matters even

further, the industry has standardized default port numbers for commonly used applications. The Simple Mail Transfer

Protocol (SMTP) uses port 587 and Hypertext Transfer

Protocol (HTTP) uses port 80, whereas Hypertext Transfer

Protocol Secure (HTTPS) uses 443 and the Secure Shell

(SSH) uses port 22.

Protocol: a set of rules and standards that define how data is transmitted and received across a network for a

given application.

TCP is a connection-oriented protocol. This means it

establishes and maintains an active connection with the

remote server until the application programs on both ends

have finished exchanging messages. TCP ensures that data

is delivered in order, without errors, and that data is

acknowledged upon receipt. If there is an error in the receipt of a packet (either it doesn’t arrive or is corrupted in some way), it is re-sent. The sequence number is used to ensure packets are reassembled into their correct order by the

receiving application, and the checksum is used to ensure it is not corrupted during transmission.

UDP is a connectionless protocol. Data is transmitted, but there is no guarantee of reliability or order of delivery. UDP

is used for applications such as streaming video, where

maintaining speed and staying up to date with the

broadcast is more important than the occasional missed

frame or subset of pixels.

Sometimes a light-hearted approach can help communicate

the difference between two items. Here is an anecdote that does the rounds of the internet comparing TCP and UDP:

[image: Image 178]

You can programmatically experiment with communicating

directly over TCP/IP connections with code similar to the

following code.

For a server that receives requests, processes them and

then replies with a response:

Python

[image: Image 179]

[image: Image 180]

The following code is for a client that generates a request, sends it and then receives the response. You must ensure

the server code (above) is running, and the code below is

updated with the IP address of the server. You may need to adjust your firewall settings to allow this demonstration to work.

Python

[image: Image 181]

Hypertext Transfer Protocol

(HTTP)

HTTP is the foundation of the world wide web. It is the

protocol used for the transmission of hypermedia

documents, such as HTML, as well as associated text files

(Javascript, CSS) or binary files (images and so on).

HTTP is a stateless protocol. This means that each command is executed independently of any previous commands, with

no recollection or knowledge of them. The client (such as a web browser) sends requests to the web server, which then

responds with the requested resource or an error code.

HTTP communication occurs as unicode text strings, so it is human-readable.

An example of an HTTP request from a browser might

resemble the following text. The client is sending a GET

request for a particular file called index.html from the server hosting www.example.com.

The associated reply from the web server follows. The

server begins by indicating it is replying using the HTTP v1.1

protocol and a status code of 200, which means OK. If there is an error then a different status code would be received.

For instance, if the requested file was not found then a

status of 404 would be sent.

[image: Image 182]

[image: Image 183]

This is a simple example; in practice, there is also

commonly authentication information, cookies and other

data sent as part of the request or response.

You can programmatically experiment with sending your

own HTTP requests and receiving the responses with Python

by using the requests library. For instance, a simple program may look like this:

Python

The requests library is very powerful and even lets you

download or upload text files and binary files.

If you’d like to create your own web server that receives and processes HTTP requests, take a look at Python’s Flask

[image: Image 184]

library. A simple web-server application may resemble the

following code:

Python

Hypertext Transfer Protocol

Secure (HTTPS)

HTTPS is the secure version of Hypertext Transfer Protocol. It is designed to ensure communication is encrypted between

the client and server to help protect against man-in-the-

middle attacks and eavesdroppers. There are three key

features that HTTPS offers over the original HTTP:

[image: Image 185]

• Encryption: typically achieved through the use of either SSL or TLS encryption methods.

• Authentication: a digitally signed certificate is issued by the server so your client application can verify it is

connecting to the correct server (i.e. to protect against an imposter posing as your bank website, for instance).

• Data integrity: ensures that the data sent and received is not altered in transit.

These ideas are discussed further in Section A2.4.4.

Dynamic Host Configuration

Protocol (DHCP)

DHCP is a network-management protocol. It is used most

commonly when a computer first joins a computer network

(for example on system start-up). DHCP is the process by

which the computer requests and receives a valid IP address for use on that network. In many home and small office

networks, the device commonly known as the “router” also

runs a DHCP server on it, providing IP addresses to devices that connect to it within the home.

The client device broadcasts (that is, sends a message for all devices on the network to see) a DHCP Discover

message in which it provides its hardware MAC address and

any preferences regarding subnet, router, DNS server or IP

address lease time.

A DHCP server responds with a DHCP Offer message to assign an IP address from within a defined pool of addresses available to it. IP addresses are “leased” to devices for a specific period, after which the device must request to

renew its lease. This process allows for reconfiguration and reuse of addresses. The offer also includes information

about subnet, domain name server and other matters.

In the home or small office space, there are a number of

addresses that have been reserved for private internal

networks to use. These addresses are not used by valid

servers and are not routable on the public internet. These address ranges are:

• 10.0.0.0 to 10.255.255.255

• 172.16.0.0 to 172.31.255.255

• 192.168.0.0 to 192.168.255.255

Networks that use these addresses for their internal devices rely on services such as network address translation to

connect to the public internet. See Section A2.3.1 for a

discussion about this.

A2.1.5 The function of the

TCP/IP model (HL)

The TCP/IP model is a conceptual approach to understanding the different roles and responsibilities of networking

[image: Image 186]

communication. It largely supersedes and streamlines the

previously used OSI model.

The TCP/IP model is broken down into the four layers: the

network interface layer (also known as the “physical layer”), the internet layer, the transport layer and, finally, the

application layer.

The allocation of bits in the TCP and UDP protocols.

Application

The application layer is the topmost level and is where the protocols used by actual applications reside. They include applications such as HTTP and HTTPS for web browsing; FTP

for file transfer; SMTP and POP3 for email; and DNS. The

application is responsible for using and correctly forming messages transmitted through these protocols.

Transport

[image: Image 187]

On initiation of a communication request from an

application, the operating system uses the transport layer to help ensure the data gets from the correct source

application to the correct target application at the

destination.

The two primary protocols that reside in the transport layer are TCP (Transport Control Protocol) and UDP (User

Datagram Protocol).

The transport layer receives data from the application layer, segments it and handles error detection and correction (if using TCP), along with retransmitting lost packets.

These segments or datagrams are then transferred to the

internet layer.

Internet

The internet layer is responsible for managing the

movement of packets across the network, including

ensuring they are routed to the correct destination.

To do this, it receives segmented data from the transport

layer, encapsulates it into packets and decides on the best route for the packets to travel across networks. These

packets are then forwarded to the network interface layer, which takes care of transmitting the bits to the next physical device in the chain.

TCP/IP data as packets

Network interface

The network interface layer manages the process of

physical transmission of the data across the networking

hardware and transmission media. It includes the protocols and hardware necessary to deliver the data across the local media, and aspects such as Ethernet, WiFi and physical

network components including routers, cabling and

switches.

The network interface layer receives data packets from the internet layer and converts them into a form suitable for

transmission over the network, such as over Ethernet

cabling or WiFi. Hardware addressing, such as MAC

addresses, is managed by this layer.

Common mistake

It’s common to confuse which protocols operate at which

layer of the TCP/IP model. Keep a clear map of where TCP,

UDP, HTTP, HTTPS and DHCP fit within the layers.

REVIEW QUESTIONS

1 Which network is typically used to cover a geographical area that spans a city or a group of buildings?

a PAN

b LAN

c WAN

d VPN

2 Which type of modern digital infrastructure would be most suitable for handling real-time data processing

close to data sources?

a Internet

b Cloud computing

c Distributed systems

d Edge computing

3 Which device is responsible for enabling multiple computers to connect to the internet through a shared

connection?

a Modem

b Switch

c Router

d Network interface card (NIC)

4 Which protocol ensures delivery of packets and is used for activities requiring high reliability, such as file

transfers?

a TCP

b UDP

c HTTP

d DHCP

5 In the TCP/IP model, which layer is primarily responsible for routing and forwarding packets?

a Application

b Transport

c Internet

d Network interface

6 Describe one characteristic that distinguishes a virtual private network (VPN) from other types of networks.

7 Identify one major limitation of using cloud computing in digital infrastructure.

 8 Describe the primary function of a wireless access point in a network.

9 Describe three main differences between HTTP and HTTPS.

10 Describe the role of the application layer in the TCP/IP

model.

[image: Image 188]

A2.2 Network architecture

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

• A2.2.1 Describe the function and practical applications of network topologies

• A2.2.2 Describe the function of servers (HL)

• A2.2.3 Compare and contrast networking models

• A2.2.4 Explain the concepts and applications of network segmentation

TOK

Organizing and classifying knowledge

If the sum of human knowledge is being stored on servers

accessible through the global interconnected computer

network known as the “internet”, how does the

organization and classification of the internet, and its

constituent networks, affect what we know?

Linking questions

1 How can network types, or transmissions, impact

database performance? (A3)

2 How do network topologies influence machine learning algorithms (A4)?

[image: Image 189]

A2.2.1 The function and

practical applications of

network topologies

Network topology refers to the physical layout and structure of the nodes and connections within a network.

Star topology has all the individual nodes emanating

from a central point

Star topology

In a star topology, all nodes connect to a single central

device (such as a network switch). The central switch

manages the task of routing messages between the various nodes. This approach is very common in homes and small

offices, where a single switch provides all the capacity

needed for the various devices that are connecting.

A few factors to consider with the star topology include:

• Reliability: If the central device fails, the network fails.

• Bandwidth speed: While each device has its own

dedicated connection to the hub, the overall throughput

speed is dependent on the processing capacity of that

central hub.

• Scalability: The central switch typically has a limited number of ports or connections that it can handle, possibly limiting expansion to accommodate future needs.

• Collisions: There is minimal risk of data collision as every node has its own dedicated connection.

• Cost: Quite low if only a few nodes are needed; however, costs can increase if the capacity limits of the central node are exceeded and upgrades are required.

Top tip!

Each topology (star, mesh, hybrid) serves different needs.

Be sure to understand why each one is more suitable than

another for specific situations. Learn the diagrams of the different topologies to visualize how nodes are connected, as that provides a crucial understanding of how the flow of data is impacted if a node fails.

Mesh topology

In a mesh topology, every node has an immediate, direct

connection to every other node. While most often depicted

as a full mesh, partial meshes do also exist.

[image: Image 190]

Meshes are suitable for large environments where reliability of individual pathways may be a concern. Critical

infrastructure, such as military and aviation environments, is more inclined to use a mesh topology to help ensure

robust resilience of the network against any point of failure.

Wireless mesh systems, such as Meshtastic, have also

started to gain popularity among tech hobbyists and as a

means of providing connectivity in remote and disaster-

prone areas.

In a mesh topology, all nodes are interconnected to all

other nodes

Factors worth considering in a mesh environment include:

• Reliability: Highly reliable and robust against the failure of any individual node or communication path.

• Bandwidth speed: High, given that each node can communicate directly with its intended target node.

• Scalability: Adding new nodes is expensive as cabling and infrastructure must be run to all other nodes on the

network.

• Collisions: Minimal risk of collisions due to the direct connections available.

• Cost: High due to all the additional cabling and networking infrastructure required for all the redundant

connections.

Hybrid topology

The hybrid topology combines a mix of two or more other

topologies. It makes maximum use of the advantages of

each approach while minimizing the downsides. Hybrid

approaches are suitable for large enterprises and

telecommunications networks. In the illustration, a mesh

approach is used for the interconnection of different base stations to provide reliability and durability between base stations, and then each base station manages a star

topology for the individual devices connected to it.

Factors to consider for a hybrid approach include:

• Reliability: Generally quite high; if a node fails, it only affects the clients immediately connected to it, but not

other parts of the network.

• Transmission speed: This is dependent on the exact configuration and mix of topologies deployed; bottlenecks

can be an issue if it is not carefully designed.

• Scalability: Typically highly scalable and adaptable to changing needs and circumstances; a small addition to a

network could start as a spoke on a star, and then later be upgraded to a full node in a mesh if needed.

[image: Image 191]

• Collisions: Again, this is dependent on the configuration and mix of topologies.

• Cost: Likely to be higher to get started but generally more efficient over the long run.

The hybrid topology is a mix of the mesh and star

topologies; key points in the network are interlinked like a mesh, and then each of those points is the central

point for its own star of connected nodes

A2.2.2 The function of

servers (HL)

Top tip!

It is very common for one physical computer acting as a server to have many server-based applications running on

it simultaneously. The one computer could have a web

server on port 80 and 443; an FTP server on 20 and 21; an

SSH server running on port 22; and a DNS server on 53.

In this section, “server” relates more to the separate server software applications rather than separate physical

devices.

A server is a computer that provides a service to other computers or devices on a network. Typically, these are

dedicated machines housed in a specialized room, centrally located on the network with backup power supplies and

other systems.

Server: a computer or device on a network that manages and provides various network resources on behalf of other

computers (clients) on the network.

Domain name: a human-readable name assigned to a

specific IP address on the internet, e.g. www.example.com.

This section looks at some of the common application

servers frequently seen on networks. We will look at each

from a perspective of their function, scalability, reliability and security.

Domain name server (DNS)

The domain name server provides a translation service that converts human-readable domain names into the IP

addresses that are required for routing purposes. For

example, at the time of writing, hachettelearning.com

translates to 78.136.36.226.

The client device sends the DNS request to its configured

DNS server. This can either be specified manually in the

[image: Image 192]

operating system settings, or it can be provided via DHCP

when the device connects to the network. If the DNS server that receives the request does not know the answer to the

query, it asks its DNS server, and so on up the chain until a server can provide a response. The DNS server then

typically caches that response for a while in case it receives the same query.

On Windows computers, the nslookup terminal command

allows you to execute DNS queries, and on macOS machines

use the host command. In Python, there is a built-in

dns.resolver module that you can use.

Python

• Scalability: DNS uses a distributed database and caching. This system allows for the global domain name

system to manage with ease the billions of requests made per day.

• Reliability: DNS is a mission-critical system for the internet. Any downtime, particularly from the upstream

servers, can affect many thousands or millions of client

devices. With that in mind, the system is built with a lot of redundancy in place, where each server typically has at

least three alternatives to query.

• Security: Given the global importance of DNS, it is frequently the subject of malicious behaviour. The key

domain name servers around the world require extremely

robust security systems including firewalls, intrusion

detection systems and other countermeasures.

Dynamic Host Configuration

Protocol (DHCP)

As previously discussed in Section A2.1.4, DHCP is

responsible for assigning IP addresses and network settings to devices that request them on the network.

File server

A file server provides a centralized location to store, access and manage files. There are several commonly used

approaches for this.

FTP (file transfer protocol) or SFTP (secure FTP) are protocols that are commonly used for accessing remote systems for

the transfer of files. FTP usually involves opening dedicated FTP transfer utility software to perform the task.

For an office environment, it is usually preferential for the storage of a file server to be present within the file, folder and disk structure of the local computer operating system

as a mounted drive letter (Windows) or folder (macOS). To

do this, protocols such as Server Message Block (SMB), Network File System (NFS) or Apple Filing Protocol (AFP) are more commonly used.

• Scalability: File servers are typically scaled through adding drives to provide additional storage, and upgrading the speed of the network interface cards when they are

shared between many client devices.

• Reliability: RAID (redundant array of independent disks) is a technology that allows for combining multiple physical disk drives into one logical unit. This can be used to pool the storage together to create one larger drive (for

example two 1 TB drives pooled together to present as if

they were a 2 TB drive), or to provide backup redundancy

in the case of one drive failing. RAID also allows for a

hybrid approach to mix both functions together.

• Security: Access permissions need to be carefully managed to protect against unauthorized access or

alteration of data. These access permissions can typically be set at a file or folder level, and can have either read-only permission or read–write permission.

Mail server

The mail server stores emails for local users on a network, and exchanges them with other mail servers when users

send an email. Commonly used protocols include the SMTP

(Simple Mail Transfer Protocol) and POP3 (Post Office

Protocol).

• Scalability: Mail servers need to handle large volumes of emails and attachments efficiently. Many companies

contract out their mail systems to third-party providers to help manage the demand.

• Reliability: As a critical system, email servers typically employ such mechanisms as queues and redundant

systems to help maintain reliability.

[image: Image 193]

• Security: Strong security systems for email are essential, given the frequency with which email is used as an attack

vector for spam, phishing, pharming, malware

attachments and other security threats. Best practice now

involves the use of email authentication protocols such as SPF (Sender Policy Framework) and DomainKeys Identified

Mail (DKIM). SPF allows domain name owners to specify

which email servers are authorized to send emails on their behalf. DKIM allows domain name owners to sign their

emails digitally with a cryptographic signature that can be checked by the recipient to ensure the email has not been

tampered with en route.

Reverse proxy server

Proxy server

In the business and commercial world of contracts, a proxy is a person you authorize to act on your behalf.

In that vein, a proxy server is traditionally used to act as the client device on your behalf to browse the greater internet.

Its caching functionality is useful as it means it can

remember content for you from different addresses and return that request immediately without having to generate additional external traffic. Organizations such as schools and offices may use a proxy server for requests coming

from their internal network to reduce costs. As the request being received by a server appears to have originated from the proxy and not the actual client, students may also use proxy servers installed on computers at home as a means of getting around school network filters.

Proxy servers can also be configured to act on behalf of the server rather than just client devices. This arrangement is known as a “reverse proxy”. This arrangement is typically

used to help distribute the load of incoming requests among a range of servers, and also to cache the common

responses given to save calculation and processing load on the servers themselves.

• Scalability: Reverse proxy configurations can

dramatically improve the scalability of a web server to

handle significantly more traffic than would otherwise be

the case.

• Reliability: When used to balance loads, a proxy server provides fault tolerance capacity.

• Security: A proxy server provides an additional layer of security by shielding internal client devices from direct

exposure to the internet.

Web server

A web server hosts web pages and related content, and

serves them to client devices across the internet. The web pages can either be static documents (such as HTML) or

dynamically produced at runtime from programming code,

in which case the web server sends the request to the

application in the style of a reverse proxy, and then sends the reply back to the original client.

Nginx is a popular open source web server.

• Scalability: Modern web servers are quite efficient but, when demand for their services is high, the load is

typically distributed across multiple servers, with a reverse proxy server acting as the public interface.

• Reliability: If the web server fails, then all websites it is hosting also fail. As web-based applications become

critical infrastructure for some organizations, the

importance of reliable web server software grows.

• Security: A web server needs to be secured against attacks such as distributed denial of service. Additionally, modern web servers provide encryption and

authentication through SSL to run HTTPS, rather than just

HTTP traffic, for a safer browsing experience. Let’s Encrypt

(https://letsencrypt.org) provides a free service for obtaining the SSL certificates needed to offer HTTPS

browsing through a web server.

A2.2.3 Networking models

Client–server

The client–server model is where devices take on the role of either being the client that requests a network service, or the server that provides a network service.

Benefits:

• Centralized control: It is easier to manage and update systems from a central point.

• Scalability: It is easier to add a more powerful server (for example with increased processing, memory or storage) if

it is a central system.

• Efficiency: A server can be optimized for a specific task.

[image: Image 194]

• Security: It is much easier to manage security risks if everything is run from a central point.

Drawbacks:

• Single point of failure: If the server goes down, all services attached to it fail.

• Single point of risk: If the security of the server is compromised, all data and services managed by the

central point are also exposed and vulnerable.

• Cost: Creating a central point to manage all the requests means a significant investment in expensive hardware and

software to cope with that demand.

Real-world applications:

• Web browsing: Clients (browsers) request web pages from servers.

• Email: Email servers manage the sending and receiving of emails to and from client applications.

• Online banking: Central servers handle transactions, authentication and data storage, offering high security and reliability.

Peer-to-peer

In the peer-to-peer model, there is no server that co-

ordinates the network services; each device is both a client and a server, and communicates with all other peers. The

provision of network services is distributed across the

devices.

The challenge with peer-to-peer is co-ordination, since there is no obvious “authoritative” source to query where to find certain services.

Benefits:

• Decentralization: There is no single point of failure or risk.

• Cost effective: There is no need to spend money on expensive hardware or software, as the load is shared

among all the clients themselves.

• Scalability: As the size of the network grows, so too does the scale of services it can provide. Each additional peer also adds additional capacity.

• Direct sharing: Services can be provided directly from one computer to another, reducing bottlenecks.

[image: Image 195]

Drawbacks:

• Co-ordination: Maintaining settings, security patches and synchronization of data across multiple nodes on the

network can be very challenging.

• Reliability: Since services are being provided by peers, which are just client devices on the network, if someone

turns their device off, then it is no longer providing

whatever services it was supplying to the network.

Availability of systems and resources on the network can

vary without much notice.

Common mistake

Networking models

Don’t oversimplify the distinction between client–server

and peer-to-peer models. Understand the nuances involved

that might make one more suitable than the other for

specific scenarios. Failing to consider scalability and

maintenance aspects can lead to incomplete understandings.

Real-world applications:

• BitTorrent: Files are shared directly between users without a co-ordinated central hub.

• Voice over IP: The data for calls and video conferencing are routed directly from client to client, rather than

creating massive data bottlenecks for a centralized server.

• Blockchain: Bitcoin and other blockchains operate decentralized databases across many nodes to help guard

against tampering with the transaction ledger.

A2.2.4 Concepts and

applications of network

segmentation

Network segmentation refers to logically splitting a larger network into smaller, more manageable parts. Each of these segments can be isolated from each other to provide better security, performance or management of system resources.

Network segmentation: dividing a computer network

into smaller, distinct subnetworks to improve performance, security and management.

Two commonly used approaches for network segmentation

are subnetting and virtual local area networks (VLANs).

Subnetting divides a network into subnetworks based on

unique ranges of IP addresses. For instance, a school may

place staff devices on 192.168.0.X, and student devices on 192.168.1.X. Each subnet can share the same networking

infrastructure, such as wireless access points, switches and

cabling, but would not “see” the devices on the alternate subnet. This approach allows devices to be logically grouped based on department, function or geography, and can allow

for different security policies to be applied, depending on the organization’s needs.

Virtual LANs are another way of separating one physical

network into two logical networks without requiring

duplication of infrastructure. They create distinct broadcast domains that are mutually isolated unless explicitly allowed to communicate via routing. Traffic is isolated to members of the VLAN only. Where a client device may change its subnet by manually changing its IP address, VLANs are more secure and typically use MAC addresses or login credentials to

determine which VLAN a device gets connected to. Because

a virtual LAN is a logical construct rather than a physical one, it is worth noting that a VLAN could extend over

numerous physical networks (such as over a VPN link).

Whichever method is used, segmentation reduces overall

network traffic within each segment, allowing for more

efficient data transmission. Network congestion for high

bandwidth applications can be contained to an individual

network segment, resulting in the other segments within the network being unaffected. Security is also significantly

enhanced, as visibility of servers and their services can be restricted to particular VLANs.

Common mistake

Network segmentation

Mixing up segmentation, subnetting and VLANs is common.

Make sure you define and distinguish each clearly.

REVIEW QUESTIONS

1 Which network topology is most beneficial in a large campus setting due to its scalability and robustness?

a Star

b Mesh

c Hybrid

d Ring

2 Which type of server is responsible for translating domain names into IP addresses?

a DHCP server

b DNS server

c File server

d Web server

3 Which networking model typically involves one or more central servers that manage data and resources for

client devices?

a Client–server

b Peer-to-peer

c Hybrid

d None of the above

4 What is the primary purpose of implementing network segmentation within a corporate environment?

a To increase the number of devices on the network b To enhance security and performance by reducing

congestion

c To eliminate the need for routers

d To simplify network management

5 Outline three benefits of using a star topology in a home office setting.

6 Describe one function of a proxy server for each of: a a large university campus

b a personal home.

7 Outline how a reverse proxy functions, in contrast to a normal proxy. What are its benefits?

8 Explain a key disadvantage of using a peer-to-peer network model for online banking.

9 Explain how VLANs contribute to network segmentation.

[image: Image 196]

A2.3 Data transmissions

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

• A2.3.1 Describe different types of IP addressing

• A2.3.2 Compare types of media for data transmission

• A2.3.3 Explain how packet switching is used to send data across a network

• A2.3.4 Explain how static routing and dynamic routing

move data across local area networks (HL)

A2.3.1 Types of IP

addressing

TCP/IP version 4 and version 6

Structure of IP version 4

Common mistake

IP addressing

Don’t mix up the address constructions of IPv4 and IPv6.

Be sure to know the length and formatting of each version

of IP addresses.

Linking question

Are similar ethical principles needed when transmitting

data over a network as when using data in machine

learning algorithms? (TOK)

The key difference between IP version 4 and version 6 is the size of the address space. IPv6 was designed to deal with the long-anticipated problem of IPv4 addresses running out.

IP address: a set of numbers that uniquely identifies each computer based on the Internet Protocol (either version 4

or version 6).

IPv4 uses a four-byte or 32-bit address, which is why it is typically displayed as four numbers separated by dots,

where each number is in the range of a byte, 0–255, for

example 192.168.0.1. Given there are 232 possible

addresses using these numbers, it means IPv4 is limited to approximately 4,300,000,000 nodes on the network.

IPv6, on the other hand, uses 16 bytes or 128 bits for its addresses. These addresses are typically displayed as eight groups of four bytes written in hexadecimal form, such as

2001:0db8:85a3:0000:0000:8a2e:0370:7334. Having 2128

addresses equates to a capacity for a staggering

340,282,370,000,000,000,000,000,000,000,000,000,000

nodes.

Public and private addresses

The key difference between public and private addresses is their visibility on the public internet.

IP addresses that are used on the public internet must be

globally unique. They are typically assigned to websites,

external-facing servers and routers that connect to the

internet. The allocation of these public internet addresses is managed by ICANN (the Internet Corporation for Assigned

Names and Numbers).

Private IP addresses used within a private network are not directly routable on the global internet. They are commonly used in home and corporate networks for devices such as

computers, tablets and internal servers. Traffic from these devices must be converted to a public address by the router to get on to the public internet.

ICANN has reserved certain ranges of addresses as private, non-routable addresses for organizations to use for their

internal networks. These are:

• 10.0.0.0 to 10.255.255.255

• 172.16.0.0 to 172.31.255.255

• 192.168.0.0 to 192.168.255.255

• IPv6 has FC00:0000:0000:0000:0000:0000:0000:0000 to

FDFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF.

Static and dynamic addresses

Static IP addresses are those that are permanently assigned to a device. The device uses the same IP address every time it connects to the network. Static IP addresses are essential for servers so that client devices know where to locate them on a network.

In contrast, a dynamic IP address is one that is assigned to a device when it connects to the network. This process is

overseen by a DHCP server that allocates connecting

devices an address from a predetermined pool of addresses

that it has available to it. Dynamic addresses help reduce overheads by more efficiently utilizing a limited number of IP addresses in environments where devices frequently

connect and disconnect.

Network address translation

(NAT)

Top tip!

Network address translation

Make sure you have an appreciation of, and recognize the

role of, network address translation (NAT). Its capacity to allow multiple devices on a private network to share a

single IP address for internet communications has kept the internet as a viable, functioning system. Its role in

conserving global IP address space cannot be overstated.

Network address translation: modifies the IP addresses of data packets as they pass through a router or firewall; this helps improve security and manages the limited

number of IP addresses available through IPv4 by allowing

multiple devices to share a single global IP address.

Network address translation is a process whereby networks

translate private IP addresses to public IP addresses, and vice versa. The process enables multiple devices on a

network to share a single public IP address.

NAT has been crucial for the effective operation of the

internet as it still remains highly dependent on IPv4

addresses, which have been all but exhausted. It also helps provide an additional layer of security for home and small office networks by hiding internal IP addresses from the

external network.

A2.3.2 Types of media for

data transmission

Top tip!

Side by side

Create a side-by-side comparison table for fibre-optic,

twisted-pair and wireless media, with a focus on

bandwidth, cost and installation complexity. Consider the

roles for each type, such as fibre optic in data centres,

twisted pair in offices and wireless for campuses, homes

and mobile set-ups. Pay special attention to how security

varies across the different media, particularly the

susceptibility to eavesdropping or interference.

Fibre-optic cabling

Advantages:

• Bandwidth: Fibre optic has the highest data-transmission rates of the media under consideration in this section.

Active research continues to make it even better, but

current technology already allows for terabits per second

to be transmitted.

• Interference susceptibility: As fibre-optic cabling uses light waves to transmit data, it is not susceptible to

electromagnetic interference, making it ideal for

environments with electrical noise, such as that generated by motors.

• Range and attenuation: Fibre-optic cabling is the medium of choice for the intercontinental submarine

cables that run across the ocean floor, due to its very low signal loss over long distances. Commercially available

single-mode fibre-optic cables can easily run distances of tens or hundreds of kilometres before a repeater is

required.

• Security: Fibre-optic cables are very difficult to “tap”

without detection, making them an excellent option where

security is a concern.

Disadvantages:

• Cost: Fibre-optic cables are generally more expensive than other forms of cabling, both with respect to the

cabling materials and supporting hardware infrastructure

and the installation labour time.

• Reliability: Fibre-optic cables are more fragile than metallic cables and are prone to damage if improperly

handled. Specifically, they have a limited radius for the

maximum bend they can safely operate under.

• Installation complexity: The issues regarding

supporting infrastructure requirements and proper

handling of the cables themselves tend to result in fibre-

optic cables requiring more specialized skills and

equipment for installation and maintenance operations.

Twisted-pair cabling

Advantages:

• Cost: Twisted-pair cabling has been a well-known and established technology for decades now. It is widely and

cheaply available.

• Installation complexity: Installation is considerably less complex than for fibre optic. A do-it-yourself approach is frequently taken for installation of simple home and small

office networks, with telephony technicians typically only required for outdoor and other complex environments.

• Reliability: The cables are vastly more flexible, meaning they can be safely and reliably installed into tight spaces.

Disadvantages:

• Bandwidth: Twisted-pair cabling is typically an order of magnitude slower than the equivalent in fibre optic. That

said, it is still quite adequate for most home and small

office arrangements, offering Gigabit bandwidth

performance. Twisted-pair cabling also significantly

outperforms wireless networks. The highest quality

twisted-pair cable currently available – Category 7

Ethernet – is rated for speeds of up to 10 Gb/s.

• Interference susceptibility: Given it is a cable that uses electrical signals to transmit data, twisted-pair

cabling is quite susceptible to electromagnetic

interference from the surrounding environment. This is

particularly the case where shielding has not been

wrapped around the cables.

• Range and attenuation: The range of twisted pair is considerably less than fibre optic. Category 6a twisted-pair Ethernet cables typically only have a range of

approximately 100 metres.

• Security: As it is easier to tap into than fibre-optic cables, twisted pair poses a more significant security risk; however, an attacker must still get in close physical

proximity to the cable, unlike with wireless.

Wireless transmission

Advantages:

• Installation complexity: There are no physical cables, so installation complexity and cost are significantly lower than for physical cable media.

• Cost: Wireless networks can be a cost-effective means of covering a large area where cabling is not practical.

• Reliability: Wireless networks provide mobility for devices to connect from, whatever the location, provided it is within the signal range. That said, reliability can be

impacted through radio interference, discussed below.

Disadvantages:

• Bandwidth: In practical scenarios, the total available bandwidth is shared among connected devices, so the

individual device throughput varies based on network

conditions and the number of devices connected.

Typically, a total bandwidth capacity of several Gb/s is

available for the devices to share. This is lower than the equivalent twisted pair or fibre optic, and these also come with their own dedicated bandwidth, rather than a shared

connection.

• Interference susceptibility: Wireless is very

susceptible to interference from other wireless or radio

signals, and physical obstructions can significantly affect signal quality.

Top tip!

Is your microwave safe?

If your home WiFi drops out when someone is using your

kitchen microwave oven, it means it is leaking microwaves

and should be urgently repaired or replaced! Microwave

ovens operate at 2.4 GHz, which is one of the two

frequencies used by WiFi (the other being 5 GHz). The

reason microwaves use 2.4 GHz is that it is the resonant

frequency of water so, by emitting high-energy waves, it

excites the water molecules in your food, which causes it to heat up.

WiFi technology is considered safe to use, even though it also relies on 2.4 GHz, as the strength of the radio signals is measured in milliwatts, as opposed to most microwave

ovens, which are pumping 800 to 1000 watts of energy into

the surrounding environment.

• Range and attenuation: Range is typically limited to a maximum of about 90 metres in clear, line-of-sight

conditions. Strength and quality of the signal deteriorate with distance and physical obstructions, such as walls.

• Security: Wireless technologies have a long and

complicated history of being security risks since an

attacker does not have to be physically present at a

network connection to intercept the signal. Often,

attackers can sit in a car outside the home or office and

collect all your WiFi signals over the air. A lot of effort has been made to add layers of encryption to modern WiFi to

mitigate this problem, but risks still exist.

A2.3.3 Packet switching

Top tip!

Account for packet loss

When considering the workload associated with packet

switching and routing, be sure to remember that not all data transmitted is received at the other end. The seeming reliability of the modern internet is actually only due to all the error checking that occurs behind the scenes

accounting for packet loss. This can have a significant

impact on the performance of a network, especially where

electromagnetic or other interference sources may abound.

Packet switching: a method of sending data in small blocks, known as “packets”, across a network. Each packet

can take a different path to reach its destination.

Common mistake

Confusing routers and switches

Ensure you don’t misunderstand the functional differences

between routers and switches in network data

transmission.

Packet switching is the foundation of most modern

networking technologies, including the internet. It involves breaking large pieces of data into smaller, more

manageable chunks called “packets”. These packets are

transmitted across the network independently of each other and reassembled into the original whole at the destination.

Packet switching is a highly scalable tool that allows efficient use of network resources, in contrast to older technologies such as circuit switching, where an entire dedicated channel or cable was used for the duration of a communication

session (which deprived other devices of being able to use it).

The full process includes:

• Segmentation: Data (such as a file or email) that needs to be sent across the network is broken into smaller pieces known as “packets”. These packets contain a chunk of the

data, plus information known as the “header” that

contains source and destination network addresses and

other control information. The MTU (maximum

transmission unit) size of a packet is typically 1500 bytes, including header information.

• Packet header: The header of each packet contains information that helps ensure the efficient and reliable

transmission of the packet across the network, such as the source and destination IP addresses. Additionally, each

packet contains a sequence number that is used to

reorder the packets at the destination into their correct

sequence, so that the content of the data file is not

jumbled. The header also contains error-checking

information such as checksums, which calculate whether

the packet has arrived correctly, or whether the source

has to be asked to retransmit it.

• Routing: Each packet is sent through the computer network independently of any of the other packets

associated with it. This means that packets for the same

file may travel different paths across the network, based

on conditions such as congestion and route availability.

This flexibility in routing helps networks optimize usage

and provide for a robust environment that is more tolerant of failures within the network.

• Routers: These devices determine the optimal path for each packet passing through to reach its destination. They inspect the packet destination address and use routing

tables and algorithms to decide the next hop in the

network to forward each packet to.

• Switches: These devices are typically operated within local area networks and direct packets between devices on

the same network. They use the MAC addresses to process

and forward packets.

• Reassembly: Once the packet has reached its

destination, it is checked for sequencing information and

then reassembled into the original file in the correct order.

Importantly, because no two packets are guaranteed to be

transmitted along the same path, it is impossible to

assume that packets have arrived in the correct order.

Additionally, some packets may have been lost or

corrupted in transmission, so the source needs to be

requested to retransmit those packets.

A2.3.4 Static routing and

dynamic routing in local area

networks (HL)

Network routing refers to the algorithms that determine the path for traffic in a network, or between and across

multiple networks. Within local area networks, routing

decisions can be handled by one of two methods: static or

dynamic routing.

Routing: the process of selecting paths along a computer network to send network traffic, based on the routing table, network performance and protocols.

Static routing

Static routing is where the network routes are manually

configured and entered into a routing table by the network administrator. These routes do not change except by

manual update.

This method is easy to implement in small networks where

the routes do not change much, but can be too complex to

manage in networks with hundreds or thousands of nodes.

Static routing provides predictability in the behaviour of your network, and does not require additional processing or bandwidth due to one router communicating with another

for route discovery and optimization.

In addition to the challenge of scale, other issues around static routing include the lack of fault tolerance as, if a connection fails, static routing does not automatically

attempt to find a workaround; and the maintenance

workload associated with it, as every small change in the

network requires manual updating of the routing table.

[image: Image 197]

Dynamic routing

Dynamic routing coping with node failure

As can likely be inferred, dynamic routing contrasts with

static routing by using an algorithmic approach to

automatically adjust routes in the routing table. To do this, routers communicate with each other to share information

about their connections, topology and demand on their

network resources. This information is used to adjust the

routes in runtime, with the goal of ensuring optimal paths for network efficiency.

Dynamic routing scales well for larger networks, as they can automatically adapt as changes occur. This also improves

fault tolerance, as network traffic can be automatically re-routed around a failed connection.

Dynamic routing does pose some challenges. Its dynamic

nature requires additional computational and bandwidth

resources to manage. The combination of the larger

networks and the dynamic routing do make for a more

complex routing table that needs to be configured and

maintained. This necessitates a deeper understanding of

network concepts by the staff maintaining such a network.

Finally, given each router is maintaining its own copy of a routing table, there can be delays in the convergence of the routing table while the individual routers communicate and negotiate with each other. This can lead to occasional

routing inconsistencies in the short term.

REVIEW QUESTIONS

1 Which type of IP addressing is specifically designed to provide a larger address space than its predecessor?

a IPv4

b IPv6

c Static IP

d Dynamic IP

2 Which type of data-transmission media is most

susceptible to electromagnetic interference?

a Fibre optic

b Twisted pair

c Wireless

3 What role do routers play in the process of packet switching?

a They prevent packet collision

b They direct packets along the most efficient paths to their destination

c They combine packets into a single data stream

d They generate the data packets from the user data 4 Which type of routing is better suited for networks that require frequent updates due to topology changes?

a Static routing

b Dynamic routing

c Both are equally suited

d Neither is suitable

5 Describe the main purpose of network address

translation (NAT).

6 Describe one advantage and one disadvantage of using fibre-optic cables for data transmission.

7 Explain why packet switching is considered efficient for data transmission over a network.

8 Explain one main advantage of static routing compared to dynamic routing.

[image: Image 198]

A2.4 Network security

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

• A2.4.1 Discuss the effectiveness of firewalls for

protecting a network

• A2.4.2 Describe common network vulnerabilities (HL)

• A2.4.3 Describe common network countermeasures (HL)

• A2.4.4 Describe the process of encryption and digital

certificates

A2.4.1 Firewalls

Firewalls obviously play a key role in helping protect

computer networks, but what exactly do they do?

Firewall in action

A firewall inspects the IP packets that pass through it, and filters the incoming and outgoing traffic, based on a set of predefined security rules. In the illustration above, Rule 1 is allowing traffic from PC2 on the internal LAN to access any external IP address that begins with 185.?.?.? for destination ports 80 or 443. Rule 2 then denies all other internal

requests. Each individual packet is checked against the

rules until a rule is encountered that allows or denies

passage through the firewall.

Some firewalls are also capable of applying stateful

inspection, where the state of active connections is

monitored and can be used to determine passage through

the firewall, for instance once a connection has been

allowed to be established, packets are allowed to continue back and forth through the connection until it closes.

The rules comprise a set of allow lists and deny lists. These lists are IP addresses or ranges of IP addresses, and

optionally can also specify application port numbers.

Using the rule lists, firewalls control access to the internal network from external sources, and can also be used to

control which external destinations are accessible from

internal sources. Additionally, firewalls log traffic requests, which can be useful for detecting and responding to

suspicious activity or for identifying a potential breach.

Firewalls are just one tool for securing a network, and are not perfect for protecting against all types of attacks. For instance, firewalls are less effective against threats from within the network such as a malicious insider, or if an

external threat has gained local presence on the network via compromised WiFi. Some threats can be quite sophisticated

and can mimic legitimate traffic. Finally, a firewall is only as good as its configuration. If a network manager doesn’t

[image: Image 199]

keep the deny lists updated and the firewall firmware up to date, then vulnerabilities can be exposed.

Common mistake

Over-reliance on firewalls

Don’t assume that a firewall alone is sufficient to protect a computer network. Firewalls are gatekeepers for ranges of

addresses and ports. Most firewalls do not inspect the

content of the data beyond the source and destination

address and port, meaning malicious data can easily still

be let through if destined for a legitimate location.

Network address translation

Network address translation in action

You were previously introduced to the concept of network

address translation in Section A2.3.1.

Beyond the convenience that network address translation

has provided through allowing the internet to continue to

function despite having exhausted IPv4 addresses years

ago, it has also had an additional benefit with respect to network security.

Since NAT modifies the IP address information in packet headers, the process helps to hide internal IP addresses on a network, which makes it more difficult for an external

attacker to reach internal systems. Although it is not

technically a security feature by design, it does provide an additional layer of difficulty that attackers must overcome, as the internal structure of your network and IP addresses are not directly exposed. In this sense, it could be described as a case of security by obscurity.

A2.4.2 Common network

vulnerabilities (HL)

In this section, we briefly consider a range of common

attack vectors and vulnerabilities within computer networks.

In the subsequent section, we review strategies to mitigate these risks.

Linking question

What are the similarities and differences between network

security and database security? (A3)

Distributed denial of service

(DDoS)

[image: Image 200]

A distributed denial of service (DDoS) attack is one in which multiple systems under the control of the malicious actor

generate a massive number of network requests, with the

goal of overwhelming the target system. This can cause the target to slow down, so that it becomes unusable or

unavailable for legitimate users.

It is important to point out that the computers being used for the attack are typically not even devices directly owned or operated by the attacker. It is more likely that they are devices that have fallen victim to having unwittingly

installed malware on their system that the attacker can then use to contribute towards the overall DDoS attack.

Insecure network protocols

There are many older or poorly designed network protocols

still in widespread use that do not include modern security features. These older protocols allow attackers to intercept, or even alter and manipulate, the content of data in transit on the internet.

Examples of these older protocols are HTTP, FTP and Telnet, all of which transmit their data in the clear without any form

[image: Image 201]

of encryption. The modern alternatives are HTTPS, SFTP and SSH.

Malware

“Malware”, or “malicious software”, is the overarching term for a classic range of attacks that have had various names applied to them over the years. If you’ve come across terms such as “computer viruses”, “worms”, “trojan horses” and

“ransomware”, these are all various forms of malware. They are software that is designed to harm or exploit vulnerable devices and to seek out and spread to other vulnerable

devices. They can lead to data loss, data theft and loss of full control of the device. Malware can sometimes sit idle for extended periods of time until triggered to activate (such as in the case of a DDoS client).

Man-in-the-middle (MitM)

A man-in-the-middle attack (now also sometimes referred to as an on-path attack) is where an attacker eavesdrops on

communications between two systems.

This can result in data breaches, or data alteration, without the knowledge of the original parties involved.

[image: Image 202]

Phishing

Phishing is when a victim receives, and responds to, a

seemingly legitimate message (such as an email) that has

the aim of deceiving the victim into providing sensitive

information, such as login credentials or bank account

details. This can result in unauthorized access to other

systems, identity theft and financial crimes.

SQL injection

An SQL injection is where an attacker exploits vulnerabilities in the way an application or website has been designed to

work with its database. It relies upon the programmers not applying sufficient validation checks to the user inputs, so that the application can make unintended changes to the

underlying database. This can result in unauthorized

viewing of user lists (and their passwords), deletion of data or granting administrative control of the database to the

attacker.

To understand how the SQL injection attack works, consider the impact the following Python would have to the SQL

statement if executed on a database:

The SQL string now actually contains three different SQL

commands:

1 INSERT INTO Students VALUES ('Robert');

2 DROP TABLE Students;

3 –', 'Doe');

Never trust inputs from users or feed them straight into your database without verifying and validating them first!

Cross site scripting (XSS)

Cross site scripting attacks operate on similar principles to the SQL injection attack. Instead of using insufficient

validation to send rogue database instructions, a cross site scripting attacker injects their own code to run client-side on pages viewed by other users. This can bypass access

controls, deface websites or redirect users to malicious

sites.

Any website that loads and executes JavaScript that is being hosted by a third party (a very common practice for many

JavaScript libraries) makes itself potentially vulnerable to this scenario, as the website is effectively inviting the third party to run their own code on the website.

Unpatched software

Unpatched software refers to software that has not had all published security updates applied to it. Once security

updates are released by software vendors, it is particularly important to apply them as soon as possible as not only do they help address and correct a vulnerability, they also

advertise the existence of the vulnerability, making devices lacking the update even more vulnerable to attack.

Weak authentication

Systems that have poorly designed authentication systems

make themselves vulnerable to attack by design. Examples

of this might be websites that do not properly hash and salt their passwords, or that store their security keys in insecure folders. Multifactor authentication systems, and the use of tools such as OAuth, are industry standard for a reason.

Developers should be discouraged from rolling out their own authentication system for anything other than as a learning tool. Use and rely on the excellent high-quality

authentication systems that have been built upon the tears of those who have gone before you.

Zero-day exploits

A zero-day exploit is when an attacker takes advantage of a previously unknown weakness in software or hardware,

before its maintainers have had the opportunity to create a patch to fix the vulnerability. These types of exploits are especially dangerous because, by their very nature, there is no known defence against them.

Perhaps the best-known historical example of a zero-day

exploit was Stuxnet. It was malware that was used to break into Iran’s uranium-enrichment centrifuges in 2006, and is suspected to have been created by the USA’s National

Security Agency (NSA).

A2.4.3 Common network

countermeasures (HL)

Common mistake

Network security is more than having anti-malware

software and using encryption

Many times, when students are asked how to protect a

computer or data on a network, they simply revert to

saying “install anti-malware software” or “use encryption”.

These are lazy answers that do not capture the nuance of

the approaches outlined in this section. Network security

requires a complex, multi-layered approach to protect

against attacks. Be sure to understand the different

strategies outlined and be prepared to discuss them in assessments.

Top tip!

Match the threat to the countermeasure

One method of ensuring you master a more detailed

understanding of the complexities of securing a computer

network is to review the various threats discussed in the

previous section, and match each to the appropriate

countermeasure discussed in this section. For instance,

multifactor authentication can help counter weak

authentication issues.

Content security policies

The content security policy header is settings that can be placed into the HTTP header to define which sources are

permitted to load content on to a particular website.

Properly set, they can help guard against XSS attacks and

similar injection exploits.

For more information, search online for Mozilla’s content-

security-policy documentation

(https://developer.mozilla.org/en-

US/docs/Web/HTTP/Headers/Content-Security-Policy).

Complex password policies

Password policies are continually a vexed and contentious

issue.

Some in the industry continue to argue for password rules

that enforce the creation of strong, hard-to-brute-force

passwords that require minimum lengths and a mix of

letters, numbers and special characters.

Others in the industry argue that best practice should be to help users cope with what is described as “password

overload”. Security experts such as Troy Hunt argue best

practice should entail:

• only using passwords where they are really needed

• using technical solutions to reduce the burden on users

• allowing users to securely record and store their

passwords

• only asking users to change their passwords on suspicion of compromise

• allowing users to reset passwords easily, quickly and

cheaply.

For more on modern understanding of password policies,

search online for Troy Hunt’s excellent article “Passwords Evolved: Authentication Guidance for the Modern Era”

(www.troyhunt.com/passwords-evolved-

authentication-guidance-for-the-modern-era).

Major companies such as Microsoft and Google are now

promoting the use of passwordless authentication as much

as possible. As Google states: “Developers and users both

hate passwords: they give a poor user experience, they add conversion friction, and they create security liability for both users and developers.”

Passkeys are being promoted as a safer and easier

alternative. This can take one of a variety of forms,

including:

• biometric sensor login (fingerprint or face recognition)

• PIN

• pattern.

Read more about passkeys by searching online for Google

Developer’s “Passwordless login with passkeys”

(https://developers.google.com/identity/passkeys).

[image: Image 203]

If you do use a website that still requires a password, be concerned if it imposes a maximum length on the password

you set. If a password is properly hashed, it won’t matter how long it is, so if you are told by a system that the

password has a maximum length, chances are it means they

are storing it in unhashed clear text! Run, run far away, and definitely do not reuse a “real” password on that service!

(The author has been known to use variations of

“thisPasswordIsNotSecure” on such websites)

Distributed denial of service

(DDoS) mitigation tools

To help guard a server against a DDoS attack, most firewalls and web servers have settings available that help absorb or deflect traffic overloads. They do this by rate limiting

(allowing a maximum number of requests in a given time-

period from any individual source), traffic analysis and also subscribing to cloud-based DDoS protection services, such

as those provided by the major cloud-hosting companies.

Email filtering solutions

One of the most common attack vectors used for the spread

of malicious software remains email. To this end, having

modern and up-to-date email-filtering systems to scan

incoming emails for malicious attachments, phishing

attempts and general marketing spam can go a long way to

protect end-users from email-based threats.

Encrypted protocols

To protect against man-in-the-middle and other similar

attacks is trivially easy now. Simply do not use unencrypted protocols such as HTTP, FTP or Telnet. Only use systems that

accommodate the secure, encrypted modern versions of HTTPS, SFTP or SSH.

Input validation

A maxim in Computer Science is never to trust user inputs: always validate them!

Use a range of input-validation tools, such as presence

check, length check, type check and format check to

validate that the structure of the incoming data is in the style and format expected. For instance, your software

shouldn’t be accepting kilobytes of data when the entry box is for a person’s name or date of birth!

A few simple checks on the input data being received from

the user, prior to accepting and processing it, goes a long way to protecting systems from harmful data.

An example of where lack of input validation caused global security concerns was the Heartbleed vulnerability that was hidden within the important OpenSSL cryptography library,

which is a widely used implementation of the transport layer security protocol.

For a simplified look at how the attack worked, search online for “1354: Heartbleed Explanation”

(www.explainxkcd.com/wiki/index.php/1354:_Heartble

ed_Explanation).

Intrusion detection systems

(IDS) and intrusion prevention

systems (IPS)

Intrusion detection and prevention systems are specialized software tools that actively monitor network traffic and the broader state of your system. Their goal is not just to detect

potential threats, but proactively to block them before they succeed in compromising your systems.

The intrusion detection system focuses on monitoring network and system traffic to spot suspicious activities and potential threats. It sends alerts to network administrators when it identifies such activity. The IDS is a passive system, meaning that it does not interfere with the flow of traffic on the system.

The intrusion prevention system is an active system. When it detects a threat, it takes proactive measures to prevent the threat from gaining access to, or harming, the network.

It can block traffic, drop malicious packets, close

connections and more.

In modern cybersecurity solutions, the IDS and IPS roles are often bundled together into a comprehensive security

product, allowing for both detection of threats and active measures to prevent those threats from causing harm.

These modern tools have taken on the name of “endpoint

protection” to describe their role. Endpoint-protection

software typically also bundles other security functions,

such as antivirus, anti-malware, firewalls and others, with the goal of integration being to provide a robust protection regime.

Most operating systems come with their own basic

endpoint-protection utilities installed (in Windows it is

known as Defender), but there are many commercial

operators in this space. CrowdStrike is one such operator, which became famous for all the wrong reasons when, on 19

July 2024, it sent out a faulty update for its Falcon Sensor product that resulted in over 8 million Windows computers

getting stuck at the infamous Blue Screen of Death (BSOD), affecting critical systems for airlines, banks, hospitals, supermarkets and many other organizations around the

globe.

[image: Image 204]

Multifactor authentication

(MFA)

One-time passcode

Multifactor authentication systems are an easy-to-

implement measure that require more than one method of

authentication by users to verify their identity.

The commonly stated goal of introducing multiple factors is to require two of the three means by which a user can prove their identity:

• Something they know (e.g. a password).

• Something they have (e.g. their phone – by way of

receiving or generating a code).

• Something they are (e.g. a biometric, such as fingerprint or facial recognition).

As a consumer, you should enable two-factor authentication on as many services as possible and use an app such as

Authy.

Top tip!

Adding one-time codes to your projects

As a beginner software developer, there are libraries

available that make it very easy to incorporate one-time

codes that are compatible with all the major authentication apps. For Python, search online for the PyOPT library

(https://github.com/pyauth/pyotp).

Secure socket layer (SSL)

certificate and transport layer

security (TLS) certificate

SSL and TLS certificates allow consumers to authenticate

the developer or organization that authored a software

product. Developers and companies can use these

certificates to digitally sign the project as their work,

thereby giving trust and confidence to the consumer. These

digital certificates are discussed in more detail in Section

A2.4.4.

Update software

Keeping your software up to date by regularly applying all the latest security patches is an important step for

mitigating the risk of falling victim to a security vulnerability.

Virtual private networks (VPN)

As previously discussed, VPNs provide a secure means to

exchange data with a remote office as if your device was

connected directly to the private network. Companies regularly require their employees to make use of VPN

technologies whenever they are working remotely away

from the office.

Testing and training

Regular testing of your security measures, including “white hat” penetration testing and vulnerability assessments,

forms a critical part of ensuring systems remain secure.

Testing helps ensure your systems still work as you expect, and that no new weaknesses have emerged.

As part of the testing, there should also be regular training for staff within an organization. Many security breaches

occur through human error, so training employees in

security best practices on an ongoing basis is also a crucial part of any security regime.

Wireless security measures

Wireless networks pose a unique vulnerability to any

computer network and require special security measures to

identify and mitigate risks. One commonly used measure is

to restrict access to the network to each device’s unique

media access control (MAC) address. The MAC address is a

unique 48-bit address assigned to each network card by the manufacturer, so these can be used to populate an allow-list of devices permitted to connect to the network.

Secured backups

When was the last time you backed up your files?! For data that matters to you, take responsibility for its care and

protection. Don’t just rely on cloud services either, as they are known to fail occasionally. Purchase a spare portable

drive to keep in the back of your sock drawer, and copy your data to it at least once a month.

Top tip!

Data synchronization tool

For students confident with using console commands, rsync

is the best tool for copying files for backups. Search online for “manpagez: man pages & more man rsync(1)” for the

documentation (www.manpagez.com/man/1/rsync).

If you are less confident with the console, search online for

“Free File Sync”, a free, open-source file synchronization tool (https://freefilesync.org).

Finally, if your backups resemble a collection of portable drives, you should consider the security of your backups! An attacker doesn’t need to penetrate your network if they can just pinch a USB drive!

Top tip!

File-encryption tool

Consider encrypting your backups with a tool such as

gnupg (https://gnupg.org/download): just don’t forget the password!

• To encrypt:

gpg --output encrypted_backup.enc --symmetric --cipher-

algo AES256 mybackup.zip

• To decrypt:

gpg --output mybackup.zip --decrypt

encrypted_backup.enc

Linking question

[image: Image 205]

Do networks and databases use the same form of

encryption algorithms? (A3)

Encryption: the conversion of information or data into a mathematically secure format that cannot be easily

understood by unauthorized people.

A2.4.4 The process of

encryption and digital

certificates

Common mistake

Thinking digital signatures and digital certificates

are the same thing

Ensure you understand the nuance of the distinction

between a digital signature and a digital certificate. They are not the same thing.

Symmetric encryption

Symmetric encryption is where the same key is used for both encrypting and decrypting the data. This means the

key must be shared between both the sender and receiver

in a secure manner.

Encryption key: a string of characters or numbers used by an encryption algorithm to encode or decode data. It is the values that are input into the mathematical functions

responsible for scrambling or descrambling the data.

Symmetric encryption is generally faster and less

computationally intensive than its asymmetric equivalent,

so it makes sense to use it for encrypting large files.

When physical distance separates the sender and receiver,

it can be difficult to share the encryption key in such a

manner as to be protected against eavesdroppers. There

are two common solutions to this problem:

• Use asymmetric encryption to establish secure

communications. Use this asymmetric method to

exchange and agree on a symmetric key, and then switch

communications to the faster, more efficient symmetric

approach.

• Use a mathematically secure method to exchange keys,

such as Diffie Hellman (covered later in this section).

Asymmetric encryption

[image: Image 206]

Asymmetric encryption is when the security key used to

encrypt data is different from the key used to decrypt it. If it can work successfully, there are significant benefits to be gained, as it means two parties wanting to communicate in

encrypted form do not have to meet privately to exchange

an agreed-upon encryption key, as is required for symmetric encryption. Instead, the encryption key can be published

publicly, and any person wishing to send a message can use it to encrypt the data, so that only the recipient and key-holder can decrypt it to read.

For example: If Alice wants to send a secure message to

Bob, she encrypts it using Bob’s public key. Only Bob can

decrypt this message with his private key.

How does it work? How is it algorithmically possible to use one cipher key to encode the data and a different key to

decode it? The answer is mathematics! The following

walkthrough, inspired by an example by Henry J. Schmale, is simplified and loosely based on the RSA (Rivest–Shamir–

Adleman) encryption algorithm.

Key information

The mathematical walkthrough is provided to demonstrate

how such algorithms are possible, as an exercise of

intellectual interest. Understanding the mathematics is

beyond the scope of the syllabus. You will not be examined on this procedure or asked to do these calculations in the exams.

Step 1: Generate your public and

private key

Start by selecting two prime numbers. These are generally

very large: up to 2048 bits is typical. We will use 61 and 53

for our walkthrough.

 p = 61

 q = 53

Find n, the product of the two primes, and λ(n) (known as

“Carmichael’s totient function”). To follow the maths, all you need to appreciate is that it is the least common multiple of (p – 1) (q – 1).

 n = pq = 61 × 53 = 3233

and

 λ(n) = l cm[(p – 1)(q – 1)] = l cm(60,52) = 780

Select an integer, e, that is a prime number, less than λ(n), and not a factor of λ(n). A common choice is 216 + 1, being 65537.

 e = 17

Solve d, where (d × e) mod λ(n) = 1. This is known as the

“modular multiplicative inverse”.

That is, (17 d) mod (780) = 1. One valid answer in this case is d = 413.

The public key will be the two numbers n = 3233, e = 17, and the private key will be the two numbers n = 3233, d =

413.

Step 2: Encrypt your secret message

The cipher text, c, for a secret message, m, is given by the following equation:

 c(m) = memod n

So, if the secret message is A, which is ASCII 65:

 c(65) = 6517 mod 3233 = 2790

Step 3: Decrypt your secret message

The message, m, for cipher text c is given by the following equation:

 m(c) = cdmod n

So, when given cipher text 2790, this would be decrypted as follows:

 m(2790) = 2790413 mod 3233 = 6517

The security of the algorithm rests in the size of the prime numbers and that factorizing a number into its two

constituent primes is still not possible except by brute force of trying every possible set of values. The original prime number factors are required to be able to calculate λ(n). In this case, it would be trivial to find the factors of 3233, but finding the factors of a 4096-bit number would take

hundreds or thousands of years.

One area of active computing research that may threaten

the security of RSA-encrypted data is quantum computing.

Shor’s algorithm, specifically, is a quantum algorithm for the factorization of integers that could work very quickly and render modern cryptography obsolete.

Role of digital certificates

Digital certificates are used as a way of certifying identity on the internet. For HTTPS traffic, they are issued by a mutually trusted third party known as a “certificate authority (CA)”.

When a digital certificate is presented in a network

transaction, it helps the recipient verify that the public key belongs to the sender and not an imposter. Digital

certificates form a key part of the network of trust on the internet. It’s not enough to know that your communication

with yourbank.com is encrypted, if any ol’ person can pose as the legitimate web server for yourbank.com. You want to know the web server you are logging in to is the one you

want to share your secrets with.

Obtaining a certificate

The process starts by yourbank.com requesting that a

certificate authority (that is mutually trusted by both

parties) issues a certificate that can be used to prove they are, indeed, the legitimate server for yourbank.com. The bank will generate a public and private key using a process similar to that previously discussed with the RSA algorithm.

The private key is kept secure on the bank’s server, while the public key is sent to the certificate authority with the request for certification.

Using the public key provided in the certification request, the CA will verify the identity and legitimacy of the bank.

This process varies, and is dependent on the process

applied by the certificate authority. In the early days of the internet, it required sending photo ID proof, business

ownership certificates and other legal documents to the CA.

Modern practice has simplified this significantly to

encourage broader adoption of HTTPS, so now certificate

authorities such as letsencrypt.org offer the service for free and without complex paperwork.

[image: Image 207]

Once the CA is satisfied with the verification, it will use its private key to sign the public key of the bank or other

website. This signing process involves creating a hash of the certificate that is then encrypted using the CA’s private key.

This encrypted hash becomes the electronic signature. It

can’t be produced without the CA’s private key, but it can be validated through using the CA’s public key.

Using digital certificates

Signing with a digital certificate

Once issued, the digital certificate can be attached to all communications from the bank or other organization, and

used to cryptographically sign the communication. This

provides a mechanism of allowing recipients to

algorithmically verify the authenticity of the origin of the communication.

Digital certificates can also be self-generated to create

public and private keys that can be used for secure login to network services, such as via SSH (Secure Shell). In this

case, your public key is uploaded to the remote machine

you want to authenticate yourself to later and you keep the

private key secure on your own local machine. The private key is equivalent to your password. When you want to log in via SSH, the server will generate a challenge to you that is encrypted with the public key. You, as the sole person in

possession of the private key, are therefore the only person able to decrypt the challenge and thereby prove your

identity.

Given the crucial importance of cryptographic keys in the

modern interconnected economy, proper storage of keys is

essential. If anyone gains unauthorized access to an

organization’s private keys, they can act as an imposter of that organization in all electronic transactions for which that key has been set up to be used. The creation, distribution, usage, storage and eventual retirement and deletion of

encryption keys is therefore a key task of any effective IT

infrastructure.

Digital certificates are a core part of blockchain technologies such as cryptocurrencies. All transactions on a blockchain are both signed and hashed. Senders use their private keys to digitally sign transactions as part of the process of

validating themselves as the owner of the cryptocoin that

they are spending. This signature serves to authenticate the identity of the sender and ensure the non-repudiation of the transaction. The sender cannot later deny having made the

transaction.

ACTIVITY

Thinking skills: Spot the forgery at Coding Quest in the 2022 challenge (https://codingquest.io/problem/5).

[image: Image 208]

Diffie Hellman key exchange

Given that asymmetric encryption algorithms require

significantly more processing than symmetric algorithms, it is ideal if lengthy communication sessions can occur using symmetric encryption. The obvious problem that occurs

then is to find a secure method of exchanging and agreeing on the symmetric key. While asymmetric encryption could

be used to do this, it is slower and more processing

intensive. An alternative approach that is commonly used is known as the “Diffie Hellman key exchange”.

The analogy used to describe Diffie Hellman is the difficulty of unmixing colours of paint. While we may have a vague

idea of which colours might be used to constitute brown, it is almost impossible to unmix the input colours perfectly.

From an algorithmic perspective, Diffie Hellman relies on the same principles of asymmetric encryption with respect to

prime numbers and the mathematical difficulty of

determining the prime factors of a number once run through a modulus operation.

This is a mathematical walkthrough of the Diffie Hellman

algorithm:

Step 1

Agree (in public) on a base and a modulus. The modulus

must be a prime number.

Person 1

Person 2

 base = 109, modulus =

 base = 109, modulus =

811

811

Step 2

Pick a secret number as your exponent. Calculate the base, raised it to the secret, and then put it through the modulus.

 secret = 197

 secret = 312

109197% 811 = 679

109312% 811 = 337

Step 3

Exchange the result of step 2 with your friend.

 received = 337

 received = 679

Step 4

Calculate your common secret by taking the received number, raising it to your original secret and then running the result through the modulus.

337197% 811 = 215

679312% 811 = 215

Key information

Video walkthrough

Search for the YouTube video “Diffie-Hellman Key

Exchange: How to Share a Secret” by Spanning Tree.

REVIEW QUESTIONS

1 What is a primary function of a firewall in a network security context?

a Monitoring network performance

b Inspecting and filtering traffic based on set rules c Increasing the speed of network traffic

d Providing physical security to network devices

2 Which attack involves overwhelming a service with excessive requests in order to make it unavailable?

a Phishing

b SQL injection

c DDoS

d MitM

3 What type of attack intercepts and possibly alters the communication between two parties who believe they

are directly communicating with each other?

a DDoS

b MitM

c Phishing

d XSS

4 Which vulnerability arises when software has not been updated to address known security issues?

a Insecure network protocols

b Unpatched software

c Weak authentication

d Malware

5 Which network countermeasure is specifically designed to prevent unauthorized access by verifying users

through multiple methods?

a Multifactor authentication (MFA)

b Intrusion detection system (IDS)

c Virtual private network (VPN)

d Email filtering

6 Which countermeasure can help protect a network

against interception and unauthorized access to data in

transit?

a Multifactor authentication (MFA)

b Intrusion prevention system (IPS)

c Transport layer security (TLS) certificate

d Virtual private networs (VPN)

7 Which security practice involves verifying the

legitimacy of a website’s connection to ensure it is

secure?

a Applying content security policies

b Updating software regularly

c Using secure socket layer (SSL) certificates

d Email filtering

 8 Which type of cryptography uses the same key for encryption and decryption?

a Symmetric

b Asymmetric

c Both A and B

d Neither A nor B

9 Describe how network address translation (NAT)

contributes to enhancing network security.

10 Describe what is meant by “zero-day exploit”.

11 Describe SQL injection and how it can affect a

database-driven website.

12 Describe how weak authentication can pose a risk to network security.

13 Describe the purpose of using intrusion detection systems (IDS) and how they function.

14 Describe how DDoS mitigation tools work to protect a network.

15 Describe the role of digital certificates in establishing secure network connections.

ACTIVITY

Thinking skills: Design a network with Raspberry Pi

[image: Image 209]

Raspberry Pi network structure

Create a small network using Raspberry Pi to simulate real-world network scenarios, including client–server and peer-

to-peer architectures, routing and basic network security

implementations.

If you are completing this task as a class, split into small groups, allocating one Raspberry Pi per group. Assign each Raspberry Pi one of the following roles:

• Firewall and router

• Proxy server

• Web server

• DHCP server

• Wireless access point server

• DNS server (optional)

The following instructions suggest utility programs and

configuration files that would be useful for achieving your objectives but lack sufficient particularity to complete the

instruction without further research by your team. The information provided is mostly to help you know you are on the right track when searching for guides online.

Materials needed:

• Several Raspberry Pi computers (at least one per group; ideally three or four per group for diverse roles)

• SD cards with Raspberry Pi OS installed

• Ethernet cables

• Network switch (or a router with multiple Ethernet ports)

• Monitors, keyboards and mice for interfacing with the

Raspberry Pi computers

• Internet connection (for downloading packages and

updates)

Initial set-up for all Raspberry Pi computers:

• Each Raspberry Pi needs the Raspberry Pi OS installed

and updated. You can download the latest version from

the official Raspberry Pi website and write it to an SD

card. Connect the Raspberry Pi to a keyboard, monitor

and mouse and power up. The default login credentials

are username pi and password raspberry. When

configuring the Raspberry Pi computers, enable SSH and

VNC to ease remote access later.

• You may need occasionally to temporarily connect the

Raspberry Pi computers directly to an internet

connection, rather than to your custom network, for the

purposes of installing updates and other programs.

For the Raspberry Pi designated as router and

firewall:

1 Ensure the Raspberry Pi is obtaining an IP address from the DHCP server. This Pi will need a static IP (so other Pi computers can find it to request internet traffic), so the DHCP server will need the MAC address of this Pi so as to

[image: Image 210]

[image: Image 211]

assign it the same IP address each time. To view the IP

address from the console, use the command ip a.

2 To set a static IP directly (without the DHCP server), edit the file /etc/dhcpcd.conf as follows:

3 Enable IP forwarding by editing /etc/sysctl.conf.

4 Set up the WiFi connection to your school WiFi network (or other network providing outbound internet access) by

running sudo raspi-config.

5 Configure NAT and the firewall with nftables. The main configuration file will be /etc/nftables.conf. A basic

template configuration may resemble:

6 To apply change to rules, run this command: sudo nft -f

/etc/nftables.conf.

7 Reboot the Pi for settings to take effect, and then test.

For the Raspberry Pi designated as wireless access

point:

1 Install hostapd as your access point host software.

[image: Image 212]

[image: Image 213]

2 The main configuration file will be

/etc/hostapd/hostapd.conf. Suggested settings include:

3 Configure hostapd to use that configuration file by editing /etc/default/hostapd.

4 Prevent the wireless network card from being managed by the default network manager by changing

/etc/dhcpcd.conf and specifying denyinterfaces wlan0.

For the Raspberry Pi designated as DHCP server:

1 Install isc-dhcp-server as a DHCP server.

2 The main configuration files will be /etc/dhcp/dhcpd.conf and /etc/default/isc-dhcp-server.

3 An example template for /etc/dhcp/dhcpd.conf is: 4 Ensure the DHCP server is configured to start on boot.

5 Check the logs for errors by using cat /var/log/syslog |

grep dhcp.

For the Raspberry Pi designated as web server:

[image: Image 214]

1 Ensure the Raspberry Pi is obtaining an IP address from the DHCP server. This Pi will need a static IP (so other Pi computers can find it to request a webpage), so the

DHCP server will need the MAC address of this Pi so as to

assign it the same IP address each time. To view the IP

address from the console, use the command ip a.

2 Install nginx as the web server software, and set it to start automatically on boot.

3 Create a web page at /var/www/html.

4 The main configuration files for nginx can be found in

/etc/nginx.

5 If nginx fails to start, you can check for configuration errors by using sudo nginx -t.

6 An example HTML file for /va/www/html/index.html might resemble:

For the Raspberry Pi designated as proxy server:

1 Ensure the Raspberry Pi is obtaining an IP address from the DHCP server. This Pi will need a static IP (so other Pi computers can find it to request a webpage), so the

DHCP server will need the MAC address of this Pi so as to

assign it the same IP address each time. To view the IP

address from the console, use the command ip a.

2 Install squid proxy server software, and set it to start automatically on boot.

3 The main configuration file is at /etc/squid/squid.conf.

4 In addition to acting as a web cache, because all traffic passes through a proxy it can also be used as a content

filter, for example you could block requests for given

URLs. This is similar, though functionally different, from the firewall approach. Investigate how to use squid to

block certain websites.

For the Raspberry Pi designated as DNS server:

1 Ensure the Raspberry Pi is obtaining an IP address from the DHCP server. This Pi will need a static IP (so other Pi computers can find it to request a webpage), so the

DHCP server will need the MAC address of this Pi so as to

assign it the same IP address each time. To view the IP

address from the console, use the command ip a.

2 When the configuration for the DNS server is complete, the DHCP server will need updating so clients know to

look to this computer for DNS resolution queries.

3 Install bind9 as your DNS server software, and ensure that it is set to start on boot.

4 The main configuration files will be in the folder

/etc/bind.

5 To check the configuration for errors, go to sudo named-checkconf and sudo named-checkzone myhome.local

/etc/bind/zones/db.myhome.local.

6 An example ZONE file /etc/bind/db.myhome.local to create your own DNS domain (that would work on your

internal network) might resemble:

[image: Image 215]

[image: Image 216]

ATL alignment links

Research skills:

• Finding and selecting appropriate software and hardware resources.

• Understanding documentation to configure each

Raspberry Pi for its specific role.

• Comparing solutions and different methods or options to determine what will work best for project requirements.

Thinking skills:

• Problem-solving the numerous challenges that come in

setting up a new network, such as IP address conflicts,

firewall rules and ensuring all devices can communicate

effectively.

• Critical thinking to evaluate the effectiveness of each network component and troubleshoot issues.

• Decision-making the design of the network.

Social skills:

• Collaboration by working together in a group to divide

tasks, share findings and support each other.

• Conflict resolution of different opinions on how to configure the network or solve problems.

• Responsibility-sharing and relying on the contributions of others.

Communication skills:

• Technical writing to document the network set-up and

configuration steps.

• Oral communication to explain complex concepts such

as DNS or DHCP with peers or teachers.

Self-management skills:

• Planning and organization to manage a large, cumulative task.

• Adaptability to deal with unexpected issues.

• Self-motivation and initiative to go beyond a basic set-up, such as implementing additional network services or

security measures.

EXAM PRACTICE QUESTIONS

1 Small business network set-up

A small business has recently expanded and needs to

update its network infrastructure to support more

employees and provide secure, efficient access to

resources.

a Identify one piece of network hardware that would connect multiple computers within the office to create

a local area network (LAN).

[1]

b The business has chosen a star topology for its

network. Describe one advantage of using a star

topology in a small business environment.

[2]

c The company uses both HTTP and HTTPS protocols on its internal websites. Describe one key difference

between HTTP and HTTPS.

[2]

d In the context of the TCP/IP model, describe the function of the transport layer.

[3]

e The network architecture includes both client–server and peer-to-peer set-ups. Compare these two types of

network architecture in terms of resource

management.

[3]

f The business plans to use IPv6. Identify one advantage of using IPv6 over IPv4 in a growing business.

[1]

g The business is choosing between using fibre-optic cables and wireless transmission for connecting

different departments. Discuss two factors that should

be considered.

[2]

h Describe how routers in the network use dynamic

routing to manage data traffic.

[3]

i The company is concerned about network security.

Describe one common network vulnerability and a

corresponding countermeasure.

[3]

j Data encryption is crucial for the company’s

operations. Describe the difference between

symmetric and asymmetric encryption in the context of data security.

[3]

k Outline how digital certificates contribute to network security.

[2]

2 University campus network

A large university campus network needs to support

thousands of users in a dynamic, high-demand

environment.

a State one network device essential for connecting campus buildings spread over a wide area.

[1]

b The university uses a hybrid network topology.

Describe one benefit of using a hybrid topology in a

university setting.

[2]

c DNS servers are critical in a university network.

Describe the role of DNS in network operations.

[2]

d Describe how the internet layer of the TCP/IP model facilitates connectivity between different buildings on

campus.

[3]

e The campus uses both IPv4 and IPv6 addressing.

Outline these two types of IP addressing in terms of

address availability.

[2]

f Evaluate the use of twisted-pair cables vs fibre-optic cables for data transmission within academic

buildings. Consider factors such as cost and speed.

[3]

g Explain how packet switching enables efficient data-traffic management on a busy university network.

[3]

h Describe one network security measure that should be implemented to protect students’ grades and other

sensitive data from alteration by the students

themselves, while still allowing them access to the

campus network.

[2]

i The university employs digital signatures for document verification. Describe how digital signatures enhance

security.

[3]

j Outline the use of certificate authorities in the university’s network-security framework.

[2]

3 Airline network infrastructure

An airline operates a comprehensive network

infrastructure to manage its public-facing website for

customer bookings, co-ordinate hundreds of staff across

multiple locations and handle customer interactions

through self-check-in kiosks.

a i Identify one network device that is essential for connecting the airline’s global offices to its central

database.

[1]

 ii Outline one key network-security technique that should be used.

[2]

b The airline’s network uses a mesh topology for critical systems. Outline one advantage of using a mesh

topology for such applications.

[2]

c HTTPS is mandated for the airline’s booking website.

Describe the role of SSL/TLS in HTTPS.

[2]

d Describe the role of the application layer in the TCP/IP

model, particularly in processing online bookings.

[3]

e The network includes a mix of wired and wireless technologies. Compare these two technologies in

terms of reliability and security, specifically for use in high-traffic customer areas such as airports.

[3]

f Describe the importance of using IPv6 for the airline’s network, focusing on its ability to handle numerous

devices and security features.

[1]

g Describe how network routers ensure data packets find the optimal path across complex networks.

[3]

h Data security is a major concern for the airline, especially with customer data. Describe one potential

network threat and a preventative measure that can

be implemented.

[3]

i The airline uses VLANs to segment network traffic.

Explain how VLANs enhance network security and

efficiency.

[3]

j Outline the significance of using a reverse proxy in managing the high traffic on the airline’s booking

website.

[2]

k Describe the role of firewalls in protecting the network infrastructure of the airline, especially in scenarios

involving customer data and payment transactions.

[2]

[image: Image 217]

A3 Databases

A3.1 Database fundamentals

 What are the principles, structures and operations that form the basis of database systems?

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

• A3.1.1 Explain the features, benefits and limitations of a relational database A3.1.1 Relational databases

Features

A database refers to an organized collection of structured information or data that can be accessed in different ways. Typically, a database is stored electronically for fast retrieval and manipulation of data. There are different types of databases, but your focus will be on relational databases.

Database: an organized collection of structured information or data that can be accessed in different ways.

Table: a structure of rows and columns for storing a group of similar data.

Entity: a living or non-living thing that can have data stored about it that can be described, e.g. a person, a chair or an aeroplane.

Tuple: one instance of an entity; a row in a table.

Record: one instance of an entity; a row in a table.

Attribute: a data item or a characteristic of an entity; a column in a table.

Relational databases have been predominantly used since 1980. Data in a relational database is organized as a set of tables made of columns and rows.

Tables

The table is used to describe entities. An entity refers to a living or non-living thing that can have data stored about it that can be described, such as a person, a chair or an aeroplane.

Each row, also called a tuple, will include a record or an instance of an entity, for example a specific person, a specific chair or a specific aeroplane. Each column, also called a “field” or an attribute, will include a data item or a characteristic of an entity, such as the age or the name of a person, the colour of a chair, the model of an aeroplane, and so on.

Consider the following example:

AEROPLANE

Model

Manufacturer PhysicalClassEngine NoOfEngines

Rockwell Commander 112 Rockwell

Piston

1

Airbus A319 Neo

Airbus

Jet

2

Boeing 747-100

Boeing

Jet

4

Boeing 777-8

Boeing

Jet

2

Airbus A400M Atlas

Airbus

Turboprop

4

Boeing 747-100

Boeing

Jet

4

In the example above, the table name is AEROPLANE (this is the entity) and there are six records or tuples (rows in the table, excluding the table heading) and four attributes or fields (columns).

Primary key

If you are to uniquely identify a record in this table, you should add an extra field.

This is required, as all the given fields have repeating values, so they cannot be used to identify a record. It is possible for a company to have two aeroplanes of the same type, manufactured by the same company, with the same type of engine, and so on.

Therefore, by adding an extra field to uniquely identify each record, the table will look like this:

AEROPLANE

PlaneID Model

Manufacturer PhysicalClassEngine NoOfEngines

A01

Rockwell

Rockwell

Piston

1

Commander 112

A02

Airbus A319 Neo

Airbus

Jet

2

A03

Boeing 747-100

Boeing

Jet

4

A04

Boeing 777-8

Boeing

Jet

2

A05

Airbus A400M

Airbus

Turboprop

4

Atlas

A06

Boeing 747-100

Boeing

Jet

4

The PlaneID field is unique for each record (it has no duplicates) and this is called a primary key.

Primary key: a field that uniquely identifies a record in a table.

Foreign key: an attribute in a table that refers to the primary key in another table.

Foreign key

Consider that you want to record data about specific flights at an airport. The AEROPLANE table only provides information about the planes. Therefore, you will

need to create a new table to register the flight details.

FLIGHTS

FlightID Departure Destination PlaneID FlightDate DeptTime ArrivalTime LG8903

LUX

OTP

A03

01/07/25

17:00

20:20

OS864

CAI

VIE

A04

15/01/25

16:45

19:20

GB961

LHR

ZRH

A03

25/02/25

8:40

11:35

In this table, the FlightID acts as a primary key.

The two tables, FLIGHTS and AEROPLANE, are building a relationship, as the PlaneID

from the AEROPLANE table is used in the FLIGHTS table to identify the type of plane being used for a specific flight. However, the PlaneID is no longer a primary key in the FLIGHTS table, as it has repeating values; here it acts as a foreign key.

A foreign key is an attribute or a set of attributes in one table that refers to the primary key in another table.

Composite key

If you are to introduce a third table to register pilots on the flight, it might look like this:

PILOTFLIGHT

FlightID

PilotID

LG8903

P500

OS864

P104

GB961

P500

The FlightID links to the FLIGHTS table and the PilotID links to the PILOTS table (supposing there is a PILOTS table as well that records pilots’ details). In the PILOTFLIGHT table, there is no primary key. A solution could be to use a composite key, formed from the two attributes FlightID and PilotID.

Composite key: a set of attributes that form a primary key.

Relationship: a relation established between different tables, where the foreign key in one table refers to the primary key in another table.

A composite key is a set of attributes that forms a primary key to provide a unique identifier for a table.

Relationships

A relationship is created when there is a logical association between two or more database tables, in which one table contains one or more foreign keys that reference the primary keys of the other tables. They enable relational databases to divide and store data in separate tables, while connecting their data items.

To ensure data is always accurate, accessible and consistent, relational databases follow certain integrity rules. For example, the referential integrity rule prevents users

or applications from entering inconsistent data. It is a constraint that ensures that no table will contain values of a foreign key that are not matched to the corresponding primary key. In other words, it makes sure that a foreign key always refers to a record that exists in another table. By applying referential integrity constraints, the data stays consistent throughout operations such as insertion, deletion and modification of tuples.

There are several types of relationships:

• one-to-one (1:1)

• one-to-many (1:m)

• many-to-one (m:1)

• many-to-many (m:m).

One-to-one relationships

When there is a one-to-one relationship between two tables, that means that one record in a table is associated with exactly one record in another table: the primary key corresponds to one or no data in another table. For example, each staff member of a school has one single staff ID; each country has exactly one capital city; or a user on a social media platform has a single user profile. Those are very rare types of relationships, which you will not frequently encounter when dealing with databases.

One-to-many relationships

This is a frequently used type of relationship, and it refers to one record in a table being associated with one or more records in another table: the foreign key of one table references the primary key of another table. Examples of one-to-many relationships are where one teacher teaches many subjects; one tourist visits many countries; one person owns many properties; one person has many bank accounts.

Many-to-one relationships

Many-to-one relationships are similar to one-to-many relationships, but they differ in their directionality. The availability of the entity and the side of the relationship it is on determines whether it is a one-to-many or a many-to-one relationship. For example, if one teacher is teaching multiple subjects, the relationship between the teachers and the subjects is one-to-many, while the relationship between subjects and the teachers is many-to-one. Examples of many-to-one relationships are where many students enrol in a single course; many people work for a single company; there are many galaxies in the universe.

Many-to-many relationships

This type of relationship appears when multiple records in a table have a relation with multiple records in another table. Examples of many-to-many relationships are where many customers purchase many products; many actors act in many movies.

The problem with a many-to-many relationship is that a foreign key attribute can hold a single value and so it cannot handle the many references required.

To implement such relationships in relational databases you must introduce a linking entity. This means that two one-to-many relationships will be created: one between the first table and the linking table and another one between the second table and the linking table.

In the example above, when you wanted to connect the FLIGHTS table with the PILOTS table, a third table was introduced called PILOTFLIGHT. As such, a relationship of one-to-many was established between the FLIGHTS and PILOTFLIGHT tables and a relationship of one-to-many was established between the PILOTS and PILOTFLIGHT

tables. This is done because a many-to-many relationship cannot be physically represented in a database.

Benefits of relational databases

Community support

Relational databases have been around since the 1970s, and this is the most widely accepted model for databases. Therefore, there are lots of online communities able to provide support and guidance in building, maintaining and troubleshooting them.

Concurrency control

Concurrency control is a crucial database management system (DBMS) component. It manages simultaneous operations without them conflicting with each other, and its purpose is to maintain data integrity, consistency and isolation when multiple users or applications access the database at the same time.

Data consistency

Data consistency refers to data remaining in a consistent state from start to finish, reinforcing data integrity. This means that all copies or instances of the data are the same across all systems and databases. In relational databases, each piece of data is stored in only one place, and all related data is stored together in the same table.

This ensures all users have access to accurate and up-to-date information.

Data integrity

Data integrity refers to the accuracy, completeness and consistency of data throughout its lifecycle. It ensures the data hasn’t been tampered with or altered in any unauthorized way. Data validation techniques can be used to ensure data integrity.

Data retrieval

The process of retrieving data from a relational database is efficient and flexible. SQL

allows for complex queries to be written to retrieve exactly the data needed, using SELECT statements, JOINs, WHERE clauses, and more. Users can also create ad hoc queries to retrieve data without needing predefined reports or programs.

Reduced data duplication

Relational databases ensure that you have common fields to be used to link up tables and match records, without having to duplicate all the details several times.

Identifying and removing duplicate data reduces the amount of storage needed to store the data.

Reduced redundancy

Data redundancy refers to storing the same data in multiple locations at the same time. This may lead to inconsistencies, partial updates and unnecessary duplications.

Relational databases allow you to reduce redundancy by normalizing the database (organizing the data to be stored into several tables, creating relationships between them to avoid repeated groups of attributes, and correctly enforcing their dependencies; non-key attributes being independent).

Reliable transaction processing

A transaction refers to a sequence of actions performed on a database that is considered as a single unit (such as inserting, deleting, updating data in a table). A transaction is a unit of work, or a logical action, that is independent of other transactions and is performed on a database by a database management system. A transaction is either executed in full or it is not executed at all. Transactions ensure data integrity and reliability within relational databases.

Scalability

Database scalability refers to the ability of a database to handle increasing amounts of data, number of users and types of requests without sacrificing performance or availability. Relational databases are vertically scalable, meaning that they support the idea of adding more resources (CPU, RAM, hard drive space) to existing systems, which is a cheaper, easier and faster approach to handling increases.

Security features

Relational databases increase security by controlling access to stored data, ensuring only authorized users can interact with the database. They allow the assignment of unique user accounts with specific permissions based on the users’ roles and responsibilities. They allow different views of tables for different access rights.

Limitations of relational databases

Big data scalability issues

Relational databases can be more difficult to scale as the size and complexity of the data increases. The performance can drop when manipulating large data sets (horizontal scaling) or dealing with complex queries; joins between tables can be slow and indexing strategies can be difficult to optimize.

Design complexity

Relational databases require a lot of structure and planning to design the tables and the relationships between them in a way that fits correctly to the requirements.

Hierarchical data handling

Storing hierarchical data in relational databases is challenging due to the mismatch between the hierarchical structure and the tabular nature of relational databases.

Even if this is done through a strategy such as an adjacency list model (where each record contains a reference to its parent record, forming a tree-like structure, such as an employee table having a field referencing the manager’s ID for each employee), it

is challenging to retrieve and traverse hierarchies, especially for large sets of data, or to reorder nodes and perform queries on the subtrees created.

Rigid schema

Relational databases have a predefined schema (structure of the data and how it will be stored in the database). Defining the schema can be challenging as it is not easy to predict the data structure of the database beforehand, and changing it later is complicated. When it comes to changing the database structure, updating the schema is time-consuming and complicated.

Object-relational impedance mismatch

Object-relational impedance mismatch refers to the difficulties encountered when relational databases are used by a program written in an object-oriented programming language. A major mismatch between relational databases and OOP

languages is the data type differences. Relational models do not allow the use of by-reference attributes (pointers), while OOP languages embrace this behaviour. There is no clear way to translate all OOP concepts into relational databases or vice versa, such as there is no way to translate inheritance to a relational database concept.

Unstructured data handling

Unstructured data refers to a collection of data where one record differs from another record. Not being able to identify common fields or attributes for the records makes it impossible to design a schema for such data (to represent them as relational databases).

Common mistake

When asked to explain concepts such as benefits and limitations of relational databases within a given scenario, candidates often identify general benefits and limitations without making any connections to the given scenario. To gain full marks, the scenario must be taken into consideration, as well as the number of marks awarded for the respective question.

ACTIVITY

Self-management skills: Create plans to prepare for summative assessments –

keep track of topics that have been covered and how well you mastered each of them. Identify what you can do to master any topics you found more challenging.

REVIEW QUESTIONS

1 Define the terms:

a “primary key”

b “foreign key”.

2 Explain what is meant by referential integrity.

3 Explain the one-to-one, one-to-many and many-to-many types of relationships.

4 Discuss the benefits and limitations of a relational database.

5 Define the term “database”.

A3.2 Database design

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

• A3.2.1 Describe database schema

• A3.2.2 Construct entity-relationship diagrams (ERDs)

• A3.2.3 Outline the different data types used in relational databases

• A3.2.4 Construct tables for relational databases

• A3.2.5 Explain the difference between normal forms

• A3.2.6 Construct a database normalized to 3NF for a range of real-life scenarios

• A3.2.7 Evaluate the need for denormalizing databases

A3.2.1 Database schema

Database schema is an architecture showing how data is organized and how the relationship between data is managed. It provides a logical view of the database.

Database schema: an architecture showing how data is organized and how the relationship between data is managed.

Conceptual schema: an abstract model describing the structure of the data without considering how it will physically be implemented.

There are different types of database schemas:

• Conceptual schema: An abstract model describing the structure of the data without considering how it will physically be implemented.

• Logical schema: A detailed design of the structure of the tables (fields and data types), relationships between tables and constraints.

• Physical schema: Represents the implementation of the logical schema into a specific DBMS (database management system), showing how data is stored, indexed or accessed.

The use of database schemas improves:

• data organization: it provides clear structure for storing and organizing the data

• data security: it defines user permissions and views to protect data

• data integrity: it uses rules and constraints to maintain data accuracy and consistency

• performance: through the use of queries

• scalability: it allows for changes to the database without disrupting current applications.

The DBMS controls the creation, maintenance and usage of a database and it mediates between the data-handling applications and the operating system. The DBMS offers features such as database queries, forms, reports and charts to display the data.

Conceptual schema

Conceptual schema is a high-level representation of the database, defining its structure and organization. It is an abstract model that hides details such as implementation of the

data structures or physical storage. It defines the entities, attributes and relationships between entities.

A common method of implementing conceptual schema is by using entity-relationship diagrams (ERDs).

For example, consider a sales system with the following structure:

• Entities

• Products

• Orders

• Customers

• Attributes

• In Products (ProductID, ProductName, Price)

• In Orders (OrderID, OrderDate)

• In Customers (CustomerID, CustomerName, EmailAddress)

• Relationships

• Customer places an order

• An order includes one or more products

Conceptual schema is a model with insufficient details to build an actual database.

Logical schema

Logical schema is a model that defines the structure of the database, including entities, attributes, data types, constraints, keys and relationships. It is a design that doesn’t take into consideration the requirements of a specific database management system (DBMS).

The logical schema is derived from the conceptual schema by:

• converting the entities into detailed tables

• defining the attributes by specifying the data types and constraints for each field in the table

• establishing primary and foreign keys

• defining relationships between the tables by using the keys

• normalizing the database to minimize data redundancy

• ensuring data integrity.

Logical schema: a detailed design of the structure of tables (fields and data types), relationships between tables and constraints.

In the previous example:

Tables:

• Products

• ProductID:

INTEGER (PRIMARY KEY)

• ProductName:

VARCHAR

• Price:

REAL

• Orders

• OrderID:

INTEGER (PRIMARY KEY)

• OrderDate:

DATE

• CustomerID:

INTEGER (FOREIGN KEY)

• PRODUCTID:

INTEGER (FOREIGN KEY)

• Customers

• CustomerID:

PRIMARY KEY

• CustomerName:

VARCHAR

• EmailAddress:

VARCHAR, UNIQUE

Relationships:

• A customer places one or more orders (one-to-many).

• An order includes one or more products (one-to-many).

Physical schema

Physical schema includes specifics of storage devices, access methods, indexing, partitioning, access methods, views and configuration of the database on the storage media. It translates the logical schema into an implementation that fits the requirements of a specific database management system.

Physical schema: an implementation of logical schema into a specific DBMS (database management system), showing how data is stored, indexed or accessed.

In the previous example:

Tables:

• Products

• ProductID:

INT PRIMARY KEY AUTO_INCREMENT

• ProductName:

VARCHAR(100) NOT NULL

• Price:

REAL NOT NULL

INDEX on ProductName for faster access based on the product name

• Orders

• OrderID:

INT PRIMARY KEY AUTO_INCREMENT

• OrderDate:

DATE NOT NULL

• CustomerID:

INT FOREIGN KEY NOT NULL

• ProductID:

INT FOREIGN KEY NOT NULL

INDEX on CustomerID and ProductID for faster joins

• Customers

• CustomerID:

INT PRIMARY KEY AUTO_INCREMENT

• LastName:

VARCHAR(100) NOT NULL

• FirstName:

VARCHAR(100) NOT NULL

• EmailAddress:

VARCHAR(100) NOT NULL UNIQUE

INDEX on LastName for faster access based on the last name Storage parameters:

• Use indices described above for fast retrieval of data.

• Partition large tables like Orders by OrderID to improve query performance.

A3.2.2 Entity-relationship diagrams

[image: Image 218]

[image: Image 219]

An entity-relationship diagram (ERD) is a visual representation of the entities in the database and the relationship between them.

Entity-relationship diagram: a visual representation of the entities in a database and the relationship between them.

Besides providing a clear overview of the database structure, ERDs facilitate communication between stakeholders; act as documentation for the database design; support future development and maintenance of the database; and ensure data integrity and consistency through constraints and well-defined relationships.

For the sales system with Products, Orders and Customers entities, the ERD looks like this: Modality of relationships

Modality in ERDs refers to the minimum number of instances of one entity that can be associated with an instance of another entity. It defines whether the participation of an entity in a relationship is optional (0) or mandatory (1).

Modality: the minimum number of instances of one entity that can be associated with an instance of another entity.

Cardinality: the maximum number of times an instance in one entity can be associated with instances in the related entity.

Consider an example involving data about patients and their medical records in a medical healthcare system. Most patients will have associated medical records, but new patients or newborn children might not have any medical history, therefore this is a type of optional relationship.

On the other hand, if you are to consider an e-commerce platform, every order must be associated with a customer (you cannot become a customer unless you place an order), so

[image: Image 220]

that is a type of mandatory relationship.

The cardinality of relationships refers to the nature and extent of relationships between entities in an ERD. It specifies the number of instances of one entity that can or must be associated with each instance of another entity.

Cardinality refers to the maximum number of times an instance in one entity can be associated with instances in the related entity. It describes the “many” side of the relationship and it can be defined as:

• one-to-one

• one-to-many

• many-to-one

• many-to-many.

For example, consider a school management system that includes students and clubs as entities.

Entity STUDENT has StudentID, FirstName, LastName, Email as attributes.

Entity CLUB has ClubID, Title, TeacherID, Location as attributes.

The relationship between the two entities can be represented as “a club has many students”.

Cardinality: one student can enrol in multiple clubs (one-to-many).

Modality: a club must have at least one student enrolled (mandatory for clubs); a student might not enrol in any clubs (optional for students).

Understanding both cardinality and modality is essential for accurately modelling the relationships and constraints in a database, ensuring it effectively reflects the real-world requirements and business rules.

ACTIVITY

Social skills: Support other students with application skills on practical tasks – help your classmates to analyse different database scenarios, identify entities, establish the appropriate relationships between tables and provide feedback to each other on how appropriate ERDs can be created.

A3.2.3 Data types used in relational

databases

Data type for

Description

attributes

CHARACTER

Fixed length text

VARCHAR(n)

Variable length text (n indicates the maximum number of

characters)

INTEGER

Whole number

REAL

Number with a decimal part

DATE

Date as YYYY-MM-DD

TIME

Time as HH:MM:SS

BOOLEAN

True or False

Choosing the right data type is important for ensuring efficient indexing. For example, using CHARACTER(8) for fixed-length data like UserID is more efficient than using VARCHAR(8), as this can lead to extra time during query execution due to the variable length storage. Also, the data type indicates the type of operations permitted. For example, if you store the quantity and price as fixed-length text, to perform calculations you will need to convert the text to integer or real values in the application, before using the data.

Another aspect of using appropriate data types is being able to store the data in the database into the corresponding field. If the type of data does not match the data type of the attribute in the database, the insertion attempt will throw errors.

Data consistency ensures users have access to up-to-date and accurate information, where all copies or instances are the same across all systems and database tables. Using different data types to refer to the same attribute on different platforms (database and application system) will lead to problems such as not being able to perform operations specific to the required data type, incorrect updates or queries.

A3.2.4 Constructing tables for relational

databases

Properly defining the tables in a database supports the design of appropriate ERDs and ensures data integrity.

Considering a school management system, this could include the following tables:

• STUDENT (StudentID, FirstName, LastName, DateOfBirth, Email)

• CLUB (StudentID, ClubTitle, TeacherName)

• TEACHER (TeacherClub, Location)

STUDENT

StudentID

FirstName

LastName

DateOfBirth

Email

101

Fatema

Kada

02/01/2010

f.kada@email.com

105

Alexandru

Buchidau

05/11/2009

a.buchidau@email.com

202

Kada

Hussein

07/25/2011

k.hussein@email.com

In the STUDENT table, the StudentID acts as a primary key to uniquely identify each record in the table.

CLUB

StudentID

ClubTitle

TeacherName

105

Robotics

Bobby Williams

202

Taekwondo

Dima White

101

Robotics

Bobby Williams

105

Arts and Crafts

Jane Doe

In the CLUB table, the StudentID is a foreign key (as it is a primary key in the STUDENT

table). However, none of the fields in this table can act as a primary key, as they all have duplicates. But you could set the primary key to be a composite key, formed from the attributes StudentID and ClubTitle. On the other hand, you could add a new attribute ClubID to act as a primary key.

In case there is a need for a single field to act as primary key, it is possible to combine data from several attributes into one to act as a concatenated key.

TEACHER

TeacherClub

Location

Jane Doe Arts and Crafts

L101

Bobby Williams Robotics

H203

Dima White Taekwondo

B353

In the TEACHER table, the primary key is a concatenated key, formed from the attributes TeacherName and ClubTitle.

A3.2.5 Differences between normal forms

Data normalization represents the process of organizing data in a relational database in a way to reduce data redundancy and to improve data integrity. Data redundancy is reduced as each item of data only occurs in one location in the database. This can reduce the possibility of update anomalies occurring, and it makes more efficient use of memory.

Normalization leads to smaller tables with less information in each row, which leads to a reduction of input / output transfers, and so the CPU can work at full capacity since the likelihood of CPU activities being suspended is reduced. Normalization is achieved through a series of stages called “normal forms”, where each normal form has specific requirements for the table to be considered normalized at that level.

Normalization: the process of organizing data in a relational database in a way to reduce data redundancy and to improve data integrity.

First normal form: the status of a relational database in which entities do not contain repeating groups of attributes.

Atomic: each attribute in a table containing indivisible values (values that cannot be broken down into more detailed sub-values).

First normal form (1NF)

In first normal form, the table:

• has a primary key

• includes no duplicate attributes from the same table

• includes no repeated groups of attributes.

Therefore, you need to create separate tables for each group of related data, identifying each record by using the primary key, which is made of one single attribute or a set of attributes (composite or compound key), and ensure the entities do not contain repeated groups of attributes.

In 1NF, data in each field must be atomic. This means that each attribute contains indivisible values (values that cannot be broken down into more detailed sub-values). For example, an attribute called TeacherName in the TEACHER table is not an atomic field as this could be further split into two different attributes called LastName and FirstName.

Once this is achieved, the fields are atomic.

