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F O R E W O R D

 Gary Chartrand

How often is it, I won der, that when young students are introduced to mathe matics subjects such as algebra, geometry, and perhaps even calculus, they ask: “When and where did  these subjects come about, and who created them?” As  these students become older, attend college, and encounter mathematical subjects with more sophisticated- sounding names, such as abstract algebra, analy sis, topology, and combinatorics, the same questions apply. 

My guess is that questions such as  these are rarely asked, if at all. 

One reason may be that  people tend to think that mathe matics has been around forever, that  there’s nothing new to discover, and that mathematics is not due to any par tic u lar individuals or did not begin in any par tic u lar place. While  there is no single answer to  these questions, one response is clear.  These subjects did not originate in Amer i ca. In some instances,  there was no United States as yet—or, if so, it was in its infancy. Several mathematical subjects grew out of  people, primarily from Eu rope, but also from Asia and Africa.  These  people  were not always mathematicians— but they  were  people with an abundance of mathematical curiosity. 

This book deals with one area of mathe matics in particular—my all-time personal favorite: graph theory. A youngster among the fields of mathe matics, it is fascinating for a wide variety of reasons. It has connections with many other subjects, both inside and outside mathematics— some  were highly scholarly, while  others grew out of in ter esting and imaginative prob lems that  were just plain fun. 

The questions and prob lems that have arisen in this area are often easy to state, but notoriously difficult to answer or solve. Nevertheless, we, the readers, find ourselves in the enviable position of being about to be led through the story of how much of this subject found its way to North Amer i ca and was impacted by Americans and Canadians— told by a master mathematical explorer, historian, and storyteller, Robin Wilson, along with his fellow authors John Watkins and David Parks.  These exceptional individuals have enjoyed a lifelong interest in this exciting area of mathe matics and in the history  behind it. 

viii FOREWORD

The early topics in graph theory  were often passed along from one individual to another by means of personal conversations or handwrit-ten letters, as no other means of communication  were accessible during the time.  Later, the communication of topics became available through public lectures and articles in magazines, while  later still, books  were written that collected, summarized, and solidified the impor tant information known at that time.  These efforts  were followed by travel to international conferences, which made graph theory a worldwide subject. 

Fi nally, email communication, along with the Internet, has opened up the subject to every one. 

So, sit back, get comfortable, with this book in hand or a computer screen before you, and be prepared to enjoy a story of how one remarkable area of mathe matics, with  humble beginnings deeply rooted in Europe, traveled to and through North Amer i ca, and how Americans and Canadians came to influence this journey. 

 Gary Chartrand  

 Western Michigan University

P R E F A C E

Over the hundred years from 1876 to 1976, graph theory underwent a fundamental transformation, both worldwide and in North Amer i ca. In 1876, the En glishman James Joseph Sylvester took up his appointment as the first professor of mathe matics at the newly founded and research-oriented Johns Hopkins University in Baltimore, Mary land, where his inaugural lecture outlined the connections he saw between graph theory and chemistry. It was shortly  after this that he introduced the word graph in our modern sense. In 1976,  after much activity by many  people, the four color prob lem was fi nally solved by Kenneth Appel and Wolfgang Haken of the University of Illinois. 

This book is based on a doctoral dissertation by David Parks for the Open University, UK,  under the supervision of Robin Wilson, and chronicles the historical development of graph theory in Amer i ca between  these two significant years. Whereas many of the featured mathematicians spent their entire  career working on prob lems in graph theory, a few (such as Hassler Whitney) began their  career in this subject but  later became better known for their researches elsewhere, while others (such as C. S. Peirce, Oswald Veblen, and George Birkhoff ) made excursions into graph theory while continuing their mainstream work in other fields. 

Interwoven between the main chapters of this book are “interludes” 

that help to set the scene for the main narrative. We open with a description of how American universities developed up to the 19th  century, while the two  later interludes pre sent the parallel development of graph theory in Eu rope. We conclude with an “Aftermath” that describes further achievements up to 1976 and mentions some impor tant developments  after this. 

A special feature of this book is the inclusion of short summaries of some specific publications that influenced the subject’s development. 

Listed  after this Preface,  these range from Birkhoff’s groundbreaking paper on the reducibility of maps, and Whitney’s seminal writings on the planarity of graphs, to the fundamental research of Gerhard Ringel and J.W.T. Youngs into the drawing of graphs on topological surfaces. 

x PREFACE

These summaries can be omitted by  those not interested in the mathematical details. 

No prior knowledge of graph theory is required when reading this book, which aims to explain the historical development of the subject in  simple terms to a general reader interested in mathe matics. However, the mathematical level inevitably varies somewhat, especially in the  later chapters, and readers who are interested mainly in the historical narrative, and in the personalities involved, can safely pass over any technical material. The book concludes with a glossary of graph theory terms used throughout the book. 

The authors wish to thank the Open University and the Colorado College for encouragement and support. We should also like to thank Gary Chartrand, Karen Hunger Parshall, Bjarne Toft, and Matjaž Krnc for their helpful comments on the manuscript, and Vickie Kearn, Susannah Shoemaker, Lauren Bucca, Kristen Hop, Diana Gillooly, Karen Carter, and Eric Crahan of Prince ton University Press for all their help in bringing this book into being. 

 Robin Wilson, John J. Watkins, and David J. Parks

F E A T U R E D   P A P E R S

The publications that are summarized in the text are as follows: Chapter 1

J. J. Sylvester (1878): “On an application of the new atomic theory to the graphical repre sen ta tion of the invariants and covariants of binary quantics,— with three appendices” 

A. B. Kempe (1879): “On the geo graph i cal prob lem of the four colours” 

W. E. Story (1879): “Note on the preceding paper” 

Chapter 2

O. Veblen (1912): “An application of modular equations in analy sis situs” 

George D. Birkhoff (1912): “A determinant formula for the number of ways of coloring a map” 

George D. Birkhoff (1913): “The reducibility of maps” 

Chapter 3

Philip Franklin (1922): “The four color prob lem” 

J. Howard Redfield (1927): “The theory of group- reduced distributions” 

Chapter 4

Hassler Whitney (1932): “A logical expansion in mathe matics” 

Hassler Whitney (1932): “Non- separable and planar graphs” 

Hassler Whitney (1935): “On the abstract properties of linear dependence” 

Chapter 5

G. D. Birkhoff and D. C. Lewis (1946): “Chromatic polynomials” 

L. R. Ford Jr. and D. R. Fulkerson (1956): “Maximal flow through a network” 

R. C. Prim (1957): “Shortest connection networks and some 

generalizations” 

W. T. Tutte (1959): “Matroids and graphs” 

xii 

FEATURED PAPERS

Chapter 6

Oystein Ore (1960): “Note on Hamilton cir cuits” 

Gerhard Ringel and J.W.T. Youngs (1968): “Solution of the Heawood map- coloring  prob lem” 

K. Appel and W. Haken (1976): “ Every planar map is four colorable” 

C H R O N O L O G Y   O F   E V E N T S

In this chronology we list the most impor tant publications and events that are featured in this volume. 

1636 

Harvard College ( later, Harvard University) is founded in 

Cambridge,  Mas sa chu setts. 

1701 

The Collegiate School ( later, Yale University) is founded 

near New Haven, Connecticut. 