Atomicity ensures that each cell in the table will contain a single value, not complex structures like arrays or lists.

Functional dependency is a relationship that exists between attributes, where one set of attributes (the determinant) determines the value of the other set (the dependent).

Typically, this is a relationship between the primary-key attribute and a non-key attribute.

For example, in the STUDENT table, the StudentID (primary key and the determinant) determines the FirstName, LastName, DateOfBirth and Email values (the dependent). This means that, given the value of the StudentID, you can find the other details, but not vice versa. To ensure functional dependency in 1NF, you need to ensure entity atomicity and to remove repeating groups of attributes.

Functional dependency: a relationship that exists between attributes, where one set of attributes (the determinant) determines the value of the other set (the dependent).

Full functional dependency: where dependent attributes are determined by the determinant attributes.

Partial functional dependency: when dependent attributes are partially determined by the determinant attributes.

Transitive dependency: a type of functional dependency that occurs when a non-prime attribute is dependent on another non-prime attribute, rather than on the primary key.

Second normal form: the status of a relational database in which entities are in 1NF and any non-key attributes depend upon the primary key.

Third normal form: the status of a relational database in which entities are in 2NF and all non-key attributes are independent.

There are different types of functional dependencies:

• Full functional dependency: The dependent attributes are determined by the determinant attributes. For example, the StudentID fully determines the student’s FirstName, LastName, DateOfBirth and Email.

• Partial functional dependency: The dependent attributes are partially determined by the determinant attributes. For example, the StudentID could partially determine the FirstName, LastName and DateOfBirth of the student, but not their course instructor for a club.

• Transitive dependency: The dependent attributes are determined by a set of attributes that are not included in the determinant attributes. For example, in an EMPLOYEES table, the EmployeeID may determine the EmployeeDepartment, which in turns determines their salary.

Second normal form (2NF)

In second normal form (2NF):

• entities are in 1NF

• any non-key attributes are fully functionally dependent on the primary key; there are no partial dependencies.

Partial-key dependency occurs in a table that has a composite key as primary key and one or more non-key attributes are dependent on only a subset of the composite primary key, rather than on the entire composite key. For example, in the CLUB table, the non-key attribute TeacherName is dependent on the ClubTitle, but not on the StudentID. As the primary key in this table is a composite key formed of both the ClubTitle and the StudentID

fields, the TeacherName should have been fully functionally dependent on these two fields.

Third normal form (3NF)

In third normal form (3NF):

• entities are in 2NF

• all non-key attributes are independent (remove columns that are not fully functionally dependent on the primary key); the table contains no non-key dependencies.

Non-key or transitive dependency is a type of functional dependency that occurs when a non-prime attribute is dependent on another non-prime attribute, rather than on the primary key.

If the CLUB table looked like the one below, the primary key in the table would be ClubID.

The ClubTitle is fully functionally dependent on the ClubID; however, the TeacherLastName is dependent on the TeacherID, which is not a primary key in the table.

CLUB

ClubID

ClubTitle

TeacherID

TeacherLastName

105

Robotics

1

Williams

202

Taekwondo

2

White

105

Robotics

1

Williams

106

Arts and Crafts

4

Doe

To resolve this non-key dependency, the table should be split into two: one storing club details (ClubID, ClubTitle and TeacherID) and the other teacher details (TeacherID and TeacherLastName).

CLUBDETAILS

ClubID

ClubTitle

TeacherID

105

Robotics

1

202

Taekwondo

2

106

Arts and Crafts

4

TEACHERDETAILS

TeacherID

TeacherFirstName

TeacherLastName

1

Bobby

Williams

2

Dima

White

4

Jane

Doe

Normalization issues can encompass data duplication, missing data and a range of dependency concerns, including data dependencies, composite key dependencies, transitive dependencies and multi-valued dependencies. For example, a car manufacturer produces two colours (black and grey) of each model every year. The attributes Colour and ManufacturingYear are dependent on the field CarModel, but they are independent of each other. Therefore, they can be called “multi-valued dependencies” on the CarModel.

Multi-valued dependencies occur when two attributes in a table are independent of each other, but both depend on a third attribute. This is important for achieving fourth normal form (4NF), which addresses certain types of redundancy not handled by earlier normal forms.

A3.2.6 Normalized databases (3NF)

Consider a library management system that stores the data in a table called “books”: BOOKS

BookID

AuthorID

Author

Title

Pages

ProofReader

1

101

Boris Brown

History of AI

353

Amanda

2

102

Chris Joe

The Great G

200

Hamilton

3

19

Danny Bill

Big Tonny

190

Juan

5

101

Boris Brown

Amazing Future

399

Amanda

Normalizing this database to 3NF means:

1 Normalize it to 1NF:

• Set BookID as the primary key.

• Split the author into two different attributes: AuthorFirstName and AuthorLastName.

BookID AuthorID AuthorFirstName AuthorLastName Title

Pages ProofReade

1

101

Boris

Brown

History

353

Amanda

of AI

2

102

Chris

Joe

The

200

Hamilton

Great G

3

19

Danny

Bill

Big

190

Juan

Tonny

5

101

Boris

Brown

Amazing 399

Amanda

Future

2 Normalize it to 2NF:

• Entities are in 1NF.

• There are no partial dependencies.

AuthorFirstName and AuthorLastName are dependent on AuthorID, while Title, Pages and ProofReader are dependent on the primary key (BookID). Therefore, we need to split this table as follows:

BOOKS

BookID

AuthorID

Title

Pages

ProofReader

1

101

History of AI

353

Amanda

BookID

AuthorID

Title

Pages

ProofReader

2

102

The Great G

200

Hamilton

3

19

Big Tonny

190

Juan

5

101

Amazing Future

399

Amanda

AUTHOR

AuthorID

AuthorFirstName

AuthorLastName

101

Boris

Brown

102

Chris

Joe

19

Danny

Bill

3 Normalize it to 3NF:

• Entities are in 2NF.

• There are no transitive dependencies.

The ProofReader field has repeating values, and it is not necessarily fully functionally dependent on the BookID. Therefore, to remove non-transitive dependencies, you can create a new table for proof readers.

BOOKS

BookID

AuthorID

Title

Pages

1

101

History of AI

353

2

102

The Great G

200

3

19

Big Tonny

190

5

101

Amazing Future

399

AUTHOR

AuthorID

AuthorFirstName

AuthorLastName

101

Boris

Brown

102

Chris

Joe

19

Danny

Bill

PROOFREADERS

ProofReaderID

ProofReader

100

Amanda

222

Hamilton

123

Juan

Now, you need to link the BOOKS table with the PROOFREADERS table, so a new table is created.

BOOKS_PROOFREADERS

BookID

ProofReaderID

1

100

2

222

3

123

5

100

Top tip!

Normalization of databases may be a challenging concept to grasp. Take the time to practise this concept; you can use past papers’ exercises or create your own tables for this purpose.

A3.2.7 Denormalizing databases

There are both advantages and disadvantages to normalizing and denormalizing databases.

Overall, normalization plays a crucial role in designing efficient, maintainable and reliable databases that support data integrity and consistency while optimizing performance and scalability.

Normalization

Advantages

Disadvantages

Minimizes data redundancy

Complexity in database schema

Data is organized into separate

Complex schema with multiple tables and relationships

tables for each entity, so it

can make it difficult for developers to understand and

reduces data duplicates, saves

maintain the database structure, especially in large or

storage space and ensures

evolving systems.

consistency.

Ensures data integrity

Increased query complexity

Using specific rules regarding

When needing to join multiple tables to perform

relationships and dependencies, queries, performance can drop.

normalization ensures insertion,

update, delete queries and

maintains data integrity.

Facilitates efficient data

Increased storage requirements

retrieval

The increased number of tables and relationships may

Well-defined relationships

lead to higher storage requirements.

between tables support the

development of efficient

queries.

Supports scalability

Not ideal for all use cases

New data can be added without

Normalization is based on relational database

significantly altering the existing principles, and it may not fit all applications or types of structure.

data.

Promotes data consistency

Difficulty in balancing normalization

Advantages

Disadvantages

Eliminating data redundancy

When normalizing a database, you need to aim for a

and defining clear relationships

balance between reducing data redundancy and

promotes data consistency.

maintaining performance. Over-normalization (too

many tables and relationships) or under-normalization

(failing to separate data appropriately) may lead to

maintenance issues and low performance.

Simplifies database

Overheads in updates

maintenance

Updating records may require changing data in

Changes can be made to a

different places, which can reduce performance or

single table without affecting

increase the complexity of update operations.

other tables.

Denormalization

Denormalization refers to deliberately allowing for data redundancy in a database design to improve the performance of queries.

Advantages

Disadvantages

Improved query performance

Data redundancy

There is less need for joins; the simpler

There is the possibility of inconsistencies if

structure of the tables improves the

updates are not properly managed; it is

performance of read-heavy queries.

more challenging to synchronize and

maintain the data.

Simplified data retrieval

Increased storage overhead

Data is stored closer to the way it is accessed Redundant data requires additional by applications so it allows for faster retrieval storage space, which can become of data as there are less complex joins

significant in large or evolving systems.

between tables.

Enhanced scalability

Maintenance challenges

This reduces the overhead of maintaining

Managing denormalized databases

complex relationships, so it supports larger

requires careful planning and maintenance

data sets and higher transaction volumes

to ensure data integrity and consistency.

without sacrificing performance.

Denormalization: deliberately allowing for data redundancy in a database design to improve the performance of queries.

There are situations where denormalization can enhance performance, especially when read performance is crucial and outweighs concerns about data redundancy and updates complexity. Some specific scenarios are as follows:

Read-intensive applications

Read-intensive applications refer to applications in which the focus is on retrieving data, rather than updating it. By reducing the number of tables, relationships and joins, data can be accessed faster, improving query performance and response time.

Reporting and analytics

Reporting and analytics are used when generating complex reports or analysing large sets of data. Reducing the number of tables, simplifying relationships and decreasing the need for joins speeds up reporting and analytics queries.

Data warehousing

In data warehousing, the focus is on storing and analysing historical data from different sources. Simplifying complex queries across different data sources and using fewer tables to organize related data improves query performance and response time.

Denormalization simplifies query structures by reducing the need for joins between tables.

Simpler queries are easier to write, faster to execute, easier to understand and easier to maintain. On the other side, allowing for data redundancy means increased storage requirements, and increased complexity in maintenance and update operations. Therefore, there is a need to find a balance between the two, and this requires:

• analysing the specific requirements of the application (is the focus on reading or retrieving the data or on updating it?)

• identifying whether the benefits of denormalizing the database are higher than the risk of data redundancy and complexity (sometimes a partially denormalized schema might be a solution)

• implementing appropriate strategies to mitigate risks and optimize performance (implement robust data validation, monitor query performance and storage requirements, and so on).

ACTIVITY

Independent learning: Independent reflection and targets for improvement – identify your strongest and weakest points and set short-term goals for achieving success. When analysing your strongest and weakest points, consider: technical skills and soft skills; constructive or positive feedback from peers and teachers; successful projects; formative assessments; and knowledge gaps or technical gaps. Short-term goals will keep you focused; they will allow you to set an action plan that can be monitored and evaluated progressively.

TOK

Utilitarianism, the greatest good for the greatest number. The ends justify the means.

Utilitarianism is an ethical theory that suggests the best action is the one that maximizes overall happiness or well-being. This approach is often summarized by the phrase “the greatest good for the greatest number”. According to this view, the moral value of an action is determined by its outcome or consequences, rather than by any intrinsic qualities of the action itself. For example, if sacrificing the well-being of a few individuals leads to a greater overall benefit for society, a utilitarian would argue that such a sacrifice is justified.

When managing databases, particularly those containing personal information, there’s often a trade-off between privacy and utility. A utilitarian approach might justify the use of personal data without explicit consent if it leads to a greater good, such as improving public health through data-driven insights. During a pandemic, health authorities might access and analyse large data sets of personal health information to track the spread of the virus. From a utilitarian perspective, the potential benefits to society (for example, controlling the pandemic) might outweigh individual privacy concerns. The utilitarian principle of “the greatest good for the greatest number” provides a framework for making decisions about how databases are managed, used and secured.

Discuss how this approach may be balanced against other ethical considerations, such as individual rights and fairness, which may not always align with a purely utilitarian perspective.

REVIEW QUESTIONS

1 Define the term “schema”.

2 Discuss the characteristics of a normalized database.

3 Identify two issues caused by data redundancy.

4 State the characteristics of:

a 1NF

b 2NF

c 3NF

5 Distinguish between conceptual and logical schema.

A3.3 Database

programming

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

• A3.3.1 Outline the difference between data language

types within structured query language (SQL)

• A3.3.2 Construct queries between two tables in SQL

• A3.3.3 Explain how SQL can be used to update data in a

database

• A3.3.4 Construct calculations within a database using

SQL’s aggregate functions (HL)

• A3.3.5 Describe different database views (HL)

• A3.3.6 Describe how transactions maintain data integrity in a database (HL)

A3.3.1 Data language types

within SQL

Data language types include data definition language (DDL) and data manipulation language (DML).

Data definition language (DDL)

Data definition language (DDL) is used to create, modify and remove data structures from a relational database.

SQL DDL

Explanation

instructions

CREATE

Create a new database object (table,

view, index)

PRIMARY KEY

Set a field as a primary key

FOREIGN KEY ...

Set a field as a foreign key by

REFERENCES ...

specifying the field and the table it is

associated with

ALTER

Change the structure of an existing

database object: alter a table structure,

by adding or removing columns or

adding constraints

DROP

Delete database objects (tables,

indices, views)

Data definition language: language that is used to

create, modify and remove data structures from a

relational database.

CREATE statements

CREATE DATABASE:

CREATE DATABASE HOSPITAL

CREATE TABLE:

CREATE TABLE Employees (

EmployeeID INT,

DepartmentID INT PRIMARY KEY,

LastName VARCHAR(20)

);

CREATE VIEW:

CREATE VIEW EmployeeDetails AS

SELECT EmployeeID, LastName

FROM Employees

JOIN Departments ON Employees.DepartmentID =

Departments.DepartmentID;

CREATE INDEX:

CREATE INDEX idx_last_name ON Employees(LastName);

ALTER statements

Add primary key:

ALTER TABLE Employees

ADD PRIMARY KEY (EmployeeID);

Add foreign key:

ALTER TABLE Employees

ADD FOREIGN KEY DepartmentID REFERENCES

Department(DepartmentID);

Add a column:

ALTER TABLE Employees

ADD Email VARCHAR(25);

Drop a column:

ALTER TABLE Employees

DROP COLUMN Email;

Add a constraint:

ALTER TABLE Employees

ADD CONSTRAINT FK_DepartmentID

FOREIGN KEY (DepartmentID) REFERENCES

Departments(DepartmentID);

DROP statements

Drop table:

DROP TABLE Employees;

Drop index:

DROP INDEX idx_last_name;

Drop view:

DROP VIEW EmployeeData;

Data manipulation language

(DML)

Data manipulation languages are used to add, modify, delete and retrieve data stored in relational databases.

SQL DML

Explanation

instructions

SELECT

Retrieves data from one or more

tables

INSERT

Adds records into a table

DELETE

Removes records from a table

UPDATE

Modifies existing records in a table

Data manipulation language: language that is used to add, modify, delete and retrieve data stored in relational databases.

SELECT statements

Retrieve records by displaying specific columns: SELECT field1, field2, field3...

FROM table_name;

Retrieve records by displaying attributes that match

a given criterion:

SELECT field1, field2, ...

FROM table_name

WHERE condition;

Retrieve all records:

SELECT * FROM table_name;

Retrieve records by checking whether specific fields

meet specific criteria:

SELECT * FROM table_name WHERE condition;

A3.3.2 SQL queries between

two tables

Including a JOIN in a SELECT statement allows you to

aggregate data from multiple tables. For example,

considering the employees table and the department table,

the script below retrieves the salary expense grouped by

department.

JOIN in a SELECT statement

SELECT Employees.DepartmentName,

SUM(Employees.Salary) AS TotalSalary

FROM Employees

JOIN Department ON Employees.DepartmentID =

Department.DepartmentID

GROUP BY Department.DepartmentName;

DISTINCT in a SELECT statement

When you want to retrieve unique records and ignore

duplicates, you can use the keyword DISTINCT.

SELECT DISTINCT column1, column2, ...

FROM table_name;

HAVING clause vs WHERE clause

The HAVING clause is used to filter groups of records

created by the GROUP BY clause, for example when needing

to retrieve the department ID and the average salary per

department where the average salary is above 10,000.

The WHERE clause is used to filter records before grouping, while the HAVING clause is used to filter groups after aggregation.

SELECT DepartmentID, Salary

FROM Employees

GROUP BY DepartmentID

HAVING Salary > 10000;

RELATIONAL operators

Relational operators can be used to fetch data that meets

specific criteria.

Operator

Example

Equals to

SELECT * FROM Employees WHERE

DepartmentID = 1;

Operator

Example

Not equals to

SELECT * FROM Employees WHERE

DepartmentID <> 1;

Greater than

SELECT * FROM Employees WHERE

Salary > 10000;

Smaller than

SELECT * FROM Employees WHERE

Salary < 10000;

Greater than or

SELECT * FROM Employees WHERE

equals to

Salary >= 10000;

Smaller than or

SELECT * FROM Employees WHERE

equals to

Salary <= 10000;

FILTERING

Operator

Example

BETWEEN filters

SELECT * FROM Employees

values between a

WHERE Salary BETWEEN 50000

range

AND 100000;

IN filters values that

SELECT * FROM Employees

match any value in a WHERE DepartmentID IN (1, 2, 3);

given list

IS NULL filters

SELECT * FROM Employees

records with null

WHERE ManagerID IS NULL;

values

IS NOT NULL filters

SELECT * FROM Employees

records with non-null WHERE ManagerID IS NOT NULL;

values

Combining conditions SELECT * FROM Employees

using logic operators

Operator

Example

WHERE (DepartmentID = 5 AND

Salary > 50000) OR (DepartmentID

= 1 AND Salary > 10000);

Pattern matching

• LIKE filters values based on a pattern.

• % is used for any sequence of characters (zero or more).

• _ is used for one single character.

This will retrieve records that start with the letter D:

SELECT * FROM Employees

WHERE LastName LIKE 'D%';

This will retrieve records that end with the letter d:

SELECT * FROM Employees

WHERE LastName LIKE '%d';

This will retrieve records that match a specific pattern (start with the letter D, followed by a character, followed by the letter m and followed by zero or more characters):

SELECT * FROM Employees

WHERE LastName LIKE 'D_m%';

This will retrieve records that are made of three characters: SELECT * FROM Employees

WHERE LastName LIKE '_ _ _';

Ordering data

Ordering by a single field:

SELECT * FROM Employees

ORDER BY LastName;

Ordering by a single field in ascending order:

SELECT * FROM Employees

ORDER BY LastName ASC;

Ordering by a single field in descending order:

SELECT * FROM Employees

ORDER BY LastName DESC;

Ordering by multiple fields:

SELECT * FROM Employees

ORDER BY DepartmentID, Salary DESC;

A3.3.3 SQL update queries

SQL

Explanation

Example

statement

INSERT

Adds new

INSERT INTO table_name

records

(field1, field2, ...)

VALUES (value1, value2,

...);

DELETE

Deletes

DELETE FROM table_name

records

WHERE condition;

UPDATE

Modifies

UPDATE table_name

records

SET field1 = value1, field2

= value2, ...

WHERE condition;

Indexed columns optimize query performance, but updating

data in indexed columns may impact performance. When an

update is performed for an indexed column, the index needs to be updated as well, which can slow down the operation.

Also, index updates can lead to blocking other transactions that need access to a specific record. To overcome those

challenges, you can batch the updates to reduce the

number of times the index needs to be changed; frequently

rebuild or reorganize indexes to reduce fragmentation; or

use partial indexes or filtered indexes to limit the scope of the index only to the most relevant records.

A3.3.4 SQL’s aggregate

functions (HL)

Aggregate functions are used to perform calculations on multiple records based on a given field. Such functions are AVERAGE, COUNT, MAX, MIN, SUM.

Aggregate function

Example

SUM returns the total value

SELECT SUM(Salary) FROM

of a numerical field

Employees;

COUNT returns the number

SELECT COUNT(EmployeeID)

of records that meet the

FROM Employees;

given criteria

AVERAGE returns the

SELECT AVG(Salary) FROM

average value of a

Employees;

numerical field

MIN returns the smallest

SELECT MIN(Salary) FROM

value in a field

Employees;

MAX returns the largest

SELECT MAX(Salary) FROM

value in a field

Employees;

Aggregate functions: functions used to perform calculations on multiple records based on a given field, e.g.

AVERAGE, COUNT, MAX, MIN, SUM.

Aggregate functions on

grouped data

Using aggregate functions on grouped data aids reporting

and decision-making. An example would be to display the

number of employees for each department:

SELECT Department.DepartmentName,

COUNT(Employees.EmployeeID) AS ECount

FROM Employees

JOIN Department ON Department.DepartmentID =

Employees.DepartmentID

GROUP BY Department.DepartmentName;

Another example is when you want to display the average

salary for each department:

SELECT Department.DepartmentName,

AVG(Employees.Salary) AS AvgSalary

FROM Employees

JOIN Department ON Employees.DepartmentID =

Department.DepartmentID

GROUP BY Department.DepartmentName;

And yet another example would be to display the minimum

and maximum salary per department:

SELECT DepartmentID, MIN(Salary) AS MinSal, MAX(Salary)

AS MaxSal

FROM Employees

GROUP BY DepartmentID;

A3.3.5 Database views (HL)

A view is a virtual table based on the result set of a SELECT

query. They do not store data themselves, but provide a way to present the data from one or more tables in a customized manner. Multiple views present different subsets of the data to different users, with the data being presented in different ways according to the user’s needs.

View: a virtual table based on the result set of a SELECT

query. They do not store data themselves but provide a

way to present the data from one or more tables in a

customized manner.

There are several advantages of using views:

• Data complexity hiding: Views can encapsulate

complex queries, simplifying the process for users to

query data without needing to understand the underlying

SQL.

• Data consistency: Views can present data in a

consistent manner, even if the underlying tables are

modified.

• Data independence: The database schema can be

changed without affecting the user views.

• Performance: Views can increase performance by

simplifying complex queries, by abstracting join operations into a single reusable object (the view).

• Query simplification: Queries can be simplified by breaking them down into smaller parts, hiding

unnecessary details, applying filters and calculations and displaying the results in a view.

• Read-only or updatable views: When updating a view, the changes are passed through to the underlying tables

from which the view was created, only if certain conditions are met. If those conditions are met, the view is

updatable; otherwise, it is read-only. There are three

conditions for a view to be updatable: it must be a subset of a single table or another updatable view; all base table fields excluded from the view definition should allow NULL

values; and the SELECT statement of the view should not

contain sub-queries (a DISTINCT predicate, a HAVING

clause, aggregate functions, joined tables, user-defined

functions or stored procedures).

• Security: Views can limit access to specific attributes or records, providing a way to control which data users have

access to. There are different types of database views.

Some of those types are simple views, complex views or

materialized (snapshot) views.

Simple views

Simple views are views based on a single table that do not include complex queries, such as aggregate functions or

joins.

An example of a simple view is when displaying some fields from a table. In this case, three fields (EmployeeID,

FirstName and LastName) are displayed from the Employees

table.

CREATE VIEW EmpNames AS

SELECT EmployeeID, FirstName, LastName

FROM Employees;

Complex views

Complex views are views that include multiple tables and

complex queries, such as aggregate functions or joins.

An example of a complex view would be to display data from the Employees and Department tables.

CREATE VIEW EmpDepartment AS

SELECT Employees.EmployeeID, Employees.LastName,

Department.DepartmentName

FROM Employees

JOIN Department ON Employees.DepartmentID =

Department.DepartmentID;

Materialized (snapshot) views

Materialized views are views that can be frequently

refreshed that store pre-computed data sets derived from a SELECT query and stored for later use. As it avoids query re-run (which is used in regular views), it often delivers data faster. The code below is an example of a view that displays the employee ID and their salary for each employee in the

Employees table.

Creating the snapshot view:

CREATE MATERIALIZED VIEW TotalSalaries AS

SELECT EmployeeID, SUM(Salary) AS TotalSal

FROM Employees

GROUP BY EmployeeID;

Querying the snapshot view:

SELECT * FROM TotalSalaries;

A3.3.6 How transactions

maintain data integrity in a

database (HL)

ACID

Transactions are sequences of SQL operations that are

executed as a single unit of work, ensuring data integrity and consistency.

ACID is an acronym that refers to the four properties that define a transaction:

• Atomicity

Transactions are atomic (indivisible and treated as a

whole). Either all the actions within a transaction are

completed successfully, or none of them is. If any part of the transaction fails, the entire transaction is rolled back, and the database remains unaffected.

• Consistency

Transactions ensure the data follows predefined rules or

constraints. The database must be in a valid and expected

state after the completion of a transaction.

• Isolation

Transactions are isolated from each other to prevent

interference. This ensures that concurrent execution of

multiple transactions does not lead to data

inconsistencies.

• Durability

Once a transaction is committed and completed

successfully, its changes are permanent. Even if the

system fails, the changes made by a committed

transaction are preserved. Durability is important because transaction data changes must be available even if the

database is failing.

Top tip!

When approaching exam questions, ensure you make efficient use of terminology. Often, candidates seem to

understand the concepts, but they provide generic

responses, with their answers often lacking precision.

Terminology must be used precisely when writing

responses to gain full marks.

Transaction control language

(TCL) commands

TCL commands in SQL are used to manage the transactions.

Some of those commands are:

• BEGIN TRANSACTION: Used to start a new transaction in

SQL.

• COMMIT: Used to save all changes made during the

current transaction to the database. Once this operation is performed, the changes are permanent and visible to

other users.

BEGIN TRANSACTION;

UPDATE Employees SET Salary = Salary + 100 WHERE

EmployeeID = 1;

UPDATE Employees SET Salary = Salary − 100 WHERE

EmployeeID = 5;

COMMIT;

In the example above, the UPDATE statements for the two

records are written and they are both saved once the

COMMIT statement is reached.

• ROLLBACK: Used to undo all changes made during the

current transaction. It reverts the database to the state it was in before the transaction began.

In the example below, the two UPDATE statements are

reversed, and so the table would reach its state prior to

the updates being made.

BEGIN TRANSACTION;

UPDATE Employees SET Salary = Salary + 100 WHERE

EmployeeID = 1;

UPDATE Employees SET Salary = Salary − 100 WHERE

EmployeeID = 5;

ROLLBACK;

TOK

How has the development of database technology

influenced the way we acquire and process

knowledge?

The development of database technology has profoundly

influenced the ways in which we acquire and process

knowledge, touching on key areas such as the nature of

knowledge, how it is shared and the ethical considerations involved.

Databases store vast amounts of data, but this raw data

only becomes useful when it is processed into information

and then interpreted as knowledge. This raises questions

about the nature of knowledge itself. How do we distinguish between data, information and knowledge? How does the

structure of a database influence what we consider to be

true or valuable knowledge?

Databases rely on structured query languages (SQL) and

other forms of data communication. The precision and

clarity required in database queries contrast with the

ambiguity and richness of natural language. This might

lead to a more structured, but potentially limited, way of knowing. How does the structured nature of database

queries influence our understanding of complex or

ambiguous information?

REVIEW QUESTIONS

1 Discuss whether a view is physically stored in a database.

2 Define the term “database transaction”.

3 Identify a reason a transaction may need to be rolled back by giving an example.

4 State the effect of rolling back a transaction.

5 Describe the four properties that describe a transaction.

A3.4 Alternative databases and

data warehouses (HL)

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

• A3.4.1 Outline the different types of databases as approaches to storing data

• A3.4.2 Explain the primary objectives of data warehouses in data management and business intelligence

• A3.4.3 Explain the role of online analytical processing (OLAP) and data mining for business

• A3.4.4 Describe the features of distributed databases

A3.4.1 Types of databases as

approaches to storing data

Database models represent frameworks that determine the logical structure of a database and influence how data is stored, organized and manipulated.

Different database models cater to different types of applications and requirements.

NoSQL databases

NoSQL databases are designed to handle large volumes of data and diverse data types. They offer flexibility and scalability, making them suitable for modern web applications, such as e-commerce platforms, big data and real-time analytics.

NoSQL database: a database designed to handle large volumes of data and diverse data types, structured differently from relational databases.

NoSQL databases store data differently from relational databases. There are four main types of NoSQL databases: document databases, key-value databases, wide-column store databases and graph databases.

Document databases

[image: Image 221]

In document databases, data is stored in documents like JSON (JavaScript Object Notation) objects. The documents contain pairs of fields and values, and document databases are used for content management systems and e-commerce platforms. They offer a flexible data model, suitable for semi-structured and unstructured data sets. They provide an easy way to represent hierarchical data, but a disadvantage is that they pose a risk of data redundancy and inconsistency. An example of such a database is MongoDB. Here is an example:

Key-value databases

In key-value databases, data is stored as key-value pairs. Key-value databases are used for real-time analytics, caching and session management. They are simple databases that allow for fast read and write operations; however, they have limited querying capabilities. An example of a key-value database is Redis. Here is an example:

Key: user:12345

Value: {“name”: “blabla”, “email”: “blabla@car.com”, “job”: “transporter”}

Wide-column store databases

In wide-column store databases, data is stored in tables, rows and dynamic columns. Different rows can have different sets of columns. They enable efficient retrieval of sparse and wide data and are used in big-data applications or real-time analytics. They are proven to be efficient for read and write operations on large data sets and are easy to scale horizontally; however, this is a complex model to implement. An example of a wide-column store database is Cassandra. Here is an example:

name

id

email

dateOfBirth

blabla

12345

blabla@car.com

[image: Image 222]

name

id

email

dateOfBirth

nathan

1234

12-12-2000

Graph databases

In graph databases, data is stored as nodes and edges in a graph structure.

Nodes usually store data about people, places or things, and edges store data about the relationships between nodes. They are used for social-media platforms or recommendation engines. Graph databases are great for representing and querying complex relationships, but they use a specialized query language, and it is more complex to maintain and optimize them. An example of a graph database is OrientDB. Here are two examples of graph databases:

Cloud databases

Cloud databases are databases that run on cloud computing platforms, providing scalability, high availability and flexible resource management.

They can be NoSQL or SQL databases.

Cloud database: a database that runs on cloud computing platforms, providing scalability, high availability and flexible resource management.

Spatial database: a database optimized to store and query data related to objects in space, including points, lines and polygons.

In-memory database: a database that stores data entirely in the main memory (RAM) rather than on disk, providing extremely fast read and write operations.

In cloud databases, pricing is based on the use of system resources, which can be provisioned on demand as needed to meet processing workloads.

Organizations can choose between two models when they opt for cloud databases:

• Self-managed database: An infrastructure as a service (IaaS) environment, in which the database runs on a virtual machine on a system operated by a cloud provider. The provider manages and supports the cloud infrastructure, including servers, operating systems and storage devices. But the organization is responsible for database deployment, administration and maintenance, so it has full control over the database.

• Managed database services: Fully managed by the vendor, both the system infrastructure and the database platform are managed for the customer; the vendor handles provisioning, backups, scaling, patching, upgrades and other basic database administration functions; organizations monitor the database, and they can collaborate with the vendor on some administrative functions.

Examples of database-as-a-service (DBaaS) are Amazon DynamoDB and Azure Cosmos DB. They are used for startups, IoT or web-scale applications; they are fully managed, offer pay-as-you-go pricing and the organization has limited control over the infrastructure.

Examples of managed databases are Amazon RDS, Google Cloud SQL and Azure SQL database. They are used for web and enterprise applications, and they depend on cloud providers and potentially have higher costs.

Spatial databases

Spatial databases are optimized to store and query data related to objects in space, including points, lines, polygons, 3D shapes and coordinates. They support spatial data types and spatial indexes to access the data, and they support geometric functions. They are used for Geographic Information Systems (GIS), location-based services and mapping applications. Examples are: Oracle Spatial, PostGis and MongoDB

with Geospatial Indexes. Such models efficiently store and query spatial

data, but they use complex data types and queries that require specialized knowledge or experts.

In-memory databases

In-memory databases store data entirely in the main memory (RAM) rather than on disk, providing extremely fast read and write operations.

They are used for real-time analytics, caching and gaming applications.

They allow for extremely fast data access and transaction processing, but they have low latency for read and write operations. Examples are Redis and Oracle TimesTen.

A3.4.2 Primary objectives of data

warehouses in data management

and business intelligence

A data warehouse is a specialized type of database designed for analytical purposes rather than transactional processing. It is used to store and analyse large volumes of historical data from various sources to support decision-making processes within organizations. A data warehouse represents a repository of stored data related to a specific subject. It includes tools to extract, transform and load data into the repository and tools to manage and retrieve the metadata.

Data warehouse: a specialized type of database designed for analytical purposes rather than transactional processing.

The characteristics of data warehouses are discussed below: Append-only

This characteristic means that, when data is loaded using append-only, existing records are not updated, but instead are appended to tables as new rows. Therefore, at a later stage, the tables will contain different versions of the records, so that how they changed over time can be analysed.

Subject-oriented

Data warehouses are organized around key subjects or themes relevant to the organization, such as sales, marketing or finance. They help with organizing and presenting data in a way that is aligned with the analytical needs and objectives of the organization.

Integrated data

Data from multiple operational systems and external sources are integrated into a single repository using ETL (extract, transform, load) processes.

This consolidates information from multiple sources into a centralized repository, providing a single source of truth for the organization. When ETL

is carried out, certain precautions should be taken, such as:

• ensuring the extraction does not affect the source system

• ensuring the extracted data can be read by the current system

• ensuring the different data formats being extracted can be converted to become readable by the system and can be formatted

• ensuring that the data is relevant to what the user wants to extract and utilize.

Extract: to gather data from various operational databases, flat files, APIs, etc.

Transform: to aggregate and transform data into a consistent format suitable for analysis.

Load: to load transformed data into a data warehouse.

Business intelligence: technologies, applications and practices for collecting, integrating, analysing and presenting business information.

Online analytical processing: the software technology you can use to analyse business data from different points of view.

Data mining: the process of sorting through large data sets to identify patterns and relationships that can help solve business problems through data analysis.

Time-variant

Data warehouses store historical data to support time-based analysis, enabling comparisons and trend analysis over time. Data warehousing is time-dependent because the content in the data warehouse is only valid for a period, because the data undergoes changes dynamically, and its focus on change over time is time-variant.

Non-volatile

Data once loaded into the data warehouse is rarely updated or deleted, ensuring data integrity and consistency for analytical purposes.

Optimized for query performance

Data warehouses seek to determine the most efficient way to execute a given query by considering a variety of query execution strategies. It directly impacts the speed and efficiency of data retrieval and analysis processes.

A3.4.3 The role of OLAP and data

mining for business intelligence

Business intelligence refers to the technologies, applications and practices for collecting, integrating, analysing and presenting business information. Its aim is to support data-driven decision-making and improve business performance.

Online analytical processing (OLAP) and data mining are technologies used for data analysis and business intelligence, enabling organizations to extract valuable insights and make informed decisions from their data.

Role of OLAP in business intelligence

OLAP facilitates interactive analysis of multidimensional data, allowing users to explore data from various dimensions, such as time, product or region. It provides pre-aggregated views of data, which are optimized for querying and reporting, allowing for quick retrieval of summarized information, and supports decision-making processes. OLAP supports complex calculations and analytical functions directly on aggregated data, such as year-over-year comparisons. It supports data visualization techniques, such as charts, graphs and dashboards, and users can create ad hoc queries to explore data dynamically and answer specific business questions without needing to rely on predefined reports.

Role of data mining in business

intelligence

Data mining involves discovering patterns and relationships within large data sets, using statistical algorithms, machine learning techniques and artificial intelligence to uncover hidden insights. It enables predictive modelling by analysing historical data to forecast future trends and outcomes, which helps with predicting customer behaviour, demand forecasting and risk assessment. As such, it helps in customer segmentation based on attributes and behaviours, by identifying customer segments with similar characteristics for targeted marketing campaigns and personalized customer experiences. It can detect anomalies in data, which may indicate fraud, errors or unusual patterns that require further investigation. Database segmentation can help to increase the profit of the

organization, increase its reputation, increase the number of customers and provide better opportunities for growth.

Data mining techniques include the following:

• Classification:

• A supervised learning technique that categorizes data into labels based on input features.

• Used in spam email detection, sentiment analysis and credit scoring.

• Clustering:

• An unsupervised learning technique that groups similar data points together into clusters based on their characteristics or proximity in feature space.

• Finds patterns in customer behaviour by grouping and analysing variables to connect them; it can find previously unknown links that help in decision-making.

• Used in market segmentation, customer profiling and anomaly detection.

• Regression:

• Predicts continuous numerical values based on input variables, aiming to establish relationships between variables.

• Used in sales forecasting, price predictions and risk assessment.

• Association rule discovery:

• Identifies relationships or associations between items in large data sets, typically in transactional databases.

• Looks at how entities or events are connected, and finds where one or more events may lead to another.

• Correlates the presence of a set of items with another range of values for another set of variables, breaking up the data sets by variables such as location, age, gender.

• Used in cross-selling recommendations.

• Sequential pattern discovery:

• Discovers patterns or sequences in data, where events occur in a specific order, over a specific period of time (temporal patterns).

• Used in web log analysis and clickstream analysis.

• Anomaly detection:

• Identifies rare or unusual patterns in data that do not conform to expected behaviour.

• Used in fraud detection, network security monitoring and equipment failure prediction.

A3.4.4 Features of distributed

databases

A distributed database is a database made of two or more files located on different sites on the same network or on completely different networks.

Although they are stored on different sites or different computer systems, they provide a fully functional, unified view of data to users and applications.

Distributed database: a database made of two or more files located on different sites on the same network or on completely different networks.

Distributed databases are used in different areas, such as online retailers using them to manage product catalogues, inventory and transactions across distributed warehouses, and telecom companies using them to manage subscriptions, network traffic analysis and service provisioning across different geographical locations.

Maintaining data consistency in a distributed system is crucial for ensuring the reliability, accuracy and trustworthiness of data across all nodes and users. This helps with reliable decision-making; avoiding data corruption; maintaining data integrity; and increasing user satisfaction and trust.

The role of atomicity, consistency, isolation and durability (ACID) to ensure reliable processing of transactions in distributed databases is as follows:

• Atomicity

Atomicity ensures that distributed transactions are either committed across all nodes or rolled back completely if any part of the transaction fails. This prevents partial updates and maintains data consistency across nodes.

• Consistency

Consistency in distributed systems ensures that all nodes have access to the same consistent view of data after a transaction is completed.

• Isolation

Isolation prevents interference between concurrent transactions executing on different nodes. It prevents the modification of the same data item by two different transactions.

• Durability

Durability ensures that committed transactions are reliably stored and replicated across distributed nodes.

The features of distributed databases are described below: Concurrency control

Concurrency control refers to techniques used to manage simultaneous access and modifications to shared data across multiple nodes in a distributed database. It ensures that transactions execute correctly and maintain consistency, despite potential conflicts that may arise due to concurrent operations. Locking mechanisms can be used to enforce isolation and prevent conflicting operations, or unique timestamps can be assigned to each transaction to determine the order of execution. For example, different systems may attempt to access the same data at the same time, such as two systems attempting to update the same piece of data. If one starts the update and then the second finishes before the first is saved, this could potentially lead to inconsistent updates. In such cases, the solution is to isolate the transactions; when one system is accessing the data, that transaction is locked, and it is released only after the transaction is committed.

Data consistency

All copies of data across distributed nodes are synchronized and reflect the most recent, correct state of information. Strong consistency models ensure that all updates to data are visible to all nodes immediately after they occur.

Data partitioning

Data partitioning improves performance, scalability and manageability by distributing data across multiple nodes or servers. It allows databases to handle large volumes of data and high transaction rates efficiently.

Data security

By implementing robust security measures and continuously monitoring for threats and vulnerabilities, organizations can mitigate risks and safeguard sensitive data across distributed environments effectively. To achieve this, organizations can:

• encrypt sensitive data stored on disks or databases to protect against unauthorized access

• define roles and permissions that restrict access to data based on users’

roles

• use strong authentication mechanisms (multifactor authentication) to verify user identities before granting access to the database.

Distribution transparency

Distribution transparency refers to the ability to access and manipulate data across multiple nodes or servers in a transparent and seamless manner.

Fault tolerance

Fault tolerance refers to systems’ ability to continue operating and providing services even in the presence of hardware failures, software errors or network disruptions, by using data-redundancy systems, monitoring and recovery in case of failure detection.

Global query processing

Global query processing involves the coordination and execution of queries that span multiple distributed nodes or databases.

Location transparency

Location transparency refers to the ability of a system to hide the physical or logical location of resources and services (network address or server details) from users and applications. It ensures that users can access resources or services without being aware of their specific location, simplifying system management.

Replication

Replication addresses the creation and maintenance of copies of data across multiple nodes, servers or locations, which enhances data availability, reliability and performance.

Scalability

Scalability refers to the ability of the database system to handle increasing amounts of data and user requests by efficiently distributing workload across multiple nodes or servers. It ensures the database can grow to meet performance and capacity requirements as demands increase.

ACTIVITY

Social skills: Listen actively to other perspectives and ideas – there are different ways to solve a problem, some better than others; listen to advice and try new techniques and problem-solving strategies. In any collaborative environment, actively listening to the perspectives and ideas of others is crucial for effective problem-solving and decision-making.

Different individuals bring diverse experiences, viewpoints and approaches to the table, each offering unique insights into how a problem can be

addressed. By carefully listening to others, you not only gain a broader understanding of the problem, but you also become aware of innovative solutions that you might not have considered on your own.

REVIEW QUESTIONS

1 Define the term “data mining”.

2 Define the term “data warehouse”.

3 Describe how regression is used in data mining.

4 Describe the concurrency control feature in distributed databases.

Explain how this can be achieved.

5 Explain the role of integrated data in a data warehouse.

6 Outline two methods to ensure the security of a data warehouse.

7 Compare classification and sequential pattern discovery in data mining.

8 Outline the differences between a database view and a data warehouse.

Linking questions

1 What processes are needed to store data in database structures so that they can be used in machine learning? (A4)

2 How does database programming in SQL differ from programming computationally in a high-level language? (B2)

3 To what extent is the effectiveness of the distributed database determined by the network that connects the various tables? (A2) 4 How could machine learning be applied to databases? (A4) 5 How do programming languages interact with databases to store, retrieve and manipulate data? (B2)

EXAM PRACTICE QUESTIONS

1 A telecommunications company is designing a relational database to store its desk tickets. The database will have the following tables: Operator(OperatorID, OperatorName, Location)

Engineer(EngineerID, EngFirstName, EngLastName, EngLocation, Salary)

Ticket(TicketNo, Location, Status, OperatorID, TicketDate, TicketPriority) Supplier(SupplierID, Email, PhoneNo)

Product(ProductID, ProductName, Price, SupplierID)

ProductOrder(TicketNo, OrderID, ProductID, Quantity, EngineerID)

a Identify the primary key for each of the tables described above.

[3]

b Identify three benefits of a relational database.

[3]

c Construct an ERD for the relational database.

[3]

d Construct the SQL DDL instructions to create the Ticket table.

[1]

e Construct the SQL DML statements to return the total product quantity ordered by the engineer with the engineer ID D893.

[4]

f Identify a foreign key in the Product table.

[1]

g State whether the database is normalized and whether it is in third normal form (3NF).

[1]

h Describe the characteristics of a database that is in third normal form (3NF).

[3]

i The following table is an example of the Engineer table.

EngineerID EngFirstName EngLastName EngLocation Salary

D893

Daniel

Buchidau

Trier

7000

D894

Constantin

Constantin

Heidelberg

6000

D895

Martin

Bond

Cologne

6500

Define the term “tuple”. Give an example of a tuple from the Engineer table.

[2]

j State the number of fields in the Engineer table.

[1]

k Construct an SQL statement to increase the salary of the engineer with the ID D894 by 300.

[2]

l Construct SQL statements to update the Engineer table to include two more fields: one called Experience, to store how many years of experience each engineer has, and one called IncreaseDate, which includes the date when the last salary raise occurred.

[4]

m Construct an SQL script to find the average salary in the Engineer table.

[2]

2 State what a transaction is and identify the four properties that define a transaction.

[2]

3 Identify three advantages of using views in a database.

[3]

4 Explain three data mining techniques.

[6]

5 Compare cloud and spatial databases.

[4]

6 Describe two features of distributed databases.

[2]

7 Identify and compare a NoSQL database with a relational database.

[4]

8 Explain the role of online analytical processing (OLAP) in business intelligence.

[3]

9 Explain the COMMIT transaction control language (TCL) command.

[1]

10 Other than COMMIT, identify another transaction control language (TCL) command.

[1]

[image: Image 223]

A4 Machine learning

A4.1 Machine learning

fundamentals

 What principals and approaches should be considered to ensure machine learning models produce accurate

 results ethically?

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

• A4.1.1 Describe the types of machine learning and their applications in the real world

• A4.1.2 Describe the hardware requirements for various

scenarios where machine learning is deployed

A4.1.1 Types of machine

learning and their

applications

TOK

What counts as knowledge?

Machine learning models “learn” from data, which raises

questions about what constitutes knowledge.

Views on knowledge often distinguish between knowledge

gained through experience (empirical) and knowledge

gained through reasoning (rational). Machine learning models acquire knowledge empirically by processing vast

amounts of data. However, unlike humans, machines do

not “understand” or reason about this data in the human

sense. This raises the question: Can the patterns and

predictions that machines generate be considered

“knowledge”, or are they simply data-processed outputs?

Welcome to the world of machine learning! We live in a time of exciting growth and rapid innovation in machine learning.

Generative AI is making global headlines and has changed the way we live and work in a very short timeframe.

Speculation is rife that “general AI” is not far from becoming reality. Certainly, it is an exciting topic, but what are

machine learning and artificial intelligence, and how do they work? Gaining an understanding of what is happening

behind the scenes is the goal of this chapter.

Generative AI: a form of artificial intelligence capable of generating text, images, audio, video and other digital

artefacts, usually in response to a prompt. It is a form

experiencing rapid advances at the time of writing.

Machine learning: a branch of AI where computers learn from data and experiences to perform specific tasks or

solve specific problems, without being explicitly

programmed to do so.

Artificial intelligence: computer technology able to perform tasks and make decisions in a manner that

imitates human intelligence. There are two main forms of

AI: narrow (or weak) AI is designed to perform specific

tasks or solve specific types of problems; general (or

strong) AI processes human-level intelligence and can

operate across a range of domains. While speculation

persists that general AI is “close”, at this time only narrow AI technology is available.

This chapter will not seek to dissect the details of the latest, greatest, news-making developments in the field. That

would be a fool’s errand as it would be obsolete before the book is printed. Instead, the aim is to give you a solid

understanding of the core theories and techniques that form the basis of the entire field of machine learning. From these foundations, you will be in a much stronger position to

understand the true implications of modern developments

occurring in the field.

Before proceeding any further, it is important to clarify and differentiate between the terms machine learning (ML) and artificial intelligence (AI). Artificial intelligence is a broad field that seeks to create systems capable of

performing tasks that typically require human intelligence.

This can include, but is not limited to, reasoning, learning, perception, problem-solving, understanding and interaction.

Machine learning is a subset of artificial intelligence that focuses on the learning aspect of AI. It seeks to teach

computers to learn from data, identify the patterns in that data and make decisions based on what it has learned, with minimal human intervention. Implementing machine

learning programmatically is heavily reliant on the

mathematics of statistics, linear algebra and calculus.

Machine learning applications are being increasingly used

throughout commerce, industry, research and government.

They are used for everything from market analysis to

robotics; from generative art to diagnosing medical

conditions. The applications for machine learning will only grow as the technology continues to develop.

Within machine learning, there are many further

subcategories we will consider in A4.3 Machine learning approaches. These can be broadly described as:

• supervised learning: linear regression

• supervised learning: classification

• unsupervised learning: clustering

• unsupervised learning: association rule

• reinforcement learning

• genetic algorithms

• artificial neural networks

• convolutional neural networks.

Top tip!

Take the time to appreciate the differences between types

of machine learning: supervised, unsupervised,

reinforcement, deep learning and transfer learning. Know

what scenarios each is best suited for, and the typical

algorithms used in each category. In this topic, terms and definitions are foundational for answering theoretical

questions accurately. Using terminology in an incorrect

context will cost marks.

Deep learning

The term “deep learning” is used to imply the use of a

neural network within a machine learning algorithm.

There are a variety of machine learning techniques that

work perfectly fine without the need for a neural network, so the “deep learning” term is used to distinguish between

those that do and those that do not make use of a neural

network. For example, you can refer to “reinforcement

learning” and “deep reinforcement learning”.

Neural network: a computer algorithm that imitates the design of the human brain by using a set of interconnected nodes for the processing and analysing of data.

A neural network is where algorithms and data structures

have been constructed in such a manner as to replicate

biology’s understanding of how the brain functions: as an

[image: Image 224]

interconnected network of neurons, each of which has

various input connections and generates an output on the

basis of the combination of inputs.

Comparison of a biological neuron with that used by

artificial neural networks

A more detailed examination of how neural networks

function will be provided in A4.3.8 Artificial neural networks.

Common mistake

Deep learning is a subset of machine learning. Deep

learning is not separate from machine learning, but rather is a specific approach within it. It utilizes layers of neural networks to extract progressively higher-level features

from the input. Machine learning includes many other

types of algorithms that do not require neural networks.

Supervised learning

Supervised learning refers to an algorithm that is trained on labelled data sets. These data sets comprise example

input values, and the correct output response that should be given if the algorithm sees something resembling that input.

Generally, the larger and better the data set, the more

accurate the results that will be produced by the supervised

learning algorithm. Data sets used by the major technology companies contain many millions of records.

Supervised learning: when a machine learning algorithm is provided a data set of pairs of items, where the pair

comprises a value and what response the network should

provide if it sees that value. By learning the answers to the values given, the network will make generalizations to be

able to estimate the answer when given a previously

unseen value.

Regression: machine learning where the output

generated should be a numerical value.

Classification: machine learning where the output

generated should be a category, chosen from among a

discrete set of categories available.

Supervised learning can be used for regression and

classification tasks.

A regression task is where the algorithm is predicting a numerical value for the output within an allocated range, for example:

• A grade-prediction algorithm might take inputs of hours studied, attendance record, class participation, scores on previous tests, hours spent on homework; and output a

final predicted grade in the range 0–100.

• A weather-forecasting algorithm might take inputs of

historical temperatures for each day over the last week,

humidity, wind speed, air pressure; and output a predicted temperature for the coming day in a given range.

A classification task is where the algorithm predicts which category the input item belongs to, for example an image

recognition algorithm might input an image and seek to

classify it as either a dog or a muffin.

Common mistake

Confusing the goals of regression and classification

Be clear about the difference in outputs between

regression and classification tasks in supervised learning.

Regression models predict a continuous output (numerical

values), whereas classification models predict categorical outputs (class labels). For example, predicting the price of a house based on its features (like size and location) is a regression problem because price is a continuous variable.

On the other hand, determining whether an email is spam

or not spam is a classification problem because there are

discrete categories (spam or not spam) to choose from.

A music genre classification algorithm may input song

tempo, rhythm, pitch, instruments used; and output the

music genre as either pop, rock, hip-hop, classical, and so on.

A handwriting recognition algorithm may input an image of

a character and seek to classify it as an individual letter, number or punctuation mark.

Unsupervised learning

Unsupervised learning is where the algorithm is

constructed to identify patterns or structures within its data sets without being provided with an explicit label indicating the correct output. This may be because the nature of the

data involved doesn’t lend itself to having a “correct”

response paired with it, or because the algorithm is

constantly learning based on user interactions that don’t

have a fixed right or wrong answer. Examples include:

Unsupervised learning: a method of machine learning where the data set does not include the “answers” or

expected outputs for the data provided. The algorithm will attempt to discover the patterns on its own.

Reinforcement learning: machine learning by trial and error. Based on what it has learned at any moment in time, the algorithm selects an action to take in a given

environment. The environment provides feedback (called a

“reward”), which the algorithm will use to learn from and

refine its decision-making process moving forward.

• An algorithm that seeks to identify a user’s social group: The input data may consist of social-media activity such as likes, comments and follows. The algorithm could analyse

this data to identify other users with mutual acquaintances or similar interests. Interestingly, this type of social-group analysis can take place without needing any content from

the messages or chats between the parties involved. This

is why social-media companies such as WhatsApp are

perfectly happy to offer end-to-end encrypted messaging

as, even without the message content, just knowing how

many messages are exchanged between each pair of

users is enough to perform social-group analysis.

• Retail stores use unsupervised learning to find

associations and correlations between the different

products that customers purchase, and identify similarities in purchasing behaviour and preferences. The reason that

so many brands run customer loyalty schemes is it allows

them to build a profile of data to match against other

customers, from which they can tailor marketing

strategies.

• Media companies such as Netflix, Spotify and YouTube use unsupervised learning to train recommendation systems

to refine their suggestions to users for future watching or listening.

Reinforcement learning

Reinforcement learning is where the algorithm looks at its input data and decides on a particular output, and is then informed how good or bad that decision was after the fact. It uses that information to refine future actions when

presented with a similar situation. Reinforcement learning can be thought of as learning from trial and error.

Some common situations where reinforcement learning is

used include:

• Gaming: Reinforcement learning algorithms can be trained to act as AI players or bots within computer

games.

• Robotics: Reinforcement learning can be used to teach a robot how to walk, pick up objects or perform other

mechanical tasks. As a subtype of robotics, autonomous

self-driving cars also make use of reinforcement learning

to better and more safely navigate the complexities of

roads and traffic.

• Finance: Reinforcement learning bots can trade

securities on the market and receive feedback based on

whether the bot made or lost money on the trade.

• Recommendation systems: Reinforcement learning can also be part of a suite of algorithms used in generating

user recommendations. The engagement of the user (did

they watch or listen to the suggested item?) can be used

to provide feedback to the algorithm to refine future

recommendations.

Transfer learning

Transfer learning is where the knowledge gained from solving one problem can be used to help solve a different

but somewhat related problem. The benefit of transfer

learning is that it requires less data, as the algorithm is

already partially trained and may just require a little fine-tuning for the new task being asked of it.

Transfer learning: when a previously trained machine learning model is applied to a similar yet new situation,

context or problem. The goal is to speed up the training

process by using an already trained model, even if the

problem is slightly different.

Consider the following examples:

• Image recognition: Given a model that has been

trained on a massive data set such as ImageNet (over a

million labelled images and 1000 different categories),

transfer learning could take that model and fine-tune it to recognize specific types of objects, such as a species of

flower or breed of dog. The model would already be adept

at processing images and easily able to identify features

such as edges and shapes, so it would only need to learn

how to distinguish between the new categories.

• Speech recognition: Using a generalized model that has been trained on spoken language to transcribe it into text, transfer learning can be used to adapt it to work with

particular accents or specialized jargon for use within a

particular industry.

• Customized chatbot: By using a publicly available pre-trained LLaMA (large language model meta AI), a company

might fine-tune it by training it on customer-service logs to create a chatbot that can be added to its website for

handling domain-specific queries.

• Customized image generators: Pre-trained models for tools such as Stable Diffusion can be further extended and fine-tuned to generate images that mimic a particular

artistic style, or be specialized in images for a particular industry or domain. This can be done relatively quickly

and easily without the burden of redoing the massive task of original training that went into the underlying model.

Common mistake

Transfer learning is not just about using a pre-trained

model. It involves adapting a model developed for one task to solve a related one; not just reusing an existing model without modifications. It’s crucial where data is scarce or similar tasks are involved.

A4.1.2 Hardware

requirements

The hardware required for machine learning purposes will

continue to innovate and evolve throughout the lifetime of this text. Accordingly, this section is not going to make

recommendations as to specific model numbers of

processors, but will rather discuss the broad categories of hardware technology available and their various use cases.

Computing platforms

Standard laptops

The starting point is obviously the standard laptop available on the retail market. At the time of writing, this might be an i7 processor with 16 GB or 32 GB of RAM, or an Apple Silicon equivalent.

These machines are generally limited to small-scale

machine learning tasks, such as the development and

testing of a simple machine learning model. For educational purposes, there is a lot that can be done with a standard

laptop, but you would not want to be training a commercial-

grade machine learning model with such equipment as it would be too slow, and lack sufficient memory or storage.

Some recent developments do aim to improve the capacity

of standard laptops when it comes to machine learning. One is the introduction of Apple Silicon M processors into Apple MacBooks. Apple integrates the CPU, GPU, neural engine

and other components into a single system-on-a-chip (SoC)

structure, allowing better performance and energy

efficiencies. By integrating the CPU and GPU functions on to a single chip, they pool and share the same memory. This is in contrast to the traditional approach of GPUs having their own dedicated memory, separate from the RAM used by the

CPU. This is why those with an Apple Silicon-based

computer are often able to perform machine learning tasks

that traditional Intel laptop owners are unable to do without access to a dedicated GPU.

Not wanting to allow Windows users to be left behind,

Microsoft has launched its Microsoft Copilot AI-supported

branding, which requires laptops to have an integrated

neural processing unit (NPU), which is discussed further in the section regarding CPUs coming up.

Dedicated workstation

After a standard laptop, the next step would be the

purchase of a dedicated desktop workstation with a GPU,

such as an NVIDIA RTX.

Having a true GPU can offer an order of magnitude

improvement in processing speeds for machine learning

calculations and would serve as an excellent platform for

some quite sophisticated projects.

The primary advantage of a GPU is its parallel processing

capabilities, which come from having thousands of small

processing cores that are optimized for parallel processing.

Machine learning algorithms often involve performing the same computations on large amounts of data. GPUs can

perform these same calculations on different values

simultaneously, whereas a CPU has to queue them up for

processing one by one.

Edge devices

Edge devices refer to computing systems that perform data

processing at or near the location where data is being

generated, rather than relying on centralized computing

resources such as the cloud.

Processing data locally reduces the need to send data back and forth to a distant data centre. This reduction in data being transmitted has the added benefit of improving

privacy and security.

The downside is that you are still committed to investing in the physical hardware infrastructure yourself, along with all the maintenance workload associated with it.

Cloud-based platforms

To perform training on large or complex models generally

requires the use of online cloud-based platforms (in lieu of investing in the massive infrastructure yourself). Cloud

platforms are accessible over the internet and provide

services on demand to users worldwide.

These cloud providers allow you to vary the combination

and specifications of CPUs, GPUs and Tensor Processing

Units (TPUs) available for your project on demand. They can also scale to provide large quantities of RAM, storage and network connectivity, as required. The cloud-based services are also useful for deployment of your model as an API for other systems to access.

The main downside with cloud-based platforms is the dependency and reliance your project will have on an

external provider. You have to trust their data and network security arrangements; you have to transmit your data to

their network to have it perform tasks for you; and you are committing yourself to the monthly subscription costs

involved. The flexibility of cloud-based systems always

comes with a cost, and this should not be treated lightly.

At the time of writing, the major industry leaders that

provide cloud-based platforms with machine learning

specialist equipment available include AWS, Google Cloud

and Microsoft Azure. A good tool for getting started with

minimal set-up requirements is Google Colab; it allows you to create a Python Notebook and utilize GPU or TPU

technology just by changing the settings in the Runtime

menu.

High-performance computing (HPC)

centres

In contrast to the publicly available, user-pays approach of cloud-based providers, HPC centres are dedicated facilities designed to support large-scale scientific or academic

research objectives. In this way, access to an HPC is more restricted, often requiring membership; affiliation with an academic or research institution; or specific research grants or time allocation processes.

They are data centres that have been designed to be

suitable for highly demanding workloads that require

sustained high-performance computing resources. They are

built around a model of catering to resource-intensive

computational tasks, not an as-a-service model.

Many universities have made investments in their own HPCs

for use by their research students.

Processors for machine learning

Having considered the various platforms available for

accessing the computing power necessary for machine

learning, it is time to review the electronics within the

computers that make machine learning happen.

Central processing units (CPUs)

CPUs are the generalized processors inside all modern

computer systems. They are designed to perform a wide

range of computing operations, are highly flexible and can process complex tasks. They are not specialized devices

designed specifically for machine learning. While it is

feasible to perform some introductory machine learning

tasks with a CPU, they are generally limited to tasks that do not require intensive parallel processing.

Neural processing units (NPUs) have recently been

integrated alongside traditional CPUs in consumer-level

laptops. NPUs are specialized processors designed

specifically to handle the computations required for neural networks and deep learning, such as matrix and vector

operations. By having specialized processors in the

computing device, it provides faster processing times and

lower power consumption for AI-related tasks, compared to

general-purpose CPUs.

As of 2024, laptops marketed as being Microsoft Copilot AI-supported include NPUs with a minimum capability of 40

TOPS (trillion operations per second).

Graphics processing units (GPUs)

GPUs contain hundreds or thousands of small cores

designed for highly parallel tasks such as rendering

graphics. The GPU allows all the cores to perform the same calculation on different values simultaneously, so if there

are large arrays that need processing, where every element requires the same operation performed, GPUs provide

significant time savings. GPUs excel at parallel processing of matrix and vector operations, which is the very

mathematics that forms the basis of neural networks.

The presence of a dedicated GPU can often produce training speed improvements of up to ten times over using just a

CPU.

Tensor Processing Units (TPUs)

Building on the idea of the GPU, the TPU was custom-

designed by Google specifically for tensor computations.

They are optimized for high volume, low precision

calculations to increase the efficiency of neural network

tasks. Low precision in this context typically means

calculations occur at a maximum of 16 bits, in contrast to the 32 bits or 64 bits in a normal GPU. Machine learning

generally does not require that level of precision, so 16 bits or even 8 bits will do the job.

Tensor: a mathematical term for an array with three or more dimensions. A single number (no dimensions) is

known as a “scalar”. A one-dimensional array of numbers

is known as a “vector”. A two-dimensional array of

numbers is known as a “matrix”. Three or more dimensions

is known as a “tensor”.

At the heart of a TPU is a large matrix multiplication unit.

Matrix multiplication is fundamental to neural networks, so having a unit within the processor specifically optimized for this task helps make TPUs well suited for machine learning.

The TensorFlow library is tailored to make use of TPUs when available, and Google Cloud services, such as Google Colab, make TPUs easily available for the general public.

Application-specific integrated

circuits (ASICs)

ASICs are custom-designed for a specific use rather than

general-purpose computing. They are engineered to perform

a particular set of tasks with optimal efficiency. They offer peak performance and efficiency for these tasks, but lack

the general-purpose flexibility of a CPU.

If your machine learning workload can be precisely defined and won’t change much over time, an ASIC may perform

these tasks faster than a GPU or TPU as, while these are

optimized for parallelism, they are still generalized

processors.

Due to the degree of specialization involved, ASICs tend to be more energy efficient and have lower operating costs

over the long term. The downside is that the upfront cost is typically very high as the chips require custom design and development. This means they are really only viable where

a machine learning application is going to be deployed on a very large scale, as the per-unit cost of the ASIC will

decrease significantly with scale when mass-produced.

Examples of well-known, mass-produced ASICs include the

Apple A-series chips used in iPhones and Qualcomm’s

Snapdragon.

You should conduct some research into the current state-of-the-art ASICs available for machine learning operations at the time of reading, and be familiar with what differentiates them from just using a typical GPU or TPU.

Field-programmable gate arrays

(FPGAs)

FPGAs can be programmed and reprogrammed to perform

specialized computing tasks, offering a balance between the

flexibility of CPUs / GPUs and the efficiency of ASICs.

As such, they are ideal for prototyping machine learning

models or applications that require custom hardware

acceleration, however that may change over time.

FPGAs are used for high-frequency trading systems where

microseconds can make a significant difference in the

profitability of trades.

Common mistake

Confusing the differences between each of the

processor types

There are a lot of separate technologies listed in this topic, many of which you will not have had personal hands-on

experience with. That makes it harder to have an intuitive understanding of the differences between them.

• ASICs are designed for specific tasks and are not reprogrammable.

• FPGAs are versatile and can be reprogrammed.

• GPUs are great for parallel processing tasks.

• TPUs are specialized chips designed by Google,

optimized for tensor calculations in deep learning for

large-scale models.

• NPUs are designed to accelerate neural network

computations for consumer-grade devices.

Top tip!

Adapt the following as a guide to help determine which is

the best device for a given scenario.

• For large and complete models, does it require real-time processing?

• Yes: Consider GPUs for their parallel-processing capabilities

• No: TPUs might be a better choice for batch processing

with high efficiency in tensor operations

• For real-time inference (using a model for decision-

making after training), is the model deployed on edge

devices?

• Yes: NPUs or ASICs, for optimized power and efficiency

• No: Consider FPGAs for flexibility or ASICs for efficiency if the task won’t change

• For models requiring future flexibility, are future updates expected?

• Yes: FPGAs, due to their reprogrammability

• No: ASICs or GPUs, depending on whether the task is

more about speed or parallel processing

• Is low cost more important than cutting-edge

performance?

• Yes: Consider older generation GPUs or cloud-based

solutions where hardware costs can be easily absorbed

• Will there be a need to quickly scale processing power?

• Yes: Cloud GPUs or TPUs can offer scalable resources

as required

REVIEW QUESTIONS

1 A hospital is integrating a system that can automatically diagnose diseases from patient-imaging data.

a Describe whether this system should be classified as artificial intelligence, machine learning or deep

learning.

b Distinguish between regression-based and classification-based machine learning.

2 An email client uses a program to sort incoming emails into “Primary”, “Social”, “Promotions” and “Spam”

folders.

a Identify whether this is an example of supervised or unsupervised learning.

b Describe your reasoning for this choice.

3 An autonomous vehicle company transfers the

knowledge from a model trained in one city to a new

model designed to navigate another city.

a Define “transfer learning”.

b Outline how this is an example of transfer learning.

c Outline one possible limitation to the effectiveness of this approach.

d The original model was trained from thousands of hours of driving on roads under human supervision to

monitor and correct it when required. Describe the

form of machine learning used for the original model.

4 A tech start-up is planning to deploy a large-scale machine learning system to predict stock prices in real

time.

a Identify one type of hardware that would be critical for processing large volumes of real-time data in this

context.

b Outline one reason that this type of hardware is suitable for real-time data processing in machine

learning applications.

c Discuss one potential limitation of the identified hardware when used for machine learning.

5 A university plans to implement an AI-driven system to analyse video lectures for enhancing online learning

experiences.

a Identify two types of hardware that could be used for conducting machine learning processing of video data

in real time.

b For the two types of hardware identified, outline one possible reason for selecting each device over the

other.

A4.2 Data preprocessing

(HL)

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

• A4.2.1 Describe the significance of data cleaning

• A4.2.2 Describe the role of feature selection

• A4.2.3 Describe the importance of dimensionality

reduction

Top tip!

Spend significant time on data preprocessing, visualization and analysis.

Understanding the data is as important as understanding

the algorithms.

A4.2.1 Data cleaning

High-quality data builds high-quality models. If the training data is full of errors or redundant features, the model will learn from these inaccuracies and make poor predictions.

Taking the time to ensure your data is as clean as possible will reap rewards with respect to efficiency and accuracy.

There are several steps that may be useful for cleaning your data set.

[image: Image 225]

1 Handling outliers: Statistical methods, such as using the interquartile range or Z-scores, can detect outlying

data. Once found, depending on the context, outlying

data may be capped, transformed or removed as

appropriate.

Outlier: a data point that deviates from the typical pattern of values in a data set, indicating a possible unusual or

erroneous value that should be discounted.

Python

2 Removing duplicate data: Identifying and removing duplicate data will assist in preventing the model from

becoming biased towards over-represented values. For

data sets where individual records contain a large number

of variables, calculating and comparing SHA256 hash

values can be a useful mechanism for detecting

duplicates (see Section B4.1.6 for more about hash values). Depending on the context of the model, near-duplicate data may also need to be consolidated into a

single record.

3 Identifying incorrect data: Process your data through validation rules to ensure obviously incorrect data can be found and removed. This may mean checking the ranges

given for dates and times, or amounts given for currency

values, and so on. Set sensible limits and have your

program detect anomalies for possible manual checking.

4 Filtering irrelevant data: If there is no measurable correlation between an input variable and the outcome

variable, it may be completely irrelevant and contribute

nothing to the predictive power of the model. Keeping

such data in the training process is only going to make

the process less efficient and less accurate.

Additionally, just because data may appear to be

correlated doesn’t mean it is. As the Spurious Correlations website demonstrates, if you compare enough unrelated

data sets, you will find correlations that are, in fact, not.

[image: Image 226]

[image: Image 227]

Tom Hanks movies vs special education teachers in

Georgia

Robberies in Alaska vs professor salaries

5 Transform improperly formatted data: Data may be incorrectly formatted but easily correctable to ensure

consistency in what is presented to the machine learning

model, for example:

• Ensure all dates are in a consistent style (not having a mix of day / month / year, month / day / year, or ISO

yyyy-mm-dd formats).

• Ensure numerical values are formatted, and to the

same level of precision.

• Ensure images are correctly rotated and oriented, and

of matching ratio and size.

6 Missing data: Sometimes it may be necessary to use models to predict missing values to ensure full coverage

of the data set. Mean / mode imputation, k-nearest

neighbours or regression models could be used for this, if required.

7 Normalization and standardization: Many machine learning algorithms will benefit from completing

preprocessing of data by performing the statistical

operations of normalization and standardization to scale

data to a standard range or distribution.

• Normalization can be used to rescale input data to a

range of [0,1] or [–1,1], which is useful when various

features (input variables) have different scales.

• Standardization can be used to transform the input

data to have a mean score of 0 and standard deviation

of 1 (Gaussian distribution). (Note that it is not

mathematically possible for the range to be [–1,1] and

to have a standard deviation of 1; you need to

determine which is required for your model.)

Python

[image: Image 228]

Common mistake

Ignoring the important role that normalization and

standardization play

Recognize that normalization (scaling data to a range) and standardization (scaling data to have zero mean and unit

variance) are crucial for many algorithms to perform

optimally. Apply these transformations consistently across all data used in the model.

A4.2.2 Feature selection

TOK

How does the way that we organize or classify

knowledge affect what we know?

The structuring of data sets and the choice of features

directly influence the insights gained from machine

learning algorithms.

The way data is structured can significantly determine

what the machine learning model can learn. For instance,

missing values; the inclusion or exclusion of certain data points; or the way categories are defined and labelled can

all skew or bias the model’s outputs. This structuring determines how the machine “views” and “understands”

the world, directly influencing the patterns it recognizes and the predictions it makes.

The features chosen can amplify or suppress certain

patterns within the data. For example, in a model

predicting creditworthiness, choosing features like income might reflect economic factors, whereas including features like zip code could inadvertently introduce socio-economic biases related to geographical areas.

The decisions made in data structuring and feature

selection are not value-neutral. They reflect the biases,

perspectives and priorities of those who design the data

sets and algorithms.

Feature selection refers to taking care to select only the most relevant features for use in your machine learning

models. In the context of machine learning, a feature is a variable that you wish to use as input values for generating predictions. While it may seem like a lot of additional effort to perform manual feature selection, the process can

dramatically impact the overall performance and accuracy

of your machine learning model.

Feature: a numeric property that can be used to

contribute a data point for a machine learning algorithm to train on. Think of it as a variable in your data set.

Removal of irrelevant detail will result in a more generalized model that is better suited to processing new, previously

unseen data.

Three commonly used methods to help determine which

features to select are filter methods, wrapper methods and embedded methods.

Common mistake

Don’t underestimate the importance of feature selection

and engineering. Good features are often more important

than the choice of model itself.

See also

For more detail on these approaches, along with example

code, search online for scikit-learn’s section 1.13 “Feature

selection” documentation (https://scikit-

learn.org/stable/modules/feature_selection.html).

Filter methods

So-called as they help “filter out” features, filter methods involve applying a statistical metric to determine which

features are best to be retained and which should be

removed from the model. Features are ranked by their

score, and those that don’t meet the threshold can be

filtered out.

As a purely statistical measure, using filter methods is less computationally expensive than retaining the feature in the model for full training. The downside is this does not detect interaction between features. That is, if one feature is

affecting another, then a filter may suggest deleting a

feature that is actually important. This is where manual

appreciation of the context of your model is always

important.

The most common, and easy-to-use, filter is to calculate the r value of the correlation (Pearson’s product moment

correlation coefficient). The r value of a data set may be calculated using

[image: Image 229]

[image: Image 230]

[image: Image 231]

[image: Image 232]

where xi and yi are your individual data points and and

are the mean of each data series.

Once calculated, records with r values beyond a given

threshold can be flagged for deletion.

Wrapper methods

Wrapper methods involve iterating over different

combinations of the input features and comparing which

subset produces optimal performance.

Wrapper methods

This can be a time-consuming and computationally

expensive process, especially when compared to filter

methods. There is also an increased risk of overfitting the model. The benefit, however, can be a very quick and

efficient final model at the end of the process.

For further study on suitable techniques, do some research into recursive feature elimination (RFE), and sequential

feature selection (forward selection, backward elimination).

The scikit-learn library (online) provides functionality for both.

ACTIVITY

Research skills: Select and analyse an existing open-source data set relevant to a specific machine learning

problem. Learn about the data cleaning and feature

selection process used by these “professional” projects, and make recommendations for students learning to use

data-cleaning methods for the first time.

Embedded methods

Embedded methods draw on both filter and wrapper

methods, but incorporate them directly into the model

training algorithm. This means that the feature selection is performed simultaneously with the model training, rather

than as a separate step before training.

Embedded methods can be more computationally efficient

since they don’t require separate iteration of the data prior to training. An embedded method will automatically assess

the relevance or importance of features and adjust their

weights or inclusion in the model accordingly during the

training process.

While embedded methods can save manual labour by

eliminating the need for feature selection processes prior to training, they typically require more computational time

compared to simpler filter methods. The effectiveness of

embedded methods depends on the model’s ability to

accurately assess feature relevance during the training

process.

A4.2.3 Dimensionality

reduction

When getting started with machine learning, it is easy to

make the mistake of giving too much data to your model.

While more quality entries in your data set is usually good, supplying too many features for each entry can easily cause more harm than good.

[image: Image 233]

A typical way of thinking about this as a beginner would be

“The more attributes or features I supply, the more detail about my data the model will learn, and perhaps it’ll

discover a pattern that I hadn’t thought of”. The problem is that machine learning algorithms are at their best when

they are able to make generalizations about the training

data. If there is too much detail in each item, and not

enough items overall to compensate for that extra detail,

then challenges arise.

These challenges are known as the curse of

dimensionality, and describe the problems that arise in highly dimensional data. The following visualization is a

useful way to help understand the problem.

Curse of dimensionality: each feature in a machine

learning model adds another dimension to the overall

model the algorithm is attempting to map and create

generalizations about; the curse of dimensionality refers to the problem that occurs when there are too many

dimensions relative to the quantity of data available, so

that patterns cannot be meaningfully observed.

Data sparsity: how “spread out” data points are from each other in a model.

Data increases in sparsity as more dimensions are

added

In the first panel, there are 10 data points in one dimension, which represents one feature or variable that the model is training with. With 10 points spread across a range of [0,4], there are 2.5 data points per unit. Visually, you can see it is quite crowded, meaning there is a lot of data available to make conclusions and generalizations from.

In the second panel, the same 10 data points are now

spread across two dimensions. While both dimensions still

have the range [0,4], the effect of the extra dimension is that it squares the space available, so those 10 data points now spread out such that there are only 0.625 data points

per unit.

In the third panel, the third dimension is added. With three dimensions, representing three features or variables, there is now only one data point per 0.156 units of space.

The additional detail that comes from adding the extra

dimensions acts to spread the data out, making it a lot more difficult for the model to find the generalizations it needs to be useful. To keep the ratio of data points to space

consistent, the third panel needs 160 items in its training data instead of just 10. If you don’t compensate for

additional dimensions with additional quantity of data, the quality of your model will deteriorate.

The empty cells in the diagram above are an example of

data sparsity, which is where the data points are too far from each other, and the data set contains a high number of empty values. If asked to generate a prediction when given those values that are empty in the training set, the model will have no basis on which to make an accurate estimation.

Sparsity is problematic as it makes it difficult for models to find patterns without overfitting, which is where the model effectively memorizes the individual items in the data set, including the noisy little details.

Distance metrics, such as calculating the Euclidean distance between points, lose meaning as the distances between all

pairs of points are similar (a long way away). Without being able to find the patterns needed to make generalizations,

the model will not be useful with unseen, untrained data

when you need it to be.

An over-abundance of dimensions also poses challenges for

you and those on your developer team with respect to data

visualization. The mental capacity required to visualize

highly dimensional data is very difficult or impossible, and most humans struggle to wrap their mind around more than

three dimensions. This lack of intuition will make it difficult to analyse the patterns and relationships within your data.

While increasing the sample size will help compensate for

additional dimensions with respect to model accuracy, it

does introduce its own issues. Large sample sizes require

increased processing time and capacity for training, and

increase memory usage requirements. Every additional

dimension already adds an extra order of magnitude to the

memory required by the model, so the increase in sample

size required not to lose model accuracy only exacerbates

the memory and processing requirements. This all works to

reduce the accessibility of your model for limited hardware environments such as mobile or portable computing, home /

office computing and those without specialized

infrastructure such as GPUs.

For these reasons, it can often be better to reduce rather than increase the number of dimensions in your machine

learning model. Keeping it simple will help the model learn the generalizations it needs and reduce the demands on

your limited processing hardware.

Common mistake

Misunderstanding the goals of dimensionality reduction

It is important to bear in mind that dimensionality

reduction does not always lead to better model

performance. The primary goal of dimensionality reduction

is to simplify the model by reducing the number of

variables, which can help in some cases but might also

lead to loss of critical information. There is a careful

balance to be struck with the retention of relevant data

aspects, which can take a lot of practice to get right.

Reducing dimensions of

existing data sets

You can either make decisions about which dimensions to

reduce manually, or make use of statistical tools to assist in the process.

Two commonly used statistical techniques to help reduce

the number of features are PCA (principal component

analysis) and LDA (linear discriminant analysis). PCA and

LDA are beyond the scope of your course, but you don’t

have to know how they work to be able to make use of them

in your IA (if you wish or need to), as scikit has the

functionality built in.

PCA is used for dimensionality reduction without considering your data set labels. It’s good for data compression,

visualization and speeding up learning algorithms by

reducing the number of input variables.

LDA is supervised in the sense that it uses your training

data labels. It reduces a data set to a specified number of dimensions in a manner that best discriminates between the classes, based on their statistical properties. For this reason, it is particularly used to prepare data for classification tasks.

[image: Image 234]

Python

Top tip!

Sklearn, also known as scikit-learn, is a Python module for machine learning built on top of SciPy and distributed

under the 4-Claude BSD licence.

To install this module, please refer to the instructions at

https://scikit-learn.org/stable/install.html

See also

For more about using scikit-learn tools to help reduce dimensions in your data sets, search online for scikit-learn’s section 1.2 “Linear and Quadratic Discriminant

Analysis” (https://scikit-

learn.org/stable/modules/lda_qda.html).

Top tip!

For discussing data preprocessing needs in an examination

setting, be sure to attain a thorough understanding of the different role and effect of each one.

Some key points to remember for each one:

• Inputting missing data: The input of missing data will improve model accuracy through providing a complete

data set, but it can introduce bias if the resulting data set does not match actual data distribution.

• Deleting missing data: Simplifies the model by

removing incomplete cases to reduce overfitting, but this

could lead to the loss of valuable data.

• Removing duplicates: Enhances reliability and

prevents skewing of results.

• Removing outliers: The model can become more

generalized as it prevents extreme values from

disproportionally influencing predictions.

• Filtering irrelevant features: By concentrating on what is most relevant, the model will perform better and

faster. It reduces the risk of overfitting.

• Normalization and standardization: Most algorithms perform better when features are all on a similar scale.

• Filter methods: Computationally less expensive, they can be used regardless of model type.

• Wrapper methods: Provide better performance as they consider feature interaction and are tailored to the model

in question. If the data set is small, it can lead to overfitting.

• Embedded methods: A balanced approach between

filter and wrapper methods, their effectiveness is

dependent on the model they are designed for.

REVIEW QUESTIONS

1 A marketing firm uses machine learning to analyse customer survey data to improve targeting strategies.

a Describe one common issue in survey data that would necessitate data cleaning.

b Describe how feature selection could impact the

performance of a machine learning model in this

scenario.

c Outline the role of dimensionality reduction in

handling high-dimensional data such as survey

responses.

2 A financial analytics firm uses machine learning to predict stock-market trends based on historical data.

a List one common data-quality issue that might require cleaning in this historical stock data.

b Describe the role of feature selection in improving model performance in financial predictions.

c Describe the importance of dimensionality reduction on model complexity and performance.

3 A school district analyses standardized test results to predict student performance and identify at-risk

students.

a List one common data issue that might arise with standardized test-result data.

b Describe the possible implications if the school district was to import raw test data for all questions

completed by students into the machine learning

model.

c Outline two commonly used methods of feature

selection that could be beneficial in this educational

context.

A4.3 Machine learning

approaches (HL)

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

• A4.3.1 Explain how linear regression is used to predict continuous outcomes

• A4.3.2 Explain how classification techniques in

supervised learning are used to predict discrete

categorical outcomes

• A4.3.3 Explain the role of hyperparameter tuning when

evaluating supervised learning algorithms

• A4.3.4 Describe how clustering techniques in

unsupervised learning are used to group data based on

similarities in features

• A4.3.5 Describe how association rule learning techniques are used to uncover relations between different attributes in large data sets

• A4.3.6 Describe how an agent learns to make decisions

by interacting with its environment in reinforcement

learning

• A4.3.7 Describe the application of genetic algorithms in various real-world examples

• A4.3.8 Outline the structure and function of artificial neural networks (ANNs) and how multi-layer networks are

used to model complex patterns in data sets

• A4.3.9 Describe how convolutional neural networks

(CNNs) are designed to adaptively learn spatial

hierarchies of features in images

• A4.3.10 Explain the importance of model selection and

comparison in machine learning

Key information

Before proceeding into this chapter, it is important to note that the syllabus content statements above are limited to

“Explain”, “Describe” and “Outline”.

This chapter intentionally contains additional detail that is beyond the syllabus, such as programming code samples

demonstrating the use of various algorithms. You do not need to be able to read or write programming code

for the different algorithms presented here in your

IB examinations.

The additional detail has been provided due to machine

learning being an extremely popular subset of Computer

Science. In discussions with students, many expressed a

desire to learn beyond descriptive theory for these topics, and a wish to know how these algorithms work and how to

use them. Students also commonly express an intention to

experiment with machine learning algorithms within their

internal assessments. For these reasons, this introduction is more in-depth than is required solely for the

examinations.

A4.3.1 Supervised learning:

linear regression

Linear regression refers to calculating the correlation and line (or plane) of best fit among the values of a data set, and then using the resulting equation of the line to make predictions for new, unseen data.

Linear regression: a machine learning algorithm that seeks a linear line of best fit for a given data set, from which extrapolations can be made.

Linear regression is one of the earliest machine learning

algorithms to be developed, and can even be calculated

manually for limited data sets as they are purely

mathematical constructs.

Linear regression can be used to help answer such questions as:

• Given a person’s height, is it possible to predict their weight?

• Given the number of hours a student studies for a test, is it possible to predict their result?

• Given the dollars spent on advertising a product, is it possible to predict the sales volume?

• Given the size of a home in square meters, is it possible to predict its sale price?

Top tip!

Always check the relationship between variables with

scatter plots to see whether they are roughly linear. There is no point using linear regression if it doesn’t fit the data.

As hopefully you can infer from the name, linear regression is only suitable where there is a linear relationship between the independent and dependent variables.

The graph below illustrates a simple form of linear

regression with one independent variable (the predictor)

and one dependent variable (the response).

[image: Image 235]

[image: Image 236]

[image: Image 237]

Linear regression example

To explore the process involved for linear regression of one independent and one dependent variable, the equation for

the line of best fit can be calculated using the least squares regression line, which will minimize the distance between the line and individual data points.

By assigning the independent variable to x, and the dependent to y, you can use the standard equation of a line to make predictions.

The slope, or gradient, of the line, b, represents the amount that the prediction will change for every increment of one in the independent variable. To calculate b, you find the sum of the difference between each point of the line from the

mean:

[image: Image 238]

[image: Image 239]

The point of intercept, a, is the baseline value for the dependent variable when the independent variable is 0. To

calculate a, take the coefficient multiplied by the mean of x and subtract it from the mean of y.

As linear regression is such a common and popular task,

both NumPy and scikit-learn libraries have tools built in to perform these calculations for you. The following example

uses scikit-learn, as we will use the library a lot for other algorithms coming up.

Python

See also

Reference the scikit-learn documentation for supervised

linear regression by searching online for scikit-learn’s

“LinearRegression” (https://scikit-

learn.org/stable/modules/generated/sklearn.linear_

model.LinearRegression.html).

Measuring accuracy

Assessing the accuracy of the model can be performed by

calculating the R-squared value, also known as the

coefficient of determination. It is a measure of the proportion of variation in values from the independent

variable data, and what the model would have predicted for that point. A value close to 0 indicates the model does a

poor job of explaining the relationship of the data, whereas a value close to 1 indicates the model does an excellent job of mapping the relationship of the data.

R-squared value (or coefficient of determination): a statistical measure that indicates how well the linear

regression model fits the data points given.

Why use a measure that relies on squaring? Why not just

take the average of the absolute value of the difference

between the predicted and actual values? There are a few

reasons:

• Squaring means larger errors will become more

pronounced than smaller errors. Absolute differences

would treat all variations the same.

• Squaring results in a function that can be differentiated; a very handy benefit for optimization algorithms that rely on derivatives. Absolute values in a function cannot be

differentiated.

[image: Image 240]

• Squared differences are used within classical statistics with respect to assumptions around normalization, so it is convenient to stick with that approach.

There are approaches, other than R-squared value, that can be used, including:

• adjusted R-squared: modifies the formulae to account for the number of predictors in the model

• mean squared error: the average of the squares of the errors

• mean absolute error: the average of the absolute value of the errors

• mean absolute percentage error: the average of the absolute percentage errors of predictions.

With NumPy, the r-squared value needs to be calculated

through each step, whereas scikit-learn has a built-in

method for the task.

Python

Multidimensionality

The previous example illustrates simple linear regression

where there is only one independent variable. In real-world applications, it is highly likely that you will want to model against several independent variables. This is known as

“multiple linear regression”.

[image: Image 241]

While most humans can mentally visualize data in two, or

perhaps three, dimensions, it becomes extremely

challenging to visualize beyond that. The good news is our software tools have no problem modelling the relationship

across multiple dimensions. Here is an example using scikit for a linear regression model that has four independent

variables.

Python

The Multidimensional_example.csv file can be downloaded

from https://github.com/paulbaumgarten/hodder-ibdp-

computerscience

The prediction for the new data point used in the code

should be 510.7.

Top tip!

Regression with non-linear data?

If you have a data set you would like to fit to a non-linear function, the scipy curve_fit() function is what you are

looking for.

[image: Image 242]

For example, assuming you have NumPy arrays of x_data

and y_data that you wish to fit to a quadratic function:

Python

For more information, search online for

scipy.optimize.curve_fit

(https://docs.scipy.org/doc/scipy/reference/generate

d/scipy.optimize.curve_fit.html).

A4.3.2 Supervised learning:

classification techniques

One task frequently required of machine learning algorithms is to classify data as belonging to one of a given range of categories. Whereas the output prediction from linear

regression is numeric, classification algorithms generally produce a non-numeric value to represent a category.

Classification techniques: where a machine learning model has been trained to identify, from a predefined list of categories, which category (or class) the input data would most likely be associated with.

Categorization through machine learning is useful as it facilitates automation of decision-making processes and can be applied to a wide range of practical problems. Examples of everyday classification problems include:

• email spam detection (spam or not spam)

• medical diagnosis (disease or no disease)

• credit score (good credit risk or poor credit risk)

• image recognition (identifying what category of object is in the image)

• natural language processing / sentiment analysis (positive or negative sentiment)

• recommendation engine (what genre of movie to suggest

next).

Two popular methods that do not require neural networks

are k-nearest neighbours and decision trees.

K-nearest neighbours

K-nearest neighbours is a machine learning technique that allows classification of data based on patterns learned from existing labelled data.

K-nearest neighbours: where data points are categorized based on the categories of the nearest points around them

in the data set; k is a variable representing how many of those nearest points should be used to “vote” and

determine what category to assign the new value.

Top tips!

• Normalize or standardize data because KNN is sensitive

to the magnitude of data points.

• Choose an odd number for k when the number of classes is even to avoid tie situations.

[image: Image 243]

• Experiment with different distance metrics (e.g.

Euclidean, Manhattan) to see which performs best for

your data set.

K-nearest neighbours

Consider the chart above, in which the data have been

classified into either blue dots or red dots. The two axes represent the different features (variables) that have been measured. These can represent anything (such as size,

weight, length, time, cost, review rating), provided they can be measured and plotted on a numeric scale.

The green dot represents a new value that the model has

not seen before. How can k-nearest neighbours be used to

determine whether the green dot should be classed as

belonging to the blue group or the red group?

With KNN, a value k is selected to represent how many nearby data points should be used to determine the

prediction output. The algorithm will then determine the k-nearest points, and allow each of them to “vote” as to which final category the prediction should award.

[image: Image 244]

[image: Image 245]

The following charts illustrate the decision boundary for

different values of k.

KNN where k = 1

KNN where k = 3

In the examples here, values of k of 1, 3 and 5 have been used.

[image: Image 246]

KNN where k = 5

When k = 1, the line represents the boundary to the nearest single point of either category. Normally, this is susceptible to being influenced by outliers, so a value of k = 3 or k = 5

is more typical.

It is important when selecting between two categories to

ensure that k is an odd number to avoid the situation where there could be a tie!

The data set for the charts shown here is the

knn_dataset.csv file that can be downloaded from

https://github.com/paulbaumgarten/hodder-ibdp-

computerscience

Python

[image: Image 247]

One example application of KNN is in the development of

collaborative filtering recommendation systems. Consider a scatter plot for two movies that a wide number of users

have reviewed and rated. The x axis may represent the ratings by each user for movie A, and the y axis may represent the ratings by each user for movie B.

Mark a new point on the plot for the target user, who has viewed movie A but not movie B. By referring to the other

points on the scatter, KNN can infer what the target user

would rate movie B. If the prediction is for a high rating, the model can recommend the user to watch that movie.

(In reality, rather than performing KNN on pairs of movies at a time, a multidimensional approach would be taken,

comparing ratings of many movies at once.)

See also

Reference the scikit-learn documentation for supervised k-

nearest neighbours classification by searching online for

scikit-learn’s section 1.6.2 “Nearest Neighbors

Classification” (https://scikit-

learn.org/stable/modules/neighbors.html#nearest-

neighbors-classification).

Decision trees

While KNN is considered a lazy learner (it does very little during the training phase and defers most of the

computation until prediction), decision trees are

considered eager learners that build a classification model during training.

Decision tree: a graphical representation of conditions that will result in a classification decision being made; think of it as a decision-making flowchart that the machine

learning model creates.

Conceptually, you can think of decision trees as a large

flowchart or series of nested if-else statements that are used to determine classification. Rather than having to

manually determine the decision points and write

programming code for the if-else statements yourself, the

[image: Image 248]

algorithm will analyse the training data to automatically

determine the cutoff values for each decision point along

the way, and how deep to make the nested tree.

Decision trees make for an easy-to-maintain algorithm since the model can be retrained and its decision paths and

threshold values subsequently adjusted based on new data.

Decision-tree algorithms are a scalable solution that works with large and complex data sets compared to the

impracticalities associated with maintaining if-else

statements yourself that might have hundreds or thousands

of decision points and pathways, and therefore also be very much prone to human error.

Iris flowers

The iris data set is commonly used as an introduction to

decision trees. It contains measurements of 150 irises (a

type of flower), one-third each of setosa, versicolor and

virginica. For each of the 150 measurements, there are four features (variables):

• sepal length in cm

• sepal width in cm

• petal length in cm

• petal width in cm.

One version of the final trained decision tree might look like this:

[image: Image 249]

Trained decision tree for the iris data set

Starting at the top of the tree, observe the first decision is whether the petal length is <= 2.45 cm.

The other values printed in the node advise about the

model’s prediction if there was no further processing

beyond this point. The significance of the terms used are:

• Gini indicates the decision tree would be 67 per cent uncertain in the prediction generated (which makes sense

as, without taking any branch in the tree, it will effectively be making a 1-in-3 guess).

• Samples indicates that all 120 samples passed through this node (note it is 120 instead of 150 as, when this

diagram was produced, 30 samples were retained as

unseen for validation testing purposes).

• Value indicates the spread of the three classifications at this point (40 setosa, 41 versicolor and 39 virginica).

• Class indicates that the prediction at this point would be versicolor (since it had the most samples, with 41).

Based on the measurement of petal length, you either take

the branch to the left, if the petal length is <= 2.45 cm, or to the right, if the petal length is > 2.45 cm.

Keep traversing the tree until you reach a termination point, or you have gone as deep into the tree as you would like

and wish to terminate, obtaining the model’s best prediction at that point. (Keep in mind that, while the model

represented here only has a maximum depth of six levels,

more complex decision trees can easily have maximum

depths of hundreds or thousands of layers, hence the option for stopping once a particular depth is reached.)

The following Python will implement the iris problem.

Python

[image: Image 250]

The iris data set csv file can be downloaded from

https://github.com/paulbaumgarten/hodder-ibdp-

computerscience

One real-world application of decision trees is to assist with patient diagnosis. The features (variables) at issue in such a model may include demographic information (age, sex,

height, weight); clinical measurements (blood pressure,

glucose levels, haemoglobin, cholesterol); lifestyle factors (such as smoking status and alcohol consumption); along

with symptoms, conditions, medical history and test results.

It is easy to envisage such a model having dozens of

features.

See also

Reference the scikit-learn documentation for decision trees by searching online for scikit-learn’s section 1.10 “Decision

Trees” (https://scikit-

learn.org/stable/modules/tree.html).

ACTIVITY

Thinking skills: Classification with KNN or decision

trees?

Select a classification problem and perform a comparison

analysis of both KNN and decision trees to solve the

problem. Evaluate the trade-offs between the two

approaches and create a decision matrix based on criteria

such as ease of understanding, computational efficiency,

performance on small vs large data sets, and so on.

Top tip!

When choosing between k-nearest neighbours (KNN),

decision trees and artificial neural networks for a

supervised learning classification scenario, consider the

following:

• KNN suits moderate data sizes and low dimensions;

decision trees handle mixed data sizes well; neural

networks excel with large, complex data sets.

• KNN requires normalization; decision trees need minimal preprocessing; neural networks often require extensive

preprocessing.

• KNN and decision trees are highly interpretable; neural networks are less so, and are often considered “black

boxes”.

• KNN are slow at prediction; decision trees offer fast

predictions but can overfit easily; neural networks require

significant computational power but handle non-linear data well.

• KNN easily integrate new data; decision trees and neural networks most often require retraining.

A4.3.3 Supervised learning:

evaluation and tuning

Evaluation metrics

TOK

How can we know that current knowledge is an

improvement upon past knowledge?

Machine learning requires evaluating the performance of

new algorithms against benchmarks or previous models.

In the context of machine learning, improvement is often

quantified in terms of performance on specific tasks.

However, Theory of Knowledge invites you to question

deeper aspects of this improvement: Does performing

better on a task, like object recognition, necessarily mean the algorithm has gained more “knowledge”? Is the

understanding deeper or merely more functional?

Additionally, metrics can sometimes be misleading. For

example, an algorithm might score very highly on accuracy

but fail in particular scenarios that weren’t well

represented in the training data.

Within supervised learning, there are several important,

established metrics that can be used to evaluate the

effectiveness of your model.

The starting point would typically be to produce a confusion matrix. For a binary classification problem, the data forms a two-row, two-column table modelled as

follows:

Confusion matrix: a simple pictorial means of

representing how well a machine learning model is

performing.

Predicted

Predicted

Predicted

positive

negative

Actual Actually

True positive

False negative

positive

Actually

False positive

True negative

negative

The number of scores that are true positive, false negative, false positive or true negative are written into the respective cell (and typically colour coded with dark shading to indicate higher quantities), the idea being that it is a quick visual indicator of the success of your model. If the highest

numbers (and dark shading) run down the diagonal of true positive and true negative, then that is a good sign.

A confusion matrix can also be produced for higher

dimensional classification problems. In that instance, each possible classification would be turned into rows and

columns. In this case, the diagonal set of cells from top left to bottom right would again represent correct predictions.

Using your confusion matrix, you can proceed to calculate

the accuracy, precision, recall and F1 scores.

• Accuracy: The fraction or ratio of correct predictions

[image: Image 251]

[image: Image 252]

[image: Image 253]

[image: Image 254]

• Precision: The fraction or ratio of correct positive predictions to total positive predictions

For instance, of all images recognized as being “cats”, how many of them were correctly classified? Alternatively, of

all the “spam” predictions, how many of those were

correctly “spam”? This is important when a false positive

may have a significant consequence.

• Recall: The fraction or ratio of correct positive predictions to actual positives

For instance, this could be number of patients correctly

predicted to have diabetes, out of all the patients who

truly have diabetes.

• F1 score: The harmonic-mean of precision and recall; it is particularly useful where both false positives and false

negatives may carry significant consequence

A harmonic-mean is different from an arithmetic mean in

that it will always give a score closer to the smaller of the two numbers. The F1 score will range from 0 to 1, with 1

being the best score.

Consider using an F1 score in the criminal justice system, where an algorithm has been devised to predict whether an

individual will re-offend if released on parole. (Note that there have been real-world problems in using machine

learning modes for this exact scenario; refer to A4.4 Ethical

considerations for more.) In this situation, precision

measures the correctness of positive predictions. High

precision means most individuals predicted to re-offend

actually did re-offend. Recall measures how well the model successfully identifies those who will re-offend, so that re-offenders are not being ignored by the system. Both are

important for matters of public safety, so combining them

through the use of the F1 score is valuable.

Another example scenario is to imagine a school using face recognition to automatically record attendance as students walk through the school gate. In this scenario, high precision implies that when the system identifies a student, it is

identifying the correct student (rather than recording the wrong student as present), and high recall suggests the

system correctly identifies most or all students who pass

through the gate.

Common mistake

It is common for students to over-rely on accuracy and

neglect the nuance provided by the other metrics. Have a

clear understanding of the distinct roles of precision and recall.