1735 

Leonhard Euler solves the Königsberg bridges prob lem. 

1746 

The College of New Jersey ( later, Prince ton University) is 

founded in New Jersey. 

1750 

Euler states his “polyhedron formula”,  F +  V  =   E + 2. 

1812–13  Simon- Antoine- Jean L’Huilier extends Euler’s formula to orientable surfaces. 

1827 

King’s College ( later, the University of Toronto) is founded. 

1847 

Gustav R. Kirchhoff writes on electrical networks and 

introduces spanning trees. 

1852 

Francis Guthrie poses the four color prob lem for maps. 

1856 

Thomas P. Kirkman and William R. Hamilton investigate 

“Hamiltonian cycles” on polyhedra. 

1857 

Arthur Cayley writes his first paper on trees. 

1861 

The Mas sa chu setts Institute of Technology (MIT) is 

founded in Boston. 

The first doctoral degrees are awarded, at Yale College. 

Johann B. Listing discusses “spatial complexes” in 

topology. 

1862 

The Morrill Act is passed, allowing for expansion in 

higher education. 

1875 

Cayley enumerates certain chemical molecules. 
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CHRONOLOGY OF EVENTS

Now begin “The First Hundred Years” that are the  

focus of this book

1876 

Johns Hopkins University is founded in Baltimore, 

Mary land, and James Joseph Sylvester is appointed the 

first professor of mathe matics. 

1878 The 

 American Journal of Mathe matics is launched. 

Arthur Cayley introduces “Cayley color graphs” and 

revives the four color prob lem at a meeting of the London 

Mathematical Society. 

James Joseph Sylvester writes on the “new atomic theory” 

and introduces the word “graph”. 

1879 

Cayley shows that the four color prob lem can be  

restricted to cubic maps. 

Alfred B. Kempe proposes a proof of the four color 

theorem in the  American Journal of Mathe matics, and 

William E. Story comments on Kempe’s paper. 

1880 

Peter Guthrie Tait reformulates the four color prob lem in 

terms of coloring the bound aries of a cubic map. 

1884 

Tait conjectures that  every cubic polyhedron has a Hamil-

tonian cycle. 

1888 

The New York Mathematical Society is founded. 

1889 

Cayley pre sents his  nn −   2 result on the number of labeled trees. 

1890 

The University of Chicago is founded. 

Percy J. Heawood points out the error in Kempe’s proof 

of the four color theorem, proves the five color theorem, 

and discusses the coloring of maps on orientable 

surfaces. 

1891 

Lothar Heffter investigates the coloring of maps on 

orientable surfaces, and points out the omission in 

Heawood’s paper, leading to the “Heawood conjecture”. 

Julius Petersen discusses the factorization of regular 

graphs. 

1894 

The New York Mathematical Society is renamed “The 

American Mathematical Society”. 

1895 

Gaston Tarry pre sents a method for tracing a maze. 

CHRONOLOGY OF EVENTS 

xv

1898 

Heawood explores the congruences arising from coloring 

cubic maps. 

Petersen introduces the “Petersen graph”. 

1904 

Paul Wernicke introduces a new unavoidable set for the 

coloring of maps. 

c.1905 

Hermann Minkowski attempts unsuccessfully to prove the 

four color theorem. 

1910 

Heinrich Tietze investigates the coloring of maps on 

non- orientable  surfaces. 

1912 

George D. Birkhoff introduces chromatic polynomials. 

Oswald Veblen writes on the algebra of graphs and recasts 

the four color prob lem in the context of projective 

geometry. 

1913 

Birkhoff discusses reducible configurations in maps and 

introduces the “Birkhoff diamond”. 

1914–18  World War I (Canada enters in 1914; United States enters in 1917). 

1916 

Dénes König investigates 1- factors and edge colorings in 

bipartite graphs. 

Veblen pre sents the American Mathematical Society 

Colloquium Lectures on  Analy sis  Situs (published in 1922). 

1920s 

Alfred Errera writes several papers on map coloring. 

1922 

Philip Franklin writes on the four color prob lem and 

proves that all maps with up to 25 countries can be 

colored with four colors. 

1923 

H. Roy Brahana publishes an impor tant result on the 

topology of surfaces. 

1926 

Otakar Borůvka solves the minimum connector prob lem 

on minimum- length spanning trees. 

Clarence N. Reynolds Jr. proves that all maps with up to 

27 countries can be colored with four colors. 

André Sainte- Laguë writes  Les Réseaux ( ou graphes) (En glish version 2021). 

1927 

Karl Menger investigates the connectedness of graphs. 

J. Howard Redfield investigates enumeration problems, 

with applications to graphs. 

xvi 

CHRONOLOGY OF EVENTS

1930 

The Institute for Advanced Study is established at Prince-

ton, New Jersey. 

Vojtĕch Jarník solves the minimum connector prob lem. 

Casimir Kuratowski obtains a forbidden subgraphs 

characterization of planar graphs. 

Frank P. Ramsey writes on set theory, laying the ground-

work for what would become “Ramsey graph theory”. 

1930s 

The  Great Depression. 

1931 

D. König and E. Egerváry write on matchings in bipartite 

graphs. 

1931–35  Hassler Whitney writes seminal papers on planar graphs and duality, coloring graphs, connectivity, matroids, and 

other topics. 

1934 

Franklin proves that all maps on a Klein  bottle can be 

colored with six colors. 

1935 

Philip Hall proves “Hall’s theorem” on representatives of 

subsets (matchings). 

Heinrich Heesch becomes interested in the four color 

prob lem. 

Isidore N. Kagno investigates graphs on surfaces. 

1936 

König publishes  Theorie der endlichen und unendlichen 

 Graphen, the “first book on graph theory” (En glish 

version 1990). 

1937 

Saunders Mac Lane obtains new conditions for a graph to 

be planar. 

George Pólya writes a groundbreaking paper on graph 

enumeration. 

1938 

Roberto Frucht proves that  every abstract group is the 

automorphism group of some graph. 

1939–45  World War II (Canada enters in 1939; United States enters in 1941). 

1940 

 Mathematical Reviews is launched. 

Leonard Brooks, Cedric Smith, Arthur Stone, and  

William T. Tutte solve the prob lem of “squaring  

the square”. 

Henri Lebesgue finds new unavoidable sets for map 

coloring. 

CHRONOLOGY OF EVENTS 

xvii

C. E. Winn proves that all maps with up to 35 countries 

can be colored with four colors. 

1941 

Brooks pre sents an upper bound on the chromatic num-

ber of a graph. 

Frank L. Hitchcock writes on the transportation prob lem. 

1943 

Hugo Hadwiger poses a conjecture on  k- colorable  graphs. 

1946 

G. D. Birkhoff and D. C. Lewis publish a major paper on 

chromatic polynomials. 

I. N. Kagno writes on graphs and their groups. 

Tutte disproves Tait’s conjecture on Hamiltonian cycles in 

cubic polyhedra. 

1947 

Arthur Bernhart classifies configurations surrounded by 

6- rings. 

George B. Dantzig invents the simplex algorithm for 

solving linear programming prob lems. 

Paul Erdős obtains bounds for a prob lem in Ramsey 

graph theory. 

Tutte finds a condition for a graph to have a 1- factor and 

introduces the “Tutte polynomial” of a graph. 

1948 

Heesch lectures in Kiel on the search for an unavoidable 

set of reducible configurations for the four color prob lem, 

with Wolfgang Haken in the audience. 

Richard R. Otter writes on the enumeration of trees. 

Tutte writes his doctoral thesis on an algebraic theory of 

graphs. 

1949 

Claude E. Shannon publishes an upper bound for color-

ing the edges of a multigraph. 

1952 

Gabriel Dirac pre sents a sufficient condition for a graph 

to be Hamiltonian. 

Gerhard Ringel proves the Heawood conjecture for maps 

on non- orientable surfaces. 

Tutte pre sents a condition for a graph to have an  r- factor. 

1953 

The William Lowell Putnam Mathematical Competition 

includes the “six  people at a party” prob lem. 

1954 

George Dantzig, Ray Fulkerson, and Selmer Johnson 

write on the traveling salesman prob lem. 

Frank Harary writes on signed graphs. 
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CHRONOLOGY OF EVENTS

1955 

Robert E. Greenwood and Andrew M. Gleason write on 

Ramsey graph theory. 

Harary enumerates vari ous types of graphs. 

Harold W. Kuhn writes on the “Hungarian method” for 

the assignment prob lem. 

1956 

Lester R. Ford Jr. and D. R. Fulkerson write on the 

maximal flow through a capacitated network. 

Joseph B. Kruskal Jr. writes on the minimum spanning 

tree  prob lem. 

1957 

The critical path method is developed for the scheduling 

of tasks in a proj ect. 

Edward F. Moore introduces breadth- first search. 

Robert C. Prim writes on the minimum spanning tree 

prob lem. 

1958 

Claude Berge writes  Théorie des Graphes et ses Applications (En glish version, 1962). 

1959 

The first international meeting on graph theory takes 

place in Dobogókő, Hungary. 

The University of Waterloo is founded in Ontario, 

Canada (originally in 1956 as Waterloo College  

Associate Faculties). 

Edsger W. Dijkstra pre sents an algorithm for solving the 

shortest path prob lem. 

Ringel writes  Färbungsprobleme auf Flächen und Graphen on the coloring of graphs on surfaces. 

Tutte writes on matroids and graphs, characterizing 

graphic and cographic matroids. 

1960 

Oystein Ore pre sents a sufficient condition for a graph to 

be Hamiltonian. 

Alan J. Hoffman and Robert R. Singleton investigate 

Moore graphs. 

1961 

Berge introduces perfect graphs and poses the perfect 

graph conjecture. 

P. Erdős and Alfred Rényi write on the evolution of 

random graphs. 

CHRONOLOGY OF EVENTS 

xix

1962 

S. L. Hakimi writes a paper on degree sequences of graphs. 

Ford and Fulkerson publish their book  Flows in Networks. 

Ore writes  Theory of Graphs. 

1963 

W. Gustin introduces current graphs for solving graph 

embedding  prob lems. 

Ore writes  Graphs and Their Uses for high school students. 

1964 

John W. Moon investigates the groups associated with 

tournaments. 

1964–65  Vadim G. Vizing publishes fundamental results on the edge- coloring of graphs. 

1965 

Robert G. Busacker and Thomas L. Saaty write  Finite 

 Graphs and Networks: An Introduction with Applications. 

Jack Edmonds writes influential papers on matchings and 

polynomial algorithms. 

F. Harary, R. Z. Norman, and D. Cartwright write 

 Structural Models: An Introduction to the Theory of Directed Graphs. 

1966 The 

 Journal of Combinatorial Theory is launched. 

1967 

The Department of Combinatorics and Optimization is 

founded at the University of Waterloo, Canada. 

The first Chapel Hill (North Carolina) conference on 

combinatorial mathe matics takes place. 

Edmonds conjectures that  there is no polynomial algo-

rithm for solving the traveling salesman prob lem, and 

thus that P ≠ NP. 

Harary edits  A Seminar on Graph Theory and  Graph Theory and Theoretical Physics. 

Ore writes  The  Four- Color  Prob lem. 

1968 

The first Kalamazoo (Michigan) quadrennial conference 

on graph theory takes place. 

Lowell W. Beineke pre sents a forbidden subgraphs 

characterization of line graphs. 

John Moon writes  Topics on Tournaments. 

G. Ringel and J.W.T. Youngs solve the Heawood conjec-

ture for maps on orientable surfaces. 
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CHRONOLOGY OF EVENTS

1969 

Harary writes  Graph Theory. 

Heesch writes  Untersuchungen zum Vierfarbenproblem on the four color prob lem. 

1970 

The first Southeastern International Conference on 

Combinatorics, Graph Theory, and Computing takes 

place in Baton Rouge (Louisiana). 

Moon writes  Counting Labelled Trees. 

Tutte pre sents his “golden identity” for chromatic 

polynomials. 

1971 

 Discrete  Mathe matics is launched. 

Mehdi Behzad and Gary Chartrand write  Introduction to 

 the Theory of Graphs. 

Adrian Bondy writes on pancyclic graphs. 

Stephen A. Cook writes a classic paper on complexity, 

introducing  NP- completeness. 

Heesch proposes three obstacles to reducibility for the 

four color prob lem. 

1971–72  Ronald L. Graham and Henry O. Pollak prove a  

theorem related to telephone switching theory on  

partitioning complete graphs into complete bipartite 

graphs. 

1972 

Kenneth Appel begins his collaboration with Haken on 

the four color prob lem. 

Richard M. Karp introduces the symbols P and NP and 

surveys the complexity of graph prob lems. 

László Lovász proves the weak perfect graph conjecture. 

Whitney and Tutte write on the four color prob lem. 

Robin J. Wilson writes  Introduction to Graph Theory. 

1973 

F. Harary and E. M. Palmer write  Graphical Enumeration. 

1974 

Jonathan L. Gross writes on voltage graphs. 

John Hopcroft and Robert Tarjan pre sent a linear- time 

algorithm for testing the planarity of graphs. 

John Koch joins K. Appel and W. Haken to work on the 

four color prob lem. 

Ringel writes  Map Color Theorem on the solution to the 

Heawood conjecture. 

CHRONOLOGY OF EVENTS 

xxi

1976 

J. A. Bondy and U.S.R. Murty write  Graph Theory with 

 Applications. 

N. L. Biggs, E. K. Lloyd, and R. J. Wilson write  Graph 

 Theory 1736–1936 on the history of graph theory. 

Kenneth Appel and Wolfgang Haken prove the four color 

theorem. 

This celebrated theorem brings us to the end of  

“The First Hundred Years” 

1977 The 

 Journal of Graph Theory is launched. 

K. Appel, W. Haken, and J. Koch publish their proof of 

the four color theorem. 

1978 

Henry Glover and John Huneke pre sent the forbidden 

subgraphs for graphs embedded on a projective plane. 

Endre Szemerédi investigates random graphs, in work 

that contributes to his 2012 Abel Prize. 

1979 

Michael Garey and David Johnson write  Computers and 

 Intractability: A Guide to the Theory of NP- Completeness. 

1983 

Neil Robertson and Paul D. Seymour launch their 20- year 

“Graph Minors Proj ect”, during which they prove several 

fundamental results in graph theory. 