• Accuracy is the overall correctness of the model (both true positives and true negatives).

• Precision is the proportion of positive identifications that were actually correct (important when the cost of a

false positive is high).

• Recall is the proportion of actual positives correctly identified (important when the cost of a false negative is high).

• F1 is the harmonic-mean of precision and recall (useful when a balance between precision and recall is needed).

Hyperparameter tuning

Hyperparameters is the technical term for the global variables that affect the entire model. Commonly used

hyperparameters include:

• learning rate (neural networks)

• activation function (neural networks)

• number of hidden layers (neural networks)

• maximum depth of tree (decision trees)

• number of neighbours (k-nearest neighbours)

• number of clusters (unsupervised clustering)

• other variables as required by the model.

Hyperparameter: a parameter (or value assigned to a variable) that is set before the learning process, which

guides the algorithm as it learns.

Hyperparameter tuning is the process of experimentation

and adjustment of the combination of parameters that

results in optimal performance of a model.

Key information

Hyperparameters exist in all types of machine learning, not just in supervised learning. Take the time to identify the hyperparameters in whatever algorithm you are using and

the effect their adjustment will have.

Overfitting and underfitting

Overfitting occurs when the model effectively memorizes

detail from the training data that is too fine grained for it to make sufficient generalizations for use on unseen data.

Reducing the depth of a decision tree, increasing the

regularization strength in a linear model or reducing the

number of neurons in hidden layers may help with this problem.

Common mistake

Avoid creating models that are too complex for your data;

simpler models are easier to understand and debug, and

often perform better on new, unseen data.

Underfitting occurs when the model is too simple and hasn’t learned enough detail about the underlying patterns

involved, such that the model also performs poorly on

unseen data.

Signs of overfitting include:

• the model performs significantly better on the training data compared to the validation data

• a complex architecture is used, with many features

• the training error rate decreases, but the testing error rate increases after a given number of epochs

• reducing the model’s complexity improves test

performance.

Signs of underfitting include:

• the model performs poorly on both the training and test data sets

• a simple model is used, with minimal features

• there are insufficient features to adequately capture the characteristics of the data

• increasing complexity or adding features improves test

performance.

A4.3.4 Unsupervised

learning: clustering

techniques

To review, unsupervised learning is where the data set your model is trained on is unlabelled. That is, you don’t supply the correct answer that corresponds with each datum you supply. Rather than looking for data that is similar to known answer values, the features of the unlabelled data are

compared for similarities among them all, with the goal of identifying naturally forming clusters in the groupings of data.

K-means clustering

K-nearest neighbours is very commonly used for

unsupervised clustering, in addition to the supervised learning approaches already considered.

Clustering techniques: where data is grouped into

clusters based on similarity or proximity to each other

without any labels provided to help indicate the

correctness of associating any individual datapoint to the cluster assigned.

With the supervised approach, when a new, unlabelled data

point is introduced, the algorithm measures the distance

(often Euclidean) from the new point to all those in the

training set. From there, it identifies the nearest neighbours to assign a predictive label to the new value. With the

unsupervised approach, when a new data point is

introduced, the algorithm similarly measures distances to

other data points to determine its nearest neighbours but, instead of predicting a label, it uses these relationships to identify the groupings, or clusters, within the entire data set.

The main weakness with a KNN approach is that it assumes

clusters are spherical and of similar size, making it sensitive

[image: Image 255]

to initial centroids and outliers.

K-means clustering with one dimension

In this example, k-means clustering has been used to

determine grade boundaries for a cohort of 200 students.

Asked to cluster the grades into six buckets, one for each letter grade, the algorithm determined the following

boundaries:

• A: 83.48 to 100

• B: 72.74 to 83.48

• C: 64.45 to 72.74

• D: 56.30 to 64.45

• E: 47.09 to 56.30

• F: 0 to 47.09

Moving from one to two dimensions makes the identification of clusters more accurate. In this instance, k-means could look like the following:

[image: Image 256]

K-means clustering with two dimensions

While providing a 3D visualization in the 2D medium of a

textbook is problematic, hopefully the point still gets across with the following illustration that, as dimensions go up, so the identification of clusters becomes easier, given the data points become further spread out. This works provided there is still enough data to form actual clusters, otherwise the curse of dimensionality will soon kick in (as can be seen in the illustration; there are many cells with no value).

[image: Image 257]

K-means clustering with three dimensions

Python

[image: Image 258]

Common mistake

Assuming clusters are globular; k-means does not work

well with non-spherical clusters.

See also

Reference the scikit-learn documentation for k-means

clustering by searching online for scikit-learn’s section

2.3.2 “K-means” (https://scikit-

learn.org/stable/modules/clustering.html#k-means).

[image: Image 259]

Spectral clustering

Spectral clustering is another technique that is useful where clusters are not linearly separable. To classify any new data point, it will look at where the new point fits best among the groups already made, like finding which circle of friends a new student would fit into at school.

Spectral clustering

Python

[image: Image 260]

Spectral clustering may be useful in contexts such as social network analysis to identify communities within networks by treating nodes as people and edges as their relationships.

See also

Reference the scikit-learn documentation for spectral

clustering by searching online for scikit-learn’s section

2.3.5 “Spectral clustering” (https://scikit-

learn.org/stable/modules/clustering.html#spectral-

clustering).

[image: Image 261]

Spectral clustering can group people according to social

networks

Hierarchical clustering

This approach builds a tree of clusters and doesn’t require the number of clusters to be specified in advance. It

provides a dendrogram (a tree-like diagram) to interpret the data by viewing at different levels of granularity; however, it is computationally intensive for large data sets.

Example applications include genealogy research to analyse genetics to understand family relationships, and organizing library resources such as books and journals in a manner

that reflects similarity of content based on topics, themes or authors.

[image: Image 262]

Hierarchical clustering tree

In this plot of a family tree, individuals from the same family are grouped closer together first and, as you move up the

dendrogram, families start merging based on their

similarities (distances).

See also

Reference the scikit-learn documentation for hierarchical

clustering with a dendrogram by searching online for scikit-learn’s “Plot Hierarchical Clustering Dendrogram”

(https://scikit-

learn.org/stable/auto_examples/cluster/plot_agglome

rative_dendrogram.html).

DBSCAN clustering

Key information

DBSCAN stands for Density-Based Spatial Clustering of

Applications with Noise.

DBSCAN clustering will group together points that are close to each other based on a distance measurement and a

[image: Image 263]

minimum number of points. It is very effective for data with clusters of similar density. Unlike k-means, DBSCAN does

not require the number of clusters to be specified. It can find arbitrarily shaped clusters and can handle noise and

outliers.

Density-based spatial clustering

An example application might be to detect fraudulent

financial transactions by clustering on similarities of

amount, location and time. DBSCAN can identify the dense

clusters that are “typical” and then separate out unusual

transactions for alerts.

See also

Reference the scikit-learn documentation for DBSCAN by

searching online for scikit-learn’s section 2.3.7 “DBSCAN”

(https://scikit-

learn.org/stable/modules/clustering.html#dbscan).

A4.3.5 Unsupervised

learning: association rule

The association rule can be understood as a data mining technique that seeks to find co-occurrences within a data

set. It is another form of unsupervised learning. The

technique is commonly applied for market analysis, as well as crime analysis, healthcare, web / app behaviour tracking, and more.

Association rule: a process of finding patterns of co-occurrence in data; this means, given the presence of one

item in a record, how likely it is that another item will be present.

There are three key metrics associated with association rule learning:

• Support: The proportion of transactions that include a particular item or combination of items.

• Confidence: The likelihood of occurrence of a particular item (B) when given some other item (A).

• Lift: The degree to which two items will appear together in this model, compared to the expected likelihood of them appearing together if the items were statistically

independent; a lift value greater than 1 indicates the

presence of item A increases the likelihood of B appearing.

The following example uses a data set of transactions from a fresh food market to find the items that are frequently

purchased together. You can download the data set from

https://github.com/paulbaumgarten/hodder-ibdp-

computerscience

The first table, frequent itemsets, shows the support value for each set of items. In this case, 84 per cent of

transactions include the sale of Milk. The association rules table illustrates the association between the antecedent

(prerequisite) item and the consequent (resulting) item. In this case, the table shows:

[image: Image 264]

• 62 per cent of transactions involve both Milk and Bread

• there is a 73 per cent likelihood that the customer will also purchase Bread if they purchase Milk

• the lift of 1.05 indicates that Bread is 1.05 times more likely to be purchased with Milk than without it.

Python

[image: Image 265]

This example uses an algorithm called Apriori in the mlxtend library for discovering the frequent data sets. Here is a high-level overview of the Apriori algorithm:

• Determine a threshold for the minimum level of support

that will be considered (40 per cent in the code example

above).

• Identify individual items in the data set that meet the threshold and store their appearance count.

• Progress to identifying pairs of items and larger groupings of items in the data set that also meet the minimum

threshold.

• If a set of items does not meet the threshold at a small level, it can be removed from further consideration.

• The result is all combinations of items that appear

frequently together at or above the minimum threshold.

See also

Reference the mlxtend documentation for association rule

processing by searching online for mlxtend documentation

for association rule processing

(https://rasbt.github.io/mlxtend/user_guide/frequent

_patterns/association_rules).

[image: Image 266]

A4.3.6 Reinforcement

learning

Previously, “reinforcement learning” was described as

learning from trial and error. In that vein, it can be likened to a toddler learning to walk. Every time the toddler falls over, they learn a little more about how to correctly balance

themself next time, until they eventually become a stable

and confident walker.

Reinforcement learning flowchart

As with most machine learning algorithms, reinforcement

learning introduces some new terminology to consider:

• Agent: The machine learning model that makes the decisions on what to do.

• Environment: The world, as perceived by the agent.

• State: A snapshot in time of the world. State is the data that communicates the current situation or the

environment. Careful consideration of your state data is

critical when developing a reinforcement learning

algorithm. What data will you provide to the agent to help it learn the task you have for it? For instance, when

training an agent to play a snake game, do you give it

values indicating the distance and bearing of the apple, or a pixel map of the entire world?

• Action: An operation or behaviour that the agent can perform in the environment (for example walk forward,

turn left, turn right).

• Reward: An immediate return from the environment in response to the agent’s action. Reward may be positive or

negative (a punishment).

• Policies: The strategies the agent will use to map states to actions. Think of policies as the agent’s mental if-this-then-that list.

The general process is as follows:

• The agent will typically begin with a randomized policy, as it has no existing knowledge of the environment.

• The agent observes the environment. Based on what it

perceives, and the policy it has recorded so far, the agent chooses an action to perform.

• The agent performs the selected action.

• The environment updates to a new state.

• The environment provides feedback via a reward to the

agent.

• The agent updates its policy based on the reward

feedback received.

• The process repeats.

Reinforcement learning usually involves a combination of

exploration and exploitation. “Exploration” is when the agent ignores its learned policy and tries something new.

“Exploitation” is when the agent follows the learned policy and behaves according to what it learned. Typically, an

algorithm will start with a heavy emphasis on exploration, as the algorithm hasn’t had much opportunity to learn

anything yet. Over time, the hyperparameter for the

exploration / exploitation ratio, known as the “learning

rate”, should adjust so as to start deferring to the learned data more.

Q-learning

The agent’s policies are responsible for maintaining what

the agent has learned. While there are a few approaches to this, one of the most common is known as “Q-learning”.

Q-learning can be thought of as using a 2D array or other

data structure to create a giant lookup table for every

possible state and action combination. It stores a value for each possible permutation of the two to predict what reward it would receive in each scenario.

Action 1

Action 2

Action 3

Action 4

State 1

–50

0

10

0

State 2

10

20

0

10

State 3

0

–10

0

50

The table illustrates a simplified version of a Q-learning 2D

array. The data would suggest:

• When state 1 is seen, the best thing the agent can do is action 3, and it should avoid doing action 1.

• When state 2 is seen, the agent should do action 2, but action 1 and 4 would also give it a reward.

• When state 3 is seen, the agent should do action 4 for a large reward (possibly winning the game), and avoid

action 2.

A Q-learning table can be very large, given the array size is determined by all possible states and all possible resulting actions. When the data requirements are unfeasibly large,

an alternative approach is to use an artificial neural network to learn generalizations about the state and resulting output

[image: Image 267]

actions. When a neural network is used, it is known as a

“Deep Q-Network”.

Here is a pseudocode overview of the process:

There are a few comments to note about this pseudocode:

• When choosing action A, take into consideration whether the algorithm should exploit its Q-table or explore other

alternatives.

• Alpha here refers to the learning rate. A higher alpha

means that newer information has a greater impact on

updating the Q-values, allowing the agent to adapt quickly to changes in the environment. A lower alpha will cause

slower updates, making the agent more stable but also

slower to learn. A starting value between 0.01 and 0.05

would be normal.

• Gamma here refers to the discount factor for how much

future anticipated rewards should be considered when

making a decision. The ultimate goal of most scenarios is

to find an optimal policy that provides the maximum

cumulative reward. A gamma value close to 0 makes the

agent “myopic” (short-sighted), heavily prioritizing

immediate rewards. Conversely, a gamma close to 1

encourages the agent to consider future rewards more

strongly, valuing them almost as much as immediate

[image: Image 268]

rewards. This makes the agent “far-sighted”, planning over a longer horizon.

• This line in the pseudocode is known as the “Bellman

equation”:

Q(S, A) <- Q(S, A) + alpha * (R + gamma * max(Q(S',

all_actions)) - Q(S, A))

and it states that the Q-value for a state-action is equal to the immediate reward plus the discounted value of the

best action to take in the next state, adjusted for the

learning rate.

Example: Pong! game

The following example is a Pong!-style paddle-and-

bouncing-ball game. It uses the pygame-ce library for the graphics, and a numpy array for the Q-table. As can be seen in the results chart, this agent requires about 20 minutes of training before it begins showing acceptable results.

[image: Image 269]

Pong! game

Pong! game: nett reward over time

Python

[image: Image 270]

[image: Image 271]

See also

Gymnasium is a popular library for learning about

reinforcement learning. It provides a number of pre-written environments that you can experiment with:

https://gymnasium.farama.org

A4.3.7 Genetic algorithms

Genetic algorithms are not normally classified within the traditional categories of “supervised learning”,

“unsupervised learning” or “reinforcement learning”. They

are considered an evolutionary algorithm. They learn

through a process of optimization inspired by the process of natural selection.

Genetic algorithm: imitates the concept of survival of the fittest and evolution by testing a population of possible

solutions to a problem, using properties from the best-

performing solutions to create a new population of possible solutions, and then repeating the process until a suitably performing solution has been identified.

A high-level overview of the algorithmic process is:

• Start with a population of possible solutions to the problem. This may be in the form of an array of strings, for instance, where each string is a randomly generated

possible solution.

• Each item within the population is evaluated through a fitness function that returns a metric for how good the possible solution is.

• Pairs of solutions are selected for reproduction. Various algorithms will be discussed that make these selections,

but generally the better the fitness function score, the more likely a solution is to be selected.

• The selected pairs then undergo reproduction using a crossover algorithm, where part of the genetic code of each parent is selected and then combined together to

create a new possible solution.

• The new offspring may then undergo mutation. Random number functions are generally used so that only a small

percentage of offspring undergo mutation, and then those

selected have parts of their genetic code (their “solution”

to the problem) randomly altered.

• Once a new generation of offspring has been generated,

they become the current generation, and the process of

calculating fitness, selection, reproduction and mutation

repeats itself.

• The process repeats until whatever termination criteria you determine is satisfied. This might be to iterate for a given number of generations, or to iterate until a fitness score of a minimum threshold has been reached.

Genetic algorithms are used for problems where it is not

essential to identify the most perfect, optimal solution, but where there is a degree of “close enough is good enough”

flexibility.

Common example applications of genetic algorithms

include:

• Route planning, such as the travelling salesperson problem. Consider the scenario of a salesperson who has

50 cities to visit. Rather than crisscrossing the

countryside, genetic algorithms can find a close-to-optimal route to minimize the distance travelled. In the context of a long journey to 50 cities, it is not necessary to find the most perfect solution, so long as the solution is good

enough. Put another way, if the algorithm can find a good

solution in a few minutes, is it really worth hours or days

of additional processing to find a solution that might be only 1 per cent better? At some point, the route is good

enough to use.

• Timetabling, such as allocating students to their preferred classes where there are constraints on the

number of teachers, rooms and classes available.

• Civil and mechanical engineering to help optimize design of structures such as bridges or buildings, and

vehicle designs to make choices of materials based on

durability, strength and cost.

• Control systems and robotics use genetic algorithms to optimize the controller for better stability and

performance.

• Finance applications use genetic algorithms to help optimize a trade-off between risk and reward in selection

of an investment portfolio.

• Within machine learning, a genetic algorithm can help

select a subset of relevant features from a larger data set to improve model accuracy and reduce overfitting.

• In some types of machine learning problems, it is possible to use genetic algorithms for the training of an artificial neural network as an alternative approach to

backpropagation (see later in this section).

Selection functions

Selecting pairs of values for reproduction relies on the

concept of weighted randomization. It is weighted in the

sense that those with higher fitness scores should be more likely to be chosen for reproduction. Randomization is still important, however, to ensure that the algorithm doesn’t

become trapped in a local maximum.

One of the most commonly used approaches is the concept

of a roulette wheel, where the portion of the wheel allocated is determined by the fitness function score.

[image: Image 272]

Roulette wheel selection

Crossover functions

Crossover functions define the algorithm used for

reproduction – taking two input solutions and mixing them

in such a way as to produce a “child”, representing a new

valid solution.

There are a variety of common algorithms to do this, but

each needs to be considered in the context of the problem.

Any approach will likely need to be tweaked to ensure the

“child” created through the process is valid for the scenario.

[image: Image 273]

[image: Image 274]

One-point crossover

Two-point crossover

Two common methods are the one-point crossover and the

two-point crossover.

One-point crossover selects a random point in the gene

sequence to slice the data. The data from up until the slice point is copied from parent 1 into child 1, and then the rest of child 1’s data comes from parent 2. The inverse can also occur at the same time to create a second child.

Two-point crossover works in a similar manner, except two

slice points are selected.

There are other commonly used methods as well, but what

matters most is that you are using a randomization function

[image: Image 275]

to create offspring that are a mix of the data from two

parents.

Top tip!

Choose appropriate genetic operators (selection, crossover, mutation) for your problem, and ensure diversity within the population to avoid premature convergence.

Example: Travelling salesperson

Travelling salesperson – random route

[image: Image 276]

Travelling salesperson – optimized route

Consider the charts to represent a map of 50 cities that a travelling salesperson wishes to visit, with two possible

routes for the journey. Clearly, the randomized journey is inefficient, whereas the optimized journey is a lot more

efficient.

Two questions to ponder: Is the optimized route perfect?

And, does it matter?

To find the absolute most perfect solution would require

testing 50! permutations; that is, over

30,000,000,000,000,000,000,000,000,000,000,000,000,000

,000,000,000,000,000,000,000,000 permutations. That is a

lot of processing! The reality is, in scenarios such as this, rather than labouring for perfect, good enough will do. In the context of travelling between 50 cities, does it make

sense to spend exponential time in calculations to save just a few minutes of travel?

[image: Image 277]

[image: Image 278]

This is an example of the type of problem that genetic

algorithms can help solve.

Step 1: Create an initial population

Assign each city a number and use a random number

generator to create a randomized route. Do this for an initial population of 500 possible solutions (population size being one of the hyperparameters you may want to tune).

Python

Step 2: Create a fitness function to

measure the performance of each

member of the population

The obvious metric is to use the journey distance of the

route; however, given the crossover function will give

preference to those with a higher score for reproduction, it is necessary to use a fitness function that gives the highest scores for those routes with lowest distances.

One simple solution might be to calculate the fitness score by setting the distance as a fraction denominator, such as: An alternative approach used in the example code that

follows is to use normalization to convert the data into a

[image: Image 279]

[image: Image 280]

[0,1] range, where the 0 represents the highest distance

and the 1 represents the smallest distance. The resulting

normalized values are then used as an exponent to ensure

that small differences in the normalized value, especially at the higher end, caused very large differences in fitness.

The selection function is yet another hyperparameter for

you to tune and experiment with for each given problem.

The method outlined here was only selected after

experimenting with half a dozen different possible

approaches to see which produced the quickest results.

Python

Step 3: Reproduction using a

crossover method

[image: Image 281]

In this case, the code below is using a modified form of one-point crossover. A point in the data is randomly selected, and the genetic data from parent 1 is copied across without change. After that, the remaining cities are copied over from parent 2 in the order in which they appeared in parent 2.

Here is a simple example with six cities:

PARENT 1

= [0, 4, 5, 1, 3, 2]

PARENT 2

= [4, 2, 0, 3, 5, 1]

Randomly decide how many genes to copy from parent 1. In

this case, use three.

CHILD

= [0, 4, 5, _, _, _]

Now copy the remaining values from parent 2, skipping the

values already present from parent 1.

CHILD

= [0, 4, 5, 2, 3, 1]

Python

Step 4: Mutation

There is no fixed algorithm to use for mutation; it will vary somewhat depending on the context of your problem. In this case, the following code will, in 5 per cent of cases (the mutation rate hyperparameter), randomly pick a pair of

cities in the route and swap them.

[image: Image 282]

[image: Image 283]

Python

Step 5: Promote the children to be

the active generation

This will be just a one-line task at the end of the loop to copy the data from the new generation that was being

produced, into the array being used for the active

generation.

Python

Step 6: Write the main function to

bring it all together

Python

[image: Image 284]

As you let that execute, it will print an update every 25

generations with the progress it has made, similar to the

following update:

[image: Image 285]

Generation 25: Best 13496.55 Mean 14238.29

Generation 50: Best 11301.76 Mean 11541.97

Generation 75: Best 9265.94 Mean 9365.81

Generation 100: Best 8944.63 Mean 9033.31

Generation 125: Best 8727.39 Mean 8883.68

This chart shows the minimum travel distance calculated

after each generation when the algorithm was executed by

the author. There are a couple of important aspects to draw your attention to.

Firstly, and most obviously, is that most of the improvement in output occurs very quickly, after which the law of

diminishing returns starts to apply.

Best route found for travelling salesperson for each

generation

The second thing to note, though, is that the output will

frequently get stuck in a local minimum for several hundred generations before suddenly breaking out of it, so there can

be benefits to gain by being patient enough to give that the opportunity to occur.

What is the lowest distance route you can obtain to visit all 50 cities?

Download the data file from

https://github.com/paulbaumgarten/hodder-ibdp-

computerscience

A4.3.8 Artificial neural

networks

An artificial neural network (ANN) is an algorithm that learns to make decisions by finding patterns in data using an

approach modelled on the biological brain. Just as a

biological brain consists of many neurons that are

interconnected and send signals to each other via synapses, so too an artificial neural network is an algorithm that

defines a series of nodes that transmit data between each

other. These nodes are known as perceptrons, though they are also very commonly referred to as “neurons”.

Perceptron: the data structure at the heart of an artificial neural network; it represents a single artificial neuron that takes in multiple inputs and weights, and generates an

output value.

[image: Image 286]

Layers in an artificial neural network

The diagram represents a typical structure for an ANN:

• The input layer receives the input values that the network is being asked to process. Each feature of your model

requires its own input perceptron. The value given to each perceptron is numeric (either an integer or float,

depending on the problem context).

• There are usually one or more hidden layers within an

ANN. These are layers of perceptrons that identify patterns in the input data to make generalizations useful for the

next layer. They receive the values from the previous

layer, perform their calculations and then send their

respective result to the next layer in the network.

• The output layer is where the ANN produces a final

“answer” value or prediction.

The illustration in this case is also an example of a fully connected network, in that every perceptron from one layer is connected, and sends its output value to, every

[image: Image 287]

perceptron in the next layer. Fully connected networks are the norm.

A single perceptron

Zooming in on a single perceptron, the following sketch

outlines the different elements at work:

A perceptron in an artificial neural network

• Input: The perceptron receives an input value from every perceptron in the layer before.

• Weight: Every input has a weight associated with it. The weight is a value indicating the importance this particular neuron places on the values from the respective input.

Weights are usually initialized with a random number

between –1.0 and 1.0 and then adjusted by the training

process.

• Summation: The product of each input value and its respective weight are summed together.

• Bias: Supplemental to weights, a typical neuron would also have a value called the “bias”. This is added to the

value from the summation step, prior to using activation.

The bias acts as a way to shift the decision boundary

along the curve of the activation function. The bias is

[image: Image 288]

usually initialized with a random number between –1.0

and 1.0 and then adjusted by the training process.

• Activation: The activation function helps determine whether or not the neuron should be “active” (“inactive”

in this case means the neuron would have an output value

of 0). The activation function serves to introduce

nonlinearity to make neurons more expressive. That is, it

helps force the neuron to make a decision. For example,

one commonly used activation function is ReLU, which

results in a neuron being active for any positive value, and inactive (0) for any negative value. A comparison of

common activation functions follows later in this section.

• Output: Finally, the resulting value returned from the activation function is sent onward to the neurons in the

next layer, or the external system.

The following example is a walkthrough of the calculations for a perceptron:

Example values in a perceptron

• The perceptron receives input values of 1.3, 4.2, 0.0 and 2.7.

• Each input path has a weight of –3.1, 1.6, 2.9 and 2.7

respectively.

[image: Image 289]

• Each input and its respective weight are multiplied, and the results added together:

(1.3 * – 3.1) + (4.2 * 1.6) + (0.0 * 2.9) + (2.7 * 2.7) = 9.98

• The bias value is added, which, for this example, is –5.2: 9.98 + (–5.2) = 4.78

• The resulting value is passed through the activation

function, which, in this case, is ReLU:

 ReLU(4.78) = 4.78

• The output value 4.78 is passed along to the next layer in the network, or is given as the output value of the

network, if it is the output layer.

From a mathematical perspective, up until the activation

function, the rest of the perceptron can be considered a

linear function, where the weights are the variable

coefficients and the bias is the constant:

 y = ReLU(x 1 w 1 + x 2 w 2 + x 3 w 3 + x 4 w 4 + b) Or, to express it more generally:

Given the output of any individual perceptron can be

expressed as a function, and that the inputs of perceptrons are either input values or the outputs of other perceptrons, it means that the entire artificial neural network behaves as a function.

Common mistake

Overcomplicating the model architecture can lead to

overfitting and high computational costs. Start with a

simple architecture and gradually increase complexity, if

necessary.

[image: Image 290]

Activation functions

While there are a large variety of activation functions in use, there are four that are more common than all others:

ReLU, Sigmoid, Softmax and tanh.

Activation function: a mathematical function applied to the output of a neuron that is used to determine whether

or not the neuron should be activated (considered to be

“on”).

ReLU

ReLU (rectified linear unit) is often the default choice for ANNs. It is computationally efficient and is less likely to have a vanishing (approaching zero) gradient, unlike Sigmoid or tanh. The function for ReLU is:

 f(x) = max (0, x)

The ReLU function

[image: Image 291]

On first impression, it may appear that ReLU is linear;

however, it is more accurate to say it is two different lines coming together in the one function, one on the positive

side, and another on the negative. The simple act of the

zeroing of negative values significantly changes the

behaviour within a network as it means that only positive

neurons will be activated and any negative-value neurons

will be deactivated. This small change makes a big

difference when attempting to do classification problems.

Sigmoid

Sigmoid is commonly used in the output layer for binary

classification problems since it maps to a distribution

between 0 and 1, which is generally what is desired at the output layer. It is used in scenarios like email spam

detection (spam or not spam) and medical diagnosis (sick or healthy). It is not usually used in hidden layers in deep

networks due to their vanishing gradients. Observe that

once the input value is less than –4 or greater than +4, the gradient becomes so insignificant it might as well be zero.

[image: Image 292]

[image: Image 293]

The Sigmoid function

The equation for Sigmoid is:

Softmax

Softmax produces an output similar to Sigmoid in that both produce values in the range (0,1). Softmax produces a

probability distribution for N different outcomes, where N is the number of categories for classification and the

probabilities sum to 1. This makes it suitable for distribution across multiple classes, so it is commonly used for the

output layer of a multiclass classification problem. (In the chart, the lines for Classes 2 to 10 are aligned and stacked one on the other, which is why it appears as if only two lines are plotted.)

The Softmax function

Tanh

[image: Image 294]

[image: Image 295]

[image: Image 296]

Tanh is similar to Sigmoid, but the output values range

between –1.0 and 1.0. It is useful when your data is

normalized around 0 but, like Sigmoid, it also has vanishing gradients that can be problematic. It is more common to see tanh used for hidden layers than Sigmoid, given its mean

distribution is centred on 0. This centring around 0 makes learning for the next layer easier for classification.

The tanh function

There are a couple of mathematically equivalent ways of

producing the tanh function:

or

Generating a prediction

[image: Image 297]

Using an ANN to generate a result is a matter of performing all the calculations on all the perceptrons in one layer, and then feeding forward those results to the next layer. The

process continues until the output layer is reached and the process terminates.

While overengineered for the scenario, imagine using a

neural network to determine the result of OR and AND logic gates. Consider the following network with two input

neurons, four neurons in one hidden layer and two output

neurons.

After training (discussed in the next section), the network consists of the following weights and biases. The ReLU

activation function is used on the hidden layer and, since the network is seeking to perform a classification task,

Sigmoid is used on the output layer.

Example values for a logic gate ANN

For those unfamiliar with logic gates, see Section A1.2.3.

The network should produce the following results, if

behaving correctly:

A B OR AND

[0, 0] -> [0, 0]

[image: Image 298]

[0, 1] -> [1, 0]

[1, 0] -> [1, 0]

[1, 1] -> [1, 1]

Performing the calculations for an input of [1, 0], the

following occurs:

Hidden1 = ReLU(1.00 * 0.60 + 0.00 * -1.13 + 0.53) =

ReLU(1.13) = 1.13

Hidden2 = ReLU(1.00 * -0.47 + 0.00 * -1.11 + 0.00) =

ReLU(-0.47) = 0.00

Hidden3 = ReLU(1.00 * 0.70 + 0.00 * 2.10 + 0.00) = ReLU(

0.70) = 0.70

Hidden4 = ReLU(1.00 * 2.10 + 0.00 * 0.80 – 0.23) = ReLU(

1.87) = 1.87

Now, use these hidden layer values to generate the output

values.

Since our classification problem is seeking a 0 (“false” or

“no”) or 1 (“true” or “yes”) answer, when 0.88 and 0.24 are rounded, the network has indeed correctly determined that

an input of [1,0] into an OR gate results in a 1, and [1,0] into an AND gate results in a 0.

See also

See 3Blue1Brown’s YouTube video “But what is a neural

network?”

Training

While calculating an output result or prediction from a

neural network should be a conceptually straightforward

mathematical process, the training process is more complex and is far beyond the scope of your course.

The process used is known as backpropagation. As a high-level overview, here is what is occurring:

• We calculate the error in the output values received from the network when compared to the target output values in

the training data. A loss function is used for this, such as

“mean-squared-error” for regression, or “cross-entropy

loss” for classification tasks.

• We calculate how much each parameter (the weights and

biases) in the network contributed to the error. This is

done by using the gradient (i.e. the derivative or slope) of the loss function for each parameter.

• An optimization algorithm such as “gradient-descent” is used to calculate adjustments to the parameters. By

knowing the gradient of the error, the parameters can be

adjusted in the opposite direction (gradient descent) to

reduce the loss (see the videos referenced in the “See

also” box).

• Before applying the adjustment to the weights and

biases, we multiply them by the learning rate

hyperparameter. This is to ensure we don’t overcorrect

and solely design the network around any one particular

value in the training data set.

• Once this process has completed for one layer (such as

using the output layer to calculate adjustments to the last hidden layer), we repeat the process on the layers before

it. This process of moving backwards from the output

layer, working through each hidden layer, until finally

reaching the input layer, is where the term

“backpropagation” comes from.

• We repeat the entire process a certain number of

iterations or until the loss stops decreasing significantly.

Each pass over the data set is known as an “epoch”.

Backpropagation: backpropagation of errors is the most commonly used technique for training artificial neural

networks. The gradient of the loss function is calculated, and used to update parameters such as weights, in the

opposite direction of the gradient to reduce the overall

error.

See also

See 3Blue1Brown’s YouTube videos “Backpropagation,

step-by-step | DL3” and “Gradient descent, how neural

networks learn”.

Example 1: Logic gates

This is the Python code used for the OR and AND logic gates example in the previous walkthroughs.

Python

[image: Image 299]

Common mistake

If you are installing TensorFlow on a computer without a

GPU, ensure you install a CPU-only version otherwise you

will receive errors that pip is unable to find a version that satisfies the requirements.

That is, from your terminal, run the following:

pip install tensorflow-cpu

For more detailed instructions, refer to the TensorFlow

installation guide at www.tensorflow.org/install/pip

Example 2: ANN for regression

A commonly used example for introducing regression

problems with an ANN is the California housing data set. It contains information about various homes in California in

the 1990s, including such features as house age, average

number of rooms, average number of residents, and latitude and longitude, and is used to predict house prices.

More information on the data set can be found by searching online for Keras California Housing price regression data set

(https://keras.io/api/datasets/california_housing).

Python

[image: Image 300]

Example 3: ANN for

classification

A very common Hello World-style classification problem for ANNs is the MNIST number recognition data set. It

comprises 60,000 28×28 grayscale images of the ten digits, along with a test set of 10,000 images.

[image: Image 301]

Examples of handwritten digits in the MNIST data set

Python

[image: Image 302]

One step that may not be intuitively obvious is how to test this with your own data. Suppose you have a 28×28

grayscale PNG file you’d like to test on the ANN. The

following is example code to do this task. (By the way, ensure your image is white text on black background, as that is how the model has been trained.)

Python

[image: Image 303]

A4.3.9 Convolutional neural

networks

A convolutional neural network (CNN) extends on the architecture of ANNs by using additional layers of

calculations prior to processing the data through a fully

connected artificial neural network.

Convolution: a mathematical operation that combines two functions to produce a third function. In the context of a convolutional neural network being used for image

processing, convolution applies filtering functions to the pixels in an input image to compute distinctive features

from the data.

CNNs are ideally suited to processing image data but are

also valuable for applications such as video analysis, natural language processing (NLP), audio and speech processing,

and recommendation systems.

[image: Image 304]

To explore what makes a CNN different from an ANN,

consider the following diagram of a typical convolutional

neural network:

Structure of a convolutional neural network

Input layer

The input layer comprises the raw pixel data of the image

being processed. The number of input nodes would be

based upon image width × image height × colour depth.

It is important to consider that, when dealing with input

data such as images, the input data can get very large with relative ease. A small image of only 100 × 100 pixels at full colour resolution (that is, 1 byte each for red, green and blue) would comprise 300,000 values. This is too much to

feed directly into an ANN, and so preprocessing through

convolution and pooling is used to reduce this to something more manageable.

Convolutional layer

The convolutional layers serve as feature extractors that are looking for patterns in the input image.

As the network trains, it develops filters (also known as

“kernels”) that learn to detect patterns that are important for the individual network at hand. Generally, these patterns are as simple as edge detection or various textures, but

[image: Image 305]

[image: Image 306]

[image: Image 307]

they can be used to detect more complex shapes within the

image. Other common patterns that may emerge are

sharpening filters and blur filters.

Edge detection will typically look for vertical or horizontal edges. For instance, the matrix to find vertical edges may look like this:

Applying an edge detection filter to an image is shown in

the following diagram. The first image is the original; the second is the output using vertical edge detection with the matrix above; the third is horizontal edge detection after rotating the matrix clockwise.

Kitten bitmap with its horizontal edges and vertical

edges detected

A sharpening filter will emphasize the difference in contrast between adjacent pixel values. This helps make the image

look more distinct to later stages of the network. The matrix for a sharpening filter may look like this:

A blur filter will help reduce noise and detail from an image, so the network doesn’t focus on minor variations of detail

[image: Image 308]

within the image that do not carry significance in meaning.

For instance, a gaussian blur may be applied through the

following matrix:

The strength of CNNs lies in their ability to learn the most appropriate filters for a given task through backpropagation during the training process. The initial values for these

kernels can be set randomly, or by using some heuristic,

and then be updated to better suit the specific features of the training data.

The act of iterating over groups of pixels with a filter is known as “sliding” or “striding”.

See also

See 3Blue1Brown’s YouTube video “But what is a

convolution?”

Activation function

Convolutional operations are linear transformations.

Mathematically, they are the dot product between the filter (kernel) values and the pixel values in the image. If you

stack multiple convolutional layers, the entire network can still be described as a single linear transformation. No

matter how many layers you have, they can still be

collapsed into a single layer that performs one linear

transformation, because the composition of two linear

functions is still a linear function (the function for any one pixel can be reduced to the sum of input values multiplied by various fixed coefficients).

This poses a problem for our network, as a linear system

can only perform linear classification. That is, it can only

separate data using a straight line (or hyperplane in higher dimensions). While this has its uses, the tasks we generally require of CNNs are too complex for a linear approach to

separation.

Therefore, after convolution, the data is run through an

activation function to introduce non-linearity to the data.

Pooling layer

The next stage of the process is to pass the data through

some down-sampling layers, also known as “pooling layers”.

The pooling layers serve to reduce the dimensions of the

image data.

This serves a couple of important purposes. Firstly, it will reduce the number of parameters that need to be input into a deeply connected network, significantly reducing the

computational workload of the network. Secondly, it also

assists with network learning, as it will further help negate minor changes in individual pixels (image noise) that are

unlikely to be relevant to image classification. This helps to reduce the risk of overfitting.

There are two commonly used methods of pooling:

• Max pooling, which takes the maximum value from a set of values.

• Average pooling, which takes the average value from the set of values.

Fully connected layer

After pooling, the data is then fed into a fully connected artificial neural network (ANN), which has been previously discussed.

The purpose of the ANN at this point is to take the high-level features learned by the convolutional and pooling layers and

use them to perform the final classification or regression task.

Before entering the first fully connected layer, the feature maps will typically be flattened into a one-dimensional

vector of values, which will align with the number of input nodes of the ANN.

Output layer

The output layer from the CNN is the output that comes

from the fully connected layers of the ANN.

Top tip!

Don’t neglect transfer learning to leverage pre-trained

models. This is especially useful if you have limited training data available.

• Explore some of the pre-trained models available

through TensorFlow or PyTorch, such as VGG, ResNet and

Inception.

• Consider the similarity between the data the model was

originally trained on, and your target data.

• Decide whether you will be using transfer learning to

assist with feature extraction or fine-tuning. Feature

extraction will use the previous network to extract

meaningful features from new samples. In this case,

freeze the convolutional base and only train a new

classifier layer. Fine-tuning doesn’t freeze the

convolutional base. After adding your new output layer, it will fine-tune the weights of the pre-trained model by

continuing the training process, allowing it to learn new

task-specific features.

• Remember to preprocess data in the same way the

original model was trained, and to use data augmentation

techniques (like rotation, scaling, cropping and flipping) to artificially expand the training data set.

Example: CIFAR-10

The CIFAR-10 data set contains 50,000 images of 32×32

pixels in RGB colour, plus another 10,000 test images. The images are labelled over ten categories: airplane,

automobile, bird, cat, deer, dog, frog, horse, ship, truck.

The additional complexity of shapes, slightly enlarged size and the inclusion of three colour channels rather than just grayscale make CIFAR a good platform for experimenting

with a CNN.

More information about the data set can be found by

searching online for Keras CIFAR10 small images

classification data set

(https://keras.io/api/datasets/cifar10).

TOK

Is it acceptable to benefit from knowledge derived

from unethical sources?

CIFAR-10 is a data set that was compiled by Alex

Krizhevsky in 2009. It was created as a subset of a larger data set of 80 million images known as Tiny Images.

In June 2020, the decision was made to withdraw the Tiny

Images data set and request others to stop using it, due to

“biases, offensive and prejudicial images, and derogatory

terminology” within the data set.

CIFAR-10 remains available and is commonly used by many

academic institutions. Students use it to learn how to train neural networks for computer vision tasks.

Given its origins from the ethically compromised Tiny Images data set, should CIFAR-10 still be used in scientific research and technological development?

TOK

Is it ethical to use data scraping for creating data

sets without the consent of the content owners?

Web scraping is a prevalent tool used to gather vast

amounts of data from across the internet. Typically, this

occurs without the explicit consent of the owners or

creators of the data.

Web scraping is fundamental to the data sets used for

many machine learning models, including computer vision

and large language models.

Courts and governments are grappling with the complex

ethical issues around this practice, and no clear resolution is in sight. There are vast economic and commercial

interests on both sides of the debate.

Some questions include:

• Who owns the information available on the internet,

especially on forums such as Reddit, or collaborative

efforts such as Wikipedia?

• Is it ethical to use this data for academic purposes?

What about for commercial purposes?

• Is it an invasion of privacy to use photos and videos

uploaded to social media to form data sets for machine

learning purposes?

• Is it too late? Is it time to focus on harm mitigation? Are there ways to share profits, such as through royalty

payments?

PYTHON

[image: Image 309]

Top tip!

Start simple! Begin with simple models to establish a

baseline, and gradually move to more complex algorithms.

Appreciate the power of simple models; sometimes they

are all you need.

A4.3.10 Model selection

You have looked at a lot of machine learning algorithms in this chapter. When the time comes to use machine learning

to solve your own problems, how do you decide which

model to use? Here are some criteria to assist in your

decision-making process:

• Classification or regression? Does the problem require predicting a continuous output (regression) or categorizing data into predefined classes (classification)?

• Linear or non-linear relationship? Linear regression is quick and simple to implement, but will not work with

complex non-linear data, in which case a neural network

may be required.

• Low or high dimensionality? How many features do you need your algorithm to process?

• Volume of data? Deep learning requires a large amount of data to work accurately and to avoid overfitting.

Decision trees or k-nearest neighbours may be better

suited if the data set is small.

• Feature independence? If features (variables) interact with each other (such as co-dependency), the complex

interplay may be better captured by a decision tree or

neural network.

• Accuracy? If highly accurate predictions are required, then more complex models may be the better option, but

this comes at the cost of requiring more data and

computational power.

• Training time? Linear regression and shallow decision trees can be trained very quickly, relative to deep neural networks.

• Transparency? Sometimes the “magic-happens-here”

approach of neural networks may be intimidating and

undesired by the client. Some domains, such as healthcare

or finance, may require models that can be user-

interpreted, in which case linear regression or decision

trees may be best.

• Resources available? Deep neural networks require significant GPU computational power to train. If all you

have is a consumer-grade laptop, a simpler approach may

be required.

ACTIVITY

Thinking skills: As a class, brainstorm a set of case-study scenarios where machine learning may be beneficial.

Debate and discuss what the appropriate machine learning

algorithm would be (for example linear regression,

clustering, association rules) based on the problem

statement and data characteristics.

Key information

Remember that, as far as the syllabus is concerned,

Machine Learning is a theory unit rather than a

programming one. The following exercises are optional

suggestions for students who wish to explore machine

learning programming for themselves.

PROGRAMMING EXERCISES

1 Height and weight (linear regression)

Given the height of a person, can you predict their

weight?

Data set @

www.kaggle.com/datasets/galserge/weight-and-

height-from-nhanes

2 Vide ogame sales with ratings (linear regression) Given the ratings assigned by critics reviewing a new

Video game, can you predict how many millions of units

a Video game will sell?

Data set @

www.kaggle.com/datasets/rush4ratio/video-

game-sales-with-ratings

3 Societal impact on education (linear regression)

How much is a student’s educational outcome influenced by the strength of the economy and health of

the society in which they reside?

Data set @

www.kaggle.com/datasets/walassetomaz/pisa-

results-2000-2022-economics-and-education

4 Zoo animal classification (k-nearest neighbours) Classify animals into categories, such as mammal, bird

or reptile, based on attributes such as weight, height

and type of habitat.

Data set @ www.kaggle.com/datasets/uciml/zoo-

animal-classification

5 Mall customer segmentation (unsupervised k-

means clustering)

Use k-means clustering to identify distinct customer

groups, such as high-income–high-spending vs low-

income–high frequency customers.

Data set @

www.kaggle.com/datasets/vjchoudhary7/custome

r-segmentation-tutorial-in-python

6 Social network analysis (unsupervised spectral clustering)

Discover socially connected communities within the

Zachary karate club data set. One challenge often

asked with this data set is to find the two groups of

people into which the karate club split after an

argument between two of the teachers.

Search “Zachary karate club” to find this data set.

7 (Unsupervised association rule learning)

Analyse the grocery-store data set to discover common

product combinations purchased together.

[image: Image 310]

Data set @ https://archive.ics.uci.edu/dataset/611

8 (Reinforcement learning)

The previously mentioned Gymnasium has a number of

pre-built environments for you to experiment with.

Download @ https://gymnasium.farama.org

9 Optimal stock portfolio (genetic algorithm)

Use a genetic algorithm to determine what would be the

optimal mix of stocks to hold over the duration of a data

set to maximize return while minimizing risk. The fitness

function could be based on the Sharpe ratio, a measure

of return adjusted for risk.

Download historical price data for a set of assets (for

example stocks, bonds, ETFs) and calculate returns for

each asset to use in the optimization.

Data set @

www.kaggle.com/datasets/jacksoncrow/stock-

market-dataset

Data set 2 @ www.nasdaq.com/market-

activity/quotes/historical

10 Stock-price prediction (artificial neural network) Can you create an AI to accurately predict the

performance of stock prices? (If you can, don’t forget to

express your appreciation benevolently to the textbook

authors)

Data set @

www.kaggle.com/datasets/jacksoncrow/stock-

market-dataset

Data set 2 @ www.nasdaq.com/market-

activity/quotes/historical

11 Cats and dogs (convolutional neural network)

Can you tell the difference between a cat and a dog?

Data set @

www.kaggle.com/datasets/shaunthesheep/micros

oft-catsvsdogs-dataset

12 Traffic-sign recognition (convolutional neural network)

Accurately detecting road signs is a core challenge for

the development of self-driving cars. The traffic-sign

recognition data set contains over 50,000 images

across 40 classes of road sign. Should we let you

develop the AI for the next breed of self-driving cars?

Data set @

www.kaggle.com/datasets/meowmeowmeowmeo

wmeow/gtsrb-german-traffic-sign

13 Movie-reviews sentiment analysis (choose

between ANN and CNN)

This exercise will introduce you to natural language

processing. Specifically, you will use sentiment analysis

to predict positive and negative reviews based on movie

reviews on IMDb.

Data set @

www.kaggle.com/datasets/lakshmi25npathi/imdb-

dataset-of-50k-movie-reviews

Be aware that this exercise will involve learning several

additional important concepts to implement. This is

because the data set is text, but machine learning

models require numeric data to function, so significant

preparation and preprocessing of your data is required.

The following tips will guide you:

• Convert text to lowercase and remove non-alphabetic

characters.

• Tokenize the words, which is the process of splitting the text into individual words or word parts. For

instance, the string “hello world” would be tokenized

into [“hello”, “world”]. Refer to

www.nltk.org/api/nltk.tokenize.html

• Remove stop words, which are words that generally

don’t convey meaning. Examples include “a”, “the”

and “and”. Refer to https://pythonspot.com/nltk-

stop-words

• Use a vectorizer such as CountVectorizer or

TfidVectorizer to transform your text into numeric

vectors. Refer to https://scikit-

learn.org/stable/modules/feature_extraction.htm

l#text-feature-extraction

• Convert your vectors into NumPy arrays.

• Create TensorFlow data sets from the NumPy arrays.

Refer to

www.tensorflow.org/api_docs/python/tf/data/Dat

aset

Now you can build a neural network model and train it.

REVIEW QUESTIONS

1 An e-commerce company uses linear regression to

predict customer spending based on their past

purchasing behaviour.

a State the assumption about the relationship between the dependent and independent variables in linear

regression.

b Describe how outliers could affect the performance of the linear regression model in this scenario.

c Describe one method to evaluate the accuracy of this linear regression model.

 2 A real-estate company uses linear regression to estimate property prices based on features like area,

age and number of rooms. One of the technical staff

expressed concern that multicollinearity might be a

problem with the model. Multicollinearity is when two or

more independent variables have a high correlation with

one another in a regression.

a Explain why multicollinearity might be a problem in this linear regression model.

b Outline a method to handle multicollinearity if it is found in the data set.

3 A college uses linear regression to predict student success based on high-school GPA, standardized test

scores and college entrance essays.

a Outline one reason why it is important to assume linearity in this regression model.

b Suggest a technique to assess the model’s predictive accuracy and explain its importance.

4 A medical research institution develops a decision tree model to classify patients into risk categories for heart

disease based on lifestyle and genetic data.

a Describe one advantage of using decision trees for this type of classification problem.

b Describe one disadvantage of using decision trees for this type of classification problem.

c i Identify one critical parameter in decision trees that could impact the model’s performance.

ii Outline its role.

5 An online retailer uses k-nearest neighbours (KNN) to classify customer reviews as positive, neutral or

negative.

a Outline how the choice of k affects the classification accuracy in KNN.

b Describe one method to determine the optimal k value for this application.

c Describe how the scales used by features influence the performance of the KNN algorithm.

6 A high school wants to classify students into different learning groups based on their learning styles and

previous academic performance.

a Outline two reasons to select decision trees over KNN

for this problem.

b Outline two reasons to select KNN over decision trees for this problem.

c The school decided to use a decision tree. Describe one strategy to prevent overfitting in the decision tree

model.

7 A maintenance system uses supervised learning to forecast equipment failures in an industrial plant.

a Define “precision” and “recall” in the context of this predictive system.

b Explain why the F1 score is a better measure than accuracy in scenarios where false negatives have

higher costs.

c Describe how a confusion matrix can be used to

visually illustrate the success of the model.

8 A health diagnostic application uses supervised

learning to classify patient results as “normal” or

“abnormal”.

a Outline the importance of a high recall rate in this medical classification task.

b Describe how an imbalanced data set might affect the performance metrics like precision and recall.

c i Identify one method to adjust the classification threshold.

ii Describe its impact on the F1 score.

9 An online retailer uses k-means clustering to segment customers based on purchasing patterns.

a Outline the objective of the k-means clustering

algorithm.

b Describe one challenge when using k-means

clustering for customer segmentation.

c Describe how the choice of k affects the outcomes of the k-means algorithm.

10 A telecommunications company uses spectral

clustering to segment customers based on usage

patterns.

a Describe the difference between k-means and

spectral clustering in handling non-spherical data

clusters.

b Describe one challenge in using spectral clustering for large data sets.

c Describe how the results of spectral clustering could be used to improve customer satisfaction.

11 A social-media company uses clustering to identify social groups on its network system.

a Identify which clustering algorithm would allow

identification of social groups in this network.

b Describe one potential challenge in clustering users based on such diverse data.

c Describe how the choice of the number of clusters can affect the results.

12 Urban planners in a large city are using data collected from traffic sensors at various intersections and

highways to identify clusters of intersections and road

segments that exhibit similar traffic patterns.

a Describe a suitable algorithm that the urban planners could use to group sensor data into clusters based on

their traffic characteristics. Explain why this algorithm

is appropriate for handling data with varying densities

and noise.

b Describe how understanding these traffic clusters could benefit the city’s traffic management and

infrastructure planning.

13 An e-commerce platform analyses user purchasing data to discover frequent buying patterns.

a Define “lift” in the context of association rule mining and its importance.

b Describe how minimum support and confidence

levels affect the rules generated in this scenario.

c Describe the potential impact of these buying

patterns on targeted marketing strategies.

14 A library analyses borrowing patterns to find

associations between different genres of books

borrowed together.

a Define “confidence” and “support” in association rule mining for this library data.

b Describe how the library can discover these patterns.

c Describe one potential limitation of association rule mining in predicting book-borrowing patterns.

15 An engineering firm uses genetic algorithms to

optimize the design of a new aerodynamic vehicle

model.

a Outline the role of crossover in genetic algorithms.

b Outline how mutation affects the evolution process in genetic algorithms.

c Outline one advantage of using genetic algorithms in complex optimization problems such as vehicle

design.

16 A school runs an elective block on the timetable where students can select from a number of creative and

optional courses. Students are asked to indicate their

preferred courses but are not guaranteed to receive

their first preference. The school uses a genetic

algorithm to maximize the number of students receiving

their first or second preference.

a Outline the function of selection in genetic

algorithms.

b Describe the concept of “fitness function” in genetic algorithms, and how it might be applied in this

scenario.

c Describe how population size influences the outcome of a genetic algorithm.

d Outline two benefits of using genetic algorithms to design a timetable schedule.

e Outline two drawbacks of using genetic algorithms to design a timetable schedule.

17 A financial institution employs an artificial neural network to predict loan default risk based on customer

profiles.

a Identify one type of layer often used in neural

networks and its purpose.

b Describe why overfitting might be a concern in neural networks.

c Describe how a neural network can be trained to minimize prediction error in this financial context.

18 An energy company uses a neural network to forecast electricity demand based on weather conditions and

historical usage.

a i Identify whether the neural network in this scenario would be regression or classification

based.

ii Outline the significance of that on its design.

b Outline one type of activation function used in neural networks and its purpose.

c Outline which activation function would most likely be suitable for the output layer in this scenario, and why.

d Describe why deep neural networks might be more

effective than shallow networks for this forecasting

task.

e Define “backpropagation” and outline its role in learning within a neural network.

f Outline two challenges associated with training deep neural networks.

19 A tech company experiments with several machine learning models to predict user engagement on a new

app.

a Define “model selection” in the context of machine learning.

b Identify two metrics that could be used to select the best model for predicting user engagement.

c i Outline the concept of cross-validation.

ii Describe one reason why it is important in model selection.

20 A sports analytics company tests multiple models to predict the outcome of basketball games.

a Describe the concept of “overfitting” in the context of model selection.

b Identify three factors that should be considered in model selection.

A4.4 Ethical

considerations

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

• A4.4.1 Discuss the ethical implications of machine

learning in real-world scenarios

• A4.4.2 Discuss ethics as technologies become integrated into daily life

A4.4.1 Ethical implications

TOK

Does all knowledge impose ethical obligations on

those who know it?

Discuss the ethical use of machine learning, especially in sensitive areas like surveillance or decision-making.

In surveillance (like facial recognition), concerns about

privacy, consent and surveillance biases abound.

Surveillance systems can be used to monitor, control and

sometimes discriminate against populations.

With the involvement of machine learning in decision-

making, such as in hiring, lending and law enforcement,

these systems can influence people’s lives significantly,

and have been shown to inherit and amplify biases present

in the training data.

Machine learning models – inherently knowledge-driven systems – are based on data that encapsulate various

forms of knowledge, from human behaviour to biological

patterns. As creators and users of these systems, there is a responsibility to ensure that this knowledge is used

ethically.

The world is changing rapidly. Advances in technology,

including those in machine learning, pose significant

challenges and questions for us as a society. It is important to take some time to weigh these ethical questions and not get caught up by the shiny new tech without taking the time to think through how it will impact us and those around us.

The following are some of the ethical issues to consider.

• Accountability: With whom or where does responsibility lie for decisions made by machine learning systems? Is it

with the company that produced the AI or the people using

it? Is it a blend of both? Is it possible to determine how and why a machine learning system made a particular

decision?

One incident that highlights the issue of accountability

involved a self-driving car. The driver who was behind the wheel of a self-driving car when it hit and killed a

pedestrian in 2018 pleaded guilty to endangerment and

was sentenced to three years of supervised probation.

• Algorithmic fairness and bias: Machine learning can perpetuate existing social bias if it is present in the

training data, or if the model’s design knowingly or

unknowingly favours certain groups. Fairness requires

actively identifying and mitigating bias in the data set and algorithms.

COMPAS is a recidivism algorithm used by many US court

systems. It has been found to have racial bias, predicting

higher risk of recidivism for black people and lower risk of recidivism for white people.

Another example is that, in 2018, Amazon scrapped a

“secret” AI recruiting tool that was biased against women.

Finally, generative AIs have a constant challenge

regarding reinforcing and exacerbating stereotypes and

bias.

• Consent: Large data sets used for training regularly contain information collected without explicit consent.

Many large companies are now performing machine

learning on their customer databases, or selling their

customer data to other data-matching companies. How

much control should people retain over their personal

information?

Google’s DeepMind was found to be in breach of UK

privacy laws after it failed to adequately inform patients about the use of their personally identifiable health data in developing an app to detect kidney injuries.

• Environmental impact: Machine learning models

require enormous computational power, especially in the

training phase. This leads to substantial energy

consumption and implications for carbon emissions.

Cornell University scientists found that training LLMs (large language models) like GPT-3 consumed an amount of

electricity equivalent to 500 metric tons of carbon. In fact, DatacenterDynamics reports global power use by data

centres will more than double from 460 TWh in 2022 to

over 1000 TWh in 2026.

• Privacy: Machine learning systems can predict or classify personal behaviour in ways that invade personal privacy.

The capacity of machine learning systems to apply

inference means privacy may be further compromised by

systems deducing health conditions not even provided to

the model.

In 2018, fitness tracking app Strava released a global heat map of user activities that inadvertently revealed the

locations of secret military bases and patrol routes,

showcasing a significant privacy leak.

• Security: Machine learning systems can be vulnerable to attack through a variety of means. Three common attacks

include:

• data poisoning, which involves introducing untrue or harmful data into the training data set to manipulate the

model for nefarious purposes

• model evasion, where input (such as prompts) is used to “trick” the model into making incorrect outputs

against its training (sometimes known as “jailbreaking”,

in the context of generative AI)

• model inversion, referring to gaining access to

sensitive data contained within the training data.

Within 24 hours of release, Microsoft’s Tay Twitter Bot was manipulated through malicious input data to produce

grossly inappropriate and offensive tweets.

When GPT-3 was first released by OpenAI, it lacked many

of the filters now present and it was trivially easy to

engineer prompts that produced foul, toxic or illegal

content.

• Societal impact: Machine learning is increasingly disrupting employment markets, and influencing public

opinion. There is a careful balance between technological

advancement and maintaining social welfare, which needs

to be considered.

Clearview AI, which scrapes billions of photos from the

internet for facial recognition, has raised societal concerns about surveillance, consent and civil liberties.

• Transparency: Most engineers cannot explain how their systems generate the outputs they create, especially

those that use neural networks. The best that can be done is to point to the training data rather than the algorithm itself. This lack of transparency, or human

understandability, of what these algorithms are and how

they work poses significant questions.

In 2019, tech entrepreneur David Heinmeier Hansson

wrote on X (formerly Twitter) that Apple Card offered him

20 times the credit limit of his wife, although they have

shared assets and she has a higher credit score, raising

questions about the transparency of the algorithms used

for financial decision-making.

• Bias in training data: Bias in training data is a core challenge for machine learning. Over- or underrepresentation of particular demographics will affect the

model’s predictions and reliability. Rigorous data

collection, processing and evaluation methods are

required to ensure broad and fair representation.

• Misinformation: Machine learning can generate and spread false information with ease, making it very difficult to ensure accurate and reliable communication online. As

generative AI, in particular, becomes increasingly realistic and convincing in its outputs, it will become almost

impossible to avoid falling victim to fake news, fake

images and fake videos.

It is believed that misinformation on Facebook received six times more clicks than factual news during the 2020 US

election, according to a study by NYU.

As generative AI deep fakes become weapons of the

political debate, confusion over what to believe will only pose more complex challenges in the future.

• Bias in online communication: Machine learning-based recommendation systems are designed to maximize user

engagement on a platform. One method of doing this is by

recommending more of the same kinds of content that

users have previously engaged with. This can create “echo chambers” that reinforce existing beliefs and minimize

alternative viewpoints.

Facebook newsfeed algorithms and YouTube’s

recommendation systems have both been criticized for

creating filter bubbles and echo chambers, where users

are predominantly shown content that aligns with their

existing beliefs, potentially polarizing public opinion.

• Online harassment: Machine learning can be used to automate harassment on an enormous scale. Bots can troll

and target individuals or groups with ease, and can

increasingly make it seem like the attacks are coming from people. Generative AI is being used to create deep fakes in hurtful and abusive ways that authorities are struggling to keep up with.

• Privacy and anonymity in online communications:

Users often are not aware of or do not fully understand

how their data are used and processed by machine

learning algorithms. Users may think their actions are

anonymous, but increasingly machine learning algorithms

can perform de-anonymization with a high degree of

reliability. There is very little awareness of this in the broader community.

In 2006, Netflix released a data set containing 100 million movie ratings from 500,000 subscribers, intended for use

in a global competition to improve the accuracy of

Netflix’s recommendation algorithm. The data was

supposedly anonymized by removing any personal

identifying information. Researchers from the University of Texas at Austin demonstrated that it was possible to re-identify users by comparing the anonymized Netflix data

with publicly available movie ratings on the Internet Movie Database (IMDb). Using only a small amount of additional

information about an individual’s preferences, the

researchers were able to identify personal viewing habits and potentially sensitive information.

A4.4.2 Reassessing ethics as

technologies become further

integrated

As artificial intelligence and other technology continues to advance and evolve over the years ahead, society is going

to need to regularly reassess the implications from an

ethical viewpoint. There are many challenges that lie ahead; the following list is just a discussion starter.

• Quantum computing: Quantum computing could

potentially break many of the cryptographic systems that

currently secure digital communications and

cryptocurrencies. The development of quantum-resistant

cryptography is an important area of research that needs

to be prioritized.

• Augmented reality: AR can collect vast amounts of personal data about users’ environments. Additionally,

what are the ethics around altering a person’s perception

of reality? Does this disconnect them from the society of

which they are part, resulting in a loss of empathy?

• Virtual reality: As VR becomes more realistic, what are the mental-health concerns for those who use the systems

excessively or for escapism? What should the limits be

when it comes to VR being used to access violent or

explicit material?

• Pervasive AI: How do we guard against intrusive

surveillance and the seemingly never-ending collection of

our personal data for use in machine learning data sets?

• Privacy: Who owns the data about you? Is it you, or the company that collected it? As data collection becomes

more complex, will there be a move towards more transparent and informed consent about what happens

with our personal information?

• Equity: How can we ensure that advances in technology reduce rather than magnify equitable access to

technology across socio-economic, racial, gender, social

and geographical groups?

Top tip!

This section shared real-life case studies on the impact of many of the ethical questions being raised by this topic. Be familiar with case studies that you can refer to in your

exam responses. If you can discuss with specificity a

relevant situation that occurred, it goes a long way towards demonstrating that you care about the issue.

Common mistakes

Students make a number of common errors when

addressing ethics-related questions, which extends to the

discussion of machine learning.

• Don’t oversimplify the issues. Avoid reducing

complex ethical issues to simple right or wrong answers.

The ethical implications of machine learning are nuanced

and often involve interconnected considerations of

accountability, fairness and societal impact.

• Don’t confuse technical bias with ethical bias.

Distinguish between technical bias (deviation in an

algorithm that leads to less accurate predictions) and

ethical / social bias (prejudices in data that lead to unfair outcomes for certain groups).

• Don’t limit your responses to issues of privacy and

security. Consider a broader range of ethical issues, such as environmental impact, societal changes and the

implications for mental health. Show you have a deep understanding of the complexities involved, rather than

taking the lazy approach of resorting to an exam

response that discusses privacy or security superficially.

• Don’t neglect the importance of reassessment.

Ethics guidelines can never be static, as technology and

its impact on society is not static.

ACTIVITY

Social skills: Set up a class debate or panel discussion where you argue the ethical implications of using machine

learning, such as bias, privacy and transparency concerns.

Facilitate peer feedback sessions where you review and

provide constructive criticism on each other’s machine

learning projects or presentations.

Some possible debate prompts include:

• Should health-insurance companies have access to

predictions about potential future illnesses to set

premiums, even if this could lead to higher costs for

those deemed at higher risk?

• Should autonomous vehicles be programmed to

prioritize the lives of pedestrians over the life of the

vehicle’s passenger(s)? How should these ethical

decisions be programmed into autonomous systems?

• Is it ethical to use a recruitment tool that shows bias towards certain educational institutions? Should the

company stop using it until it can be proven to be

unbiased?

• If a city implements widespread facial recognition

through CCTV cameras to reduce crime, is this worth the

lessening of privacy or the risk of false accusation?

• Should social-media platforms be held responsible for

breaking echo chambers and ensuring a balanced

exposure to different viewpoints? How can this be balanced with business models that require maximizing

engagement to earn revenue?

REVIEW QUESTIONS

1 An AI company develops a facial recognition system used in public surveillance.

a Outline three ethical implications of using facial recognition technology in public spaces.

b i Identify two potential biases that could arise in facial recognition systems.

ii Outline the societal impacts of each.

c Outline two measures that could be implemented to address these ethical concerns and biases.

2 A social-media company uses algorithms to personalize newsfeeds based on user interactions.

a Outline two potential ethical issues related to

algorithmic bias in personalizing newsfeeds.

b Outline two strategies the company could implement to ensure the ethical use of personalization algorithms.

c i Identify two implications of lack of transparency in algorithmic decision-making.

ii Outline two methods to improve transparency in

algorithmic decision-making.

3 A university uses AI to make admissions decisions based on application materials.

a Outline three potential ethical concerns with using AI in university admissions.

b i Outline two possible biases that could arise in this AI system.

 ii Outline their impact on students.

c Describe measures to address these ethical concerns and biases.

Linking questions

1 How can machine learning be applied to optimize

network traffic management? (A2)

2 How does database programming in SQL differ from programming computationally in a high-level language?

(A3, B2)

3 To what extent are developments in machine learning ethical? (TOK)

4 How can larger models be processed using GPUs and cloud processing? (A1)

5 Can machine learning find and improve network security problems? (A2)

EXAM PRACTICE QUESTIONS

1 Health monitoring app

A tech startup has developed a health monitoring app

that uses machine learning to predict potential health

issues based on user-inputted symptoms, lifestyle data

and historical health data. The app classifies user health into categories such as “low risk”, “medium risk” and

“high risk”.

a i State whether this system should be classified as artificial intelligence or machine learning.

[1]

ii Outline one reason for your choice.

[2]

b Describe the potential need for specialized hardware (e.g. GPUs) in deploying this app on mobile devices.

[2]

c Describe the importance of data cleaning in this scenario, particularly addressing missing values in

lifestyle data.

[2]

d Describe how feature selection could impact the

accuracy and efficiency of the predictive model used

in the app.

[2]

e Suggest the type of machine learning algorithm that would be suitable for this classification task.

[4]

f Outline the implications of choosing a high value of k in a k-nearest neighbours (KNN) algorithm for this

application.

[2]

g Outline three ethical concerns related to privacy and data security in health-related apps.

[3]

h Describe two measures that could be implemented to address potential biases in the data set, especially

relating to underrepresented groups.

[2]

2 Autonomous public transport system

A city plans to implement an autonomous bus service

that uses machine learning to optimize routes based on

traffic patterns, weather conditions and passenger

demand.

a i Define “edge computing”.

[1]

ii Describe its relevance in real-time data processing for autonomous vehicles.

[2]

b Describe whether a deep learning model would be

more effective than a traditional machine learning

model for processing complex environmental data.

[2]

c Describe how data normalization affects the

performance of machine learning models dealing with

varied data types such as weather conditions and

traffic density.

[2]

d i Identify a common data quality issue that might arise with real-time traffic data.

[1]

ii Outline a preprocessing step to mitigate these

issues.

[2]

e Describe how reinforcement learning could be applied to optimize bus routes dynamically.

[2]

f Discuss the potential use of transfer learning from other cities’ traffic management systems to improve

route optimization.

[2]

g Describe the ethical implications of using surveillance data (e.g. from traffic cameras) in training machine

learning models for public transport systems.

[2]

h Describe the societal impacts of replacing human-driven buses with autonomous buses, including job

displacement and public safety.

[2]

3 AI-powered recruitment tool

A multinational corporation implements an AI-powered

tool to screen job applications and predict the suitability of candidates based on their résumés and answers to

pre-interview questions.

a Describe the classification vs regression nature of the predictive model used by the AI tool.

[2]

b Describe the impact of processing speed and memory requirements on the scalability of the AI tool across

the corporation’s global offices.

[2]

c i Identify potential biases in the training data set.

[1]

ii Outline how these could be mitigated during data preprocessing.

[2]

d Describe the importance of feature selection in

improving the predictive accuracy of the AI tool.

[2]

e Describe the use of a decision tree model over a regression-based model for this classification task.

[3]

f Outline two ethical concerns related to AI decision-making in recruitment, particularly in terms of fairness

and transparency.

[2]

g Describe two methods to ensure the ethical use of AI in recruitment with respect to increasing transparency

and accountability.

[2]

4 Retail customer segmentation

A large retail chain uses machine learning to segment its

customer base to personalize marketing strategies and

improve customer service.

a Discuss whether supervised or unsupervised learning is more appropriate for customer segmentation.

[4]

b Outline the potential benefits of using cloud

computing resources over in-house servers for

processing large customer data sets.

[2]

c Outline the role of outlier detection in customer segmentation.

[2]

d i Identify a clustering algorithm suitable for handling large data sets with high dimensionality.

[1]

ii Describe a reason for your choice.

[2]

e Describe the potential privacy issues that may arise from the detailed segmentation of customers’ buying

habits.

[3]

f Describe strategies to mitigate the risk of

discriminatory marketing practices that could result

from biased data in customer segmentation.

[2]

5 Natural-disaster prediction and management

A government agency deploys machine learning models

to predict natural disasters such as floods and

earthquakes, aiming to enhance preparedness and

response strategies.

a Describe the application of neural networks in

predicting natural disasters and the kind of data they

might process.

[2]

b Describe the impact of using real-time data

processing on system requirements and infrastructure.

[2]

c Describe the challenges associated with integrating and cleaning data from multiple sources, such as

satellite imagery and geological sensors.

[2]

d Describe the role of data augmentation in improving the accuracy of predictions in areas with sparse

historical data.

[2]

e Describe the use of deep learning over traditional models for predicting complex natural disaster

patterns.

[2]

f Describe how machine learning models can be trained to adapt to new types of disaster data over time.

[2]

g Describe the ethical implications of false positives and false negatives in disaster prediction models.

[3]

h Describe protocols for data governance that may

ensure sensitive geographical and personal data used

in predictions are protected.

[2]

6 Automated cyberbullying detection system

A software company is developing an automated system

to detect and flag instances of cyberbullying on social-

media platforms using natural language processing and

machine learning.

a i Define “natural language processing (NLP)”.

[1]

ii Describe its relevance in detecting cyberbullying.

[2]

b i Describe the computational challenges associated with processing large volumes of social-media data

in real time.

[2]

ii Outline appropriate hardware solutions.

[2]

c Describe the potential preprocessing steps needed for textual data from social-media posts to prepare it for

machine learning models.

[2]

d Explain the importance of handling sarcasm and ambiguities in text when setting up preprocessing

pipelines for detecting cyberbullying.

[2]

e Describe the use of analytical rule-based systems vs machine learning models in the context of

cyberbullying detection.

[2]

f Outline the ethical considerations of implementing an automated cyberbullying detection system,

particularly regarding false positives and false

negatives.

[3]

g Describe the potential privacy implications of

analysing users’ social-media content, even for the

purpose of detecting cyberbullying.

[2]

[image: Image 311]

B1 Computational thinking

B1.1 Approaches to

computational thinking

 How can we apply a computational solution to a real-

 world problem?

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

• B1.1.1 Construct a problem specification

• B1.1.2 Describe the fundamental concepts of

computational thinking

• B1.1.3 Explain how the fundamental concepts of

computational thinking are used to approach and solve

problems in Computer Science

• B1.1.4 Trace flowcharts for a range of programming

algorithms

B1.1.1 Problem specification

Ever since their beginnings, computers have required a

method to instruct them to perform a specific task. Now, we provide instructions to a computer via a programming

language. Ada Lovelace, Charles Babbage, Alan Turing and

Konrad Zuse are all recognized for their contributions to the development of coding and computer languages. Initially,

programming languages were developed as a series of steps

to wire a particular program. Then, they developed into a

series of steps typed into a computer and then executed.

Later, they acquired more advanced features, such as iterations; branching and even polymorphism; inheritance;

and other object-oriented programming principles.

Even when tackling straightforward problems, it is essential to furnish the computer with precise instructions to enable it to carry out the tasks and resolve the problem.

However, you will not be able to provide clear instructions on how to solve a problem until you clearly outline the

problem specifications.

A problem specification is a short, clear explanation of an issue, outlining who the stakeholders are and why it is important to solve the problem. The problem specification

may include a problem statement; constraints and

limitations; objectives and goals; input and output

specifications; and evaluation criteria.

Problem specification: a short, clear explanation of an issue, which may include: a problem statement; constraints and limitations; objectives and goals; input and output

specifications; and evaluation criteria.

Stakeholder: an individual or group(s) of people within or outside an organization who are affected or think they are affected by a software development project.

Problem statement: a description of the problem itself, identification of who the solution is designed for, the issues encountered and what needs to be solved.

This is a great opportunity to think of your internal

assessment project. When you define the problem

statement, you need to include a description of the problem itself, who the solution is designed for, the issues encountered and what needs to be solved. To clearly

understand the problem, you are encouraged to collect

information from existing literature and research, use

previous experiences with the problem and discuss it with multiple stakeholders who are impacted by the problem. In

this way, you will be able to identify some possible

constraints and limitations, for example:

• Limitations regarding the available technical

requirements (hardware or software equipment)

• Economic aspect (cost of producing the solution)

• Legislation (regulations regarding the software

development; ethical, social and legal aspects)

• Operational issues (workforce available)

• Schedule (time required to develop and implement the

solution).

Once those are clearly defined, in collaboration with the

main stakeholders you should outline the objectives and

goals of the proposed solution, identifying what needs to be solved and what you want to achieve.

Every solution will include some form of input and output.

Knowing how the input is being provided, which input is

supplied and the expected outcome or output to be

produced will help you understand the required process to

reach your goal. The input can be in different forms:

• Direct entry (by using barcode scanners; OCR or OMR

scanners; or MICR readers)

• Manual entry (keyboard, joystick, touch screen, touch pad or mouse entry, or data manually being entered by human

operators)

• Automatic data entry (by using sensors: temperature,

light, infrared, pressure, and so on).

Each of those has advantages and disadvantages. For

example, manual entry might be cheaper, but it is prone to errors, while automatic entry is clearly more expensive due to the hardware or software involved, but it is more accurate and faster.

When it comes to output, this can be classified as temporary output (displaying the information on a screen), permanent output (printing the data), or electrical or mechanical output (using actuators: switches or relays).

Identifying the input data required and the output expected helps in outlining the data flow and understanding how the data travels through the proposed solution.

Evaluation criteria is the last step in constructing a problem specification. Criteria should be clear, specific, measurable and related to the functionality to be achieved through the proposed solution. This will allow you to use these criteria to evaluate the success of the product at a later stage.

Key information

Problem specification is part of the internal assessment

requirements for criterion A. It is considered the starting point of the solution, and it must be used as a basis for the development of the product. The success criteria identified in the problem specification will be used in the planning, development and the evaluation of the product.

REVIEW QUESTIONS

1 Identify three stakeholders in a technical shop selling gaming consoles, games and IT equipment.

2 Define the term “stakeholder”.

3 Define the term “problem specification”.

4 State three possible constraints and limitations when considering developing a computational solution for a

school.

5 In your school, identify those operations that have already been computerized; those that might be

[image: Image 312]

computerized soon; and those that are unlikely ever to

be computerized.

6 For those activities you have identified as being already computerized at your school (for question 5), identify the inputs and outputs of the system.

7 Identify three reasons why there is a need to formulate a problem statement precisely.

Top tip!

Performance issues related to the lack of identifying

limitations and constraints, and inputs and outputs specific to different systems in geographically diverse locations,

may hinder end users and reduce compatibility between

systems.

ACTIVITY

Imagine you must design and create an online platform to

be used globally.

There are several constraints and limitations to take into consideration to ensure the platform is scalable, user

friendly, efficient and accessible across different regions.

Discuss:

• language and regional differences, e.g. currencies,

languages supported, date formats, units of

measurement

• legal requirements, e.g. GDPR in Europe

• consumer-protection laws / content restrictions

• cultural differences and user behaviours that impact the design of the platform, e.g. meanings of colours for

different cultures, sensitivity of specific content, user-interface alignment (left to right or right to left), time zones, scheduling.

How do such constraints support or limit the development

of online platforms that can be used worldwide?

Is targeting a local market more advantageous and

efficient, rather than targeting a global market?

B1.1.2 Fundamental

concepts of computational

thinking

Abstraction

Abstraction is the process of extracting essential

information, while disregarding irrelevant data, to propose or outline a feasible solution to a given problem. In this way, simplified models can be designed; models that exclude

unnecessary details. This plays a crucial role in providing a solution that satisfies the user requirements and needs, as it solves the problem without including unnecessary features, and in a shorter period due to the reduced amount of code

written.

Abstraction: having a higher-level, simplified model to represent a complex system. It allows you to focus on the

core ideas or concepts that matter, without being overly

concerned about the intricate details of implementation.

Real-world examples of abstraction include designing a map as a representation of a territory; a painting as a

representation of a landscape; and a timetable. In

programming, abstraction is an important concept in object-

oriented programming. It is used to hide complexity from the user by:

• abstracting data entities (by hiding data entities via a data structure, reducing the body of the data to a

simplified version of the whole)

• hiding underlying implementation of a process

(programmers don’t need to know details of how the

subroutines are implemented, or what other subroutines

they call, but they can simply use them to serve their

purpose).

By using abstraction:

• the time required to create a piece of software is reduced

• the program becomes smaller in size, so it requires less space in memory and the download times are reduced

• customer satisfaction increases, as their requirements are met without extra features.

TOK

What counts as knowledge?

The map as an abstraction of the territory: A map is not the actual territory it represents, but rather a diagrammatical representation of an area, including some features and

excluding others. The London Tube map was designed in

1933 as a simplified model of reality, informing the

traveller how to navigate between stations, but excluding

many other details and not providing an accurate

representation of the actual space. Investigate and identify the differences between the London Tube map and other

subway maps that you know.

Knowing the map doesn’t mean that you know much about

the actual territory, just as knowing the names of different items in different languages doesn’t reflect your knowledge about the items themselves.

Watch Richard Feynman’s “Names Don’t Constitute Knowledge”, or analyse the following quotation to further

explore the concept:

 Naming things is a human act; it is not an act of

 nature. We are the ones who, through language, create

 things out of the phenomena around us. Yet we forget

 that we control this process and let the process control us. Naming things – using language – is a very high-level abstraction, and when we name something we

 “freeze” it by placing it in a category and making a

 “thing” out of it. Language is a map, but three

 important things to remember about maps are: the

 map is not the territory; no map can represent all

 aspects of the territory; and every map reflects the

 mapmaker’s point of view.

Lutz, Wiliam (1996) The New Doublespeak: Why No One Knows What

 Anyone is Saying Anymore. HarperCollins, New York, NY.

Investigate how knowing the name of something can

positively or negatively influence our life experiences.

Algorithmic design

Before starting to write actual code, you should analyse and identify the requirements of the problem and then

understand the logical steps required to solve the problem.

Once you have a firm grasp of the requirements, the next

step involves designing a potential solution. One effective approach for achieving this is to create an algorithm. This involves creating step-by-step solutions with predictable

outcomes.

An algorithm is a structured set of sequential instructions designed to address and resolve a problem.

Algorithm: a finite sequence of instructions that needs to be followed step-by-step to solve a problem.

Consider the following problem:

“A user is required to provide two whole numbers. Construct a program that calculates the sum of the two numbers and

displays it.”

The algorithm corresponding to the problem above is:

• Step 1: Ask the user to enter a number.

• Step 2: Store this number.

• Step 3: Ask the user to enter another number.

• Step 4: Store this new value.

• Step 5: Add the two numbers together.

• Step 6: Store the result.

• Step 7: Display the result.

Those steps need to be very specific and in the right order to be able to solve the problem. By applying algorithmic

designs, you will develop algorithmic thinking skills that will help you develop efficient problem-solving techniques, by

using structured and systematic algorithms.

Top tip!

When outlining algorithms, ensure the instructions are very specific, clear and in the right order. Not following the

required order often leads to the wrong solution or different errors. Imagine you need to calculate the average of three numbers. Setting the value of sum to 0 after storing the

total of the three values into the variable sum and

attempting to divide this by 3 afterwards would produce an error.

Decomposition

Decomposition refers to breaking down complex problems into smaller, more manageable parts. After designing

solutions to those smaller problems, they can be put

together to build up a final solution to the complex problem.

This concept supports modularity, allowing multiple

programmers or experts to collaborate and work

simultaneously on solving the problem.

Decomposition: breaking down complex problems into

smaller, more manageable parts.

Pattern recognition: identifying similarities in the details of problems.

In programming, decomposition is often used to structure

the solution, by designing several methods or functions.

Common mistake

Students do not always use terminology in an appropriate

and competent way, and may approach questions by

providing general superficial knowledge, which does not

gain full marks.

Students often define “decomposition” as breaking down a

program into smaller sub-programs. This isn’t accurate as, at the stage decomposition occurs, there is no program

created, therefore the problem is the one being broken

down into smaller, more manageable parts.

Pattern recognition

Pattern recognition refers to identifying similarities in the details of problems. This simplifies the process of finding a solution by identifying patterns and focusing on reusing

solutions proposed to solve those similarities. This means that you will develop reusable code in the form of functions

or procedures; reuse existing code that has already been tested; and support the use of modularity, which reduces

the development time.

B1.1.3 How fundamental

concepts of computational

thinking are used to

approach and solve problems

in Computer Science

Computational thinking is not programming, and it does not make you think like a computer, but rather it makes you think like a computer scientist. It is a toolkit of available techniques for problem-solving. This gives you the skills to efficiently outline a problem specification; to analyse,

understand and simplify the problem; and to identify and

choose optimal solutions to different problems.

Computational thinking: a toolkit of available

techniques for problem-solving; its fundamental concepts

are abstraction, decomposition, algorithmic thinking and

pattern recognition.

The fundamental concepts of computational thinking, such

as abstraction, decomposition, algorithmic thinking and

pattern recognition, can be used to solve real-world

problems, for example: software development, data

analysis, machine learning, database design and network-

security problems.

In each of the areas identified above, all the fundamental concepts are equally important:

• Software development: You cannot create a program before:

• understanding the problem

• making abstraction of unnecessary details

• finding repeating patterns

• designing efficient algorithms

Without any of these steps, the software produced might

lack accuracy or might not be as efficient as it should be.

• Games development: Abstraction is used when the

players are provided with a series of clues, some of which are intended to mislead the players. Abstraction refers to disregarding unnecessary details. Players should disregard such clues and focus on the important details.

• Programming: Programming languages offer libraries with functions and methods for programmers to use. The

programmer makes an abstraction of the way those

functions were written, focusing on correctly using them to complete their code.

• Data analysis: Computational thinking is used to automate repetitive tasks, predict market trends and

improve customer service. Data analysts identify patterns

(for example popular products for a category of people,

repetitive tasks, frequent customer complaints) and apply

algorithmic thinking to propose feasible solutions and

break problems into simpler steps, saving hours of extra

work on a weekly basis.

• Machine learning: Pattern recognition is an important concept, used in classifying data by finding patterns in

large amounts of data, for example predicting purchasing

behaviour based on buying habits. It can also be used to

identify the skills required to be a good football player, by analysing video recordings to automatically find patterns

in the behaviour of professional players. The same task

might make use of abstraction to exclude irrelevant

information provided by the videos and algorithms to promote those skills among new players during their

virtual training sessions.

• Database design: Abstraction can be used to identify which data sources are relevant and which can be

disregarded. Decomposition can be used to design

relational databases by breaking down the complex

problem into smaller ones. Entities can be represented as

tables, and relations shown between them.

• Database normalization: Pattern recognition can be used to ensure there are no repeated groups of attributes

or algorithmic design in outlining the tables’ structures, and identify the logic behind the types of relationships

established between tables.

• Network security: For solving network-security

problems, abstraction enables the generalization of

complex security models; decomposition is used to break

down cybersecurity ecosystems into models that allow a

clear identification of their security roles; pattern

recognition is used to outline ways to identify and classify possible threats to the network; and algorithmic design is used to propose clear, step-by-step instructions on how to deal with such risks in similar situations.

TOK

Knowledge and AI

AI is rapidly improving, and it can easily achieve goals that people previously considered impossible. Machines can

spot patterns at amazing rates, take decisions, output

surprising results and even learn new things. But how do

they get access to their wide range of data? What is the

role of our digital footprint in improving machine learning techniques? And does online data about you give the full

picture of what you are really like as a human being?

[image: Image 313]

Systems predicting human behaviour could lead to

discrimination, so how do we ethically define the limits of knowledge that has been created with the help of

technology?

Machine learning pushes the boundaries of how we

perceive knowledge. People are excellent at generalizing,

identifying patterns and predicting future actions or

outcomes based on previous experiences. However, recent

technological developments show that machine learning

can compete with humans even in this area. Researchers

are using symbolic and statistical AI to teach machines to reason about what they see. They can beat humans at a

chess game, create original or fake art and provide medical diagnoses, and they can do all this with minimal or no

human intervention. What does this mean for knowledge?

Can a machine ever “know” something? Could knowledge

reside outside human cognition?

To further explore the concept, try to create a deepfake

video. How does this experience change your view on the

saying “seeing is believing”? How does not knowing how to

distinguish between good and bad knowledge influence our

choices between the most appealing and the most

accurate information?

ACTIVITY

Reflective: Consider how you achieve success and how you could change your approach when learning becomes

challenging.

Social skills: Listen actively to other perspectives and ideas – there are different ways to solve a problem, some

[image: Image 314]

better than others; listen to advice and try new techniques and problem-solving strategies.

REVIEW QUESTIONS

1 Identify three examples of abstraction in Computer Science.

2 Define the term “decomposition”.

3 Outline the algorithm for making a cup of tea.

4 Outline an area where computational thinking is used in Computer Science.

5 Define the term “algorithm”.

6 Research the bubble sort algorithm. Outline the steps for this algorithm.

7 Research the swap puzzle activity and try to outline an algorithm to solve it in as few steps as possible.

B1.1.4 Flowcharts

Flowcharts are used to design algorithms, and to describe

them using diagrams. They can be used to track variable

changes, to show execution flow and to determine the

expected output of an algorithm.

Standard flowchart symbols

Symbol

Name

Description

Terminator

Start or end of the process

[image: Image 315]

[image: Image 316]

[image: Image 317]

[image: Image 318]

[image: Image 319]

Symbol

Name

Description

Input /

Input or output of data

output

Process

Action, such as a calculation or

an assignment

Decision

True / false or yes / no

decisions (selection

statements)

Flowline

Direction of data flow between

shapes

Connector

Continuation of a flow through

multiple pages or charts

Consider the following problem:

Request the user to input two numbers from the keyboard.

Output their average.

To solve the problem, identify the input, processes and

output:

• Input: the two numbers (a, b)

• Output: the average of the two numbers (avg)

• Processes: calculate the sum, calculate the average.

The flowchart corresponding to the proposed solution is

given below:

[image: Image 320]

Flowcharts can become a little more complex by including

selection or iteration. For example, the flowchart

corresponding to an algorithm that outputs the larger of two different input numbers requires selection statements:

[image: Image 321]

If you wanted to check the algorithm above you could test it with different test data, such as 7 and −3. To find the

expected output, a table can be drawn and traced. The

table includes the variable changes, decisions and outputs expected.

a

b

max

a>b

output

To trace the table and reach the final output, you need to go through the flowchart and follow the data flow shown by the arrows.

In this case, the first happening in the flowchart is the input.

So, as a is the first input it will take the value 7 and b will be set to −3, and the table will look like this:

a

b

max

a>b

output

7

-3

The next step is to check if the value stored in a is higher than the value stored in b.

a

b

max

a>b

output

7

-3

TRUE

7

Finally, the output will be displayed.

a

b

max

a>b

output

7

-3

TRUE

7

The larger value is 7

Please note that you don’t have to insert each new value on a new line, but this was done just so you can notice the

order of execution of the given operations. Trace tables will be further explored in B2 Programming.

Common mistake

Students often forget to label the branches of decision

boxes when drawing flowcharts. An unlabelled branch

would not allow the examiner to identify which process is

executed when the condition evaluates to True (Yes) and

which executes when the condition evaluates to False (No).

Also, make sure the flowlines are connected and none have

no connection to a shape.

REVIEW QUESTIONS

1 Draw a flowchart that would represent a solution for the following problem:

“Initialize a total to zero. Ask the user to enter 50 integer numbers, add the positive numbers to the total and

count how many negative values were entered. Output

the total and the count value.”

2 Research the insertion sort algorithm. Draw a flowchart for this algorithm.

3 Consider the following flowchart.

[image: Image 322]

a Research the role of the MOD and DIV functions. Trace the flowchart to find the output for the number 3452

and for the number 1760.

Input: 3452

number rev number > 0 remainder output

Input: 1760

number rev number > 0 remainder output b Use pattern recognition to predict the output for the number 453453554651.

c Identify the purpose of the algorithm.

d Identify a problem with this algorithm.

Top tip!

When filling trace tables, ensure that you write the value a variable takes after an assignment, even if it is a repetition of the previous value. If the variable does not change for a portion of code, you can leave that section blank or rewrite the repeating values.

ACTIVITY

Thinking skills: Critical and creative thinking: A small family business that delivers goods within its small city is looking to further expand its reach. It is thinking of the following scenarios:

• Creating brochures, which would include its

products and its phone number, and distributing

them in the three neighbouring cities. It would take the orders by phone and deliver them as before, with

cash payment on delivery.

• Creating an online platform that would allow it to promote its products. Customers would place the

orders online and pay for their purchases online, and the

company would deliver the goods via available

transportation services within the country.

• Promoting its business via social-media channels.

It would take the orders via instant-messaging services

with bank-transfer payments, and deliver the products

via transportation services available within the country.

Choose one of the scenarios above. Prepare a presentation

that includes a problem specification. Identify the

stakeholders; the problem statement; constraints and

limitations; objectives and goals; input and output

specifications; and evaluation criteria.

Consider the probable cost involved in implementing the

scenario you have chosen, the time required to implement

it, the hardware and software requirements, and possible

effects on the community and staff members.

Deliver your presentation to the class and receive feedback from your peers.

Linking questions

1 How is pattern recognition used to identify different types of traffic flowing across a network? (A2)

2 How are the concepts of computational thinking used in code when designing algorithms? (B2)

EXAM PRACTICE QUESTIONS

Note: All the exam practice questions are representative of those that will be found on Paper 2 for the International Baccalaureate Diploma in Computer Science.

1 Define the term “computational thinking” and outline its role in problem solving.

[3]

2 Outline the role computational thinking techniques like decomposition and abstraction play in software

development.

[4]

3 Identify three items that should be included in the problem specification and define one of them.

[4]

4 Explain how pattern recognition can be used in data analysis, machine learning and database design.

[6]

5 A teacher is asking 30 students how long they spend each day reading. The students will specify this duration

in minutes and hours, for example 1 hour and 20

minutes. The teacher wants to write an algorithm that

will output their input in minutes only.

a Identify the input, process and output required for this algorithm.

[3]

b The teacher wants to create a ranking and send to parents the list of students in descending order based

on their time spent reading books. Outline the steps

required (the algorithm) to complete this task.

[3]

c Identify two stakeholders involved in this process.

[2]

d To keep their personal details anonymous, the teacher decides to create a username for each student. The

username is made of the last two characters of their first name and the first three characters of their last

name.

i The first student’s name is Sam Sung. State the corresponding username.

[1]

ii Draw a flowchart to outline the creation of

usernames for the 30 students.

[4]

iii Explain one limitation of this algorithm and propose a better one.

[3]

[image: Image 323]

B2 Programming

B2.1 Programming

fundamentals (part 1)

 How can we apply programming to solve problems?

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

• B2.1.1 Construct and trace programs using a range of

global and local variables of various data types

• B2.1.2 Construct programs that can extract and

manipulate substrings

B2.1.1 Variables

Converting an algorithm into code involves using variables to store and manipulate data, loops to repeat instructions, and selection structures to make decisions on a path to follow to complete a task. Important constructs to

understand when developing a program are:

• data storage: the use of variables and constants

• operators: used to manipulate and compare data

(mathematical and logical operators)

• selection/branching structures: used to construct decision statements

• iteration: loops to repeat blocks of code: counter-based and conditional looping structures.

Variable: a designated memory location that stores a value that can change during the execution of a program.

Loop / iteration: a repetition.

Selection: a conditional statement or decision statement, e.g. IF, CASE statements.

Data storage: storage of data within primary or

secondary memory.

Operator: a character that represents a mathematical, arithmetic or logical operation.

Identifier: a lexical token that names the language’s entities.

Declaration: a language construct specifying the

properties of an identifier.

Initialization: assigning an initial value to a data structure.

Data storage – use of variables

Consider a sales representative receiving a fixed-base

salary, supplemented by a bonus that is tied to monthly

sales performance. This bonus fluctuates from month to

month; hence it can be characterized as variable over time.

In fields like Mathematics and Computer Science, the term

“variable” is used to encapsulate such dynamic values.

A variable has an identifier (name) and a current value.

Each variable can only hold one value at a time. Before

being used, a variable must be declared and initialized.

[image: Image 324]

[image: Image 325]

Variable declaration refers to specifying the data type of the variable, while initialization refers to providing it with an initial value.

Top tip!

In Python, there is no need to declare the variables used.

Therefore, for assessment purposes, they can be

mentioned via a comment (a comment is used to provide explanations of code, or notes, to the developer, but it is removed at lexical analysis stage – it is not necessary

during the compilation of the program, so it will be

ignored).

Comment: a note that explains some code, which will be ignored at compilation stage.

ACTIVITY

Inquirer: Nurture your curiosity, developing skills for inquiry and research.

Research skills: Research the term “constant” and

understand the difference between constants and

[image: Image 326]

variables. Outline those differences and specify when each of them could be used.

Data types

The data type tells you what type of value a variable will store and what kind of operations are allowed on that

specific value.

Data type: defines the type of value a variable or data structure has, and what type of mathematical, relational or logical operations can be applied without causing an error.

String: a data type used to represent a sequence of characters, digits and / or symbols.

Assignment: to set, reset or copy a value into a variable.

Integer: a data type used to represent a whole number.

Float: a data type used to represent a decimal number.

Double: a data type used to represent a decimal number.

Is the variable going to store a whole number or a decimal number; is it a piece of text or just a true / false value; or one single character? Every programming language has its

own way of declaring variables.

String

String is used to store a sequence of characters, digits and

/ or symbols (a text). The text is written in double quotation marks in Java, while Python can use single or double

quotation marks.

Java

[image: Image 327]

[image: Image 328]

[image: Image 329]

[image: Image 330]

Python

In this example, the password is assigned (becomes) the value Bob@123.

The primitive data types considered for the curriculum are: int, double, char and Boolean.

Integer

Integer (int) is used to store whole numbers (positive or negative integers).

Java

Python

Decimal

The float and double data types are used to store decimal numbers (double precision). As double has a higher

precision than float, it is safer to use double in your

exercises.

Java

Python

[image: Image 331]

[image: Image 332]

[image: Image 333]

[image: Image 334]

[image: Image 335]

Char

Char is used to store a single character, digit or symbol.

Java

Python

Char: a data type used to represent one single character, digit or symbol.

Boolean: a data type to represent one of the two possible values: true or false.

Boolean

Boolean is used to store one of the two possible values: true or false. So, a Boolean variable could be used to store such data as whether or not a product is still in stock;

whether or not a person is a male; whether or not a trip has been paid for, and so on.

Java

Python

Boolean variables are often used to evaluate logic expressions. In code, conditions often need to be added

and, if the condition would evaluate to true, some

statements would be executed; otherwise, different

statements would be executed.

Another example of the need for a Boolean variable would

be to continue repeating a piece of code as long as an

expression evaluates to true or false, based on the

requirements.

Consider the following variables: a = 7 and b = 54.

((a<9) and (b>30)) evaluates to true: if both conditions evaluate to true, the result is true. 7 is smaller than 9 and 54 is greater than 30 (both conditions are met).

((a>3) or (b<3)) evaluates to true: if either condition is true, the result is true. (The first condition is true; the second is false.)

REVIEW QUESTIONS

1 Define the term “variable”.

2 Explain why variables are used in programming.

3 State three data types used in programming.

4 Suggest a way to declare a variable in the

programming language you are currently studying.

5 Identify rules and conventions that you could follow when naming variables.

6 Explain why it is important to choose an appropriate data type for a variable.

7 Identify a situation where you need to change the data type of a variable during the execution of a program.

8 Identify an example of a common error when using variables and explain how you would fix it.

 9 Explain how the choice of data type affects memory usage and performance in a program.

10 Evaluate the following Boolean expressions if a = 8 and b = 3:

a E = (a<b) or (a>5)

b E =! (a>=b)

c E = (a<8) and (b>3)

d E = (a==8)

e E =! (a==b) or (a>b)

11 Identify the most appropriate data type to store: a your name

b your age

c your phone number

d whether an item is out of stock

e the price of a flight ticket.

12 Identify three legal and three illegal identifier names in the programming language you study.

PROGRAMMING EXERCISES

1 Construct code to output a joke on the screen.

2 Construct code to ask the user to enter their name, store it in a variable and display it on the screen, together with a welcome message.

3 Copy the following expressions and display the value of E after each one of them. Check whether your answers

to review question 10 above are correct.

a = 8

b = 3

[image: Image 336]

E = (a<b) or (a>5)

E =! (a>=b)

E = (a<8) and (b>3)

E = (a==8)

E =! (a==b) or (a>b)

ACTIVITY

Use your answers to the programming exercises above to

answer the following questions.

1 Did you follow variable naming conventions to solve questions 1 and 2?

2 Were the variable names meaningful and descriptive?

ACTIVITY

Self-management skills: Set goals that are challenging and realistic: Practise five coding challenges of your choice per week. This will greatly improve your coding skills, and it will increase your self-confidence.

ACTIVITY

Communicators: Express yourself confidently and

creatively in many ways. Collaborate effectively with and

listen carefully to the perspectives of other class members.

Communication skills: Use appropriate forms of writing for different purposes and audiences. Explore and create a table to present to the class the different ranges available for the data types you have studied.

Assignments

Assignment refers to setting a value to a variable; this

operation is typically carried out using the equals sign (=).

The value on the right of the equals sign is assigned to the variable on the left side of the equals sign; it can never be done the other way around.

count = 1

This statement assigns the value of 1 to the variable count.

In other words, count is now 1.