1984 

Robertson and Seymour obtain a generalization of 

Kuratowski’s theorem for all surfaces. 

1990 

The Institute of Combinatorics and its Applications is 

founded. 

1993 

Robertson and Seymour with Robin Thomas prove 

Hadwiger’s conjecture for 6- colorable graphs. 

c.1994 

Robertson and Seymour with Daniel Sanders and Robin 

Thomas obtain a revised proof of the four color theorem. 

2006 

Robertson and Seymour with Maria Chudnovsky and 

Robin Thomas publish their proof of the strong perfect 

graph conjecture. 

2012 

Endre Szemerédi is awarded the Abel Prize for his work, 

which included vari ous contributions to discrete mathe-

matics and graph theory. 

2021 

László Lovász and Avi Wigderson are jointly awarded the 

Abel Prize for their work, which included many contribu-

tions to graph theory and its applications. 


Graph Theory   

in  Amer i ca


Setting the Scene

Early  American  Mathe matics

Just sixteen years  after the  Mayflower landed at Plymouth Rock on the east coast of Amer i ca in 1620, pioneers of North American coloniza-tion founded the first establishment of higher learning at Cambridge in Mas sa chu setts. It would be more than fifty years before the second American college opened. The mission of  these early colleges was mainly to transmit known knowledge at an elementary level, and it was not until the  middle of the 19th  century that efforts  were made to provide opportunities in gradu ate education and to initiate research in universities and colleges. 

In  these opening pages we outline the early history of the American colleges, with par tic u lar attention to Harvard, Yale, Prince ton, the Mas sa-chu setts Institute of Technology, and Johns Hopkins University. We also describe the contributions of two notable mathematical pioneers, Benjamin Peirce and Eliakim Hastings Moore. Further information on mathematics in the early colleges can be found in the American Mathematical Society’s  three- volume   A  Century of Mathe matics in Amer i ca, Karen Parshall and David Rowe’s  The Emergence of the American Research Community 1876–1900, and Florian Cajori’s highly detailed  The Teaching and History of Mathe matics in the United States,  which covers the story up to 1890.1

SOME EARLY COLLEGES

The first institution of higher education to be established in the American colonies was Harvard College in Cambridge, Mas sa chu setts, created in 1636 by the  Great and General Court of the Mas sa chu setts Bay Colony. It was named  after a Puritan minister, John Harvard of Charles-ton,  Virginia ( later, West  Virginia), who bequeathed to it his library and half of his estate upon his death in 1638. John Harvard was born in 1607 in London,  England, and received his MA degree from Cambridge University in 1635. 

2 

SETTING THE  SCENE

Over the following  century or so, other colleges and universities  were founded.  These institutions  were privately funded, and their primary aim was to prepare their students for  careers in theology, law, medicine, and teaching.  After Harvard came

1693: 

The College of William and Mary in Williamsburg, 

Virginia

1701: 

The Collegiate School ( later, Yale University) near New 

Haven, Connecticut

1740: 

The College of Pennsylvania ( later, the University of 

Pennsylvania) in Philadelphia

1746: 

The College of New Jersey ( later, Prince ton University)

1754: 

King’s College ( later, Columbia University) in New York 

City

1764: 

The College in the En glish Colony of Rhode Island and 

Providence Plantations ( later, Brown University) in 

Providence

1769: 

Dartmouth College in Hanover, New Hampshire

All of  these  were located in the original thirteen states of the Union, and more  were to be founded as time and social development continued. 

These early colleges did not include any knowledge of mathe matics among their entrance requirements.  Later, when mathe matics was considered a prerequisite—at Yale in 1745, Prince ton in 1760, and Harvard in 1807—it was  limited to elementary arithmetic. In 1816, Harvard expected its applicants to have a greater understanding of arithmetic, and it added algebra in 1820. It was not  until  after the Civil War of 1861–65 

that the other colleges insisted on algebra as a prerequisite. 

There was indeed  little enthusiasm for mathe matics in the early years of the American colleges, as illustrated by the low level of the entrance criteria. Members of staff who did not usually teach the subject carried out the instruction of any mathe matics that was considered necessary. 

In 1711, the Reverend Tanaquil Lefevre, the son of a French diplomat, was the first person in the colonies to be appointed a professor of mathematics, at the College of William and Mary. Isaac Greenwood took up a similar position at Harvard in 1726, but neither held his tenure for long. By 1729, the colonies could boast only six professors of mathematics, usually coupled with another subject such as natu ral philosophy (physics) or astronomy; all of them  were gradu ates of British universities: Oxford, Cambridge, or Edinburgh. 
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Like all developing nations, Amer i ca set  great store by the education of its population, but the rate of pro gress, as always, was governed by economics and the caliber of the  people who  were available to do the teaching. Pro gress was made over the next  century in all areas of learning, not least through the increase in the number of institutions of higher education, with an accompanying considerable growth in the importance of mathe matics. 

The ending of the Civil War in 1865 initiated a significant increase in the amount of disposable money available, both to the government and to the general populace. This newfound affluence, coupled with the Morrill Act which had been authorized by President Abraham Lincoln in 1862, allowed for a significant increase in the number of American institutions of higher learning. The act was conceived as a vehicle for promoting and enhancing the practical education of the growing industrial population and provided a fundamental change in the perception and funding of higher learning. It allowed also for the income from public land in each state and territory to be allocated to the building of colleges, together with the resources necessary for the teaching of agri-culture and mechanical subjects. By making higher education available to more sections of the population than it had been previously— with the express intention that this should be for  those who could benefit from further education irrespective of their financial background— the act also increased the admission of  women into institutions of higher learning and provided colleges specifically for them and for former slaves and their descendants. 

In the history of graph theory, the most significant of  these early American colleges  were Harvard and Prince ton.  Later institutions  were the Mas sa chu setts Institute of Technology (founded in 1861 in Boston, and  later relocated to Cambridge), Johns Hopkins University (founded in 1876 in Baltimore), the University of Chicago (founded in 1890), and the Institute for Advanced Study (established in 1930 and located at  Prince ton). 

Harvard University

To this day, Harvard remains one of the most prestigious institutions of learning in Amer i ca. It can claim as gradu ates eight presidents and more than forty Nobel Prize laureates. 

When it opened in 1636 with just nine students and a single master, the education provided was based on the Eu ro pean pattern. The college was modeled on traditional En glish universities with their classic academic 
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 A Prospect of the Colledges in Cambridge in New 

  England, an engraving from 1726. 

courses, but was tailored to the Puritan philosophy of the first colonists. 

Although Harvard was never officially associated with any religious de-nomination, many of its early gradu ates entered the Puritan ministry, taking up positions as clergymen throughout New  England. 

The first non- clergyman to become president of Harvard College was John Leverett in 1708, and  under his guidance and that of his successors the curriculum was greatly widened, particularly in the sciences. 

Indeed, this development was so successful that in 1780 the Mas sa chu-setts Constitution officially recognized Harvard as a university. It continued to expand and develop during the early 1800s and acquired a growing reputation. 

A Hollis Professorship of Mathematicks and Natu ral Philosophy was established at Harvard in 1727. It was filled consistently, and mathematics was taught  under its aegis throughout the 18th  century.  Later, under the direction of John Farrar, who held this position from 1807 to 1836, further courses in mathe matics became available. 

As aids to improving the level of undergraduate instruction, Farrar made translations of 18th- century French works on mathe matics, physics, and astronomy. His resignation due to poor health allowed Benjamin Peirce (pronounced “purse”), unquestionably one of the two foremost American mathematicians of the 19th  century, to take the leading role in teaching  these subjects at Harvard. During the early 1830s he produced new sets of course notes, resulting in further improvements in the quality of teaching. 

The Lawrence Scientific School, which opened at Harvard in 1847, was an early attempt to foster gradu ate education in individual sciences, in place of  those previously labeled “natu ral philosophy” or “natu ral his-
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tory”. This allowed Peirce the opportunity to develop a gradu ate program, and from 1836 to the end of the  century, mathe matics at the university was dominated by Peirce and his students. Indeed, from 1845 to 1865, Harvard became a center of mathematical activity in Amer i ca, with most of the credit  going to Peirce. However, it was not  until 1912 that it invested in a dedicated postgraduate program of mathematical research. 

Yale University

In 1701, a “Collegiate School” opened in the parsonage of Abraham Pierson of Killingworth, Connecticut, but relocated in 1716 to nearby New Haven, where it has remained ever since. Two years  later, following a generous benefaction by Elihu Yale, who had acquired a fortune from the British East India Com pany, it was renamed Yale College. It did not receive its final designation as Yale University  until 1887. 

An early view of Yale College. 

Among the books presented to the new college in its early days  were many mathematical volumes, including Newton’s  Principia Mathematica and  Opticks. Edmond Halley added his support by sending his edition of Apollonius’s  Conics, and by 1743 the Yale library cata log listed no fewer than fifty- five mathe matics books. 

The student curriculum at this time was as follows:2

In the first year to study principally the tongues [sacred languages], arithmetic, and algebra; the second, logic, rhe toric, and geometry; the third, mathematics, and natu ral philosophy; and the fourth, ethics and divinity. 

In 1743, Newtonian calculus (fluxions) was added to the third- year offering for  those who wished to learn it, and this continued to be taught for many years. 
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In 1770, a chair of mathe matics and natu ral philosophy was founded. 

The Reverend Jeremiah Day occupied this position from 1803 to 1820, and in 1817 he was appointed Yale’s fifth president while continuing to pre sent his lectures.  Because student texts  were frequently in short supply, he wrote a number of elementary ones on subjects that ranged from algebra, trigonometry, and geometry to navigation and surveying.  These books proved to be highly popu lar and went into many editions. 

The chair of mathe matics and natu ral philosophy was split in 1835, and the mathe matics half was occupied by Yale alumnus Anthony D. 

Stanley  until his death in 1853. His replacement was Hubert A. Newton, who had graduated in 1850 and had been a tutor in mathe matics since 1852. In a notification to students he announced:3

Students desirous of pursuing the higher branches of mathe matics are allowed to choose Analytic Geometry in place of the regular mathe matics (Navigation) in the third term of Sophomore year, and Differential and Integral Calculus during the first two terms of Ju nior year, in place of Greek or Latin. 

Newton was promoted to professor at the early age of 25, a position that he held  until his death in 1896.  After spending an initial year in Paris studying geometry, he returned to Yale with a new interest in astronomy and quickly gained international recognition for his writings on comets and meteors. 

Two outstanding students whom Hubert Newton mentored at Yale 

were Josiah Willard Gibbs, who would become one of the most distinguished American scientists of his time, and Eliakim Hastings Moore, whom we meet again  later.  After studying philology and mathe matics and graduating in 1858, Gibbs switched to engineering and wrote the first American doctoral thesis in the subject, on the design of gears. He became a tutor in mathe matics from 1863 to 1866, and was promoted to professor of mathematical physics in 1871. He wrote extensively on a wide range of topics and remained at Yale for the rest of his life. 

Prince ton  University

Prince ton was chartered  under its original name of the College of New Jersey, by which it was known for its first 150 years. The charter, dated October 22, 1746, was issued by the Province of New Jersey in the name of King George II, and included the pronouncement that “any Person of any religious Denomination whatsoever” may attend. Initially located in Elizabeth, New Jersey, the college moved  after a year to Newark, and 
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Nassau Hall at Prince ton. 

then to Nassau Hall, Prince ton, in 1756. Nassau Hall, one of the largest buildings in the new colonies, was named  after King William III, Prince of Orange of the House of Nassau. 

The first student body consisted of ten young men who attended 

classes in the parlor of the Reverend Jonathan Dickinson. In 1780, Prince ton’s charter was amended so that the trustees  were no longer required to swear allegiance to the king of  England, and in 1783, the Continental Congress met in Nassau Hall, briefly making Prince ton the capital of the newly emerging nation. Nine Prince ton alumni attended the Constitutional Convention in 1787, more than from any other American or British institution. 

By 1896, the college had developed a sufficiently enhanced educational program that it was granted university status and was renamed Prince ton University  after its host town. Four years  later it opened a gradu ate school, with mathe matics research  under the guidance of Henry Burchard Fine. Fine published a number of mathematical research papers on numerical analy sis and geometry, but was foremost a writer of textbooks and a gifted leader with skills in administration and the development of academic organ izations. In the late 1880s, he had been an active supporter of the founding of the New York Mathematical Society, which became the American Mathematical Society in 1894. 

Up to this time, Prince ton, in common with most of the American universities, had made  little contribution to original mathe matics. The gradu ate school brought some success in research for individual members of the mathe matics faculty, although its emphasis remained on teaching. In the early 1900s, Fine was the foremost researcher in mathematics at Prince ton, and in order to increase the amount of mathematical research at the university, he took advantage of the preceptorial 
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system at Prince ton, newly established by Prince ton’s president, Wood-row Wilson, to appoint a number of rising scholars as instructors. Two of  these  were Oswald Veblen (in 1905) and George Birkhoff (in 1909), whom we meet again in Chapter 2. But research continued to be the poor relation with  little funding and scant facilities, as  later recalled by an early mathematical researcher, Solomon Lefschetz:4

When I came in 1924  there  were only seven men  there engaged in mathematical research.  These  were Fine, Eisenhart, Veblen, Wedderburn, Alexander, Einar Hille and myself. In the beginning we had no quarters. Every one worked at home. Two rooms in Palmer [Laboratory of Physics] had been assigned to us. One was used as a library, and the other for every thing  else! Only three members of the department had offices. Fine and Eisenhart [as administrators] had offices in Nassau Hall, and Veblen had an office in Palmer. 

Although the university’s research facilities  were less than ideal, much was done between 1924 and 1930 to improve the situation. Fine, in partic u lar, was successful in raising money to support Prince ton’s growing science programs.  After his untimely death in a bicycling accident in 1928, a wealthy trustee and friend funded the construction of a new mathe matics building. Completed in 1931, and appropriately named Fine Hall, it also served as the first home of the Institute for Advanced Study with mathe matics as its first field of study, and with Albert Einstein among its first members. The improvements in Prince ton’s facilities also had the effect of enhancing mathematical research in the university. 