But you will often see statements like this: count = count +

1. This statement means that the variable count is

incremented (or increased) by one, or its new value is one greater than it was. Incrementing a variable by one is a special case, and you can also write it as count++. If ++

means the variable is incremented by one, decrementing

a variable by one becomes count-- or count = count − 1.

Increment: to increase a value by another value (usually by one).

Decrement: to decrease a value by another value (usually by one).

Another example is when you decrease the variable by a

value other than one, such as:

price = 5000

price = price − 100

Here, the variable price becomes 100 lower than it was. So, it was initially 5000, and after the second line of code is executed the new price is 4900. When assigning new values

to variables, the previous value is overwritten, so the

variable occupies the same memory location. Therefore, in

this case, after the two lines of code are executed, the value of 5000 is completely lost.

As such, a challenging question would be: how do you swap

the contents of two variables? Imagine that you have two

variables, a and b, storing the values 5 and 7 in this exact order. How could you swap their contents, and end up with a storing the value of 7 and b storing the value of 5?

One attempt to solve the problem might be the following:

a = 5

b = 7

a = b

b = a

If you have been tempted to do this, what happens is that

you end up with two variables storing the same value; in

this case, 7. On line 3, the variable a becomes 7, and on line 4, the variable b becomes a, which means b becomes 7 as

well.

Therefore, to solve such a problem, you need to imagine

that, instead of numbers, you are dealing with liquids.

Imagine that the variable a is a cup that is filled with water, and the variable b is a cup filled with tea. What you want is to swap the contents of your cups: the water to get into cup b and the tea into cup a. You cannot mix those contents, so what is the solution? A third cup! The solution is to bring in a third cup, which will temporarily hold the content of one of your cups. So, you pour the water into cup c. Cup a is now available to store the content of cup b, which is the tea.

After this step, you can pour the water from cup c into cup b. By doing this, your contents are swapped successfully.

The example below shows you how this works with

numbers:

a = 5

[image: Image 337]

[image: Image 338]

[image: Image 339]

b = 7

temp = a

// 5 is saved into the temporary variable temp

a = b

// 7 is stored into a

b = temp

// 5 (from temporary variable) is stored into b

Initial state of the variables.

Step 1: content of a is

copied into temp.

Step 2: content of the

variable b is copied into a.

[image: Image 340]

Step 3: content of the

variable temp is copied into

b.

Although this might seem an irrelevant challenge right now, this swapping method is part of several sorting routines that you will study later.

Operators

Operators are used to perform calculations, comparisons

and other logical operations. Operators can be arithmetic operators, such as +, -, /, *, %; or Boolean operators, such as !, &&, ||; or relational operators, such as <=, <,

>, >=, ==, !=.

Operator in

Operator in

Meaning

Java

Python

+

+

addition

-

-

subtraction

*

*

multiplication

/

/

division

%

%

modulus (returns the

remainder)

<

<

smaller than

<=

<=

smaller than or equals

to

Operator in

Operator in

Meaning

Java

Python

>

>

greater than

>=

>=

greater than or equals

to

==

==

equals to

!=

!=

not equals to

&&

and

and

||

or

or

Arithmetic operator: a character that is used to perform a calculation.

Boolean operator: a character that represents a specific logical operation that is used to produce a true or false

outcome.

Relational operator: an operator used to compare values or expressions.

Arithmetic operators are used to perform calculations such as addition, multiplication, subtraction, and so on. The

arithmetic operators presented so far are binary

operators, meaning they require two operands (two values) to apply the calculation on. There are also unary operators (that require only one operand), such as: Unary operator

Meaning

-

negative numbers

++

incrementing the value by 1

--

decrementing the value by 1

[image: Image 341]

Binary operator: an operator that requires two operands (values).

Operand: a value used in a mathematical expression.

Unary operator: an operator that requires one single operand.

Integer division: division in which the fractional part is discarded.

Floating-point division: division in which the fractional part is kept.

While it is quite straightforward to understand when you

would use the addition, subtraction or multiplication

operators, it might be a bit trickier to understand what the div and mod operators are.

Div: division operator

In Java and Python, there are two types of division: integer division and floating-point division.

Both types use the same symbol (forward slash) in Java.

However, when dividing two integer values, the result will be an integer (integer division); when dividing two floating-point number numbers or a decimal and an integer, the

result will be a decimal number (floating-point division).

Java

In the example above, even if the result would be 3.5, the answer displayed would be 3, as the two numbers are whole

numbers (integers).

[image: Image 342]

[image: Image 343]

[image: Image 344]

Java

However, in this example, as both variables store decimal

numbers, the result displayed is a decimal number as well

(3.5).

Java

In the example above, the values stored are numbers of

mixed data types, and the result will be a decimal number: 3.5.

In Python, as the type of variables is not specified, there are different operators to represent the different types of

divisions. Floating-point division is performed by the /

(forward slash) operator, so the result will be a decimal

number. However, integer division uses the // (double slash) operator. // will return the floor division (this means that, no matter the result, it will always round it down – what

happens is that the decimal part is truncated or, in simpler words, it is ignored or deleted.

Python

[image: Image 345]

In this example, the output will be 3.5, no matter the data type of the two numbers.

Python

However, this time the output will be 3, as the result is

truncated, without taking into consideration the data type of the variables.

PROGRAMMING EXERCISES

Construct code in the language of your choice to solve the following problems.

1 Ask the user to enter three numbers. Output their average. For example, if the input is: 3, 4 and 5, the

output is 4.

2 Ask the user to enter their name and age. Output a message that includes the name and the age that the

user will be in 10 years. For example, if the input is Bob, 15, the output should be [Bob, in ten years you’ll be 25

years old].

3 Ask the user to enter a three-digit number. Output the sum of all three digits. For example, if the input is 125, the output should be 8.

ACTIVITY

Use your solutions to the programming exercises above to

answer the following questions.

1 Did the correct mathematical operations occur for question 1?

2 How did you concatenate the name and the age to

display the output for question 2?

3 Was the expected result displayed for question 3?

ACTIVITY

Communication skills: Give and receive meaningful

feedback – work in pairs to exchange solutions to the

programming exercises and give each other feedback on

what could have been done to improve or optimize the

proposed solutions.

Common mistake

Algorithms written to solve a problem need to be specific

and accurate. Many students lose marks for missing small

details, like forgetting to initialize a variable such as a counter or a total.

B2.1.2 String manipulation

In coding, there is often a need to manipulate text. You

might want to display some special characters, such as

double quotations "", single quotations '' or a backslash \.

As those characters are already used for a specific purpose in most programming languages, displaying them might be

challenging. At the same time, programmers might want to

extract parts of text belonging to a string, join them

together, alter or delete them. How is all this possible?

Including an escape character (backslash) supports typing

special characters that are usually used for specific

purposes in the language. For example, single quotations

[image: Image 346]

[image: Image 347]

are used for storing a character in Java or even a string in Python; the same happens with double quotations.

Therefore, when wanting to include single or double

quotations in the text, you must use the backslash:

Character

Java and Python

“

\”

‘

\’

\

\\

Text blocks

In Java, multiple line strings can be written like this:

Java

Text on different lines is joined together via the + operator.

\n represents the new line character, denoting that the new line of text will be displayed on the next line.

In Python, multiple line strings can be written by using triple double quotation marks:

Python

The programming language offers several built-in functions that can be used to manipulate strings.

[image: Image 348]

[image: Image 349]

[image: Image 350]

In the examples below, text is a variable that stores a piece of text, such as: “Computer Science is fun!”

Length

The length function returns the length (number of

characters, spaces included) of the value stored in the string text. In this situation, the value stored in x is 24.

Java

Python

Concatenation

Concatenation refers to joining two or more string values together.

Concatenation: joining strings together.

Both Java and Python allow several ways to achieve

concatenation. One of them is with the + operator, which

will join the two strings together.

Java

[image: Image 351]

[image: Image 352]

[image: Image 353]

Python

Another function that can be used in Java to concatenate

two strings is the function concat:

Java

Note that concatenation is a technique that is applied to a series of string variables, rather than a combination of

strings and integers or decimals. If there is a need to

concatenate a combination of strings and integers, the +

operator can be used in Java, or the integer or decimal value can be converted to a string prior to the concatenation

taking place. In Python, the interpolation operator (%), the str function, str.format or f-strings can be used for this purpose.

Java

Python: Use of interpolation

operator

[image: Image 354]

[image: Image 355]

[image: Image 356]

[image: Image 357]

Python: Use of str function

Python: Use of str.format

Python: Use of f-strings

Top tip!

In Python, if you want to display the content of the two

variables without saving it into another variable, you can simply use the print function, which accepts several

parameters separated by a comma:

Python

[image: Image 358]

[image: Image 359]

[image: Image 360]

Substring

substring is the function that is used to retrieve part of the string, for example if you want to extract the first word or letter in a string, or the text between specific positions in the string.

Note that the first position in a string is 0.

In Java, the function used for this purpose is called

substring:

Java

By providing one argument to the substring function, it

indicates the starting index of the text to be extracted. In this example, the output would be “Science is fun” as the

variable part will be assigned the value from the string,

starting with position 8 until the end of the string.

Java

In the example above, the call of the substring function is passed two arguments. The first one (8) indicates the

[image: Image 361]

[image: Image 362]

[image: Image 363]

starting index (position in string) and the second one (16) indicates the ending index. The substring produced will be from starting index until the ending index −1. Therefore, the text produced in this example will be “Science”. This is the case because “S” is the letter at index 8 and “e” is the letter at index 15. The letter at index 16, which is a space

character, is not included.

In Python, the substring function is often referred to as

slicing.

Python

The code above extracts the first character of the text

variable: “C”.

Python

In this case, the part will include the first five characters from the text: “Compu”, as “C” is in position 0 and “u” in position 4.

Python

[image: Image 364]

[image: Image 365]

[image: Image 366]

Because the index is −1, this piece of code will store the last character into the string part; in this case, the letter “n”.

Python

In this example, the last six characters in the string will be assigned to the variable part: “is fun”.

Python

Above, the extracted text will start at index 1 and will end at the last index −4. So, the value stored in the variable part is

“omputer Science is”.

Replace

The replace method searches a string for a character or set of characters and replaces it or them with another character or with other characters.

Java

In Java, the replace method will replace one single

character, so the text now becomes “Comput@r Sci@nc@ is

[image: Image 367]

[image: Image 368]

[image: Image 369]

fun”. To replace several characters, the replaceAll method should be used.

Java

In Python, the replace method is used for replacing both one single character and more characters.

Python

Python

Strip

Sometimes, when reading values from a text file or any

permanent storage, you might want to remove the trailing

white spaces. This can be achieved by using the strip

method.

Some versions of Java accept trim instead of strip for the same purpose:

Java

[image: Image 370]

[image: Image 371]

The leading and trailing spaces will be removed, therefore the new text that will be output is: “Computer Science is fun

!”

To achieve the same output in Python, you can use the strip function:

Python

TOK

How does knowledge in Computer Science develop?

Knowledge in Computer Science develops through a

dynamic interplay of various Ways of Knowing and Areas of

Knowledge. Logical reasoning and empirical evidence form

the backbone of technical advancements, while intuition,

creativity and ethical considerations shape the broader

impact and direction of the field. The interdisciplinary

nature of Computer Science ensures that it continually

evolves, influenced by and influencing other domains of

knowledge. This multifaceted development makes

Computer Science a rich field for TOK debates, highlighting the complexity and depth of how knowledge grows and

transforms within it.

Is Computer Science knowledge primarily objective,

grounded in mathematical truths and empirical data, or

does it also encompass subjective elements, such as user

experience and ethical considerations? How significant is intuition in developing new algorithms or systems? Can

purely logical and empirical approaches lead to all

breakthroughs, or is there a place for creative intuition?

PROGRAMMING EXERCISES

1 Construct code that asks the user to provide their name, house / flat number and their street number or name..

Concatenate this information to display a message such

as the following. (Attempt to write the message by using

one single line of code, and ensure it is displayed on two separate lines, as shown.)

From: Name

Address: Full Address

Message:

Why was there a bug in the computer?

Because it was looking for a “byte” to eat!

2 Construct code that allows the user to enter their first and last names. Concatenate the two values, add a

space in between and display the full name together

with its length without the space.

3 Construct code that allows the user to enter a noun and a letter. Replace all occurrences of that letter with the @

symbol.

B2.3 Programming

constructs

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

• B2.3.1 Construct programs that implement the correct

sequence of code instructions to meet program

objectives

• B2.3.2 Construct programs utilizing appropriate selection structures

• B2.3.3 Construct programs that utilize looping structures to perform repeated actions

• B2.3.4 Construct functions and modularization

B2.3.1 Sequencing

When solving problems, the order in which the statements

are executed matters. Taking the swapping example in

section B2.1, if you were to change the order of the instructions it would produce an incorrect output:

a = 5

b = 7

a = b

// 7 is stored into a

temp = a

// 7 is saved into the temporary variable temp

b = temp

// 7 (from temporary variable) is stored into b

Here, even if they are the same statements, the result will be incorrect just because they are not in the right order. In

this example, in the end both variables, a and b, will store the value 7. As such, no swapping occurred, even if a

temporary variable was introduced exactly as was done in

the correct algorithm.

Sequence refers to the instructions being executed once and in the exact order they are written.

Sequence: to execute instructions one after another in the given order.

Following the right order of the instructions is important in programming, as this impacts the outcome, which could

lead to incorrect functionality (as demonstrated above),

logic errors or infinite loops.

B2.3.2 Selection structures

Selection or branching

structures

Selection is a programming construct used to decide what

statement(s), if any, are to be executed based on one or

more given conditions.

Conditions are usually built using logic operators. IF

statements are an example of selection or branching

structures. The condition in the IF statement is evaluated: if it evaluates to true, specific statements are executed;

otherwise, nothing happens, or other statements are

executed.

[image: Image 372]

[image: Image 373]

IF statements flowchart

In this flowchart, if the condition is met, statements 1 and 2

will be executed; otherwise, statements 3 and 4.

General structure

[image: Image 374]

Selection statement flowchart

In this case, nothing happens if the condition is not met. As an example, this structure could be used in a situation

where a buyer receives a discount of 20 per cent if their

purchase value is 100 or more. As such, if their purchase

value is below 100, nothing happens.

Java

[image: Image 375]

[image: Image 376]

In this example, the purchaseValue and discount variables

have been declared as double because they are meant to

store an amount of money, which could be a decimal value.

As the discount is only calculated if the condition is met, we had to initialize it to 0 in the beginning, so there is a value to display if no calculation occurs. The indentation inside the IF statement in the Python below shows what instruction is going to be executed when the condition is met. In Java, the indentation is replaced by curly brackets and, if those are missing, then the next line will be interpreted as belonging to the selection statement. Therefore, the output statement will be run independently of the given condition, as it is not included in the IF statement.

Python

In Python, there is no need to declare the variables, so only the discount variable is initialized to 0. However, the input value is converted to float, to ensure the user will enter a

[image: Image 377]

[image: Image 378]

decimal number (integers are included into the range of

decimal values). If the float conversion did not happen, the user’s input value would be a text, and this would throw an error when attempting to use it in calculations.

You can further expand this code and include a variable to store and display the due amount:

Java

In the example above, you need the brackets to indicate

that both calculations will happen only if the condition is met.

Python

In Python, the indentation replaces the brackets, so they are not included.

The IF statement can be further expanded to include an

ELSE. The statements corresponding to the ELSE are the

[image: Image 379]

[image: Image 380]

statements that will be executed if the condition evaluates to false instead.

General structure

Selection statement flowchart

Java

[image: Image 381]

[image: Image 382]

[image: Image 383]

Note that the brackets can still be used even if only a single instruction is included in the IF or ELSE part.

Python

As you may have realized, the block of code can even be

further expanded to include another IF statement inside the current one. (One IF statement inside another is called a

“nested IF”.)

General structure

[image: Image 384]

Nested IF flowchart

Java

[image: Image 385]

In this case, a new variable was included that will decide whether the discount is 20 per cent or 10 per cent,

depending on whether or not the buyer is a member. Also,

observe that, as there is no requirement to display the

discount value, you could have calculated the due amount

by simply multiplying the purchase price by 0.9, thus

applying the discount of 10 per cent.

Python

[image: Image 386]

The value input and stored into the member variable should be a Boolean value. However, if there is an attempt to check whether the value entered is True or False by using the bool keyword instead of eval, it will not return the right answer: bool checks whether or not the string entered is empty and, as the user will write True or False, the value of the variable member will always be True as the string is not empty.

Therefore, the eval function is used in this situation, to ensure the value entered is evaluated to True or False and then stored into the member variable.

However, there is another way of solving this problem, by

using the and logic operator in the condition.

Java

[image: Image 387]

[image: Image 388]

In the example above, both conditions should be met (to be a member and purchase value to be 100 or above) for the

discount of 20 per cent to be applied. The second condition is checking whether both conditions are met again, but this time they should have a purchase value of 100 or above,

but not be a member. The statement executed on the else

branch is the statement happening if the purchase is not

100 or above.

Python

In Python, else if is replaced by the keyword elif.

[image: Image 389]

[image: Image 390]

[image: Image 391]

Conditions can use other logic operators, such as OR and

NOT.

In case you wanted the discount to be applied if the

purchase value was 100 or above or the buyer owned a

membership card, the OR operator would replace the AND

operator in the condition above, for example:

Java

Python

As in the example above, a comparison with a true value

can be written by using the conditional statement if,

followed by the variable that needs to be evaluated to true: This will evaluate to TRUE if the member stores the value

true, and to FALSE otherwise.

Therefore, the expression if (! member) in Java or if not

member: in Python would return TRUE if the member

variable stores a value of false, and it would return FALSE if the variable stores true; this expression being read as if not member.

Other relational operators can be part of the comparison,

such as: ==, !=, <, >, <=.

Because = is used in assignments, == is used in

comparisons to check for equality.

PROGRAMMING EXERCISES

1 Construct code to let the user input their favourite food.

If the user enters pasta, PASTA or Pasta, output the

message “Go to Italy”. Otherwise, output the message

“[favouriteFood] will never replace pasta!”

2 Construct code that requires the user to input a number and a Boolean variable flag. If the flag is true, output

double the number. Otherwise, output the squared

number.

3 Retirement ages differ for men and women. In some countries, women can retire at the age of 62 and men at

65. Construct a program that asks the user to enter their

name, gender and age. Calculate and output whether

the user is eligible for retirement, or how many years

they need to wait to get their pension.

4 Construct a program that requires the user to enter the measurements of the sides of a right-angled triangle.

Calculate and display its area.

5 Construct code to create a calculator that converts temperatures between Celsius and Fahrenheit.

6 Construct code to create a quiz that asks the user to guess the capital city of five different countries of your choice. Add a score to your quiz. At the end, display the

right answers for the missed questions and the score.

7 Construct a program that asks the user to enter their favourite colour and their lucky number. If their favourite colour is green and their lucky number is between 4 and

7, output the message “In [LuckyNumber] years, you’ll

buy a [colour] bicycle”. Otherwise, if the lucky number is below 4 and above 1, output the message “I suppose

you wanted a [colour] ball [LuckyNumber] years ago”.

[image: Image 392]

Otherwise, display the message “[LuckyNumber] is not

so lucky!”

8 Construct code that requires the user to input two numbers. Compare the two numbers and output the

larger one. If the two numbers are the same, output an

appropriate message instead.

TOK

How does reasoning affect decision-making?

Reasoning involves analyzing, evaluating and drawing

conclusions from given facts, data and processes between

them. Those are important skills in making effective

decisions, as they allow you to clearly define problems and goals, by selecting the relevant details and ignoring the

unnecessary ones, analysing possible solutions, generating ideas and proposing efficient solutions.

The word “decision” comes from the Latin decidere,

meaning “to cut off”. In order to make a decision you need to consider and cut off alternative solutions. Reasoning

plays a critical role in first identifying available options and then evaluating their consequences. However, decision-making often involves a blend of reasoning and other

factors that may constrain rationality, such as biases and emotions.

In exploring the role of reasoning in decision-making,

discuss the importance of logic, analysis, critical thinking, problem-solving techniques, acquired skills and purpose in reaching well-informed and effective conclusions.

ACTIVITY

Thinkers: Use critical and creative thinking skills to analyse and take responsible action on complex problems.

Exercise initiative in making reasoned decisions.

B2.3.3 Loops and iteration

Consider a scenario where you need to display your name

multiple times. Initially, you might achieve this by writing individual print statements for each repetition. However,

this approach quickly becomes cumbersome when dealing

with a larger number of repetitions, such as 100 times.

Moreover, if you want to repeat the actions based on user

input or until a certain condition is met, manually writing each repetition becomes impractical. To handle such

situations efficiently, loops come into play.

Loops provide a way to execute a block of code repeatedly, either for a predetermined number of iterations or until a specific condition is satisfied. Whether you know the exact number of repetitions in advance, or need to iterate

dynamically based on runtime conditions, loops offer a

flexible and concise solution.

Loops are used to repeat different instructions or blocks of code. One loop refers to one repetition. There are several types of loops, such as count-controlled loops (FOR loops) and conditional loops. Conditional loops can be pre-condition loops (WHILE loops) or post-condition loops

(REPEAT–UNTIL loops).

Count-controlled loop

A count-controlled loop (FOR loop) is used when the number of repetitions is known in advance, prior to the execution of the code. For example, if you need to write all the numbers between 1 and 100, before writing any code it can be said

that the program will repeat 100 times.

[image: Image 393]

[image: Image 394]

General structure

Count-controlled loop flowchart

If n is the number of repetitions required, a FOR loop would look like this:

Java

[image: Image 395]

[image: Image 396]

Python

In Java, i = 0 is the starting point of the repetition, so i is initialized to 0. i<n is the condition to be met so, when i is no longer smaller than n, the repetition will stop. As the variable i was initially 0 to avoid running the code to infinite, the value of i needs to be changed with every repetition. In this case, i is incremented (i++).

In Python, the range indicates the initial value of i (in this case, 0) and the ending value of i (in this case, n). Note here that the code will stop when i becomes n-1. For example, if n = 5, i will take the values of 0, 1, 2, 3, 4. There are five repetitions in total; when i reaches the value of 5, the

repetition will stop and so the value won’t be displayed.

In the example above, because the starting point is 0, which is the default value, the statement could have been written as for i in range (n): and it would have had the same effect.

In both Java and Python, the starting point can be changed.

Consider that you must display all the numbers between 1

and 100. To solve this problem, you can set the starting

point to 1 and the ending point to 101, ensuring 100 is also included.

Java

[image: Image 397]

[image: Image 398]

[image: Image 399]

[image: Image 400]

Python

The Java example could have used the less-than-or-equal-to sign in the condition to ensure the upper bound of 100 is

included. Alternatively, the loop could have been

maintained to iterate from 0 to 100, with the printing

statement adjusted to display the value of i+1 instead.

Java

Python

Imagine wanting to display all the odd numbers between 1

and 100. A solution would be to keep the same structure as before, but to check whether or not the number is odd.

Java

[image: Image 401]

[image: Image 402]

[image: Image 403]

[image: Image 404]

Python

i%2==1 checks whether the remainder of division by 2 of

the variable i is 1. In other words, if there is a remainder, the number is odd; if there is no remainder, the number is even.

The same problem can be solved without the need to use an

IF statement. A step can be included to change the

incrementation so, instead of incrementing the value of i by 1, which is the default value, it increments it by a different value.

Java

Python

[image: Image 405]

[image: Image 406]

[image: Image 407]

In this situation, in Java, the increment was changed, so the value of i is increased by 2, and in Python a step was

included: 2, to specify the same thing. So, the variable i will take the values: 1, 3, 5, … 99.

But what if you are requested to display the numbers from

100 to 1 instead?

Java

Python

In Java, the starting point is set to 100, so that value is displayed first. The condition is changed, as you want to

repeat as long as the value is greater than 0, and also the step is changed to decrement the value instead of

incrementing it. i=i-1 could be written as i--.

In Python, the range is changed to start at 100. It should stop when it reaches 1 (0 is not touched) and the step is set to −1, so the number is decremented by 1.

Pre-condition loop

[image: Image 408]

General structure

Pre-condition loop flowchart

A pre-condition (WHILE) loop is used when the number of

repetitions is not known prior to the execution of the code.

The code is expected to be repeated as long as a condition is met, or it evaluates to true.

When the condition is no longer met, called termination condition, the loop execution will stop. In a WHILE loop, the repetition might not run at all; this happens when the

condition is never met. WHILE loops are loops that are often used for validation or verification purposes. For example, when the user is asked to enter a password twice, the

computer will compare the two entries to check if they

match (double entry verification). In this case, a loop would be used to repeat entering the password until the two inputs match.

[image: Image 409]

Termination condition: a condition in a loop that

interrupts or stops the repetition.

Validation: a process to ensure input data is sensible or reasonable.

Verification: a process to ensure input data is accurately copied from one source to another.

Java

In this case, .equals is used to compare the value stored in password with the one stored in pass, as those two values

are of type string. If the two values were numbers, then ==

would be used for comparison. The ! is a negation,

therefore, in this case, it is checking if the two values are not the same, and the user is asked to re-enter the

password until the two values match. The output at the end will be displayed only after the loop is exited. If the second password never matches the first, the code inside the loop will continuously repeat.

Any FOR loop can be rewritten as a WHILE loop. Considering our example that displays all the numbers between 1 and

100, using a WHILE loop the code would look like this:

[image: Image 410]

[image: Image 411]

[image: Image 412]

Java

Python

In the example above, the loop will repeat as long as i is smaller than 101. The termination condition will be that

i>=101. The role of the incrementation is to change the value of i, so the loop will stop at one moment. Otherwise, without that statement, the loop would run to infinite.

Post-condition loop

General structure

[image: Image 413]

Post-condition loop flowchart

In the post-condition (REPEAT–UNTIL) loop, the condition is checked at the end. In this case, the code inside the loop will execute at least once.

[image: Image 414]

[image: Image 415]

Both in Java and Python, post-condition loop structures are written using WHILE loops.

Java

Python

In the example above, the variable i is initially set to 1. This value is displayed and then incremented. This happens no

matter what the condition evaluates to. If the condition

evaluates to true, the loop is repeated; if the condition

evaluates to false, the repetition stops.

REVIEW QUESTIONS

1 Define the term “loop”.

2 Explain why it is useful to use loops in coding.

3 Explain the difference between a pre-condition and a post-condition loop.

4 Identify a situation when you would use a count-

controlled loop.

5 Define the term “termination condition”.

6 Explain why it is important to avoid infinite loops.

7 Identify a situation where an infinite loop could occur.

PROGRAMMING EXERCISES

1 Construct a program that allows the user to enter a number. Output all numbers between 1 and that number.

2 Construct code that requires the user to enter a number and a word. Display each letter in the word on a

separate line. Repeat the process the user’s number of

times.

3 Construct code that asks the user to input ten numbers.

Calculate and display the sum of all even numbers

entered.

4 Construct a program that creates a variable and

initializes it to the value 7. Ask the user to guess a

number between 1 and 20. If the user guesses the value

7, output the number of attempts. Do not allow the user

to try to guess the number more than three times. If the

user doesn’t guess the number after three attempts,

output the message: “The game is locked. Try again

later!”

5 Construct a program that asks the user whether they want an apple. Repeat the question until their answer is

yes. At the end, output the message: “Apples are

delicious, aren’t they? Let’s have one!”

ACTIVITY

Use your answers to the programming exercises above to

answer the following questions.

1 What loop did you use to solve question 1? Could you replace that loop with another one? How would you do

that?

2 Did the program you constructed to solve question 2

handle user input correctly? Can you think of an easier

way to extract each letter from a given word?

3 Did your program for question 3 extract the even numbers correctly? What change would calculate the

sum of all the odd numbers instead?

4 Why do you think a FOR loop is not appropriate for solving question 4?

5 What termination condition did you use for question 5?

Key information

FOR loops are called “count-controlled” loops, WHILE loops are called “pre-condition” loops and REPEAT-UNTIL loops

are called “post-condition” loops.

Count-controlled loops are used when the number of

repetitions is known prior to the execution of the code. Pre-condition loops might not be executed at all (if the

condition is not met). Post-condition loops will execute at least once, even if the condition is never met.

Top tip!

When you are asked to identify the type of loop exemplified in a piece of code, refer to them as count-controlled, pre-condition or post-condition loops. For example, saying it is a FOR loop instead of a “count-controlled” loop is not

enough, as it is not clear that you know what type of loop a FOR loop is.

B2.3.4 Functions and

modularization

Functions represent blocks of code that can be reused in

various parts of the program and include a return value.

Using functions makes the code look neater, and it saves

development time as they can be reused as needed. At the

same time, they allow for modularity, meaning multiple

programmers can work together, each developing a function

and then those functions can be put together to build up a more complex program. Once a function has been written

and tested, the programmer can reuse it without worrying

about its functionality.

Writing maintainable code is an important skill for any programmer. Maintainable code refers to code that is clear; easy to read and modify; and can be reused by the

programmer themself or by other programmers. Using

functions aids in the creation of maintainable code.

Maintainable code: clear, easy-to-read and modify code that can be reused within the same program or in other

programs, by the same or other programmers.

Procedure: a set of statements that can be grouped

together and called in a program as needed; they don’t

return a value.

Function: a set of statements that can be grouped

together and called in a program as needed; they always

return at least one value.

Such a reusable block of code is called a procedure or a function; the difference between the two being the

returned value(s). A procedure can take several parameters or none and it has no return value, so it could update a

[image: Image 416]

variable or output a message or a value. However, a

function will return a value. This returned value can further be used in a mathematical expression, or it can simply be

displayed.

Consider the following problem: A user is required to provide two whole numbers. Construct a program that calculates the sum of the two numbers and displays it.

A simple solution would be to ask the user to enter the two numbers, add them together and display the result, such as: Solution 1

But if you needed to perform the same operation again, with different values, you would have to rewrite the code, which is not very time or memory efficient. Therefore, to complete such tasks, a procedure is required.

[image: Image 417]

Solution 2

Because this does not return the sum, but only prints it, it is a procedure.

[image: Image 418]

Solution 3

In the code above, the same procedure is created, but two

parameters are passed to it (no1 and no2). When the

procedure is called in the main program, the values being

passed to it are called “arguments” (value1 and value2).

When a return is added to the block of code, the procedure becomes a function. The returned value can be displayed on the screen or used in other mathematical expressions. The

number of parameters also differs when it comes to

[image: Image 419]

functions: one, none or more parameters can be passed to a function.

When implementing functions in Java, the void keyword

from the method signature is replaced by the data type of

the value being returned.

Java

Python

[image: Image 420]

In the example above, the function add will return a value of data type integer. The function is called once to be

displayed and the other time to increase the value of the

variable newVal.

REVIEW QUESTIONS

1 Compare functions and procedures.

2 Identify three things you can do to keep a maintainable code.

3 Outline the difference between validation and

verification. Provide an example where a selection can

be used for validation checks.

4 Differentiate between pre- and post-condition loops.

PROGRAMMING EXERCISES

1 Construct code to let the user create a function called factorial that takes a natural number (n) as a parameter.

The function should return the factorial value of that

number (n!).

2 Construct a program that consists of a procedure called odds that takes a natural number (n) as a parameter.

The procedure should display all the odd numbers from 1

to that number (n).

3 Construct code that creates a function called perfect that takes n (a natural number) as a parameter. The

function should return true/false if n is a perfect number.

A perfect number is a positive integer that is equal to the sum of its positive proper divisors, excluding the number

itself. For example, 28 is a perfect number as its proper

divisors are: 1, 2, 4, 7, 14. Adding those values together we get 28, and this result is equal to the initial number.

4 Construct a function called palindrome that takes a word as a parameter. The function should return true/false if

the given word is a palindrome.

A palindrome is a word that reads the same forwards or

backwards. For example, kayak, racecar, level and civic

are all palindromes.

Reflect on the errors you encountered when constructing

your code, and how you resolved them.

• How did you go about debugging the issues?

• Did you notice any patterns in the errors you

encountered?

• What can you do to avoid such errors in the future?

Scope of variables

Based on their scope, variables can be classified into

various categories, such as local or global variables.

[image: Image 421]

Local variable: a variable that exists only within the block of code where it is defined.

Global variable: a variable that exists throughout a program.

Variable scope: the lifetime of a variable within a program; it determines whether you can access and modify

the variable within a specific block of code.

The scope of the variable defines its lifetime in the program, meaning the block of code where it has been

declared, where it can be used and modified. How and

where the variables are declared defines the scope.

Local variables

Local variables are variables that have their scope limited to the block of code within which they are declared and used.

Once that block of code is executed, the variable is

automatically removed from the memory. It is recommended

to use local variables as often as possible. An example of a local variable is when using a counter in a FOR loop. That counter is required only within the body of the loop for

storing temporary data but, once the loop is finished, you do not need that counter any longer.

Java: i is a local variable

As i is a local variable, it exists within the loop, and it will take values from 0 to 3. When it reaches 3, the variable is

[image: Image 422]

no longer smaller than 3 and the repetition will stop. After this loop, the variable i does not exist any longer.

Python: text is a local variable

In this example, text is the local variable. When printing the variable text inside the subprocedure, the message “hello

world” will be displayed. However, when attempting to print the text again, after the call of the method, an error will be thrown as text is used without having an initial value.

Global variables

Global variables are variables that are visible and accessible throughout the program.

In Python, the global variables are initialized at the top of the code or module and, whenever they are used within a

function or procedure, they are declared as global. As Java is an object-oriented programming language, it does not use

the concept of global variables. However, by using the static or static final keywords, the variables can have all the

properties of global variables.

Python

[image: Image 423]

In this example, the text is a global variable, which means that, by calling the hello procedure, the content of the

variable text is changed and, once it is printed, even if it is printed outside the procedure, it will display the updated content: hello world.

Top tip!

When writing code, aim to preponderantly use local

variables rather than global variables. Local variables are confined to the function or block in which they are

declared, promoting encapsulation and modularity. This

makes functions self-contained and easier to understand,

test and debug. Global variables can be modified by any

part of the code, leading to unintended side effects that

can make the program behaviour difficult to predict and

debug. Local variables prevent such side effects by limiting the scope of variable modifications.

REVIEW QUESTIONS

1 Trace the following program to determine its output.

Java

[image: Image 424]

[image: Image 425]

Python

2 Identify a local variable in the code above. Explain why the chosen variable is not a global variable.

3 Construct a program that changes the code above so that, after the method is executed, both outputs display

the name Jim, without changing the first line of code.

4 Construct code to update the method above to include a validation check: the new name should be input from the

keyboard and the change should occur only if the new

name is different from the previous name. Display a

message if the new name is not different and display the

current name.

5 Identify the scope and data type of the variable you have created to validate the name change.

B2.1 Programming

fundamentals (part 2)

 How can we apply programming to solve problems?

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

• B2.1.3 Describe how programs use common exception

handling techniques

• B2.1.4 Construct and use common debugging

techniques

B2.1.3 Exception handling

When a computer program is run, different reasons or

events might cause the program to halt or produce an

unexpected outcome. These reasons could include logical

errors in the code, unexpected user inputs or resource

unavailability.

Logic errors refer to incorrect sequences in the logic of the program, incorrect choices of condition or incorrect

calculations. For example, when attempting to calculate the average of three numbers, dividing the sum of the three

numbers by 2 instead of dividing it by 3 would produce an

incorrect outcome.

Logic error: an error in a program that makes it operate incorrectly; it will not crash the program.

Runtime error: an error that occurs when executing a program; the program might stop unexpectedly.

Exception handling: a process of responding to an

exception, so the system does not halt unexpectedly.

Exception: an unexpected event that stops the execution of a program, e.g. division by 0.

Such errors can only be detected through testing, as they

would pass the compilation stage.

Runtime errors could cause the program to crash. These errors refer to problems occurring as the program runs, such as division by 0; a file not being found; truncation; overflow or underflow errors; a hardware device not being available, such as a printer not being ready; or a class file not being found.

Also, a user can enter unexpected inputs, such as entering text instead of a number or entering values that would lead to an attempt to divide by 0, or entering the wrong file

location to read data from or write data to.

Resource unavailability refers to hardware and software

equipment not being available for the operation, such as a file not being found or a printer not being ready for the

operation.

All those events can be dealt with, so the program does not crash, using exception handling. Even if the desired operation would not be achieved, the user can get an idea

of what went wrong, and they can continue attempting

other features of the program.

The role of exception handling techniques is to maintain the normal flow of the program, by catching and throwing

[image: Image 426]

exceptions that cannot be handled locally. In Java, this takes the form of try/catch blocks, while in Python they are found as try/except blocks. The code that might throw an

error is written within the try block and the exception is caught and displayed, if needed, in the catch/except block.

Both languages allow for a finally block that is found at the end of the try/catch or try/except block and this includes code that will always execute after leaving the try

statement, regardless of the try block outcome: whether or not it raises an error.

Java

Python

[image: Image 427]

[image: Image 428]

In the example above, the user is requested to enter a

number. If the number entered is 0, then this would be

caught in the exception; otherwise, the calculation will be performed and the result displayed. Independent of the

action completed, the message included in the finally block will be displayed.

Java

Python

[image: Image 429]

The exception handling construct can include only a

try/catch block in Java, or just a try/except block in Python.

There is no need to specifically indicate the type of error that might have caused the program to crash, but this is

useful to help the programmer debug the code and fix

issues that might be solved or to let the user understand the problem if the wrong input is provided.

Key information

“Exception” refers to the event that interrupts the

execution of a program, while “exception handling” refers

to the actions taken to deal with an exception or how the

system is prevented from halting unexpectedly. For

example, a division by 0 is an exception; using a try/catch or try/except block is the exception handling technique.

REVIEW QUESTIONS

1 Explain how exceptions differ from errors.

2 Explain why it is important to handle exceptions in your code.

3 Identify some common types of exceptions.

4 Explain a scenario when a runtime error could occur.

5 Explain the risks of showing detailed exception

messages to end users.

B2.1.4 Debugging

techniques

Debugging refers to finding and fixing errors in code.

Common debugging techniques include trace tables,

breakpoint debugging, print statements and step-by-step code execution.

Debugging: finding and fixing errors in a program.

Trace table: a technique used to test an algorithm, and to predict how it will be run and how values of variables will change.

Breakpoint: a marker to interrupt the execution of code for debugging purposes.

Trace tables

Trace tables represent a technique usually used at design

stage to test an algorithm and predict step by step how it will run. They can be used to demonstrate the outcome of

an algorithm or to identify logic errors.

A trace table is a table in which the columns represent

variables, conditions or an output in the algorithm.

However, not all variables, conditions or outputs are always needed; this depends on the purpose of the trace table.

Its role is to identify how variables change, what conditions evaluate to and what are the produced outcomes. By

producing a trace table, the purpose of the algorithm can be determined or any flaws in the algorithm can be detected.

For example, consider the following problem: Students

taking a language course will pass their final examination if their score is 80 or above. As the students register for the

[image: Image 430]

course every term, the number of students is unknown.

Therefore, the teacher will enter 999 to terminate the

program. The teacher is required to identify the number of students passing the assessment.

The following flowchart has been designed to suggest a

possible solution to the problem:

The trace table for the input data would look like this:

23, 98, 33, 45, 78, 80, 81, 84, 34, 999

count

score

output

0

23

count

score

output

98

1

33

45

78

80

2

81

3

84

4

34

999

4 students have passed the exam

When the value 98 is entered, the count is incremented. 33, 45, 78 will not affect the count, so its value stays the same.

You might choose to repeat the previous value for the count variable, or just leave it blank as there is no change. Be aware if there is a statement reassigning the value of the variable to something, then even if the value is the same as the previous one, it should appear within the count column, as that is a change to the variable. When value 80 is

entered, the count is incremented again, and the procedure repeats for the values 81 and 84, but nothing happens to

the count when 34 is entered. 999 is the value that will

terminate the program, and so the output will be displayed, as the output is displayed only after 999 is entered, in this example.

REVIEW QUESTIONS

The following flowchart represents an algorithm.

[image: Image 431]

1 Copy and complete the trace table below for the value: 1221.

num temp value reminder value temp output

> 0

=

num

2 Copy and complete the trace table below for the value: 1231.

num temp value reminder value temp output

> 0

=

num

3 Identify the purpose of the algorithm represented by the flowchart above.

Breakpoint debugging

Breakpoints are special markers that interrupt the execution of the code for debugging purposes. To set a breakpoint in Eclipse IDE, it is sufficient to right-click on the blue section beside the line number and toggle a breakpoint as shown in the screenshot below (this differs from IDE to IDE).

[image: Image 432]

[image: Image 433]

Breakpoint debugging in Eclipse

After setting up the breakpoints, the next step is to run the program in debugging mode. This is done by clicking on the Debug button (the one next to the Run button), which looks like a little bug, as shown in the image below.

Running the program in debugging mode in Eclipse

[image: Image 434]

Next, you can see the Breakpoint window that shows the

variables, breakpoints and expressions, as here:

Breakpoint window in Eclipse

The code will execute as normal, but it will interrupt its execution the moment it reaches the set breakpoint.

In IDLE (Python), there is only a need to right-click on the line where you want the breakpoint to be set and choose

the option Set Breakpoint.

[image: Image 435]

[image: Image 436]

Breakpoint debugging in IDLE

After that, you can simply run the script (F5). Once this has happened, you can press Debug on the menu and the

debugger window will appear.

Debugger window in IDLE

Step-by-step code execution

To monitor and see what happens with the variables, you

have to press Step into / Step over or use Step filters

buttons. If you want to check what happens at the

breakpoint line then you would choose the Step into button, but if you want to skip that line and execute the following one you would choose the Step over button. In Eclipse,

[image: Image 437]

those buttons are the arrows shown in the following

screenshot:

Step-by-step execution in Eclipse

Print statements

When testing your code, you might ask yourself whether the execution of the program has reached a specific line of

code, whether a variable changed its value as expected or

whether a decision statement has been evaluated to true or false. Including print statements into your code to trace

such changes is a useful method that would help you

identify when exactly your code stopped running as

expected and give you an idea of what went wrong. The

only impediment might be that, once the debugging has

occurred and the errors are fixed, you will have to delete those print statements.

Key information

You need to be able to construct and use common

debugging techniques. Being able to complete trace tables

is an important technique that can be used to test the logic and functionality of an algorithm, to identify how the

variables change throughout the running of the program

and to identify the expected output of an algorithm.

REVIEW QUESTIONS

1 Define the terms “exception” and “exception handling”.

2 Identify three possible causes of an exception.

3 Outline three features that support the debugging of the code in an IDE.

ACTIVITY

Affective skills: Demonstrate persistence and

perseverance. Don’t give up when you realize that coding

becomes challenging – use debugging techniques to

identify the errors, focus on understanding the errors report and try different approaches to solving problems.

TOK

Language and meaning

We use different programming languages to code, each

with its own syntax and grammar rules. English is not

suitable to be used as a programming language because it

is ambiguous and many expressions can be interpreted

differently based on the context in which they are used.

Analyse the following statements and identify the possible meanings of each of them:

• Peter and Anna are married.

• A salesman visited every house in the area.

• Look at that dog with one eye.

What are the essential features of a computer language?

Why is there a need for a fixed vocabulary, unambiguous

meaning and consistent grammar and syntax?

B2.2 Data structures

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

• B2.2.1 Compare static and dynamic data structures

• B2.2.2 Construct programs that apply arrays and lists

• B2.2.3 Explain the concept of a stack as a Last In First Out (LIFO) data structure

• B2.2.4 Explain the concept of a queue as a First In First Out (FIFO) data structure

B2.2.1 Static vs dynamic

data structures

A data structure is a way of storing and organizing data, so it allows for its manipulation in an efficient way and

attempts to reduce the time and space complexity. Arrays,

lists, stacks, queues, binary trees and hash tables are all examples of data structures. Data structures can be static or dynamic, the two differing in terms of storage and access to their elements.

Static data structure: a data structure with predefined fixed size and elements stored in contiguous memory

locations.

Dynamic data structure: a data structure that can grow or decrease at runtime, with elements stored in memory

locations that are chained together, but not necessarily

contiguous.

Direct access: a method of access where elements are directly retrieved by using their index (position).

Sequential access: a method of access where elements are checked one after another, from the beginning to the

end of the data structure.

A static data structure has a predefined fixed size, a specific memory space being allocated to it, that will not change

when running the program, and elements that are stored in

contiguous memory locations. Elements in a static data

structure can be either directly accessed or sequentially accessed.

A dynamic data structure has no predefined fixed size, it can grow or decrease at runtime and its elements are stored in memory locations that are chained together but are not

necessarily contiguous. Elements in a dynamic data

structure cannot be directly accessed.

Static data structure

Advantages

Disadvantages

• Fast access time, as

• Inefficient use of memory, as

elements can be

there is a need to know in

directly accessed via

advance the likely size of the

the index (position of

structure to allocate sufficient

memory

Static data structure

Advantages

Disadvantages

the element in the data • Memory is allocated,

structure)

regardless or whether or not

• No need to deal with

it is needed

possible overflow or

• Does not allow for flexibility,

underflow errors when

as its size is fixed

adding or deleting

• Deletion of an element might

elements as the size is

create a vacant slot between

fixed

two other elements, and

• Easier to program;

changing the code to reuse

there is no need to

this space might take time

check on its size at any

• Insertion of elements

time

between two other elements

if there isn’t a vacant space is

time-consuming

Dynamic data structure

Advantages

Disadvantages

• Allows for flexibility – • The programmer needs to deal it can shrink or grow

with overflow (the structure

as needed at runtime

might exceed the memory

(suitable when the

limit) and underflow (it might

size of data is not

attempt to delete an item from

known in advance or

an already empty structure)

may change in time)

situations when inserting or

• Efficient use of

deleting elements

memory; as it can

• Harder to program, as the

resize itself, there is

programmer is required always

no memory waste

to keep track of its size and

• Insertion and

data allocations

deletion operations

Dynamic data structure

Advantages

Disadvantages

are optimal

concerning time and

space complexity

B2.2.2 Arrays and lists

One-dimensional arrays (Java)

and one-dimensional lists

(Python)

Suppose your teacher wants to store the grades of 100

students. One way to complete this task is to use 100

variables, but this means lots of memory waste, many lines of code and a lot of effort. And what if this teacher needs to store 1000 grades?

A better solution is to store all those 100 or 1000 elements under a single name or a single identifier. The array data structure allows you to do this.

A 1D array (Java) or a 1D list (Python) is a data structure that stores elements of the same data type, under one

single identifier (name). Those elements can be directly

accessed by using an index (plural indices), where the index indicates the position in the array. Some languages indicate the first index as being the 0 element, and others allow the programmer to indicate how the items will be addressed.

For example, an array of five integers storing students’

grades out of 100 is called grades.

Graphically, arrays can be represented horizontally or

vertically.

[image: Image 438]

1D array (list)

The array element at index 2 (the 3rd element, when

counting from 0) can be directly accessed by using the

name of the array followed by the index: grades[2]. Keep in mind that, if the first element has index 0, the last element is at index 4 (in this case, the grades array has only five items).

To process arrays, loops are used. Loops can be used to

traverse the array; therefore, any time you perform

calculations on all elements of an array, find an element, sort them, and so on, you will use loops.

One-dimensional arrays (Java)

Array declaration and initialization:

To use arrays in Java, they must be declared, and the

language allows for different ways to do this. First, square brackets [] are used to differentiate between a variable and an array. They can appear before or after the array name:

[image: Image 439]

[image: Image 440]

[image: Image 441]

[image: Image 442]

[image: Image 443]

After deciding where you want to place the square brackets (most often, the first example is used), you need to specify the size of the array, as it is a static data structure.

Declaration:

If the array is of integer or double or float type, and there is no further initialization of the array elements, Java

automatically initializes all its elements to 0.

Initialization:

At this point, the elements of the array are given specific values, the value 0 being overwritten.

Another way to declare and initialize the array is like this: But this can also be rewritten in a simpler way, like this:

[image: Image 444]

[image: Image 445]

[image: Image 446]

Sometimes, the developer will have to allow the user to

initialize the array. In such cases, you can simply declare the array and use a loop to allow the user to populate the array.

The loop repeats five times, and it requires the user to enter an integer value that will be stored into the array indicated by index i (from 0 to 4).

If the array is of type string, it would look like this:

An array of Boolean data type can look like this:

One-dimensional lists (Python)

Python replaces arrays with lists, but you can manipulate

those lists to behave like arrays.

In Python, data structures don’t need to be declared. Square brackets are still used to specify that the data structure used is a 1D list.

For example, the grades array will look like this:

[image: Image 447]

[image: Image 448]

[image: Image 449]

[image: Image 450]

If the user wants to initialize a 1D list by using a FOR loop, then the code would look like this:

The first line in the code above specifies the initial value each element in the list will take (in this case, 0). After the *, it is the size of the list (meaning there are five 0s in this list at first).

If you were to write this line of code as grades = [], when trying the FOR loop an error would be thrown (index out of range), as the size of the list would be none or zero, so there would not be a way to add any new elements to it. However, the following statement is completely valid:

And this is possible because the grades list is overwritten.

But this could have been just like this:

The purpose of the line above is to initialize the grades list to 0 for all its five elements.

The following two lists are examples of a 1D list of type

string and a 1D list of type Boolean:

[image: Image 451]

Parallel arrays represent two or more arrays of the same size, such that the nth element of the first array is related to the nth element of the second array, and so on. The values stored on those arrays at a given index will be related in some form, for example defining a record data structure to store details about students. So, the first array will store the students’ names, the second array their ages, the third

array their addresses. When retrieving the element of

position 3 from each of those arrays, you’ll be able to

identify the name, age and address of the third student.

Parallel arrays: a group of arrays of the same size, where the element at a given index in one of the arrays

corresponds to another element at the same index in

another array, like descriptions of a single entity.

PROGRAMMING EXERCISES

1 Construct a program that creates a 1D array or list that stores six integer values. Output true if the first element in the array is the same as the last element in the array.

2 Construct code that requires the user to enter a number.

Use that number as the size of an array or list of integers to be inputted from the keyboard. Calculate the sum of

all even numbers in the array or list; calculate the

average of all its elements; and count how many of

those elements are odd numbers. Display those values.

3 Construct a program that creates an array or list that stores five names. Copy those elements in a second

array or list in reverse order. Display the second array or list.

ACTIVITY

Use your answers to the programming exercises above to

answer the following questions.

1 What data type was your output for question 1? Was it a Boolean or a string variable? Which one do you think is

more appropriate?

2 What was the initial value of the count variable you used for question 2 to count how many array elements were

odd? Why was it important to set an initial value for this variable?

3 Did the results for question 3 display accurately? What loops did you use to traverse the arrays? Could those

loops have been replaced by other types of loops? Which

are those?

Common mistake

Algorithms written to solve a problem should function

correctly. When asked to construct an algorithm that finds the smallest value in a 1D array or 1D list, many

candidates initialize a variable called min to 0 and then

compare each element in the array with that one to find a

smaller value.

The data structure could store only positive numbers;

therefore, you will not find a value smaller than 0.

Remember to initialize that variable to the first element in the array. In this case, if no other element is smaller, you have already stored the smallest one.

Two-dimensional arrays / lists

A two-dimensional array can be seen as a table, with rows

and columns. To manipulate and traverse a 2D array, two

[image: Image 452]

[image: Image 453]

indices are used: one for the rows and one for the columns.

When writing code, rows are always first and columns

second.

Look at the figure for storing numbers from 1 to 9 in a table with three rows and three columns. You will create a 2D

array or a 2D list for this purpose.

Each element in a 2D array (Java) or 2D list (Python) can be directly accessed by specifying its indices (row index and column index).

2D array (list)

Declaration

Java

Python

[image: Image 454]

[image: Image 455]

[image: Image 456]

The first value of 3 indicates the number of rows, and the second one the number of columns. The value of 0 in the

Python example refers to the initial value this list will be set to.

In Python, the 2D list will appear as a table with three rows and three columns, all filled with zeros, as shown in the

diagram below:

2D array (list) filled with zeros

In Java, the 2D array will only include the structure of the table, as there are no initial values provided:

Empty 2D array

Manipulating 2D arrays or lists requires the use of two loops: the first one for the rows and the second one for the

columns. When addressing one specific item in the array or

[image: Image 457]

list, this is done by using the name of the array or list

followed by square brackets that include the row and

column indices.

numbers[0][2] refers to the element in the array numbers,

located at the intersection of the first row with the third column.

Java

Python

[image: Image 458]

[image: Image 459]

[image: Image 460]

The first two count-controlled loops are used to traverse the array (i for the rows and j for the columns). Then the user is asked to enter a number that is stored in the variable value, which is then assigned to the array or list numbers.

The last two loops are used to traverse the array or list, so the values stored in the array are displayed on the screen.

A 2D array can also have a different number of rows and

columns.

Java

Python

In the example above, the array numbers will be

constructed with two rows and three columns.

To fill the array with values, the following code can be used: Java

[image: Image 461]

[image: Image 462]

Python

Common mistake

Algorithms written to solve a problem should function

correctly. Many students lose marks for incorrect use of

indices in 2D arrays or incorrectly looping through 2D

arrays, such as overlooking boundaries or not using two

indices to traverse the array. Remember that you always

use rows first and columns second.

PROGRAMMING EXERCISES

1 Construct code that creates a two-dimensional array or list with three rows and three columns. Fill it with values read from the keyboard. Calculate the sum of all values

and their average, and display the results.

2 Construct a program that creates a two-dimensional array or list with three rows and three columns. Display

the sum of all elements per column. Display the average

of all elements per row.

3 Construct code that creates a two-dimensional array or list with three rows and three columns that stores

random numbers. Display the array and output the sum

of all the elements on the principal diagonal. Calculate

the sum of the elements on the secondary diagonal and

display this value as well.

4 Matrix calculations are used extensively in machine learning within Computer Science. The following

constraints exist to calculate a dot product: width of

[image: Image 463]

matrix A must match height of matrix B. Given two 2D

arrays (lists) of integers that represent matrices,

construct a program to calculate and solve the dot

product of those two matrices.

Reflect on the most challenging parts of the programming

exercises. How did you approach them? Did you seek

support, did you research or did you apply any other

strategies? What did you learn from this experience that

you can apply to solve future problems?

ArrayLists in Java

An ArrayList in Java is a class that allows the use of a

dynamic array to store elements, this time without a pre-

defined size. ArrayLists can hold duplicate elements, they allow for random access and they maintain the insertion

order.

To be able to use an ArrayList, you need to import the

java.util package:

[image: Image 464]

[image: Image 465]

[image: Image 466]

[image: Image 467]

This will import the entire package, or you can specifically choose to import just the required class:

After this step is completed, an ArrayList can be declared, as follows:

Keep in mind that, when working with ArrayLists, the data

type integer appears as Integer instead of int.

If the ArrayList will store text, then it would look like this: To be able to manipulate elements in an ArrayList, there are specific methods that can be used:

Method Explanation

Code example

add()

Add a new element passed

grades.add(75);

as an argument

get()

Access an element at a

grades.get(2);

given position (specified in

the brackets)

set()

Update an element at a

grades.set(2, 64);

given index (first argument

is the index; the second one

is the value)

[image: Image 468]

Method Explanation

Code example

remove() Delete an item at a specific

grades.remove(2);

index

size()

Returns the number of

grades.size();

elements in the ArrayList

clear()

Delete all elements in the

grades.clear();

ArrayList

To traverse an ArrayList, you can use a FOR loop:

In the code above, the grades ArrayList of type integer is declared. Five elements are added to the ArrayList. A loop is used to traverse it (the size() method will return the number of items in the ArrayList to specify how many repetitions will occur), and each element is retrieved using the get()

function and passing the corresponding index of the

element that is then displayed on the screen.

Another example of traversing the ArrayList is by using a

FOR-EACH loop instead:

[image: Image 469]

In this example, the variable i is not an index, but it is an element in the grades ArrayList instead.

Dynamic lists in Python

A dynamic list in Python is a dynamic data structure,

meaning it does not have a fixed size. Dynamic lists can

store duplicate values. When creating a dynamic list, you

can simply declare it as an empty list: grades = []

However, when wanting to insert a new element, attempting

to write something like this: grades[0] = 75 will throw an error.

To manipulate dynamic lists, specific methods can be used: Method Explanation

Code example

append() Add a new element passed

grades.append(75)

as an argument at the end

of the list

insert()

Insert a new element at a

grades.insert(0,64)

given index (first argument

is the index, the second is

the value to be inserted)

[image: Image 470]

Method Explanation

Code example

remove() Delete the first occurrence

grades.remove(75)

of a given item passed as

an argument

pop()

Delete the element at the

grades.pop(0)

specified index

pop()

Delete the last element if no grades.pop()

index is given

clear()

Empty the entire list

grades.clear()

len()

Return the size of the list

len(grades)

To loop through a dynamic list, a FOR loop can be used:

Another way to achieve the same is:

[image: Image 471]

In this case, i is not the index, but an element in the

dynamic list.

PROGRAMMING EXERCISES

1 Construct programming code to create an ArrayList in Java or a dynamic list in Python that stores five colours.

a Construct code to insert a sixth colour after the third.

b Change the element at the second position to a

different colour.

c Delete the last element.

d Display the new data structure.

2 Construct a program that creates an ArrayList in Java or a dynamic list in Python that stores three numbers.

a Append three more values to the end of the data

structure.

b Display the size of the data structure.

c Display the first element.

d Store the first element into a variable.

e Replace all the other elements with this value.

f Display the new values.

3 Construct a program that creates an ArrayList in Java or a dynamic list in Python that stores three different

numbers.

a Store the second value into a variable and insert it into the data structure at the end.

b Display the index of the first occurrence of that value.

4 Construct programming code that creates an ArrayList in Java or a dynamic list in Python that stores four different values.

a Display all the elements.

b Swap the values of the second and third elements.

c Display the new data structure.

B2.2.3 Stacks

If you were a bank cashier, you would deal with lots of coins.

To easily manipulate those, the coins are categorized based on their values and stored in piles, for example a pile of 10p coins, a stack of 20p coins, another stack of 50p coins, and so on. When the cashier needs one of these coins, they

would get it from the top of the pile containing the required coin value, so the stack remains intact. When the cashier

needs to add a new coin to one of the piles, they would add the new coin to the pile; again, on top of it.

Another example would be a stack of plates: a new plate is added to the top of the stack and a plate is removed from

the top of the stack, otherwise plates can break.

In Computer Science, when performing actions that work on

the same principle, a specific abstract data structure called stack can be used. The stack works on the principle of Last In First Out (LIFO) or First In Last Out (FILO), meaning that only the top element is accessed. The operation of

[image: Image 472]

[image: Image 473]

removing an item from the stack is called pop, which means taking off the top element, while the operation of adding an item to the stack is called push, meaning adding an item to the top of the stack.

Stacks of coins

Stack

Stack: an abstract data structure that works on the LIFO

principle.

Last In First Out or First In Last Out principle: the last element inserted is the first element removed.

Pop: a method for deleting the element from the top of a stack.

Push: a method for inserting an element at the top of a stack.

Stack pointer: a register used to store the memory

address of the last added data in a stack, or sometimes the first available address in a stack.

A stack could use a stack pointer variable to indicate the next free available slot in the stack.

A stack can be implemented as a static data structure using arrays (it would have a fixed size) or as a dynamic data

structure using a linked list (which would not have a fixed size).

Stack operations

Operations performed on a stack are:

• isEmpty: to check whether the stack is empty; attempting to pop an item from an empty stack would throw an

underflow error

[image: Image 474]

[image: Image 475]

Stack operation: isEmpty

• isFull: to check whether the stack is full; attempting to push an item into a full stack would throw an overflow

error

Stack operation: isFull

• push: to add an item to the top of the stack

[image: Image 476]

[image: Image 477]

Stack operation: push

• pop: to delete an item from the top of the stack

Stack operation: pop

• peek: to return the top element

[image: Image 478]

Stack operation: peek

Uses of stacks

Stacks are used when storing data in the order they

occurred and when it might be necessary to track back to a certain point or action in the past, as they respect the LIFO

principle of operation.

Stacks can be used:

• to create an UNDO feature in games: actions are

pushed into the stack; when undoing, actions are popped

• to allow backwards navigation on a web browser:

pressing the back button performs a pop operation;

opening a new website performs a push operation

• for interrupt handling: when the current activity of the CPU is interrupted, the content of variables and return

addresses are stored in a stack; after the interrupt is dealt with, those are popped from the stack to restore its activity

• to evaluate arithmetic expressions: when evaluating RPN (reverse polish notation) expressions, the operands

are pushed on to the stack; when an operator is met, if it is a binary operator (requires two operands) two more pop

operations will occur, the calculation is performed and the result is pushed back into the stack – the process will

continue until the result is reached

• for recursion: return addresses and values of parameters are stored into a stack to help with the unwinding process.

Interrupt handling: handling interrupt requests.

Interrupt: a signal sent from a device or software to request the processor’s attention; the processor will stop its current activity until the interrupt has been serviced.

Recursion: a process that uses a function or procedure that is defined in terms of itself and calls itself.

Queue: an abstract data structure that works on the FIFO

principle.

First In First Out principle: when the first element inserted is the first element removed.

B2.2.4 Queues

A queue is a data structure that functions on the FIFO

(First In First Out) principle. An example of a queue is a line of people waiting to check out at a grocery store. The first to join the queue is the first to leave. A new person who joins the line will enter at the end of the queue.

A queue uses a front pointer to show where elements will be removed from and a rear pointer to show where elements

will be added to.

[image: Image 479]

Queue

A queue can be implemented as a static data structure

using arrays (it will have a fixed size, and it is possible to become full as this fixed size cannot be exceeded). Or, a

queue can be implemented as a dynamic data structure,

using a linked list (which would not have a fixed size).

When a queue is implemented as an array, it can often be

seen and managed as a circular queue. This is in case there are elements removed from the queue, so that there is still a way to add new elements, even if the last index has been reached, as the queue will not actually be full. In a circular queue, if the rear pointer becomes equal to the front pointer after an item is added, the queue becomes full; if they

become equal after an item is removed, the queue becomes

empty.

Queue operations

Operations performed on a queue are:

[image: Image 480]

• isFull: checking whether the queue is full; trying to

enqueue an item into a full queue would throw an

overflow error

• isEmpty: checking whether the queue is empty; trying to dequeue an item from an empty queue would throw an

underflow error

• enqueue: adding an item to the rear of the queue

• dequeue: removing an item from the front of the queue

• front: displaying the element stored at the front of the queue.

Queue pointers

Enqueue: a method of inserting an element at the rear of a queue.

Dequeue: a method of deleting an element from the front of a queue.

Uses of queues

Queues are used when dealing with simulations or situations that require the first item entered to be the first item dealt with. Applications of queues include:

• Printer queues: Printing jobs are stored in a queue. The first printing job sent is the first to be dealt with. New printing jobs join the queue at the rear of the queue. As

such, all printing jobs are dealt with on a first come first served basis.

• Keyboard queues: The keyboard buffer (which stores

characters as they are typed) operates as a queue. As

such, the first letter to be shown on the screen is the first letter typed. New characters are added to the end of the

queue.

• Simulations of real-life situations: Checkout queues, carwashing queues, carpark-exiting queues, and so on, are all situations that require a queue. People or cars enter the

queue on one side and exit it on the other side.

REVIEW QUESTIONS

1 Define the term “stack”.

2 Define the term “queue”.

3 Identify the main operations of a stack.

4 Identify the main operations of a queue.

5 Explain the FIFO and the LIFO principles and how they apply to stacks and queues.

6 Identify a real-life scenario where you could use a stack.

7 Identify a real-life scenario where you could use a queue.

8 Outline a situation where the use of a stack might be more efficient than the use of a queue.

 9 Outline a situation where the use of a queue might be more efficient than the use of a stack.

10 Identify a scenario where you might combine a stack and a queue within the same program.

11 You must store a list of numbers in a particular sequence and then retrieve them in reverse order.

Identify the data structure that is most suitable for this task and explain your reasoning.

12 Outline three uses of a stack.

13 Outline three uses of a queue.

14 Describe two characteristics of a stack.

15 Describe two characteristics of a queue.

16 Compare the use of a stack with arrays or lists.

17 Compare static and dynamic data structures in terms of data storage and data access.

18 Explain the meaning of stack overflow and stack underflow and describe when they occur.

19 Use a stack to evaluate the following arithmetic expression: 5 2 * 3 2+ -

PROGRAMMING EXERCISES

1 Construct a program that creates a stack that has a maximum size of seven elements. Push five words into

the stack. Display the top element. Pop two words from

the stack and display the top element.

2 Construct a program to reverse the elements from a given queue using a stack.

ACTIVITY

Use your solutions to the programming exercises above to answer the following questions.

1 Why is the maximum size of the stack important? What happens if this maximum size is exceeded?

2 How would you change the solution to Exercise 2 if you were asked to reverse the elements of a stack using a

queue structure instead?

Common mistake

Students often lose marks by not giving responses

appropriate to the keywords used in the question. For

example, “compare static and dynamic data structures” is

expecting you to provide both similarities and differences between the two types of data structures, rather than just differences.

Common mistake

When required to state applications of a data structure,

such as a queue or stack, students often lose marks for not being clear enough to gain the marks. For example, saying

that stacks are used to undo would not be enough to gain

any marks.

Be specific and explain a clear situation where an undo

feature is needed, such as implementing an undo feature in games: actions are pushed on to the stack and, when the

previous action is needed, the undo feature is used to pop the top action from the stack.

B2.4 Programming

algorithms

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

• B2.4.1 Describe the efficiency of specific algorithms by calculating their Big O notation to analyse their scalability

• B2.4.2 Construct and trace algorithms to implement a

linear search and a binary search for data retrieval

• B2.4.3 Construct and trace algorithms to implement

bubble sort and selection sort, evaluating their time and

space complexities

• B2.4.4 Explain the fundamental concept of recursion and its applications in programming (HL)

• B2.4.5 Construct and trace recursive algorithms in a

programming language (HL)

B2.4.1 Big O notation

Complexity analysis of algorithms includes time and space

analysis. Time complexity analysis refers to how long an

algorithm will take to run or how many steps an algorithm

will take to run, while space analysis refers to how much

memory space it takes to run the algorithm.

Time complexity

Consider the following algorithm:

[image: Image 481]

[image: Image 482]

[image: Image 483]

[image: Image 484]

Java

Python

How many times will this loop repeat? The variable i will

take values from 0 to 4 included; therefore, it is simple to say that the algorithm will repeat five times. If we are to replace the 5 with n, the algorithm will repeat n times and the time complexity will be of the order of n. This is written as O(n), which is known as Big O notation. The time it takes to run the algorithm is approximately proportional to n. The larger the n, the more accurate the approximation;

therefore, when calculating the Big O notation, the worst-

case analysis is considered (the larger the n, the better).

Java

Python

[image: Image 485]

[image: Image 486]

[image: Image 487]

Big O notation: used to find the upper bound (worst-case scenario or the highest possible amount) of the growth of a function; the longest time or space required to turn the

input into output.

Consider the following example:

Java

Python

In the example above, the algorithm will repeat n times for the outer loop and n times for the inner loop, so a total of n*n times, which means time complexity becomes O(n2).

Let’s look at another example:

Java

[image: Image 488]

[image: Image 489]

[image: Image 490]

Python

In the example above, the number of repetitions is n2 + 3n.

As time complexity becomes more accurate for larger

numbers, when n takes a very high value, the addition of 3n is not even taken into consideration. As such, constants are ignored (the rate of growth is what matters) and the lower-order terms are ignored (as n grows larger, the larger term dominates all other terms). Therefore, the Big O notation is still O(n2). In the same way, if the number of repetitions is 25n3, n3 + 25n2 + ½n, the coefficients will be ignored and only the term with the highest exponent will be used, and so the Big O notation will be O(n3).

The final example is a simple statement, without any loops: Java

Python

In this case, Big O notation is constant; no matter how large the input value, the algorithm will take the exact same time to run, so we can say the time complexity is O(1).

The common time complexities expressed using Big O

notation are:

• O(1) – constant time: The algorithm performs a fixed number of operations; the time taken to run the algorithm

does not depend on the size of the input. Such algorithms

are ideal for operations where you need consistent

performance regardless of input size, such as basic

operations in data structures like hash tables.

• O(n) – linear time: The algorithm scales linearly with the size of the input. Such algorithms are appropriate for

simple searches where each element must be considered.

• O(n2) – quadratic time: The time taken to run the algorithm is directly proportional to the square of the input size. Such algorithms are often used when dealing with

small data sets; they are inefficient for large data sets.

• O(2n) – exponential time: The algorithm’s running time doubles with every increase in the input size. Such

algorithms are generally impractical for large inputs due to rapid growth in execution time.

• O(log n) – logarithmic time: The algorithm’s running time scales logarithmically with the increase in the input size. Such algorithms are suitable for searching and some

divide-and-conquer algorithms. They are ideal for cases

where you can efficiently reduce the problem size.

Space complexity

Space complexity analyses the amount of memory used by

an algorithm with respect to its input size.

Common space complexities expressed using Big O notation

are:

• O(1) – constant space: The space used by the

algorithm is not dependent on the size of the input. The

[image: Image 491]

[image: Image 492]

algorithm uses a fixed amount of memory, no matter the

input size.

• O(n) – linear space: The memory usage scales linearly with the input size.

• O(n2) – quadratic space: The space taken to run the algorithm is directly proportional to the square of the input size.

Consider the following example:

Java

Python

In the example above, no matter how many repetitions

there are, the space taken to store the sum and i variables in memory is always the same. The sum and i will be

overwritten with every repetition, so the space complexity stays constant: O(1).

As memory is not a real issue these days, it is often the case when writing an algorithm to aim for reducing the time

complexity, even if that means trading off more space.

To calculate the space complexity of an algorithm, you need to look at:

[image: Image 493]

[image: Image 494]

• Variables and constants: As variables are overwritten and constants don’t change their value during the execution of the program, they will always take up the same amount of

space, so they don’t need to be recalculated after the

execution of the program.

• Inputs: Inputs are important for space complexity. If the inputs are variables, arrays or other data structures, their space complexity differs.

• Execution: Based on how the algorithm is written, the

space complexity can be constant (when a fixed number

of simple operations are performed) or differ (when, for

example, a function calls itself several times, and so extra space is needed to store the return values and values of

the parameters that will be used in unwinding to provide a solution).

Java

Python

In the example above, the sum will include each value

stored in the array, so the space required to run the

algorithm is linear to the number of elements in the array: O(n).

Choosing algorithms based on

scalability and efficiency

• Small data sets: Simpler algorithms with higher time complexity (for example O(n2) or O(n3)) can be

acceptable.

• Large data sets: Algorithms with lower time complexity (for example O(n log n) or O(log n)) are preferred, for

better scalability.

• Real-time requirements: Algorithms with constant time complexity (O(1)) or logarithmic complexity (O(log n)) are considered, where possible.

• Complex problems: Dynamic programming or divide-

and-conquer approaches with manageable time

complexity are used.

Selecting the right algorithm depends on the problem

constraints, input size and performance requirements.

Analysing time complexity helps ensure that the chosen

algorithm will perform efficiently as the input size grows.

REVIEW QUESTIONS

1 Explain what Big O notation is and why it is used in Computer Science.

2 Define the terms “time complexity” and “space

complexity”.

3 Outline the difference between O(n) and O(n2). Identify two algorithms that present these complexities.

4 Explain why you think it is important to consider the worst-case space complexity of an algorithm.

5 Sketch a graph to compare the time complexity of O(n) and O(log n). What differences do you notice?

6 Consider the following statement: “An algorithm with a Big O value of O(n) will always be slower than one with a

value of O(log n)”. Evaluate this statement to true or

false and explain your reasons.

7 Outline the two types of complexity analysis.

8 Identify which is generally faster for a very large n: O(log n) or O(2n).

B2.4.2 Linear search and

binary search

Search algorithms are used to find a specific item in a data structure. Such algorithms can be used to find an item in a list or in a database; to search for an item (word or phrase) in a document; to find a relevant webpage based on a

keyword typed in a search engine; or to find a location on a map.

Linear search

A linear search is also called a “sequential search” as it traverses a data structure from the beginning to the end

when looking for a specific item. In the best-case scenario, the item is found in the first position, but in the worst-case scenario the item is the last item in the list and so the entire list is traversed.

[image: Image 495]

1D array (list) – linear search

Linear search: a method of searching, in which each element is checked in sequential order.

Consider an array (list) of integers with ten elements and a key, being the element you are searching for.

To find the key, you will use a loop to traverse the array (list).

Starting at the first index, the element stored at position 0

will be compared with the key. If they are the same, the

element is found; otherwise, the process repeats until the element is found or until the end of the array (list) is

reached.

[image: Image 496]

If a conditional loop is used, the algorithm can be stopped once the element is found. But if a count-controlled loop is used, the algorithm will traverse the entire list (array), even if the searched element has been found.

Java

Python

[image: Image 497]

This algorithm can be improved, so it stops when the

element is found by using a conditional loop.

When you think of Big O notation, linear search has a time complexity of O(n), as in the worst-case scenario every single element in the array (list) will be traversed in the attempt to find the searched key. At the same time, the

space complexity is O(1), as the space required to run the algorithm is constant.

Binary search

Linear search is not a very efficient algorithm, especially when the size of the array (list) is considerably high.

Binary search is a more efficient searching algorithm as it reduces the number of searches to half with every

comparison performed, so the time complexity is

logarithmic O(log n). However, to be able to perform a binary search on an array (list), the data structure must be sorted (it must be in order). This is because the algorithm works as follows:

• Set a variable (lower) to store the lower bound index.

• Set a variable (upper) to store the upper bound index.

• Calculate the middle index (mid) by using the formula mid

= (lower+upper)/2

• Compare the value in the middle index with the search

key (if numbers[mid]==key).

• If they are the same, the value is found and the algorithm can stop.

• If the value in the middle position is smaller than the key, you can disregard the left side of the array (if the array is sorted in ascending order) by setting the lower variable to the middle index + 1: lower = mid + 1

• If the value in the middle position is greater than the key, you can disregard the right side of the array (if the array is sorted in ascending order) by setting the upper variable to the middle index − 1: upper = mid − 1

• Repeat the entire process, starting from the third point until the value is found or the end of the array (list) is reached.

Binary search: a method of searching an ordered array (list) by repeatedly checking the value of the middle

element and disregarding the half of the data structure

that does not contain the searched element.

[image: Image 498]

1D array (list) – binary search

Java

[image: Image 499]

Python

[image: Image 500]

Each algorithm is more appropriate in different scenarios.

For example, if the list (array) needs to be searched once for a given element, such as the ID of a worker, and the

organization has fewer than 50 employees, it would be

faster to simply use a linear search, rather than having to sort the data structure and then apply a binary search on it.

However, if there is a need to search for the home address of a student based on their school ID, in a data structure already ordered based on the students’ IDs, and the school has 1500 students, it would be much more appropriate to

use a binary search to retrieve the student’s details.

B2.4.3 Bubble sort and

selection sort

Sorting refers to arranging the elements in an array (list) into ascending or descending order. You already practised a swapping technique at the beginning of the unit. This

technique is used in sorting routines.

Bubble sort

Bubble sort is a sorting algorithm that uses an incremental approach, and it works by repeatedly swapping the adjacent elements if they are not in the right order. If the array (list) was traversed only once, there might still be elements in the array (list) that are not yet sorted.

[image: Image 501]

Bubble sort

Bubble sort: a sorting algorithm that compares adjacent values and swaps them if they are in an incorrect order.

Bubble sort algorithms work as follows:

[image: Image 502]

• Start at the beginning of the array (list).

• Compare the current element with the next one.

• If the two values are not in order, swap their contents.

• Move to the next element in the array (list).

• Repeat the process until all the elements have been

sorted.

As shown in the diagram, once the array (list) has been

traversed once, the last element is surely in the right

position. Therefore, to optimize the algorithm, the number of repetitions can be reduced by 1.

Java

Python

[image: Image 503]

The inner loop repeats from 0 to the size of the array (list)

−1, because you compare one element with an adjacent

one and, when the current element is the second last to be compared with the last element, that should be the last

comparison that takes place.

The same repetition is reduced by i every time. This ensures that, when the array (list) is traversed the first time, it will repeat to its size −1, as i is initially 0, but with the next traversal it will repeat to size −2, and the next pass it will be size −3, and so on. This is happens because, with the first pass of the array (list), the last element moves to the

correct position; with the second pass, the last and the

second last are in the correct position, and so on.

Another way to implement a bubble sort is by using a

conditional loop:

Java

[image: Image 504]

Python

[image: Image 505]

Although it is quite simple to understand the algorithm and to implement it, the bubble sort has a time complexity of

O(n2), which means it is a very inefficient algorithm, especially when it comes to large sets of data. In terms of space complexity, the bubble sort algorithm is very efficient O(1), requiring a constant memory space to store the variables read from the array, the indices and the temporary variable. This required space would not depend on the size of the input; it would not require additional space

proportional to the size of the input array.

Selection sort

To easily understand the algorithm, imagine you split the

original array (list) into two parts. The first part is the sorted part, which is initially empty, and the second part is the unsorted part, which initially contains the entire array (list).

With the first part, the smallest element in the unsorted part is selected and swapped with the first element in the array.

[image: Image 506]

This smallest element now becomes the sorted part of the

array. In the second pass, you now search for the smallest element in the unsorted part and swap it with the second

element. The sorted part now includes the first and second element. The process repeats until all the elements are

sorted, the sorted part includes the entire array and the

unsorted part is empty.

Selection sort

Java

[image: Image 507]

[image: Image 508]

Python

[image: Image 509]

The same algorithm can be implemented by using just the

index of the smallest element, instead of retrieving the

smallest element and its index to swap:

Java

Python

[image: Image 510]

The limitation of the selection sort is that it doesn’t allow for an early exit if the array (list) is ordered at an earlier point. The time complexity of the selection sort is O(n2) and the space complexity is O(1). Selection sort performs a smaller number of swaps; therefore, it is said to be a more efficient algorithm than the bubble sort algorithm. However, it is possible to stop the algorithm if all elements are sorted during an early pass in a bubble sort by using the flag in a conditional statement, which is not possible in a selection sort.

Selection sort: a sorting algorithm that repeatedly selects the smallest or largest element (ascending or descending

order) from the unsorted part of the data structure and

moves it to the sorted part.

ACTIVITY

Research skills: Present information in a variety of formats and platforms – find an ingenious way to explain

one of the programming algorithms you have studied. For

example, use labelled cups to explain a sorting algorithm, create an animation, a video, and so on.

B2.4.4 Recursion (HL)

Recursion represents a technique that involves the use of

functions, procedures or algorithms calling themselves one or more times until one or more specific conditions are met, at which point the process unwinds itself to produce a

solution, by processing the last call to the first.

Characteristics of a recursive algorithm include:

• a method or function that calls itself

• a termination condition or a base case – a termination solution that is not recursive; without a base case, the

algorithm will run to infinite

• a general case that calls itself recursively or is defined in terms of itself, and moves towards the base case by

changing its state (winding)

• unwinding, which occurs when the algorithm reaches the base case (cascades up until the original problem is

solved or, in other words, is processing the results,

starting at the last call and building up towards the base case).

Base case: a terminating solution (that is not recursive) to a process.

General case: a process where the recursive call takes place.

Winding: a process occurring when recursive calls are made until the base case is reached.

Unwinding: a process occurring when the base case is reached, and the values are returned to build a solution.

Recursive algorithms provide elegant solutions to complex problems, by often using less code and fewer variables than iterative approaches. They allow the programmer to divide

complex problems into smaller sub-problems that are more

readable and easier to solve. However, if many recursive

calls are made, there is a heavy use of the stack, a process that is memory intensive and could potentially lead to stack overflow, and the computer running out of memory. If the

termination condition is not set correctly, the algorithm

might run to infinite, or the system might crash or freeze due to the high number of recursive calls.

Recursion might take longer to execute than other

techniques or iterative approaches, as each call takes a

specific amount of time, in addition to the time required to build up the final solution.

Recursion can also be challenging to follow sometimes,

which can make it difficult for other programmers to

maintain, document or modify it.

Recursion can be used:

• to implement sorting algorithms, such as quick sort

• for fractal image creation

• for traversing binary trees or graphs

• for solving mathematical problems, such as factorial

functions and towers of Hanoi.

When choosing whether to solve a problem by using a

recursive algorithm, ask yourself the following questions:

• Is it possible to identify a base case?

• Is it possible to solve the problem by calling itself or splitting it into smaller instances of the same problem?

• Does it require data structures like graphs, trees or linked lists – data structures that can be seen as repetitive

instances of itself?

• Does it require backtracking?

• Is there a mathematical expression that can be translated into a recursive algorithm?

• Are you solving the problem in a more elegant, simpler

and logical way by using recursion, without sacrificing too much memory or performance?

REVIEW QUESTIONS

1 Define the term “recursion”.

2 Compare recursive and iterative algorithms.

3 Explain the need for a base case in a recursive program.

4 Identify one consequence of not using a base case in a recursive function.

5 Identify some advantages and disadvantages of using recursion.

6 Explain what steps you would take to debug a recursive function that does not work as expected.

B2.4.5 Recursive algorithms

(HL)

Factorial of a number

One of the exercises in Section B2.3.4 required you to find the factorial of a number. You were able to solve this

problem by using a loop. However, now you understand the

concept of recursion, you can easily establish that this

problem can be solved by using a recursive algorithm.

Starting from the mathematical formula that defines the

factorial of n: n! = n * (n-1)!, you can identify that 5! can be defined as 5 *4! and 4! can be defined as 4*3!, and so on, until n = 1, which will return 1. The base case is when n = 1, as 1 will be returned, and the recursive call is when the

[image: Image 511]

[image: Image 512]

method calls itself with n - 1 as a parameter. Therefore, the solution to this problem is:

Java

Python

Fibonacci sequence

Another application of a recursive method is in solving the Fibonacci sequence.

The Fibonacci sequence looks like this:

[image: Image 513]

0, 1, 1, 2, 3, 5, 8, 13, 21, 34…

Fibonacci sequence

• F0 = 0

• F1 = 1

• F2 = F1 + F0

• …

• Fn = Fn-1 + Fn-2

To find the sequence for the first n terms, the base cases are identified as being F0 and F1, where the returned values

would be 0 and 1 and the recursive call: Fn-1 + Fn-2.

Java

[image: Image 514]

[image: Image 515]

Python

Quicksort

If the bubble sort and selection sort discussed earlier use an incremental approach, the quicksort is an efficient sorting routine that uses the divide-and-conquer algorithm. The

divide-and-conquer principle refers to dividing the problem into two or more identical, smaller sub-problems that can be solved individually, and their solutions combined to produce the solution to the larger problem.

Quicksort: a sorting algorithm that repeatedly selects an element as a pivot and partitions the other elements into

two sub-arrays (lists): one that includes elements that are smaller than the pivot and the other one that includes

elements that are larger than the pivot.

The quicksort algorithm makes use of a pivot element from

the data set, against which the other elements are

compared, to identify their correct position. The pivot

element can be the first element, the last element, a

random element or the middle element in the data set.

Imagine that the data structure is broken into two partitions (sections): one that contains elements smaller than the

pivot and one that contains elements larger than the pivot.

A way to construct the quicksort algorithm is by

implementing the following logic:

• Set the pivot as the middle element.

• Start at each end of the list by using a left pointer and a right pointer.

• Move the values smaller than the pivot to the left

partition.

• Move the values larger than the pivot to the right

partition.

• Recursively apply the same principle for the left partition until all elements are sorted.

• Recursively apply the same principle for the right

partition until all elements are sorted.

Java

[image: Image 516]

Python

[image: Image 517]

[image: Image 518]

[image: Image 519]

Quicksort

Common mistake

Always pay attention to the logic behind the algorithms you write. Many students implement sorting algorithms

incorrectly or they confuse the algorithms in between. For example, when the question is requiring the sorting of an

array in ascending order by using the selection sort, a

common mistake is to implement an incorrect bubble sort,

or an algorithm that outputs the values in descending order instead of ascending, as required.

Pay attention to the features of each of the sorting

algorithms and understand the logic behind them.

REVIEW QUESTIONS

1 Complete a trace table for a bubble sort algorithm to sort the numbers: 16, 13, 4, 6, 22, 1, 9, 5.

2 Complete a trace table for a selection sort algorithm to sort the numbers: 16, 13, 4, 6, 22, 1, 9, 5.

3 Complete a trace table for a quicksort algorithm to sort the numbers: 16, 13, 4, 6, 22, 1, 9, 5.

4 Create a table outlining the Big O value for both time and space complexities for all the searching and sorting

algorithms you have studied.

5 Outline the principles of working of a selection sort and a quicksort algorithm.

Traversal of binary trees

At this point, you will need to review the binary trees

concepts in Section B4.1.4. If you have not covered this topic yet, take the time to do it now.

Binary trees can be traversed by using a recursive algorithm as well. The logic behind this is the following:

• Visit a node or display its content.

• Traverse the left subtree.

• Traverse the right subtree.

The order of those three operations depends on the type of traversal used. For example, in an in-order traversal you

need to follow the left, root, right pattern, as shown in the algorithm below; as such you will go to the leftmost node

and visit it, then the data in the node above, and then the right node. Once this is done, you move one level up and

repeat the process, so the left subtree will be first traversed, then the root and then the right subtree. In a post-order

traversal you need to follow the left, right, root pattern, and in a pre-order traversal you need to follow the root, left, right traversal.

[image: Image 520]

Java

[image: Image 521]

Python

PROGRAMMING EXERCISE

Implement the post-order and pre-order traversals of a

binary tree using recursion.

ACTIVITY

Thinking skills: Create novel solutions to problems –

choose an iterative program you have created before, and

attempt to rewrite it using a recursive approach.

ACTIVITY

Use your answer to the programming exercise above to

answer the following questions.

1 Did you use two different functions to solve the exercise? Did the functions work as expected?

2 Did you use any local or global variables? Why did you need any local variables, if you used any?

Common mistake

Practical questions requiring algorithms to be described

often lack clarity. Ensure steps are clearly outlined. You can support explanations by adding code or pseudocode

statements, but those should be clearly explained to gain

marks.

B2.5 File processing

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

• B2.5.1 Construct code to perform file-processing

operations

When creating a program, you might want to store data

permanently so that, once you close your program or switch off the computer and you turn it on again, the data can still be retrieved and manipulated. One way to achieve this is to store the data in a file. The program will be able to

manipulate the data stored in several types of files, such as text files (.txt), comma-separated value files (.csv), binary files (.dat), and so on.

To avoid having to use the absolute path of your file (to specify the entire location), save the file within the same folder as your program. This will allow you to access the file by simply using its file name, also called the relative path of the file.

Absolute path: the location of a file specified from the root directory (the full path).

Relative path: the location of a file relative to the current folder.

A text file is a sequential file, meaning that data in the file can be accessed sequentially (line by line) and new records will be added to the end of the file.

A file can be opened in several modes: write, read and append. When opening a file in write mode, new data inserted into the file will overwrite the existing content in the file. Read mode is used to allow you to access the data from the file to read it, and append mode allows you to insert new records at the end of the file without erasing

previous content.

The process to write text to a text file is as follows:

• Open the file for write or append, as needed.

• Prepare the line of text to be written.

• Write the line to the file.

• Close the file.

The process to read text from a text file is as follows:

• Open the file for read.

• Read the content from the file:

• Read a single line from the file.

• Use a loop to repeat for all the lines in the file and read them line by line.

• Read the entire file into a data structure.

• Close the file.

File processing in Java

To process files in Java, you can use:

• the Scanner class

• the FileWriter class

• the BufferedReader class.

Scanner class

The Java package java.io includes the Files class that allows you to manipulate files, so this package needs to be

imported first.

To create a file, follow the procedure of creating an object of type File and pass the file name as a parameter to the

constructor.

File f = new File (“fileName.txt”);

There are specific methods that can be used on the newly

created file:

Method

Explanation

exists()

Returns true if the file exists on the disk

delete()

Deletes the file

getName() Returns the name of the file

length()

Returns the number of characters in the file

renameTo(

Receives a parameter to specify the new

)

name of the file

canRead() Returns true if the file can be read

You have already used the Scanner class several times by

now to read input from the keyboard. You can use the same

class to read a file, by passing a file object as a parameter.

Scanner nameOfScanner = new Scanner (f);

In the line of code above, the nameOfScanner variable is an identifier, chosen to label the scanner for future use, and the f variable passed to the Scanner constructor is the file object created above.

The same purpose can be achieved by using:

Scanner nameOfScanner = new Scanner (new File

(“fileName.txt”));

The Scanner uses tokens. When you use a function like

nextLine(), the Scanner will split the input into tokens (units

of user input, separated by whitespaces).

For example, if the text file contains the following two lines of text:

“Bobby Bob”

3 75.5

the Scanner will split this into tokens, as follows:

Token

Possible data types

“Bobby

string

Bob”

string

3

int, double, string

75.5

double, string

Each call to the functions next(), nextInt(), nextDouble(), and so on, will consume a token, meaning it will read the

token and advance the cursor to the next one.

Consider the following exercise: Construct a program that

will read five numbers from the text file called “numbers”

and will output their average.

Consider that the text file includes the following numbers on five different lines:

3

3.4

4

4.6

5

Java

[image: Image 522]

In the code above, the function nextDouble() is used to

read the next token in the file, as the problem already

described the data type of the values stored in the file. But in case you don’t know what type of data is stored, the

scanner has functions that will return true or false when

checking whether the next token is of a specific data type.

As such, the function hasNextInt() will return true if there is a next token in the file of data type integer. Similarly, you can use hasNextDouble() or hasNextLine().

Another structure used above is a FOR loop that repeats five times. This is possible as the number of lines in the text file is known. In case that is unknown information, a conditional loop can be used to repeat, as long as there is a next token in the file. The condition would include the function

hasNext().

To read a file line by line, the function nextLine() can be used.

[image: Image 523]

Java

Even if the values stored in the file are of decimal numbers, they can be read with nextLine(), which interprets them as being of string data type. This is because, as described

above, the values stored in a file can have more possible

data types. If a conversion is possible to one of the required data types, there will be no error thrown.

In both examples, a try/catch block is used for exception

handling. This is because the text file might not exist, or any other error might occur when reading the data and

performing the required operations. By using exception

handling techniques, the code will not crash.

The java.io package is used for both input and output.

Therefore, it also includes the PrintStream, which allows you to write output to the text file.

Java

[image: Image 524]

When creating the PrintStream, the out variable has been

used as an identifier. The file passed as a parameter is

generated by calling the constructor called File. In case this file already exists, it will be overwritten. Otherwise, a new file called numbers.txt will be created.

It is important to keep in mind that you should not open a file for both reading and writing at the same time (Scanner and PrintStream).

If you want to append data to the file so the new text will be added at the end of the file, rather than overwriting its

contents, you can replace the File constructor with

FileOutputStream and pass the parameter true together

with the file name to it. By setting the second parameter to true, it sets the file to append mode.

Java

[image: Image 525]

The PrintStream can be closed at the end, by simply using

the close() function: out.close().

FileWriter class

The FileWriter class is also part of the java.io package, and it is used to write data in character form to the file (streams of characters). To create a FileWriter, simply create a FileWriter object that will pass the file name as a parameter to the

constructor.

FileWriter out = new FileWriter(“numbers.txt”);

Again, if the file does not exist, a new one will be created, but if it exists it will be overwritten.

To write data to the file, the write() function is used and the writer can be closed by using the close() function.

Java

[image: Image 526]

[image: Image 527]

The code above will overwrite the existing text in the file. To open the file in append mode, just set the append mode to

true, by adding a second parameter to the FileWriter

constructor.

Java

To read data from a file in character format, FileReader can be used.

FileReader read = new FileReader(“numbers.txt”);

[image: Image 528]

This allows you to read a single character from the file with the read() method, to read the characters from the file and store them into a named array with the read(char[]

arrayName), or to read a given number of characters from

the file starting at a specific index and store them into a named array with read(char[] arrayName, int startIndex, int length).

Java

BufferedReader class

BufferedReader class is used to read data from a character-based file. It can read a single character by using the read() function or read an entire line of text by using the readLine(

) function. To use the BufferedReader, there is a need to

instantiate a FileReader object as well.

Java

[image: Image 529]

Before printing the character, it is converted to a char, as the values read from the BufferedReader are integer values representing the given character. If the method returns −1, it means there are no more characters in the file; therefore, this condition is included in the conditional loop.

Java

[image: Image 530]

File processing in Python

To process files in Python, use the following functions:

• open()

• read()

• readline()

• write()

• close()

The open() function takes two parameters: the name of the file and the mode the file should open in. There are several modes available in Python:

• “w” – write mode: The file is opened for writing text to it:

• If the file does not exist, it creates a new file with the given name.

[image: Image 531]

• When adding text in write mode, the new text added

will overwrite the previous text.

• “a” – append mode: The file is opened for adding text at the end of the file:

• If the file does not exist, it creates a new file with the given name.

• When adding text in append mode, the new text is

added at the end of the file, so the previous text is not

overwritten.

• “r” – read mode: The file is opened for reading data from it:

• If the file does not exist, it will throw an error.

The default mode is the read mode. Therefore, writing f =

open(“numbers.txt”) is the same as writing f =

open(“numbers.txt”, “r”).

Python

The code above will create a file called numbers.txt in case it does not exist on the disk, and it will write the given text to it. Once this is done, the file is closed. If the program is run again with a different line of text, the existing text in the file will be overwritten.

Python

[image: Image 532]

[image: Image 533]

The code above opens the file, writes the given text to the file and closes it. Afterwards, the file is open in read mode, the line is read and displayed, and then the file is closed.

read() will read the entire content of the file so, if the file contains several lines, as shown below, they will all be

displayed. Although this might seem an inefficient method, it can be used to read the entire content of the file into a data structure, such as a list, and then to manipulate the data stored in the respective data structure.

Python

The \n will move the cursor on to the next line after a line of text has been written. To read a single line of text, the

readLine() function can be used.

Python

[image: Image 534]

[image: Image 535]

In the code above, although the file contains two lines of text, only the first one will be displayed.

To display every line of text in the file, a conditional loop can be used.

Python

In the code above, a new line of text is read until the

retrieved line is blank. As manipulating files might produce several errors, such as the file not being found on the disk, or an operation on the file being impossible to be

completed, it is always a good idea to use exception

handling via try/except blocks.

[image: Image 536]

[image: Image 537]

Python

The same result can be achieved by changing the condition

of the loop to check whether the retrieved line of text has a length different from 0.

Another way to do this is to use the following loop:

Python

[image: Image 538]

This would repeat for each line in the file and display it accordingly.

Sometimes, you might want to check whether the file exists before attempting to perform an operation on it. This can be done by importing the os library and using the

os.path.exists command:

Python

It is very important to close the file once it has been

manipulated for a given mode.

Top tip!

When creating programs that manipulate files, if you are

using a relative path in your program, ensure that both the text file (.txt) and the coding file (.py or .exe) are within the same folder. If they are not within the same folder, the

program won’t be able to access that file unless the

absolute path is provided.

PROGRAMMING EXERCISES

1 Construct a program that checks whether a given file exists (called name.txt). If the file does not exist, the

program asks the user what their name is, prints a

personalized greeting message to them and saves the

person’s name into name.txt. If the file does exist,

instead of prompting for their name, it loads the name

from the file and prints the personalized greeting immediately.

2 Construct a program that uses a file to store a number to represent the number of times the program has run.

Every time the program runs, it should increase the

number by one and save the new value.

3 Construct programming code that generates 100

random numbers with values between 1 and 70. Store

those numbers into a text file, one number per line. Call

the file numb.txt.

4 Construct code that uses the numb.txt file to read the numbers, identify the number of duplicate values and

delete those duplicate values from the file. Output how

many numbers were deleted.

5 Construct code to append to the same file the exact number of elements that were deleted in question 4,

including values from 71 to 150.

6 Construct programming code to read the text file and sort the values in ascending order using an efficient

bubble sort algorithm.

7 Construct a program to read the values from the text file and identify the odd numbers. Store those numbers into

a new text file.

Linking questions

1 Does database programming in SQL require

computational thinking? (A3)

2 Why is an understanding of variables and their scope important for effective memory management in

computer systems? (A1)

3 Is algorithmic efficiency relevant to machine learning, where large data sets are processed, and computational

cost can be significant? (A4)

4 Are data structures, such as stacks and queues,

applicable in networking algorithms for packet routing

and load balancing? (A2)

5 How can graph theory be applied to packet distribution in networks? (Mathematics A&I HL)

6 How do graph algorithms and terminologies, such as vertices and edges, impact machine learning algorithms

like network analysis? (A4, Mathematics A&I HL)

7 How can network traffic be used as an example or connection to programming algorithms? (A2)

8 How can programming algorithms be used to develop machine learning methods? (A4)

EXAM PRACTICE QUESTIONS

1 Consider the following code that processes an input string:

Java

[image: Image 539]

Python

[image: Image 540]

a Trace the algorithm for the input value of:

“car,boat,ball” by copying and completing the

following table, up to the variable pos becoming 7.

[4]

VALUE POS LETTER LETTER = “,”

OUTPUT

b Deduce the purpose of the algorithm.

[3]

c The output is dependent on the exact format of the input. Identify two strings that would not generate

the desired output.

[2]

2 A group of friends play a round-robin tournament game of table tennis, where each person plays against each

other player for 5 minutes at a time. The information

from the tournament is recorded in parallel arrays

[image: Image 541]

(lists), NAMES and SCORES, examples of which are

shown below.

When two people have their round against each other,

each player records the points they win in their

assigned row, in the column for the person they are

playing against. For example, in the data set below,

when Annabelle played against Jack, SCORES[0][3]

shows that Annabelle scored 4 points, and SCORES[3]

[0] shows that Jack scored 8 points.

a Construct an algorithm that will declare and populate the NAMES array (list), based on the example data

above.

[2]

b Identify the data type of the elements in the SCORES

array (list).

[1]

c Identify the winning player in the game between

Claire and Benjamin.

[1]

d Construct an algorithm that will print the names of players for every round, each player’s respective

scores and who the winner was. If the game was a tie, output an appropriate message. For example:

Annabelle scored 3 vs Benjamin scored 5: Benjamin

won

Annabelle scored 4 vs Claire scored 7: Claire won

…

[6]

e Construct an algorithm that will declare two new parallel arrays (lists) to keep track of a leaderboard

based on net points each player has won. Perform the

calculations necessary to populate these arrays. The

two parallel arrays should be LeaderName and

LeaderPoints. Each player’s element in the

LeaderPoints array should be the total of points they

won minus the total of points they conceded.