Mas sa chu setts  Institute  of  Technology  (MIT )

On April 10, 1861, a charter was approved to found a school of higher education in Boston. It read “An Act to Incorporate the Mas sa chu setts Institute of Technology, and to Grant Aid to Said Institute and to the Boston Society of Natu ral History . . .”, and four years  later it opened to its first students. The efforts to raise funds by the institute’s founder and first president, William Barton Rogers,  were made more difficult by the outbreak of the Civil War. As a result, classes  were initially held in rented accommodations, and it was not  until 1866 that the institute’s first buildings  were completed. 

During the early years of this (essentially) engineering school, the head of mathe matics was John Daniel Runkle, who had been a pupil and protégé of Benjamin Peirce. Runkle had attended the Lawrence 
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The  Great Dome at MIT. 

Scientific School of Harvard, from which he graduated in 1851, and subsequently worked at the Nautical Almanac Office in Cambridge; in both places he enjoyed Peirce’s influence and encouragement. Runkle was Rogers’s right- hand man, and both  were influential in planning and defining the institute’s teaching program. Runkle believed that his department was  there to provide mathematical instruction for the school’s engineering students. 

On Runkle’s death in 1902, his successor, Harry Walter Tyler, set about making the teaching of mathe matics a serious subject in its own right, and not just as a ser vice to engineering. In this enterprise he was encouraged by MIT’s president, Richard Maclaurin, who also supported Tyler’s efforts to expand the department and to promote mathematical research. The institute relocated to its pre sent site in Cambridge in 1916. 

By the 1940s, MIT had established itself in the top division of mathematics research. It earned a reputation for invention, and many successful and significant companies  were founded by the institute and by its gradu ates. Since then, over sixty current or former members have received Nobel Prizes. 

Johns Hopkins University

Johns Hopkins University, founded in Baltimore, Mary land, was the first research university in the United States. It was started with funds provided by the American entrepreneur, abolitionist, and philanthropist Johns Hopkins, through a bequest of $7 million, half of which also financed the establishment of the Johns Hopkins Hospital. The university 
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Gilman Hall at Johns Hopkins University. 

opened on February 22, 1876, with Daniel Coit Gilman as its first president. In his installation address, Gilman asked:5

What are we aiming at? . . .  The encouragement of research . . .  and the advancement of individual scholars, who by their excellence  will advance the sciences they pursue, and the society where they dwell. 

With the freedom of starting from scratch, and without the need to change entrenched ideas, Gilman set out to create an academic establishment new to Amer i ca. His guiding premise was to build a research school that, through scholarship, would enhance the general level of human understanding, while improving the individual student’s knowledge. He succeeded in developing an atmosphere where teaching and research went hand in hand, and where all faculty members  were encouraged to become confident to do both. What Gilman achieved at Johns Hopkins marked a major turning point in American higher education and put forth a challenge to other colleges and universities. 

One of Gilman’s aims was to make Amer i ca competitive with Eu rope, and to help him in achieving this goal he set about recruiting interna-tionally respected scholars with a long history of carry ing out research and of encouraging research in  others. In par tic u lar, to implement this philosophy in the mathe matics department, Gilman traveled to Eu rope in 1875 and secured the ser vices of the British mathematician James Joseph Sylvester, who at 61 years of age was still young enough in mind to be able to instill enthusiasm in young scholars. The story of the 
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development of mathe matics at Johns Hopkins University with Sylvester at the helm continues in Chapter 1. 

MATHE MATICS  EDUC ATION

College teaching in the early years of the United States was elementary and followed 18th- century En glish practice, comprising Latin, Greek, philosophy, and a  little mathe matics. The last of these included Euclid’s Ele ments, the rudiments of trigonometry, some Newtonian mechanics, basic arithmetic, and some algebra. 

One consequence of the 1812–15 war between Britain and Amer i ca over shipping and territory disputes was that most developments in Amer i ca became more greatly influenced by France than by  England, as previously. For mathematicians, this meant looking increasingly  toward a country where mathe matics and science  were held in re spect and benefited from considerable support from the government; such an attitude had never been a high priority for the British Parliament. This change in emphasis led to the expansion of mathe matics and science faculties within American colleges, and to the creation of additional chairs within  these disciplines. 

During  these early years,  little research had been carried out within the higher education system in Amer i ca. Although some  people within this system considered research as prestigious, few facilities  were available and  there  were no internal structures for fostering it. Additionally, because American higher education was almost exclusively devoted to undergraduate teaching,  there  were  little experience and ability available to develop postgraduate study. It was expected that promising gradu ates should travel to Eu rope, mostly to Germany, for their doctoral study and research. 

The founding of Johns Hopkins University initiated a pro cess of change. Daniel Gilman differed from the presidents of long- established colleges and universities such as Harvard, Prince ton, and Yale, which were steeped in entrenched tradition. Recognizing that American higher education lagged far  behind that of many Eu ro pean countries— and feeling that, for his new university to survive and grow, it needed to offer an alternative program to that of other institutions—he ensured that Johns Hopkins placed equal emphasis on undergraduate studies and on gradu ate education that incorporated research and support for technical publication. 
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The two American mathematicians who made the greatest contribu-

tions to the early development of teaching and gradu ate study in Ameri ca, and who in their differing ways would influence what was to become graph theory,  were Benjamin Peirce of Harvard University, whom we encountered  earlier, and Eliakim Hastings Moore of the University of Chicago. We now look at their contributions. 

Benjamin Peirce

Throughout the relatively short history of American scholarship, and of mathe matics in par tic u lar,  there have been dynasties, albeit mostly of two- generation duration. One of  these was the Peirce  family, whose head was Benjamin Peirce. His offspring included his highly acclaimed son Charles Sanders Peirce, mathematician, logician, and phi los o pher, whom we meet again in Chapter 1. 

Benjamin Peirce was born on April 4, 1809, in Salem, Mas sa chu setts. 

His  father was a state legislator in Mas sa chu setts and a librarian at Harvard University. The young Benjamin was educated at Salem Private Grammar School and entered Harvard in 1825, at age 16.  After graduating from  there in 1829, he taught for two years at George Bancroft’s Benjamin Peirce (1809–80). 
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Round Hill School in Northampton, Mas sa chu setts, before returning to Harvard as a tutor in mathe matics. In 1833, he became professor of mathe matics and natu ral philosophy, and in the same year he received a Harvard master’s degree. Although the doctoral degree in  today’s sense did not exist in the United States in Peirce’s time, the first issue of the American Journal of Mathe matics lists him as a Doctor of Laws (prob ably an honorary degree). In 1842, he became Perkins Professor of Mathematics and Astronomy at Harvard, a position that he held  until his death on October 6, 1880. 

Peirce was perhaps the first American- born professor of mathe matics to consider research as part of his role, and not just as something to carry out in his spare time. He explored a wide range of research topics, and was instrumental in providing the educational structure that would encourage mathematicians of Amer i ca to engage in research activity; this would have a considerable influence on  those who would develop the subject in the United States. During his time at Harvard, he was influential in elevating the status of the college to that of a leading national institution. As the foremost mathematician and astronomer in the country, he made the first impor tant American contribution to mathematical research, even though the program that he developed at Harvard was so demanding that he averaged only two gradu ate students per year. 

Peirce’s research topics included celestial mechanics and the applications of plane and  spherical trigonometry to navigation, geodesy, and statistics. Having helped to determine the orbit of Neptune, he was appointed director of longitude determination for the US Coast Survey in 1852, and director of the survey from 1867 to 1874. 

He was also interested in algebra and number theory. In 1870, at his own expense, he published  Linear Associative Algebra, which laid the foundations for a general theory of  these algebras and classified all the complex ones with dimension less than 7; in addition, he calculated multiplication  tables for more than 150 new algebras. This work was greatly influenced by the work of the Irish mathematician William Rowan Hamilton on quaternions. It was considered to be the first American treatise on modern abstract algebra and the earliest impor tant research to come out of the United States in the area of pure mathe matics. 

As for his abilities as a teacher and communicator, opinions  were divided. During the early part of his  career, Peirce wrote and published many student textbooks, on topics that ranged from algebra, plane and solid geometry, and exponential equations and logarithms, to curves, functions, and forces. Although they  were well written and contained elegant 
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mathe matics, they  were generally found to be too demanding for all but the most able. His lecturing style also received criticism, with many of his pupils finding him difficult to follow. As one of them complained:6

I am no mathematician, but that I am so  little of one is due to the wretched instruction at Harvard. Professor Peirce was admirable for students with mathematical minds, but had no capacity with  others. 

But for  those pupils who  were equipped to appreciate his enthusiasm for mathe matics, he proved to be an inspiring teacher:7

We  were carried along by the rush of his thought, by the ease and grasp of his intellectual movement. The inspiration came, I think, partly from his treating us as highly competent pupils, capable of following his line of thought even through errors, which reached a result with the least number of steps in the pro cess, attaining thereby an artistic or literary character; and partly from the quality of his mind which tended to regard any mathematical theorem as a par tic u lar case of some more comprehensive one, so that we  were led onward to constantly enlarging truths. 

Eliakim Hastings Moore

The University of Chicago was founded in 1890, largely with money provided by John D. Rocke fel ler, the noted philanthropist and founder of Standard Oil. From the start, its main objective was the development of postgraduate study and research, together with undergraduate instruction. One mathematician to take advantage of this postgraduate training, as well as to benefit from overseas study, was Eliakim Hastings Moore. 

Moore was born on January 26, 1862, in Marietta, Ohio. He attended Woodward High School from 1876 to 1879, and his love of mathe matics and astronomy was triggered when he worked for the director of the Cincinnati Observatory during a summer vacation. He enrolled at Yale College at the age of 17, earning his bachelor’s degree in 1883 and his doctorate two years  later for the thesis  Extensions of Certain Theorems of Clifford and Cayley in the Geometry of n Dimensions. 

Encouraged by his supervisor to continue his studies in Germany, Moore spent the academic year 1885–86 attending the Universities of Göttingen and Berlin. On his return to the United States in 1886, he became a high school instructor for a year and a tutor back at Yale for a further two. In 1889, he took up a position at Northwestern University for three years and then moved to the University of Chicago as professor of mathe matics and acting head of the mathe matics department. He 
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Eliakim Hastings Moore 

(1862–1932). 

became head of the department in 1896, a position that he continued to hold  until his death in 1932. 

Moore had been recruited by the University of Chicago’s first president, the outstanding administrator William Rainey Harper, and together they developed an excellent mathe matics faculty. Chicago’s doctoral gradu ates went on to establish and expand many impor tant mathe matics departments across Amer i ca over the first de cades of the 20th  century. 

The historian of mathe matics, Raymond Clare Archibald, summed him up as follows:8

Moore was an extraordinary genius, vivid, imaginative, sympathetic, foremost leader in freeing American mathe matics from dependence on foreign universities, and in building up a vigorous American School, drawing unto itself workers from all parts of the world. 

During his forty years at Chicago, Moore devoted considerable time and energy to the building of the mathematical community in Amer i ca. 

In 1893, he was instrumental in organ izing the International Mathematical Congress at the World’s Columbian Exposition in Chicago, held to commemorate the 400th anniversary of the Eu ro pean discovery of the Amer i cas. This attracted the participation of forty- five mathematicians from Austria, Germany, Italy, and nineteen states of the Union, as well as papers from French, Rus sian, and Swiss scholars, and was the first international mathe matics meeting to be held in the United States. 

The success of the Chicago congress motivated the New York Mathematical Society, founded in 1888, to become a national society. At Moore’s request, it funded publication of the conference proceedings, and on 
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July 1, 1894, and with his encouragement, it changed its name to the American Mathematical Society. Slowly, other sections of the society began to appear throughout the country; Moore lobbied for one in Chicago, and this section first met in 1897. In 1899, the society introduced a new journal, the  Transactions of the American Mathematical Society, whose purpose was partly to promote American authors, and elected Moore as its editor in chief. From 1898 to 1900, he served as vice president of the American Mathematical Society, was elected its president in 1901, and in 1906 presented AMS Colloquium Lectures on the theory of bilinear functional operations. 

Moore’s main areas of research  were in algebra, groups, and the foundations of geometry, and in  later years he worked on the foundations of analy sis. Thirty- one research students earned their doctoral degrees under his supervision, and since then he has had many thousands of doctoral descendants. He received honorary degrees from Göttingen, Yale, Clark, Toronto, Kansas, and Northwestern universities. 

Although Moore never worked in graph theory, two of his most successful postgraduate students  were to make significant contributions to the subject.  These  were Oswald Veblen and George Birkhoff, who went on to become leading American mathematicians in the first half of the 20th  century, and who form the subject of Chapter 2. 


* * * * *

As with many  things in Amer i ca in the 19th and 20th centuries, the development of higher education moved quickly, not least in mathe matics. 

By 1910, and up to the outbreak of World War II, Harvard, Prince ton, and Chicago  were the leading mathematical establishments in the United States, and  were comparable to many Eu ro pean universities. This was due in large part to the lead that had been set by Johns Hopkins University and to the significant changes in gradu ate education at Harvard in the early 1900s, soon to be followed by other universities such as Prince ton and Yale, as well as newly formed institutions such as Clark University in Mas sa chu setts and the University of Chicago.  These developments changed the principal emphasis from mathematical education to research, with the work of Benjamin Peirce, and especially the seminal contributions of E. H. Moore in developing postgraduate study, proving to be of im mense importance for the  future of American mathe matics. 

In Chapter 1, we develop the story of mathematical research  under the influence of J. J. Sylvester and Johns Hopkins University. We also examine the early interest in graph theory in Amer i ca and meet some of its 19th- century pioneers. 

Chapter 1

The 1800s

As we have seen, Johns Hopkins University was the first American educational establishment to be founded with an aim of encouraging and providing facilities for research, and in the fall of 1875 its first president, Daniel Coit Gilman, traveled to Eu rope to headhunt the very best researchers to lead its departments. Mathe matics was the first faculty to open, with James Joseph Sylvester appointed as its guiding light. Sylvester published many papers, including some that relate to graph theory.1

The story of Johns Hopkins and its mathe matics during its first few years is essentially that of Sylvester, but also involves other notable figures. Two scholars impor tant to its early history, and to the development of mathe matics in Amer i ca,  were William Edward Story, a mathematician with a talent for organ ization but  little luck, and Charles Sanders Peirce, a brilliant but somewhat wayward polymath. Also impor tant to our story is Alfred Kempe, a compatriot of Sylvester’s, whose erroneous solution of the four color prob lem was to have a profound influence on graph theory in Amer i ca over the ensuing years. 