For example, the first two rows using the data above

would be:

LeaderName LeaderPoints

(Annabelle won 19 points

Annabelle

−5

but conceded 24)

(Benjamin won 19 points

Benjamin

1

and conceded 18)

[8]

f Construct an algorithm that will sort the parallel arrays (lists) of LeaderName and LeaderPoints in

descending order of LeaderPoints.

[6]

g Construct an algorithm that will save the parallel arrays (lists) of NAMES and SCORES to names.txt and

scores.txt text files.

[4]

3 A company has exported its sales data from a

spreadsheet to a couple of text files. NAMES.txt

contains a list of the names of its salespeople and

SALES.txt contains a list of the total sales made by each

person in the last month.

For example, the first few lines of each file may

resemble the following:

NAMES.txt SALES.txt

Amina

23424

Carlos

42549

Emily

52488

Hao

37562

Isabella

44770

a Construct an algorithm that will declare two parallel arrays or lists, NAMES and SALES, open the files and

load their content into the respective array or list. You

may assume there is a maximum of 1000 entries in

the file.

[4]

b Construct an algorithm that will use a recursive quicksort to sort the two parallel arrays or lists by

SALES in descending order.

[8]

c The content of the NAMES array (list) was iterated over with a loop, and its elements added into an

empty stack (element 0 was the first to be added to

the stack). What can be said about the order of the

NAMES that will be popped off the stack in respect to

their sales?

[3]

4 a Define the term “queue”.

[2]

b Describe an application that uses a queue in a

computer system.

[2]

5 State the efficiency of the quicksort algorithm in Big O

notation.

[1]

6 Outline two uses of a stack in a computer system.

[4]

7 Outline the differences between storing a queue in a linear form as opposed to a circular form.

[4]

8 State which data type is best for storing a telephone number (e.g. 00352 661 008 990) and give two reasons.

[3]

9 Arrays or linked lists can be used to implement stacks and queues.

a Describe the advantage of using an array to

implement a stack or a queue.

[1]

b Describe the advantage of using a linked list to implement a stack or a queue.

[1]

10 The following list of numbers needs to be put into ascending order:

3, 11, 7, 2, 4, 1, 6

[image: Image 542]

State the list that would be obtained after two iterations of a selection sort.

[1]

11 Define the term “recursion”.

[1]

12 Construct a program to calculate the sum of numbers from 1 to n using recursion.

[4]

13 State one advantage and one disadvantage of

recursion vs iteration.

[2]

14 Consider the code shown below.

Java

Python

[image: Image 543]

[image: Image 544]

[image: Image 545]

a State the scope of the variable n.

[1]

b An integer array (list) called b is initialized with the values {11,12,13,14}. The procedure manipulate is

called again with the parameters 14 and b. Explain

why the assignment a[0]=15 in the body of the

procedure changes the values stored in the array

(list) b.

[3]

15 Consider the following data structure:

Java

Python

a State the name of the data structure.

[1]

b Outline how the data value 3 can be directly

accessed.

[1]

[image: Image 546]

B3 Object-oriented

programming (OOP)

B3.1 Fundamentals of OOP

for a single class

 Is OOP an appropriate paradigm for solving complex

 problems?

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

• B3.1.1 Evaluate the fundamentals of OOP

• B3.1.2 Construct a design of classes, their methods and behaviour

• B3.1.4 Construct code to define classes and instantiate objects

• B3.1.5 Explain and apply the concepts of encapsulation

and information hiding in OOP

• B3.1.3 Distinguish between static and non-static

variables and methods

B3.1.1 Fundamentals of OOP

Object-oriented programming (OOP) is a paradigm in

Computer Science that increases modularity by providing a

new type of abstraction.

Object-oriented programming: a form of programming that involves creating code for classes of objects, allowing many such objects to be created from a single code base,

achieving a more modular and extensible software

development process. It is like the idea of producing

architectural blueprints, from which many similar houses

can be constructed.

Just as you have experienced the benefits of modularity

through writing functions that allow you to standardize

behaviour for a given combination of input parameters, OOP

lets you take this even further. It allows you not only to standardize behaviour, but also to standardize the structure of the data within your code.

OOP achieves this level of modularity by empowering you to define custom data types, known as “classes”. You are no

longer constrained to basic data types like integers, floats and strings; you can now craft custom variables of types

such as Person, Book, BankAccount or ShoppingBasket.

Similar to creating various instances of integers or strings, you can instantiate numerous instances of your classes.

When you manage existing data types like strings and

integers, they come with standardized methods for setting

their values and for manipulation. For example, with strings, you don’t need to program custom functions to extract

substrings, locate the first occurrence of a character or

convert to uppercase or lowercase. These capabilities are

inherent to the data type. With OOP, you tailor functionality specifically for your class, creating methods that align with the nature of the data it represents. Furthermore, similarly to using strings and integers without knowledge of their

internal storage mechanisms, the internal data structure of your classes remains encapsulated, hidden behind the

interface you provide as the creator of the class.

The advantages and

disadvantages of using OOP in

various programming scenarios

There are numerous advantages to using OOP in your

programming, including:

• Increased modularity: Designing programming code around data and the functions that manipulate it can make

it easier to manage large code bases. Objects can be

created and modified independently of each other.

• Code reusability: A class, once written, can be imported into other projects and reused many times.

• Encapsulation: Hiding the internal mechanisms through which a class manages its internal data means that

programmers only interact with the class through its well-

defined interfaces, such as publicly exposed functions, and don’t attempt to access the internal data directly.

Programmers trust the class to know how to update its

own internal data. This helps prevent unintended

consequences resulting from managing data directly.

• Scale: By allowing increased modularity and reusability, OOP allows projects to scale in size yet remain

maintainable.

• Collaboration: Increased modularity also increases the ease for delegating different parts of the project to

different team members, allowing more people to work on

the same project with ease.

TOK

Are some types of knowledge less open to

interpretation than others?

The structured nature of OOP, with its defined classes and behaviours, might suggest it is less open to interpretation than more flexible paradigms like procedural programming.

It is worth acknowledging that OOP is not a perfect solution to all programming problems. There are some potential

drawbacks to be aware of, including:

• Learning curve: OOP-related concepts, such as classes, objects and inheritance, can be difficult to understand for beginner programmers.

• Increased complexity: Small problems where a

procedural approach would suffice can become

unnecessarily complex to implement in a purely OOP

approach. This complexity can also make projects more

challenging to debug and maintain.

• Overuse: OOP is good at solving certain types of problems, but it is not a one-size-fits-all solution.

Attempting to force everything to be viewed as an object

of a class can result in deep inheritance hierarchies,

leading to code that can be difficult to understand and

maintain.

• Overhead: OOP will typically introduce additional overhead in time and space requirements compared to

using paradigms with less abstraction.

• Lack of optimization: The focus of OOP is on providing abstractions to improve modularity. That comes at a cost

in terms oforganizing code into constructs that are more

efficient for the CPU. In performance-critical applications, lower-level paradigms may be more suitable.

• Object-centric design limitations: OOP’s focus on objects can sometimes lead to design limitations when

dealing with certain problem domains. Some problems

may be better modelled using alternative paradigms, such

as functional programming or procedural programming.

So, while an important and valuable tool for any programmer, OOP is not a magic solution to all

programming needs.

Linking question

Is OOP necessary for all programming or just in the

modelling of complex situations? (B2)

Common mistake

Not thinking in objects: OOP requires a mental shift in how to approach your programming problems compared to

procedural programming. It is very easy to fall back into old habits. Try to practise abstract thinking and simplify

complex real-world items into classes. It can be hard to

figure out what should be an object, a class or a method at times, and it will take practice to get right.

Bank accounts

To begin, study an example of how code that uses OOP may

look. The following code is based on a scenario of Bank

Accounts. The process of creating variables (known within

OOP as “objects”), and then performing simple tasks with

them, could be enacted through the following code.

Python

[image: Image 547]

Java

[image: Image 548]

[image: Image 549]

Notice that, without having to know anything about how

these objects manage their internal variables, you can

understand the expected behaviour and reasonably

estimate the output, which may resemble the following:

This is OOP at work. It allows you to create data types and write functions that are attached to, and have access to, the information stored within.

[image: Image 550]

B3.1.2 Designing classes,

their methods and behaviour

Before writing code, it is important to introduce the idea of the UML Class diagram. “UML” (Unified Modelling Language)

is the umbrella term for a series of standardized diagrams used within Computer Science. These have been established

to provide consistency in the design of computing projects.

One diagram within UML, the Class diagram, is used for

articulating the design of an OOP Class.

A UML Class diagram looks like a table in three rows.

• Row 1: The Class name is specified in the top row for identification purposes.

• Row 2: The variables within each instance are listed in the second row, along with their data type.

• Row 3: The methods associated with the Class are listed in the third row, including their parameter signatures and return data type.

Compare the following tables to clarify. The left example

provides a generic outline of the Class diagram, whereas the example on the right could be an implementation of the

BankAccount Class.

Template and example of a UML Class diagram

Within UML Class diagrams, a final important element to note is with respect to visibility. Notice that each element is preceded by a plus or minus sign. This indicates whether

the element should be set to public (plus sign) or private

(minus sign). This will be discussed further as part of B3.1.5

in the topic of encapsulation.

UML Class diagrams can also be used to depict relationships when classes are dependent on one another. This is

discussed further in B3.2.4.

You are expected to be able to create UML Class diagrams

for classes from code, and construct code for a Class from its UML. There are practice exercises for you to complete at the end of this chapter.

Top tip!

Use your UML diagrams. UML diagrams are your blueprints.

Sketch out your Classes and their relationships before

writing code. This may seem unnecessary at the start, but

it is a useful habit to form early that will pay dividends when you are devising increasingly large and complex

projects. As you do, start with the basic classes that form the core of your project and then expand as needed. Don’t

try to add everything at once as you will overcomplicate it.

B3.1.4 Coding classes and

instantiating objects

Creating the class

Instantiation is the process of creating a specific instance of a class, which is called an “object”. There are two key tasks performed as part of the instantiation process: the

allocation of memory for the new object, and the execution of the constructor method.

Instantiation: the line of code that declares a new object variable based on the template code provided by a class,

which then executes the constructor to initialize the object.

Constructor: a special method within a class that is automatically executed during instantiation; its main task is to initialize any instance variables required before an instance of the object can be used by other code.

The constructor is a special method whose role is to initialize a new object, with a specific focus on any instance variables within the object. In Java, the constructor is

identified by a method having the same name as the class.

In Python, the constructor is identified by the name

__init__(). The constructor doesn’t have a return type

(technically, it is returning the initialized object).

In Java, the this keyword is used to refer to the current

object instance of the class. It can be used to prefix any instance variable or method. It is particularly useful as a way of differentiating between instance variables and local variables that may have the same name. The this keyword

is optional unless ambiguity exists, such as needing to

differentiate between an instance variable and a parameter variable.

In Python, the self keyword performs the task of referring to the current object instance of the class. The self keyword is mandatory to prefix an instance variable or method.

Additionally, self must be listed as the first parameter for all methods belonging to the class. When calling these

methods in your code, you do not need to pass anything for that value; Python will do it for you.

To illustrate the syntax of constructing classes in Java and Python, the following will serve initially to construct the BankAccount example.

Top tip!

When naming your classes, it is standard practice to use a singular noun that represents the entity the template

represents. The methods (or functions) within that class

should then be named as verbs, indicating the action they

will perform on the objects of the class.

In addition, the naming convention dictates the following

for upper- and lower-casing of names:

• Class names: Capitalize all words (e.g. MyClass, BankAccount)

• Object instances: Camel case in Java (e.g. myObject) and snake case in Python (e.g. my_object)

• Method names: Camel case in Java (e.g. calculateTotal) and snake case in Python (e.g. calculate_total)

• Instance variables: Camel case in Java and snake case in Python.

Python

[image: Image 551]

[image: Image 552]

Java

Creating an object

[image: Image 553]

[image: Image 554]

Creating an array is the process of declaring and

instantiating an object variable based on the class type. It is at this point that you pass any parameters required by the constructor.

The following example creates an instance of an object

using the identifier name acc, of the type BankAccount. You can treat acc just like any other variable from that point onward.

Python

Java

Creating an array of objects

When initializing an array of objects, it is important to note that each individual object still requires its constructor function to be executed. This may require iterating over the entire array to explicitly execute the constructor on each element. Some examples based on the BankAccount

scenario follow.

Top tip!

[image: Image 555]

Because arrays contain multiple objects, their names

should always be a plural of the object contained within. In this case, it could be bankAccounts (Java’s camelCase) or

bank_accounts (Python’s snake_case).

Python

Java

[image: Image 556]

B3.1.5 Encapsulation and

information hiding in OOP

Encapsulation is the idea that programming code outside of the class should not have direct access to the data within the class. You can visualize the data as being protected by a capsule wrapped around it! The only way to permeate the

capsule is through the methods the class allows.

Encapsulation: bundles data and the methods that manipulate that data together into a single object. It serves to hide the implementation details of the object from

outside code.

Access modifiers: the mechanisms provided by the

programming language to control visibility of methods and

variables within an object.

By controlling access, encapsulation ensures that variables are only used in the manner in which they were intended,

helping protect your code from invalid, error-inducing

values. It also means that you can write code that uses

encapsulated classes without needing to know or care how

the class manages its internal state.

Successful encapsulation of your classes is fundamental to facilitating modularity in object-oriented programming.

Linking question

How can the principles of encapsulation and information

hiding (B2.5) be applied to secure network communication?

(A3)

Access modifiers

Encapsulation is achieved through using access modifiers.

The structure of access modifiers is different between Java and Python.

In Java, the access modifier is specified by supplying the relevant keyword in front of the variable or method

definition. There are four access modifiers to know:

• Private: Indicates it should only be accessible by the current object.

• Protected: Indicates that it may be accessed by the current object, and any objects that inherit it (more on

that in B3.2.1).

• Public: Indicates it may be accessible to any code within your program.

• Default: When no modifier is provided, it allows access for any object within the same Java package (as denoted

by the package statement at the top of your Java file);

Python does not have an equivalent of this.

In Python, access modifiers work slightly differently. They are specified through a naming convention for your

variables and methods. They can be bypassed. In this

sense, they are more guidelines than rules. That said, for the purposes of your course, you should avoid bypassing

them.

• Public: The default behaviour is that variables and methods are treated as public.

• Internal use: The single underscore prefix (e.g.

_variable) is used to indicate it is only for internal use within the class. While this is purely a convention, and the Python interpreter does not enforce it, most Python editors strongly hint at not using these variables by hiding them

or making them less visible.

• Name mangled: The double underscore prefix (e.g.

__variable) is used to instruct the Python interpreter to

rename the variable or method at runtime. The name is

mangled to include the class name, which makes it harder

(but not impossible) to access from outside the class. For example, __variable in a class named MyClass would be

mangled to _MyClass__variable.

This might seem like it makes a variable private, but Python doesn’t have truly private variables. Name mangling was

created to avoid naming conflicts, rather than to enforce

strict access control. The mangled name can still be

accessed from outside the class; it just requires knowledge of the name-mangling pattern Python uses.

For the purposes of your course, you can treat either the

single or double underscore prefix as denoting private, but ensure you are aware of the technical subtleties involved.

Accessors and mutators

By setting your variables to private, the inevitable

consequence is you will need to create a number of public

methods through which code outside your class can interact with those variables, query their value or request they be updated.

Methods that perform these tasks are formally known as

accessors and mutators. They are also often referred to as getters and setters.

Accessor: a public method that allows external code to

“access” the value of a private instance variable within an object; also known as “getter method” as it “gets” the

value.

Mutator: a public method that allows external code to update or mutate the value of a private instance variable

within an object; also known as “setter method” as it

“sets” the value.

For instance, if a Person class has variables for name and age, then there may be accessor methods getName() and

getAge(), as well as mutator methods setName() and

setAge().

Crucially, the example above serves to reinforce the

important role that encapsulation can play in protecting

your data. You may not want it to be so easy to update a

person’s name in your application, and the person’s age

may be calculated behind the scenes using the current date and a stored date of birth, rather than just being stored as an integer that will soon drift to being out of date.

Requiring accessor and mutator methods, rather than giving external code free access to your variables, allows

separation of responsibilities and keeps the class in control of what happens to its data.

Top tip!

For beginner programmers, the following is recommended

good practice:

• Set variables to private where possible. Create accessor and mutator methods for any attribute you want external

code to have access to.

• Methods (or functions) should be public if you want external code to have access to them. If the method is an

internal helper function, set it to private.

Study the updated code for the Bank Account scenario in

Section B3.1 to see inclusion of access modifiers.

ACTIVITY

Research skills and thinking skills: Code analysis

Operation sabotage! Take a piece of OOP programming

code and insert some deliberate errors into it that break

the principle of encapsulation. Swap with a classmate, and refactor the code you are given to ensure proper use of

encapsulation again. Discuss and compare changes with

your classmate afterwards. Did you both spot all the errors and apply appropriate corrections?

B3.1.3 Static and non-static

variables and methods

The term static is used to represent variables and methods that are associated with the class itself rather than any

individual object instances.

Static: methods and variables that belong to the class, not the individual objects. Only one copy is created that is

shared with all instances in common.

Static variables and methods don’t require an instance to be created for them to exist. They are created by the

interpreter / compiler at runtime when the class is defined.

This is why the main function in Java is defined as static, as it needs to exist and be executed before any objects have

been created by the code itself.

Because statics do not depend on an object having been

instantiated, it does mean that no static method may access instance variables within an object. It also means that any time an instantiated object makes use of a static variable or method, the objects are all accessing the same shared

variable or method instead of their own instance of it.

Consequently, should an object change the value of a static variable, that change will be visible to all other objects. You can think of a static variable as a global variable that is shared in common with all the objects of that class. Static variables come in useful when something needs to be

shared across all objects within a class, or when the

particular variable does not depend on an instance existing.

The term “non-static”, therefore, refers to the normal

instance variables you have been defining within objects up until this point. Each object creates its own unique instance of these variables so, when used by one object, it does not

[image: Image 557]

affect the value stored in the matching variable of another object.

When referring to static variables and methods in code, it is best practice to prefix it with the class name, for example ClassName.variableName (see the examples in

BankAccount below).

Using a static variable to track ID

values

One common scenario for using a static variable is to ensure each object of a class has a unique ID number. An example

might be product numbers for a supermarket application.

Python

Java

[image: Image 558]

Using a static variable to track

number of items in array (Java only)

In Java, another common usage of static variables is to keep track of the number of items populated within an array.

Given arrays are fixed in size, the static variable can be used to ensure you place the next item at the next empty

location. This is less of an issue in Python since static arrays

are not really a thing, and the list construct is dynamic in size.

Alternative approaches to this would be:

• having an if statement testing for null inside a loop

• using an ArrayList, since it is dynamically resizable.

Here is an example:

Java

[image: Image 559]

Top tip!

Remember that static means one shared item for the class,

not individual instances. Only use static for things that are common to all objects (like a company name), and use

normal, non-static for properties specific to an instance

(like an employee number). Experiment with writing code

snippets to see the effect of changing members from static to non-static, and vice versa.

Linking question

In what ways can OOP (B1) be applied to database (A3)

development?

B3.1 End-of-section

examples

ACTIVITY

Social skills: Paired programming

Paired programming is a research-based approach to help

develop confidence in beginner programmers. Work in

pairs to design and implement your programming projects,

with one student writing the code while the other reviews it and suggests improvements, switching roles periodically.

Consider the analogy of having both a driver and a

navigator at the computer keyboard.

Bank accounts

See below for the full code for the Bank Accounts scenario, updated to illustrate initialization of an array, use of access modifiers and static with non-static variables and methods.

Notice two static variables and one static method have been implemented:

• interest_rate: As all bank accounts will have the same

interest rate, it makes sense for this to be static. That way, it only needs updating once, and all bank accounts will

automatically apply the change.

• next_account_number: By checking and incrementing this

value every time an object is created, it can ensure that

no two bank accounts have the same account number.

• find(): Provides functionality to search an array of

BankAccounts to find one of the requested name (supplied

through the parameters).

Python

[image: Image 560]

Java

[image: Image 561]

[image: Image 562]

Students and grades

Here is another complete example, this time also showing

the use of objects as instance variables within other objects.

In this case, each Student object contains an array of Grade objects. Study the example and identify the use of access

modifiers, static and non-static variables.

UML diagram of Student and Assessment Classes

Python

[image: Image 563]

Java

[image: Image 564]

ACTIVITY

Self-management skills and thinking skills: Extend

one of these sample projects

Using one of the sample projects provided as a starting

point, add methods and variables to provide supplemental

functionality to the project. Create a checklist of skills you want to add to the project, perhaps including the following suggestions:

• Reading and writing data to files so data is not lost

between program execution.

• Adding a console user interface to provide interactivity and the capacity to use the program to perform different

tasks.

• Using a combination of static arrays and dynamic lists, as well as static and non-static OOP methods and

variables.

REVIEW QUESTIONS

1 Which of the following is NOT an advantage of using OOP?

a Reusability of code

b Easy to debug

c Improved performance in all scenarios

d Encapsulation of data

2 What does abstraction in OOP help with?

a Removing all bugs from an application

b Hiding complex implementations behind simpler

interfaces

c Decreasing the use of memory

d Making code public to all classes 3 In UML Class diagrams, there is a three-row box used to represent a Class. What does the second row contain?

a Class name

b Methods

c Properties

d Statics

4 Which of the following is true about methods in a Class diagram?

a They are depicted with a minus sign (–) for private methods

b They cannot accept parameters

c They must be static

d They are optional

5 Which statement is true about static methods in Java?

a They can be called on instances of a Class

b They are called on the Class itself, not the instance c They can directly access and modify instance

variables

d They must return a value

6 What is a non-static variable also known as?

a Class variable

b Local variable

c Global variable

d Instance variable

7 What is the purpose of a constructor in a Class?

a To declare variables

b To initialize an object

c To clean up resources

d To return data

8 Which of the following declarations correctly creates an array of objects in Java?

a ClassName[] arrayName = new ClassName[5];

b ClassName arrayName[] = new ClassName(5);

c ClassName arrayName = new ClassName[5];

d ClassName[] arrayName = new ClassName();

9 Which of the following best describes encapsulation?

a Storing data in public fields

b Combining data and methods that operate on the

data into a single unit or Class

c Dividing code into various functions

d Making all methods static

10 What are access modifiers used in OOP for?

a To define how variables can be modified

b To name methods and variables

c To indicate static methods only

d To control the visibility of Class members

11 Describe one disadvantage of using OOP.

12 Explain how encapsulation can benefit a software project.

13 Explain why a static method cannot access non-static fields or methods.

14 Explain the role of the new keyword in object creation.

15 Describe an example of how private access modifiers contribute to information hiding.

PROGRAMMING EXERCISES

1 Library system

Create a simple library system where each book can be

either available or borrowed. Implement methods to

manage the state of each book and track the total count

of books in the library.

Java

[image: Image 565]

a Complete the returnBook method.

b Instantiate more books and simulate borrowing and returning books.

c Print the status of all books and the total book count.

2 Simple inventory system

Create a basic inventory management system for a store. Each product has an ID, name, price and quantity.

Implement functionality to add products, update

inventory quantity and list all products.

Java

[image: Image 566]

a Implement the updateQuantity method in the Product class to adjust the stock of a product.

b Test adding products, updating quantities and listing all products to ensure the inventory displays correctly.

[image: Image 567]

B3.2 Fundamentals of OOP

for multiple classes (HL)

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

• B3.2.1 Explain and apply the concept of inheritance in

OOP to promote code reusability

• B3.2.2 Construct code to model polymorphism and its

various forms, such as method overriding

• B3.2.3 Explain the concept of abstraction in OOP

• B3.2.4 Explain the role of composition and aggregation

in class relationships

• B3.2.5 Explain commonly used design patterns in OOP

B3.2.1 Inheritance and code

reusability

TOK

How does the way that we organize or classify

knowledge affect what we know?

The classification of knowledge into objects, classes and inheritance in OOP affects how problems are approached

and solved.

Drawing from biology, inheritance is a concept that aims to ease code reuse in complex projects. It does this by

allowing construction of a class that derives (inherits)

existing functionality and properties from another, existing class. Once derived, you need only apply whatever custom

modifications are required. The derived class is known as a

“child class” or “subclass”, whereas the origin class is

known as the “parent class” or “superclass”.

Inheritance: where a class takes a copy of an existing class as the starting point for all its internal methods and variables. These can then be overridden and extended

upon to provide additional functionality, as required.

Consider writing an OOP application for a coffee shop. The business might have a loyalty scheme requiring the storing of customer details in the system. It would likely also need to store employee information to be able to pay them. While customers and employees would have very different

functions within the program, there would be some

commonalities as well, such as name and contact details.

Inheritance allows the programmer to put these

commonalities into a parent class called Person, while

putting the specialist functionality into the Customer and Employee classes. The common code contained within

Person does not need to be reproduced; it is automatically available for any subclass that derives from it.

[image: Image 568]

[image: Image 569]

Inheritance

In this scenario, the Person class would contain the

programming code responsible for any person’s name,

phone number, email and address. The Customer class

inherits these basic properties and functions from Person

and then extends upon them by adding a membership

number, the points the customer has accrued and their

sign-up date. The Employee class likewise inherits the basic properties and functions of Person and extends them by

adding salary and bank-account details, along with

information about an individual employee’s supervisor.

Inheritance using UML

Drawn using UML, this inheritance relationship is denoted via an “is-a” arrow pointing from the derived class to the parent class.

The following code blocks illustrate how to create these

three classes in code. Note particularly that:

• in Python:

• the invoking of the inheritance relationship occurs

through the use of parenthesis in the class definition,

e.g. class Customer(Person) creates a class Customer,

inheriting from Person

• the constructor of the superclass must still be called; this must be the first line in the subclass constructor,

achieved through super().__init__()

• in Java:

• the invoking of the inheritance relationship occurs

through the use of the extends keyword in the class

definition, e.g. class Customer extends Person creates a

class Customer, inheriting from Person

• the constructor of the superclass must still be called; this must be the first line in the subclass constructor,

achieved through super()

• the protected access modifier will allow the subclasses to directly access the instance variables that have been

defined within the superclass.

Python

[image: Image 570]

Top tip!

When first learning how to use dates and times in Java, you will discover a multitude of different options. New

approaches have evolved as the language has matured,

while the old approaches had to be retained for the

language to be backwards-compatible for older projects.

Since Java 8, the java.time package is the recommended

best practice approach for managing dates and times.

Java

[image: Image 571]

[image: Image 572]

Common mistake

Overusing inheritance can lead to tightly coupled code that is difficult to modify. Use inheritance sparingly – only when classes share a logical and robust “is-a” relationship. If two classes do not share enough functionality, consider

alternatives such as composition.

ACTIVITY

Research skills and thinking skills: Organize a class debate around the value of inheritance. Does inheritance in object-oriented programming lead to better designed and

more efficient code, or does it overly restrict and limit

flexibility?

B3.2.2 Polymorphism and

method overriding

Polymorphism refers to how related objects can perform the same task or interaction in a different way.

“Polymorphism” is another term that Computer Science has

taken from biology; it refers to something that can take

many forms (poly means many and morph means change form).

Polymorphism: meaning “many forms”, it allows objects to exhibit different behaviours based on their specific class implementation while still adhering to a shared interface or contract.

[image: Image 573]

Overriding occurs when a child class creates a property or method of the same name as the parent class, thereby

overriding it.

You can see an example of polymorphism occurring in the

example above. The Python __str__() functions and the Java toString() functions are overridden in the child classes of Customer and Employee. Creating main code of what

follows will demonstrate that it is, in fact, the __str__() and toString() functions of the child classes that execute, rather than those in the parent classes.

If __str__() / toString() was not defined in the subclass, then the version that exists in the superclass is what would be executed.

Python

Java

[image: Image 574]

[image: Image 575]

These should render the following output, demonstrating

the different versions of the toString() function are

executing.

Example uses

Two examples that illustrate the benefit of inheritance

combined with polymorphic overriding are:

• Consider the variety in input boxes available for graphical user interfaces. The core functionality of a text input box can be written once, and then inheritance can be used to

use that functionality as the basis for more specialized

input types, such as PasswordInput, DateInput, FileInput or EmailInput, where some of the original code is overridden

to provide the new, specialized experience.

• A second example is in the area of game design. A game

that possesses multiple bots to play against could have

one generic bot with a random move strategy. Specialized

bots could then inherit this basic code and override the

strategy function, or the abilities function.

[image: Image 576]

[image: Image 577]

Inheritance in graphical user interfaces

Inheritance in game design

Overriding default methods

Earlier in this section, you overrode the toString() / __str__() functions in Java and Python respectively. These are

automatically called whenever the context calls for a string value from the object, such as being used by a print()

method.

Overriding: the process of providing a different

implementation of a method in a subclass, which replaces

the original implementation inherited from the superclass.

There are other default method names that are handy to

know about so you can override their behaviour when

appropriate. Some of these are:

• in Java:

• equals(Object obj): checks whether another object

passed to it is “equal to” the current instance; the

default implementation checks for reference equality

(i.e. whether they point to the same object in memory) –

overriding this method allows you to compare the

contents of two objects for logical equality

• hashCode(): returns an integer hash code value for the

object, which is used by hash-based collections like

HashMap and HashSet; when you override equals(), you

must also override hashCode() to maintain the general

contract for the hashCode() method, which states that

equal objects must have equal hash codes – see Section

B4.1.6 for an explanation of what this means

• in Python:

• __eq__(self, other): called when the equality operator

== is used to compare two objects; overriding it allows

for custom comparison logic

• __hash__(self): returns an integer hash value for the

object, and is used in hashable collections such as sets

and dictionaries; if you override __eq__, you should also

override __hash__, ensuring that objects that are

considered equal have the same hash value – see

Section B4.1.6 for an explanation of what this means

• __lt__(self, other), __le__(self, other), __gt__(self, other), __ge__(self, other): used for comparison operators <,

<=, > and >= respectively; they are used by the

sorted() function and other areas where there is a

concept of an ordering of objects

• __getitem__(self, key), __setitem__(self, key, value),

__delitem__(self, key): called to retrieve, set or delete an item using the indexing syntax obj[key]

• __iter__(self) and __next__(self): used to make an object iterable (usable in a FOR loop, for example); __iter__

should return an iterator object, which is typically the object itself, and __next__ should return the next item or raise StopIteration to end the iteration.

Refer to the Java and Python documentation for examples of implementing each of the methods above, as relevant.

B3.2.3 Abstraction and

abstract classes

One common way of making use of inheritance and

polymorphism is through the use of abstract classes.

Abstract classes can be thought of as generic templates

without any executable code of their own. They are classes that cannot be instantiated. They are designed to be

extended by other classes.

You use abstract classes when you know that all your

subclasses should have certain methods or fields, but the

implementation of these methods is inherently specific to

each subclass, such that it doesn’t make logical sense to

provide a default implementation.

While it doesn’t provide any functionality, the abstract class provides standardization and consistency in the

implementation of subclasses; the benefit being that

anyone using your class hierarchy will know that certain

methods are always available, and any new derived classes

need to adhere to the defined contract.

As an example, consider an application that needs objects

to manage the properties of various 2D geometric shapes,

such as a possible computer game. It makes sense to

require that all classes that implement a 2D shape have a

function that returns its surface area, and another that

returns its perimeter. An abstract class of Shape can be

defined that stipulates these requirements, as the following example demonstrates.

Notice that, because Python and Java can rely upon the

contract associated with Shape, there is no problem

creating code that executes getPerimenter() and getArea()

on an array containing a mix of Rectangle and Circle

objects.

Java

[image: Image 578]

[image: Image 579]

Python

Common mistake

Confusing the role of abstract classes It is common to misunderstand the purpose of abstraction,

and to use it where a simple base class with inheritance

might suffice. Use abstract classes when you have a base

class that should not be instantiated itself, but has

common code to share with the subclasses that are

instantiated. Make sure any subclass implements all the

abstract methods from the abstract superclass.

B3.2.4 Composition and

aggregation

Because a class is analogous to a data type, and an object is analogous to a variable, you can quickly end up with

programs where an object contains many other objects of

different classes as variables within it, and this process can repeat itself into multiple layers of depth. When this occurs, these different objects are said to be related to each other and dependent on each other.

There are different ways of defining these dependent

relationships. Inheritance, for example, is a type of

dependent relationship where the child class requires the

parent class to exist as its original source of properties and methods.

There are two other means of defining dependent

relationships that we will look at now: composition and

aggregation.

Composition

Composition is where one object is composed of one or more objects, and the composed objects cannot exist

without the containing object. This creates a strong “one is

part of the other” relationship, where the lifetime of the composed objects is managed by the container. This can

even be referred to as a “death relationship”, meaning if the whole is destroyed, its parts are destroyed as well.

Composition: where objects are composed of other

objects, forming a “has-a” style of relationship. The objects that comprise the internal objects cannot exist

independently of the containing object.

Aggregation: where one object “has” another object as part of it, but the two objects can exist independently of each other.

Some examples of composition relationships include:

• Car and Engine: A Car object is composed of an Engine object. The engine is an integral part of the car. Outside of the car, it does not serve the purpose it was designed for.

If the car is destroyed, the engine is as well.

• House and Room: A House object is composed of

multiple Room objects. Rooms are part of a house; if the

house is demolished, the rooms also cease to exist as

functional units.

• Computer and Components: A Computer object is

composed of CPU, Motherboard, Memory, and so on.

These components are parts of a computer and do not

function independently if separated.

• Human and Organs: A Human object is composed of a Heart, a Brain and Lungs. These organs are essential parts of a human body, and they do not function outside the

body.

Aggregation

Aggregation is where one object contains one or more objects, but the contained objects can exist independently

without the “container”. Should the containing object cease to exist, the previously contained objects may still exist in their own right. In this way, the lifecycle of the contained objects is not managed by the containing object.

Some examples of aggregation relationships include:

• University and Student: A University contains many Student objects. If the university was to close (or once a student completes their studies), the student continues to exist even when no longer attached to the university.

• Library and Books: A Library contains many Book

objects. The library has books, but the books can exist

outside of the library as well.

• Shopping Cart and Products: A Shopping Cart object contains multiple Product objects. The shopping cart has

products, but products are not dependent on the shopping

cart for their existence.

• Computer System and Peripheral Devices: A

Computer System object can have references to Keyboard,

Monitor, Mouse, and so on. The computer system has

these peripheral devices, but these devices can be used

with other computer systems.

• Airline and Airplanes: An Airline has a fleet of Airplane objects. The airline owns airplanes, but airplanes can be

sold or transferred to other airlines and continue to

operate.

Sometimes the distinction between composition and

aggregation can seem arbitrary and open for debate.

Consider, for instance, the example of Car and Engine. In

some contexts, such as at a mechanic’s garage, it could be argued the engine can be configured to function outside of the car for testing purposes. This subtlety is where your

understanding of the context of the problem at hand is

important: what might be correct for one question or

scenario may be different for another. (Note that, even in

[image: Image 580]

the mechanic’s shop, you could argue an Engine lacks

autonomy or control over its own lifecycle; it is the

containing object – the mechanic’s garage – that has that

role in that edge case.)

Common mistake

Confusing composition and aggregation

It is very easy and common to get confused as to which is

which. The key difference is the lifecycle dependency

between objects. Use composition when objects are part of

a whole-of-lifecycle, and aggregation when the contained

object can exist independently.

Relationships in UML

Composition and aggregation relationships can be depicted

in UML diagrams using a diamond-pointed arrow that is

filled for composition, and hollow for aggregation.

UML styling of composition and aggregation

Example

Consider the following scenario, where a Person object has an Address object as an instance variable.

[image: Image 581]

[image: Image 582]

UML Person has an Address (aggregation)

Is this an example of composition or aggregation? Take a

moment to consider before reading on.

The appropriate guiding question is: Can each exist

independently of the other? While ambiguity exists here and a case could be made either way, the situation would most

likely favour that of aggregation. The Person object, as the owning class, doesn’t have control over the lifecycle of the Address. If a Person moves house, or is deleted from the

application, that Address may continue to exist. In this

scenario, an Address may, in fact, be used by multiple

Person objects at once, so one Person ceasing to use it

wouldn’t have much bearing on it at all.

ACTIVITY

Social skills and thinking skills: Brainstorm

relationships

Draw UML diagrams based on various real-world scenarios

using composition and aggregation, splitting the class into halves: one side being composition, the other aggregation.

Each side has to explain their rationale for why the

scenario is an example of their relationship. Whichever

team comes up with the most scenarios wins.

[image: Image 583]

B3.2.5 Design patterns in

OOP

TOK

What are the implications of having, or not having,

knowledge?

In OOP, knowledge of design patterns, best practices and

anti-patterns significantly impacts the quality and

maintainability of software.

Design patterns are common approaches to solving

problems that are seen time and time again in software

design. They are best practices formulated by experienced

object-oriented software developers. Design patterns are

useful because they provide tested, proven development

paradigms, thereby improving code readability, reusability and reliability.

Some of the most commonly used design patterns that are

relevant for beginners in object-oriented programming are

the singleton pattern, the factory pattern and the observer pattern.

Linking question

How can design patterns in OOP facilitate the architecture of scalable and maintainable machine learning models?

(A4)

Singleton pattern

When using a singleton pattern, there will only ever be one instance of the class. That one instance will be made

available globally throughout the project. It is often used for resource management, such as maintaining an open

connection to a database or network location, or for settings management. In these scenarios, there is no need for more

than one instance to do the job.

Singleton pattern: a class that is designed only ever to have one instance instantiated throughout the lifecycle of the program.

Factory pattern: a design pattern that provides an

alternative interface for creating objects in contrast to

normal constructor-based instantiation.

Factory pattern

The factory pattern is used for providing a factory that can be used for creating a range of similar objects that will adhere to a common interface.

A graphical user interface toolkit might use a factory

method to create windows, buttons or other UI elements.

For instance, a button factory can return buttons of different styles using a Primary, Secondary or Alert colour scheme, or perhaps completely different looks, such as classic vs

modern.

Observer pattern

The observer pattern is used to maintain a list of

dependent objects that have subscribed to it so that they

receive notifications when an event occurs. The observer

pattern allows the observing object to communicate

changes to other objects that are interested in those

changes.

Observer pattern: provides a one-to-many link between objects to notify objects of changes in state via a

subscription-style service.

This pattern is widely used in implementing distributed

event handling systems such as in web pages, where you

might add event listeners to handle user input (clicks,

keyboard events, and so on).

Interface

Before looking at how to apply each pattern, it is worth

noting Java examples that demonstrate the use of an

interface. The interface is not in your syllabus, but a quick introduction is merited as it is the right tool for the job to demonstrate these patterns.

An interface is a construct that defines a set of methods

that implementing classes must provide, without specifying how these methods should be implemented. It allows different classes to interact with each other through a

common set of behaviours, ensuring consistency and

interoperability. Interfaces are similar to, but not quite the same as, abstract classes. They differ in the following ways:

• Interfaces do not store state (no instance variables). They simply define methods that need to be implemented.

• A class can implement multiple interfaces, whereas using normal inheritance is limited to only one parent class.

• Interfaces do not have constructors as they are not

concerned with the logic of implementation (no variables,

remember). They are just focused on providing a list of

methods that require implementation.

An example might be an interface called School. This

interface defines methods attendClass(), doHomework(),

takeExam(). Different students might implement these

methods differently, but they must implement all of them in one form or another.

Java

[image: Image 584]

Application of design patterns

[image: Image 585]

Singleton example

The following code is an example of a singleton pattern that can be used to provide access to application settings that have been stored into a settings.json file. The example

content of such a file follows:

Note: Java users, if you plan to implement this, you will need to add the org.json library. Your IDE should allow you to

easily add dependencies to other libraries.

Python

[image: Image 586]

Java

[image: Image 587]

[image: Image 588]

Factory example

The following code is an example of the factory pattern.

Python

Java

[image: Image 589]

Observer example

[image: Image 590]

Finally, here is an example of the observer pattern at work: Python

Java

[image: Image 591]

REVIEW QUESTIONS

1 In UML diagrams, which symbol is used to represent inheritance between two classes?

a A dashed line with an arrow

b A solid line with a hollow arrow

c A solid line with a filled arrow

d A dashed line without any arrows 2 What keyword is used in Java to inherit a class?

a Implements

b Extends

c Inherits

d Superclass

3 Which principle of OOP is primarily used to enhance code flexibility and maintainability through interfaces?

a Encapsulation

b Inheritance

c Polymorphism

d Abstraction

4 What is required for method overriding to occur in object-oriented programming?

a The method must have the same name and different parameters in the subclass

b The method must have the same name and

parameter list in the subclass, and be marked with

final

c The method must have the same name and

parameter list in the subclass

d The method must have a different name but the

same parameters in the subclass

5 Which statement is true about abstract classes?

a Abstract classes can be instantiated

b Abstract classes cannot have any method

implementations

c Abstract classes can contain both abstract and

implemented methods

d All methods in an abstract class must be abstract 6 What is the purpose of declaring a class as abstract?

a To force a class to provide implementations of all its methods

b To prevent the class from being instantiated directly c To ensure that the class can only contain static methods

d To make the class available only to other classes in the same package

7 Which of the following best describes aggregation?

a A strong “has-a” relationship where the lifetime of the contained objects depends on the lifetime of the

container

b A weak “has-a” relationship where the contained

objects can exist independently of the container

c An “is-a” relationship between two entities

d None of the above

8 Which scenario is an example of composition?

a A library owns books

b A university has students

c An apartment building includes apartments

d A shopping cart contains products

9 Which design pattern ensures that a class has only one instance and provides a global point of access to it?

a Factory pattern

b Singleton pattern

c Observer pattern

d Builder pattern

10 In the observer design pattern, what is the role of the

“Subject”?

a To notify all observers about any changes

b To keep track of all dependencies

c To update the state of various subjects

d To request updates from observers

11 Describe why inheritance is considered a powerful feature of OOP.

12 Discuss how polymorphism enhances software

maintainability.

13 Discuss two benefits that abstract classes provide over using normal inheritance.

14 Outline an example, not based on any given in this book, that illustrates the difference between

composition and aggregation.

15 Describe the factory design pattern and give an example of its use.

PROGRAMMING EXERCISES

Some exercises require you to download files for

processing or performing calculations. Those files can be

downloaded from:

https://github.com/paulbaumgarten/hodder-ibdp-

computerscience

1 Extend bank accounts

Implement the bank account example provided at the

end of Section B3.1, and debug any transcription errors to ensure it behaves as expected before continuing.

• Download the following files from the B3 folder in the

Github repository:

[image: Image 592]

• names.txt

• bank-transactions.txt

• Use the file reading techniques from B2.5 to read each file into an array of strings (one string per line of the

file).

• Create an array of bank accounts, one for each person

in your array, from the names.txt file.

• Process the list of transactions in bank-

transactions.txt.

• Apply interest calculations on all accounts.

• Print all accounts’ final balances.

Do you get the correct final balances for your account

holders, as shown below?

2 Flight reservation system

You are constructing a ticket reservation system for a

budget airline. This airline doesn’t have seating classes

(no first class or business class – everyone sits in

economy), and doesn’t accept seat reservations. The

only thing the airline is interested in is ensuring enough seats are available on each flight for the tickets it sells.

You are taking over from another programmer who

started designing your classes for you. The following is

[image: Image 593]

the UML they created.

UML Flight and Ticket

Create the Ticket class and Flight class in code, to

adhere to the following rules:

• The capacity variable in the Flight constructor

indicates the number of seats available on a given

flight. Use this variable to determine the size of your

tickets array.

• Implement addTicket() and removeTicket() to add or

remove a ticket from the tickets array. ticketsSold

should increment whenever a new ticket is added, and

decrement whenever a ticket is removed. Refer to the

CollectionOfThings example in Section B3.1.3 for hints

on how to implement this.

• getSeatsAvailable() should just be the result of

capacity minus ticketsSold.

• printPassengerList() should print a list of all the names of tickets for a given flight.

The following code is example main code for testing the

result, and an indication of what the output should

resemble.

[image: Image 594]

[image: Image 595]

Python

Java

[image: Image 596]

Anticipated output:

3 School enrolments and grade book

Implement the students and grades example as provided

in the end of Section B3.1, and debug any transcription errors to ensure it behaves as expected before

continuing.

Extend the scenario to include a new class called

“Course” that contains an array of students who are

enrolled in it.

• Course should contain an addStudent() and

removeStudent() method.

• Course should have the following additional functions:

• printClassList() generates a list of all student names

(in name sort order)

• getClassAverage() returns the average of all student

scores.

4 Library system

Create a system to manage book loans for a library.

[image: Image 597]

UML Book and Patron

• Create a Book class and Patron class, as per the UML

diagram.

• Download the following files from the B3 folder in the

Github repository:

• names.txt

• books.txt or books.csv

• library-transactions.txt

• Use the file reading techniques from Section B2.5 to

read each file into an array of strings.

• Create an array of patrons, one for each name in your

array from the names.txt file, and create an array of

books based on the data in books.txt.

• Process the list of transactions in library-

transactions.txt, subject to the following:

• Each patron can only have a maximum of three

books on loan at a time.

• If a patron attempts to borrow a fourth book, it

should be denied.

• A book can be borrowed more than once at a time

(imagine there are unlimited copies of each book).

[image: Image 598]

[image: Image 599]

At the end, print a summary of each patron’s current

books. The final list starts with:

How many times did someone attempt to borrow a book

over their limit? You should get 1125.

How many books are on loan at the end of the

sequence? You should get 51.

5 Social-media platform (HL)

Use the following UML as the basis for creating an OOP

application for a social-media platform.

UML social-media platform

For a Java implementation, you may assume the maximum number of posts per user is ten, and the

maximum number of comments per post is ten.

Your final program should be able to:

• create a new user

• allow a user to create a post, via their user object’s

.newTextMessage(), .newPictureMessage() or

.newVideoMessage() function

• allow a comment to be added to any post via the user

object’s .newComment() function, where the integer

value represents the index of the relevant item in the

posts array, and the String, User parameters are then

passed to the posts[i].newComment(String, User)

function.

The user object’s .newLike() works similarly, using the

integer as the index of the post, to then call the

.newLike() on the relevant item in the posts array.

The following code is test code for your main function:

Python

[image: Image 600]

Java

[image: Image 601]

EXAM PRACTICE QUESTIONS

[image: Image 602]

1 Customer loyalty system

A chain of stores has launched a new customer loyalty

program, where each dollar customers spend accrues

loyalty points that can be exchanged for discounts on

future purchases. An object-oriented program has been

created to manage the loyalty program.

The following classes exist in the system:

• Customer: Represents customer information, including

a list of all their purchase history items

• Transaction: Represents the purchase of a single item

by a customer.

The UML diagram for the Customer class is provided

below:

UML Customer class

a State the relationship between Customer and

Transaction.

[1]

b Construct a simplified UML diagram showing the

relationships between Customer and Transaction.

[2]

[image: Image 603]

[image: Image 604]

c Outline the significance of the minus sign in front of long balance in the UML diagram.

[2]

d Construct the code for the constructor of Customer.

[3]

A Transaction object has two properties: a string

containing a description of the item purchased and a

long integer containing the cost / value of the item in

dollars (you can assume cents are not used). The

following code forms the basis of the Transaction class:

Python

Java

Additionally, the following code describes the

functionality of the addItem(Transaction item) function in

[image: Image 605]

[image: Image 606]

the Customer class:

Python

Java

e Describe the purpose of the historyItemCount

property.

[2]

f Construct the code for the

getTransactionByDesc(String description) function

using a linear search.

[4]

g To improve the efficiency of searching for transactions within each customer object, it has been decided to

create a sort() function within Customer that will sort

the transactions alphabetically by description. This

algorithm will use a selection sort for the task.

Construct the code for the new sort() function to be

added to the Customer class.

[6]

h Now that the history array is sorted, construct new code for getTransactionByDesc(String description) that

will implement a binary search algorithm.

[5]

i The spendPoints() function should first check whether the customer has enough points for the transaction

and return false if not. Assuming enough points exist,

it should create a new Transaction object that is added

to the history, and deduct the points spent from the

balance. Construct the code for the spendPoints()

function.

[6]

j The getBalance() function should iterate over all items in the history to calculate the correct balance, then

update the value stored in the balance property

appropriately, and finally return that value. Construct

the code for the getBalance() function.

[6]

k The main() of the program contains the following test code. State the output from this block of code.

[4]

Python

[image: Image 607]

[image: Image 608]

Java

2 Animal shelter

An animal rescue shelter requires a computer system to

manage the animals under its care and the adoption

process.

When an animal is brought to the shelter, it is given an

ID, and its species, age, health status and other relevant details are recorded in the system. When an animal is

adopted, its record is updated to reflect the change in

status.

Animals are identified by a unique ID, which is a

combination of letters and numbers (e.g. C4T00123).

This is used to track their information in the system.

A programmer created the classes AnimalShelter and

Animal to model the situation above.

Python

[image: Image 609]

Java

[image: Image 610]

a Explain the purpose of encapsulation in object-oriented programming and how it is applied in the

classes above.

[2]

b Construct the missing code for the constructor of the Animal class.

[3]

c Explain the use of the keyword this in the setAge method of the Animal class.

[2]

d Construct code to create an instance of the Animal class with the ID “C4T00123” and species “Cat”.

[2]

e Construct code to set the age of the object created above to 3 years.

[2]

f Construct the method addAnimal(Animal a) that will add an Animal to the first empty position of the array

animals[] in the AnimalShelter class and return the

position at which it has added the animal. If the array

is full and the animal cannot be added, the method

should return –1.

[5]

HL extension

Two subclasses, Dog and Cat, are created.

Python

[image: Image 611]

Java

[image: Image 612]

g Construct a UML diagram that shows the relationships between the AnimalShelter, Animal, Dog and Cat

classes. Include only the class names and

relationships.

[3]

The Animal class needs a method that returns a

description of the animal, including its ID and species.

h Construct a method getDescription() in the Animal class that returns a string describing the animal.

[2]

The array animals[] in the AnimalShelter class is used to store instances of any kind of animal, including Dog and

Cat.

i Justify why Animal is a suitable type for this array.

[2]

The shelter has a program that recognizes the loyalty of

volunteers by rewarding every tenth time someone

donates time to work at the shelter with a free pet-food

voucher. The method to print this voucher has been

implemented in the static method

Rewards.printPetFoodVoucher().

(Note for clarity that the system is not keeping track of

how many times each individual person volunteers; just

the raw count for every tenth person who shows up – so

one individual may get the voucher the first time they

volunteer, or may attend for weeks without receiving a

voucher!)

A getVolunteerCount() method has been added to the

AnimalShelter class, which returns the current count of

volunteers.

j Describe the necessary changes to the AnimalShelter class and any other methods to integrate the

volunteer reward program into the system.

[5]

The method removeAnimal() in the AnimalShelter class

searches the array for an Animal object with a specified

ID and removes it by setting that index to null. The

method returns a reference to the Animal object that has

been removed. You may assume that an Animal with the

ID exists in the array.

k Construct the removeAnimal(String ID) method.

[image: Image 613]

[5]

3 Streamify music service

An online music and multimedia platform, Streamify,

provides users with access to millions of tracks, podcasts and videos. To manage the vast collection, Streamify

uses a computer system to keep track of the digital

media, user preferences and playlists.

Each track is identified by a unique identifier, and

contains metadata including the title, artist, duration and genre. Users can create their own playlists by adding

tracks to a personalized list.

A programmer created the classes MediaLibrary and

Track to model this situation.

Python

[image: Image 614]

Java

a Outline why the programmer may have decided to use a list instead of an array to store the tracks within the

MediaLibrary class.

[2]

b Describe the relationship between the classes Track and MediaLibrary.

[3]

c Discuss the importance of using the keyword this in the constructor of the Track class.

[2]

d Construct code to create an instance of the Track class with the following details:

– ID: TRK12345

– Title: Oceans

– Artist: Dive Deep

– Duration: 215 seconds

– Genre: Ambient

[2]

e Construct a method in the MediaLibrary class that allows a user to add a Track to the library.

[2]

Streamify allows users to search for media based on

genre or artist.

f Construct a method searchByGenre(String genre) in the MediaLibrary class that returns an array of Track

objects that match the genre.

[4]

g Discuss the process of overriding methods of the Track class if it were to be extended by Podcast and Video

classes.

[4]

Two classes, Playlist and User, are now introduced.

Python

[image: Image 615]

[image: Image 616]

Java

h Construct a UML diagram that shows the relationships between the MediaLibrary, Track, Playlist and User

classes. Include only the relationships without the attributes or methods of each class.

[4]

Streamify calculates the total duration of a playlist by

summing the duration of each track in the playlist.

i Construct a method in the Playlist class that returns the total duration of the playlist.

[2]

j Explain why the Playlist class uses a list to store tracks instead of an array.

[2]

The User class can have multiple playlists, and the

Playlist class contains multiple tracks.

k Discuss why composition is used between the User and Playlist classes, and between the Playlist and

Track classes.

[2]

To enhance user engagement, Streamify introduces a

feature that rewards users with a free month of premium

subscription for every 100 tracks they add to their

playlists.

The method rewardUser has been added to the User

class, which checks the total number of tracks across all

playlists and rewards the user if they meet the criteria.

l Without writing code, describe any changes required to the addTrack method in the Playlist class and the User

class to make the new reward system work.

[5]

The removeTrack method of the Playlist class allows

users to remove a track from their playlist by specifying

the track’s unique ID.

m Construct the removeTrack() method for the Playlist class.

[4]

[image: Image 617]

B4 Abstract data types

(ADTs) (HL)

B4.1 Fundamentals of

abstract data types

 Which ADTs are most appropriate for different

 situations?

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

• B4.1.1 Explain the properties and purpose of abstract

data types (ADTs) in programming

• B4.1.2 Evaluate linked lists

• B4.1.3 Construct and apply linked lists (singly, doubly and circular)

• B4.1.4 Explain the structures and properties of binary

search trees (BST)

• B4.1.5 Construct and apply sets as an abstract data type (ADT)

• B4.1.6 Explain the core principles of abstract data types (ADTs)

B4.1.1 Properties and

purposes of abstract data

types

Abstract data types (ADTs) are fundamental constructs in

programming that provide a theoretical framework for data

manipulation through a clearly defined interface. ADTs embody the concept of abstraction by hiding the complexity of their operations from the user. Users interact with an ADT

through a set of well-defined operations without needing to understand the underlying implementation details. This

separation of interface from implementation allows

programmers to focus on the “what” of the operations

rather than the “how”, enhancing readability and

maintainability.

Interface: a contract that specifies a set of methods a class must implement, without defining how these methods

are implemented, serving as a blueprint that promotes

modularity, flexibility and abstraction in software

development. This structure allows different classes to

implement the same interface in diverse ways, while

ensuring they provide the functionalities declared by the

interface.

Modularity: a design principle that involves dividing a system into distinct and manageable sections or modules,

each with its own specific responsibilities, which can be

developed, tested and maintained independently, but

function cohesively when combined.

Furthermore, encapsulation is integral to ADTs, safeguarding the data’s integrity by restricting direct access to the

underlying data structure. The internal state of an ADT is accessed and modified solely through its methods,

preventing unauthorized or harmful modifications to the

data structure. This protective barrier ensures that the ADT

operates reliably and as expected, regardless of the external use-case scenarios.

ADTs are defined by their behaviour rather than their

physical implementation, allowing them to be applied

universally across different programs and systems without

modification. This property makes ADTs highly reusable and adaptable to various applications, promoting code

reusability and reducing development time.

ADTs also exemplify the principle of modularity: the practice of decomposing complex systems into discrete,

manageable components. This modularity facilitates

debugging and testing, by isolating issues within discrete units without affecting the entire system. It also enhances the system’s scalability and understandability, making ADTs invaluable for building complex, robust applications.

Common mistake

It is easy to get confused about the difference between

interface and implementation. The interface is what

operations are available, whereas the implementation is

how these operations are carried out.

TOK

Areas of Knowledge (AOKs) and ADTs: Guiding

questions

• How does abstraction in ADTs mirror abstraction in other disciplines?

• To what extent is modularity essential for organizing and simplifying complex systems?

ACTIVITY

Abstraction and modularity are key concepts in ADTs. In

groups, investigate how abstraction and modularity are

applied in their assigned AOK, such as natural sciences,

arts and mathematics. Consider:

• How is abstraction used to simplify complex ideas?

[image: Image 618]

• Are there risks or benefits to simplifying reality through abstraction?

• How does modularity help organize knowledge or

creativity in these fields?

Present your findings and discuss as a class.

B4.1.2 Linked lists

Linked list structure

A linked list consists of two main elements: nodes and

pointers.

Nodes are the data element of the list. This could be a single piece of data, or it may be an object containing

multiple data. There are two particularly important nodes: the head and the tail. The head is the first node in the linked list and the tail is the last. These help us navigate through the linked list.

Pointers are contained within the node. These point to the next node in the list (and sometimes the previous). A

pointer may also be referred to as a reference, as it refers to the memory address of where the next node resides.

Node: a basic unit of a data structure, e.g. a linked list or tree, which contains data and typically links to or

references other nodes.

Pointer: a variable that stores the memory address of another variable, typically used in programming to

reference, or access, the location of data stored in memory.

Top tip!

[image: Image 619]

A trail of elephants (nodes), linked by their tails and

trunks (pointers)

To visualize a linked list, you might imagine it as a chain of elephants, where each elephant represents a node. The

trunk of one elephant extends to the tail of the next,

similar to how pointers connect one node to another in a

linked list.

Advantages and disadvantages

of linked lists

Advantages

• Dynamic data structures: Due to their implementation, linked lists are dynamic data structures. This means that

they can grow and shrink in size as we add and remove

nodes. This is unlike an array, which is a static data

structure.

• Memory utilization: Linked lists can be more efficient with memory usage, as they do not create a reserved

space in memory like an array does when it is declared.

• Efficient insertion and deletion: Linked lists generally outperform arrays when inserting or deleting data due to

their dynamic nature.

Disadvantages

• Sequential access: As linked lists cannot be accessed via an index like arrays, searching a linked list requires a linear search algorithm, where you start at the head node

[image: Image 620]

and continue traversing until you find what you are looking for. This means that using a binary search algorithm, for

example, is not possible on a linked list. For large data

structures, this restriction when searching can be very

time consuming when compared to accessing an array.

• Memory utilization: Each node requires a reference to the next (and possibly the previous) node, as well as

storing the data within it. This takes up system resources in the primary memory. As linked lists can grow, they

potentially can go beyond the system resources that are

available, causing a heap exhaustion as the system will

run out of heap space.

Heap space: a region of dynamically allocated memory managed by the operating system where programs store

variables and data structures that require memory

allocation during runtime, allowing for flexible memory

usage that can grow and shrink as needed by the

application.

Types of linked lists

Singly linked lists

Singly linked list

This is the simplest of the three types. Each node contains a single pointer pointing to the next node in the list. The tail nodes contain a pointer that points to null (or none). This can be used to recognize the end of the list when traversing it.

[image: Image 621]

[image: Image 622]

Doubly linked lists

Doubly linked list

These differ from singly linked lists because the nodes have two pointers – one reference to the next node in the list and one to the previous. This allows for easier traversing of the list, as you can move forward and backward with ease.

Circular linked lists

Circular linked list

These are similar to singly linked lists, but with one major difference: the tail node, instead of pointing to null, points back to the head node. This allows for circular, continuous traversal of the list. Doubly linked lists can also be

implemented in this manner.

REVIEW QUESTIONS

1 Sketch out a singly linked list containing the numbers 1

to 5.

2 Sketch out a doubly linked list containing the names of five of your classmates.

3 Sketch out a circular linked list containing the names of five of your idols.

Common mistake

Do not forget to label the head and to point the tail node to null (or to the head node in a circular linked list).

Top tip!

Remember to clearly show the node, as illustrated above. It should be represented as a box, divided into either two or three sections. The pointers should be arrows clearly

indicating the node they are referring to.

B4.1.3 Linked lists

Linked list operations

These steps all refer to the operations based on a singly

linked list.

Traversal / search

This is essentially a linear traversal / search, where you start at the beginning of the linked list and move along the list, following the pointers to the nodes.

1 Start with the head pointer to find the first node in the linked list.

2 From this node, follow the pointer within the node to the next node.

3 Repeat step 2 until you find the node you are searching for or until the pointer points to null / none, which means you have reached the end of the list.

Insertion

There are three methods for inserting into a linked list.

Which one you use depends on where you need to insert the

node.

[image: Image 623]

[image: Image 624]

[image: Image 625]

[image: Image 626]

Inserting at the beginning:

1 Create a new node.

2 Point the new node to the current head node.

3 Update the head pointer of the linked list to the new node.

Inserting at the end:

1 Create a new node.

[image: Image 627]

[image: Image 628]

[image: Image 629]

[image: Image 630]

2 Find the last node by traversing the list until you find the tail node that points to null.

3 Point the current tail node to the new node (the new node pointer has not been set, so it will point to null).

Inserting in the middle:

1 Create a new node.

2 Traverse the list to find the node after which you want to insert the new node.

3 Set the new node’s pointer to point to the newly found node’s pointer (at this point, both nodes will be pointing to the next node in the list).

4 Set the newly found node’s pointer to the new node.

[image: Image 631]

[image: Image 632]

[image: Image 633]

Common mistake

Be careful not to complete action 4 before action 3 when

inserting into the middle of the linked list. If you do this, you will lose any pointers to the second part of the list, and every node beyond the point of the insertion will be lost.

Deletion

There are also three methods for deleting from a linked list.

Which one you use depends on where you need to delete

the node.

Deleting the first node:

1 Check whether the list is empty. (If the head pointer is already null, the list is empty.)

2 Set the head pointer to the new first node’s pointer. (Now nothing is pointing to the original first node, which

eliminates it from the list. Most high-level languages have garbage collection to realize this and clear it up without you having to delete it.)

Deleting a middle node:

[image: Image 634]

[image: Image 635]

[image: Image 636]

1 a Traverse the list, starting from the head, to find the node you want to delete.

b While doing this, you will need to manually keep a pointer / reference to the previously visited node.

2 If you find the node you want to delete, use the previously visited node’s pointer and adjust it to point to the found node’s pointer. (Now nothing is pointing to the

found node, which eliminates it from the list.)

Deleting the end node:

1 a This process is similar to the deletion from a middle node. Traverse the list, starting from the head, until you find the tail node pointing to null.

b While doing this, you will need to manually keep a pointer / reference to the previously visited node.

2 Adjust the previously visited node’s pointer to point to null (or none).

REVIEW QUESTIONS

Draw a singly linked list with the following names: Aarav, Yuki, Sofia, Jamal and Elena.

[image: Image 637]

With the aid of diagrams:

1 Show the steps to insert Nia after Sofia.

2 Show the steps to delete Elena.

3 Show the steps to add Liam at the head.

Construct linked lists

Initial set-up and traversal

Each linked list has a class that is the starting point when creating a linked list. This often just includes a single

instance variable: the pointer to the first node (the head).

We will also create a method that traverses the list to output the contents. Take note of how the loop works. We initially get access to the first node through the head pointer, and then we traverse through the nodes until we come to the

tail node that points to null or none.

Python

Java

[image: Image 638]

[image: Image 639]

[image: Image 640]

We then create a node class that contains data and at least one pointer. If we were creating a doubly linked list, we

would have a second variable (self.previous for Python, or ListNode previous in Java).

Python

Java

Insertion

The insertion method should be created inside the

LinkedList class. This should have a parameter to receive

the data passed to it. From there, it should create a new

node with that data and insert it into the correct position in the list. Remember that there are three different insertion methods: at the beginning, in the middle or at the end.

The insert_after_value method assumes we want to insert

after a found value. This could be implemented in different ways. It could be inserted in a certain position or after a node that has already been identified and passed as a

parameter.

Python

[image: Image 641]

Java

[image: Image 642]

Deletion

Like the insertion methods, the deletion method will also

reside in the LinkedList class. We assume here that all items in our list are unique. If this were not the case, these

methods would delete the first occurrence. Our method has

one parameter: the data we are looking for.

[image: Image 643]

Our delete method must be prepared for three possible

outcomes:

1 We are deleting the head node

2 We are deleting a middle node or the tail node

3 The node may not be found.

Python

Java

[image: Image 644]

[image: Image 645]

Search

The search method also resides in the LinkedList class. This is a relatively straightforward method that combines some

of the techniques we have already used. The method needs

a single parameter to look for and, in these examples, will return true or false, depending on whether the item was

found. This could be modified to return the position in the list of the node itself, if needed.

Python

[image: Image 646]

Java

REVIEW QUESTION

Create the LinkedList class and ListNode class. Using a test table, plan out the actions you will take to ensure that

these list methods are working correctly. When you have

done that, carry out the tests.

B4.1.4 Structures and

properties of binary search

trees

How binary search trees are

used for data organization

A tree structure in Computer Science is used to hold data in order and is usually drawn upside down, with the root at the top and the leaves at the bottom.

[image: Image 647]

Tree structure and its parts

In this section, we will be focusing on a tree that follows some strict rules, which allow us to optimize search,

insertion and deletion operations.

However, before we discuss the rules of binary search trees (BST), it is important to understand the terminology. The

node at the top of the tree is known as the root node. If a node has a node attached below it, it is known as a parent node, with the one below being the child node. Each parent node can have one or two child nodes. The child node that is less than the parent goes on the left; the child node that is greater than the parent, on the right.

Root: the topmost node from which all other nodes

descend, serving as the starting point for any traversal or operation within a binary search tree.

Parent: a node that has one or more nodes directly

beneath it, connected by edges, and it directly controls

these subsequent child nodes.

Child: any node that has a direct link from a parent node positioned above it, potentially having further child nodes of its own.

The sub-section to the right of a node is known as the right subtree and to the left, the left subtree. All nodes at the bottom of the tree, without children, are known as leaves.

Subtree: any node, along with its descendants,

functioning as a standalone binary search tree, with its

node acting as the root.

Leaf: a node that does not have any children, representing the endpoints of a binary search tree’s branches.

We can assume that all items within the BST are unique

(there are no duplicates).

Common mistake

Make sure you move in the correct direction when

navigating through the tree:

• Move left if the item is smaller than the node.

• Move right if the item is larger than the node.

Tree structure and node

insertion

[image: Image 648]

Here, you can see these two rules in place. In this example, 10 was the first node entered into the BST and set as the

root. Each new node works its way through the tree until it finds a space where it can join. We cannot be completely

sure what was entered next, but let us assume that it was

node 5:

• Node 5: This would be compared to node 10; as it is

smaller than node 10, it would join to the left of that node.

This is now a child of node 10, which is the parent node of node 5. At this point, node 5 is also a leaf, but this will change as more nodes are added later.

• Node 12: This would be compared with 10 and, as it is

greater, it would join to the right. This is now a child of node 10, which is the parent node of nodes 5 and 12.

• Node 3: This would be compared to node 10; as it is

smaller, it would move to the left. It would then be

compared with node 5 and, as it is smaller, it would be

moved to the left again, where it would join the tree. This

is now a child of node 5, and node 5 is the parent of node 3.

• Node 8: This is smaller than node 10, so it moves to the left; it is greater than node 5, so it moves to the right. This is now a child of node 5, and node 5 is the parent of nodes 3 and 8.

REVIEW QUESTIONS

1 Write the statements for how nodes 6, 9, 16 and 15 join the tree.

2 Sketch the resulting binary tree when the following items are entered:

10, 15, 3, 12, 7, 1, 22, 18, 5

3 Which nodes are:

a parents?

b children?

c leaves?

d right subtree?

e left subtree?

f root?

Common mistake

Leaves are not always at the bottom of the tree. A leaf is any node in the tree that does not have any children.

Node search

To find a node in a BST, we follow these steps, looking for the key we are searching for:

1 Start at the root node: Begin your search from the root of the BST.

2 Check for null / none: If the current node is null (or none in Python), the search concludes without finding the key.

The key is not present in the BST.

3 Compare the node value with the key:

a If the current node’s value matches the key, the search is successful. The key is found in the BST.

b If the key is smaller than the current node’s value, proceed to the left child of the current node.

c If the key is larger than the current node’s value, move to the right child of the current node.

4 Repeat the process: Continue the process from step 2

with the new current node.

Node traversal

Depending on the requirements, there are different ways to traverse the BST and return the data within. These are:

• in-order traversal

• pre-order traversal

• post-order traversal.

To perform these operations, it is important to remember

the order of actions as you move through the BST. The

easiest way to do this is to remember that you always move left before right. After that, you just need to remember when you output the node data.

Top tip!

The traversal name gives you a clue to where the node

check is:

• Pre-order: check before left and right (NLR)

• Post-order: check after left and right (LRN)

• In-order: goes in the middle (LNR).

Let us look again at the BST illustrated above.

In-order traversal (left, node, right)

We start at the root (10) and need to perform all three

operations on this node. We start with the first, left. This takes us to node 5 with the same situation, left and we move to node 3. Here, we move left (no further node), node so we output 3, and then move right (no further node). We have now completed all three actions on this

node. So, we move back to node 5. Here we have already

gone left, so now we output node, which would be 5, and then we move right. We continue with these operations until all three have been completed on every node.

The final output would be:

3, 5, 6, 8, 9, 10, 12, 15, 16

You will notice the numbers are output in order. This is the main purpose of an in-order traversal – to output the nodes, sorted, in ascending order.

Pre-order traversal (node, left, right)

We carry out the same operations here, but in a different

order. We start again at the root (10), but this time we

output node value first. We then move left to node 5, where we output the node value there. We move left again and output node 3. We move left and right on node 3, completing the operations, and then move back to node 5,

where we move right to node 8. We then continue in this manner until all three operations have been completed on

every node.

The final output would be:

10, 5, 3, 8, 6, 9, 12, 16, 15

This method is useful for creating a copy of the tree or for exploring paths, as it visits the parent prior to the children.

Post-order traversal (left, right,

node)

Once you have understood the first two methods, this third should not cause any problems. It follows the same idea

again, but this time we visit the node last. We start at the root (10), and we go left to node 5. We then go left again to node 3, where we complete all three operations, left, right and then finally node, where 3 is output. We then go back to node 5 and move right to node 8, where we go left to node 6 and complete all three actions, with 6 being

output. We then move back to node 8 and move right to node 9. We then continue in this manner until all three

operations have been completed on every node.

The final output would be:

3, 6, 9, 8, 5, 15, 16, 12, 10

This method is often used for deleting nodes within the tree as it visits children before their respective parent nodes.

REVIEW QUESTIONS

1 On the BST you drew for the previous review questions, carry out the following and show the output:

a In-order traversal

b Pre-order traversal

c Post-order traversal

2 What would happen if non-numerical data were input into a BST? Sketch the following BST when the data is

input in this order:

Ava, Alex, Bella, Catherine, Carlos, Brian, Aaron, Chloe Node deletion

To delete a node in a BST, we take the following steps,

looking for the key to delete and then carrying out the action based on the situation we find ourselves in:

1 Start at the root node: Begin the deletion process from the root of the BST.

2 Search for the key: Follow the algorithm from the node search.

3 Once the node is found, determine its type:

a Leaf node (no children): if the node has no left or right child

b One child: if the node has exactly one child (either left or right)

c Two children: if the node has both a left and a right child.

4 Delete the node based on its type:

a Leaf node: Simply remove the node from the tree by setting its parent’s appropriate (left or right) child

pointer to null.

b One child: Bypass the node by linking its parent directly to its child. If the node is a left child, update the parent’s left pointer; if a right child, update the parent’s right pointer.

[image: Image 649]

[image: Image 650]

Deletion of node with one child

c Two children:

i Find the in-order successor (smallest value in the right subtree) or the in-order predecessor (largest

value in the left subtree).

ii Replace the value of the node to be deleted with the in-order successor’s (or predecessor’s) value.

iii Delete the in-order successor (or predecessor) by repeating step 4, which now becomes a case of

deleting a node with at most one child.

Deletion of node with two children

ACTIVITY

Thinking skills: Problem-solving and analysis

Coding competitions are an effective way to improve your

programming and problem-solving skills. Here is a question

from CodingQuest where a BST can be used to solve it:

https://codingquest.io/problem/26

5 Repeat the process as needed:

If you had to delete the in-order successor or predecessor (step 4c), repeat the deletion process for that node.

B4.1.5 Sets as an abstract

data type

Like lists and arrays, sets can be used to store multiple

values in a single variable. Sets are unordered, meaning that they cannot be accessed via index or key, but they are mutable, allowing the addition and removal of items.

However, the individual items cannot be updated or change

values. Sets contain only unique elements.

Unordered set: a collection of unique elements where the elements do not have a specific order or sequence and

their arrangement can vary each time they are accessed.

Mutable: a set whose state or content can be changed after it has been created, allowing for modifications, e.g.

adding, removing or altering elements within the object.

They are a powerful data structure when unique elements

and efficient operations are crucial. They are extremely

useful when you want to ensure a collection consists of only unique elements, such as when working with usernames

where duplicates are not allowed. They are also extremely

fast when needing to check whether an item is already part of a collection. When needing to perform mathematical set

operations, such as union, intersection and difference, which are commonly used with database queries, search

algorithms and data analysis, sets perform very well.

[image: Image 651]

[image: Image 652]

Key characteristics of sets are that:

• they are unordered

• they are mutable

• they contain unchangeable values

• they contain only unique elements.

Creating sets

There are two ways of creating a set in Python:

Python

In Java, there are a number of classes that implement the

Set interface. For our example purposes, we will use the

HashSet. The other possibilities are LinkedHashSet and

TreeSet, which will not be covered here. Using HashSet

requires the import of two libraries:

Java

Set methods

To add and remove elements:

[image: Image 653]

[image: Image 654]

[image: Image 655]

[image: Image 656]

Python

Java

To check whether elements are present in the set:

Python

Java

Set operations

There are three main operations that are used to manipulate and compare sets.

[image: Image 657]

These are union, intersection and difference. We will show their differences using the set created below.

Set union: the union of two sets is a new set containing all the elements that are in either of the original sets,

effectively combining them without any duplicate

elements.

Set intersection: the intersection of two sets is a new set containing only the elements that are present in both of

the original sets, identifying their common elements.

Set difference: the difference between two sets is a new set containing elements that are in the first set but not in the second set, effectively subtracting the elements of the second set from the first.

Python

Java

[image: Image 658]

[image: Image 659]

[image: Image 660]

Union

A union joins two sets to create one that contains all the elements from both, without any duplicates.

Python

Java

[image: Image 661]

[image: Image 662]

[image: Image 663]

Intersection

An intersection of two sets creates a new set that contains only the elements that are present in both.

Python

Java

Difference

The difference between two sets is a set containing

elements that are in the first set but not in the second.

Python

[image: Image 664]

[image: Image 665]

Java

REVIEW QUESTIONS

Set A: {4, 8, 15, 16, 23}

Set B: {42, 8, 16, 60, 7}

1 Show the output if a union operation is performed.

2 Show the output if an intersection operation is

performed.

3 Show the output if a difference operation is performed.

ACTIVITY

Social Skills: Collaborative group work

Social-media friend recommendation

With a partner, working in your chosen language, create

two sets consisting of the following names:

A: Carlos Gomez, Yuna Kim, Dmitri Ivanov

B: Yuna Kim, Dmitri Ivanov, Leila Al-Farsi, Sean O’Brien

A and B represent two users on a social-media network. A

and B are friends with each other.

1 Using set operations, identify the users’ common friends.

2 Using set operations, identify friends of B that are not friends with A, so the platform can recommend new

connections.

Check whether subset or

superset

A subset or superset describes the relationship between two sets.

Set subset: a set where all elements of this set are also elements of another set, indicating that the first set is

entirely contained within the second set.

Set A is considered a subset of B if all of A’s elements are present in B – which would be considered the superset. All elements of the subset can be found in the superset.

To check whether set A is a subset of set B, or whether B is a superset of A:

Python

[image: Image 666]

[image: Image 667]

Java

B4.1.6 Core principles of

abstract data types

Hash tables

Hash tables are a particularly important data structure in Computer Science. They offer rapid retrieval and insertion capabilities into an array-like structure. However, rather than an abstract integer being used by the programmer for

the index, a key can be provided instead. This key is then processed through a hashing algorithm to find which array index to store the data in. This allows the data to be stored in an array-like structure that provides an O(1) average-time complexity for search, insert and delete operations under ideal conditions.

Hashing algorithm: a function that converts input data of any size into a fixed-size string of characters, which

typically represents the data in a compressed and

seemingly random format and is used primarily for

indexing and retrieving items in databases more efficiently.

O(1) time complexity: describes an algorithm that takes the same amount of time to execute regardless of the size

of the input data set.

ASCII (American Standard Code for Information

Interchange): a character-encoding standard used to represent text in computers and other devices, defining a

numerical value for each symbol and character commonly

used in the English language.

For example, “name” could be used as the key by the

developer. A hashing algorithm then processes this with the aim of producing an integer so that where the data this key is linked to can be stored in the array. One example method where this could be achieved is by adding up the ASCII

values of all the letters and then using modulus and the size of the table to determine the index.

[image: Image 668]

[image: Image 669]

This data would then be stored at index 7.

Hash tables: Creating, inserting and

retrieving data

This is how we can create a hash table, as well as insert, delete and retrieve items:

Python

Java

[image: Image 670]

[image: Image 671]

Collision factors

As you may have already guessed, the hashing algorithm

demonstrated above is not foolproof. There could be other

example keys that also generate the number 7 for the index

– when this happens it is called a “collision”. Ideally, our hashing algorithm should generate a unique index for each

key and, while there are some more complex algorithms

than the one we looked at that are better at doing this,

there is no complete solution available. We cannot store two data items in an array at the same index, so how do we get around this problem? There are two main methods used:

“chaining” and “open addressing”. Before we look at these

methods, it is important to understand the impact of the

number of items we are trying to store in the hash table.

This is called the “load factor”.

Load factors

The load factor is a measure that indicates how full the hash table is. The load factor is defined as the ratio of the

[image: Image 672]

number of elements currently stored in the table to the total number of slots available. The formula for load factor is: The load factor can heavily affect the performance of the

hash table. A hash table with a high load factor will have more collisions, which will impact performance when

performing operations on the table.

Rehashing

When the load factor exceeds a certain threshold,

rehashing is necessary to maintain efficient performance.

Rehashing involves creating a new, larger array and

redistributing the existing elements using a new hash

function or the same hash function applied to the new array size. This process reduces the load factor and minimizes

collisions, ensuring that the hash table operations remain efficient.

Rehashing: a process in hash tables where the data is redistributed into a new, larger array to reduce the load

factor and minimize collisions, maintaining efficient

performance.

Steps involved in rehashing:

1 Monitor the load factor of the hash table and, when this exceeds 0.7 (70 per cent), trigger rehashing.

2 Prepare a new array that is at least double the size of the current array. Ideally, the new size should be a prime

number to help reduce collisions.

3 For each element already in the hash table, all new hash values need to be computed based on the new array size.

4 Insert the elements into the new, larger array, ensuring that any collisions are handled appropriately.

Common mistake

Do not overlook the impact of a high load factor on hash-

table performance. Keeping the load factor low is incredibly important for efficiency.

Chaining

Chaining utilizes linked lists (or a similar structure) to be able to store more than one item of data at a single index.

When a collision occurs, and two keys hash to the same

index, the new key-value pair is added to the end of the list at that index.

Hash table chaining: a collision-resolution technique in hash tables where each bucket or index in the array can

store multiple elements in the form of a linked list, allowing more than one entry to be stored at the same index.

High load factors (hash tables): a condition where a sizeable portion of the hash table’s slots are filled, leading to increased collisions and potentially degraded

performance, due to more frequent need for collision

resolution mechanisms.

Open addressing: a collision resolution method in hash tables where, instead of using structures like linked lists to store multiple items at the same index, any colliding item is placed into the next available open slot in the hash table itself, according to a probing sequence.

Let us consider a simple hash function as “key mod 6” and a sequence of keys as 35, 800, 82, 92, 122 and 94.

Empty table

0

1

2

3

4

5

Insert 35

0

1

2

3

4

5

35

Insert 800 and 82

0

1

2

800

3

4

82

5

35

Insert 122: Collision, so it is added to a chain

0

1

2

800

92

122

3

4

82

5

35

Insert 94: Collision, so it is added to a chain

0

1

2

800

92

122

3

4

82

94

5

35

Advantages:

• Simplicity: It is relatively easy to implement.

• Handles high load factors well: If the number of items you are inserting is greater than the amount of spaces in

the table, it will still operate efficiently. However, lookup times may become slower when having to access a linked

list.

• Good for unknown data sizes (connected to the

point above): If you do not know in advance how many items you will be inserting into the table, chaining will

have an advantage as you will not need to rehash the

table to resize it.

Disadvantages:

• Memory overhead: As it is utilizing a linked list, the more items there are in the chain, the more memory it will

require.

• Complexity for deletion: If the deletion is within a linked list, performance will degrade due to the need to

adjust pointers.

• Variable performance: When accessing an index with a linked list, this will perform worse than one without, which can impact search and delete actions.

Open addressing

Open addressing only stores data within the hash table itself. When a collision occurs, it will find another empty slot in the hash table, according to a predefined sequence, and store the data there.

Several methods can be used to achieve this:

• Linear probing sequentially checks the next spot until a space is found. However, this can lead to clustering, where a group of adjacent slots get filled, increasing the search time for these elements in particular.

• Quadratic probing searches in a more spaced-out manner

for an available slot using the original hash value and a

quadratic function. If the next space is also full, it

increments the value of the quadratic function and

searches again until it finds an available slot.

• Double hashing uses a second hash function to determine the probe step. The first hash function is performed first, and then a second one to give an offset from the original

index. This offers better distribution and minimizes

clustering compared to linear and quadratic probing, but

requires more computational overhead.

Advantages:

• Space efficient: Stores all elements directly within the hash table array, eliminating the need for extra data

structures, such as linked lists.

• More memory efficient: No pointers are required.

• Simpler to serialize: As it is a simpler data structure with contiguous memory allocation, converting the

structure to a format to be stored or transmitted is simpler than a hash table using chaining.

Disadvantages:

• Increased computational overhead: If there are high load factors, performance may decrease due to the

probing methods required.

• Clustering: This can be an issue especially when using linear probing, where consecutive slots are filled, which

increases the average time for insertions, deletions and

searches that do not find the element they are searching

for.

• Complex deletion: Deleting an element is a complex process as you may break probe sequences.

PROGRAMMING EXERCISE 1

Using a hash table, create a simple voting system. The

system should have the ability to add and remove

candidates. Use the name input by the user as the key in

the hash table. Once the candidates have been input, it

should allow voters to cast votes for the candidates in the system and allow the current totals to be viewed. There

should be an option to end the election when the voting is over, and the winner should be output to the user.

PROGRAMMING EXERCISE 2

Working in a team, conduct a small experiment by

implementing two different ADTs to solve the same

problem and compare the performance. You could consider

execution time and memory usage, for example.

Collaborate on this project by assigning roles, managing your time and co-operating to achieve your goal. You could create a shared code repository to help you work together.

When you have finished, prepare a presentation

summarizing your project. Include the problem definition,

implementation details, test results, analysis and

conclusions.

An example project:

Spell checker

Implement a spell checker using a hash table and a binary

search tree. Compare the performance for the following

operations:

• Inserting words into the dictionary.

• Checking whether a word is in the dictionary.

• Suggesting corrections for a misspelled word (finding the nearest match).

Linking questions

1 What role do stacks and queues play in handling CPU

interrupts and polling? (A1)

2 Can abstract data types be used to manage data? (A2) 3 How can abstract data types be used to optimize the file-processing operations like read and write? (B2)

4 Can a binary search tree play a role in the quicksort algorithm? (B1)

EXAM PRACTICE QUESTIONS

1 Construct a diagram to represent a double-linked list that holds the following sequence of names:

Kaja, Aiko, Carlos, Fatima

[4]

2 The names of a group of people attending a conference were recorded in a stack data structure. The first name

stored in the stack was “Sofia”.

…

Tariq

Maya

Jasper

Rina

Rafael

Aisha

Zara

Sofia

Note that “Tariq” is currently in position 0 in the stack.

a Compare and contrast the use of a binary search tree and a stack when searching for a specific item.

[2]

b The tree is populated with the data from the stack. By considering only the data visible in the stack above,

sketch the binary search tree that has been created

from the items removed from the stack.

[2]

3 Sketch a binary search tree that would allow the following output when traversed using an in-order

traversal:

Zebu, Tapir, Hedgehog, Falcon, Dugong, Bison, Armadillo

[2]

4 A hash table has been used to store a company’s current stock. The hashing algorithm used is:

stock number MOD 100.

a Determine the value returned by the hashing function when it is applied to stock number 1021.

[1]

b Explain how a value is stored in a hash table.

[1]

c Describe the steps involved in rehashing.

[2]

5 Given two sets, A = {1, 2, 3, 4} and B = {3, 4, 5, 6}, perform the following operations and provide the

resulting set:

a Union

[2]

b Intersection

[2]

c Difference.

[2]

[image: Image 673]

Case study

C1 Case study

 The computer science case study provides the stimulus

 to investigate a scenario involving current

 developments, emerging technologies and ethical issues in computer science.

 The case study for SL is a scenario that includes two

 challenge questions that stimulate the required

 research. The information obtained will prepare

 students to answer the questions in this section of the examination.

 HL students conduct deeper research into the case

 study which is reflected in the extra two challenge

 questions in the case study for HL, additional

 recommended teaching hours and time during paper

 one.

Adapted from the IBDP Computer science guide

The case study is assessed in section B of Paper 1, as shown in the table below. There is a mix of short-answer questions and one essay question.

The short-answer questions typically focus on your

understanding of the main ideas of the case study, along

with the terminology contained within. The command terms

for these questions are words such as define, identify, outline and describe. The last page of the case study contains a list of terminology that is specific to the case study, over and above the terminology of the course, which the IB will expect you to be familiar with in your exam

responses.

The essay question is where you demonstrate the depth of research-based understanding you have gained about the

topics presented within the case study. The essay question is worth half the marks of section B of Paper 1. The marking criteria for the essay question are fixed and are provided later in this chapter.

Case study key information

Standard

Higher

Level

Level

students

students

Recommended teaching

15 hours

30 hours

time allocation

Proportion of Paper 1 exam

12 of 50

24 of 80

marks (24%)

marks (30%)

Marks for the essay question 6 marks

12 marks

“Challenges faced” research 2

4

prompts that form the basis

of the essay question

Approximate working time

18 minutes

36 minutes

for the essay question in the

examination

Responding to the case

study

Here is a suggested approach to understanding and

researching the issues surrounding the case study, and

preparing for exam questions on it. Use this as a starting point and then modify it to your personal approach to

learning.

Step 1: Understand the text of

the case study

• Read the case study. Highlight and identify key points.

• Prepare definitions for the terminology list provided at the end of the case study.

• Quiz and test yourself and your peers on terminology

definitions and introductory concepts.

Step 2: Understand the

technology in the case study

The case study will involve field(s) of emerging technology not otherwise covered by the course syllabus.

• Identify resources such as video lectures and technical articles that provide an overview and introduction to the

technologies present in the case study.

• Prepare notes based on those technologies from the

resources you found. Ensure you have a good

understanding of how the relevant technologies work. You

will not have to include any programming code as part of a case study examination question, but you should have a

good working technical understanding of the issues.

Step 3: Consider the scenario of

the case study in its proper

context

Now, with your renewed understanding of the technologies

within the case study, give the complete scenario another

careful read.

• What is the case study really about?

• Identify the big issues of the case study.

• What is interesting about the case study?

• What is confusing?

Step 4: Consider the challenges

of the case study

For each of the challenges identified within the case study:

• Research any background information on the challenge so you have an appreciation of its relevance.

• Why is this a challenge in the scenario presented?

• What are the implications of not being able to meet this challenge?

• What are some potential solutions to the challenge?

It is recommended to produce a revision document that

contains a summary of the issues and technology pertinent

to each of the challenges.

Step 5: Consider the relevance

of the challenges beyond the

case study

Research and identify real-world examples of the

challenges. Add these examples to your revision document

from the previous step. This step is crucial as it will

empower you to refer to other, real-life examples relevant to the case study when writing your exam responses, thereby

helping you demonstrate meaningful research.

Step 6: Review for exam

questions

• The essay question will be based on one or more of the challenges that are identified at the end of the case study document.

• Brainstorm potential examination questions that focus on the challenges.

• Write practice essays for each of the challenges faced.

Prepare a bullet-point list of key points to convert into

revision index cards in the lead-up to the examinations.

• Swap practice essays with a friend and provide feedback based on the essay question marking criteria provided

below.

Suggested strategies for

case-study research

1 Use generative AI to read the case study and have it prepare a summary of issues for each of the challenges.

An example prompt might be: “Given the case study on

the theme of [CASE STUDY THEME], prepare explanatory

bullet points on [CHALLENGE FACED].” Then, perform a

literature review to determine the accuracy of each of the assertions made by the AI. (Do not accept the responses

of the AI at face value!)

2 Arrange with your classmates to present to or peer-teach each other about the various challenges, and then take

questions from your class. Your confidence when

answering those questions will help identify areas you

need to research further.

3 Read major research papers and publications relevant to the case study so you can speak about developments in

the field with authority. Refer to the papers that discuss those developments as you speak.

Cornell University runs the arXiv.org service, which is an excellent starting point: “arXiv is a free distribution

service and an open-access archive for nearly 2.4 million

scholarly articles in the fields of physics, mathematics,

computer science, quantitative biology, quantitative

finance, statistics, electrical engineering and systems

science, and economics. Materials on this site are not

peer-reviewed by arXiv” (arxiv.org).

As the chief examiner notes: “Students who read journal

articles and complete video courses on the case study

topic have a broader understanding of the concepts. This

additional reading allows students to employ references

to real-world examples or research in the extended

response question” (IBDP Computer science subject

report, May 2024).

4 Watch interviews or lectures given by technologists who are working with, or helped develop, the technology. For

example, for the 2023 case study on recommendation

systems, there are many excellent lectures available on

YouTube by engineers from Netflix and Spotify, who

discuss in great technical detail how their algorithms

work.

5 Ask your teacher to arrange a class visit to a company or organization that is working with the technology. Meet

with their team and interview them.

Consider, for example, the 2019 case study on computer-

aided dispatch systems for emergency-service vehicles.

The author arranged a class visit to a nearby app-

development company that was creating an emergency-

services app for the local government. This gave the

students a firsthand account they could reference in their exam response.

6 Contact your local universities and ask to speak with professors or research thesis students who are conducting

research in fields of Computer Science that are relevant to the case study. Most universities have PhD and Masters

students conducting research in the fields of emerging

technology that case studies tend to draw upon.

7 Find relevant connections with real-world usage of the technologies.

For example, for the 2024 case study on rescue robotics,

several students discussed the use of rescue robots in the 9/11 disaster and compared it to the use of rescue robots

to search buildings damaged in the Ukraine conflict.

Students were able to evaluate how the technology had

changed in the intervening 20 years.

Top tips!

• Know what to expect before walking into the exam. Be

sure you understand the structure of the paper, including

the command terms and requirements of each question,

particularly the extended response.

• Depending on the topic, see whether you and your

classmates can organize a field trip or a relevant guest

speaker. It would be great if you could refer to some

primary research in your answers (“the time I visited the

…”).

• Take five minutes in the exam to plan your extended

response before you start writing. Any extended writing is vastly improved by spending just a few minutes planning.

• Ensure that any assertions you make are fully

substantiated and underpinned by balanced analysis.

• Use appropriate Computer Science terminology

throughout your response.

• Arrange with your classmates to present to or peer-teach each other about the various challenges, and then take

questions from your classmates. Your confidence when

[image: Image 674]

answering those questions will help identify areas you

need to research further.

• Use generative AI to read the case study and have it

prepare a summary of issues for each of the challenges.

Use the generated output to perform a literature review

of the summary to determine the accuracy of assertions

it makes. Due to the well-known and documented issues

of hallucinations, do not rely on generative AI outputs

without performing an independent review!

Common mistakes

• It is very easy to tell when a student doesn’t know the terminology and is making it up. Incorrect use of

terminology implies poor understanding of the issues, so

will considerably limit the marks you can earn. Do not

neglect to have a thorough understanding of the

terminology list provided.

• If you are going to provide a citation in an examination response, don’t make it up! As indicated, the examiners

will be broadly familiar with the major papers and publications relevant to the case study.

• Many low-performing essays only regurgitate the content given in the case study itself. The exam marker already

knows what is in the case-study document; they want to

see what additional insights you can provide from your

research beyond the case study.

• Another common error is not to provide a balanced

analysis. For a top-band response, you must be nuanced

enough to present multiple perspectives from which you

draw a conclusion.

• Pay close attention to the wording of the questions and, in particular, their command terms. The type of response

depends upon the command term, and merely writing

down everything you know is not an effective strategy.

• “Several unofficial online forums have provided

questionable information and guidance. You should

research broadly and cross-check information found”

(IBDP Computer science subject report, May 2024).

Essay question marking

criteria

Essay question marking criteria for Standard Level students Marks

Description

0

No knowledge or understanding of the

relevant issues and concepts.

No use of appropriate terminology.

1–2

Minimal knowledge and understanding of the

Basic

relevant issues.

Minimal use of appropriate terminology.

The answer may be little more than a list.

Marks

Description

No reference is made to the case study or

independent research.

3–4

A descriptive response with limited knowledge

Adequate

and / or understanding.

A limited use of appropriate terminology.

There is some analysis.

There is evidence of some research.

5–6

Knowledge and understanding of the related

Competent issues and / or concepts.

Uses terminology appropriately in places.

There is evidence of analysis.

There is evidence of research.

There is a conclusion.

SL Paper 1 markscheme, page 8

Essay question marking criteria for Higher Level students

Marks

Description

0

No knowledge or understanding of the

relevant issues and concepts.

No use of appropriate terminology.

1–3

Minimal knowledge and understanding of the

Basic

relevant issues or concepts.

Minimal use of appropriate terminology.

The answer may be little more than a list.

No reference is made to the information in the

case study or independent research.

4–6

A descriptive response with limited knowledge

Adequate

and / or understanding of the relevant issues

or concepts.

A limited use of appropriate terminology.

There is limited evidence of analysis.

Marks

Description

There is evidence that limited research has

been undertaken.

7–9

A response with knowledge and understanding

Competent of the related issues and / or concepts.

A response that uses terminology

appropriately in places.

There is some evidence of analysis.

There is evidence that research has been

undertaken.

10–12

A response with a detailed knowledge and

Proficient

clear understanding of computer science.

A response that uses terminology

appropriately throughout.

There is competent and balanced analysis.

Conclusions are drawn that are linked to the

analysis.

There is clear evidence that extensive

research has been undertaken.

HL Paper 1 markscheme, pages 13–14

Analysing past case studies

This section provides a high-level overview of some recent case studies to illustrate the typical style in which they are presented and the essay questions that may appear as a

result.

Additionally, chief examiner feedback on the quality of the essay responses is provided to help highlight common

weaknesses in responses given by students to these

questions. You will quickly notice common themes that echo throughout the examination seasons as you read those

comments. Take the time to learn from the mistakes of those who have gone before you.

Blockchain (May & November

2020, May 2021)

• Scenario: Based on the mayor of Santa Monica, Pablo, who wants to establish a local currency, called MONS, that uses blockchain technologies.

• Technologies: Technologies referred to include:

• digital ledgers

• digital signatures

• proof of work (mining)

• structure of a blockchain

• Merkle trees

• SHA256.

• Challenges: There are a number of challenges that are linked to the introduction of MONS; these include:

• understanding how new blocks are added to the ledger

and how the proof of work prevents malicious nodes

from taking over the MONS network

• understanding how the MONS architecture is scalable

and can remain efficient as the number of users

increases

• understanding the use of cryptographic techniques in

the MONS project

• explaining to the Santa Monica citizens how their MONS

balance is calculated from transaction data securely

stored in a publicly accessible blockchain ledger

• investigating how the distributed nature of a blockchain cryptocurrency and the confirmation process may have

disadvantages for the citizens of Santa Monica.

• Questions: Essay questions asked include:

• Pablo states: “In a traditional banking system, users trust the banks to keep everyone’s money safe; but with

MONS, the whole blockchain, right from the very first

transaction, would be visible to all MONS users, so it is

important to be able to explain to citizens how their

money is guaranteed to be safe” (lines 109–112).

With reference to the key technologies, to what extent

do you believe the MONS project will ensure the safety of

the residents’ money? (November 2020)

• Pablo has claimed that the use of blockchain technology for the MONS cryptocurrency will mean the

cryptocurrency is both secure and scalable.

To what extent do you agree with Pablo? (May 2021)

• Feedback: The chief examiner, summarizing the quality of responses to this question, stated:

The majority of responses covered immutability,

distributed consensus, cryptographic hashes, digital

signatures, and the 51% attack. Better candidates were

able to reference real-world situations, but most

candidates did not. Candidates tended to identify

increasing the blocksize and adjusting the nonce difficulty.

Very few candidates had understood how sharding and

layer 2 protocols could assist with scalability.

Many candidates discussed economic and environmental

issues with blockchain, rather than the Computer Science

aspects of security and scalability. This approach lacks

focus and detracts from the overall response.

 IBDP Computer science subject report, May 2021

Genetic algorithms (May &

November 2022)

• Scenario: Based on the travelling salesperson problem.

• Technologies: Technologies referred to include:

• genetic algorithms:

– population

– selection algorithms

– crossover

– mutation.

• Challenges: There are a number of challenges

associated with genetic algorithms; these include:

• understanding the role of convergence in genetic

algorithms and the factors affecting convergence

• evaluating the use and implementation of roulette-

wheel selection, tournament selection and truncation

selection strategies used within genetic algorithms

• discussing the different solutions for addressing the

failure of simple crossover strategies for the travelling

salesperson problem; in particular:

– why they are necessary

– how they are applied

– how they preserve the parental traits

– what other possible methods are available

• understanding the advantages and disadvantages of

genetic algorithms with respect to other approaches to

the travelling salesperson problem, and to combinatorial

optimization problems in general.

• Question: Essay questions asked include:

• To what extent do the characteristics of genetic

algorithms make them an appropriate approach to

solving the route optimization problems? (May 2022)

• Feedback: The chief examiner, summarizing the

quality of responses to this question, stated:

The challenge was to understand the advantages and

disadvantages of genetic algorithms with respect to

other approaches to the travelling salesperson problem and combinatorial optimization problems in general.

The broadness of the question meant that candidates

could incorporate information from the other three

challenges. Perhaps, for this reason, many candidates

failed to demonstrate more than adequate

understanding of how genetic algorithms can arrive at a

successful solution and this approach’s main

weaknesses.

The majority of responses were descriptive rather than

evaluative. Many candidates wrote incorrect statements

or did not understand how the different characteristics

affect each other. There were very few proficient

responses, and it was rare to see journal articles

referenced.

 IBDP Computer science subject report, May 2022

• Quotation: The case study states:

• Successful implementations of genetic algorithms

strike a natural balance between exploration and

exploitation, and techniques such as simulated

annealing can fine-tune that balance as the algorithm

progresses towards convergence (page 7, Discussion).

• Question:

• Discuss the role of convergence in genetic algorithms

and how exploration and exploitation can affect its

success. (November 2022)

• Feedback: The chief examiner, summarizing the

quality of responses to this question, stated:

Some candidates produced excellent answers

demonstrating an understanding of how initial routes,

population size, selection method, crossover method and

mutation affect convergence. Proficient answers critically analysed the interplay between these choices and how

they affected exploration and exploitation. Unlike previous case studies, there was no opportunity to

reference real-world situations.

Many candidates only talked about exploration and

exploitation in the broadest sense, failing to identify how they could be manipulated. Some students tried to

involve details from earlier questions, stating the same

content without a consistent structure.

Even though there was little opportunity to reference

real-world scenarios in this case study, some candidates

referenced research papers when they defined critical

terms. A reference to a relevant, newsworthy article or

research paper is recommended for Question 4. Schools

that approach the case study from a research

perspective provide context for students. For example,

researching practical applications of genetic algorithms

will increase students’ conceptual understanding and

make the topic more engaging.

 IBDP Computer science subject report, November 2022

Recommendation systems (May

& November 2023)

• Scenario: Based on a new application that allows users to view the work of artists who have yet to be discovered.

Artists may include actors, singers, screenwriters,

comedians, painters, sculptors and filmmakers. In fact,

any artist who wants to demonstrate a talent will be able

to upload files to the application. The uploaded content

can be rated by all users. Based on their ratings, the

application recommends new content to each user.

• Technologies: Technologies referred to include:

• cloud computing

• machine learning

• recommender systems:

– content-based filtering and collaborative filtering

– k-nearest neighbours

– matrix factorization

– training of recommender systems

– evaluating recommender systems.

• Challenges: To help with this new business venture, called NextStar, there are a number of challenges that you need to research:

• understanding the similarities and differences between

supervised learning, unsupervised learning and

reinforcement learning

• understanding how the k-NN algorithm and matrix

factorization can be used within recommender systems

• understanding how to train, test and evaluate a

recommender system

• comparing content-based filtering and collaborative

filtering recommender systems

• understanding the ethical concerns linked to the

collection, storage and use of users’ behavioural data.

• Question: Essay questions asked include:

• “Recommender systems can use content-based

filtering, collaborative filtering, or a combination of both.

Hybrid recommender systems combine several machine

learning algorithms.” (lines 43–44)

Discuss the advantages and disadvantages of these

different approaches for building a recommendation

system. (May 2023 TZ1)

• Feedback: The chief examiner, summarizing the quality of responses to this question, stated:

Most candidates focused on content-based and

collaborative filtering, describing their process with little evaluation. Some candidates stated challenges such as

popularity bias, overfitting and cold start but failed to explain strategies to deal with these issues.

The majority of candidates wrote an adequate response.

Few referenced the case study, and their analysis was on

generic movie-recommendations systems. Often the

examples were YouTube-related rather than NextStar.

There were very few proficient responses, and it was rare

to see journal articles referenced.

 IBDP Computer science subject report, May 2023 TZ1

• Question:

• Discuss whether the challenges associated with the

development of an effective recommender system can

be overcome through the choice of algorithm, training

data and methods of evaluation. (May 2023 TZ2)

• Feedback: The chief examiner, summarizing the quality of responses to this question, stated:

The majority of candidates wrote an adequate

response. While many referenced NextStar, often their analysis was on a generic movie-recommender system.

The better responses honed in on the challenges

and built their essay around them, offering ways to address them. These candidates understood that the type

of recommender system might start off simple and evolve

over time.

There were few proficient responses. Most candidates

failed to structure their essays to focus on the

challenges while explaining the computer science relating

to recommender systems. Very few candidates

referenced journals or other sources, and although

some included real-world recommender systems, it was

rarely as a comparative analysis.

The broadness of the question troubled some students who tried to include all three areas and ended up with

no depth whatsoever. Their responses were usually

descriptive and lacked any analysis or evaluation.

 IBDP Computer science subject report, May 2023 TZ2

• Question:

• A recommender system that uses a supervised learning

K-nearest neighbour (k-NN) algorithm is selected.

Supervised learning algorithms require several decisions

to be made, including setting any hyperparameters,

choosing data sets, training and testing procedures, and

evaluation strategies.

Discuss whether the selection and implementation of a

k-NN algorithm in the development of a recommender

system will give precise and accurate recommendations.

(November 2023)

• Feedback: The chief examiner, summarizing the quality of responses to this question, stated:

Many students had not researched this topic and

wrote basic responses, often copying several lines from the case study. Even those students who wrote adequate

responses often failed to explore the algorithm beyond

describing its operation. Technical terminology tended to

be used appropriately but not expanded upon.

The better responses explored supervised learning,

analysed the k-NN algorithms, and discussed how the

recommender system could be evaluated. Weaknesses

such as the cold start problem, popularity bias, and

overfitting were considered. Very few responses

considered strategies for overcoming these problems.

There were few proficient responses. However, those were

analytical and considered the question from a broad

perspective, even considering data sets and preprocessing

strategies. One or two students referenced journals or other sources.

 IBDP Computer science subject report, November 2023

Rescue robots (May &

November 2024)

• Scenario: Based around rescue robots, which are

designed to help with the search and rescue of humans

after a disaster, such as an earthquake or tsunami. These

robots may assist the efforts of rescue teams by searching and mapping areas, assessing damage, removing debris,

delivering supplies and evacuating casualties.

• Technologies: Technologies referred to include:

• computer vision

• visual simultaneous localization and mapping (vSLAM)

• pose estimation.

• Challenges: In the development of the new rescue robot, the design team at BotPro face a number of challenges:

• understanding how vSLAM navigates an environment

with unknown obstacles and contours

• minimizing the time rescue robots spend scanning and

learning an environment

• estimating the pose of people despite varying light and environmental conditions and body-part or multiple-object occlusion

• updating existing maps in a dynamically changing

environment, such as an earthquake where rubble is still

shifting

• developing an understanding of the ethical

considerations of using autonomous robots in life-and-

death situations.

• Question: Essay questions asked include:

• A governmental department of disaster management is considering deploying rescue robots made by BotPro that

use computer vision technologies for rescue operations

in closed spaces, such as buildings and factories.

Discuss the benefits and costs of deploying rescue

robots that use the vSLAM process and pose estimation

techniques to carry out rescue operations in closed

spaces. (May 2024 TZ1)

• Feedback: The chief examiner, summarizing the quality of responses to this question, stated:

The extended response challenge was to discuss the

benefits and costs of deploying rescue robots that use the vSLAM process and pose estimation techniques to carry

out rescue operations in closed spaces.

Most students focused excessively on ethical points, such as the safety of deploying robots rather than human

rescue teams. When technical concepts were mentioned,

this was done without any depth. Few students

referenced information beyond the case study,

giving the impression that little research had been

conducted.

 IBDP Computer science subject report, May 2024 TZ1

• Question:

• vSLAM algorithms are designed to operate in GPS-

denied or GPS-degraded environments. Rescue teams in

these environments cannot rely on GPS tracking. BotPro

wants your opinion on whether rescue robots installed

with vSLAM algorithms will be effective when looking for

injured or unconscious people in an emergency situation,

such as a factory fire. Such emergencies are time

critical.

Evaluate the effectiveness of robots that use vSLAM

algorithms to find casualties in an appropriate

timeframe. (May 2024 TZ2)

• Feedback: The chief examiner, summarizing the quality of responses to this question, stated:

The better responses provided a balanced account,

displaying that the effectiveness of rescue robots can vary depending on several factors, including the environment,

resources available, computational complexity, the quality of the sensor data and the complexity of the search area.

Moreover, they demonstrated an awareness of factors

such as battery life, availability of factory blueprints and operational time. Proficient responses provided real-world examples of situations where rescue robots

had been deployed and referenced research papers.

Weaker responses either focused on the ethics of

deploying rescue robots or merely listed the technologies

without describing or evaluating them

 IBDP Computer science subject report, May 2024 TZ2

[image: Image 675]

Internal assessment

C2 Internal assessment

The internal assessment is a summative task for you to

showcase your Computer Science skills and prowess. It is

marked by your school teacher and moderated by the IB, prior to contributing to your final grade for the course. The IBDP

 Computer science guide provides these details on the internal assessment:

 The internal assessment requires the student to identify a problem of their own choice and develop a software

 solution using the computational thinking process.

Adapted from the IBDP Computer science guide

Solution: the documentation and video submitted by the student for the internal assessment.

For Standard Level students the internal assessment is worth 30 per cent of your final grade, and for Higher Level students it is worth 20 per cent of your final grade.

For all students, it is recommended that 35 hours of teaching time is allocated to work on the internal assessment. According to the IBDP guide, this time includes:

• time for the teacher to explain the requirements of the internal assessment

• class time for students to work on the internal assessment component and ask questions

• time for consultation between the teacher and each student

• time to review and monitor progress, and to check

authenticity.

 IBDP Computer science guide

The internal assessment can earn up to 30 marks, spread over five criteria

Criteria Title

Marks Recommended Extras

word count

A

Problem

4

300

specification

B

Planning

4

150

Diagrams

C

System

6

150

Diagrams

overview

D

Development 12

1000

Video (max

5 minutes

in length;

format:

MP4, AVI,

WMV

E

Evaluation

4

400

Choice of problem

Making a wise choice of the problem you will tackle is critical, as the rest of the internal assessment flows from that. Don’t rush into a decision without consulting closely with your

Computer Science teacher. The IBDP guide states:

 In identifying a problem, the student can select to apply to the problem any topic in computer science that interests them. It does not have to be directly related to the

 specified themes in the syllabus.

 The problem chosen should require a software solution with sufficient complexity to be commensurate with the level of the DP Computer Science course. It should also require sufficient innovation for the student to demonstrate their organizational skills, algorithmic thinking and ability to code their algorithms.

 IBDP Computer science guide

The programming language and choice of technologies you use in preparing your product are not constrained to either Python or Java. You may use whichever language and technologies you deem to be the best fit for your product. Also, you may choose to develop a new computational solution: a standalone

application; a computer or mobile game; an interactive website with a connection to a database; a mobile application; or even add functionality to an existing product. You should

demonstrate problem-solving techniques combined with the

use of data structures, logic conditions and data manipulation (via file processing or databases) using either a procedural or OOP approach.

Product: the completed software only (in the internal assessment).

Some examples of inappropriate products, from the IBDP guide, are:

• the development of a programming product using only

copied code

• the development of a website (product) using a web-based template that determines its structure and layout

• the use of exemplar products or templates provided with software such as the Northwind database in MS Access

• a copied computer game without major modifications to the code that have been properly documented

• a product that does not meet the ethical requirements

outlined in the ‘Requirements and recommendations’ section of the IBDP guide

• a computer / mobile application created using a builder /

wizard / drag and drop tool without the need for code

development.

 IBDP Computer science guide

Additionally, examples of weaker products identified by IB

moderators in the annual subject report for the previous

version of the syllabus, which are still relevant to this version of the IA, include:

• Java programs that mainly focus on GUI and not on actual functionality

• Java programs that consist of one class only

• Java programs consisting of a Greenfoot template with only two methods overwritten

• Rudimentary versions of freely available games (like Sudoku)

• Websites that are template-based (Wordpress, Wix or

Weebly) or that have minimal content.

 IBDP Computer science subject report, May 2016, page 2

Top tips!

Choice of problem

Some general advice from the authors:

• Choose a problem that you are 80 per cent confident about being able to solve. This allows a good mix of confidently being able to deliver on what you set out to achieve, with a little bit of a stretch for you to challenge yourself with and learn something new through your IA.

• A problem you are 100 per cent confident about from the start is probably too simple to allow for high grades.

• A problem you are only 50 per cent confident about means you are trying to do more than is realistically feasible for your current skill set and available time. There are likely too many unknowns that could trip you up.

• Do not confuse a “large” project with a “complex” one. An example of this going wrong is creating a project that

requires 10+ different GUI screens. One or two screens is

enough to demonstrate you have the skill to create it; the rest is repetitious and wasted effort (from the perspective of the marking criteria).

• While on the subject of GUI screens, user interfaces

generally do not require much algorithmic skill, so don’t

focus too much on the user interface itself beyond proper

use of input validation techniques. Similarly, writing HTML or CSS does not, by itself, demonstrate algorithmic thinking.

Top tips!

• When selecting a problem, ask yourself where you will have the opportunity to showcase your understanding of both

algorithmic thinking and data structures. When you consider the criterion D marking criteria, you will observe it is largely driven by algorithms, and by extension data structures. That said, your use of various algorithms and data structures

must make sense in the context of your project – artificially forcing an algorithm into a project in a manner that appears contrived will not satisfy the criteria.

• Higher achieving products will typically have some technical complexity (being demonstrated through algorithms or data

structures) beyond that learned through the course syllabus.

Remember: the course guide allocates 35 hours of class time to this IA and, while it is an assessment, all assessments are also learning experiences. The IB does not intend for you to go through 35 hours of class time without learning anything.

Seek out new skills to learn and implement in your IA.

• To contrast the previous statement, however, do not

attempt a scenario that requires technical abilities beyond your capabilities. You should not introduce unnecessary

complexity if a simpler solution is at hand. Simple code is elegant code.

• Do not neglect the importance of the documentation and

video. Under the previous syllabus, it was very achievable for a product of moderate complexity to achieve a 7 overall on the basis of excellent, thorough, detailed documentation.

Likewise, too many technically outstanding and brilliant

products have ended up with low grades because students

spent all their time programming and neglected the written work. As the IBDP Computer science guide states:

“Whichever problem and form of solution a student chooses, it is essential that the student explicitly demonstrates and

documents their algorithmic thinking skills.”

• You are not constrained to the content of the syllabus in selecting a problem. In fact, the Guide specifically states:

“the student can select to apply to the problem any topic in computer science that interests them. It does not have to be directly related to the specified themes in the syllabus.”

Project ideas and inspiration

The following overviews are projects that the authors’ students have had success with. All of these projects received a post-moderation grade of 7 (27+ points). While aspects of the

projects would need to be adapted for the updated syllabus, they are still instructive and valuable for illustrating the variety of projects with which students can find success.

The authors wish to express their appreciation to these former students for their willingness to have their projects shared in this book. Several of the example diagrams that appear in later sections of this chapter are also from these former students’ IA projects.

Mushroom: Friend or foe?

by H Ng, used with permission

This project aims to develop a mobile application to assist users in identifying mushrooms. The app will utilize a machine

learning model trained on a North American data set to

determine whether a mushroom is edible, based on its features.

The app will also provide educational resources to help users learn more about mushrooms. The goal is to create a user-friendly and informative tool for mushroom foragers.

[image: Image 676]

Mushroom: Friend or foe?

Key technologies and techniques

• Machine learning: Classification models (e.g. logistic regression, decision trees) for mushroom-edibility prediction

[image: Image 677]

• Python: Programming language for machine learning model development

• Java: Programming language for Android app development

• Graphical user interface (GUI): For user interaction and data input

• Server–client architecture: To separate the machine learning model and the mobile app

• Data structures: JSON to represent mushroom features and model predictions

• Error handling: To handle unexpected inputs or errors gracefully

• Web development: Flask framework for building the web API

• Mobile app development: Techniques for creating Android apps, including layout design, resource management and

testing

Automated grading tool

by a former student, used with permission

Automated grading tool

This project aims to develop a web-based application to automate the grading of multiple-choice assessments. The

application will use Optical Mark Recognition (OMR) to identify student answers from scanned images and compare them to a

model answer sheet. Key features include automatic scoring, test saving and a user-friendly interface. The goal is to save teachers time and improve the efficiency of the grading

process.

Key technologies and techniques

• Web development: Flask framework for building the web application

• Optical Mark Recognition (OMR): Techniques for

identifying marked areas on scanned images

• Computer vision: OpenCV library for image processing and analysis

• Python: Programming language for overall implementation

• SQLite database: For storing user data and test results

• User interface design: Creating a user-friendly interface for uploading images, viewing results and managing tests

• Error handling: Implementing mechanisms to handle potential errors during image processing or data storage

• Data structures: Using appropriate data structures to represent test data, scores and user information

• Image processing: Techniques for preprocessing images, such as thresholding and noise reduction

• Server-side scripting: Handling user interactions, processing image data and updating the database

ASL (American Sign Language)

interpreter

by Jared Xin, used with permission

[image: Image 678]

ASL (American Sign Language) interpreter

This project aims to develop a web-based application to

facilitate communication between hearing and deaf individuals by providing real-time translation of American Sign Language (ASL) into text. The application will use machine learning and computer vision techniques to analyse hand gestures and

predict the corresponding ASL letters. Key features include a user-friendly interface, live video-streaming and accurate translation. The goal is to improve accessibility and

communication for the deaf community.

Key technologies and techniques

• Web development: Flask framework for building the web application

• Machine learning: Algorithms for predicting ASL letters from hand gestures

[image: Image 679]

• Computer vision: OpenCV library for image processing and hand detection

• Python: Programming language for overall implementation

• Webcam integration: Techniques for accessing and using the user’s webcam

• User interface design: Creating a visually appealing and user-friendly interface

• Real-time processing: Ensuring efficient processing of video frames for real-time translation

• Data structures: Representing hand shapes and predicted letters

• Error handling: Implementing mechanisms to handle potential errors during image processing or model prediction

• Model training: Training the machine learning model on a data set of ASL signs

• Accuracy evaluation: Evaluating the model’s performance and making improvements

Vacation route planner

by Edward Zhang, used with permission

Vacation route planner

This project aims to develop a web-based application to assist users in planning multi-destination vacations. The application will allow users to input locations, generate optimized routes and view detailed information about each location. Key features include efficient route planning, location suggestions and mobile compatibility. The goal is to simplify the vacation planning process and provide users with personalized

recommendations.

Key technologies and techniques

• Web development: Flask framework for building the web application

• Mapping: Leaflet.js library for interactive maps

• Routing algorithms: Travelling salesperson algorithm to calculate the most efficient routes between locations

• Location data: APIs to access and process location data using OpenStreetMap API

• User interface design: Creating a user-friendly interface for inputting locations, viewing routes and interacting with the map

• Error handling: Implementing mechanisms to handle potential errors during data processing or API requests

• Data structures: Representing locations, routes and other relevant data

• Mobile optimization: Ensuring the application is compatible with mobile devices

• Deployment: Using PythonAnywhere for deployment and hosting

• Server-side scripting: Handling user interactions, processing location data and generating routes

IBDP subject recommender

by Sofia Cornu, used with permission

[image: Image 680]

IBDP subject recommender

This project aims to develop a desktop application that will allow students to input information such as their subject

interests, career aspirations and recent grades to receive a recommendation of which subjects they should choose for their IB diploma. The solution will take into account IB subject requirements and the school’s timetable scheduling.

Key technologies and techniques

• Java programming language

• JavaFX GUI

• MySQL database to hold the school’s timetable

• Excel file containing IB subjects that are recommended for different career paths, converted to JSON for easier use

• Unique algorithm: Developed to give students suggestions for their IBDP choices based on the data input

[image: Image 681]

Stock-trading predictor

by a former student, used with permission

Stock-trading predictor

This project aims to develop an AI-powered tool to assist in making more informed stock-trading decisions. The tool will use a long short-term memory neural network to predict stock

prices based on historical data. The AI models will be trained individually for each stock and saved to the user’s computer.

The program will feature a simple GUI with minimal UI elements and will provide error handling for invalid inputs. The tool will also allow users to retrain existing AI models.

Key technologies and techniques

• AI: Long short-term memory neural networks for stock-price prediction

• Python: Programming language for implementation

• yFinance API: For accessing stock data

• Tkinter: For creating the GUI

• matplotlib: For displaying graphs

• Machine learning libraries, e.g. TensorFlow or PyTorch: For neural network training and implementation

D&D battle map generator

by Tom Chan, used with permission

[image: Image 682]

D&D battle map generator

This project aims to create a desktop application that generates custom battle maps for Dungeons & Dragons. The application will feature a user-friendly interface, allowing users to

customize maps easily with various textures and elements. The goal is to provide a quick and efficient solution for creating unique battle maps. Key features include procedural map

generation, texture import, and easy saving and exporting.

Key technologies and techniques

• Python: Programming language for implementation

• PySimpleGUI: Front-end framework for creating the user interface

• PIL (Pillow): For image processing and rendering

• Procedural generation algorithms: To generate

structures, paths and hazards

• Algorithms: Breadth first search, A* path finding, recursive back-tracking

• Data structures: OOP to represent the map, rooms and paths

[image: Image 683]

• Texture mapping: To apply textures to the generated map

• File I/O: For saving and loading maps

• Image export: For exporting maps as png, jpeg or pdf Music art creator (Visuca)

by Anjali Bhimani, used with permission

Example Visuca output

This project aims to create a desktop application that will generate a poster based on the musical elements of a song.

The application will request the upload of a csv file with the musical element details and will have instructions for the user to convert their song of choice into a csv file. The application will then take into consideration the musical elements to create different posters that vary based on shape, pattern and colour

[image: Image 684]

intensity. The poster designs will change based on the client’s song choice, so the deconstructed musical elements are

represented as a ‘visual display’.

Key technologies and techniques

• Python: Programming language for implementation

• Streamlit: Front-end framework for creating a user interface

• Librosa: Python library for extracting music data from MP3s

• Vega-Altair: Python library to create visual output

• Algorithms: Unique algorithm to display the music data visually

• Data structures: OOP to hold music data for individual tracks, lists and Panda data frames

• File I/O: Text files and Pickle library to import and export data

Network airlines (file transfer

system)

by Eladio Hosseinpour, used with permission

Network airlines (file transfer system)

This project aims to create a file transfer system that

downloads files from one computer to another on the same

network, through the ethernet – which connects devices on the local network – rather than the internet, so the data can travel directly between computers on the same network rather than having to be uploaded and downloaded, which is inefficient.

Key technologies and techniques

• Java: Programming language for implementation

• JavaFX: Front-end framework for creating a user interface

• Multi-threading: To boost the efficiency of the application

• Asymmetric encryption: Ensuring transmission security

• Recursion: Used for searching directories and sorting data

• Algorithms: Network scanning

• Data structures: OOP to hold file data and user information Submission requirements

There are three files that will be submitted at the conclusion of your internal assessment: the documentation, the video and the appendices. Briefly, the role of each is as follows:

Documentation

• Submitted as a single PDF file

• Should contain five separate sections, one for each criterion

• Total word count must not exceed 2000 words (not including code excerpts, comments or diagrams)

• The overall word count should be clearly written on the cover page.

Video

• Maximum length of five minutes

• Submitted in a commonly used file format such as MP4, AVI or WMV

• Demonstrates the full functionality of the product

• Demonstrates examples of the testing strategy used in the development of the product.

Appendices

• Submitted as a single PDF file

• Must include the full source code and other resources

developed that are referred to in the documentation

• While appendices are not used as evidence for the awarding of marks, and examiners are not required to read them,

solutions that do not include an appendix with full source code cannot be awarded full marks for techniques

demonstrated in criterion D.

Criterion A: Problem

specification

The Guide provides the following information on criterion A: The problem specification is the starting point of the solution and must be used as a basis for the development of the product.

 The student should have the necessary technical skills, access to appropriate hardware and software and the

 availability of relevant data to address the problem.

• The success criteria identified in the problem specification (assessed by criterion A) will be used in the planning

(assessed by criterion B), in the development (assessed by criterion D) and in the evaluation (assessed by criterion E).

• The recommended word count for this criterion is 300 words.

Criterion A assesses the problem specification (4 marks)

Marks Description

0

The response does not reach a standard described by

the descriptors below.

1–2

Outlines a problem scenario.

States limited success criteria.

Outlines the nature of the solution in a computational

context.

3–4

Describes the problem scenario in terms of its

measurable solution requirements.

States appropriate success criteria.

Explains the choice of computational context for the

solution.

Clarifications:

• Problem scenario: The problem scenario is a clear description of the problem, including its measurable solution requirements. The description should relate directly to the problem, whether this be in the world around us, in other

fields of knowledge or a current issue in computing.

• Success criteria: These are measurable outcomes derived from the solution requirements that indicate the successful development of the product.

• Computation contexts: The computational context is the specific area of computing that is selected to be used in the solution.

 IBDP Computer science guide

Top tips!

Criterion A

1 Use the SMART technique to be as specific as possible with your success criteria (Specific, Measurable, Achievable,

Relevant, Time-bound).

2 Use technical language in your success criteria (in the correct context). Vague, generic success criteria are unlikely to score marks.

3 Ensure you are not just recreating a clone of an existing app, such as a game. There must be an original idea, with

an element of innovation, to your project. Be sure to

articulate what sets your project apart from all the others.

The IB provides some questions that may help:

• What is the current situation?

• Who is affected by the problem?

• What causes the problem?

• What are the objectives or general requirements for the computational solution?

• Are there any constraints associated with the problem?

• Are there existing computational solutions and, if so, why are they not effective? What are their shortcomings?

• Why is it valuable or significant to construct a

computational solution for the problem?

• Are there any time or resource limitations or specific

conditions?

 IBDP Computer science teacher support material

4 Examples of good success criteria include:

• The solution will be able to input, edit and delete

customer records from the customer database.

• The solution will give appropriate warning messages to

the user in case of extreme or invalid input.

• The solution will be menu-driven with eight menu choices (including an indication of the choices).

5 Examples of inadequate success criteria include:

• The code will compile.

• The code will run without crashing.

• The code will use loops.

• The program will be aesthetically pleasing.

Common mistakes

Criterion A

1 Criteria for success that do not actually make reference to the core functions of the proposed

solution (for example, creating a task manager

without any mention of the core functions associated

with being a task manager): This will always imply there are key criteria absent from this list. If you are designing a game, include some aspects of the game-play in your CfS –

it will make your testing far easier.

2 Make sure your success criteria are testable and not subjective: A success criterion such as “The UI should look good” is not suitable, as it is vague and subjective and

people may disagree on the outcome.

3 Your success criteria have a key role in later assessment criteria: You will design tests for them, and evaluate your project based on them, so ensure your

success criteria meaningfully summarize the core functional requirements for your project.

Checklist for criterion A

• Problem scenario:

• The purpose, or idea, inspiring your problem solution has been clearly identified and described.

• Explicitly relates to one of: the world around us; another field of knowledge; or a current issue in computing.

• Measurable solution requirement(s). What is the essence or core functionality for your project? Summarize the purpose of your project here in a way that can be objectively

measured, and then expand on it in the success criteria.

• Computational context:

• Clearly identify your choice(s) of computational context.

This may include:

– Language environment – which programming language will you use and why? What are any potential flaws or

weaknesses with this choice and how are they not a

factor, or how have they been mitigated?

– Software environment – specific operating systems,

libraries, frameworks to be used. Justify your choice.

– Hardware environment – specific components or

computing infrastructure to be used/required. Justify your choice.

– Data environment – format, structure, size and source of the data you will be using or generating; any database

engine you may use.

– Implementation environment – system configuration,

network conditions, security constraints, resource

availability and compatibility requirements.

• Explain and justify why you have chosen these

computational context(s).

• If you have not yet finalized your choices, you can identify the options you are evaluating and what your guiding

concern may be in making a choice. Be sure to identify this as a research task in your criterion B planning.

• You may consider using a table such as the one below to help structure your computational context.

Table to help structure your computational context

Context

Chosen Alternatives

Justification

considered

Main language

Java

Python

Because …

Hardware

environment

Libraries /

frameworks

OS

Context

Chosen Alternatives

Justification

considered

Data

environment

• Success criteria:

• Related to the problem scenario previously described

• Clearly measurable, with precise language

• Testable

• Achievable and feasible within the constraints of your skills and time available

• The sum of the success criteria will indicate successful development of the product

• 8 to 10 in number

• Should be application-feature focused rather than what

programming techniques will be used.

• 300 words.

Examples for criterion A

These are based on two of the projects outlined in the ‘Project ideas and inspiration’ section, reworked for the updated

assessment criteria.

Vacation route planner

 Based on the project by Edward Zhang

Problem scenario:

As a frequent traveller, I’ve struggled with planning multi-destination vacations, particularly across different countries.

Existing tools like Google Maps and Tripadvisor lack the

functionality to effectively sequence travel routes and offer limited customization, presenting a significant challenge in the travel and tourism sector. This problem highlights a gap in current computing solutions concerning data handling and real-time optimization for personalized travel planning. My

project shall consist of a web-based application that allows users to select different cities and landmarks they wish to visit, creating a “tour” as a list of destinations. The application shall use route optimization and personalization features (such as travel method) to generate recommended itineraries.

Computational contexts:

The proposed solution is a web-based travel-planning

application using Flask for back end operations due to its simplicity and effectiveness in managing routes and endpoint setups, and the ease with which it allows use of Python for back end functionality while using web technologies for a modern, stylish front end. The front end will utilize HTML for structure, CSS for styling and JavaScript for functionality, while incorporating the Leaflet.js library for advanced interactive mapping capabilities. This stack was chosen to ensure broad compatibility across devices, essential for real-time travel use.

The combination of HTML/CSS/JS is industry standard for UI and there is plenty of documentation available to assist in creating the front end with these tools. The application will be hosted on PythonAnywhere due to its tooling being specifically designed for hosting Python projects with ease, in contrast with setting up a VPS with AWS or similar. This setup provides the flexibility needed for a personalized, dynamic travel-planning tool that meets the needs of myself and my friends.

Word count: 257

Success criteria:

The project will be considered successful if it meets the

following criteria:

1 Generates a near optimal route (with respect to estimated travel time) connecting user-selected locations, starting and ending at user-specified points, using the travelling

salesperson algorithm.

2 Displays the calculated route within 10 seconds for up to 15

locations.

3 Accurately recognizes and suggests locations based on partial or non-English inputs.

4 Provides interactive map functionalities with detailed markers and route segments.

5 Integrates with APIs to ensure accurate and current routing and location data.

6 Displays clear error messages for unreachable locations or invalid inputs.

7 Alerts users to input locations before attempting route planning.

8 Manages user inputs effectively, preventing entry of more locations than supported and prompting corrections.

9 User interface designed for mobile phone browsers, specifically the current version of iPhone Safari.

IBDP subject recommender

 Based on the project by Sofia Cornu

Problem scenario:

As students entering the International Baccalaureate (IB)

Diploma Programme, my friends and I are challenged by

selecting subjects that align with our interests, career goals and IB requirements, while avoiding timetable conflicts. This relates to the world around me as it directly affects the planning of my future education through the ability to combine personal preferences with logistical constraints. The current manual approach, reliant on individual counselling, is inefficient and inadequate. Highlighting problems in educational logistics and computing, such as data integration and user personalization, there’s a clear need for a digital solution that systematically addresses these challenges, enhancing educational planning through advanced computational techniques.

As such, I will create a solution that allows aspiring IB students to enter previous report grades, and personal preference data, from which the solution will generate a proposed subject

enrolment that is personalized for the student. The solution will also ensure the proposed subject enrolment is compatible with the school’s IB timetable offerings and blocking structure.

Computational contexts:

The application will be developed using Java due to its robust static typing system, which reduces bugs and enhances performance. Java’s compatibility with JavaFX makes it ideal for creating a user-friendly desktop environment that operates seamlessly across multiple operating systems.

Data management will be handled using a MySQL server, facilitating real-time updates and secure storage of timetable and student information. This approach leverages Java’s

capabilities for complex data structures and secure, scalable application development, addressing the specific needs of

educational administration and compliance with educational standards.

Word count: 248

Success criteria:

The application must meet the following criteria to be

considered successful:

1 Personalization: Users can input personal interests, career goals and academic performance. The application will

recommend subjects based on these inputs.

2 Scheduling integration: It accesses the school’s timetable data to ensure recommended subjects do not clash.

3 Compliance with IB requirements: Ensures the proposed subject combination is valid for the IB Diploma, including the correct level distribution (three Higher Level and three

Standard Level subjects).

4 User interface: Features a graphical user interface (GUI) that allows for easy input of personal information using text boxes, check boxes and drop-down menus.

5 Flexibility: Includes a feature for selecting optional group 6

subjects and considers ‘Environmental and Social Sciences’

as applicable to multiple groups.

6 Security: Only authorized personnel (e.g. the IB coordinator) can alter timetable settings, secured via password

protection.

7 Cross-platform compatibility: Functions on both Windows 10 and MacOS, aligning with the technology available to the students.

Criterion B: Planning

The Guide provides the following information on criterion B: The planning of the product must be consistent with the

problem specification in criterion A.

• This criterion assesses how the problem scenario has been decomposed into component parts.

• The plan should address the requirements of the solution, in terms of the success criteria, and include a proposed

chronology for the steps involved in planning, designing,

developing, testing and evaluating the solution.

• A plan can be presented in different forms, but diagrams such as Gantt and Agile charts can effectively support the planning process.

• The plan may include the allocation of time toward

conducting research into code libraries, frameworks or other tools that may be suitable for the project.

The recommended word count for this criterion is 150 words.

Criterion B assesses the planning (4 marks)

Marks Description

0

The response does not reach a standard described by

the descriptors below.

1–2

Constructs a partial decomposition of the problem

scenario.

Marks Description

Constructs a plan that addresses some of the success criteria of the solution.

3–4

Constructs a reasonable decomposition of the

problem scenario.

Constructs a plan that addresses the success criteria

of the solution.

Clarification of planning:

• Decomposition is the breaking down of the problem scenario identified in criterion A into smaller, more

manageable sub-problems or components. The decomposition

can be effectively constructed using diagrams.

• A reasonable decomposition breaks the problem down into essential components that support the construction of a plan.

 IBDP Computer science guide

Top tips!

Criterion B

1 Show you have carried out the design cycle for each subproblem / component (planning, designing, developing,

testing and evaluating).

2 There are multiple tools to facilitate decomposition, for example:

• The general solution can be documented by a use case

diagram together with flowcharts, dataflow diagrams or

equivalent.

• For procedural coding, it may be good to use a

flowcharting tool to break down a complex task into

modules.

• For object-oriented coding, it is important to identify and describe the objects in the problem scenario.

• A database project would require the identification and description of the data and processing required.

 IBDP teacher support material, page 76

3 The plan should take into account the order of tasks, the timeline for their completion and the resources needed to

complete the individual tasks. This is also a time when any research that is required can be planned for.

Common mistakes

Criterion B

1 Producing diagrams that are not technically

accurate: For any diagram you produce, make sure it complies with the standard for that type of diagram.

2 Plans that are later contradicted by the solution submitted, for example if the plan states you will use Microsoft SQL but you then end up using SQLite.

3 Missing areas of the design cycle, for example not showing any evidence of testing being carried out on a component.

Checklist for criterion B

Decomposition

• Each of the success criteria from criterion A has been

identified within the decomposition process.

• You may use a table or bullet point format. Alternatively, a structure chart with short comments underneath can be a

useful means to articulate the different sub-parts of your problem (see example).

• Optionally you may also include a high-level overview of some key logic (such as a flowchart) or your data structures (such as an OOP relationship diagram). If included, these are

“big picture” only as detailed design diagrams occur in

criterion C.

Planning

• The plan should address all five stages:

• Planning

– May include relevant research required for completion of the product (e.g. code libraries, frameworks, algorithms)

• Designing

• Developing

• Testing

• Evaluating

• Each of the sub-parts identified in the decomposition should be shown to have time allocated within your plan for

designing, developing, testing and evaluating.

• Time limits and resources are considered to assign realistic timeframes and needs.

• You may, optionally, use planning diagrams such as a Gantt chart to present your planning (see the example).

• 150 words.

The IB offers this useful reminder:

 Note that the plan is not a process journal. While an Agile approach is encouraged, the planning stage of the

 documentation should not be written after the

 computational solution is completed.

Example for criterion B

The following example has been constructed for a hypothetical, personalizable Pacman clone game. Remember that, at this

stage, you are only decomposing and planning your problem.

These diagrams will not necessarily reflect the final version of your solution.

Project: Pacman clone

Decomposition

For my Pacman clone project, I have decomposed the problem into five main objects of Game, Map, Entity, Player and Ghost, as modelled in the UML relationship diagram that follows.

[image: Image 685]

[image: Image 686]

Additionally I have decomposed the core functionality of the project according to the structure chart that follows (brief descriptions of each category follow the structure chart).

Class relationships UML

Structure chart identifying the key components of the

decomposed project:

Structure chart

Further descriptions of the key components in the

structure chart:

• Game management: This module handles the core loop and initialization, making sure the game starts and ends

appropriately.

• Player management: Manages everything related to the player character, from avatar customization to handling

movements based on keyboard inputs.

• Map management: Responsible for loading different maps and managing elements within them, including transitioning between different difficulty levels.

• Ghost management: Controls the ghosts’ behaviour, utilizing an A-star algorithm for pathfinding and deciding their movement strategy based on the current difficulty level.

• Scoring system: Manages the scoring, including calculating scores based on game events (e.g. eating fruits) and handling high scores’ storage and retrieval.

Gantt chart:

[image: Image 687]

Gantt chart, illustrating the planning, designing,

developing, testing and evaluation of each of the key

components identified in the decomposition process and

shown in the structure

Criterion C: System overview

The Guide provides the following information on criterion C: The system overview of the product must be consistent with the problem specification in criterion A, and the planning in criterion B.

• The system overview should include a system model with the key components; their relationships; the rules governing their interaction; and the algorithms required by these components and the user interface.

• The system overview should have the clarity to enable a third party to re-create the product.

• The system model should provide the information for a viable testing strategy.

The recommended word count for this criterion is 150 words.

Criterion C assesses the system overview (6 marks)

Marks Description

0

The response does not reach a standard described by

the descriptors below.

1–2

Outlines a limited system model.

Identifies algorithms for the components of the

system model.

Identifies a testing strategy for at least one success criterion.

3–4

Constructs a system model that is not complete.

Constructs algorithms for the components of the

model that lead to partial functionality of the

product.

Outlines a testing strategy that aligns with at least three success criteria.

5–6

Constructs a complete system model.

Constructs algorithms for the components of the

system model that enable the product to perform.

Describes a testing strategy that aligns with the

success criteria.

System overview clarifications:

• A system model consists of diagrams that include the components of the system and how they are connected. The

system model will include the design of the User Interface. A complete system model does not include the algorithms for each of the components.

• Algorithms can be presented in different forms, including natural language, flowcharts or pseudocode, and should

address the individual components of the system model.

• The testing strategy refers to a systematic approach for evaluating whether the computational solution works as

intended. The testing strategy should ensure that code

functions correctly and handles unexpected or incorrect

inputs. This can be represented effectively in a table with proposed test data and expected outcomes.

 IBDP Computer science guide

Top tips!

Criterion C

1 Testing strategies should be explicitly identified for each of your criteria for success. Functionally test and verify that your software functions according to requirements. Test that the range of inputs and outputs aligns with expected

behaviour.

2 Never trust the user! As discussed in A2.4.3, user inputs should always be validated before being used for any

calculations or algorithms. Common validation methods for

user inputs include:

• Presence check: Has a value been input?

• Length check: Is the input an acceptable length

(minimum or maximum length)?

• Type check: Does the input correspond to the correct data types: integer, float, absence of illegal characters?

• Format check: Have any complex formatting rules been correctly applied (such as dates, times or currency)?

3 Validate your inputs by supplying expected and unexpected input values to test how your software responds. Normal

data, boundary data and erroneous data inputs should all be tested. Remember that the guiding principle for this

assessment criteria in the Guide is:

 the system overview should have the clarity to enable a third party to re-create the product

Does your response provide that level of clarity?

4 Recommended diagrams:

• UI – mandatory

• ERD (normalized) – if you have a database

• Data dictionary – if you have a database or persistent file storage

• UML diagram – if you are using OOP anywhere

• Component design diagram – if you have any physical

hardware components

• Rules of engagement, attack surface mapping – if you

have networking involved

• Flowcharting – for procedural code.

Common mistakes

Criterion C

1 A lack of design thinking being applied to your solution: If you have genuinely decomposed your problem scenario, there really shouldn’t be blocks of code hundreds of lines long (in criterion C, this could present as

pseudocode that is overly long). This could be interpreted as a lack of effort to adequately think through and decompose your problem into abstractions such as classes or functions.

The presence of variable names such as person1, person2,

person3 may be interpreted as something that could have

been better designed with an array.

2 Avoid any technical errors in your diagrams (for example flowchart diagrams that have two arrows coming

out of a non-decision element).

3 Tests not actually relevant to achieving the proposed solution (likely linked to poorly devised success criteria): Things like “starts up within 10 seconds” or “does not

crash”, instead of genuinely testing functionality, such as

“successfully adds record to the XXX table of the database when a message is received”.

Checklist for criterion C

• System model – holistic overview:

A system overview presents key components, their

relationships and the rules governing their interaction. Some appropriate tools to facilitate this are:

• Procedural coding: Flowcharting to break down modules or a bulleted list with indentations.

• OOP: UML diagrams that show dependencies between classes.

• Database project: Table designs with normalization and a description of data dictionaries.

• System model – for each component:

Students are expected to show algorithms for key

components only. There is no need to design all components of the system.

• Diagrams for each component, including the design of the user interface.

• Algorithms are not required for all components, but should be provided for those that lead to the functionality of the product. These algorithms may be presented using either

natural language, flowcharts or pseudocode.

• Testing strategies:

Your document should contain two test tables:

1 Functional testing table: This table should evaluate the application against all success criteria, ensuring that the

functionality meets user expectations and requirements.

2 Structural testing table (white box testing): This table should rigorously test major algorithms, using valid,

extreme and invalid data to ensure the application

performs correctly under all possible conditions.

• Functional testing:

Address all elements of the success criteria.

• Structural testing:

• Verify the major algorithms function correctly.

• Verify the solution handles unexpected or incorrect inputs and that you have tested the acceptable boundaries (valid, extreme and invalid data).

Functional testing: testing concerned with the behaviour of the application – specifically, whether it meets the

requirements specified. This type of testing evaluates the software by providing inputs and examining the outputs,

without considering how internal systems work. You are testing each of the success criteria on the whole application from the user’s point of view.

Structural testing: testing concerned with the internal workings of the application – based on the code structure and internal pathways. This type of testing requires an

understanding of the codebase and is used to ensure that all aspects of the code are properly tested. You are testing that all conditional branches execute correctly, and all error-handling code triggers when needed and responds appropriately.

Examples for criterion C

The following tables provide a suggested format for

documenting your testing strategy:

Functional testing

Success

Test

Test

Expected

criteria

number

outcome

1

1

Upload files of

All files upload

different types and correctly and are

sizes

resized to a

resolution of

300×300

2

2

3

3

Load the game

Ghost should move

with a single ghost to Pacman using a

and observe its

sensible path

movement

4

4

5

5

Run the game, and Movements should

use the WSAD keys be:

to observe Pacman W = up

movement

S = down

A = left

D = right

Structural testing

Algorithm Test

Test

Test data

Expected

/

type

outcome

structure

Uploading

Upload files

Valid

A mix of PNG Image file

avatars

of different

and JPG files is correctly

types and

of

uploaded.

sizes

resolutions:

Post-

100×100

upload, the

code

500×500

resizes to a

1000×1000

300×300

avatar, and

2000×2000

saves to

internal

memory

for use

within the

game.

Algorithm Test

Test

Test data

Expected

/

type

outcome

structure

Invalid

Non-image

Error

files

message

uploaded,

displayed

e.g. docx,

to the user

xlsx, pdf

with

instructions

about

permitted

image

sizes and

types.

Extreme File over

Error

5MB in size,

message

and / or

displayed

dimensions

to the user

over

with

2000×2000

instructions

about

permitted

image

sizes and

types.

Algorithm Test

Test

Test data

Expected

/

type

outcome

structure

A-star

Unit testing

Valid

A range of

Unit testing

algorithm

on the

source and

should

A_Star()

target

pass these

function

coordinates

tests when

that are valid expecting

locations in

the correct

the maps

next

closest

coordinate

to be

returned.

Algorithm Test

Test

Test data

Expected

/

type

outcome

structure

Invalid

A range of

Unit testing

source and

should fail

target

these

coordinates

checks.

that are out

of bounds /

located in a

wall /

otherwise

not valid

locations in

the maps

Extreme Test on: map Unit testing

with no

should fail

pathway

these

from source

checks.

to target;

also test with

source and

target being

at the same

location

Algorithm Test

Test

Test data

Expected

/

type

outcome

structure

User input Use

Valid

A mix of W,

Game

controls

unittest.mock

A, S, D

should

to simulate a

keyboard

correctly

range of

inputs

process the

keyboard

input.

inputs and

combinations Invalid

Inputs of

Game

other keys

should

ignore the

input.

Extreme Rapid

Game

repeated key should

presses or

ignore the

simultaneous input.

key presses

Example diagrams for criterion C

The following are exemplar diagrams of the type that may be commonly included for this criterion (depending on your project choice).

[image: Image 688]

System flow diagram (credit: Hailey Annabelle Loh)

[image: Image 689]

User interface mock-up 1 (credit: Hailey Annabelle Loh)

[image: Image 690]

[image: Image 691]

User interface mock-up 2 (credit: H Ng)

[image: Image 692]

Network architecture diagram (credit: Edward Zhang)

High-level overview flowchart (credit: H Ng)

[image: Image 693]

[image: Image 694]

Decision tree ML model (credit: H Ng)

User interface with relevant logic side by side (credit: Sofia Cornu)

[image: Image 695]

[image: Image 696]

Data flow diagram (credit: former student)

Entity relationship diagram

[image: Image 697]

UML class diagram with relationships

[image: Image 698]

Use case UML

[image: Image 699]

[image: Image 700]

Configuration file example

Pseudocode example

Criterion D: Development

The development of the product must be consistent with the problem specification in criterion A, the planning in criterion B

and the system overview developed in criterion C.

• The video should provide evidence of the functionality and give examples of the testing of the product.

• The development of the solution should justify the structure of the product and why it is appropriate, and demonstrate the techniques used to develop the product based on the

algorithms constructed in criterion C. These techniques may include loops, data structures, existing libraries and the integration of software tools.

• The testing strategy should include testing for correctness, reliability and efficiency. The testing should be described and justified in the documentation, with supporting examples seen in the video.

The recommended word count for this criterion is 1000 words.

Criterion D assesses the development of the product (12

marks)

Marks Description

0

The response does not reach a standard described by

the descriptors below.

1–3

Constructs a product with very limited functionality.

Constructs a product using no appropriate

techniques to implement the algorithms.

States the choices made to implement the algorithm.

States the testing strategy used.

4–6

Constructs a product that has limited functionality.

Constructs a product using at least one

appropriate technique to implement the

algorithms.

Outlines the choices made to implement the

algorithm.

Marks Description

States the effectiveness of the testing strategy

used.

7–9

Constructs a product that has partial functionality.

Constructs a product that uses some appropriate

techniques to implement the algorithms.

Explains the choices made to implement the

algorithm.

Describes the effectiveness of the testing strategy used.

10–12 Constructs a fully functional product.

Constructs a product that uses appropriate

techniques to implement the algorithms.

Evaluates the choices made to implement the

algorithm.

Justifies the effectiveness of the testing strategy used.

Clarification of development:

• The implementation and coding of the algorithms: Techniques in the criteria refer to the process of programming algorithms using code. The documentation should highlight

key elements of code that are important for the efficient

functioning of the algorithms. Any code presented in the

solution should include relevant comments, be consistent and be readable. Code excerpts included in the documentation

should be referenced to the full source code submitted as an appendix.

• Functionality and testing: The video should demonstrate the functionality of the product. The deployment of the

testing strategy and its effectiveness should be described in the documentation with examples of the testing seen in the video.

 IBDP Computer science guide

Top tips!

Criterion D

1 The top band for this criterion shifts the focus from explanation and description to that of evaluation and justification. Why were the techniques you used

appropriate? Why did you make the choices you did when

implementing your algorithm(s)?

2 Why was your method of testing the solution optimal for the context? Show at least three of the outcomes of your test

cases against this area of your application, covering both functional and structural testing.

3 Structure your criterion D with subheadings based on the success criteria, rather than as a narrative telling the history of the development of the solution. For each of your success criteria, present the case for the most appropriate

techniques for completing it and your testing strategy used for it.

4 Ensure your video demonstrates testing of your product –

not just for expected, but for unexpected, inputs. The video should also show that the software correctly processes the inputs, not just by showing the output produced, but by also showing that any internal state changes of the software

have correctly occurred (for example demonstrate that a

“save” function does produce a resulting change in the

database).

5 When taking screenshots of your code to use in your documentation, include the line numbers. This makes it

easier for you to refer to sections of your code in your

writing.

6 The IB states that it is acceptable to improve code with GPT, but any use of GPT needs to be explicitly documented and

the improvements need to be properly discussed and

justified. Techniques must be recognized to receive marks for development and the choices made must be discussed.

Common mistakes

Criterion D

1 A very common issue is having limited discussion that explains why the approach was selected. Justify why you programmed using the approach taken. There are

several ways to do this, but the best is to contrast against alternative valid approaches and then explain the rationale of your decision.

2 Remember your code that is submitted within the appendix forms part of criterion D. Ensure your code is meaningfully stylized, structured and designed in

accordance with the plans articulated in criteria B and C.

One long file with thousands of lines in it, with functions and mainline code inter-mixed, no use of classes or meaningful modularization, will not likely score in the top band.

3 The video is not for showing or explaining your code, but for demonstrating the functionality of your application based on the success criteria. You only have five minutes; use them wisely.

4 Videos longer than five minutes will not score more marks as the moderator will likely stop watching at the five-minute mark. Anything beyond this will not be considered

for your grade.

Checklist for criterion D

• Video:

1 Your video addresses the problem described in criterion A.

2 A single test-run of the product is often sufficient to demonstrate the functionality, and then some examples of

the testing strategy.

3 Ensure you showcase you have met every success criteria in your video (although full functionality can be achieved if your product is a working solution to an adequate problem

specification, even if the success criteria have not been

fully met).

• Development document:

4 Identify and address five to seven of your most advanced techniques / algorithms / data structures:

– Discuss the techniques used to complete them.

– Use screenshot excerpts of your code. Comments should

be provided with code to explain their purpose.

– Discuss alternative solutions you considered, where

appropriate. Evaluate your choices.

5 Evidence of testing:

– Functional testing

– Structural testing

– At least three separate test cases included (e.g. valid, extreme, invalid input data)

– Evaluate the comprehensiveness of the testing

– Justify your testing strategy.

For the evidence of testing, it is suggested you reproduce areas of the table from criterion C, with an additional column for

‘results obtained’. If word count is a problem, you could simplify the table by numbering the tests in the criterion C table, and then referring to tests by their number when providing the results here in criterion D.

Examples for criterion D

[image: Image 701]

Multithreading in “Mushroom: Friend or foe?” (credit: H Ng) Explanation

In the Android application, multithreading is used to perform network operations, like fetching data from an API, without blocking the main UI thread. This approach keeps the UI

responsive as network requests are handled in the

background.

Justification

The advantage of this approach is that using separate threads to execute communication with the server ensures that the

task can be completed concurrently in the main thread. As a result, the application stays responsive even if the request and response process takes a long time. An alternative

approach could have been to use AsyncTask, however this is prone to memory leaks for beginner programmers. Kotlin

Coroutines are a new feature designed to be a simple

alternative to thread management, however these are not

available for Java.

Testing

Structural tests (unit testing) and functional tests were

conducted to ensure thread safety and correct data fetching.

[image: Image 702]

[image: Image 703]

Tests under simulated slow network conditions confirmed the UI remains responsive.

Links to: success criterion 5

Calculating optimal route in “Vacation route planner” (credit: Edward Zhang)

Explanation

The 2D array dp is used to represent the states of the

solution. Each state has a bitmask mask and a position u. The bitmask represents the subset of nodes visited so far, and the position represents the current node being processed.

dp[mask][u] stores the minimum cost to reach node u after

visiting the set of nodes represented by the bitmask mask

(Datta, Subham). Refer to the screenshots above for a

detailed explanation.

Justification

By using bitmask dynamic programming, the algorithm

transforms the problem from a brute-force search of O(N!)

time complexity to O(N2 × 2N), which is feasible for N up to 15

to 20 (Kaçar, Kaan). Compared to more efficient heuristics such as Christofides’ algorithm or the nearest-neighbour

heuristic, dynamic programming always guarantees the

optimal solution, while heuristics only provide an

approximation (GeeksForGeeks).

An iterative approach was adopted because recursion could

lead to stack overflow and increase computational complexity.

The bottom-up dynamic programming approach builds up the

solution from smaller subproblems to obtaining the final

answer, which optimizes performance and memory usage.

Testing

Structural testing (with unittest) targeted the correctness of the bitmask operations and the 2D array update process.

Tests showed that all possible states (mask combinations)

correctly influence subsequent states.

Functional tests simulated different node arrangements to

ensure the algorithm consistently finds the optimal path.

Links to: success criterion 1

Criterion E: Evaluation

The evaluation of the product must be consistent with the

problem specification and success criteria in criterion A.

The recommended word count for this criterion is 400 words.

Criterion E assesses the evaluation of the product

Marks Description

0

The response does not reach a standard described by

the descriptors below.

1–2

States the extent to which the success criteria were met.

Describes improvements to the product.

3–4

Evaluates the extent to which the success criteria

were met.

Justifies improvements to the product.

 IBDP Computer science guide

Top tips!

Criterion E

1 The IB suggests that you may wish to include a table that lists all the success criteria together with an in-depth

evaluation that addresses to what extent each criterion has been achieved by the solution.

2 Ensure you evaluate all of your success criteria individually and specifically.

3 When evaluating your success criteria and justifying the outcome, it is a good idea to refer back to the tests you

carried out as evidence for this outcome.

4 Think of the improvements you would introduce if you were to develop a 2.0 version of your application. What features would you add?

Common mistakes

Criterion E

1 A common mistake with evaluation is overly simplistic and repetitive comments (e.g. “haven’t run into bugs or errors”).

The top band requires you to evaluate, not just state

whether each of the success criteria is met. The Guide

defines “evaluate” as “make an appraisal by weighing up

the strengths and limitations”.

2 Examples of inadequate improvements include:

a To include more colour / more data / more calculations /

more functionality (unless very specifically justified).

b To add more functionality for success criteria that have not been met.

c To add a GUI interface for a solution that was developed as a CLI.

d To add functionality that is an essential (but missing) component of a fully functional solution (e.g. adding

payment functionality to a web shop, or permanent

storage for a database).

Checklist for criterion E

• Evaluation:

1 Evaluate the success of every success criterion.

2 Come to a conclusion: Were the success criteria met, partially met or not met? Justify your reason for this

conclusion, using the results of your tests to help evaluate this.

• Improvements:

[image: Image 704]

[image: Image 705]

1 Improvements should be justified with reference to how they will address the specific issues.

2 Adequate improvement suggestions should be specific and actionable.

Examples for criterion E

Keep in mind that these examples are from the previous

syllabus that required a client. The updated IA does not require a client. Rather than referring to your client feedback to evaluate each of your success criteria, you should refer back to your testing process as much as possible.

Evaluating success criteria in “Mushroom: Friend or foe?”

(credit: H Ng)

Success criteria Visuals

Evaluation

The program

The client was able to enter

makes use of a

mushroom features using drop-

graphical user

down boxes. The inputs that

interface to

could be made through the

facilitate the input

drop-down boxes were all valid

of mushroom

and were correctly saved in

features using

JSON string format. When asked

drop-down boxes.

if this criterion was satisfied,

my client replied “absolutely”

(Appendix 4).

Evaluating success criteria in “Automated grading tool” (credit: former student)

The program can

The program marked 30

automatically mark a

out of 30 sample tests

multiple-choice paper

correctly. The client has

with above 99% accuracy

confirmed that “Under

by comparing it to the

good lighting conditions,

mark scheme.

this seems to work very

well” (Appendix A.3).

[image: Image 706]

[image: Image 707]

Evaluating success criteria in “IBDP subject recommender”

(credit: Sofia Cornu)

Application makes use of

All of the data is either input

a graphical user

by selecting from a drop-

interface to facilitate the

down select menu or by

inputting of personal

ticking checkboxes (as

information (the user

shown in visuals). My client

can input this

stated that he thought the

information through

students found the inputting

textboxes, checkboxes

process “intuitive” and

and choice boxes / drop-

“quite self-explanatory”

down select).

(Appendix E.1).

[image: Image 708]

[image: Image 709]

Suggested improvements in “Mushroom: Friend or foe?”

(credit: H Ng)

Suggested improvements in “IBDP subject recommender”

(credit: Sofia Cornu)

Frequently asked questions

Academic integrity

The IB provides the following guidance for your teachers when they are supporting you with this course:

 The most important responsibility of all students is that the work they submit is their own. Students must understand and actively apply concepts related to academic integrity, such as authenticity, respect for intellectual property, and

 citing and referencing according to accepted systems. This includes instances where AI tools were used, such as to refine code. If students researched an existing solution then this must be clearly referenced and cited in a bibliography.

 Students must include the full source code of their solution in an appendix. Excerpts of code in the documentation

 should be referenced to the appended full source code.

 IBDP Computer science teacher support material

The Guide also states that:

 All work submitted to the IB for moderation or assessment must be authenticated by a teacher, and must not include any known instances of suspected or confirmed

 malpractice. Each student must confirm that the work is their authentic work and constitutes the final version of that work.

 IBDP Computer science guide

Each school has its own academic integrity policy, which takes precedence over the generalized advice offered here. That said, advice follows below.

Using programming code from

other sources

The use of programming code found through online sources is common in the Computer Science internal assessment. Sources of code may come from tutorials, example projects on Github, bug fixes found on Stack Overflow, generative AI, or any

number of other sources.

When using code that has come from, or is adapted from,

another source, then the equivalent to an ‘in text’ citation should be provided through the use of an in-code comment.

The full bibliographical reference can then be included in the appendix to your written submission.

Consider the following Javascript example:

[image: Image 710]

Java

Using generative AI

The IB has updated its academic integrity policy with respect to its views on the use of generative artificial intelligence tools. It is appendix 6 of the Academic Integrity Policy document

available on the IB’s website.

The overarching ethos comes from this statement:

 The IB will not ban the use of AI software. The simplest reason is that it is the wrong way to deal with innovation.

 Over the next few years, the use of this kind of software will become as routine as calculators and translation programs.

 It is more sensible to adapt and teach students how to use these new tools ethically.

 IB Academic integrity policy, 2023, page 53

From the perspective of how to apply the principle of ethical use of AI in your assessments, such as the internal assessment, the key statement is:

 Students need to be aware that the IB does not regard any work produced – even only in part – by such tools to be their own. Therefore, as with any quotation or material from another source, it must be clear that any AI-generated text, image or graph included in a piece of work has been copied from such software. The software must be credited in the body of the text and appropriately referenced in the

 bibliography. If this is not done, the student would be

[image: Image 711]

 misrepresenting content – as it was not originally written by them – which is a form of academic misconduct.

 IB Academic integrity policy, 2023, page 54

As an IB student, you will need to keep in mind these points when using AI software:

• If you use the text (or any other product) produced by an AI tool – be that by copying or paraphrasing that text or

modifying an image – you must clearly reference the AI tool in the body of your work and add it to the bibliography.

• The in-text citation should contain quotation marks, using the referencing style already in use by the school, and the citation should also contain the prompt given to the AI tool and the date the AI generated the text.

 IB Academic integrity policy, 2023, page 54

Standard Level vs Higher Level

The IA is graded the same regardless of whether a student is at Standard Level or Higher Level, and both levels are graded against the same assessment criteria.

In fact, when IB moderators grade student IAs, they are not aware of whether a student is an SL or HL student.

Ethical guidelines

The Guide provides the following ethical guidelines for students completing the IA:

 Given the nature of the internal assessment, students must take into account ethical problems and implications for undertaking research and developing the solution, for

 example ensuring the confidentiality and security of data.

 Wherever possible, original data should be used or

 collected by the student.

The following guidelines must be applied:

• Consent must be obtained from people who will be involved in the development of the computational solution before any investigation is begun.

• Written consent must be obtained from the owner of any

existing system that is to be used as part of the internal assessment, for example when implementing a security

analysis protocol on an existing system.

• All data collected must be stored securely in order to

maintain confidentiality.

• Data collected can only be used for the computational

solution. It must not be used for any other purpose without explicit permission.

 IBDP Computer science guide

Acknowledgements

The Publishers would like to thank the following for

permission to reproduce copyright material.

p. 1 © Eric d’Ario/stock.adobe.com; p. 2 © Oleksandr Delyk/stock.adobe.com; p.5 t © Ahmed

Shaffik/stock.adobe.com, m

© Gorodenkoff/stock.adobe.com; p. 6

© Chinnapong/stock.adobe.com; p. 9 t

© Siiixth/stock.adobe.com, m © Fdsmsoft/stock.adobe.com; p. 14 © Ssstocker/stock.adobe.com; p. 16 l

© BillionPhotos.com/stock.adobe.com, r © Sved

Oliver/stock.adobe.com; p. 17 m

© A_A88/stock.adobe.com, b © Capix

Denan/Shutterstock.com; p. 18 t

© Dmytro/stock.adobe.com, m

© AjayTvm/Shutterstock.com; p. 19 l

© Insideportugal/stock.adobe.com, r

© Blickpixel/stock.adobe.com; p. 24 t © GRANGER -

Historical Picture Archive/Alamy Stock Photo, b

© Semenov/Sputnik/Sipa; p. 37 © Photo

Researchers/Science History Images/Alamy Stock Photo; p.

46 © Sueddeutsche Zeitung Photo/Alamy Stock Photo; p.

51 © The History Collection/Alamy Stock Photo; p. 69 r

© Aminul/stock.adobe.com; p. 79 © Syda

Productions/stock.adobe.com; p. 80

© Cherezoff/stock.adobe.com; p. 81

© Lito_lakwatsero/Shutterstock.com; p. 93 tl

© Pixel/stock.adobe.com, tm © AlexR/stock.adobe.com, tr

© D’Mhnd/stock.adobe.com, bl © Vlabo/stock.adobe.com, bm © Oleksandr/stock.adobe.com, br

© LuchschenF/stock.adobe.com; p. 95

© Monicaodo/stock.adobe.com; p. 111

© Peterschreiber.mediaF/stock.adobe.com; p. 116 b

© Steve/stock.adobe.com; p. 151 © Diki/stock.adobe.com; p. 167 © Phonlamaiphoto/stock.adobe.com; p. 205

© Alexandr Vasilyev/stock.adobe.com; p. 216 both Chart by Tyler Vigen/https://tylervigen.com/spurious-correlations/https://creativecommons.org/licenses/by/4.0/; p. 230 l © JT Fisherman/stock.adobe.com, m

© Jim/stock.adobe.com, r © Barry/stock.adobe.com; p. 265

 l © SickleMoon/stock.adobe.com; p. 281

© Maximilian/stock.adobe.com; p. 295 © Markus

Spiske/stock.adobe.com; p. 372 © Anshuman

Rath/stock.adobe.com; p. 393

© Teeranon/stock.adobe.com; p. 453

© Yellowj/stock.adobe.com; p. 481

© Mykhailo/stock.adobe.com; p. 485

© Naret/stock.adobe.com; p. 493

© Tierney/stock.adobe.com

Glossary

Absolute path: the location of a file specified from the root directory (the full path).

Abstraction: having a higher-level, simplified model to represent a complex system. It allows you to focus on the

core ideas or concepts that matter, without being overly

concerned about the intricate details of implementation.

Access modifiers: the mechanisms provided by the

programming language to control visibility of methods and

variables within an object.

Accessor: a public method that allows external code to

“access” the value of a private instance variable within an object; also known as “getter method” as it “gets” the

value.

Activation function: a mathematical function applied to the output of a neuron that is used to determine whether or not the neuron should be activated (considered to be “on”).

Aggregate functions: functions used to perform

calculations on multiple records based on a given field, e.g.

AVERAGE, COUNT, MAX, MIN, SUM.

Aggregation: where one object “has” another object as part of it, but the two objects can exist independently of each other.

Algorithm: a finite sequence of instructions that needs to be followed step-by-step to solve a problem.

Amplitude: the magnitude of change in a sound wave, representing the loudness or intensity of the sound.

Analogue: a continuous signal that represents varying physical quantities, such as sound waves, which varies

smoothly over a range; digital represents data in discrete binary values (0s and 1s), enabling precise and error-resistant processing.

Arithmetic operator: a character that is used to perform a calculation.

Artificial intelligence: computer technology able to perform tasks and make decisions in a manner that imitates human intelligence. There are two main forms of AI: narrow (or weak) AI is designed to perform specific tasks or solve specific types of problems; general (or strong) AI processes human-level intelligence and can operate across a range of domains. While speculation persists that general AI is

“close”, at this time only narrow AI technology is available.

ASCII (American Standard Code for Information

Interchange): a character-encoding standard used to represent text in computers and other devices, defining a

numerical value for each symbol and character commonly

used in the English language.

Assignment: to set, reset or copy a value into a variable.

Association rule: a process of finding patterns of co-occurrence in data; this means, given the presence of one

item in a record, how likely it is that another item will be present.

Atomic: each attribute in a table containing indivisible values (values that cannot be broken down into more

detailed sub-values).

Attribute: a data item or a characteristic of an entity; a column in a table.

Backpropagation: backpropagation of errors is the most commonly used technique for training artificial neural

networks. The gradient of the loss function is calculated, and used to update parameters such as weights, in the

opposite direction of the gradient to reduce the overall error.

Base case: a terminating solution (that is not recursive) to a process.

Basic Multilingual Plane (BMP): the most commonly

used characters and symbols for almost all modern

languages.

Bidirectional bus: a bus that can transfer data in both directions.

Big O notation: used to find the upper bound (worst-case scenario or the highest possible amount) of the growth of a function; the longest time or space required to turn the

input into output.

Binary operator: an operator that requires two operands (values).

Binary search: a method of searching an ordered array (list) by repeatedly checking the value of the middle

element and disregarding the half of the data structure that does not contain the searched element.

Bit: binary digit; a single digit, either 1 or 0.

Bitmap: a type of digital image composed of a grid of pixels, each holding a specific colour value, representing the image in a rasterized format.

Boolean: a data type to represent one of the two possible values: true or false.

Boolean operator: a character that represents a specific logical operation that is used to produce a true or false

outcome.

Breakpoint: a marker to interrupt the execution of code for debugging purposes.

Brute force: a method of breaking a cipher by systematically trying every possible key until the correct one is found.

Bubble sort: a sorting algorithm that compares adjacent values and swaps them if they are in an incorrect order.

Buffering: the process of temporarily storing data in a memory area (buffer) while it is being transferred between two devices or processes, helping to manage differences in data-flow rates and ensuring smooth, uninterrupted

operation.

Business intelligence: technologies, applications and practices for collecting, integrating, analysing and

presenting business information.

Byte: 8 bits.

Cache hit: when the CPU requests data and it is found in the cache memory.

Cache miss: when the CPU requests data and it is not found in the cache memory, necessitating retrieval from

slower main memory or storage.

Caching: the process of temporarily storing frequently accessed data in a high-speed storage area (cache) to

reduce access time and improve system performance by

enabling quicker retrieval of the data.

Cardinality: the maximum number of times an instance in one entity can be associated with instances in the related entity.

Char: a data type used to represent one single character, digit or symbol.

Child: any node that has a direct link from a parent node positioned above it, potentially having further child nodes of its own.

Classification: machine learning where the output generated should be a category, chosen from among a

discrete set of categories available.

Classification techniques: where a machine learning model has been trained to identify, from a predefined list of categories, which category (or class) the input data would most likely be associated with.

Cloud database: a database that runs on cloud computing platforms, providing scalability, high availability and flexible resource management.

Clustering techniques: where data is grouped into

clusters based on similarity or proximity to each other

without any labels provided to help indicate the correctness of associating any individual datapoint to the cluster

assigned.

Colour depth: also known as “bit depth”; the number of bits used to represent the colour of each pixel in a digital image, determining the range and precision of colours that can be displayed.

Comment: a note that explains some code, which will be ignored at compilation stage.

Composite key: a set of attributes that form a primary key.

Composition: where objects are composed of other

objects, forming a “has-a” style of relationship. The objects that comprise the internal objects cannot exist

independently of the containing object.

Computational thinking: a toolkit of available techniques for problem-solving; its fundamental concepts are

abstraction, decomposition, algorithmic thinking and pattern recognition.

Computer network: a system that connects computers

and other devices to share resources (digital or physical)

and information.

Concatenation: joining strings together.

Conceptual schema: an abstract model describing the structure of the data without considering how it will

physically be implemented.

Confusion matrix: a simple pictorial means of

representing how well a machine learning model is

performing.

Constructor: a special method within a class that is automatically executed during instantiation; its main task is to initialize any instance variables required before an

instance of the object can be used by other code.

Convolution: a mathematical operation that combines two functions to produce a third function. In the context of a convolutional neural network being used for image

processing, convolution applies filtering functions to the pixels in an input image to compute distinctive features

from the data.

Curse of dimensionality: each feature in a machine

learning model adds another dimension to the overall model the algorithm is attempting to map and create

generalizations about; the curse of dimensionality refers to the problem that occurs when there are too many

dimensions relative to the quantity of data available, so that patterns cannot be meaningfully observed.

Data definition language: language that is used to

create, modify and remove data structures from a relational database.

Data manipulation language: language that is used to add, modify, delete and retrieve data stored in relational databases.

Data mining: the process of sorting through large data sets to identify patterns and relationships that can help solve business problems through data analysis.

Data sparsity: how “spread out” data points are from each other in a model.

Data storage: storage of data within primary or secondary memory.

Data type: defines the type of value a variable or data structure has and what type of mathematical, relational or logical operations can be applied without causing an error.

Data warehouse: a specialized type of database designed for analytical purposes rather than transactional processing.

Database: an organized collection of structured information or data that can be accessed in different ways.

Database schema: an architecture showing how data is organized and how the relationship between data is

managed.

Debugging: finding and fixing errors in a program.

Debugging tools: software applications or utilities used by developers to identify, analyse and fix bugs or issues within a program by inspecting code, variables and execution flow.

Decision tree: a graphical representation of conditions that will result in a classification decision being made; think of it as a decision-making flowchart that the machine learning

model creates.

Declaration: a language construct specifying the

properties of an identifier.

Decomposition: breaking down complex problems into

smaller, more manageable parts.

Decrement: to decrease a value by another value (usually by one).

Deep learning: a subset of machine learning that uses an artificial neural network to imitate the design of the human brain to find generalizations in complex data that can be

used for decision-making.

Defragmentation: the process of reorganizing the data on a hard drive so that files are stored in contiguous blocks, reducing fragmentation and improving access speed and

overall system performance.

Denormalization: deliberately allowing for data

redundancy in a database design to improve the

performance of queries.

Dequeue: a method of deleting an element from the front of a queue.

Device drivers: specialized software programs that allow the operating system to communicate with and control

hardware devices, e.g. printers, graphics cards or network adapters, by providing the necessary instructions and

protocols.

Direct access: a method of access where elements are directly retrieved by using their index (position).

Distributed database: a database made of two or more files located on different sites on the same network or on completely different networks.

Domain name: a human-readable name assigned to a

specific IP address on the internet, e.g. www.example.com.

Double: a data type used to represent a decimal number.

Dynamic data structure: a data structure that can grow or decrease at runtime, with elements stored in memory

locations that are chained together, but not necessarily

contiguous.

Encapsulation: bundles data and the methods that manipulate that data together into a single object. It serves to hide the implementation details of the object from

outside code.

Encryption: the conversion of information or data into a mathematically secure format that cannot be easily

understood by unauthorized people.

Encryption key: a string of characters or numbers used by an encryption algorithm to encode or decode data. It is the values that are input into the mathematical functions

responsible for scrambling or descrambling the data.

Enqueue: a method of inserting an element at the rear of a queue.

Entity: a living or non-living thing that can have data stored about it that can be described, e.g. a person, a chair or an aeroplane.

Entity-relationship diagram: a visual representation of the entities in a database and the relationship between

them.

Exception: an unexpected event that stops the execution of a program, e.g. division by 0.

Exception handling: a process of responding to an

exception, so the system does not halt unexpectedly.

Extract: to gather data from various operational databases, flat files, APIs, etc.

Factory pattern: a design pattern that provides an

alternative interface for creating objects in contrast to

normal constructor-based instantiation.

Feature: a numeric property that can be used to contribute a data point for a machine learning algorithm to train on.

Think of it as a variable in your data set.

File extension: a suffix at the end of a filename that indicates the file type and the program associated with

opening or processing that file (e.g. .docx for Word

documents, .jpg for images).

Firewall: a security system (hardware or software) that monitors and controls incoming and outgoing network traffic based on a set of security rules.

First In First Out principle: when the first element inserted is the first element removed.

First normal form: the status of a relational database in which entities do not contain repeating groups of attributes.

Float: a data type used to represent a decimal number.

Floating-point division: division in which the fractional part is kept.

Foreign key: an attribute in a table that refers to the primary key in another table.

Frame: a single image in a sequence of images that makes up a video or animation.

Full functional dependency: where dependent attributes are determined by the determinant attributes.

Function: a set of statements that can be grouped together and called in a program as needed; they always return at

least one value.

Functional dependency: a relationship that exists

between attributes, where one set of attributes (the

determinant) determines the value of the other set (the

dependent).

Functional testing: testing concerned with the behaviour of the application – specifically, whether it meets the

requirements specified. This type of testing evaluates the software by providing inputs and examining the outputs,

without considering how internal systems work. You are testing each of the success criteria on the whole application from the user’s point of view.

Gateway: a device that connects different networks

together and manages the traffic flow between them; often

used to connect a local network to the internet.

General case: a process where the recursive call takes place.

Generative AI: a form of artificial intelligence capable of generating text, images, audio, video and other digital

artefacts, usually in response to a prompt. It is a form

experiencing rapid advances at the time of writing.

Genetic algorithm: imitates the concept of survival of the fittest and evolution by testing a population of possible

solutions to a problem, using properties from the best-

performing solutions to create a new population of possible solutions, and then repeating the process until a suitably performing solution has been identified.

Global variable: a variable that exists throughout a program.

Hash table chaining: a collision-resolution technique in hash tables where each bucket or index in the array can

store multiple elements in the form of a linked list, allowing more than one entry to be stored at the same index.

Hashing algorithm: a function that converts input data of any size into a fixed-size string of characters, which typically represents the data in a compressed and seemingly random

format and is used primarily for indexing and retrieving

items in databases more efficiently.

Heap space: a region of dynamically allocated memory managed by the operating system where programs store

variables and data structures that require memory

allocation during runtime, allowing for flexible memory usage that can grow and shrink as needed by the

application.

High load factors (hash tables): a condition where a sizeable portion of the hash table’s slots are filled, leading to increased collisions and potentially degraded

performance, due to more frequent need for collision

resolution mechanisms.

High-frequency data: correspond to rapid changes in pixel values, representing fine details, edges and textures.

Hyperparameter: a parameter (or value assigned to a variable) that is set before the learning process, which

guides the algorithm as it learns.

Hypervisor: software that creates and manages virtual machines by allowing multiple operating systems to run

simultaneously on a single physical machine, sharing the

underlying hardware resources.

Identifier: a lexical token that names the language’s entities.

Image resolution: the number of pixels contained within a digital image, typically expressed as the dimensions (width

× height) in pixels, and sometimes as the pixel density (PPI /

DPI) for print quality.

Increment: to increase a value by another value (usually by one).

Inheritance: where a class takes a copy of an existing class as the starting point for all its internal methods and

variables. These can then be overridden and extended upon

to provide additional functionality, as required.

Initialization: assigning an initial value to a data structure.

In-memory database: a database that stores data entirely in the main memory (RAM) rather than on disk, providing

extremely fast read and write operations.

Instantiation: the line of code that declares a new object variable based on the template code provided by a class,

which then executes the constructor to initialize the object.

Integer: a data type used to represent a whole number.

Integer division: division in which the fractional part is discarded.

Interface: a contract that specifies a set of methods a class must implement, without defining how these methods are

implemented, serving as a blueprint that promotes

modularity, flexibility and abstraction in software

development. This structure allows different classes to

implement the same interface in diverse ways, while

ensuring they provide the functionalities declared by the

interface.

Internet: a global network of computer networks that are interconnected with each other and communicate through

standardized protocols.

Interrupt: a signal sent from a device or software to request the processor’s attention; the processor will stop its current activity until the interrupt has been serviced.

Interrupt handling: handling interrupt requests.

Interrupt service routine (ISR): a special function in a computer system that automatically executes in response to an interrupt signal, handling specific tasks, e.g. processing input from hardware devices or managing system events,

before returning control to the main program.

IP address: a set of numbers that uniquely identifies each computer based on the Internet Protocol (either version 4 or version 6).

kHz (kilohertz): a unit of frequency equal to 1000 cycles per second, commonly used to measure the sampling rate

of audio signals.

K-nearest neighbours: where data points are categorized based on the categories of the nearest points around them

in the data set; k is a variable representing how many of those nearest points should be used to “vote” and

determine what category to assign the new value.

Last In First Out or First In Last Out principle: the last element inserted is the first element removed.

Latency: the delay between the initiation of an action and the corresponding response, often referring to the time it takes for data to travel from its source to its destination in a network or system.

Leaf: a node that does not have any children, representing the endpoints of a binary search tree’s branches.

Least significant bit (LSB): the rightmost bit in a binary number, representing the smallest value position (20 or 1).

Linear regression: a machine learning algorithm that seeks a linear line of best fit for a given data set, from which extrapolations can be made.

Linear search: a method of searching, in which each element is checked in sequential order.

Load: to load transformed data into a data warehouse.

Load balancing: the process of distributing network or application traffic across multiple servers or resources to ensure optimal performance, reliability and availability,

preventing any single server from becoming overwhelmed.

Local area network: a system that connects computers and other devices within a small geographical area, such as an office or home.

Local variable: a variable that exists only within the block of code where it is defined.

Logic error: an error in a program that makes it operate incorrectly; it will not crash the program.

Logical schema: a detailed design of the structure of tables (fields and data types), relationships between tables and constraints.

Loop / iteration: a repetition.

Low-frequency data: correspond to slow changes in pixel values, such as broad areas.

Machine learning: a branch of AI where computers learn from data and experiences to perform specific tasks or solve specific problems, without being explicitly programmed to

do so.

Maintainable code: clear, easy-to-read and modify code that can be reused within the same program or in other

programs, by the same or other programmers.

Malware: a general term for any software designed with malicious intent, e.g. viruses, worms, trojans, spyware and ransomware, which can damage systems, steal data or

disrupt operations.

Matrix and vector multiplications: fundamental

operations in machine learning and graphics that involve

complex mathematical calculations.

Memory dump: a process where the contents of a

computer’s memory are captured and saved, typically for

the purpose of diagnosing and debugging software issues.

Metadata: information that describes other data, providing context and details about the data’s content, structure and attributes. In the context of digital images, metadata

includes such information as the image’s dimensions, colour

depth, creation date, author, camera settings and other properties that help with managing, understanding and

using the image effectively.

Middleware: software that connects different applications, allowing them to communicate and share data. It helps

different parts of a computer system work together

smoothly.

Modality: the minimum number of instances of one entity that can be associated with an instance of another entity.

Modularity: a design principle that involves dividing a system into distinct and manageable sections or modules,

each with its own specific responsibilities, which can be

developed, tested and maintained independently, but

function cohesively when combined.

Monopolize resources: the control or domination of the use of system resources (e.g. CPU, memory or network

bandwidth) by a single process or user, often to the

detriment of other processes or users, leading to

inefficiency or system slowdowns.

Multi-core architectures: systems with multiple CPU

cores on a single chip, allowing parallel execution of

instructions and tasks.

Mutable: a set whose state or content can be changed after it has been created, allowing for modifications, e.g.

adding, removing or altering elements within the object.

Mutator: a public method that allows external code to update or mutate the value of a private instance variable

within an object; also known as “setter method” as it “sets”

the value.

Network address translation: modifies the IP addresses of data packets as they pass through a router or firewall; this helps improve security and manages the limited

number of IP addresses available through IPv4 by allowing multiple devices to share a single global IP address.

Network segmentation: dividing a computer network into smaller, distinct subnetworks to improve performance,

security and management.

Network switch: a device that connects multiple other devices within a single segment of a computer network,

only forwarding data to the specific device it is intended for.

Neural network: a computer algorithm that imitates the design of the human brain by using a set of interconnected nodes for the processing and analysing of data.

Nibble: 4 bits.

Node: a basic unit of a data structure, e.g. a linked list or tree, which contains data and typically links to or references other nodes.

Noise: unwanted electrical disturbances that can affect the integrity of signals being processed by a computer; this

noise is not related to sound, but to variations in voltage or current that can disrupt the accurate transmission and

processing of digital data.

Normalization: the process of organizing data in a

relational database in a way to reduce data redundancy and to improve data integrity.

NoSQL database: a database designed to handle large volumes of data and diverse data types, structured

differently from relational databases.

O(1) time complexity: describes an algorithm that takes the same amount of time to execute regardless of the size

of the input data set.

Object-oriented programming: a form of programming

that involves creating code for classes of objects, allowing

many such objects to be created from a single code base, achieving a more modular and extensible software

development process. It is like the idea of producing

architectural blueprints, from which many similar houses

can be constructed.

Observer pattern: provides a one-to-many link between objects to notify objects of changes in state via a

subscription-style service.

Online analytical processing: the software technology you can use to analyse business data from different points of view.

Open addressing: a collision resolution method in hash tables where, instead of using structures like linked lists to store multiple items at the same index, any colliding item is placed into the next available open slot in the hash table itself, according to a probing sequence.

Operand: a value used in a mathematical expression.

Operator: a character that represents a mathematical, arithmetic or logical operation.

Outlier: a data point that deviates from the typical pattern of values in a data set, indicating a possible unusual or

erroneous value that should be discounted.

Overriding: the process of providing a different

implementation of a method in a subclass, which replaces

the original implementation inherited from the superclass.

Packet switching: a method of sending data in small blocks, known as “packets”, across a network. Each packet

can take a different path to reach its destination.

Parallel arrays: a group of arrays of the same size, where the element at a given index in one of the arrays

corresponds to another element at the same index in

another array, like descriptions of a single entity.

Parallel processing: the ability of the GPU to perform many calculations simultaneously due to its highly parallel structure.

Parent: a node that has one or more nodes directly

beneath it, connected by edges, and it directly controls

these subsequent child nodes.

Partial functional dependency: when dependent

attributes are partially determined by the determinant

attributes.

Pattern recognition: identifying similarities in the details of problems.

Perceptron: the data structure at the heart of an artificial neural network; it represents a single artificial neuron that takes in multiple inputs and weights, and generates an

output value.

Personal area network: a network for personal devices within the range of an individual person, usually connected with Bluetooth.

Physical schema: an implementation of logical schema into a specific DBMS (database management system),

showing how data is stored, indexed or accessed.

Pixel: short for “picture element”; the smallest unit of a digital image or display, representing a single point in the image with a specific colour and intensity.

Plug and Play (PnP): a technology that allows the

operating system to detect, configure and install drivers

automatically for new hardware devices when they are

connected to the computer, enabling them to work without

requiring manual set-up by the user.

Pointer: a variable that stores the memory address of another variable, typically used in programming to

reference, or access, the location of data stored in memory.

Polymorphism: meaning “many forms”, it allows objects to exhibit different behaviours based on their specific class implementation while still adhering to a shared interface or contract.

Pop: a method for deleting the element from the top of a stack.

Primary key: a field that uniquely identifies a record in a table.

Problem specification: a short, clear explanation of an issue, which may include: a problem statement; constraints and limitations; objectives and goals; input and output

specifications; and evaluation criteria.

Problem statement: a description of the problem itself, identification of who the solution is designed for, the issues encountered and what needs to be solved.

Procedure: a set of statements that can be grouped

together and called in a program as needed; they don’t

return a value.

Product: the completed software only (in the internal assessment).

Proof of work: a consensus mechanism requiring

cryptominers to solve complex problems to add a new block

to the blockchain.

Protocol: a set of rules and standards that define how data is transmitted and received across a network for a given

application.

Push: a method for inserting an element at the top of a stack.

Queue: an abstract data structure that works on the FIFO

principle.

Quicksort: a sorting algorithm that repeatedly selects an element as a pivot and partitions the other elements into

two sub-arrays (lists): one that includes elements that are smaller than the pivot and the other one that includes

elements that are larger than the pivot.

Quotient: the result obtained when one number is divided by another, e.g. in the division of 15 by 3, the quotient is 5.

RAID (Redundant Array of Independent Disks): a data storage technology that combines multiple physical drives

into a single logical unit to improve performance, provide redundancy and ensure data protection.

Record: one instance of an entity; a row in a table.

Recursion: a process that uses a function or procedure that is defined in terms of itself and calls itself.

Regression: machine learning where the output generated should be a numerical value.

Rehashing: a process in hash tables where the data is redistributed into a new, larger array to reduce the load

factor and minimize collisions, maintaining efficient

performance.

Reinforcement learning: machine learning by trial and error. Based on what it has learned at any moment in time, the algorithm selects an action to take in a given

environment. The environment provides feedback (called a

“reward”), which the algorithm will use to learn from and

refine its decision-making process moving forward.

Relational operator: an operator used to compare values or expressions.

Relationship: a relation established between different tables, where the foreign key in one table refers to the

primary key in another table.

Relative path: the location of a file relative to the current folder.

Rendering: the process of generating an image from a model by means of computer programs.

Root: the topmost node from which all other nodes

descend, serving as the starting point for any traversal or operation within a binary search tree.

Router: a device that forwards data packets between computer networks, routing the traffic along the most

efficient path.

Routing: the process of selecting paths along a computer network to send network traffic, based on the routing table, network performance and protocols.

R-squared value (or coefficient of determination): a statistical measure that indicates how well the linear

regression model fits the data points given.

Runtime error: an error that occurs when executing a program; the program might stop unexpectedly.

Sampling: the process of converting a continuous analogue signal into a series of discrete digital values by measuring the signal’s amplitude at regular intervals.

Second normal form: status of a relational database in which entities are in 1NF and any non-key attributes depend upon the primary key.

Security tokens: physical or digital devices that generate or store authentication credentials, such as one-time

passwords or cryptographic keys, used to verify a user’s

identity and secure access to systems, networks or online

services.

Selection: a conditional statement or decision statement, e.g. IF, CASE statements.

Selection sort: a sorting algorithm that repeatedly selects the smallest or largest element (ascending or descending

order) from the unsorted part of the data structure and

moves it to the sorted part.

Sequence: to execute instructions one after another in the given order.

Sequential access: a method of access where elements are checked one after another, from the beginning to the

end of the data structure.

Server: a computer or device on a network that manages and provides various network resources on behalf of other

computers (clients) on the network.

Set difference: the difference between two sets is a new set containing elements that are in the first set but not in the second set, effectively subtracting the elements of the second set from the first.

Set intersection: the intersection of two sets is a new set containing only the elements that are present in both of the original sets, identifying their common elements.

Set subset: a set where all elements of this set are also elements of another set, indicating that the first set is

entirely contained within the second set.

Set union: the union of two sets is a new set containing all the elements that are in either of the original sets,

effectively combining them without any duplicate elements.

Shaders and textures: techniques used in 3D rendering to apply effects, lighting and details to models.

Shift cipher: a type of substitution cipher, where each letter in the plaintext is shifted a certain number of positions down or up the alphabet.

Singleton pattern: a class that is designed only ever to have one instance instantiated throughout the lifecycle of the program.

Solution: the documentation and video submitted by the student for the internal assessment.

Spatial database: a database optimized to store and query data related to objects in space, including points,

lines and polygons.

Spooling: the process of queuing data or tasks in a buffer, typically for input / output devices such as printers, so that they can be processed sequentially and at their own pace,

allowing the system to continue working on other tasks in

the meantime.

Stack: an abstract data structure that works on the LIFO

principle.

Stack pointer: a register used to store the memory

address of the last added data in a stack, or sometimes the first available address in a stack.

Stakeholder: an individual or groups of people within or outside an organization who are affected or think they are affected by a software development project.

Static: methods and variables that belong to the class, not the individual objects. Only one copy is created that is

shared with all instances in common.

Static data structure: a data structure with predefined fixed size and elements stored in contiguous memory

locations.

Statistical redundancy: the repetition of information within a data set that does not contribute to its uniqueness.

Stereo: a method of sound reproduction that uses two or more audio channels to create the perception of sound

coming from different directions, enhancing the sense of spatial depth and dimension.

String: a data type used to represent a sequence of characters, digits and / or symbols.

Structural testing: testing concerned with the internal workings of the application – based on the code structure

and internal pathways. This type of testing requires an

understanding of the codebase and is used to ensure that

all aspects of the code are properly tested. You are testing that all conditional branches execute correctly, and all error-handling code triggers when needed and responds

appropriately.

Subtree: any node, along with its descendants, functioning as a standalone binary search tree, with its node acting as the root.

Supervised learning: when a machine learning algorithm is provided a data set of pairs of items, where the pair

comprises a value and what response the network should

provide if it sees that value. By learning the answers to the values given, the network will make generalizations to be

able to estimate the answer when given a previously unseen value.

Table: a structure of rows and columns for storing a group of similar data.

Tensor: a mathematical term for an array with three or more dimensions. A single number (no dimensions) is known

as a “scalar”. A one-dimensional array of numbers is known as a “vector”. A two-dimensional array of numbers is known as a “matrix”. Three or more dimensions is known as a

“tensor”.

Termination condition: a condition in a loop that

interrupts or stops the repetition.

Third normal form: status of a relational database in which entities are in 2NF and all non-key attributes are

independent.

Trace table: a technique used to test an algorithm, and to predict how it will be run and how values of variables will change.

Transfer learning: when a previously trained machine learning model is applied to a similar yet new situation,

context or problem. The goal is to speed up the training

process by using an already trained model, even if the

problem is slightly different.

Transform: to aggregate and transform data into a

consistent format suitable for analysis.

Transitive dependency: a type of functional dependency that occurs when a non-prime attribute is dependent on

another non-prime attribute, rather than on the primary key.

Trojans: deceptive programs that appear legitimate but carry hidden malicious code, which can create backdoors,

steal data or cause harm once executed by the user.

Tuple: one instance of an entity; a row in a table.

Unary operator: an operator that requires one single operand.

Unordered set: a collection of unique elements where the elements do not have a specific order or sequence and their arrangement can vary each time they are accessed.

Unsupervised learning: a method of machine learning where the data set does not include the “answers” or

expected outputs for the data provided. The algorithm will attempt to discover the patterns on its own.

Unwinding: a process occurring when the base case is reached, and the values are returned to build a solution.

Validation: a process to ensure input data is sensible or reasonable.

Variable: a designated memory location that stores a value that can change during the execution of a program.

Variable scope: the lifetime of a variable within a program; it determines whether you can access and modify the

variable within a specific block of code.

Verification: a process to ensure input data is accurately copied from one source to another.

Vertex and pixel data: data used by the GPU to render 3D

objects and images.

View: a virtual table based on the result set of a SELECT

query. They do not store data themselves but provide a way to present the data from one or more tables in a customized manner.

Virtual memory: a memory-management technique that

allows a computer to use more memory than is physically

available by temporarily transferring data from RAM to disk storage, enabling the execution of larger programs and

multitasking.

Virtual private network: a secure connection that runs across the internet to provide private communication

between your network and a remote server.

Viruses: malicious software programs that attach

themselves to legitimate files or programs and spread to

other files or systems, often causing damage or disruption.

Volatile: a type of memory or storage that loses its data when the power is turned off.

Wide area network: a system that connects computers and other devices across a large geographic area, usually

connecting multiple LANs together.

Winding: process occurring when recursive calls are made until the base case is reached.

Worms: self-replicating malware that spreads across networks without needing to attach to other programs,

exploiting vulnerabilities to infect multiple systems.

Index

absolute path 378

abstract classes 423–5

abstract data types (ADTs) 453–80

abstraction 284–5, 287, 394, 423–5, 454–5

access modifiers 401–2

accessibility 74, 78

accessors 402

accountability 274

accounting 72

accumulators (ACs) 3

accuracy 225–6, 234–5, 268, 499

ACID (atomicity, consistency, isolation and durability) 193, 200

activation functions 256–9, 265–6

actuators 93

aggregation 426–8

algebraic simplification 60–5

algorithms 285–6, 499–501, 503–5, 515, 517–18, 527

control 94

design 285–6

fairness/bias 274–5

genetic 248–54, 270, 488–9

programming 358–77

scheduling 79–80, 82–4

American Sign Language (ASL) 499

amplitude 44, 45

analogue 37

analogue-to-digital conversion (ADC) 44

Analytical Engine 24

analytics 184

anomaly detection 200

anonymity 276

append 198, 378, 385

application management 74

Application-Specific Integrated Circuits (ASICs) 6, 213

Apriori algorithm 242

architecture

network 127–35

 see also database schema; multi-core architectures Arduino 97, 100, 101

arguments 328

arithmetic expressions 355

arithmetic logic units (ALUs) 2

ArrayLists 350–1

arrays 213, 343–52

creation 399, 400

one-dimensional 343–5

parallel 346

quicksort 373–5

searches 362–3, 365

sorting 365–7, 369

tracking item numbers 404–5

two-dimensional 347–9, 530–1

 see also lists

artificial intelligence (AI) 5–6, 206–7, 279–80, 288, 502

 see also generative AI; pervasive AI

ASCII (American Standard Code for Information Interchange) 31–2, 476

assignment 297, 300–2

association rule 199, 240–2, 269

atomic 179–80

attributes 168

audio 44–6

Audio Interchange File Format (AIFF) 44–5

auditing 71, 73

augmented reality 277

authentication 124, 148

automated grading tool 498, 533

autonomous vehicles 95

backpropagation 260

backups, secure 152–3

bandwidth 112, 116, 128, 138–9

banking 133, 396–400, 406–9, 437

base case 370

Basic Multilingual Plane (BMP) 34

Bellman equation 245

bias 156, 274–7

Big O notation 358–61, 363

billing 73

binary 24–8

conversions 26–30

and data storage 31–51

fractions 50

gray code 49

representation of integers 25–8

signed 47–8

unsigned 47

binary search 363–5

binary search tree (BST) 376, 466–70

binary semaphore 89–90

binary-coded decimal (BCD) 48–9

BIOS (basic input/output system) 9

bitcoin 6, 134

bitmap 37–40

bitmasks dynamic programming 530–1

bits 25–7, 29, 37–40, 44

BitTorrent 134

blockchain 6, 134, 157, 487–8

Boolean algebra 25, 51, 53–6, 60–6

Boolean data types 298, 302, 316, 345

breakpoint debugging 335, 338–40

brute force 36

bubble sort 365–7, 369

buffering 70

BufferReader class 383–4

buses 3

business intelligence 198

bytes 25–6

C++ 99–100, 101–2

cache memory 9–10, 70

Caesar ciphers 35–6

California housing data set 261–2

cardinality 177

case studies 481–92

central processing unit (CPU) 2–16, 67, 70, 72, 79–89, 210–

13

chaining 477–8

char 298

characters, storage 31–6

chargeback 73

chatbots, customized 210

child (node) 267, 466, 470

CIFAR-10 data set 267

classes 397–405, 417–52, 423–5

classification 199, 208, 227–33, 262–3, 268–9

client–server models 132–3

closed-loop systems 92, 94–7

cloud computing 21–2, 115, 197, 211

clustering techniques 199, 236–40, 479

code reusability 395, 417–20

coefficient of determination 225

collaboration 395

collision factors 477

colour depth 37, 38–9

comments 297

compilers 103–9

just-in-time (JIT) 105–9

composite key 169–70

composition 426–8

compression 19–21, 44–5, 47

computational thinking and problem solving 281–480

computer fundamentals 1–110

computer hardware 2–23, 210–13

computer logic 51–66

computer operation 2–23

computer vision 498, 499

computing platforms 210–12

concatenation 306–7

conceptual schema 174–5

concurrency control 171, 200–1

configuration files 526

confusion matrix 234

consent 275

constants 360

constructors 398

control algorithms 94

control systems 67–102, 249

control units (CUs) 2

controllers 92–3

convolutional neural network (CNN) 264–8, 270

cores 4, 7, 14–16

cost allocation 72

cross site scripting (XSS) 148

cross-platform development 109, 510

crossover functions 250–4

curse of dimensionality 219

customer loyalty system 443–6

customization 75

cyberbullying detection 280

data 8

and binary search trees 466–7

dimensional 219–21

ethics 267

filtering irrelevant 216, 221

grouped 191

high-frequency 21

identifying incorrect 216

improperly formatted 216

integrated 198

location 500

low-frequency 21

metadata 37, 38

missing 216, 221

normalization 216–17, 221

ordering 190

security 201

standardization 216–17, 221

volume of 268

data analysis 287

data cleaning 215–17

data consistency 171, 178, 184, 191, 193, 200–1

data definition language (DDL) 186–7

data duplication 171, 181, 216, 221

data entry 283

data flow diagrams 524

data handling 172, 173

data integrity 124, 171, 174, 179, 183, 193–4

data language types 186–8

data manipulation language (DML) 186, 187–8

data mining 198, 199–200

data normalization 179–83

data partitioning 201

data poisoning 275

data preprocessing 215–22

data redundancy 172, 179, 183–4

data representation 24–51

data retrieval 171, 184

data scraping 267

data sets 220, 261–2, 267, 361, 471

data sparsity 219

data storage 31–51, 67, 296–7

data structures 217, 342–57, 471, 497–500, 503–5

dynamic 342, 351–2, 455

hash tables 475–9

static 342, 355

data transmission 136–43

data types 178, 297–9, 453–80

data warehouses 184–5, 197–202

database schema 172, 174–6, 183

database views 191–2

databases 167–203, 517

alternative 195–202

cloud 197

denormalizing 183–5

design 172, 174–85, 287

distributed 200–1

document 195

fundamentals 168–73

graph 196

in-memory 197

key-value 196

managed/self-managed 197

normalized 181–3, 187

NoSQL 195–6, 197

programming 186–94

relational 168–73, 178–81

scalability 172, 174, 183–4, 201

spatial 197

wide-column store 196

DBSCAN clustering 240

deadlocks 90–1

debugging 29, 335–41

decimal numbers 26–8, 30–1, 48–9, 297

decision trees 227, 230–3, 268–9, 523

decision-making 319

declaration 296

decomposition 286, 287, 511–13

decompress 20

decrement 300

deep learning 6, 207–8

defragmentation 69

deletion 456, 459–60, 464–5, 470, 478, 479

dendograms 239–40

deployment 500

dequeue 356

design patterns 428–35

design philosophies 7

device drivers 70

device management 67, 70

Diffie Hellman key exchange 157–8

digital certificates 152–3, 155–8

digital infrastructures 114–16

digital signatures 153

dimensionality 219, 219–21, 268

direct access 342

disk input/output operations 87

DISTINCT in a SELECT statement 188

distributed denial of service (DDos) 146, 150

distributed systems 115

distribution transparency 201

divide-and-conquer principle 373

documentation 506

domain name servers (DNS) 129–30, 163

double (data type) 297

dynamic data structures 342, 351–2, 455

Dynamic Host Configuration Protocol (DHCP) 75, 124–5, 130, 162

Eclipse IDE 338–9

edge computing 116, 211

efficiency 361

elevator control system 94–5

ELSE 314–17

emails 133, 150

embedded methods 87, 218, 221

Embedded MultiMediaCard (eMMC) 17

encapsulation 395, 401–2

encryption 71, 124, 149, 153–8, 505

asymmetric 154–5, 157

encrypted protocols 150

symmetric 153–4, 157

encryption key 154

endpoint-protection 151

engineering 249

enqueue 356

entities 168

entity-relationship diagrams (ERDs) 174–7, 524

environmental impact 275

equity 277

errors 29, 106–7, 225, 333, 335–41, 497–500

ethical issues 267, 274–80, 536

evaluation metrics 233–5

exceptions 333–5, 386

excess-N (biased representation) 49–50

execution 11–13, 15–16, 360

extract, transform, load (ETL) 198

F1 score 234, 235

factorials 371

factory pattern 428, 433–4

fault tolerance 201

feature selection 217–18, 268

feedback mechanisms 92, 94–7

fetch–decode–execute cycle 11–13, 15

Fibonacci sequence 371–2

fibre-optic cabling 138

field-programmable gate arrays (FPGAs) 213

file extension 69

file management 69, 74, 78

file processing 378–91

file server 130–1

file transfer protocol (FTP) 130

file transfer system 505

FileReader class 383

FileWriter class 382–3

FILTERING 189

filters 218, 221, 264–5

finance 133, 209, 249, 396–400, 406–9, 437

firewalls 118, 144–5, 161

first come first served (FCFS) 79–82

First in First Out (FIFO) 355

First in Last Out (FILO) 353

first normal form (1NF) 179–80, 182

fixed-point representation 50

flight reservation systems 438–9

float 297

floating-point division 303–4

floating-point representation 50–1

flowcharts 288–93, 312, 314–15, 522

FOR loop 330, 345, 350–2, 380

foreign key 169, 171

frames 8, 46

Free Lossless Audio Codec (FLAC) 44–5

functional dependency 180

functionality 527

functions 326–32

gaming 209, 245–8, 269, 287, 355, 422, 512–14, 517–18,

524–6

Gantt charts 514

gateways 117

general case 370

generative AI 206, 484–5, 535–6

genetic algorithms 248–54, 270, 488–9

Gini 231

global query processing 201

graphical user interface (GUI) 73–5, 497

graphics processing unit (GPU) 5–8, 210–13

gray code (reflected binary code) 49, 62–4

grayscale 42–3, 262–3

hard disk drive (HDD) 16–17, 18, 69

hash table chaining 477–8

hash tables 475–9

hashing algorithm 476, 479

HAVING clause vs WHERE clause 188

health monitoring apps 279

heap space 456

Hello World classification 262–3

hexadecimal numbers 29–31

hierarchical clustering 239–40

high-frequency data 21

high-performance computing (HPC) 212

home-security systems 96

hyperparameter 235

Hypertext Transfer Protocol Secure (HTTPS) 120, 122–3, 132

hypervisor 75

ID values 403–4

identification apps 497, 521–3, 529, 532

identifiers 296

IDLE (Python) 340

if (member) 318

IF statements 311–18

nested 315–16

image generators, customized 210

image recognition 210

image resolution 37

images, storage 37–43

in-memory databases 197

increment 300

information hiding 401–2

Infrastructure as a Service (Iaas) 22

inheritance 417–20, 422–3

initialization 296

input validation 150–1

inputs 91–2, 255–6, 264, 283, 289–90, 360, 389

insertion 456–9, 462–4, 467–8, 476–7

instantiation 398–400

instruction register 3

integer division 303–4

integers 25–31, 47–51, 297, 394

interface 429–30, 454

internal assessment 493–536

internet 114, 125

interpreters 103–9

bytecode 105–9

interrupt 355

interrupt handling 85–8, 355

interrupt service routine (ISR) 85, 86

intrusion detection system (IDS) 151

intrusion prevention system (IPS) 151

inventory systems 415–16

IP addresses 136–8, 144–5

irrigation control systems 96

Java

and abstract data types 461–6, 471–5, 476–7

and binary data storage 33, 36, 41, 43

and data structures 347–9, 350–1

and data types 297–8

and error detection 106–7

and file processing 378–84, 389, 391

and the internal assessment 495, 497, 501, 505, 509–10,

535

and object-oriented programming 396, 398–401, 403–5,

407–9, 411–12, 414–16, 418–22, 424, 429–30, 431–5,

439, 442–52

and operators 302, 303

and programming algorithms 358–62, 364, 366–9, 371,

372, 373–4, 376

and programming constructs 313, 314, 316–18, 320–4,

326–8, 330–1

and programming fundamentals 333–5, 343–5

and string manipulation 305–6, 307–10

JOIN in a SELECT statement 188

k-nearest neighbours 227–30, 233, 236–8, 269, 490–1

Karnaugh maps (K-maps) 60–5

kernels 264–5

keyboards 86–7, 356

keys 154, 169–71, 468

kilohertz (kHz) 44

knowledge 288

laptops 210

Last in First Out (LIFO) 353, 355

latency 85, 86

leaf (node) 467, 470

learning curves 395

least significant bit 27, 48

length function 305

library systems 414, 440

line of best fit 223–4

linear discriminant analysis (LDA) 220

linear probing 478

linear regression 223–7, 268–9

multiple 226

linear search 362–3, 365

linear space 360

linear transformation 265–6

lists 343–52

dynamic 351–2

linked 455–66

one-dimensional 232, 345–6

quicksort 373–5

searches 362–3, 365

sorting 365–7, 369

two-dimensional 347–9

Little Man Computer 11–12

load 198

load balancing 75

load factors 477, 478

local area networks (LAN) 112–13, 134, 141–2

location data 500

location transparency 201

locks 90

logic 51–66

logic circuits 56–9, 65–6

logic errors 333

logic gates 51–66

AND gates 53, 59–60, 65–6, 258–61, 317

and ANNs 258–61

basic 52–4

Buffer gates 52

derived (complex) 54–6

history of 51

NAN gates (NOT AND) 54

NOR gates (NOT OR) 55

NOT gates 52, 54, 60, 66

OR gates 52–3, 59–62, 64, 66, 258–61

XNOR gates (exclusive NOT OR) 55–6

XOR gates (exclusive OR) 55

logical expressions 60–5

logical schema 175

loops/iterations 296, 319–24, 366

conditional 319, 322–4, 362–3, 380, 384, 386

count-controlled (FOR) 319–23, 325, 348, 362

post-condition (REPEAT–UNTIL) 319, 323–5

pre-condition (WHILE) 319, 322–5

low-frequency data 21

machine learning 5–6, 205–80, 287–8, 497, 499, 502

mail servers 131

maintainable code 326

malware 72, 146, 149

man-in-the-middle (MitM) 147

mapping 500, 503

matrix and vector multiplications 5

mean absolute/squared error 225

media access control (MAC) 152

memory 7–11, 67–8, 72, 456, 478–9

primary 8–11

secondary 16–19

virtual 68

memory address/data register 3

memory cards 18–19

memory dump 29

Memory Hog program 77

metadata 37, 38

method overriding 421–3

middleware 22

misinformation 276

mobile networks 116

mobile optimization 500

modality 177

model evasion/inversion 275

model training 499

modems 118

modularity 326–32, 394–5, 454–5

monitoring 71

monitors 90

monopolize resources 79

motor control system 100–2

mouse 86–7

movie-review sentiment analysis 270

MPEG Audio Layer III (MP3) 44–5

multi-core architectures 4, 14–16

multi-valued dependency 181

multidimensionality 226–7

multifactor authentication (MFA) 151

multitasking 89–91, 91

multithreading 529

music art creator (Visuca) 504

mutable 471

mutation 248, 253

mutators 402

mutual exclusion 89

network address translation (NAT) 137–8, 145

network architecture diagrams 521

Network Attached Storage (NAS) 18–19

network communications 87

network devices 117–19

network interface cards 118

network protocols 119–25, 146

network security 131–2, 138–40, 144–65, 287

network segmentation 134–5

network switches 118–19

network topologies 127–9

networking 75–6, 132–4

networks 111–65

neural networks 207–8, 244

artificial (ANNs) 5–6, 255–64, 266, 270

convolutional 264–8, 270

training 260, 269, 276

neural processing unit (NPU) 212–13

nibbles 29

nodes 455–70

deletion 470

insertion 467–8

search 468

traversal 468–9

noise 25

non-volatile 198

normalization 179–83, 187, 216–17, 221, 287

NoSQL database 195–6, 197

O(1) time complexity 476

object-oriented programming (OOP) 393–452, 505, 517

object-relational impedance mismatch 173

objects, creation 399

observer pattern 429, 434–5

one’s complement 48

online analytical processing (OLAP) 198–9

online harassment 276

open addressing 477, 478–9

open-loop systems 92

operands 303

operating systems (OS) 67–102

operators 296, 302–4

optical discs/drives 18

Optical Mark Recognition (OMR) 498

outliers 215, 221

outputs 255–6, 266, 283, 289–91

overfitting 235–6

packet switching 140–1

parallel processing 5

parent (node) 466, 467

partial functional dependency 180

passkeys 150

passwords 149–50

pattern matching 189

pattern recognition 286, 287

peer-to-peer model 133–4

perceptrons 255–7, 258

performance monitoring 72

performance-critical applications 109

personal area network (PAN) 113

personalization 75

pervasive AI 277

phishing 147

physical schemas 176

pipelining 14–16

pivot elements 373

pixels 8, 37–9, 42

Platform as a Service (Paas) 22

plug and play (PnP) 70

pointers 455–64

polling 85–8

polymorphism 421–3

Pong! (game) 245–8

pooling layers 266

pop 353

portability 107–8

positional notation method 26

power efficiency 7

precision 234, 235

predictions 258–9

primary key 169, 179, 180–1

principal component analysis (PCA) 220

print statements 341

printer queues 356

privacy 274, 275, 276, 277

problem description 59–60

problem specification 282–4

problem statement 282

problem-solving 286–8, 470

procedure 326–8

process 289

process accounting 72

processors 212–13

product 495

program counter 3

programming 287, 295–391

algorithms 358–77

constructs 311–32

data structures 342–57

database 186–94

file processing 378–91

fundamentals 296–310, 333–41

 see also C++; Java; object-oriented programming; Python proof of work 6

proxy servers 131–2, 162

pseudocode 244–5, 526

push 353

Python 83

and abstract data types 461–5, 471–5, 476

and binary data storage 33, 42, 45–6

and data preprocessing 215, 217, 221

and data structures 345–6, 347–9, 351–2

and data types 297–8

and error detection 106–7

and file processing 385–8, 389, 391

and the internal assessment 495, 497–9, 502–4, 509

and machine learning 224–7, 229, 232, 237–9, 242, 245–

8, 252–4, 260–3, 268

and network protocols 121

and object-oriented programming 396, 398–404, 406–7,

410, 418–19, 421–4, 431, 433–4, 438, 441–2, 444–51

and operating systems 77

and operators 302, 303–4

and programming algorithms 358–61, 363–4, 366–9, 371,

372, 374–6

and programming constructs 313–18, 320–4, 326–9, 330–

2

and programming fundamentals 333–5, 343

and scheduling algorithms 83–4

and servers 130

and string manipulation 305–10

Q-learning 244–5

quadratic probing 479

quadratic space 360

quantum computing 277

queues 355–7

quicksort 373–5

quota management 72

quotients 27

R-squared value 225–6

RAID (Redundant Array of Independent Disks) 18, 131

RAM (random access memory) 8–9, 10, 68

randomization, weighted 249

rapid development/testing 109

Raspberry Pi 160–3

read mode 378, 385

read-intensive apps 184

read-only views 191

real-time systems 88, 361, 499

real-world apps 86–8, 133–4, 233, 284, 356

reasoning 319

recall 234, 235

recommendation systems 209, 229–30, 276, 490–1

records 168–9

recruitment tools, AI-powered 279–80

recursion 355, 370–7, 505

registers 3

regression 199, 208, 261–2, 268

rehashing 477

reinforcement learning 209, 242–8, 270

RELATIONAL operators 189

relationship 170–1, 175

relative path 378

ReLU 257, 258–9

rendering 7, 8

replace method 309

replication 201

reporting 73, 184

reproduction 248–54

resolution 38, 39

resource allocation 89–91

resource contention 89–90

resource management 73

resource usage tracking 72

RGB values 41–2

robotics 209, 249, 491–2

ROM (read-only memory) 8–9

root (node) 466, 469, 470

round robin (RR) 80, 82

route planning 249–51, 254, 500, 509, 530–1

routers 118, 161

routing, static/dynamic 141–2

run-length encoding (RLE) 20

runtime errors 106, 333

sampling 44

scalability 172, 174, 183–4, 201, 361, 395

scanner class 379–82

scheduling 70–1, 79–84, 89

schema, database 172, 174–6

scikit 217–18, 220–2, 224–6, 230, 233, 238–40

searches 361–5

second normal form (2NF) 180, 182

secure file transfer protocol (SFTP) 130

secure socket layer (SSL) certificate 152

security 71–2, 73, 86, 201, 510

and data transmissions 138–40

database 172, 174, 192

and machine learning 275, 277

network 131–2, 138–40, 144–65, 287

server 131, 132

security tokens 71

selection 249, 296

selection sort 367–9

selection structure 311–19

semaphores 89–90

sensors 93, 94–7

sequencing 311

sequential access 342, 456

sequential pattern discovery 199

server–client architecture 497

server-side scripting 498, 500

servers 129–33, 162

set difference 472, 474

set intersection 472, 473

set methods 472

set operations 472–4

set union 472, 473

sets 471–5

subsets/supersets 475

shaders and textures 5

shift cipher 35–6

Sigmoid 257, 258–9

sign-magnitude 48

singleton pattern 428, 430–2

social media platform 441–3

societal impact 275

Softmax 258

software development 287

Software as a Solution (SaaS) 22

software updates 152

solid state drive (SSD) 16–17, 18

solution 494

sorting 365–9

space analysis 358

space complexity 360–1, 367

spatial databases 197

spectral clustering 238–9, 269

speech recognition 210

spell checkers 479

spooling 70

SQL 186–91, 193–4, 197

SQL injection 147–8

SQLite database 498

stack 352–5

stack operation 353–4

stack pointer 353

stakeholders 282–3

static variables and methods 402–5

statistical redundancy 19

step-by-step code execution 340

stereo 44, 45

stock-trading 270, 502

Streamify music 449–52

string 31–6, 297, 305–10, 394

strip method 309–10

structure charts 512–13

student apps 409–12, 439, 498, 501, 533–4

subject-oriented 198

subnetting 134

substrings 307–9

subtree (node) 467

summation 256

supervised learning 208, 223–36, 248

surveillance 274

system flow diagrams 519

system management 74

system models 515, 517

tables

database 168–70, 178–9, 188–90

hash tables 475–9

Q-learning 244, 245

 see also trace tables; truth tables

tanh 258

TCP/IP (Transmission Control Protocol/Internet Protocol)

model 75, 117–20, 125–6, 136–7

Tensor Processing Unit (TPU) 211, 212–13

TensorFlow 260–1

termination condition 322

testing 152, 341

functional 517, 531

strategies 515, 517–18, 527, 529

structural 517, 531

text blocks 305

third normal form (3NF) 180–3

time complexity analysis 358–60

time-variant 198

timetabling 249

Tinkercad 97–9, 100–1

trace tables 335–8

traffic control 96–100, 270

training 152, 260, 269, 276, 499

transaction control language (TCL) 193–4

transaction processing 172

transducers 93

transfer learning 210

transform 21, 198

transistors 51–4

transitive dependency 180, 181

translation 103–10

transmission control protocol (TCP) 119–21

transparency 269, 275–6

transport layer security (TLS) certificate 152

traversal/search 376, 457, 460–2, 468–9

trojans 72

truth tables 52–65

tuning, hyperparameter 235

tuples 168

twisted-pair cabling 139

two’s complement 47

UML (Unified Modelling Language) Class diagrams 397, 427–

8, 512–13, 525

underfitting 235–6

UNDO feature 355

Unicode encoding 31, 32–5

unordered sets 471

unpatched software 148

unsupervised learning 209, 236–42, 248, 269

unwinding 370

user accounting 72

user authentication 71

User Datagram Protocol (UDP) 119–21, 125

user interface 73, 498–500, 510, 520, 523

utilitarianism 185

validation 322

variables 296–304, 360, 401–2

global/local 330–2

static/non-static 402–5

verification 322

vertex and pixel data 8

video 5, 46–7, 506, 527–8

view 191–2

virtual local area network (VLAN) 134

virtual memory 68

virtual private network (VPN) 114, 152

virtual reality 277

virtualization 75

viruses 72

visual feedback 75

visual simultaneous localization and mapping (vSLAM) 491–

2

Voice over IP 134

volatility 9

VRAM (video RAM) 7

Waveform Audio File Format (WAV) 44, 45

web browsing 133, 355

web development 497–500

web scraping 267

web servers 123, 132, 162

webcam integration 499

weight (neural networks) 255–6

wide area network (WAN) 113

winding 370

wireless access point 119, 161–2

wireless transmission 139–40, 152

workstations, dedicated 211

worms 72

wrapper methods 218, 221

write mode 378, 385

zero-day exploits 148–9

[image: Image 712]

[image: Image 713]

Document Outline

	Cover

	Title Page

	Copyright Page

	Contents

	Introduction

	How to use this book

	About the authors

	A Concepts of Computer Science

	A1 Computer fundamentals

	A1.1 Computer hardware and operation

	A1.2 Data representation and computer logic

	A1.3 Operating systems and control systems

	A1.4 Translation

	A2 Networks

	A2.1 Network fundamentals

	A2.2 Network architecture

	A2.3 Data transmissions

	A2.4 Network security

	A3 Databases

	A3.1 Database fundamentals

	A3.2 Database design

	A3.3 Database programming

	A3.4 Alternative databases and data warehouses

	A4 Machine learning

	A4.1 Machine learning fundamentals

	A4.2 Data preprocessing

	A4.3 Machine learning approaches

	A4.4 Ethical considerations

	B Computational Thinking and Problem Solving

	B1 Computational thinking

	B1.1 Approaches to computational thinking

	B2 Programming

	B2.1 Programming fundamentals (part 1)

	B2.3 Programming constructs

	B2.1 Programming fundamentals (part 2)

	B2.2 Data structures

	B2.4 Programming algorithms

	B2.5 File processing

	B3 Object-oriented programming (OOP)

	B3.1 Fundamentals of OOP for a single class

	B3.2 Fundamentals of OOP for multiple classes

	B4 Abstract data types (ADTs)

	B4.1 Fundamentals of abstract data types

	Case Study

	Internal Assessment

	Acknowledgements

	Glossary

	Index

index-700_1.png
int numbers([] = {7,3,2,9};
for (int i = 0; i <numbers.length; i++) {
for (int j = 0; j<numbers.length-1-i; j++) {
if (numbers [§] >numbers [§+1]) {
int temp = numbers[j];
numbers [j] = numbers[j+1];
numbers [j+1] =temp;

}

for (int i=0;i<numbers.length; i++) {
System.out.print (numbers [i]+" ");

index-863_1.png
Z —1——>NULL

head——> | A > B > NULL

index-699_1.png
Unsorted array (lis

1

Sorted array (list)

)

2
swap

3

swap

9

i

-
2 9
o
23|79

index-861_2.png
head —>|

index-702_1.png
int numbers([] = {7,3,2,9};
boolean swapped = true;
int n = numbers.length;
while (n>0 && swapped) {
swapped = false;
n

= n-1;

for (int i = 0; i<n-1; i++) {

if (numbers [i] >numbers [1+1]) {
int temp = numbers[i];
numbers [i] = numbers[i+1];
numbers [1+1] =temp;

swapped = true;

}

for (int i=0;i<numbers.length; i++) {
System.out.print (numbers [i]+" ") ;

index-863_3.png
N

> NULL

index-701_1.png
numbers = [7,3,2,9]
for i in range (len(numbers)) :
for j in range(0, len(numbers)-1-i):
if numbers [j]>numbers [j+1]:
temp = numbers [j]
numbers [j] =numbers [j+1]
numbers [j+1] =temp
for i in range (len(numbers)) :
print (numbers [i], " ", en

index-863_2.png
head > A > B > NULL

index-859_1.jpg

index-697_1.png
numbers= [3,4,5,7,9,11,13]
key =11

found = False
0

len (numbers)

lower

upper
mid = 0

while lower<=upper and not found:
mid = int((lower + upper)/2)
if numbers [mid]==key:
found = True
elif numbers[mid]<key:
lower = mid + 1
else:
upper = mid - 1
if found:
print ("the value was found on position ", mid)
else:
print ("the value was not found")

index-861_1.png
next pointer

head >

il < Al T|BI. Cld D

previous pointer

>NULL

index-696_1.png
int numbers([] = {3,4,5,7,9,11,13};
int key = 11;

boolean found = false;

int lower = 0;

int mid =

int upper = numbers.length;
while ((lower<=upper) && !found) {
mid = (lower+upper)/2;
if (numbers [mid]==key) {
found = true;
} else if (numbers [mid]<key) {

lower = mid+l;
} else {
upper = mid-1;

}
if (found) {

System.out.println("the value was found on position " + mid);
} else {

System.out.println("the value was not found");

index-860_1.png
head——>{ A > B > C > D >NULL
I

data pointer

index-851_2.png
public class Playlist {
private String name;
private ArrayList<Tracks trackList;
public Playlist (String name) {
this.name = name;
this.trackList = new ArrayList<Tracks();

}

// Methods to add and remove tracks from the playlist
}
public class User {
private String username;
private ArrayList<Playlist> playlists;
public User(String username) {
this.username = username;
this.playlists = new ArrayList<Playlists>();

}

// Methods to create and manage playlists

index-851_1.png
class Playlist:
def __init__ (self, name):
self.name = name
self.track_list = []
Methods to add and remove tracks from the playlist
class User:
def __init__(self, username):
self.username = username
self.playlists = []
Methods to create and manage playlists

index-858_1.png
head:

>NULL

|

10

12

12

index-854_1.jpg

index-846_1.png
public class Dog extends Animal {

private boolean isVaccinated;

public Dog(String id, boolean isVaccinated) {
super (id, "Dog");
this.isVaccinated = isVaccinated;

}

public boolean getVaccinationstatus() {
return isVaccinated;

}

public class Cat extends Animal {

private boolean isNeutered;

public Cat(String id, boolean isNeutered) {
super (id, "cat");
this.isNeutered = isNeutered;

}

public boolean getNeuteredstatus() {
return isNeutered;

index-845_1.png
class Dog(Animal) :
def __init__(self, id, is_vaccinated):
super().__init_ (id, "Dog")
self._is_vaccinated = is_vaccinated
def get_vaccination_status(self):
return self._is_vaccinated
class Cat(Animal):
def _ init__ (self, id, is_neutered):
super().__init_ (id, "cat")
self._is_neutered = is_neutered
def get_neutered status (self):
return self. is neutered

index-849_1.png
public class MediaLibrary {

private ArrayList<Tracks tracks;

private String name;

MediaLibrary (String name) {
this.name = name;
this.tracks = new ArrayList<s>();

}

string getName() {
return name;

}

public int getsize() {
return tracks.size();

}

public int findTrack(String id) {
// Method to locate a track in the array by its ID
// Not yet implemented

}

public class Track {
private string id;
private String title;
private string artist;
private int duration; // in seconds
private String genre;
public Track(String id, String title, String artist, int duration, String
genre) {
this.id = id;
this.title = title;
this.artist = artist;
this.duration = duration;
this.genre = genre;
}

// RAccessor methods for each attribute

index-848_1.png
class MediaLibrary:
def __init__(self, name, capacity):
self. name = name
self._tracks = []
def get_name (self):
return self._name
def get_size(self):
return len(self._tracks)
def find_track(self, id):
Method to locate a track in the list by its ID
Not yet implemented
class Track:
init_ (self, id, title, artist, duration, genre):
id = id
._title = title
._artist = artist

._duration = duration

._genre = genre
Accessor methods for each attribute

index-843_1.png
public class AnimalShelter {

private Animal animals(];

private String location;

AnimalShelter(String location, int capacity) {
this.location = location;
this.animals = new Animal[capacityl;

}

string getLocation() {
return location;

}

public int getCapacity() {
return animals.length;

}

public int findAnimal(String id) {
// Method to find an animal by ID in the array and return the index

}
public class Animal {

private String id;

private String species;

private int age;

private boolean isHealthy;

public Animal (String id, String species) {
// Missing code

}

public void setAge(int age) {
this.age = age;

}

public void setHealthStatus(boolean isHealthy) {
this.isHealthy = isHealthy;

}

public String getId() {
return id;

}

public String getSpecies() {
return species;

}

public boolean getHealthStatus() {
return isHealthy;

}

public int gethAge() {
return age;

index-842_1.png
class AnimalShelter:
def __init__ (self, location, capacity):
self.location = location
self.animals = [None for _ in range(capacity)]
def get_location(self):
return self.location
def get_capacity(self):
return len(animals)
def find animal(self, id:str):
Method to find an animal by an ID in the list and return the index
class Animal:
def __init__(self, id, species):
Missing code to initialize _id, _species, _age, _is healthy
def set_age(self, age):
self._age = age
def set_health status(self, is healthy):
self._is_healthy = is_healthy
def get_id(self):
return self._id
def get_species(self):
return self._species
def get_health_status(self):
return self._is healthy
def get_age (self):
return self. age

index-840_2.png
public static void main(string[] args) {
Transaction[] t = new Transaction(250, "Special deal");
Customer[] customers = new Customer[10];

= new Customer (0, "Ava");

= new Customer (1, "Brian");

= new Customer (2, "Cherry");

.addItem(50, "Burger meal deal");

customers [0
[11
[2]
[ol
customers [0] .addItem(new Transaction (100, "Birthday bonus"));
[11
[11
[2]
(2

customers
customers
customers

customers .addItem (200, "Bluetooth earphones");
customers .spendPoints (50, "Discount for shopping");
customers .spendPoints (80, "Discount for shopping");
customers [2] .addItem(t) ;

System.out .println(customers[0] .getBalance());
System.out .println(customers[1].getBalance());
System.out .println(customers[2] .getBalance());
System.out .println(customers[3].getBalance());

index-838_1.png
def add_item(item) :
history[self.history item count] = item
self.history_item count += 1
self.balance item.get points()

index-837_2.png
public class Transaction {
private string description;
private int points;
public Transaction(String description; int points) {
this.description = description;
this.points = points;
}

// Getters and setters for description and points

index-840_1.png
1f _ name__ == "__main_ ":
t = new Transaction (250, "Special deal")
Create list of 10 None items to replicate an empty array

customers = [None for _ in range(10)]

customers [0] = Customer (0, "Ava'")

customers [1] = Customer(l, "Brian")

customers [2] = Customer(2, "Cherry")

customers [0] .add_item (50, "Burger meal deal")

customers [0] .add_item(Transaction(100, "Birthday bonus"))
customers [1] .add_item (200, "Bluetooth earphones")
customers [1] .spend_points (50, "Discount for shopping")
customers [2] .spend_points (80, "Discount for shopping")

customers [2] .add_item(t)

print (customers[0].get_balance ()
print (customers[1].get_balance()
print (customers[2] .get_balance()

[
[
[
print (customers[3] .get balance()

index-838_2.png
public void addItem(Transaction item) {
history[historyItemCount++] = item;
balance += item.getPoints();

index-835_1.png
ilmport java.utill.Random;
class Main {
public static void main(String[] args) {

User frodo = new User("frodo", "Frodo Baggins", "frodo.png");
User gandalf = new User("gandalf", "Gandalf the Grey", "gandalf.png");
User samwise = new User("samwise", "Samwise Gamgee", "samwise.png");
User aragorn = new User("aragorn", "Aragorn", "aragorn.png");
// create posts
frodo.newTextMessage ("Just finished my quest to destroy the One Ring.
What an adventure! #MissionAccomplished #RingBearer");
frodo.newPictureMessage ("Pic of me after the quest! #MountDoom
#Mordor") ;
aragorn.newTextMessage ("Reunited with my love, Arwen. Forever grateful
for her love and support. @ #Elessar #LoveAndDestiny");
gandalf.newvideoMessage ("Just having some fun with my staff
and showing off a little wizardry on the dance floor! kit

#GandalfTheDancer #WizardGrooves");
// Create comments

frodo.newComment (0, "Mr. Frodo! I'm so proud of you! You're the
bravest hobbit I know. #TrueFriendship #HobbitHeroes", samwise);
frodo.newComment (0, "Frodo, you have my gratitude and respect. Your
sacrifice has saved Middle-earth. #KingOfGondor #HeroicDeeds", aragornm);

frodo.newComment (0, "Well done, Frodo! You've shown incredible
strength and determination. The world is safer because of you.
#RingDestroyer #WizardPride", gandalf);

frodo.newComment (1, "Who's that great looking bloke next to you?",
samwise) ;

frodo.newComment (1, "Amazing!", aragorn);

aragorn.newComment (0, "Aragorn, may your love with Arwen

be as enduring as the light of the Silmarils. #LoveAndHope
#FellowshipForever", frodo);

aragorn.newComment (0, "Aragorn, you have found true love. Cherish it
always. #Shieldmaiden #HappilyEverAfter", gandalf);

gandalf.newComment (0, "Love it! #WizardsCanDance", frodo);
gandalf.newComment (0, "rofl", samwise);
// Create likes
frodo.newLike (1) ;
frodo.newLike (1) ;
aragorn.newLike (0) ;
Random random = new Random();
int randomNumber = random.nextInt (1001) + 1000;
for (int i=0; i<randomNumber; i++) {
gandalf.newLike (0) ;

index-834_1.png
lmport random

if _ name__ v__main__":
frodo = User("frodo", "Frodo Baggins", "frodo.png")
gandalf = User("gandalf", "Gandalf the Grey", "gandalf.png")

samwise = User("samwise", "Samwise Gamgee", "samwise.png")
aragorn = User("aragorn", "Aragorn", "aragorn.png")
Create posts
frodo.new_text_message ("Just finished my quest to destroy the One Ring.
What an adventure! #MissionAccomplished #RingBearer")
frodo.new_picture_message("Pic of me after the quest! #MountDoom #Mordor")
aragorn.new_text_message ("Reunited with my love, Arwen. Forever grateful
for her love and support. W #Elessar #LoveAndDestiny")
gandalf.new_video_message ("Just having some fun with my staff and
showing off a little wizardry on the dance floor! ki #GandalfTheDancer
#WizardGrooves")
Create comments
frodo.new_comment (0, "Mr. Frodo! I'm so proud of you! You're the bravest
hobbit I know. #TrueFriendship #HobbitHeroes", samwise)
frodo.new_comment (0, "Frodo, you have my gratitude and respect. Your
sacrifice has saved Middle-earth. #KingOfGondor #HeroicDeeds", aragorn)
frodo.new_comment (0, "Well done, Frodo! You've shown incredible strength
and determination. The world is safer because of you. #RingDestroyer
#WizardPride", gandalf)
frodo.new_comment (1, "Who's that great looking bloke next to you?",
samwise)
frodo.new_comment (1, "Amazing!", aragorn)
aragorn.new_comment (0, "Aragorn, may your love with Arwen be as enduring
as the light of the Silmarils. #LoveAndHope #FellowshipForever", frodo)
aragorn.new_comment (0, "Aragorn, you have found true love. Cherish it
always. #Shieldmaiden #HappilyEverAfter", gandalf)
gandalf.new_comment (0, "Love it! #WizardsCanDance", frodo)
gandalf .new_comment (0, "rofl", samwise)
Create likes
frodo.new_like (1)
frodo.new_like (1)
aragorn.new_like (0)
r = random.randint (1001, 2000)
for i in range(r):

gandalf.new like (0)

index-20_1.jpg

index-837_1.png
class Transaction:
def _ init__ (self, description, points):
self.description = description
self.points = points
Cetters and setters for description and points

index-18_1.jpg
e
X :

o o

index-836_1.png
Customer

—int

—String
~long

— Transaction[]
~long

id

name

balance

history
historyltemCount

+ Customer (int id, String name)
+ void

+ Boolean

+ Transaction

+ Transaction

+long

+ String

addTransaction(Transaction item)
spendPoints(String description, int points)
getTransactionByID(int id)
getTransactionByDesc (String description)
getBalance()

getName()

(Up to 10,000 items)

index-25_1.jpg

index-20_2.png
logic unit

2
E
5
<

Control

PC program counter

MDR memory data register
MAR memory address register
AC accumulator

index-28_1.jpg

index-832_2.png
User

Post

~ username : String
~ displayName : String
~ profilePic : String

— posts : Post[]

~ comments : Comment(]
~likeCount : int

+Post()

+ User(String, String, String)
+ newTextMessage(
+ newPictureMessage(...)

+ newVideoMessage(..
+ getPostCount() : int
+ getPost(int) : Post

+ newComment(int, String, User)
+newLike(int)

+ getters and setters
+newComment(String, User)
+ newLike() : void

/
/ﬁ

Extends

R\

Extends Extends

Comment

- comment : String
— author :

ser

+ Comment(String, User)

+getters and setters

TextMessage

PictureMessage

VideoMessage

~ message : String

~ pictureURL : String

- youtubelink : String

+ TextMessage(String)
+ getters and setters

+ PictureMessage(String)
+ getters and setters

+ VideoMessage(String)
+ getters and setters

index-26_1.jpg
.
210535 -

= —

0 X »

index-999_1.png

index-998_1.png
// Adapted from "Arrow function expressions" (Mozilla)

// https://developer.mozilla.org/en-Us/docs/Web/JavasScript/
Reference/Functions/Arrow_functions
document . querySelector (" [name='go'] ") .

addEventListener ("click", e=>{

console.log("You clicked on ${e.target.name}");

1) ;

index-1062_1.png
Computer Science

Developed n cooperation with the International Baccalaureate®

Trust an experienced team of 1B educators to help develop the ke

skill needed to understand computer science with arange of

contemporary case studies, practicalearning features and

extensive assessment support,

Bl analytcal kil with engaging contemporary case studies
from around the world.

' Improve skils and knowledge with end-of chapter review
questions.

Bl inquiry skils throughclass discusson questions that foster
International awarenes, open mindedness and rflection.

= Integrate Theory of Knowledge into your lessons with TOK lnks

= Develop ATLkills with a range of engaging actvties.

' Support EAL students with key words and definitons.
throughout.

title is also avalable as an eBook

ith learning support

s at hachettelearning.com

About the authors

PaulBaumgarten tesches
computersencaatshaTin
Gollge,Hong Keng,

oana Ganea i computer
siencetescherat5tGeorge's
IntermationalSchol,
Linembourg

CatTurtand s Head of Design
(Computer cence and
Produc Design, International
Schoolof Lausanne,

1T

index-1061_1.png
Computer Science for the IB Diploma: Boost eBook

Boost eBooks are interactive, accessible and flexible. They use the
latest research and technology to provide the very best experience for
students and teachers.

© Personalise. Easily navigate the eBook with search, zoom and an
image gallery. Make it your own with notes, bookmarks and highlights.

® Revise. Select key facts and definitions in the text and save them as
flash cards for revision.

@ Listen. Use text-to-speech to make the content more accessible to
students and to improve comprehension and pronunciation.

Switch. Seamlessly move between the printed view for front-of-class
teaching and the interactive view for independent studly.

Download. Access the eBook offline on any device — in school, at
home or on the move — with the Boost eBooks app (available on
Android and iOS).
~’ee%is o
To subscribe or register for a free trial, visit Boost
hachettelearning.com/boost Learning

index-996_2.png

index-996_1.png
Firstly, one of the improvements that my client and | discussed in our final interview was
that of taking into account the possibility of “start[ing] the diploma with four higher
levels”, which my client has said is “a conversation that [he has] often”. This could simply
be done by adding another checkbox with this option, which would change the number
of HLs SubjectSelect would pick.

Secondly, as my school has recently created a webpage with “details as to what are
the assessments, what's the difference between Higher and Standard Level” for each
subject, my client suggested that having a link to this website from my SubjectSelect
information page would be “something that could be really nice”.

Thirdly, another area for extension would be to break down some of the career field
options | give (e.g. Physics, or anything related) into smaller more specific sub-sections,
like “architecture, engineering and medicine”, and “work with people like Mr McArthur
and Ms Edmunds” (my school’s counsellors) to implement the subject requirements for
these careers in Switzerland, as these are, according to my client, the ones “that give
(them) the most problems during the options process”.

Finally, another improvement to the project that | believe would add to its usefulness
for students would be to include a screen that displays the weighting that each subject
obtained (a simple change, as these weights are already all held in an arraylist). This
would allow students to better understand why SubjectSelect chose the subjects it did.

index-995_2.png
One of the improvements that my client and | discussed was the ability of the application
to save features that had been input into the drop-down boxes, “even if the user were
to go to a different page” (Appendix 4). As of now, the characteristics that have been
entered disappear when the user clicks on the help page. To address this, an array can
be made. When the help button is clicked, the chosen characteristics can be immediately
saved to the array. Then, when the user returns to the “enter characteristics” page, they
can seamlessly continue inputting additional characteristics that will be saved in the
same array. The contents can then be sent to the neural network for processing.
Secondly, my client disliked that the application was “reliant on WiFi” to function. To fix
this issue, the machine learning algorithm could be configured to run independently on
the local system. The appropriate libraries (for example scikit-learn and NumPy) would
have to be set up, and the h5 file containing the machine learning model would be
downloaded on to my client’s phone.

Thirdly, my client suggested that entering 21 characteristics for each mushroom was
“tedious”. To fix this, the importance of each feature could be calculated. A method

to approach this is detailed by Fisher et al. Essentially, the value of a feature should be
randomized and the accuracy of the model computed. This process can be repeated for
each feature, and the ones with the lowest importance can be removed.

Finally, to enhance the educational aspect of the app, functionality can be added to
provide guesses about the mushroom species. This can be achieved by creating a
database that contains the characteristics of 50 common mushroom species. Each
mushroom in the database would initially have a score of 0. When the user inputs
characteristics, the app can compare them with the characteristics in the database. For
each matching characteristic, the score of the corresponding mushrooms in the database
can be incremented. The mushrooms with the highest scores can then be presented as
guesses for the species of mushroom the user is trying to identify.

index-994_1.png
Enter Characteristics @

Bl -
Fivous -
Brown -
s

Brises -
imong -
Atsched -
Gltsacny

Clote o

index-990_2.png
min_cost is the minimum value from the last row of
the DP array, which contains the minimum costs of
reaching the final node from all other nodes.
end_node is the index of the minimum cost, which is
the last node in the optimal path.

Set the initial bitmask to all
1s to represent that all
nodes have been visited in
the final state of the path.

Check if ' is part of the current
mask (subset) and leads to the
optimal path for ‘end_node". If
yes, then it's part of the optimal
route.

Update the mask by removing Set the current 'end_node' to
‘end_node' from the current 'v' as we move backwards
subset, preparing for the next through the path.

iteration of backtracking.

index-995_1.png

index-994_2.png
elefel JeYel JeJeke)

®
[olC JeJolel JoJeJolol]
&

|Jelc JoJoXolelololo]

EERORER

index-55_2.jpg

index-983_2.png
PSEUDOCODE FOR MAIN GAME LOOP IN PACMAN

METHOD run ()
Set game_running to True
WHILE game_running is True
Process events:
If a quit event is detected, exit the game
Clear the screen to the background color
Draw the map with walls and food
Move and draw Pacman
Check and handle food consumption at Pacman's position
For each ghost in ghosts array:
Move and draw the ghost
Check collision between the ghost and Pacman:
If collision, print "Game over" with the score,
set game_running to False
Update the display to reflect any changes
control the frame rate with the clock
END WHILE
END METHOD

index-55_1.jpg
CompactFiash®

index-983_1.png
"language": "en",
"timezone": "Asia/Bangkok",
"dateFormat": "dd/mm/yyyy",
nserver": {
"ipAddress": "192.168.1.100",
"apiPort": 8080,
"apiKey": "alb2c3d4e5£6g7h8igjon

index-58_1.png
image

Construct

Forward

symbol

(N x N)

nxn
sub-images

transform

Quantizer

encoder

Compressed
image

index-990_1.png
Calculating optimal route - Bitmasks Dynamic Programming and 2D array processing

Transition: lterate over all possible masks, which

represent all subsets of nodes
This s the base case, all other elements in the array are

setto infinity

- Consider all other nodes *v* that haven't been
visited yet

mask XOR (1 << u): Removes node G from the set of visited dp[mask XOR (1 << u)]lv] + costlv][ul: Total cost of

nodes in mask reaching node u from the start, having first reached
node v and then traveling from v to u

dp[mask XOR (1 << u)]v]: Gives the minimum cost of reaching

node v from the start, having visited the set of nodes in mask The minimum of these two values is then set as the

TiSus hodbu i 6 o misdli

index-57_1.png
Original Lossless saved Lossy saved

1.73MB 1.58 MB. 9% 886 KB 50%

index-989_1.png
Multithreading

Create an ExecutorService
with a thread

Retrieve the response

Submit the TalkToServer
task (JSON request and
response) to the executor

index-65_1.jpg

index-64_1.jpg

index-68_1.png
Download speeds of up to 100MB/s!

index-67_1.png
Download speeds of up to 100Mb/s!

index-53_1.jpg

index-52_2.jpg

index-53_2.jpg
=>

| 25681 -6x)

y

-

index-39_1.png
Execute

Decode

Fetch

index-41_2.jpg
Assembly Language Code

[ASSEMBLE INTO RAM

PROGRAM
00 counter

INSTRUCTION|

REGISTER

AooRESS
REGISTER

ACCUMULATOR

o

ﬂ‘m
cPu

Looo T ooo Lo oo oo oo oo oo

N Y Y
N N Y
52 a3 34 35 36 31 3w

Fooo oo 000 oo B oo fooo oo oo}
Fooo Lo fooo oo F oo fooo oo oo}
N o o
) (Y O

Bl Livile Msa Compuien

T O TR RG]

b2 1 03 6 167 68

02 ' 53 96, '97. 95 '95

54', 05
ool oco Jowo Jooo oo oo

‘CaCSEcAIngorg i and Feter Hganson

index-41_1.png
LDA
ADD

STA 5

HLT
DAT
DAT

23
12

index-47_1.png
E30000000

s)(<)

OO 000G

index-44_1.jpg

index-52_1.jpg

index-50_1.png
cache
controller

- NAND flash
memory

actuator arm

actuator axis—

index-35_1.jpg

index-28_2.png

index-36_1.png
cPU Cache memory Main memory Secondary memory

index-35_2.jpg

index-87_1.png
R
o
5
®
B
R
8
®
8

index-86_1.jpg

index-88_1.png
abits

8bits

16 bits.

24 bits

1 bit

2bits

3bits

index-87_2.png
RGB Calculator

rgb(216, 158, 159)

adsbec

h1(33s, 25%, so%)

e ——
0
e ———

§

index-90_1.png
pip 1nstall pillow
Use this code to access the RGB values for each pixel
from PIL import Image
Load the image
image = Image.open("sample image.jpg")
Convert the image to RGB mode
image = image.convert ("RGB")
Get the image dimensions
width, height = image.size
Extract and print RGB values
for y in range (height) :
for x in range (width) :

pixel = image.getpixel((x, y))

red, green, blue = pixel

print (£"pixel at ({x}, {y}): R={red}, G={green}, B={blue}"

index-89_1.png
lmport
import
import
import
import
public

Java.awt.Color;
java.awt.image.BufferedImage;
java.io.File;
java.io.IOException;
javax.imageio.ImagelIO;

class ImageToRGB {

public static void main(string[] args) {

try {
// Load the image

BufferedImage image = ImageIO.read(new File("sample_image.jpg"));
// Get image dimensions
int width = image.getWidth();
int height = image.getHeight ();
// Loop through each pixel
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
// Get the RGB value of the pixel
int pixel = image.getRGB(x, y);
Color color = new Color (pixel);
// Extract the red, green and blue components
int red = color.getRed();
int green = color.getGreen();
int blue = color.getBlue();
// Print the RGB values
System.out.println("Pixel at (" + X + ", " +y + "): R=" +
red + ", G=" + green + ", B=" + blue);

}

} catch (IOException e) {
e.printStackTrace() ;

index-92_1.png
import
import
import
import
import
public

Java
java
java
java

.awt.Color;
.awt.image.BufferedImage;
.io.File;

.io.IOException;

javax.imageio.ImageIO;
class ImageToGrayScale {
public static void main(String[] args) {

try

{

// Load the image
BufferedImage image = ImageIO.read(new File("sample_image.jpg"));
// Get image dimensions
int width = image.getWidth();
int height = image.getHeight ();
// Create a new image to store the grayscale result
BufferedImage grayscaleImage = new BufferedImage (width, height,
BufferedImage.TYPE_INT RGB);
// Bpply a grayscale filter
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
// Get the RGB value of the pixel
int pixel = image.getRGB(x, y);
Color color = new Color (pixel);
// Extract the red, green and blue components
int red = color.getRed();
int green = color.getGreen();
int blue = color.getBlue();
// compute the grayscale value
int grayscale = (int) (0.3 * red + 0.59 * green + 0.11 *
blue) ;
// Create a new Color object with the grayscale value
Color grayColor = new Color (grayscale, grayscale, grayscale);
// set the new pixel value in the grayscale image
grayscaleImage.setRGB(x, y, grayColor.getRGB());

}

// save the grayscale image
ImageIO.write(grayscaleImage, "jpg", new File("grayscale_image_
java.jpg"));

} catch (IOException e) {

e.printStackTrace () ;

index-91_1.png
from PIL import Image
Load the image
image = Image.open("sample image.jpg")
convert the image to RGB mode
image = image.convert ('RGB')
Get the image dimensions
width, height = image.size
Create a new image to store the grayscale result
grayscale_image = Image.new("RGB", (width, height))
Apply a grayscale filter
for y in range (height) :
for x in range (width) :
pixel = image.getpixel((x, y))
red, green, blue = pixel
grayscale = int (0.3 * red + 0.59 * green + 0.11 * blue)
grayscale_image.putpixel((x, y), (grayscale, grayscale, grayscale))
save the grayscale image
grayscale image.save("grayscale image.jpg")

index-95_1.png
import soundfile as sf
import numpy as np
import matplotlib.pyplot as plt
from scipy.fftpack import fft
Load the audio file
samples, sample_rate = sf.read("name of file.mp3")
If stereo, select one channel
if samples.ndim > 1:
samples = samples[:, 0]
Visualize the waveform
plt.figure(figsize=(12, 6))
plt.plot (samples)
plt.title("Audio Waveform")
plt.xlabel ("Sample Index")
plt.ylabel ("Amplitude")
plt.show ()
perform FFT
spectrum = fft (samples)
frequencies = np.fft.fftfreqg(len(spectrum), 1 / sample_rate)
plt.figure(figsize=(12, 6))
plt.plot (frequencies [:len(frequencies)//2],
np.abs (spectrum(:len(spectrum)//2]))
plt.title("Audio Spectrum")
plt.xlabel ("Frequency (Hz)")
plt.ylabel ("Magnitude")
plt .show()

index-93_1.png
Analogue vs digital sound

1.0

[—Analogue signal

0.5

0.0

\

Amplitude

-0.5

\/

\f\
-
Vi

-1.0;

\
\/

1.0

—Analogue signal
|-+ Digital signal

0.5

0.0

Amplitude

-0.5

-1.0;

0.0

0.2

0.4

Time (s)

0.6

08

1.0

index-83_1.png

index-77_1.png
W =27721

index-77_3.png
Python examples

char_a = 'A'

char_han = '{L'

char_poo = '&'

Get Unicode code points as integers
code_point_a = ord(char_a) # 65
code_point_han = ord(char_han) # 27721
code_point_poo = ord(char_poo) # 128169
Print integer representations

print (code_point_a) # Output: 65
print (code_point_han) # Output: 27721
print (code point poo) # Output: 128169

index-77_2.png

index-79_1.png

index-78_1.png
public class UnicodeExample {
public static void main(String[] args) {

// Define characters
char charA = 'A';
char charHan = '{';
string charPoo = "&"; // Note: Java uses UTF-16 and
// the emoji is usually a surrogate pair
// Get Unicode code points as integers
int codePointA = (int) chard; // 65
int codePointHan = (int) charHan; // 27721
int codePointPoo = charPoo.codePointAt (0); // 128169
// Print integer representations

System.out.println("Unicode code point of 'A': " +
codePointA); // output: 65
System.out.println("Unicode code point of '{L': " +
codePointHan); // Output: 27721
System.out.println("Unicode code point of '&': " +

codePointPoo); // Output: 128169

index-80_1.png
def caesar_cilpher_encrypt (message, key):
encrypted_message = ""
for char in message:
if char.isalpha(): # Check whether the character is a letter
shift = ord("A") if char.isupper() else ord("a") # Determine the
ASCII offset
Shift the character and wrap around the alphabet if necessary
encrypted_char = chr((ord(char) - shift + key) % 26 + shift)
encrypted_message += encrypted_char
else:

encrypted message += char # Non-letter characters remain unchanged
return encrypted_message
User input
message = input ("Enter the message to encrypt: ")
key = int (input ("Enter the key (an integer): "))
Encrypt the message
encrypted _message = caesar_cipher_encrypt (message, key)
print (f"Encrypted message: {encrypted message}")

index-79_2.png

index-82_1.jpg

index-81_1.png
import java.utll.Scanner;
public class CaesarCipher {
public static String caesarCipherEncrypt (String message, int key) {
StringBuilder encryptedMessage = new StringBuilder();
for (char ch : message.toCharArray()) {
if (Character.isLetter(ch)) { // Check whether the character is
// a letter
char shift;
if (Character.isUppercase(ch)) {

shift = 'A'; // Determine the ASCII offset for uppercase
// letters

} else {
shift = 'a'; // Determine the ASCII offset for lowercase
// letters

}

// shift the character and wrap around the alphabet if
// necessary
char encryptedChar = (char) ((ch - shift + key) % 26 + shift);
encryptedMessage.append (encryptedChar) ;

} else {
encryptedMessage.append(ch); // Non-letter characters remain
// unchanged

}

return encryptedMessage.toString();
}
public static void main(String[] args) {
Scanner scanner = new Scanner (System.in);
// User input
System.out.print ("Enter the message to encrypt: ");
String message = scanner.nextLine();
System.out.print ("Enter the key (an integer): ");
int key = scanner.nextInt();
// Encrypt the message
String encryptedMessage = caesarCipherEncrypt (message, key);
System.out.println("Encrypted message: " + encryptedMessage);

index-76_1.png

index-75_1.png
V1100001,
01100010,
01100011,

10

Zm

310

index-105_1.png
Electrode

Electrode
Control wire

index-104_1.png
Transistor

Electrode
source

T Electrode
Control wire " drain

index-106_1.png
Output

Input Input

Current Output

Transistor A Transistor B

Current Output

Trancistor A Transistor B

index-105_2.png

index-107_1.png
Current Output

Transistor A Transistor B

Current Output

Transistor B

Transistor A

index-106_2.png

index-108_1.png

index-107_2.png

index-109_1.png
%;

index-108_2.png

index-96_1.jpg

index-101_2.png

index-101_1.png

index-101_4.png

index-101_3.png

index-101_6.png

index-101_5.png

index-101_8.png

index-101_7.png

index-103_1.jpg

index-113_1.png

index-112_1.png
part3

part 2

part 1

index-114_2.png

index-114_1.png

index-117_1.png

index-115_1.png

index-117_3.png

index-117_2.png

index-117_5.png

index-117_4.png

index-109_2.png

index-109_4.png

index-109_3.png

index-110_1.png

index-109_5.png

index-110_3.png

index-110_2.png

index-111_2.png

index-111_1.png

index-111_3.png

index-278_1.png

index-266_1.png
4 8 16 31 bit

Version IHL TOS Total length
Identification Flags Fragment offset
o Protocol Header checksum 2
bytes
Source address
Destination address
. 0-40
Options bytes
Upto
Data 65,515
bytes

index-281_1.png
PC1
192.168.1.10

PC2
192.168.1.11

PC3
192.168.1.12

LAN network
192.168.1.0/24

Router LAN Router WAN
interface interface
192.168.1.1 -M.xxx.xxxxxx
Router
Rule 1: Accept

From IP 192.168.1.11 in LAN
To IP 185 XXX XXX.XXX, port 80 & port 443 in WAN

Rule 2: Deny
From any host in LAN
To any host in WAN

Internet

Web server
185. XXX XXX XXX

Internet (WAN)

index-256_1.png
-
'8

=.=\
/ Internet Reverse proxy \

Usels

‘Web servers

index-253_1.png
ilmport dnspython as dns
import dns.resolver
domain = "www.example.com"
try:

resolver = dns.resolver.Resolver ()

answer = resolver.resolve (domain, "A")

for record in answer:

print (record.to_text ())

except dns.resolver.NXDOMAIN:

print (£"The domain {domain} does not exist.")
except dns.resolver.Timeout:

print (E"The DNS lookup for {domain} timed out.")
except dns.resolver.NoAnswer:

print (£"No answer found for {domain}.")
except Exception as e:

print (E"An error occurred: {e}

index-261_1.png
Qf \.

index-259_1.png
Clients

index-247_1.png
Server

Printer

Prln!er

‘Workstation

/Worksvanon

-4—> Hub /switch €= -

1 \
=

Workstauon

Workstation

index-251_1.png
Sensor
‘ node

Base station

index-249_1.png

index-241_1.png
Application

layer HTTP TLS DNS
Transport - o
layer

:n(erne(T,
layer

Network
Ml Hireiess LAN

index-239_1.png
DHCP client DHCP server

DHCPDISCOVER (broadcast)

Could anyone give me an IP?

DHCPOFFER (unicast or broadcast)

Yes, do you want to use this IP: 172.16.2.103

DHCPREQUEST (broadcast)

Yes, I really want to use this IP. Are you sure | can use it?

DHCPACK (unicast or broadcast)

Yes, you can!

index-246_1.png

index-242_1.png
Source IP address

3

Destination IP address

Data

index-237_1.png
HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 1456
<!DOCTYPE html>
<html>
<head>
<title>Example Website</title>
</head>
<body>
<hl>Welcome to the Example Website!</hl>
<p>This is the content of the index.html web page.</p>
</body>
</html>

index-236_1.png
GET /index.html HTTP/1.1

Host: www.example.com

index-238_1.png
from flask import Flask, render template, request, redirect, send file
app = Flask(__name)
app.config ["SECRET_KEY"] = "code used to secure cookies from tampering"
Return templates/index.html
@app.route ("/")
def index_page() :
return render_template ("index.html")
Return a binary file
@app . route ("/promotional_video")
def promotional_video() :
return send file("promotional_video.mp4")
Use the URL path to supply a parameter
@app . route (" /user/<userids")
def users(userid):
return "User page for "+userid
Get values from an HTML form
@app.route ("/page2", methods=["GET", "POST"])
def pagez() :
HTML with <input name='person's will create a request.values['person']
form = dict(request.values) # Convert all values into a dictionary
person = form(["person]
return f'Hello, {person}, welcome to my website"
start the web server. These should be the last lines
if __name__ == "_ main_ ":
app.run (host="0.0.0.0", port:

0, debug=True)

index-237_2.png
import requests
response = requests.get ("https://www.example.com")
print (response.status_code)

print (response.text)

cover_image.jpg
Baumgarten P.
Computer Science
for the IB Diploma

2025

Ioana Ganea
Carl Turland

index-235_2.png
ilmport socket
def run_client (server_ip_addr, server_port=65432):
Create IPv4 and TCP socket
with socket.socket (socket.AF_INET, socket.SOCK_STREAM) as s:
s.connect ((server_ip_addr, server_port))
message = "Hello, server!"
s.sendall (message .encode ())
data = s.recv(1024) .decode() # Get response and decode from bytes to string
print (f"Received {data} from the server")
if __name__ == "_ main_ ":
server_ip_addr = "127.0.0.1"
run client (server ip addr)

index-235_1.png
ilmport socket
def run_server (host="0.0.0.0", port=65432):
Create a socket object using IPv4 (AF_INET) and TCP protocol (SOCK_STREAM)
with socket.socket (socket.AF_INET, socket.SOCK_STREAM) as s:
Bind the socket to the address and port, and start listing
s.bind((host, port))
s.listen()
print (f'Server is running and listening at {host}:{port}")
Wait for connection. The code will pause here until connection

conn, addr = s.accept ()
with conn:
print (£"Connected by {addr}")

while True:
data = conn.recv(1024) # Receive up to 1024 bytes

if not data:
break

received message = data.decode() # Decode bytes to string

print (f"Received message: {received message}")

new_message = received message.upper ()

print (f'Converted message: {new_message}")

conn.sendall (new_message.encode ()) # Encode to send as bytes
if _name__ == "__main__ ":

Tun server()

index-230_1.png

index-490_3.png
o) =

Qre

index-227_1.png
&—— 5P modem

demmh
Router

Switch

. Smartphone

&

Games
console

PC

g =

PC

|

Apple Mac
computer

10

i l Printer

index-490_2.png

index-232_2.png
15 16

S1

Source port

Destination port

UDP length

UDP checksum

8 bytes

Data

index-492_1.png
Outl = Sigmoid(1.13*-0.25 + 0.00*0.94 + 0.70*1.73 + 1.87*0.71 - 0.26)
= Sigmoid(2.00)
= 0.88
Oout2 = Sigmoid(1.13*-1.48 + 0.00%-0.69 + 0.70%-0.13 + 1.87%0.77 - 0.84)
= Sigmoid(-1.16)
0 24

index-232_1.png
15 16

S1

Source port

Destination port

Sequence number

Acknowledgement number 20 bytes
UTATRIR[S[F N -
Data offset| Reserved |R|C|S|S|Y|1 Window size
GIR[A[TIN[N
Checksum Urgent pointer
Options

Data

index-491_1.png

index-225_1.png
cLouUD $a > %
t

EDGE
Service delivery Edge node Edge node

Computing offload
Storage & caching

index-489_1.png
-

index-224_1.png
o
H
<]
4
v
[N\

N

AN
L
_ra

]
<]

v,
5
&
|
A\

T
=

b
I

index-488_1.png
Sigmoid function

Input value (x)

index-226_1.jpg

index-490_1.png
15

1.0

Tanh output(y)
o
2

Tanh function

Input value (x)

index-225_2.png

index-489_2.png
1.0

0.8

0.4

5
g
2
3
=

0.2

0.0

Softmax probabilities tor varying logits of Class 1

Key
—Class 1 probability
— Class 2 probability
— Class 3 probability
Class 4 probability
~—Class 5 probability
——Class 6 probability
Class 7 probability
— Class 8 probability
—Class 9 probability
—Class 10 probability

T I T T T
-100 7.5 -50 -25 0.0 25
Logit for Class 1

index-234_1.png
A TCP joke:

Hello, would you like to hear a TCP joke?
Yes, I'd like to hear a TCP joke.

OK, I'll tell you a TCP joke.

OK, I'll hear a TCP joke.

Avre you ready to hear a TCP joke?

Yes, | am ready to hear a TCP joke.

OK, I'm about to send the TCP joke. It will last 10 seconds, it has two characters, it does
not have a setting, it ends with a punchline.

OK, I'm ready to hear the TCP joke that will last 10 seconds, has two characters, does
not have a setting and will end with a punchline.

I'm sorry, your connection has timed out ... Hello, would you like to hear a TCP joke?

A UDP joke:
| know a UDP joke, but you might not get it.

index-223_1.png

index-487_1.png

index-486_1.png
y= amvauon((f)gw‘) + b)

=1

index-215_1.jpg

index-481_1.png
Best distance found

22000-
20000-
18000-
16000-
14000-
12000-
10000-

8000-

Travelling salesperson

T
1000

T T
2000 3000
Generation

T
4000

T
5000

index-209_1.png
public class SimpleProgram f{
public static void main(String[] args) {
System.out.println("Hello, World!");
// Intentional error: Missing semicolon
System.out.println("This line has a syntax error")

index-480_1.png
import math, random, json
import numpy as np
with open("travelling-salesperson.json","r") as f:
coords = json.loads (f.read())
def travelling_salesperson(population_size=500, generations=5000):
Create randomized population
population = create_initial_population(population_size)
minimum = 50000
generation_number = 0
while minimum > 5000 and generation_number < generations:
calculate fitness for each person
generation_number += 1
distances = np.array([calc_distance (population(n]) for n in range
(0, population_size)])
fitness = calc_fitness(distances)
if generation number % 25 == 0:
print (f"Generation {generation number}: Best {calc_distance
(population(np.argmax(fitness) 1)} Mean { distances.mean() }")
Create the next generation
next_generation = []
for p in range (0, population_size, 2):
Select parents
Select k=2 items from "population", using the values in "fitness"
to determine probability weighting.
parents = random.choices(population, weights=fitness, k=2)
Reproduce
childl = reproduce (parents[0], parents[1])
child2 = reproduce (parents[1], parents[0])
Mutate
childl = mutate(childl, 0.05)
child2 = mutate(child2, 0.05)
next_generation.append (childl)
next_generation.append (child2)
Move to the next generation
population = next_generation
All done. What are the results?
fitness = np.array([calc_fitness(population[n]) for n in range
(0, population_size)])
best = np.argmax (fitness)
print (f"Best person after {generations} generations is #{best}")
print (£"Their travel distance: {calc_distance(population[best])}")
print (E"Their route: {population[best]}")
travelling salesperson()

index-220_1.png
Camera Headphones

\I}phone

Printer

index-484_1.png
(Bias)

(Inputs) — W,

(Activation function)
(summation function)

(Weights)

index-218_1.png
Workstation

Workstation

Wide area network

index-483_1.png
Input layer Hiaden layer Output layer

233

Artificial neural networks

index-204_1.png
Source code
(high-level language)

)|

Compiler

|——)

Object code
(machine language)

index-478_1.png
def reproduce(parentl, parent2):
First set of genes will come from parent 1
count_of_genes_from_parentl = random.randint (0, len(parentl))
child = parentl([0: count_of_genes_from parentl]
Remaining genes will come from parent 2
for i in range(0, len(parent2)):
only include genes from parent2 not already provided by parent 1
(don't want to visit the same city twice)
if parent2[i] not in child:
child.append (parent2[i])
+veturn child

index-203_1.png
Source code
(high-level
programming language)

Interpreter

Executable code
(machine language) /
output

Get next
instruction

index-477_2.png
def calc_distance(route):
dist = 0
for i in range(1, len(route)):
Get the co-ordinates for each pair of cities
x1,yl = coords[route[i-1]]
x2,y2 = coords[route[i]]
dist += math.sqrt(abs(x1-x2)**2 + abs(yl-y2)**2)
Don't forget to return home at the end!
x1,y1 coords [route[len(route)-1] 1]
X2,y2 = coords[route([0]]
dist += math.sqrt (abs(x1-x2)**2 + abs(yl-y2)**2)
return dist
def calc_fitness(distances):
max_distance = np.max (distances)

min_distance = np.min(distances)

normalized = (max_distance-distances)/(max_distance-min_distance)
fitness = np.power (2.0, (normalized*100))

+eturn fitness

index-208_1.png
def greet (name) :
print ("Hello, " + name + "!")
greet ("Alice")
Intentional error: Trying to use an undefined variable
print ("The length of the name is " + str(len(name)))

index-479_2.png
Move to the next generation
population = next generation

index-206_1.png
JVM (Windows)

Source code
(program)

]

R
Compiler

—

Bytecode

JVM (Linux)

_'_4

Java file

.class file

Machine code

Machine code

Machine code

index-479_1.png
def mutate(person, mutation rate):
if random.random() < mutation_rate:
a = random.randint (0, len(person)-1)
b = random.randint (0, len(person)-1)
person[al, person[b] = person[b], personal
return person

index-222_1.png

index-220_2.png
Physical channel Public network (internet) \‘

Virtual, private &
secure channel

Client Server

index-485_1.png
231

29
27

AN

index-477_1.png
distance, - distance,
distance, - distance,,,,
fitness, = 200momatids

normalized, =

index-193_1.png

index-473_2.png
0{1]0{1]1]1/0[1]0] |0|1|1{1{1]0]0[1]0

01110[1T1lolon10] [0[1111T1]1]oM10

index-612_1.png
for(int i 0; i<n; i++) {
//code to be repeated

}

index-188_1.png
Cameras Long range radar

Adaptive cruise control

Emergency braking / Pedestrian detection
/ Collsion avoidance

“Trafic sign Lane departure
recognition warning
Cross tra

Parkassistance

Surround view Surround view

Park assistance

Ultrasonics

g

index-473_1.png
0{1]0/1]1{1|0]1]0] |0|1]1]1{1]0]0{1]0

01110111liploMTo] 1O111111111]ol1]0

index-611_2.png
False

True

statement

i1

index-195_1.png

index-475_1.png
Route travelled
1000

800

600

400

200

T T T T T
0 200 400 600 800 1000

index-613_1.png
for(int i 1; i<101; i++) |
System.out.println(i);

index-194_1.png
// Pin assignments for LEDs
int redLED = 13;
int yellowLED = 12;
int greenLED = 11;
void setup() {
// set up the LED pins as outputs
pinMode(redLED, OUTPUT);
pinMode(yellowLED, OUTPUT);
pinMode(greenLED, OUTPUT);
}
void loop() {
// Turn on the green light for 5 seconds
digitalWrite(greenLED, HIGH);
delay(5000); // wait 5 seconds
// Turn off green, turn on yellow for 2 seconds
digitalWrite(greenLED, LOW);
digitalWrite(yellowLED, HIGH);
delay(2000); // wait 2 seconds
// Turn off yellow, turn on red for 5 seconds
digitalWrite(yellowLED, LOW);
digitalWrite(redLED, HIGH);
delay(5000); // wait 5 seconds
// Turn off red, and repeat the cycle
digitalWrite(redLED, LOW);

index-474_1.png
Route travelled
1000-]

800

600

400

200

T T
0 200 200 600 200 1000

index-612_2.png
for 1 1n range (0,n)
#code to be repeated

index-181_1.png
Input

Control system

Control signal

System being
controlled

Output

index-467_1.png
ilmport pygame
import random
import numpy as np
import matplotlib.pyplot as plt
Constants
WIDTH, HEIGHT = 200, 400
FPS = 30
PADDLE_WIDTH, PADDLE_HEIGHT = 30, 15
BALL RADIUS = 7
BALL_COLOUR = (255, 255, 64)
PADDLE_COLOUR = (255, 64, 255)
BACKGROUND_COLOUR = (64, 64, 128)
Initialize Pygame
pygame. init ()
screen = pygame.display.set_mode ((WIDTH, HEIGHT))
clock = pygame.time.Clock ()
class Paddle:

def __init_ (self, x, y):

self.rect = pygame.Rect (x, y, PADDLE_WIDTH, PADDLE_HEIGHT)
def move(self, x):
self.rect.x += X

self.rect.x = max(self.rect.x, 0)
self.rect.x = min(self.rect.x, WIDTH - PADDLE_WIDTH)
def draw(self):
pygame.draw.rect (screen, PADDLE COLOUR, self.rect)
class Ball:
def __init_ (self, x, y):
self.rect = pygame.Rect (x, y, BALL_RADIUS*2, BALL_RADIUS*2)
self.dx = random.choice([-4, 4])
self.dy = random.choice([-4, 4])
def move(self):
self.rect.x += self.dx
self.rect.y += self.dy
if self.rect.top <= 0 or self.rect.bottom >= HEIGHT:
self.dy = -self.dy
if self.rect.left <= 0 or self.rect.right >= WIDTH:
self.dx = -self.dx
def draw(self):
pygame.draw.ellipse(screen, BALL_COLOUR, self.rect)
Game objects
paddle = Paddle (WIDTH//2 - PADDLE WIDTH//2, HEIGHT - PADDLE_HEIGHT)
ball = Ball (WIDTH//2, HEIGHT//2)
O-learning parameters
LEARNING _RATE = 0.05
DISCOUNT_FACTOR = 0.99
epsilon = 0.1
Let state have 10 positions for paddle and ball
(reduces demands on Q-Table)
def get_state():
paddle_mid = paddle.rect.x + PADDLE WIDTH // 2
ball_mid = ball.rect.x + BALL_RADIUS
return (paddle mid//20, ball mid//20)

index-607_3.png
if (member)

index-466_1.png
Pongl: reinforcement learning results

125
100-
75
50-
25

Nett reward

T T T T T T T
0 500 1000 1500 2000 2500 3000 3500
Time (seconds)

index-607_2.png
1f purchaseValue

index-182_1.png
Water / rain sensor

Touch sensor

Proximity sensor Gas sensor

index-472_1.png
<
the fittest individua

has the largest share ‘the weakest individual

of the roulette wheel W o has the smallest share

of the roulette wheel

index-611_1.png
loop i from 0 to n

end loop

index-181_2.png
Input

Control system

Control signal

System being
controlled

Sensor

Feedback loop

Output

index-468_1.png
Q-table
10 possible paddle positions, 10 ball positions, 3 actions

q_table = np.zeros((10, 10, 3))
def update_g_table(state, action, next_state, reward):

Bellman’s equation
old _value = q_table[state[0], state([1], action]
next_max = np.max(q_table[next_state[0], next_state[1]])

new_value = (1 - LEARNING_RATE) * old value +
LEARNING_RATE * (reward + DISCOUNT_FACTOR * next_max)
q_table [state[0], state[l], action] = new_value

def choose_action(state):
if random.random() < epsilon:
Explore: choose a random action
return random.randint (0, 2)
else:
Exploit: choose the best action from Q-table
return np.argmax(q_table[state[0], state[1]])
def get_reward():
if ball.rect.bottom >= HEIGHT:
if ball.rect.colliderect (paddle.rect):
return 1 # Reward for hitting the ball
else:
return -1 # Penalty for missing the ball
return 0 # No reward or penalty
running = True
nett = 0 # nett reward
cumulative = [] # nett reward history for graphing
while running:
screen. f£ill (BACKGROUND_COLOUR)
for event in pygame.event.get():
Use the quit icon for game termination
if event.type pygame.QUIT:
running = False

hgent decides and acts
state = get_state()
action = choose_action(state)
if action 1:
paddle.move (-10) # Move left

elif action ==
paddle.move (10) # Move right

Update game state

ball.move ()

paddle.draw ()

ball.draw ()

Check reward & state, update Q table

reward = get_reward()

next_state = get_state()

update_g_table(state, action, next_state, reward)

if reward > 0:
PADDLE_COLOUR

elif reward < 0:
PADDLE_COLOUR = (255,0,0)

Update nett reward for graph

(0,255,0)

nett += reward
cumulative.append (nett)

Draw the game to screen
pygame.display.£lip()
clock.tick (FPS)

pygame. quit ()
Graph results
time = [i/FPS for i in range(len(cumulative))]

plt.plot (time, cumulative)

plt.title("Pong: Reinforcement learning results")
plt.xlabel ("Time (seconds)")

plt.ylabel ("Nett reward")

plt.grid(True)

plt.show()

index-609_1.png

index-199_1.jpg

index-476_2.png
fitness, = ————
distance,

index-196_1.png
int buttonPin = 7; // Pin for the sensor (pushbutton)
int buttonstate = 0;

int greenLED = 11; // Pin for green light

int yellowLED = 12; // Pin for yellow light

int redLED = 13; // Pin for red light

unsigned long previousMillis = 0; // Variable to store the last time the light
// changed

const long greenInterval = 5000; // Duration the green light stays on

// (in milliseconds)

const long yellowInterval = 2000; // Duration the yellow light stays on
// (in milliseconds)

const long redInterval = 5000; // Duration the red light stays on

// (in milliseconds)

// Define possible states for the traffic light

enum LightState {GREEN, YELLOW, RED};

LightState currentState = GREEN; // Start with the green light on

void setup() {
pinMode(buttonPin, INPUT); // Set the pushbutton pin as an input
pinMode(greenLED, OUTPUT); // Set the green LED pin as an output
pinMode (yellowLED, OUTPUT); // Set the yellow LED pin as an output
pinMode(redLED, OUTPUT); // Set the red LED pin as an output
digitalWrite(greenLED, HIGH); // Initially turn on the green light

}

void loop() {
unsigned long currentMillis = millis(); // Get the current time in milliseconds
buttonstate = digitalRead(buttonPin); // Read the state of the pushbutton
switch(currentstate) {
case GREEN:

// If the button is pressed or the green light has been on for the
// full interval

if (buttonState == HIGH || currentMillis - previousMillis >=
greenInterval) {

digitalWrite(greenLED, LOW); // Turn off the green light
digitalWrite(yellowLED, HIGH); // Turn on the yellow light
currentState = YELLOW; // Change the state to YELLOW

previousMillis = currentMillis; // Reset the timer to the
// current time

}
break;
// The YELLOW and RED cases follow similar logic
case YELLOW:
if (currentMillis - previousMillis >= yellowInterval) {
digitalWrite(yellowLED, LOW);
digitalWrite(redLED, HIGH);
RED;
previousMillis = currentMillis; // Reset the timer to the
// current time

currentState

}
break;
case RED:
if (currentMillis - previousMillis >= redInterval) {
digitalWrite(redLED, LOW);
digitalWrite(greenLED, HIGH);
currentState = GREEN;

previousMillis = currentMillis; // Reset the timer to the
// current time

}

break;

index-476_1.png
def create_random_route() :
route = [n for n in range(0,50)]
random.shuffle (route)
return route
def create_initial_population():
return [create random route() for n in range (0, 500)]

index-613_2.png
for 1 in range (1,101)
print (i)

index-200_1.png
int potvalue; // Variable to store the potentiometer input value

int maximumSpeed = 128; // Maximum motor speed (should not be exceeded)

int forwardPin = 5; // Pin connected to the forward control input on the

// motor driver

int reversePin = 6; // Pin connected to the reverse control input on the

// motor driver

void setup() {
pinMode(forwardPin, OUTPUT); // Set the forward pin as an output
pinMode(reversePin, OUTPUT); // Set the reverse pin as an output
Serial.begin(9600); // Initialize serial communication at 9600 baud for
// debugging

}

void loop() {
potValue = analogRead(A0); // Read the analog value from the potentiometer
// (0-1023)
int motorSpeed = map(potValue, 0, 1023, 0, 255); // Scale the potentiometer
// value to match PWM range (0-255)
// Ensure the motor speed does not exceed the desired value
if (motorSpeed > maximumSpeed) {
motorSpeed = maximumSpeed;
}
// Write the PWM value to the forward pin
analogWrite(forwardPin, motorSpeed);
analogWrite(reversePin, 0); // Ensure reverse pin is off
// Print the motor speed value and desired speed to the serial monitor
Serial.print("Motor Speed: ");
Serial.print(motorspeed);
serial.print(" | Desired Speed: ");
Serial.println(maximumspeed);
delay(100); // Short delay to make the serial output readable

index-1_1.jpg
FORTHE
B DIPLOMA @

PROGRAMME

Computer Science

Paul Baumgarten

loana Ganea
Carl Turland

,_?D Py

[5]haghette

index-3_1.png
L] hachette

LEARNING

www.hachettelearning.com

Together we unlock every learner’s unique potential

With over 150 years of experience in education, there's one
thing we're certain about. No two students learn the same way.
That's why our approach to teaching begins by recognising
the needs of individuals first. With no awarding body to
consider, we're truly independent in the support we offer. Our
mission is to allow every learner to fulfil their unique potential
by empowering those who teach them with all the necessary
knowledge, tools and resources. From our expert courseware,
assessment and professional development to our educational
tools that make learning easier and more accessible for all, we
provide solutions designed to maximise the impact of learning
for every teacher, parent and student.

Formerly known as Hodder Education, we are a global
publisher operating in over 150 countries. Our parent company
is Hachette Livre, the world's third-largest trade publisher.

index-2_1.jpg
FORTHE
B DIPLOMA @

PROGRAMME

Computer Science

Paul Baumgarten

loana Ganea
Carl Turland

,_?D Py

[5]haghette

index-6_1.png
MIX
Paper | Supporting

responsible forestry
Ewﬁg FSC™ C104740

Lcensing ey

index-607_1.png
if (purchasevValue

00 || member)

index-4_1.png
FOR THE

IB DIPLOMA
PROGRAMME

Computer Science

Paul Baumgarten
loana Ganea
Carl Turland

5] hachette

LEARNING

index-14_1.png

index-9_1.png

index-14_2.png

index-148_1.png

index-457_1.png
4
§ 3

g 2

g1 o
]

T 0

244 e

5., 4
5 o

o3 »

T T T T T T
25 00 25 50 75 100 125 150
Transaction amount (standardized)

index-603_1.png
No.

statement 3

—No

Yes

statement 2

statement 1

index-144_1.png
000 <[> Security & Privacy Q searct
General _FileVault
& Protos Allow the apps below to control your computer.

(@) comera
|
(il oo —

[l specch recognition

Input Monitoring

[FuilDisk Access.

[0 Fies and Foicers

[screen Recording

[5) Clickthe lock to make changes.

index-456_1.png
Hierarchical clustering dendrogram

CaNwRE U N®

=1 1
1210131114 7 8 6 5 9 4 1 2 0 3
Individual index

index-602_3.png
IF condition THEN
IF condition 2 THEN

index-150_2.png
B task Manager Q Type a name, publisher, or P..

Processes E3 Runnewtask @ End task
7 9% ¥ 52% 0% [
Neme Status U Memory Disk Network
® Google Chrome (81)) 15% SFMIMB 0IMB/s 01 Mbps
) # Steam Client WebHelper (8) 15% 3214MB OMB/s OMbps
~ [Search (9) 53] 0% 266MB 0.1MB/s OMbps
P Windows Explorer 12% 2014MB 01MB/s OMbps
B sk Manager Q Type a name, publisher, or P...
Processes B9 Runnewtask @ Endtask
i 2% 96% 4% 0%
Name Status cpu Disk Network
BB Python @) 4% - 0IMB/s OMbps
o) @ Google Chrome (77) 53] 05% 89842MB 46MB/s 0.1 Mbps
o & Steam Client WebHelper (8) 18% 3167MB OMB/s OMbps

e e 0% 192MB OMB/s OMbps

index-460_1.png
import pandas as pd

from mlxtend.preprocessing import TransactionEncoder

from mlxtend.frequent_patterns import apriori, association_rules

Load data set

df = pd.read_csv("biased _transactions.csv")

Generate frequent itemsets

frequent_itemsets apriori(df, min_support=0.4, use_colnames=True)
Generate association rules

rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=0.7)

Display the results

print ("Frequent Itemsets:")

print (frequent_itemsets)

print ("Association Rules:")
(

weonfidence", "l1ift"]])

print (rules[["antecedents", "consequents", "support

index-605_1.png
tokay = 0
purchaseValue= float (input ("Enter the value of your goods:"))
member = input("Do you have a membership card (true/false)?")
member = eval (member)
if purchaseValue>=100:
if member
discount = purchaseValue * 0.2
toPay = purchaseValue - discount
else:

True:

toPay = purchaseValue * 0.9
else:

toPay = purchasevValue
print ("You need to pay: ", toPay)

index-150_1.png
memory hog = []
try:
while True:
Allocate a large list and append it to the
memory_hog list
memory_hog.append([0] * 10%*6) # Each list has
1 million zeros
print (£"Allocated {len(memory hog)} million items")
except MemoryError:
print ("Memory allocation failed! The system has run out
of memory.")

index-459_1.png
Frequent Itemsets:

support. itemsets
o 0.84 (1i1k)
1 0.70 (Bread)
2 0.60 (Butter)
3 0.60 (Egg)
4 0.54 (Cheese)
244 0.40 (Pasta, Butter, Bacon, Chicken)
215 0.40 (Apple, Banana, Coffee, Chicken)
246 0.40 (apple, Banana, Bacon, Coffee)
207 0.42 (Banana, Bacon, Coffee, Chicken)
218 0.40 (Pasta, Banana, Bacon, Chicken)
Association Rules:

antecedents consequents support confidence Lift
0 (Milk) (Bread) 0.62 0738095 1.054422
1 (Bread) (Milk) 0.62 0.885714 1.054422
2 (Butter) (Milk) 0.50 0.833333 0.992063
3 (Bgg) (Milk) 0.50 0.833333 0.992063
4 (Cheese) (Milk) 0.50 0.925926 1.102203
821 (Pasta, Bacon) (Banana, Chicken) 0.40 0.833333 1.602564
822 (Pasta, Chicken) (Banana, Bacon) 0.40 0.740741 1.322751
823 (Banana, Bacon) (Pasta, Chicken) 0.40 0.714286 1.322751
824 (Banana, Chicken) (Pasta, Bacon) 0.40 0.769231 1.602564
825 (Bacon, Chicken) (Pasta, Banana) 0.40 0.714286 1.552795

index-604_1.png
poolean member = false;
toPay=0;
System.out.println("do you have a membership card(true/
false): ");
member = read.nextBoolean();
if (purchasevalue>=100) {
£ (member true) {
discount = purchaseValue * 0.2;
toPay = purchaseValue-discount;
} else {

toPay = purchaseValue*0.9;

}

} else {
toPay = purchasevValue;

}

System.out .println("You should pay: " + toPay);

index-453_1.png
1.00

0.75

@ 050
5
2025

»

£ 0.00

-0.25
-0.50-

T
-0 05 00 05 10 15

Feature 0

index-601_2.png
No

Yes

statement 2

statement 1

index-601_1.png
IF condition THEN
ELSE

END IF

index-142_1.png
@
[]
o]
-]
([]

N .
Sy o
vy o
s vovnd
o by

nEamo

index-455_1.png
Social network analysis using spectral clustering

index-602_2.png
torPay = 0
purchaseValue= float (input ("Enter the value of your goods:"))
if purchaseValue>=100:

discount = purchaseValue * 0.2

toPay = purchasevValue - discount
else:

toPay = purchasevValue
print ("You need to pay: ", toPay)

index-138_1.png
LE
e i Vion i
« | 2@ B E

@ vt viwer Loca)
> 5 Costomiews

. 9 snacn
o Bow b
p== KemtGenent g oy P
1 sece.
termation @ e
st s)

index-454_1.png
import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import make_moons

from sklearn.neighbors import kneighbors_graph

from sklearn.cluster import SpectralClustering

Generate synthetic data (two interleaving half circles)

X, _ = make_moons(n_samples=300, noise=0.07, random state=42)

Create a k-nearest neighbours graph

= kneighbors_graph(x, n_neighbors=10, include_self=False,
distance")

Apply spectral clustering using the KNN graph

spectral = SpectralClustering(n_clusters=2, affinity="precomputed",
assign_labels="kmeans", random_state=42)

labels = spectral.fit_predict (knn_graph)

Plot the results

plt.figure (figsize=(8, 4))

plt.scatter(x[:, 0], x[:, 1], c=labels, cmap=plt.cm.rainbow, edgecolo:
plt.title("Spectral Clustering results")

plt.xlabel ("Feature 0")

plt.ylabel ("Feature 1")

plt.show()

K

5=50)

index-602_1.png
if (purchaseValue>=100) {
toPay= purchaseValue * 0.8;
} else {
toPay = purchaseValue;

b

System.out.println("You need to pay: " + toPay);

index-157_1.jpg

index-464_1.png
Initialize the Q-table with all zeros (or some initial values)
for each round:
Initialize the state S to the starting point of the game
while the episode is not finished:
Choose action A from state S using a policy derived from Q
Take action A
Observe the immediate reward R and the next state S'
Update the Q-table value for the original state S and action A:
0(s, A) <- Q(s, A) + alpha * (R + gamma *
max(Q(s', all _actions)) - Q(s, A))
S <- §' # Move to the next state
end while

end for

index-606_2.png
tobPay = 0
purchasevalue= float (input ("Enter the value of your goods:"))
member = input ("Do you have a membership card (True/False)?")
member = eval (member)
if purchaseValue>=100 and member==True:
discount = purchaseValue * 0.2
toPay = purchaseValue - discount
elif purchaseValue>=100 and member
toPay = purchaseValue * 0.9
else:

False:

toPay = purchasevValue
print ("You need to pay: ", toPay)

index-155_1.jpg

index-461_1.png
State & Reward

-

L
B

%
N
i

L
%B@;ﬂr

Environment

index-606_1.png
if (purchasevValue>=100 && member==true) {
discount = purchaseValue * 0.2;
toPay = purchaseValue-discount;

} else if (purchaseValue>=100 && member:
toPay = purchasevValue*0.9;

} else {
topay

{

purchasevalue;

}

System.out .println("You should pay: " + toPay);

index-164_1.png
Define a class to represent a process 1in the system
class Process:

def __init__(self, pid, arrival_time, burst_time):
self.pid = pid # Process ID

self.arrival_time = arrival_time # The time at which the process
arrives in the system

self.burst_time = burst_time # The total time required by the
process to complete execution

self.waiting_time = 0 # Time the process has to wait before it
starts execution

self.turnaround_time = 0 # Total time taken from arrival to

completion (waiting_time + burst_time)

Define a function to simulate FCFS scheduling
def calculate_fcfs(processes):

start_time = 0 # Variable to track the current time at which a process
starts execution
Iterate over each process in the list
for process in processes:
If the current time is less than the process's arrival time,
the CPU remains idle until the process arrives
if start_time < process.arrival_time:
start_time = process.arrival_time
calculate the waiting time for the process
process.waiting_time = start_time - process.arrival_time
calculate the turnaround time for the process
process.turnaround_time = process.waiting_time + process.burst_time
Update the current time to reflect the process's execution
start_time += process.burst_time
After all processes are scheduled, calculate the total and average
waiting / turnaround times
total_waiting_time = sum([p.waiting_time for p in processes]) # sum of
all waiting times

total_turnaround time = sum(([p.turnaround time for p in processes]) # Sum
of all turnaround times
avg_waiting time = total_waiting time / len(processes) # Average waiting
time
avg_turnaround_time = total_turnaround time / len(processes) # Average
turnaround time
Display the results in a table format
print ("Process\tArrival Time\tBurst Time\tWaiting Time\tTurnaround Time")
for process in processes:
print (£ {process.pid}\t{process.arrival_time}\t\t{process.burst_time}\
t\t{process.waiting_time}\t\t{process.turnaround time}")
Print the calculated average times
print (f"\nAverage Waiting Time: {avg_waiting_time:.2f}")
print (f"Average Turnaround Time: {avg_turnaround time:.2f}

Example process list to simulate FCFS scheduling

processes = [
Process (1, 0, 5), # Process 1 arrives at time 0 and requires 5 time
units to complete
Process(2, 2, 3), # Process 2 arrives at time 2 and requires 3 time
units to complete
Process(3, 4, 1), # Process 3 arrives at time 4 and requires 1 time unit
to complete
Process (4, 6, 7) # Process 4 arrives at time 6 and requires 7 time

1

units to complete

sort the processes by their arrival time before running the FCFS algorithm
processes.sort (key=lambda x: xX.arrival_time)

Run the FCFS scheduling simulation

calculate fcfs(processes)

index-159_1.jpg
Temmns v rower

People w:lh Reduced Mobility

N

tant Mothers

|

e T

Semor szen

| @]

P 3%
R e

.,.

’i‘

index-465_1.jpg

index-124_4.png

index-444_2.png
true positives

precision = ———
true positives + false positives

index-597_2.png
IF condition THEN

END IF

index-688_2.png
sum = 0
for i in range (0,n):

sum = sum + numbers [i]
print (sum)

index-124_3.png

index-444_1.png
correct predictions
accuracy = ——————
total predictions

index-597_1.png
condition

False True
v 13
statement 3 statement 1
statement 4 statement 2

index-688_1.png
int sum
for (int i
sum

i

0; d<n; i++) {
sum + numbers [] ;

b

system.out .println (sum) ;

index-124_6.png

index-444_4.png
5, precision « recall
precision + recall

Fl score =

index-599_1.png
private static Scanner read;
public static void main(String[] args) {
read = new Scanner (System.in);
double purchaseValue, discount;
discount=0;
System.out .println("enter value of goods purchased: ");
purchaseValue = read.nextDouble () ;
if (purchaseValue>=100)
discount = purchaseValue * 0.2;
System.out .println("Your discount is: " + discount);

index-692_1.png
int number
int key = 7;
int position = -1;
for(int i = 0; i<numbers.length; i++) {
if (key==numbers [i]) {
position = 1i;

13,9,7,4};

}
if (position != -1){
sSystem.out.println("element found on position "+
position) ;
}
else{
sSystem.out.println("element was not found!");

index-124_5.png

index-444_3.png
true positives
O R LY L N—
true positivies + false negatives

index-598_1.png
condition

Yes

statement

index-691_1.png
Step 1

Step 2

Step 3

‘ not equals

index-592_3.png
text = "Computer Science 1s fun"
text = text.replace("is", "will be")
print (text)

index-685_3.png
value
sum

int (1nput ("enter a numbe:
50 + value

index-685_2.png
System.out.printin("enter a number:
int value = reader.nextInt();
sum = 50 + value:

index-124_2.png

index-440_1.png
from sklearn.datasets lmport load_iris

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

from sklearn import tree

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

Load the Iris data set

iris df = pd.read csv("iris.csv")

x = iris_df.drop("species", axis=1) # features are all the columns except species
y = iris df ["species"] # target variable

Split the data set into a training set and a test set

x_train, x_test, y_train, y_test = train test_split(x, y, test_size=0.2,
random_state=42)

Create a decision tree and generate predictive data

clf = DecisionTreeClassifier(max_depth=10, random state=42)

clf.fit (x_train, y_train)

y_pred = clf.predict (x_test)

Plot the decision tree

plt.figure (figsize=(12, 8))
tree.plot_tree(clf, filled=True, feature_names:
iris.target_names)

plt.show ()

Validate accuracy using the test data
accuracy = clf.score(x_test, y_test)

print (E"Accuracy of the decision tree classifier is: {accuracy:.2f}")

Generate a prediction for a manual data point

new_flower_measurements = np.array([[5.0, 3.5, 1.5, 0.2]])

predicted_species = clf.predict (new_flower_measurements)

print (£"The predicted species for the new flower is: {predicted species[0]}")

iris.feature_names, class_names=

index-593_2.png
text = " Computer Science 1s fun
text = text.strip()
print (text)

index-687_2.png
sum = 0
for i in range (0,n):

sum = sum + 1
print (sum)

index-438_1.png
petal length (cm) <= 2.45
gini = 0,667
samples = 120
value = [40, 41, 39]
class = versicolor

petal length (cm) <= 4.75
gini =05
samples = 80

petal width (cm) <= 1.65 petal width (cm) <= 1.75
gini =0.053 gini = 0.206
samples = 37 samples = 43

value = [0, 36, 1] value = [0, 5, 38]
class = versicolor class = virginica

petal length (cm) <= 4.95 petal length (cm) <= 4.85
gini=05 gini = 0.056
samples = 8 samples = 35
value =[0,4, 4] value =[0, 1, 34]
class = versicolor class = virginica

value =[0, 0, 1]
class = versicolor class = virginica

gini = 0.0
samples =2
value = [0, 2, 0]

class = versicolor lhcks
class = virginica

petal length (cm) <= 5.45
gini = 0.444
samples =3

value = [0, 2, 1]
class = versicolor

gini =00
samples = 3

value =[0,0, 3]

class = virginica

gini = 0.0
samples = 1

value = [0, 0, 2] value = [0, 1, 0]

class = virginica class = versicolor

gini =00 gini =00
samples =2 samples

value = [0, 2, 0] value =[0,0, 1]

class = versicolor class = virginica

index-593_1.png
String text = " Computer Science 1s fun !
text = text.trim();
System.out .println (text) ;

index-687_1.png
int sum
for(int i =

; od<n; i+d)
sum = sum + i;

b

System.out .println (sum) ;

index-135_1.png
Software —

Application

t

L]

Operating system

t

¥

Device driver

t

Hardware in _|

most cases

Device

index-131_1.png
v I Windows
> [appcompat
v [apppatch
8 AppPatch6s
v [Custom
8 Custom64
8 CustomSDB
i en-Us
B8 MergeSdbFiles
[MergeSdbFilesSource
B AppReadiness

> [assembly

index-450_1.png
Test performance (%)

Cluster of students based on study habits and test performance

100
Key
® Cluster 1
90| @ cluster2
® Cluster 3
801
70+
60
50 e
g .
O
® o0 O
a0 o
T T T T T T T T
00 25 5.0 7.5 10.0 12,5 15.0 175 200

Hours spent on homework per week

index-600_1.png
double purchaseValue,toPay, discount;
toPay=0;
System.out .println("enter the value of your goods: "
purchaseValue = read.nextDouble();
if (purchasevalue>=100) {
discount = purchaseValue * 0.2;
toPay = purchaseValue - discount;

}

System.out .println("You need to pay: " + toPay);

index-695_1.png
key =7

ower = 0

upper = 3

mid = (lower + upper)2 = 1
7>4,50

lower = mid + 1=2

mid = (lower + upper)2 = 2
so the element is found

index-129_1.png
Virtual memory
(per process)

Physical memory

Another process’s
memory,

index-449_1.png
Number of students
oN oo ®

Grade boundaries using k-means clustering

Key
= Scores distribution

index-599_2.png
discount = 0
purchaseValue= float (input ("Enter the value of your good
if purchaseValue>=100:
discount = purchaseValue * 0.2
print ("Your discount is ", discount)

))

index-693_1.png
numbers = [3,9,7,4]
key = 7
position = -1
for i in range (0,len (numbers)):

if key == numbers[i]:

position = i

if position != -1:

print ("element found on position ", position)

else:
brint (v

lement was not foun

index-132_1.png

index-452_1.png
Example implementation of k-means clustering
import numpy as np
import matplotlib.pyplot as plt

from sklearn.cluster import KMeans

Generate synthetic data
np . random. seed (42)

Students who spend little time but perform variably
groupl = np.random.normal(loc=[5,
Students who spend a moderate amount of time and perform moderately
group2 = np.random.normal(loc=[10,

Students who spend a lot of time

group3 = np.random.normal (loc=[15,

Combine the groups into a single

data = np.vstack([groupl, group2,
Apply k-means clustering
kmeans = KMeans (n_clusters=3, random state=42)
kmeans.fit (data)

labels = kmeans.labels_
Plot results

plt.figure (figsize= (10, 6))
colors = ["red", "green", "blue"]
for i in range(3):

plt

plt.
plt.
plt.
plt.
plt.

plt.scatter(data[labels =
label=f"Cluster {i+1}")

xlabel (

ylabel ("Test Performance
legend ()

grid(True)

show ()

i,

601,

scale=[2, 10], size=(50, 2))

75], scale=[2, 5], size=(50, 2))
and perform well
90], scale=[2, 5], size=(50, 2))
data set
group3])

o1,

data[labels == 1,

11,

color=colors[i]

.title("Cluster of Students Based on Study Habits and Test Performance")
"Hours Spent on Homework per Week")
(%))

index-131_2.png
pry *| i heeumenice
= Corioe e
= Camponers © It A i -
= Compotions+ | 1 Ao 11+
Comecnaisoutars + | B componTor
ot | 8 cmprenaessson >
= Gt e
= eimpiass 2| o cs S
e -
Domctmocss | Gt .
= Docmrrion 4| ot
= Coseoebarcos+ | = Liseassomer -
= s C e K

index-451_1.png
Health and lifestyle clusters

Key
® Noderate

® Active & healthy

® Low activity & poor sleep

) 4 6 8
Physical activity (hours eel)

0

97
z
2

8 3
H]
E

73
5
2

. 5

5

=
N
5
5

index-600_2.png
tokay = 0
purchaseValue= float (input ("Enter the value of your goods:"))
if purchaseValue>=100:

discount = purchaseValue * 0.2

toPay = purchaseValue - discount
print ("You need to pay , toPay)

index-122_2.png

index-429_1.png
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

Load the data and assign features (independent variables) to x, and the target
(dependent variable) to y.

df = pd.read_csv("Multidimensional_example.csv")

x = df [["Feature_1", "Feature_2", "Feature 3", "Feature_4"]]
y = df ["Target"]

Train the linear regression model

model = LinearRegression()

model.fit (x, y)

Generate prediction for new data point

new_point = np.array([[50, -150, 30, 100]])

prediction = model.predict (new_point)

print (f"Predicted target for the new sample: {prediction([0]}

index-590_2.png
text

"Computer Science 1s fun"
part text [:5]
print (part)

index-683_3.png
for(int i 0; i<n; i++)
System.out.println("hello");

index-122_1.png

index-428_1.png
Method 1: Using numpy
y_predicted
y_residuals = y - y_predicted # Difference between actual and predicted values
ss_res = np.sum(y_residuals**2) # Sum of squares of the residuals

ss_tot = np.sum((y - np.mean(y))**2) # Total sum of squares

r_squared = 1 - (ss_res / ss_tot) # R-squared value

print (f"R-squared: {r_squared:.2f}")

Method 2: Using scikit-learn

model .predict (x)

r_squared = model.score (x,y)
print (f"R-squared: {r squared:.2f}")

index-590_1.png
text = "Computer Scilence 1s fun"
part text [0:1]
print (part)

index-683_2.png
for 1 in range (0,5)
print ("hello")

index-122_4.png
A-B-C+A-B-C+A.B-C

index-432_1.png

index-591_1.png
text = "Computer Scilence 1s fun"
part = text[-6:]
print (part)

index-684_1.png
for(int i = 0; i<n; i++)
for(int j = 0; j<n; j++) {
System.out.println("hello");

index-122_3.png
A-B+A-B

index-430_1.png
import numpy as np
from scipy.optimize import curve fit
your data here
your data here

x data = [....

y data = [....

def my_quadratic(x, a, b, c):
return a * xX**2 + b * x + c

params, params_covariance = curve_fit (my_quadratic,
x_data, y_data)
a, b, ¢ = params # Extract the fitted coefficients

index-590_3.png
text = "Computer Scilence 1s fun"
part = text[-1]
print (part)

index-683_4.png
for 1 in range (0,n)
print ("hello")

index-677_1.jpg

index-426_2.png
import numpy as np
import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression

sample data

x = np.array([45,48,65,68,68,10,84,22,37,88,71,89,89,13,59,66,40,88,47,89])

y = np.array([98,92,134,135,136,30,175,54,70,182,148,169,187,20,126,142, 90,186,
99,176])

Using scikit, calculate the model

Convert the 1D array of 20 columns, to a 2D array of 20 rows 1 column each

x = x.reshape(-1, 1)
model = LinearRegression()

model.fit (x, y)

intercept = model.intercept_

slope = model.coef_[0]

Using scikit, generate a prediction where the independent variable is 70
x_test = np.array([[70]]) # New single data point for prediction
y_test_predict = model.predict (x_test)

print (f"Prediction for independent variable value 70: {y_test_
predict [0]}")

Using matplotlib, plot the data and the line of best fit

x_line = np.array([[0], [100]])

y_line = np.array([[intercept], [intercept+100*slopel])
plt.scatter(x, y, color="blue")

plt.plot (x_line, y_line, color='red", linewidth=2)

plt.xlabel ("Independent variable")

plt.ylabel ("Dependent variable")

plt.title("Linear Regression example")

plt.show()

index-589_3.png
String text = "Computer Science 1s fun"
String part = text.substring(s,16);
System.out .println (part) ;

index-683_1.png
for(int i 0; i<5;i++) {
System.out.println("hello");

index-589_2.png
String text = "Computer Scilence 1s fun";
string part = text.substring(s);
system.out .println (part) ;

index-678_1.png
ivom/\head ENQUEUE

319|124

DEQUEUE

rear /tail / back

(N <

index-124_1.png
B——————

index-123_4.png

index-437_1.png

index-123_1.png

index-433_2.png
Feature 2

n_neighbours = 3

T T
0 1 2
Feature 1

index-591_3.png
String text = "Computer Science 1s fun";
text = text.replace('e', '@');
System.out .println (text) ;

index-684_3.png
for(int i = 0; i<n; i++)
for(int j = 0; j<n+3; j++) {
System.out.println("hello");

index-122_5.png
A-B-C+A.-B-C+A.-B-C

index-433_1.png
Feature 2

n_neighbours = 1

Feature 1

index-591_2.png
text = "Computer Scilence 1s fun"
part = text([1:-4]
print (part)

index-684_2.png
for 1 in range (0,n):
for j in range (0,n):
print ("hello")

index-123_3.png

index-435_1.png
import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

from sklearn.neighbors import KNeighborsClassifier

Load the data

df = pd.read_csv("knn_dataset.csv")

x = df [["Feature_1", "Feature_2"]].values

y = df ["Label"].values

New, unknown point to classify

z = np.array([[0.4, 1.6]])

Create and fit the KNN classifier with 3 neighbours
knn = KNeighborsClassifier (n_neighbors=3)

knn.fit (x, y)

Plot the training points

plt.scatter(x[:, 0], x[:
plt.scatter(z([:, 0], z
plt.xlabel ("Feature 1")
plt.ylabel ("Feature 2")

11, c=y)
1], color="red", zorder=5)

plt.title("n_neighbors=3")
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.show ()

Make the prediction

predicted_category = knn.predict (z)

print ("The predicted category for point z i
predicted category([0])

index-592_2.png
text = "Computer Scilence 1s fun"
text = text.replace('e", "@")
print (text)

index-123_2.png

index-434_1.png
Feature 2

n_neighbours = 5

Feature 1

index-592_1.png
String text = "Computer Science 1s fun";
text = text.replaceAll ("is", "will be");
System.out .println (text) ;

index-685_1.png
for 1 in range (0,n):
for j in range (0,n+3):
print ("hello")

index-119_4.png
c\AB

II

00 o n 10

index-411_2.png

index-587_1.png
partl = "Computer Scilence
part2 = ", isn't it?"
text = partl + part2
print (text)

1s fun"

index-671_1.jpg

index-828_1.png
Flight

Ticket

~flightNurmber: String
~ capacity: int

— tickets: Ticket[]
~ticketsSold

~ name : String

+ Ticket(name)
+ getName() : String
+ toString() : String

+ Flight(flightNumber, capacity)
+ addTicket(Ticket) : Boolean

+ removeTicket(Ticket) : Boolean
+ getSeatsAvailable() : int

+ printPassengerList() : void

index-411_1.png

index-586_3.png
String partl = "Computer Science 1s fun
String part2 = ", isn't it?";

String text = partl + part2;
System.out .println (text) ;

index-669_1.png
grades=[]
grades .append
grades .append
grades .append
grades .append
grades.append (34)
for i in grades:
print (i)

(75)
(64)
(95)
(50)

index-827_1.png
Account 1001: Eustolia has balance $5571.3
Account 1002: Nathan has balance $9515.1
Account 1003: Milissa has balance $61.95
Account 1004: Willie has balance $1912.05
Account 1005: Hoyt has balance $4697.7
Account 1006: Alexandria has balance $2461.2
Account 1007: Clelia has balance $3311.7
Account 1008: Alpha has balance $1942.5
Account 1009: Delbert has balance $4670.4
Account 1010: Boyd has balance $547.05
Account 1011: Milton has balance $2331.0
Account 1012: Vivan has balance $1275.75
Account 1013: Constance has balance $2983.05

Account 1014:
Account 1015:
Account 1016:
Account 1017:
Account 1018:
Account 1019:
Account 1020:
Account 1021:
Account 1022:
Account 1023:
Account 1024:
Account 1025:

Hilma has balance $258.3
Irving has balance $76.65
Carie has balance $2654.4
Nicky has balance $297.15
Adele has balance $3287.55
Carlene has balance $882.0
Hermina has balance $2.1
Ayana has balance $586.95
Frederica has balance $261.45
Arianna has balance $541.8
Zandra has balance $725.55
Vina has balance $2553.6

index-119_6.png
c\AB

II

00 o1 il 10

index-411_4.png
set of all features

Selecting the best subset

T

generate a learning

>

subset > algorithm

- =

> performance

index-587_3.png
String exam
int grade = 9;
System.out.println("Your "+ exam + " exam score is " + grade);

"Computer Science"

index-673_1.png
public static boolean iskmpty() {
if(topindex == 1)
return true;
else
return false;

}

topindex =-1 _
def IsEmpty(): toplIndex =

if topindex == -1: stack is empty
return True

else
return Ealse

index-829_2.png
class Main {
public static void main(string[] args) {

Flight cx619 = new Flight ("CX 619", 280); // Cathay - HKG-SIN
Flight aa6914 = new Flight ("AA 6914", 266);
// Bmerican - JFK-LHR
Flight ek89 = new Flight ("EK 89", 354); // Emirates - DBX-GVA
Ticket jordan = Ticket ("Jordan Deckard");
cx619.addTicket (new Ticket ("Taylor Ripley"));
cx619.addTicket (jordan) ;
cx619.addTicket (new Ticket ("Casey Neo"));
aa6914 .addTicket (new Ticket ("Cameron Quaid"));
aa6914.addTicket (new Ticket ("Phoenix Andor"));
cx619.printPassengerList () ;
System.out.println(cx619.getSeatsAvailable());
cx619.removeTicket (jordan) ;
cx619.printPassengerList () ;
System.out.println(cx619.getSeatsAvailable());

index-119_5.png

index-411_3.png

index-587_2.png
String partl = "Computer Science 1s fun
String part2 = ", isn't it?";

string text = partl.concat (part2);
System.out .println (text) ;

index-671_2.png
push (value)

8 | topindex =1

index-829_1.png
1f _ name__
cx619 = Flight ("CX 619", 280) # Cathay - HKG-SIN
aa6914 = Flight ("AA 6914", 266) # American - JFK-LHR
ek89 = Flight ("EK 89", 354) # Emirates - DBX-GVA
jordan = Ticket ("Jordan Deckard")
cx619.addTicket (Ticket ("Taylor Ripley"))
cx619.addTicket (jordan)
cx619.addTicket (Ticket ("Casey Neo"))
aa6914 .addTicket (Ticket ("Cameron Quaid"))
aa6914 .addTicket (Ticket ("Phoenix Andor"))
cx619.printPassengerList ()
print (cx619.getSeatsAvailable())
cx619.removeTicket (jordan)
cx619.printPassengerList ()

"__main_ "

index-821_1.png
// Factory pattern example - Produce dogs and cats
interface Animal {
string speak();
}
class Dog implements Animal {
public String speak() {
return "Woof!";

}

class Cat implements Animal {
public String speak() {
return "Meow!";

}

class AnimalFactory {
public static Animal getAnimal (String animalType) {
if ("dog".equalsIgnoreCase (animalType)) {
return new Dog () ;
} else if ("cat".equalsIgnoreCase(animalType)) {
return new Cat();

}

return null; // or throw an exception

}

public class Main {
public static void main(String[] args) {
Animal dog = AnimalFactory.getAnimal ("dog") ;
Animal cat = AnimalFactory.getAnimal ("cat");
system.out.println(dog.speak()); // Output: Woof!
system.out.println(cat.speak()); // Output: Meow!

index-586_2.png
len(text)

index-668_1.png
grades:
grades

grades.
grades.
grades.
grades.

=11

.append (75)
append (64)
append (95)
append (50)
append (34)

for i in range (len(grades)):

print (grades[i])

index-823_1.png
// Observer pattern example - notification service
interface Observer {
void update(String message) ;
}
class NotificationService {
private List<Observer> observers = new ArrayList<s>();
public void attach(Observer observer) {
observers.add (observer) ;
}
public void detach (Observer observer) {
observers.remove (observer) ;
}
public void notifyObservers(String message) {
for (Observer observer : observers) {
observer.update (message) ;

}

class ConcreteObserver implements Observer {
public void update (string message) {
System.out.println("Received: " + message);

}

// Usage

public class Main {

public static void main(String[] args) {

NotificationService notifier = new NotificationService();
Observer observerA = new ConcreteObserver();
Observer observerB = new ConcreteObserver();
notifier.attach (observera);
notifier.attach(observerB) ;

notifier.notifyobservers("Hello World!"); // Output: Received: Hello
// World! from both

index-667_1.png
ArrayLlist<Integer> grades = new ArrayLlst<Integers();
grades.add(75) ;
grades.add(64) ;
grades.add(95) ;
grades.add(50) ;
grades.add(34) ;
for (int i: grades) {
System.out.println(i) ;

index-822_1.png
class NotificatilonService:
def __init__ (self):
self._observers = []
def attach(self, observer):
self._observers.append (observer)
def detach(self, observer):

self._observers.remove (observer)

def notify(self, message):

for observer in self._observers:

observer.update (message)

class Observer:

def update(self, message):

print (f"Received: {message}")

Usage
notifier

observer_a

observer

= NotificationService()

Observer ()
b

Observer ()

notifier.
notifier.
notifier.

attach (observer_a)
attach (observer_b)

notify("Hello World!") # output:

Received:

Hello World!

from both

index-121_3.png
c\AB

II

00 01 " 10
1 1
1 1 1

index-426_1.png

index-121_2.png
c\AB

00 01 " 10
1 1
1 1 1

index-425_3.png

index-589_1.png
partl = "Computer Scilence 1s fun"
part2 = ", isn't iten
print (partl, part2)

index-121_4.png
c\AB

00 01 " 10

index-120_1.png
c\AB

II

00 o n 10

index-417_1.png
import numpy as np

from sklearn.datasets import make_classification

from sklearn.decomposition import PCA

from sklearn.discriminant_analysis import

LinearDiscriminantAnalysis as LDA

Generate synthetic data

x will be 2d array of 1000 rows, 20 columns

y will be 1d array of integers of values 0, 1 or 2

X, Y = make_classification(n_samples=1000, n_features=20,
n_informative=10, n_redundant=10,
n_clusters_per_class=1, n_classes=3)

print ("Original Data Shape:", x.shape)

pCa

Transform sample data from 1000x20 to 1000x2

pca = PCA(n_components=2)

x_reduced_pca = pca.fit_transform(x)

print ("PCA Reduced Data Shape:", x_reduced pca.shape)
LDA

Transform sample data from 1000x20 to 1000x2

lda = LDA(n_components=2)

x_reduced_lda = lda.fit_transform(x, y)

print ("LDA Reduced Data Shape:", x reduced lda.shape)

index-588_2.png
exam = "Computer Scilence"
grade = 9
print ("Your " + exam + exam score is

+ str(grade))

index-674_1.png
public static void pushlint value) {
if(isFull()
System.out.printin(*Stack
overflow!");
else {
topIndex++;
stack[topIndex]=value;

}

def push(value):
global topindex
if IsFull():
print(*Stack overflow")
elser
topindex += 1

Stack[topIndex] = value

12

push(9)

toplindex =2

index-831_1.png
Book Patron
—isbn : String — name : String
—title : String L <] - books: Bookl]

~author : String
— publisher : String
- publicationDate : String

- booksOnLoan : int

+ Book(String, String, String, String, String)
+ getISBN() : String

+ getTitle() : String

+ getAuthor() : String

+ getPublisher() : String

+ getPublicationDate() : String

+ Patron(String)

+ borrowBook(Book) : Boolean
+ returnBook(Book) : Boolean
+ getBooksOnLoan() : int

+ printBooksOnLoan() : void

index-119_7.png
c\AB

II

00 o n 10

index-413_1.png
1d space 2d space 3d space

2
.
) =
° ..‘ =1
—esbodesien
et Je
<
=
®le ol ’

0 10 20 30 40 50
d

10:4=25 Density: 10

0.625

index-588_1.png
exam = "Computer Sclence"
grade = 9
print ("$s%$s%s%s" $ ("Your " , exam, " exam score is ", grade))

index-673_2.png
public static boolean isFull) {
if(topIndex == StackSize -1)
return true;
else
return false;

}

def IsFull():
if topindex
return True
elser

12

toplindex =3

index-830_1.png
Flight CX 619 has passengers:
Taylor Ripley

Jordan Deckard

Casey Neo

277

Flight CX 619 has passengers:
Taylor Ripley

Casey Neo

278

index-121_1.png

index-425_2.png

index-588_4.png
exam

"Computer Science"
grade = 9
print (£'{"Your

}{exam}{" exam score is "}{grade}')

index-675_1.png
public static int peek() {
return stack[topIndex];

}

def peek():
return Stack[topIndex]

@ topindex = 2

8
5

index-120_2.png
c\AB

II

00 01 " 10

index-425_1.png
T T
40 60
Independent variable

index-588_3.png
exam "Computer Sclence"

grade = 9

print ("{}{}{}{}".format ("Your " , exam, " exam score is
qrade))

index-674_2.png
public static void pop() {
if(isEmpty0)
System.out.printin(*Stack underflow");
else
topindex—;

}

def pop():
global topindex
if isEmpty():
print("Stack underflow")
elser
topinde

/y pop()

12| toplndex =2

index-832_1.png
Person Eustolia has these books:

m 9780141030142 Memory Keeper's Daughter,The

m 9780099387916 Birdsong

m 9780006498407 Angela’s Ashes:A Memoir of a Childhood

Person Nathan has these books:
m 9780099419785 To Kill a Mockingbird
m 9781904994497 Guinness World Records 2010

m 9780140237504 Catcher in the Rye,The

Person Milissa has these books:
m 9780701181840 Nigella Express
m 9780099450252 Curious Incident of the Dog in the Night-time,The

Person Willie has these books:

m 9780563384304 Delia's How to Cook:(Bk.1)

m 9780590112895 Subtle Knife,The:His Dark Materials

m 9780747581109 Harry Potter and the Half-Blood Prince

index-337_2.png
one

one and only one

zero or one

many

one or many

zero or many

index-579_1.png
Now the content
of the two variables
aand b is swapped.

index-663_1.png
1nt numbers |

new int

2]

index-811_2.png

index-578_3.png
The content of a ic overwritten.

index-662_3.png
numbers = [[0 for 1 1n range(2)] for 7 1in range(3)]

index-811_1.png
Person

+name: string
+ home: Address
+ email: string
+ phone: string

hasa

Address

+number: int
+ street: string
+locality: string

+ postcode: string
+ state: string

index-118_1.png

index-368_1.png
idn: "12345",

"name": "blabla",

"email": "blabla@car.com",
naddress": {
"street": "bloblo street",
ncity": vomega city",
N

"services": ["transport", "tourism"

index-582_1.png
double nol = 7.0;
double no2 = 2.0;

system.out .println(nol/no2) ;

index-664_1.png
Dot product™
/\7/8_\

123x
4 5 6 i 0

11 12

123)(78 5864/
4 5 6 910 139 154

11 12

]

index-816_1.png
/* The interface designs a contract
/* those classes that implement it.
interface School {
void attendClass () ;
void doHomework () ;
void takeExam() ;
}
class StudentA implements School {
public void attendcClass() {
System.out.println("Student
}
public void doHomework() {
System.out.println("Student
quiet background.");
}
public void takeExam() {
System.out.println("Student
classroom.") ;

}
}

class StudentB implements School {

public void attendclass() {
System.out.println("Student

}

public void doHomework () {
System.out.println("Student
playing.");

}

public void takeExam() {
System.out.println("Student
resources.") ;

}

public class Main {

public static void main(Stringl]

specifying methods that must be provided by
*/

A attends class online via Zoom.");

A does homework in the early morning with a

A prefers taking exams in a quiet

B attends class in person at the school.");

B does homework late at night with music

B takes exams online with open book

args) {

StudentA studentA = new StudentA();
StudentB studentB = new StudentB();

studentA.attendClass () ;
studentA.doHomework () ;
studentA. takeExam() ;
studentB.attendClass () ;
studentB.doHomework () ;
studentB. takeExam() ;

index-117_6.png
A.B+A.B

index-338_1.png
STUDENT

studentID
FirstName
LastName
Email

one club has many students

CLUB

ClubID
Title
TeacherID
Location

entity name

attributes

index-581_1.png
int nol

7;
int no2 = 2;
system.out .println(nol/no2) ;

index-663_2.png
numbers = [[0 for 1 1n range(2)] for 7 in range(3)]

index-812_1.png

index-662_2.png
int numbers|[|

[

new int

2]

index-810_1.png
Car

«@p——— Composition ———————|

Engine

University

< >———— Aggregation ————|

Student

index-806_1.png
from abc import ABC, abstractmethod
import math
Shape: Abstract class in Python, inherits from ABC (Abstract Base Class)
class Shape (ABC) :
@abstractmethod
def get_area(self):
pass
@abstractmethod
def get_perimeter(self):
pass
Rectangle class, inherits from Shape
class Rectangle (Shape) :
def __init__(self, width, height):
self.width = width
self.height = height
def get_area(self):
return self.width * self.height
def get_perimeter(self):
return 2 * (self.width + self.height)
circle class, inherits from Shape
class Circle(Shape):
def __init__(self, radius):
self.radius = radius
def get_area(self):
return math.pi * self.radius ** 2
def get_perimeter(self):
return 2 * math.pi * self.radius

Main section
if __name__ == "_ main_ ":
shapes = [
Rectangle(10.0, 4.0),
Rectangle(36.0, 7.0),
Circle(42.0),
circle(10.0)

for i in range(len(shapes)):
print (shapes [i] .get_area())
print (shapes [i] .get perimeter())

index-119_1.png
.B-C+A.B-C+A.RB.C

index-406_2.png
Robberies Iin Alaska
correlates with

Professor salaries in the US

7 sk
g o s
g o1 sisso &

o sz

i , s

2013 2015 2017 2019 2021

0 residents in Alaska - Source:

81 Criminal

dusice Information Services

= Average salary of fulltme insiructonsl faculty on &-morth coniracis in
egree-granting postsecondary insifutons, by academic rank of Professor
‘Source: Natonl Center for Education Siaisics

2009-2021. 1=0.922. 1£-0.851. p<0.01 - tylervigen.cor

spuriousicomrelation/2723

index-586_1.png
X = text.length()

index-118_6.png
(2

index-406_1.png
{iovie appearances

—

The number of movies Tom Hanks appeared in
coneiates win

The number of special education teachers in Georgia

00 7%
2 70K
55 =
a8 57K
20 50k

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

R

index-585_2.png
print (""" Write multiple
Lines like this

Wy

index-666_1.png
ArrayLlst<Integer> grades = new ArrayList<Integers>();

grades.add (75) ;

grades.add (64) ;

grades.add (95) ;

grades.add (50)

grades.add (34)

for(int i=0;i<grades.size();i++) {

System.out.println(grades.get(i));

index-119_3.png

index-119_2.png

index-408_1.png
import numpy as np
data = np.array([10, 20, 30, 40, 50])

Normalize the data to have a mean of 0, and have range [-1, 1]
data_mean_centered = data - np.mean(data)

max_abs_val = np.max(np.abs(data_mean_centered))
normalized_data = data_mean_centered/max_abs_val

print (normalized data)

Standardize the data to have a mean of 0, and std dev of 1
standardized_data = (data - np.mean(data))/np.std(data)

print (standardized data)

index-118_3.png

index-381_1.jpg

index-582_3.png
nol = 7
#nol = 7.0
noz = 2

print (nol/no2)

index-665_2.png
import jJjava.utlil.ArrayList

index-818_1.png
ilmport json
class ConfigManager:
_instance = None
def __new__ (cls):
if cls._instance is None:
cls._instance = super(ConfigManager, cls)._new__(cls)
cls._instance.load_settings ()
return cls._instance
def load_settings(self):
try:
with open("settings.json", "r") as f:
self.settings = json.load(f)
except FileNotFoundError:
print ("Error: The settings file was not found.")
self.settings = {}
except json.JSONDecodeError:
print ("Error: JSON decode error in settings file.")
self.settings = {}
def get_setting(self, key):
return self.settings.get (key)
if __name__ == "__main__":
config_manager = ConfigManager() # Initialize the singleton
database_url = config_manager.get_setting("databaseUrl")
timeout = config_manager.get_setting("timeout")
print (f"Database URL: {database_url}")
print (E"Timeout: {timeout}")

index-118_2.png

index-369_1.png

index-582_2.png
float nol

7.0;
int no2 = 2;
system.out .println(nol/no2) ;

index-665_1.png
lmport java.util.

index-817_1.png
"databaseUrl": "postgresqgl://user:passwordehost :port/database",
"timeout": 10

index-118_5.png

index-404_1.png
import numpy as np
Create random array of values between 0 and 100
Set one extreme value to act as an outlier
data = np.random.randint (0, 100, size=1000)
data[999] = 937

calculate outliers via Z-scores

mea = np.mean(data)

std_dev = np.std(data)

z_scores = (data - mean) / std dev

threshold = 3 # Outliers if 3 stddev from mean
outliers = data(np.abs(z_scored) > threshold]
print ("mean", mean, "stddev", std_dev)

print ("Outliers:", outliers)

calculate outliers via IQR

ql = np.percentile(data, 25)

q3 = np.percentile(data, 75)

iqr = g3-q1

cutoff = 1.5 * iqgr

lower_bound = gl - cutoff

upper_bound = g3 + cutoff

outliers = datal[(data < lower_bound) | (data > upper_bound)]
print ("Outliers:", outliers)

index-585_1.png
System.out.println("Write multiple\n"
+ "Lines like this"):

index-665_4.png
ArrayLlist<String> pillot

new ArrayList<Strings|() ;

index-820_1.png
class Dog:
def speak (self):
return "Woof!"
class Cat:
def speak (self):
return "Meow!"
class AnimalFactory:
@staticmethod
def get_animal(animal_type
"dog

if animal_type =
return Dog ()
elif animal_type =
return Cat ()
return None
Usage
if _name_ == "_main_ ":
factory = AnimalFactory()
dog = factory.get_animal ("dog")
cat = factory.get_animal("cat")
print (dog.speak()) # Output: Woof!
print (cat.speak()) # Output: Meow!

index-118_4.png

index-386_1.png
dendrites

axon

@y

wn, ! L
linear activation
function function

nucleus

index-583_1.png
nol = 7/

#nol = 7.0
noz = 2

print (nol//no2)

index-665_3.png
ArrayLlist<Integer> grades = new ArravList<Integers() ;

index-819_1.png
import org.Jjson.JSONObject;
import org.json.JSONTokener;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
public class ConfigManager {
private static ConfigManager instance;
private Map<String, Object> settings;
// Private constructor to prevent instantiation
private ConfigManager () {
loadsettings () ;
}
// Public method to get the instance
public static synchronized ConfigManager getInstance() {
if (instance == null) {
instance = new ConfigManager();

}
return instance;
}
// Load settings from file
private void loadsettings() {
try (FileInputStream inputStream = new FileInputStream("settings.json"))
JSONTokener tokener = new JSONTokener (inputStream) ;
JSONObject jsonObject = new JSONObject (tokener) ;
settings = toMap (jsonObject);
} catch (IOException e) {
e.printStackTrace() ;
settings = new HashMap<>(); // Fallback to an empty map

}

// Helper method to convert JSONObject to Map
private Map<String, Object> toMap (JSONObject jsonObject) {
Map<String, Object> map = new HashMap<s>();
jsonobject.keys () . forEachRemaining (key -> map.put (key, jsonObject.get
(key))) ;
return map;
}
// Get a setting value by key
public Object getSetting(string key) {
return settings.get (key) ;

}

public class Application {
public static void main(String[] args) {

configManager configManager = ConfigManager.getInstance(); // Initialize
// the Singleton

String databaseUrl = (String) configManager.getSetting("databaseUrl");
Integer timeout = (Integer) configManager.getSetting("timeout");
System.out.println("Database URL: " + databaseUrl);
System.out.println("Timeout: " + timeout);

{

index-571_3.png
age

index-656_4.png
grades = [0 for 1 1n range(5)]

index-797_1.png
import java.time.LocalDate;

class Person {
// By using protected instead of private, these variables will be accessible
// by classes that inherit Person. Refer to the section on access modifiers

// for more.
protected String name;
protected String phone;
protected String email;
protected String address;
Person(String name, String phone, String email, String address) {
this.name = name;
this.phone = phone;
this.email = email;
this.address = address;
}
public String tosString() {
return "Person: "+this.name;

}

class Customer extends Person { // The "extends" keyword indicates inheritance
private long membership;
private long points;
private LocalDate signup;

Customer (String name, String phone, String email, String address, long
membership, long points, LocalDate signup) {

// call the constructor of the parent class
super (name, phone, email, address);
// Initialize other instance variables
this.membership = membership;
this.points = points;
this.signup = signup;
}
@override
public String tosString() {
return "Customer: "+super.name+" has "+Long.tostring(this.points)+" points

b

class Employee extends Person { // The "extends" keyword indicates inheritance
private long salary;
private String bankaccount;
private Person supervisor;
Employee (String name, String phone, String email, String address, long
salary, String bankaccount, Person supervisor) {
// call the constructor of the parent class
super (name, phone, email, address);
// Initialize other instance variables
this.salary = salary;
this.bankaccount = bankaccount;
this.supervisor = supervisor;
}
@override
public String tosString() {
return "Employee: "+super.name+" earns $"+Long.toString(this.salary);

index-978_1.png

index-656_3.png
grades
grades

9]
[0 for i in range(5)]

index-796_1.png
class Persomn:

def

def

__init__ (self, name, phone, email, address):
self.name = name

self.phone = phone

self.email = email

self.address = address

__str_ (self):

return "Person: "+self.name

class Customer (Person): # The parenthesis indicates Customer inherits Person

def

def

__init__ (self, name, phone, email, address, membership, points, signup):
call the constructor of the parent class

super()._ init__ (name, phone, email, address)

Define other instance variables specific to this child class
self.membership = membership

self.points = points

self.signup = signup

__str_ (self):

return "Customer: "+self.name+" has "+str(self.points)+" points."

class Employee(Person): # The parenthesis indicates Employee inherits Person

def

def

__init__(self, name, phone, email, address, salary, bankaccount, supervisor):

call the constructor of the parent class

super().__init__ (name, phone, email, address)

Define other instance variables specific to this child class
self.salary = salary

self.bankaccount = bankaccount

self.supervisor = supervisor

__str_ (self):

return "Employee: "+self.name+" earns S$'+str(self.salary)

index-977_2.png
OpensSreetMap

Query for location data

Query for route matrix

Location data

External APIs

Route matrix data

index-314_1.png
interface etho
static ip _address=192.168.1.1/24
static routers=192.168.1.254

static domain _name _ servers=192.168.1.254

index-572_1.png
alavation

index-659_1.png
column

0] 11] [2]
of1]2]3
ow—1]| 4 | 5 | 6

(2]

718|9
nuybers}Z][Q:S

identifier row index column index

numbers

value

index-799_1.png
from datetime import datetime

if _name__ == "_ main_ ":
p = Person("Jordan McFly", "555 1234", "jordaneexample.com", "1885 Brown
Estate")
c = Customer("Skyler Serenity", "555 2345", "skyler@example.com", "1701

Asimov Plaza", 1, 0, datetime.now())

e = Employee("Avery Shephard", "555 3456", "avery@example.com", "1955 Lone
Pine Mall", 75000, "123-456-888", p)

print (p)

print (c)

print (e)

index-979_2.png
‘Teacher Portal

ey = ==l ==

=

o Student Portal
s

E bt

index-312_1.png
Raspberry Pi
wireless access|
point

="
Raspberry Pi
proxy server

="

Raspberry Pi
web server

Switch

Remote network
with internet
access

="
Raspberry Pi
router and firewall

P=——"
Raspberry Pi
DHCP server

index-571_4.png
double salary=59958.96

index-657_1.png
pilots = ["Bob", "John", "Elvis"]
passedExam [True, False, Truel

index-798_1.png

index-979_1.png

index-794_2.png
isa—

Customer

Person

Employee

index-977_1.png
wilems page Onbonr ding preuss Do boxes
How To kS : seect Fontopss O

WELCo M E! Oselect o L Cop Shap Gl gpeeny

fua bt of ik — ——=

Mt hyrgom R

| — 3

Gop @ G e

— — | = —=

O ure e lely’ s
r-rJ Ll d e ——1
goidone odevr Sl east
Crek for wot

@ click Batwr

Gl ant b sofe

e @ ree

Rolse Nows -

index-976_1.png
4. Uplood page

" Navigation bar ©
La itn Togo mema.

Mabile_Tognion
@E/ Stan and potile

4 MENU Cscaw] e ot
1090 R / | Boont fopn
2.0P0M> 1 =
! =

[EIED) oo :
q Ade Aastage e ——
| N s
[Se=tu oot Qluds” Tt | r firmoss ot
H ourtienticator Otost = nelvge in thei
i Togin ponded s,
)
o [
Socal Veda Pt ==
il
02 Scanning page 5 No file choosen
~ Open phone comen to
" Qoo Comera alcess Open puant
| Open camera o o ‘halluvlvl\uﬂ:h P T
thoout imaaes B —
| o X | o i Shatws ot Hhe sustom
1y Stodws ot the systemn ~ oind wplo J s
No e snman— S0 B cod G50 <
z S Activad, sysom o
SRMRIER | |, [rrmes— upload 40 contert
T fetinte sy and e
divect 10 imaag clonsification :\mmdimlm
Syshm to dicplay the RIS S J
| “resuted page’

Ly 03. Contont. of wploaded images. \ Thare are 41 clagsificoctions

50 Hhreve 44 covtont paogs.

of e aosiition
| wsers con s ®

| I@u:a!; i wiess uémm' 1
|~ ond nasnged e occording
= catogory of elothing

| B #Tovcers Fpullovers will

oppear on both pages.

" typeriines Hom cans
Ly o diffrent ool mdia.
 patbrms

index-318_2.png

index-578_1.png

index-662_1.png
numbers = [[0 for 1 1n range(3)]for J in range(3)]
for i in range (0,3):
for j in range(3):
value = int(input("enter a number: "))
numbers [1] [§]=value
for i in range(3):
for j in range(3):
print (numbers [1] (3], " ", end ="")
print ("\n")

index-318_1.png
$TTL 604800

@ N soa nsl.myhome.local. admin.myhome.local. (
3 ; sSerial
604800 ; Refresh
86400 ; Retry
2419200 ; Expire
604800) ; Negative Cache TTL
@ N NS nsl.myhome.local.
nsl N A 192.168.1.1
@ N A 192.168.1.1

www N A 192.168.1.2

index-575_1.png

index-661_1.png
Scanner reader = new Scanner(System.in);
int numbers([] [1= new int[3][3];
for(int i = 0; i<3;i++) {
for(int j=0; j<3;3++) {
System.out.println("enter a number:

int value = reader.nextInt();
numbers [1] [§]=value;

}
for(int i = 0; i<3;i++) {
for(int j=0; j<3;j++) {
system.out.print (numbers [i] [J1+ " "
}

System.out.print ("\n") ;

index-805_1.png
abstract class Shape{
public abstract double getArea();
public abstract double getPerimeter();
}
class Rectangle extends Shape {
protected double width;
protected double height;
Rectangle (double width, double height) {
this.width = width;
this.height = height;
}
@override // Specify we are overriding the abstract method
public double getArea() {
return this.width * this.height;
}
@override // Specify we are overriding the abstract method
public double getPerimeter() {
return 2 * (this.width + this.height);

b

class Circle extends Shape {
protected double radius;
circle (double radius) {
this.radius = radius;
}
@override
public double getArea() {
return Math.PI*this.radius*this.radius;

}

@override
public double getPerimeter() {
return 2*Math.PI*this.radius;

b

class Main {
public static void main(String[] args) {
Shape[] shapes = new Shape[4];
shapes [0] = new Rectangle(10.0, 4.0);
shapes [1] = new Rectangle(36.0, 7.0);
shapes [2] = new Circle(42.0);
shapes [3] = new Circle(10.0);
for (int i
System.out.println(shapes[i] .getArea());

; i<shapes.length; i++) {

System.out.println(shapes[i].getPerimeter());

index-337_1.png
Customers

Orders

index-325_1.jpg

index-578_2.png

index-315_1.png
interface=wlano
bridge=bro
driver=nlg0211
ssid=PiNet

hw _ mode=g
channel=7

wnm _ enabled=0

macaddr _ acl=0

auth _algs=1

ignore _ broadcast _ ssid=0

wpa=2

wpa _ passphrase=YourPasswordHere
wpa _ key _ mgmt=WPA-PSK

wpa _ pairwise=TKIP

rsn _ pairwise=CCMP

index-572_3.png

index-660_1.png
numbers = [[0 for 1 1n range(3)] for 7 in range(3)]

index-800_2.png
Person: Jordan McFly
Customer: Skyler Serenity has 0 points
Employee: Avery Shephard earns $75000

index-980_2.png
Game

+scree

urface
+ clock: Clock
+map: ListlListfint]]
+ pacman: Pacman
+ghosts: List[Ghost]

+ score: int

+_init_()

+draw_map()

+is_wall(x: int, y: int): bool
+is_food(x: int, y: int): bool
+ eat_food(x: int, y: int)

+run()

Entity

+x:int
+yiint

+ game: Game

+move()
+draw()
Extends Extends
Player Gnost
+color: Color
+move()
+ draw() +last_move: float

+_init__(x: in, y: int, game: Game, color: Color)
+move()

+random_move()

+get_neighbours(pos: tuple): Listltuple]

+draw()

index-314_2.png
table inet filter {
chain input {
type filter hook input priority 0;
Accept any localhost traffic
iif lo accept
Accept traffic already established
ct state established,related accept
Enable HTTP and HTTPS
tcp dport { http, https } accept
Drop everything else

counter drop

index-572_2.png

index-659_2.png
1nt numbers |

new int

1[3]

index-800_1.png
ilmport java.time.LocalDate;

class Main {
public static void main(String[] args) {

Person p = new Person("Jordan McFly", "S55 1234", "jordan@example.com",
"1885 Brown Estate");

Customer c = new Customer ("Skyler Serenity", "S55 2345", "skyler@
example.com", "1701 Asimov Plaza", 1, 0, LocalDate.now());

Employee e = new Employee ("Avery Shephard", "S55 3456",
"avery@example.com", "1955 Lone Pine Mall", 75000, "123-456-888", p);

system.out.println(p) ;
system.out.println(c) ;
System.out.println(e) ;

index-980_1.png
Find Answers

OMR
Process

Mark paper

Answer sheet
storage

Processed
test storage

Test storage

Local storage

Prosssed test

Save Data

Upload image

Displays test image Retrieve data

Retrieve data

Records
Display

Register

Login/Register

index-316_1.png
<!DOCTYPE html>
<html lang=ren">
<head>

<meta charse

"UTF-8">
<title>Welcome to Pi Web Server</titles>
</head>
<body>
<hl>Hello, Raspberry Pi Network!</hl>
<p>This is a simple web page served from the Raspberry Pi web server.</p>
</body>
</html>

index-572_5.png

index-660_3.png
101 111 121

0]

1]

2]

index-801_2.jpg

index-982_1.png
Player

Pacman clone J

Upload avatar

Set difficulty level

I Play game

<<include>>

Navigate through maps

View high scores

index-315_2.png
subnet 192.168.1.0 netmask 255.255.255.0 {
range 192.168.1.10 192.168.1.100;
option domain-name-servers 192.168.1.1;
option routers 192.168.1.1;
default-lease-time 600;

max-lease-time 7200;

index-572_4.png
poolean a

rfalse;

index-660_2.png
0]
[1]
2]

index-801_1.png
Password:

Normal text:

Enter text

i

Date selector: File selectol

Emai

hoose file

No file chosen

Enter email

index-981_1.png
Students

Enrolments

PK

student

enrolment id: int

first_name: varchar
last_name: varchar
birth_date: date

email: varchar

PK
FK

FK

student |

nt
course_id: int

enrolment_date: date

grade: varchar

Teachers.

PK

her i

first_name: varchar
last_name: varchar
department: varchar

email: varchar

FK

course_name: varchar
course_code: varchar

teacher_id: int

index-307_1.png
Alice Bob

Common paint

Secret colours

il Al

\/
A\

-0-0 |

A

Public transport

(assume that
mixture separation
is expensive)

)
A\
]

Secret colours

".+

Common secret

..+

index-654_1.png
int grades []; //an array called grades of integers
int [] grades; //grades array of integers

index-778_1.png
class BankaAccount:
interest_rate = 5.00 # Static variable
next_account_number = 1001 # Static variable
def __init_ (self, name):
self._name = name
self._balance = 0
Use the class name as a prefix to access the static variables
self._account_number = BankAccount.next_account_number
BankAccount .next_account_number += 1
def deposit(self, amount):
self._balance += amount
def withdraw(self, amount):
if self._balance < amount:
return False
self._balance -= amount
return True
def transfer(self, amount, recipient):
if self.withdraw(amount) :
recipient .deposit (amount)
return True
else:
return False
def apply_interest (self):
self. balance += self. balance * (BankAccount.interest_rate / 100)
def get_balance(self):
return self._balance
def get_name(self) :
return self._name
def _ str__ (self):
return f'Account {self._account_number}: {self._name} has balance
${self._balance}"
@staticmethod
def find(accounts, name):
for acc in accounts:
if acc.get_name() == name:
return acc
return None # No matching account found
Example usage:

if __name__ == "_ main__!
Initialize a list with 3 accounts
accounts = [BankAccount ("Amy"), BankAccount ("Brian"), BankAccount ("Clare")]
Perform some transactions
accounts [0] .deposit (500)
accounts [1] .deposit (500)
accounts [2] .deposit (500)
accounts [0] .transfer (150, accounts[2])
Apply interest to all account balances
for acc in accounts:
acc.apply_interest ()
Perform transaction using a static method to search the list
amy = BankAccount.find(accounts, "Amy")
if amy:
amy .deposit (42)
Print balances using the __str__ method
for acc in accounts:
print (acc)

index-943_1.png
240

N
N
S

Share Price
N
S
3

180

AAPL Share Price

—— Actual Prices
—— Predicted Prices

0 50 100 150 200 250 300

index-774_1.png
class Thing {
private string name;
Thing (String name) {
this.name = name;

}
public String toString() {
return this.name;

}

class CollectionOfThings {
private static int nextThing = 0; // static variable
private Thing[] things;
CollectionOfThings() {

things = new Thing[100]; // Create an array of 100
// null Things

CollectionOfThings.nextThing

}

public void add(Thing t) {
things [Collection.nextThing]
CollectionOfThings.nextThing++;

ti

}
public void remove (Thing t) {
boolean found = false;
for (int i=0; i<CollectionOfThings.nextThing-1; i++) {
if (things[i].equals(t)) {
found = true;
}
if (found) {
things(i] = things[i+1];

}
if (found) {
CollectionOfThings.nextThing--;

}

public void printall() {

for (int i=0; i<CollectionOfThings.nextThing; i++) {
System.out.println(things(i]);

index-942_1.png
e

Subject Select

Please input your most recent semester grades

Subject 1:
Subject 2:
Subject 3:
Subject 4:
Subject 5:
Subject 6:
Subject 7:
Subject 8:

Grade:
Grade:
Grade:

Grade:
Grade:
Grade:
Grade:

Grade:

I Continue I

index-283_1.png
Private network

Router + NAT

N

150.150.0.1 200.100.10.1
Source IP Destination IP Source IP Destination IP
10.0.0.1 200.100.10.1 150.150.0.1 200.100.10.1

Source IP

N
Destination IP

Changes according

Source IP

i
|
Destination IP

200.100.10.1

10.00.1

200.100.10.1

150.150.0.1

index-557_1.png
INPUT 2,b

sum<-a+b
avg <- sum /2

ouTPUT
"The average is ", avg

index-654_3.png

index-781_1.png
Student Assessment

~ gradeBoundaries - int(] — assessmentName : String
— grades : charl] — score : double

- studentName : String + Assessment(String, double)

- assessments : AmaylistcAssessment> |~ |, getScore() : double
- currentGrade : char +1oString() : String

+ Student(String)

+ addAssessment(Assessment) : void
+ getAverageScore() : double
+toString : String

index-945_1.png
trial 1 by trial artist 1

140

120

100

140 -120

100 80 -6 40 20 0 0 4 6@ 8 100 120 140

index-556_5.png

index-654_2.png
int grades[
//elements

ew int [5]; //grades array can store maximum 5

index-780_1.png
public class BankAccount f{
private static double interestRate = 5.00; // static variable
private static int nextAccountNumber = 1001; // static variable
private String name;
private double balance;
private int accountNumber;
public BankAccount (String name) {
this.name = name;
this.balance = 0;
// Use the class name as a prefix to access the static variables
this.accountNumber = BankAccount.nextAccountNumber;
BankAccount .nextAccountNumber++;
}
public void deposit (double amount) {
balance += amount ;
}
public boolean withdraw(double amount) {
if (balance < amount) {
return false;
}
balance -= amount ;
return true;
}
public boolean transfer(double amount, BankAccount recipient) {
if (withdraw(amount)) f{
recipient .deposit (amount) ;
return true;
} else {
return false;

}

public void applyInterest() {
// balance is instance variable, interestRate is static variable
balance += balance * (BankAccount.interestRate/100);

}

public double getBalance() {

// since balance is private, this public function will allow external
// code to check the balance

return balance;
}
public String getName() {
// since name is private, this public function will allow external code
// to get the name
return name;
}
public String tosString() {
return "Account "+accountNumber+": "+name+" has balance $"+balance;
}
public static BankAccount find(BankAccount[] accounts, String name) {
for (BankAccount acc : accounts) {
if (acc.getName().equals(name)) {
return acc;

}

return null; // No matching account found;

}

public static void main(String[] args) {
// Initialize an array with 3 accounts
BankAccount [] accounts = new BankAccount [10];

accounts[0] = new BankAccount ("Amy") ;
accounts[1] = new BankAccount ("Brian");
accounts[2] = new BankAccount ("Clare");

// Perform some transactions using array index
accounts [0] .deposit (500);
accounts [1] .deposit (500);
accounts [2] .deposit (500);
accounts [0] .transfer (150, accounts[2]);
// Bpply interest to all account balances
for (int i=0; 1i<3; i++) {
accounts[i] .applyInterest () ;
}
// Perform transaction using a static function to search the array
BankAccount amy = BankAccount.find(accounts, "Amy");
if (amy != null) {
amy.deposit (42) ;
}
// Print balances using the toString() function
for (int i=0; 1i<3; i++) {
System.out .println(accounts[i]) ;

index-944_1.png
calmype: PSS
o - .
= [l - .

index-940_1.png
[ENT———

Sothamptn, Unked Kingdon €D

o London,Uned o> o, Uned Kngtar->Schumpn,Unted Kingdon > B, Unked Kingdor > Cardif Unied Kingco - Swanse, UnkedKingdom > Sngha,
Ut Kngdon-> i snam, Unted Kingeom > verpcl, Uned Kinglom > reion,Unced Kingdom > Lancastr, Uned Kingiom > Nanchester,Unced Kgdom > hef Unved Kingiom >

Vork, Unte Kingdor ol Uit K.

Tota v e 55 hwrs

index-299_1.png
Secret key

Enaryption Decryption
| — @ ————

Plaintext Encrypted Plaintext
document document document

index-570_1.png
String password="Bob@123"

index-656_1.png
grades = [75,64,95,50,34]

index-794_1.png
2
/

Customer class
* Name
« Phone
®
« Address
+ Membership
number
« Loyalty points
« Sign-up date

Person class
* Name

* Phone

* Email

* Address

Employee class .
+ Name

« Phone
« Email
+ Address

« Salary

* Bank account
« Supervisor

index-295_1.png

index-569_2.png

index-655_3.png
Boolean passedExam/[] {true, false, truej};

index-792_1.png

index-975_1.png

index-305_1.png
Data

Hash
function

Signing

101100110101

Hash

Encrypt hash
using signer’s
private key

6 111101101110

Signature

Digitally signed data

Verification

___Digitally signed data ___

Data

Hash
function

101100110101

Hash

i

é 111101101110

Signature

Decrypt using
signer’s public
key

O

101100110101

Hash

If the hashes are equal, the signature is valid.

index-571_2.png

index-301_1.png
Public key

HH

Original text

Different

Encryption

key

a*312%$FR
G&**+mnb
>4357DCal

mekep&v$a
q*nf)fwllgt

Encrypted data

Decryption

Private key

HH

Original text

index-571_1.png
Bob@l23'
Bob@123 "

passwora
password

index-656_2.png
grades = [0]*5 #creates an array of 5 zeros
for i in range(s): #repeats 5 times
#stores value entered at given index

grades[i] = int (input ("enter a value: "))

index-286_1.png
User

New connection

@ .
Perpetrator
Man in the middle

A

Web application

index-561_1.png
™

rev<0

!

output rev

remainder <- number MOD 10
rev <-rev * 10 + remainder
number <- number DIV 10

|

index-654_5.png
int grades[]={75,64,95,50,34};

index-783_1.png
import java.utill.ArrayList;
class Assessment {
private String assessmentName;
private double score; // Score as a percentage
public Assessment (String assessmentName, double score) {
this.assessmentName = assessmentName;
this.score = score;
}
public double getscore() {
return score;

}
public String toString() {

return assessmentName + ": " + score;
}

}
class Student f{
private static final int[] gradeBoundaries = { 80, 65, 50, 35, 20 };
// Represents A, B, C, D, E
private static final char[] grades { 'a*, 'B", 'c', 'D', 'E' };
private String studentName;
private ArrayList<Assessment> assessments;
private char currentGrade;
public Student (String studentName) {
this.studentName = studentName;
this.assessments = new ArrayList<s();
this.currentGrade = 'N'; // Default to N before any grades are added
}
public void addAssessment (Assessment assessment) {
assessments.add (assessment) ;
// calculate new average
double average = getAverageScore() ;
// Update current grade
currentGrade = 'N'; // Start with the default
for (int i = 0; i < Student.gradeBoundaries.length; i++) {

if (average >= Student.gradeBoundaries[i]) {
currentGrade = Student.grades[i];
break;

}
}

private double getAverageScore () {
if (assessments.isEmpty()) {
return 0;
}
double sum = 0;
for (Assessment assessment : assessments) {
sum += assessment.getScore();

}

return sum / assessments.size();
@override
public String tosString() {

return "sStudent " + studentName + " has grade " + currentGrade;

}

public class Main {
public static void main(sString[] args) {
Student student = new Student ("Doris");
student .addAssessment (new Assessment ("Test 1", 75));
student .addAssessment (new Assessment ("Homework", 85));
student .addAssessment (new Assessment ("Exam", 65));
System.out.println(student) ;

index-961_1.png
Game

{¢———contains

has

Entity

Extends Extends

Map

Player

Ghost

index-285_1.png
Attacker mmpulers

Malicious traffic

Target server
Internet
g%

Real users

Out of resources
Clean traffic Service offline

index-558_1.png
/ START \
N

/ INPUT a,b.

—TRUE FALSE—

max <- a max <-b

—(O—

/ OUTPUT "The larger value is *, max /

|
o)
/

STOP

'
N

index-654_4.png
int grades[]= new int[]{75,64,95,50,34};

index-782_1.png
class Assessment:
def __init_ (self, assessment name, score):
self._assessment_name = assessment_name
self._score = score
def get_score (self):
return self._score
def __str_ (self):
return f'{self._assessment_name}: {self._ score}s"
class Student:
_grade_boundaries = [80, 65, 50, 35, 20]
_grades = ["A","B","C","D","E"]
def __init_ (self, student_name):
self.student_name = student_name
self._assessments 8}
self.current_grade = "N' # Default to N before any grades are added
def add_assessment (self, assessment):

self._ assessments.append (assessment)
calculate new average
average = self._get_average_score ()
Update current grade
self.current_grade = "N" # Start with the default
for i in range(0, len(Student._grade boundaries)):
if average >= Student._grade_boundaries[i]:
self.current_grade = Student._grades[i]
break
def _get_average_score (self) :
if not self. assessments:
return 0
total = 0
for assessment in self._assessments:
total += assessment.get_score()
return total / len(self._assessments)
def __str__(self):
return f'student {self.student_name} has grade {self.current_grade}"
if _name_ == "_main_ ":
student = Student ("Doris")
student .add_assessment (Assessment ("Test 1", 75))
student .add_assessment (Assessment ("Homework", 85))
student .add_assessment (Assessment ("Exam", 65))
print (student)

index-946_1.png
B Network Alines

e C—

Click on destinatary user to send thern files.

User has been selected.

‘Would take user to the send dialog to send
the files to the users currently selected.

You have 0incoring send requests.

You have 0 outgoing send

index-292_1.png

index-569_1.png
Variables
age=5 age=6
N ™\, old value is overwritten

ayear later

identifier
(variable name) > age age

index-655_2.png
String pilots[]= {"Bob", "John", "Elvis"};

index-790_1.png
class Product {
private static int nextProductId = 100;
private int productId;
private String name;
private double price;
private int quantity;
public Product (String name, double price, int quantity) {
this.productId = nextProductId++;
this.name = name;
this.price = price;
this.quantity = quantity;
}
public void updateQuantity(int amount) {
// Implement logic to update product quantity
}
@override
public String tostring() {
return "Product{" +
"productId=" + productId +
" + name + '\'' +
v, price=" + price +
", quantity=" + quantity +

g

}

class Inventory {
private Product[] products;
private int size;
public Inventory(int capacity) {
products = new Product [capacity];
size = 0;
}
public boolean addProduct (Product product) {
if (size < products.length) {
products [size] = product;
size++;
return true;

}

return false;
}
public void listProducts() {
for (Product product : products) {
if (product != null) {
system.out .println(product) ;

}

public class Main {
public static void main(String[] args) {
Inventory inventory = new Inventory(100);
inventory.addProduct (new Product ("Laptop", 999.99, 10));
inventory.addProduct (new Product ("Smartphone", 499.99, 20));
// Update quantities and list inventory

index-963_1.png
g8

o

"

Boxow oo

B

58888 ° 83y

®

B

t Takame g e
el paring
ol dsign
RR—
P
Desn
Devaep - Gama o
[——
Dersep - Gama e
Tt

 Hap menagarent

Deraep - Lot maps
[Iea—
Devae - Map progeson

[——p—

Py marsgemsnt

e
Devaep - Avtr
[——
et

- Ghost managerent
Pan
Desen
[r—
D - Ransom gerrster
Do At ncion
Eraate

~ Sooma e
Dedan
Devsop - Losahigh s
Devsop - Dty high oo
[Er—
Bkt
[ee——

Proect sveaton

index-287_1.png
Lirst_name = "Robert'); DROP TABLE Students;

family_name = "Doe"
sql = "INSERT INTO Students VALUES
+ family name + "

"+ first_name + "',

index-566_1.jpg
um Treturn n.eaCh BFgERESEE 2

o !ucuon(r return L -

awetion 3) {var b=[[" \w* '

Mgt 10N {re"turn GonQ o P

R faillc.re)t o™

- §+ (2).disable,bl2 2

@hwrad function(a,b, c) {reteee N
“‘. .M\ j.reject): ety

n.readyWait>@ o

I reudystatechange” !

shventListener "

s wetmeout (f,50)1)(),

: , C. removeCh

- . AL

index-655_1.png
read = new Scanner (System.1in);
int grades([]=new int[5];

for (int ji<5;ivt) |
System.out.println("Enter a number: ");
int value = read.nextInt ();
grades [i] =value;

}

index-788_1.png
class Book {
private static int bookCount = 0;
private String title;
private boolean isBorrowed;
public Book(String title) {
this.title = title;
this.isBorrowed = false;
bookCount++;
}
public void borrow() {
if (risBorrowed) {
isBorrowed = true;
System.out.println(title + " has been borrowed.");
} else {
System.out.println(title + " is already borrowed.");

}

public void returnBook() {
// Implement logic to mark the book as not borrowed
}
public static int getBookCount () {
return bookCount ;
}
public String tosString() {
return title + " - " + (isBorrowed ? "Borrowed" : "Available");

}

public class Library {
public static void main(String[] args) {
Book [] books = new Book[5];
books [0] = new Book("Java Fundamentals");
books[1] = new Book("The Art of Computer Programming");
// BAd more books and implement borrowing logic

index-961_2.png
Pacman clone

]] v] ¥

Game Player Map Ghost Scoring
management management management management system
Game Avatar Load maps Movement Load high
initialization strategy scores
Movement Map
1| Load settings control navigation Random Display
generator high scores
b| set difficulty Collision
check tar Save score
£>Main game loop function W
Map
L progression Collision check
1>{ Update game state
L>{ Render graphics

~>| Game end

index-556_4.png

index-757_2.png
Account “"Amy” has balance $25
Account “Brian” has balance $25
Account “Clare” has balance $400

index-895_1.png
import java.utll.HashMap;
public class Main {
public static void main(String[] args) {
// Creating a hash table using HashMap
// The first data type is for the key, the second is for the data
HashMap<String, Strings> hashTable = new HashMap<>();
// Inserting two items
hashTable.put ("keyl", "valuel");
hashTable.put ("key2", "value2");

index-894_2.png
Creating a hash table as a Python dictionary
hash_table = {}

Inserting two items

hash_table ["keyl"] = "valuel"

hash_table ["key2"] = "value2"

Retrieving and printing one item

value = hash_table["keyl"]

print ("The value for 'keyl' is:", value)

Deleting an item

del hash table["key2"]

index-508_1.png
from tensorflow.keras.datasets lmport cifarl0
from tensorflow.keras import layers, models
import numpy as np
Load the CIFAR-10 data set
(train_images, train_labels), (test_images, test_labels) = cifarlo0.load data()
Normalize the data to 0-1 ranges
train_images = train_images/255.0
test_images = test_images/255.0
Define the CNN model
model = models.Sequential ([# 32 x 32 pixels, 3 colours
layers.Conv2D(32, (3, 3), activation="relu", input_shape=(32, 32, 3)),
layers.MaxPooling2D ((2, 2)),
layers.conv2D(64, (3, 3), activation="relu"),
layers.MaxPooling2D ((2, 2)),
layers.conv2D(64, (3, 3), activation="relu"),
layers.Flatten(),
layers.Dense (64, activation="relu"),
layers.Dense (10, activation="softmax")

1

compile and train the model

model.compile (optimizer="adam", loss="sparse_categorical_crossentropy",
metrics=["accuracy"])

history = model.fit (train_images, train_labels, epochs=10, validation split=0.1)
Evaluate the model

test_loss, test_acc = model.evaluate(test_images, test_labels)

print ("Test accuracy:", test acc)

index-640_1.png
score < > 999 Yes

score >=80 > Yes——

v

OUTPUT count, " students have

count <- count + 1

passed the exam”

No -

index-762_1.png
class BankaAccount:
def __init__ (self, name):
self.name = name # Create an instance variable "name"
and set it to value parameter variable "name".
self.balance = 0.0 # Set instance variable "balance" to 0.0.
def deposit(self, amount):
self.balance = self.balance + amount
def withdraw(self, amount):
self.balance = self.balance - amount
def transfer(self, amount, recipient):
self.withdraw (amount)
recipient.deposit (amount)
def __str__(self):
return f"Account {self.name} has balance &{self.balance}"

index-896_1.png
number of entries in the table

Load factor =
Jactor total number of slots

index-638_1.png
number

try:
result = 10/number
print (result)

except :
print (v

int (input ("Enter a number

here was a problem

index-758_1.png
Classname BankAccount
+field: type —name: string
+field: type ~ balance: float
+field: type +BankAccount(name)

+ method(type): type
+ method(type): type
+ method(type): type

+ deposit(float): void
+withdraw(float): void
+ transfer(float, Bank Account): void

index-895_2.png
// Retrieving and printing one item
String value = hashTable.get ("keyl");

System.out.println("The value for 'keyl' is: " + value);
// Deleting an item by key
string removedvalue = hashTable.remove ("key2"); // Returns the value

// associated with the key

index-556_1.png

index-646_2.png
(g vt & namber:)
TERE 2 Syt
ittt

S There vas 2 provtent)

ece “IDLE Shell 3123+

Prthen 3123 (13,12.3: 665010947, Ape 9 2024, 98118147) (Clong 1

ERRVTIINE, "credits® or License()® for more information.
e RESTARTS JUrrs/Aoagane RS CIants 8.5y s

ol SRR

Debug Control
G se Oowr ow ou

runoy:ags: ancoding)

o557 o), e 600 sxec{emd, Gobals, 1]

| main_<modte>(), Ine 2: umiber - nnout(“Enor a number:)

el un vt e 467. = st encode(s, sl encoding,slf rtora

index-771_1.png
class Product:
next_product_id = 0 # define a static variable
def __init_ (self, name):
self.name = name
self.product_id = Product.next_product_id
Product .next_product_id += 1
def __str__ (self):
return "Product "+str(self.product_id)+ "+self.name
if _ name__
products = [
Product ("Bread"),
Product ("Milk"),
Product ("Apples"),
Product ("Icecream")

__main_ "

for i in range(0, len(products)):
print (products[i])

index-939_1.png
ming - e to append, backspace to delete and f to add space

Q

index-555_1.png

index-646_1.png
number = int(input("Enter a number:
try:
result =
print(res Cut
except:
print(*Th COPY)
Paste

Set Breakpoint

Clear Breakpoint

index-765_1.png
// Java - example using static array
BankAccount [] accounts = new BankAccount [3];

accounts [0] = new BankAccount ("Amy") ;
accounts [1] new BankAccount ("Brian") ;
accounts [2] = new BankAccount ("Clare");

// Java - example iterating over static array
string(] names = {"Amy", "Brian", "Clare"};

BankAccount [] accounts = new BankAccounts([3];

for (int i=0; i<accounts.length; i++) {
accounts [i] = new BankAccount (names[i]);

}

// Java - example using ArrayList

// Remember to import java.util.ArrayList

ArrayList<BankAccount> accounts = new
ArrayList<BankAccounts () ;

accounts.add (new BankAccount ("Amy")) ;
accounts.add (new BankAccount ("Brian"));
accounts.add (new BankAccount ("Clare")) ;

index-937_1.jpg
Record Help togin

Home

MCQ scanner

(eJoJol- JoJeXc JOXeXo)

(©]C JoJoJol© JoJokeXo)

(JOI(€ JOJOJOXOIOLOJC]

index-556_3.png

index-653_1.png
index (position in array): lower limit: 0, upper limit: 4

o] [1] 121 13] [4]

grades

array name

75

64

95

50

34

value

grades(2] = 95

array size: 5

grades

75

64

95

50

34

[0]
(1]
(2]
(3]
[4]

index-556_2.png

index-647_1.png
Qg
=0 [arales X | Breskpoins 4 Eprssions

EXY FH 0 QS

170 o admeseias of sddcastiecion (D mistocios (] sdatonias X3

1 package sum;
secomiut 2 inport fava.utile;

H ame vane

3 publie class addition { o o e

£ Private’static Scamner resd; Pt —

7= public static void mainstring) args) { e 2
vectpseiust & read = new Scamner (Systen.in) st 3

55 Systen. ut. prARCIAC-ENter 3 number: “); -

0 Tt Mnwer = readnextInt ()7

1 it resiit

12 oy {

213 Fesutt = 10/numbe -

secipaeiunt § 18 1 Systemout.printin(resule);

13)

16 Catehexception o)l

7 Systen-out.printinte. tostring());

1

1)

i fanatly ¢

2 Systen.out.printla(*This would be printed

-~ "

index-772_1.png
class Product {

private static int nextProductID = 0; // define a static
// variable

private String name;

private int productid;

Product (String name) {
this.name = name;
this.productID = Product.nextProductID;
Product .nextProductID++;

}

public String tostring() {

return "Product "+Integer.toString(this.productID)+":
"+this.name;

b

class Main {
public static void main(String[] args) {
Product [] products = new Product[4];
products[0] = new Product ("Bread");
products[1] = new Product ("Milk");
products[2] = new Product ("Apples");
products[3]
for (int i

= new Product ("Icecream") ;

i<products.length; i++) {
System.out .println(products([i]);

index-540_1.jpg

index-644_1.png
Toggle Breakpoint
Disable Breakpoint

=

6
75 public static void main(String(] args) {
8
]

read = new Scanner (System.in);
System.out.println("Enter a number:

© %8
<Double Click

© Toggle Lambda Entry Breakpoint

65 Toggle Tracepoint
<[Run to Line

Go to Annotation

Add Bookmark...
Add Task...

v Show Quick Diff
 Show Line Numbers
Folding

Preferences...

Breakpoint Properties...

5w
36

#Click

yways");

#Double Click

index-763_1.png
Python
acc = BankAccount ("Neo")
brint (acc)

index-913_1.jpg
(7},

index-512_1.png

index-642_1.png
temp <-0
value <- num

]

reminder <- value MOD 10
value <- value DIV 10
temp <- temp*10 + reminder

No

Yes

temp = num

N

OUTPUT true

OUTPUT false

index-762_2.png
public class BankAccount f{

private String name; // Create an instance variable

private double balance; // Create an instance variable

public BankAccount (String name) {
this.name = name // Set instance 'name' to value of parameter 'name’
this.balance = 0.0;

}

public void deposit (double amount) {
balance = balance + amount;

}

public void withdraw(double amount) {
balance = balance - amount;

}

public void transfer(double amount, BankAccount recipient) {
this.withdraw (amount) ;
recipient.deposit (amount) ;

}

public String toString() {
return "Account " = this.name + " has balance $" + this.balance;

index-905_1.jpg
[

i |

index-554_1.png

index-645_1.png
a

QB &%

()= Variables X | ® Breakpoints &7 Expressions = E D

EB 8
Name Value
G+ no method return value
© args String[0] (id=19)
© number 3
© result 3

index-764_1.png
Python - example 1
accounts = [
BankAccount ("Amy") ,
BankAccount ("Brian"),
BankAccount ("Clare")
1
Python - example 2
accounts = []
for i in range(0, 3):
name = input("Name for new bank account:")
accounts.append(BankAccount (name))

index-936_1.jpg

index-545_1.png

index-644_2.png
LN)
o~ E- [SHUNE S

%5 Debug X [Project Explorer § =8 fam

v [1]addition [Java Application]
3 [Usersfioanaganea/.p2/pooljpluginsforg.eclipse.just]
v [T addition [Java Application]
& sum.addition at localhost:§7950
i Thread [main] (Suspended)
= addition.main(String(]) line: 10
] IUsersfioanaganeal.p2/pool/plugins/org.eclipse.just]
v [T] addition [Java Application]
~ {2 sum.addition at localhost:57974
~ P Thread [main] (Suspended (breakpoint at line 13

eclipse-workspace - sum/src/
0 Q-Q-i® gy
1 addition
[3 2 Competitions

[3) mainTe

1op
2 i [3 Swimmer
f p [4mainTester
5 p
6 Debug As >
47 Debug Configurations... frinall ors
9 Organize Favorites... iter a numb
0 = —.Int();
11 int result;
2 trv {

index-763_2.png
public class Main {
public static void main(String[] args) {
BankAccount acc = new BankAccount ("Neo") ;
System.out .println(acc) ;

index-928_1.jpg
Mdaid 7 Y

i

|«

.Lmimumml

(gl

o T s+
lsu \\.

ol Lo b

index-503_1.png
/16 1/8 1/16
8 /4 1/8
1/16 1/8 1/16

index-502_3.png
0
0

-1
5
-1

0
-1
0

index-637_2.png
read = new

system.out.println("Enter a number:

int number
int result;

try {
result
system.
}

Scanner (System.1n) ;

= read.nextInt();

= 10/number;
out.println(result);

catch (Exception e) {
System.out.println(e.toString());

") ;

index-888_2.png
Union

union_set = A | B # or A.union(B)
print ("Union union_set)

output

Union: {1, 2, 3, 4, 5, 6}

index-627_1.png
private static Scanner read;

public static int add(int nol, int no2) {
int sum;
sum = nol+no2;
return sum;

}

public static void main(string[] args) f{
read = new Scanner (System.in);
int valuel, value2;
System.out.println("enter the first number
valuel = read.nextInt();
System.out.println("enter the second number:");
value2 = read.nextInt();
System.out.println("The result is "+ add(valuel, value2));
int newval = 3;
newvVal = newvVal + add();
System.out.println("The new value is "+newval);

")i

index-743_1.png
def content (text):
value = ""
pos = 0
while pos<len(text) :
letter = text[pos:pos+1]
if letter==

print (value)
value=""
else:
value = value + letter
pos = pos + 1
if value:
print (value)

index-889_1.png
Intersection

intersection_set = A & B # or A.intersection (B)
print ("Intersection:", intersection_set)

output

Intersection: [3, 4]

index-742_1.png
public static void content (String text) {
string value = "";
int pos = 0;
while (pos < text.length()) {
String letter = text.substring(pos, pos + 1);
if (letter.equals(",")) {
system.out.println(value);
value = "";
} else {
value += letter;

}

POS++;

}

if (tvalue.isEmpty()) {
System.out.println(value) ;

index-888_3.png
// Union
Set<Integer> unionSet = new HashSet<>(A); // Creates a new
// set containing all elements from A

unionsSet.addAll(B); // Performs a union join with B
System.out.println("Union: " + unionSet); // Output set contents
// output

// Union: [1, 2, 3, 4, 5, 6]

index-501_1.png
Feature maps

Input f.maps

Convolutions Subsampling Convolutions Subsampling Fully connected

index-633_2.png
student = "Bob"

def changeOfName (st) :
st = "Bobby"
print ("student inside the method: ", st)

changeOfName (student)

print ("Student outside the method: "

student)

index-750_1.jpg

index-892_2.png
// Define two new sets

Set<Integer> A = new HashSet<>();

A.add (1) ;

A.add(4);

A.add(7);

Set<Integer> B = new HashSet<>();

.add(1) ;

.add(2) ;

.add(3);

.add(4) ;

.add(s);

.add(6) ;

B.add (7) ;

// Check if A is a subset of B
System.out.println(B.containsAll(A)); // True

// Check if B is a superset of A by checking if A is contained within B, but B
// is not contained within A

System.out .println(B.containsAll (A) && !A.containsAll(B)); // False

W wwwww

index-500_1.png
import numpy as np
from PIL import Image # pip install Pillow

import tensorflow as tf

model = tf.keras.models.load model ("mnist-example.keras")
Load the image file

image
image = image.convert ("L") # Grayscale to match the training data

image = image.resize((28, 28)) # Resize to match the training data

Convert image to numpy array

image_array = np.array (image)

image_array = image_array/255.0 # Normalize to 0..1 scale

Reshape the array for the model (Add a batch dimension at the beginning)
image_array = image_array.reshape (1, 28, 28)

Send to the trained ANN

predictions = model.predict (image_array)

Image.open("your image file.png")

predicted class = np.argmax(predictions, axis=1)
", predicted class)

print ("Predicted class

index-633_1.png
static String student = "Bob";
public static void changeOfName (String st) {
st = "gim";
System.out.println("Student inside the method: "+st);
}
public static void main(string[] args) {
changeOfName (student) ;

System.out.println("Student outside the method: " +
student) ; }

index-749_3.png
a

[1,2,3,4,5]

index-892_1.png
Define two new sets

A {1, 4, 7}

B={1, 2, 3, 4, 5, 6, 7}

Check if A is a subset of B

Both of these methods are acceptable
print (A.issubset (B)) # True

print (A <= B) # True

Check if B is a superset of A

Both of these methods are acceptable
print (B.issuperset (A)) # True

print (B >= A) # True

index-502_2.jpg

index-637_1.png
number = 1int (input("Enter a number: "))
try:

result = 10/number

print (result)
except ZeroDivisionError:

print ("You can't divide by zero")
finally:

print ("This would be printed anyway")

index-757_1.png
class Main {
public static void main(String[] args) {

BankAccount amy = new BankAccount ("Amy") ;
BankAccount brian = new BankAccount ("Brian");
BankAccount clare = new BankAccount ("Clare");
// Do some transactions
amy .deposit (100) ;
brian.deposit (200) ;
clare.deposit (150) ;
amy .withdraw (75) ;
brian.deposit (75) ;
brian.transfer (250, clare);
// Print account info
System.out.println(amy) ;
System.out.println(brian) ;
System.out.println(clare) ;

index-502_1.png

index-636_1.png
read = new Scanner (System.1in);
System.out.println("Enter a number: ");
int number = read.nextInt();

int result;

try {
result = 10/number;
System.out.println(result) ;

}

catch (Exception e) {
system.out.println(e.tostring()); }

finally {

System.out.println("This would be printed anyway");

index-756_1.png
amy = BankAccount ("Amy")
brian = BankAccount ("Brian")
clare = BankAccount ("Clare")
Do some transactions

amy .deposit (100)
brian.deposit (200)
clare.deposit (150)

amy . withdraw (75)
brian.deposit (75)
brian.transfer (250,clare)

Print account info

print (amy)

print (brian)

print (clare)

index-894_1.png
Hash table size

table

_size = 10

ASCII values for letters

m' =
al =
mo=
re! =
110
417 %

+

110

97

109

101

97 + 109 + 101

417

table _size = 7

index-497_1.png
import tensorflow as tf
from tensorflow.keras import layers, models
from sklearn.model_selection import train_test_split
import numpy as np
Load data set
(x, y), (x_test, y_test) = tf.keras.datasets.california_housing.load data(
version="large", path="california_housing.npz", test_split=0.2, seed=113
)
split the data into training and validation sets
4 x_train is the training data, y_train is the training labels
x_val is the validation data, y_val is the validation labels
x_train, x_val, y_train, y_val = train_test_split(x, y, test_size=
random_state=0)
Define the network, compile, and train it
model = models.Sequential ([
layers.Dense (64, activation="relu", input_ shape=(x_train.shape(1],)),

layers.Dense (64, activation="relu"),
layers.Dense (1)

1
model. compile (optimizer:

"adam",
loss="mse",
metrics=["mae"])
history = model.fit (x_train, y_train,
epochs=100,
validation data=(x_val, y_val))
Run the unseen test data through the network to determine success
test_loss, test_mae = model.evaluate(x test, y_test)
print (E"Test data - mean-absolute-error: {test mae}

index-630_1.png
for (int ioi<3;i+4) {
System.out.println("hello world");

index-748_1.png
public static void manipulate(int n, int[] a) {
afo] = 15;

}

public static void main(String[] args) {
int[] a = {0, 1};
manipulate (3, a);
for(int i = 0; i<a.length; i++) {
System.out.println(a(il);

index-889_3.png
Difference

difference_set = A - B # or A.difference (B
print ("Difference:", difference_set)

output

Difference: [1, 2]

index-495_1.png
import tensorflow as tf

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
import numpy as np

Inputs: [A, B]

x = np.array([[0o, o], [0, 1], [1, 0], [1, 1]], dtype=float)
outputs: [OR, AND]
y = mp.array([fo, 0], [1, 0], [1, o], [1, 1], dtype=float)

Define and compile the model

model = Sequential ([
Hidden layer with 4 neurons, using ReLU
Dense (4, input_dim=2, activatio relu"),
oOutput layer with 2 neurons, using Sigmoid
Dense (2, activation="sigmoid")

1
model .compile (loss="binary_crossentropy", optimizer
model.fit (x, y, epochs=1000, verbose=1)

adam", metrics=["accuracy"])

Making predictions
predictions = model.predict (x)
print ("Predicted outputs:\n", predictions)
Evaluate the model
loss, accuracy = model.evaluate(x, y)
print ("Accuracy: {:.2f}".format (accuracy))
Print weights and biases for our curiosity
for layer_number, layer in enumerate (model.layers) :
weights, biases = layer.get_weights()
print (f'Layer {layer number+l}")
print ("Weights:\n", weights)
print ("Biases:\n", biases)
print ("\n")

index-628_1.png
def add(nol,no2):
sum = nol + no2
return sum
valuel = int (input ("enter nol:"))
value2 = int (input ("enter no2:"))
print ("The result is ", add(valuel, value2))
newval = 3
newval = newVal + add(valuel, value2)
print ("The new value is ", newvVal)

index-744_1.png
s W

NAMES

SLORES

Annabelle

Benjamin

Claire

Jack

olulo|w

olr|v|elw

Fran

Mark

woE W

NN

vielelofwsln

slo|o|w|w w| s

oln|elu|w/v|lan

index-889_2.png
// Intersection
Set<Integer> intersectionSet = new HashSet<>(A);
intersectionsSet.retainAll (B);

System.out .println("Intersection: " + intersectionSet);
// Output

// Intersection: [3, 4]

index-499_1.png
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.utils import to_categorical
import matplotlib.pyplot as plt
import numpy as np
Load data set
(x_train, y_train), (x_test, y test) = tf.keras.datasets.mnist.load data()
Convert grayscale pixels into floats with range [0...1]
x_train = x_train/255.0
X_test = x_test/255.0
convert the labels into "1 hot encoding" category arrays
e.g. label of 3 becomes [0,0,0,1,0,0,0,0,0,0]
y_train = to_categorical (y_train)
y_test = to_categorical (y_test)
Define the network, compile, and train it
model = models.Sequential ([
layers.Flatten (input_shape=(28,28)),
layers.Dense (64, activation="relu", input_shape=(x_train.shape[1],)),
layers.Dense (64, activation="relu"),
layers.Dense (10, activation="sigmoid")

1)
model . compile (optimizer="adam",
loss="binary_crossentropy",
metricss=["accuracy"])
history = model.fit(x_train, y_train, epochs=5)
Run the unseen test data through the network to determine success
loss, accuracy = model.evaluate(x_test, y_test)
print (f"Accuracy: {accuracy}")
model . save ("mnist-example .keras")

index-632_1.png
text = "hello "
def hello():
text is a global variable
global text
text is concatenated with a new text value
text = text + "world"
Driver code
hello()
print (text)

index-749_2.png
int a = {1,2,3,4,5};

index-890_2.png

index-498_1.png
a & b o

L4

6

228 4220 20

z

s 33 72 3 3
Y 4 4 4 N4y G4 4
5 55555 ¢ 85855
6 6 ¢ &

s a

6 b o

TR 8 ¢ 88 %
9 9 ¢ 9 9 ¢ 9 9 2 9

§ £

index-631_1.png
def hello():
text is the local variable
text = "hello world"
print (text)

code to text

hello()

the print below will throw an error as text does not exist
outside the procedure

print (text)

index-749_1.png
def manipulate(n, a):
afol= 15

a= [0,1]

manipulate (3,a)

orint (a)

index-890_1.png
// Difference
Set<Integer> differenceSet = new HashSet<>(A);
differenceset.removeAll (B) ;
system.out.println("Difference: " + differenceset);
// output

// Difference: [1, 2]

index-626_1.png
Java

private static Scanner read;
public static void add(int nol, int no2) {
int sum;
sum = nol+no2;
System.out.println("The result is "+ sum);
}
public static void main(string[] args) {
read = new Scanner (System.in);
int valuel, value2;
System.out .println("enter the first number:");
valuel = read.nextInt();
System.out .println("enter the second number:");
value2 = read.nextInt ()
add (valuel, value2);

def add(nol,no2):
sum = nol + no2

print ("The result is ", sum)
valuel = int (input ("enter nol:"))
value2 = int (input ("enter no2:"))
add (valuel, value2)

index-625_1.png
Java

private static Scanner read;

public static void add() {
int nol, no2, sum;
System.out .println("enter the first number:");
nol = read.nextInt();
System.out .println("enter the second number:
no2 = read.nextInt();
sum = nol+no2;

System.out.println("The result is "+ sum);

}

public static void main(string[] args) {
read = new Scanner (System.in);
add() ;

: Python
def add():
nol = int (input("enter nol:"))
no2 = int (input("enter no2:"))
sum = nol + no2
print ("The result is ", sum)
add ()

index-739_1.png
lmport os
if os.path.exists("numbers.txt"):
print("the file exists")
else:
print ("the file does not exist™")

index-733_1.png
lmport java.util.*;
import java.io.*;
public static void main(String[] args) {
char([] text = new char([100];

try {
FileReader reader = new FileReader ("numbers.txt");

new BufferedReader (reader) ;

BufferedReader br

int singleChar = br.read();

while(singleChar!=-1) {
System.out.print ((char)singleChar + " ");
singleChar = br.read();

}

br.close() ;

reader.close () ;

} catch (IOException e) {
e.printStackTrace () ;

index-883_2.png

index-883_1.png

index-620_1.png
int 1 = 1;

do {
System.out.println(i);
i = i+1;

} while (i

00);

index-737_2.png
Lry:
£ = open("numbers.txt", "w")
f.write("First line\n")
f.write("Second line\n")
f.close()
£ = open("numbers.txt", "rn)
text = f.readline()
while texti="":

print (text)
text = f.readline()

except :
print ("There was a problem")

index-886_4.png
if (my_set.contains(2)) {
System.out.println("2 is in the set
} else {
System.out.println("2 is not in the set.");

index-619_1.png
statements

Yes

index-737_1.png
f = open("numbers.txt", "w")
f.write("First line\n")
f.write("second line\n")
f.close()

f = open("numbers.txt", "r")
print (f.readline())
f.close()

index-886_3.png
1f 2 1in my_set:
print ("2 is in the set")
clse:
print ("2 is not in the set")

index-624_1.png
Java

read = new Scanner (System.in);
int nol, no2, sum;
System.out.println("enter nol:
)i

"enter no2:
)i

nol = read.nextInt
System.out.println
no2 = read.nextInt
nol+no2;

System.out.println("The result is "+ sum);

(
(
(
(

sum

Python
nol int (input ("enter no
no2 int (input ("enter no2
sum = nol + no2

print ("The result is ", sum)

index-738_2.png
try:
= open("numbers.txt", "w")
.write ("First line\n")
.write("Second line\n")
.close ()
= open("numbers.txt", "r")
or line in f:

print (1ine)
except :

print ("There was a problem")

index-888_1.png
// Define two sets
Set<Integer> A = new HashSet<s();
A.add (1) ;
A.add(2) ;
A.add(3) ;
A.add(4);
Set<Integer> B = new HashSet<s();
B.add (3) ;
B.add (4) ;
B.add (5) ;
B.add(s6)

index-620_2.png
1i=1
while (True) :

if 1>100:
break

index-738_1.png
try:
f = open("numbers.txt", "w")
f.write("First line\n")
f.write("Second line\n")
f.close()
f = open("numbers.txt", "r")
text = f.readline()
while len(text)!=0:
print (text)
text = f.readline()
except :
print (v

here was a problem")

index-887_1.png
ks

Define two sets

{1, 2, 3, 4}
{3, 4, 5, 6}

index-618_1.png
int 1 = 1;
while(i<101) {
System.out .println (i) ;
i= i+l

index-735_1.png
f = open("numbers.txt", "w")
£.write("First line")
f.close()

index-885_2.png
import java.util.HashSet;

import java.util.Set;

// Creating a HashSet of type Integer
set<Integers> mySet = new HashSet<>();

index-617_1.png
String password, pass;
password = "apple";
System.out .println("Re-enter the password:");
pass = read.nextLine();
while (! password.equals(pass)) {
System.out .println("Re-enter the password:"
pass = read.nextLine();

}

System.out .println("The two passwords matched") ;

index-734_1.png
lmport java.util.*;
import java.io.*;
public static void main(String[] args) {
char([] text = new char([100];

try {
FileReader reader = new FileReader ("numbers.txt");

BufferedReader br = new BufferedReader (reader);
string line = br.readLine();
while(linet!=null) {
System.out.println(line);
line = br.readLine();
}
br.close() ;
reader.close () ;
} catch (IOException e) {
e.printStackTrace () ;

index-885_1.png
Using curly brackets
my_set = {1, 2, 3, 4, 5}

Using the set() comstructor

my_set2 = set([1, 2, 2, 3, 4, 5]) # Duplicate entries will
automatically be removed

index-618_3.png
i+1

until i >=n

index-736_2.png
f = open("numbers.txt", "w")
f.write("First line\n")
f.write("second line\n")
f.close()

f = open("numbers.txt", "r")
print (f.read())

f.close()

index-886_2.png
Set<Integer> mySet = new HashSet<>();
my_set.add(6); // Add 6 to the set
my set.remove(l) // Remove 1 from the set

index-618_2.png
1=1
while(i<101):
print (i)

index-736_1.png
f = open("numbers.txt
f.write("First line")
f.close()

f = open("numbers.txt", "r")
print (£.read())

f.close()

w')

index-886_1.png
my_set = {1, 2, 3, 4, 5}
my_set.add(6) # Add 6 to the set
my set.remove(l) # Remove 1 from the set

index-615_3.png
i=0
loop while

i=i+1

end loop

index-732_1.png
lmport java.util.*;
import java.io.*;
public static void main(String[] args) {
char[] text = new char[100];
try {
FileReader reader = new FileReader ("numbers.txt");
reader.read (text) ;
System.out.println(text);
reader.close () ;
} catch (IOException e) {
e.printStackTrace() ;

index-615_2.png
for 1 in range (100,0,-1)
print (i)

index-731_2.png
lmport java.util.*;
import java.io.*;
public static void main(String[] args) {
try {
FileWriter out = new FileWriter("numbers.txt", true);
out.write("This is the second line!");
out.close() ;
} catch (IOException e) {
e.printStackTrace() ;

index-877_1.png

index-616_1.png
initialization

True‘l

False statements

index-868_2.png
class ListNode:

Constructor (1 parameter data with a default value of 0)
def __init__(self, data=0):

self.data = data

self next = None

index-614_3.png
for(int i 1; i<=100; i=i+2) {
System.out.println(i);

index-729_1.png
lmport java.util.*;
import java.io.*;
public static void main(String[] args) {
try {
PrintStream out = new PrintStream(new File
("numbers.txt"));
out.println("Hello world!");
out.println("I added content to the text file!");
} catch (FileNotFoundException e) {
e.printStackTrace() ;

index-873_2.png
def search(self, key):
self.head # Get the head node

current =
while current != None: # Keep looping until we have run out of nodes
if current.data == key: # If we find the node we are looking for

return True
current.next # Move to the next node

Value not found in the list

current =
return False

index-614_2.png
for 1 in range (1,100)
if (i%2 == 1):
print (i)

index-728_1.png
lmport java.util.*;
import java.io.*;
public static void main(String[] args) {
try {
Scanner read = new Scanner (new File("numbers.txt"));
while (read.hasNext ()) {
String line = read.nextLine();
System.out.println(line);
}
} catch (FileNotFoundException e) {
e.printStackTrace() ;

index-873_1.png
public void deleteNode (int data) {
ListNode current = head

prev = null;
// case 1: If the head node is to be deleted

if (current != null && current.data == data) {
head = current.next; // Changed head
return;

}
// case 2: If the node to be deleted is somewhere other than at the head
while (current != null && current.data != key) {

prev = current;

current = current.next;

}

// case 3: If the key is not present in the list

if (current == null) {
System.out.println("Node with value " + key + " not found.");
return;

}

// Unlink the node from the linked list
prev.next = current.next;

index-615_1.png
for(int i 100; i>0; i=i-1) {
System.out.println(i);

index-731_1.png
lmport java.util.*;
import java.io.*;
public static void main(String[] args) {

try {
FileWriter out = new FileWriter ("numbers.txt");

out.write("This is the first line!");
out.close();

} catch (IOException e) {
e.printStackTrace () ;

index-875_1.png
parent

eft subtree right subtree

leaf nodes

index-614_4.png
for 1 in range (1,100,2)
print (i)

index-730_1.png
lmport java.util.

import java.io.*;
public static void main(String[] args) {

try {
PrintStream out = new PrintStream(new

FileOutputStream("numbers.txt", true));
out.println("A new line appended!");
out.close();

}

catch (FileNotFoundException e) {
e.printStackTrace () ;

index-874_1.png
public boolean search(int key) {
ListNode current = head; // Get the head node
while (current != null) { // Keep looping until we have run out of nodes
if (current.data == key) { // If we find the node we are looking for
return true;

}

current = current.next; // Move to the next node

}

return false; // Value not found in the list

index-613_3.png
for(int i 1; i<=100; i++) {
System.out.println(i);

index-720_1.png
class Node
{
int data;
Node left;
Node right;
Node (int value) {
data = value;
left=right=null;

b

class testTraversal {
void inorder (Node root)

{
if (root == null) {
return;
}
inorder (root.left);
System.out.println(root.data);
inorder (root.right);
}

public static void main(String[] args) {
Node root = new Node (5);
root.left = new Node (3);
root.right = new Node(8);
root.left.left = new Node(2);
root.left.right = new Node (4);
root.right.left = new Node (6);
root.right.right = new Node (9) ;
inorder (root) ;

index-870_1.png
def 1nsert_at_beginning(self, data):
new_node = ListNode(data) # Create the new node with the data given
new_node.next = self.head # Set new node pointer to current head node
self.head = new_node # Set head pointer to new node
Inserts a new node with 'data' after the first node found with 'target_
value'.
If 'target_value' is not found, does not insert the new node.
def insert_after value(self, target_value, data):
current = self.head
while current is not None:
if current.data == target_value: # If we find the node to insert after
new_node = ListNode(data) # Create a new node with provided data

new_node.next = current.next # Set new node pointer to the same
pointer as the found node

current.next = new_node # Set the found node pointer to the new
node
return # We can now end the method early
current = current.next # Otherwise move to the next node
print (f"Node with data {target_value} not found.") # If loop ends we did
not find our target
def insert_at_end(self, data):
new_node = ListNode(data) # Create new node
if self.head is None: # Check if list is empty
self.head = new_node # Insert new node as head of list
else:
current = self.head # Get a link to the first node in the list
while current.next != None: # Keep moving down the list
current = current.next

When the above loop ends, the next pointer must be None, indicating we
have reached the last node

current .next = new node # Set pointer on current last node to the new node

index-718_1.png
Of (11 2] 3] (4] I5] I6] 17. N
1[16[13[4 [6]22] 1 [9] 5 |swep 16nas Ot 7
0] [1] [2] [3] [4I([5])[6] [7.
2[5 [13[4 [6]22] T 9 [16]swap13ana1
0] 1] [2 4] [5] [6] [7. quickSort start: 0 right: 2
315 (1 | & 22|13 9 |16|swap6and6
0] [1] [2] [3] [4] [5] [6] [7 quickSort start: 0 right: 0 7
TS AR BIg vep sand 1 " o2
01 1] 21 31 4 51 16 g1
. 5141622139 [16]swapsands auicksort left, 4 fnichs 7
quickSort start: 4 right: 3
0] [1] (2] 3] [4] [5] [6] [7. quickSort left: 5 finish: 5 |
s[1[4 . 6 122]13] 9 [16]swap 22 and o GuickSort left: 5 finish: 7
quickSort start: 5 right: 6
0] [1] [2] [3] [4] [5] [6] [7. I
7 d
els]6]o .2 2106) i ‘squid<50r!s!an:5right:4
ickSort left: 6 finish: 6
[LUEEEEE

index-868_3.png
class ListNode {
int data; // This example will create a node with data of type int, but you
// may use any type here depending on your needs

ListNode next;
// constructor to create a new node
ListNode (int d) {

data = d;

next = null; // Set to null

index-614_1.png
for(int i = 1; i<=100; i++)
if (i%2 == 1) {
System.out.println(i);

index-727_1.png
lmport java.utll.*;
import java.io.*;
public static void main(String([] args)
try {

{

Scanner read = new Scanner(new File("numbers.txt"));

double sum = 0.0;

double average = 0.0;

for (int i = 0; i<5; i++) {
double value = read.nextDouble () ;
sum = sum + value;

}

average = sum/5;

system.out .println("average is:

} catch (FileNotFoundException
e.printStackTrace () ;

"+ average);

e {

index-872_1.png
def delete_node(self, data):
current = self.head # Get the head node
prev = None
Case 1: If the node to be deleted is the head of the list
if current != None and current.data == data:

self.head = current.next # Change head to the current head's pointer
current = None # Free the old head
return

Search for the node to be deleted, remembering to keep track of the
previous node

while current != None and current.data != data:
prev = current
current = current.next

Ccase 3: If the node is not found

if current None :

print (E"Node with data {data} not found.")
return
Case 2: Unlink the node from the list
prev.next = current.next
current = None

index-613_4.png
for 1 in range (100)
print (i+1)

index-721_1.png
init__ (self, value):
self.data
self.left
self.right = None
def inorder(root):
if root is None:

value

None

return
inorder (root.left)
print (root.data, " ", end=
inorder (root.right)

root = Node (5)

root.left = Node(3)

root .right = Node (8)

root.left.left = Node(2)

root .left.right = Node(4)

root .right.left = Node(6)

root .right.right = Node(9)

inorder (root)

index-871_1.png
public void insertAtBeginning(int data) {
ListNode newNode = new ListNode(data); // Create a new node with the data given
newNode.next = head; // Set new node pointer to current head node
head = newNode; // Set head pointer to new node

}

public void insertAfter (int targetValue, int data) {

ListNode current = head;
// Traverse the list to find the target value
targetvValue) {

while (current != null && current.data
current = current.next;

}

// At this point current will either be null (not found) or our target node
// If the target node is found, insert the new node after it
if (current != null) {

ListNode newNode = new ListNode(data); // Create new node with data

// provided
newNode.next = current.next; // Set new node pointer to the same pointer
// as the found node
current.next = newNode; // Set the found node pointer to the new node

} else {
// If the target value is not found in the list
System.out .println("Node with value " + targetValue + " not found.");

}
public void insertAtEnd(int data) {
ListNode newNode = new ListNode(data); // Create a new node

if (head == null) { // Check if list is empty
head = newNode; // Insert new node as head of list

} else {
ListNode last = head; // Get link to the first node in the list
while (last.next != null) { // Keep moving down the list

last = last.next;
}
// When the above loop ends, the next pointer must be null, indicating

// we have reached the last node
last.next = newNode; // Set pointer on current last node to the new node

index-717_1.png
def quicksSort(start, finish, numbers):
if (start>=finish) :

return

left = start

right = finish

pivot = numbers[int ((start+finish)/2)]

print("start: ", start, "finish: ", finish, "left: ", left, "right: ",
right, "pivot: ", pivot)

while left<right:
while numbers[left]<pivot:
left = left + 1
print ("left: ", left)
while numbers [right]>pivot:
right = right - 1
print ("right: ", right)
if left<=right:
temp = numbers [left]
numbers [left] = numbers [right]
numbers [right]= temp
left = left + 1
right = right - 1
print ()

index-868_1.png
public class LinkedList {
ListNode head; // Head of the list
// Method to print the LinkedList
public void printList() {
ListNode n = head; // Set to first node

while (n null) { // Loop until no further nodes
System.out.print (n.data + " -> "); // output node
// data

n = n.next; // Move pointer to next node

}

System.out.println("NULL") ;

index-716_1.png
public static void quicksSort(int start, int finish, int[Inumbers) {
if (start>=finish) {
return;

}

int left = start;
int right = finish;
int pivot = numbers[(start+finish)/2];

System.out.print ("start:" + start + " finish: " + finish + " left: " + left
+ " right: " + right + " pivot: " + pivot);
while (left<right) {
while (numbers [left]<pivot) {
left = left+l;
System.out.println("left: " + left);
}
while (numbers [right] >pivot) {
right = right-1;
System.out.println("right: " + right);
}
if (left<=right) {
int temp = numbers [left];
numbers [left] = numbers [right];
numbers [right] = temp;
left = left+l;
right = right-1;
system.out .println();
for(int i = 0; i<numbers.length; i++) {
System.out.print (numbers [i] + " ");
}
System.out.println();
System.out.println("left: " + left);
System.out.println("right: " + right);
}
}
System.out.println("quickSort from start: " + start + " right: " + right);
quicksort (start, right, numbers);
"+ left + " finish: " + finish);

System.out.println("quicksort from left:
quicksort (left, finish, numbers);

}

public static void main(string[] args) {
int numbers[] = {16,13,4,6,22,1,9,5};
quicksort (0,numbers.length-1, numbers);
for(int i = 0; i<numbers.length; i++) {

System.out.print (numbers[i]+ " ");

index-867_1.png
class LinkedLilst:
" Constructor """

def __init__ (self):
self.head = None # Initialize the head pointer

wiwFunction to print the linked listvnn
def print_list (self):
current = self.head # Set to first node
while current != None: # Loop until no further nodes
print (current.data, end=" -> ") # Output node data
current = current.next # Move pointer to next node

print ("None")

index-717_2.png
for 1 1in range (len(numbers)):
print (numbers[i], " ", end="")
print ()
print ("left: ", left)
print ("right: ", right)
print ("quickSort from start: ", start, " to right: ", right)
quicksort (start, right, numbers)
print ("quicksort from left: ", left, " to finish: ", finish)
quicksort (left, finish, numbers)
numbers = [16,13,4,6,22,1,9,5]
quicksSort (0, len(numbers)-1, numbers)
for i in range (len(numbers)):
print (numbers [i],

‘end:

index-712_1.png
THE FIBONACCI SEQUENCE
Each number is the sum of the two that precede it.

011235813 21

21

index-866_1.png
head > A > B > C >NULL

index-711_2.png
def factorial(n):
if(n==1):
return 1
else:
return n * factorial(n-1)
fact = factorial(s)
print (fact)

index-865_3.png
le—o

head > A > B > C >NULL

index-713_2.png
def fib(n):
if n=
return 0

elif n=
return 1

else:
return fib(n-1) +
£ib(n-2)
n = int (input ("enter a number: "))
for i in range(n):
print (Fib(i), " ", en

i)

index-866_3.png
head > A > B >NULL

NULL

index-713_1.png
public static int fib(int n) {
if (n==0) {
return 0;
} else if (n==1) {
return 1;
} else {
return fib(n-1) + £ib(n-2);

}
public static void main(string[] args) {
Scanner read = new Scanner (System.in);
System.out.println("Enter a number: ");
int n = read.nextInt();
for(int i = 0; i<n; i++) {
System.out.print (fib(i) + " ");

index-866_2.png
fe—o

head > A > B >NULL

index-706_1.png
int numbers(] = {9,7,2,3};
int min;
for(int i
min =i;
for(int j = i+1; j<numbers.length; j++) {
if (numbers [j]<numbers [min]) {

min=j;

0; i<numbers.length-1; i++) {

}

int temp = numbers[i];

numbers [i] =numbers [min] ;

numbers [min] =temp;

for(int i = 0; i<numbers.length; i++) {
system.out.print (numbers[i] + " ");

index-864_4.png
head ——>|

——>NULL

index-864_3.png
hea

>NULL

index-711_1.png
public static int factorial(int n) {

if
}
else {
return n * factorial(n-1);
}

}

public static void main(String[] args) {
int fact = factorial(s);
System.out.println(fact) ;

index-865_2.png
head A > B >NULL

index-707_1.png
numbers = [9,7,2,3]

for i in range (len(numbers)-1):
min = i

for j in range(i+l, len(numbers)):

if numbers(j] < numbers [min] :

min = j
temp = numbers [i]
numbers [i] = numbers [min]
numbers [min] = temp

for i in range (len(numbers)):

print (numbers[i], " ", end:

index-865_1.png
head > A > B >NULL

index-704_1.png
Unsorted array (list)

1

Sorted array (list)

9 j 3
2|7 9mp
2 Wap3 9
2 3W7 9
2[3]7]9

index-864_1.png
head > A > B I A >NULL

index-703_1.png
numbers = [7,3,2,9]
swapped = True
n = len(numbers)
while (n>0 and swapped) :
swapped = False
n=n-1
for i in range(0, n-1):
if numbers [i] >numbers [i+1] :
temp = numbers[i]
numbers [1i] =numbers [i+1]
numbers [i+1] =temp
swapped = True
for i in range(len(numbers)):
print (numbers [i], " ", en

index-863_4.png
Z ——>NuLL

head——> A\ > B NULL

index-705_2.png
numbers = [9,7,2,3]
for i in range(len (numbers)):
min = numbers [i]
minTndex = i
for j in range(i+1, len(numbers)):
if numbers[j] < mi

min = numbers(j]
minIndex = j
numbers [minIndex] = numbers [i]
numbers [i] = min
for i in range(len (numbers)):
print (numbers[i], " ", end:

index-705_1.png
int numbers([] = {9,7,2,3};

int min, minIndex;

for(int i = 0; i<numbers.length; i++) {
min = numbers [i];
minIndex

i;
for(int j = i+1; j<numbers.length; j++) {
if (numbers[j]<min) {
min = numbers[j];
minIndex=J;

}

numbers [minIndex] = numbers[i];
numbers [i] = min;

b

for(int i = 0; i<numbers.length; i++) {
System.out.print (numbers [i] + " ");

index-864_2.png
1— 7 | ———nu

>NULL

head > A

12
@
—
12
o