JAMES JOSEPH SYLVESTER

J. J. Sylvester was born James Joseph on September 3, 1814, in London. 

His  father, a Jewish merchant, was named Abraham Joseph. In his teen-age years, James Joseph added the surname Sylvester, as three names were a necessary requirement for pos si ble migration to Amer i ca, a step being taken by his  brother at the time. 

At the age of 14, Sylvester entered University College, London, where he was taught by Augustus De Morgan, the professor of mathe matics, but  after five months his  family de cided to withdraw him and send him to study at the Royal Institute School in Liverpool. In 1831, he went to St John’s College in the University of Cambridge, but suffered from an illness that caused him to miss most of the academic years 1833–35. 

18 CHAPTER 

1

Although a brilliant scholar, coming second in the 1837 Mathematical Tripos examinations, he was not permitted to receive his Cambridge degree  because he was Jewish and unwilling to sign the Articles of the Church of  England. Indeed,  because of his religion, he was unable to gain a university position at  either Cambridge or Oxford, even though his undoubted ability deserved such an appointment. However, from 1837 to 1841 he was professor of natu ral philosophy at University College, London, one of the few non- sectarian institutions, and in 1841 he was awarded bachelor’s and master’s degrees from Trinity College, Dublin. 

In the same year, Sylvester was appointed professor of mathe matics at the University of  Virginia, but he resigned  after only a few months following an unfortunate clash with a student and a lack of support from the university. Unable to obtain another post in Amer i ca, he reluctantly returned to  England where he gained employment as an ac-tuary at a life insurance com pany in London; he also gave private les-sons in mathe matics. In 1846, he de cided to study law, and during his training as a barrister he met the mathematician Arthur Cayley, whose four- year fellowship at Trinity College, Cambridge, had just ended. 

Unwilling to take Holy  Orders, then a condition of appointment at Trinity, Cayley needed a profession and chose law, studying at Lincoln’s Inn in London. Despite their very diff er ent personalities, Cayley and Sylvester became lifelong friends and collaborated on many mathematical  prob lems. 

In 1855, Sylvester became professor of mathe matics at the Royal Military Acad emy at Woolwich, where he remained  until 1870 when War Office regulations required him to retire at age 55. So Sylvester was already retired when in 1876 he received President Gilman’s invitation to become the first professor of mathe matics at Johns Hopkins University. 

In September of the previous year, Benjamin Peirce, a friend of Sylvester’s, had already written to Gilman to urge him to engage Sylvester:2

Hearing that you are in  England, I take the liberty to write you concerning an appointment in your new university, which I think would be greatly for the benefit of our country and of American science if you could make it. It is that of one of the two greatest geometers of  England, J. J. Sylvester. If you inquire about him, you  will hear his genius universally recognized but his power of teaching  will prob ably be said to be quite deficient. Now  there is no man living who is more luminary in his language, to  those who have the capacity to comprehend him than Sylvester, provided the hearer is in a lucid 
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James Joseph Sylvester (1814–97). 

interval. But as the barn yard fowl cannot understand the flight of the ea gle, so it is the ea glet only who  will be nourished by his instruction . . . 

Among your pupils, sooner or  later,  there must be one, who has a genius for geometry. He  will be Sylvester’s special pupil— the one pupil who  will derive from his master, knowledge and enthusiasm— and that one pupil  will give more reputation to your institution than ten thousand, who  will complain of the obscurity of Sylvester, and for whom you  will provide another class of teachers . . . 

I hope that you  will find it in your heart to do for Sylvester— what his own country has failed to do— place him where he belongs— and the time will come, when all the world  will applaud the wisdom of your se lection. 

Even though many considered Sylvester to be the finest mathematician in the English- speaking world, he was both surprised and delighted to receive Gilman’s invitation to occupy a position from which he would derive considerable enjoyment and success. 

On taking up his appointment in May of 1876, at a salary of $5000 

per annum (which, at his insistence, was paid in gold),3 Sylvester set 
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about realizing Gilman’s objective by initiating research work in the mathe matics department. He selected two gradu ate fellows, George Bruce Halsted and Thomas Craig, to join the mathe matics faculty, and in the fall he recruited William E. Story from Harvard. 

Sylvester presented his inaugural lecture on February 22, 1877, the first anniversary of the official opening of the university. His pre sen ta tion covered many subjects, including how mathe matics should be taught and studied, and the role that Johns Hopkins should play in the development of mathe matics and of further education in Amer i ca. He also took the opportunity to attack  those En glish universities that discriminated against all who  were not Protestant Christians. Having encountered such prejudice himself, he criticized the damage that had been done to higher education by the exclusion of Jews, Catholics, and  others. 

In 1861, Yale College became the first American institution to confer doctoral degrees. The first mathe matics doctorate  there was in 1862, and later degrees  were awarded for dissertations on “The Daily Motion of a Brick Tower Caused by Solar Heat” and “On Three- Bar Motion”. In the 1870s, doctorates in mathe matics  were awarded four times at Yale, once at Cornell and at Dartmouth, and twice at Harvard and at Johns Hopkins. Sylvester had been quick to take on postgraduate students, and while in Baltimore he supervised eight of them:4

1878: 

Thomas Craig,  The Repre sen ta tion of One Surface upon 

 Another, and Some Points in the Theory of the Curvature of 

 Surfaces

1879: 

George Bruce Halsted,  Basis for a Dual Logic

1880: 

Fabian Franklin,  Bipunctual Coordinates

1880: 

Washington Irving Stringham,  Regular Figures in  

 n- Dimensional  Space

1882: 

Oscar Howard Mitchell,  Some Theorems in Numbers

1883: 

William Pitt Durfee,  Symmetric Functions

1883: 

George Stetson Ely,  Bernoulli’s Numbers

1884: 

Ellery William Davis,  Parametric  Repre sen ta tions   

 of Curves

Another of Sylvester’s preoccupations was the  American Journal of Mathe matics, the oldest mathe matics journal in continuous publication in North Amer i ca, and still being published  today. Sylvester is usually credited as its founder, and with the help of William Story he published the first issue in 1878. The  Journal was intended to be a vehicle for dia-
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The first issue of the  American Journal of  

 Mathe matics, 1878. 

log between American mathematicians, although space was also made available for foreign contributions. Indeed, the first issue included contributions from the Americans Simon Newcomb, C. S. Peirce, William Story, Thomas Craig, George Halsted, and Fabian Franklin, while other contributing authors  were the En glishmen Arthur Cayley, William Kingdon Clifford, Edward Frankland, and Sylvester himself. 

The first six volumes of the  Journal, which covered 1878–83 and for which Sylvester was responsible, contained nearly two hundred articles. 

Papers by Sylvester featured in each volume, with thirty- two entries in total, and Cayley contributed to five of  these volumes. Another early Eu-ro pean contributor was the Danish mathematician Julius Petersen (see Interlude A), while other Americans included Benjamin Peirce and the rest of Sylvester’s doctoral students. Moreover, Sylvester had been successful in promoting the new publication, with its “List of Subscribers” 

on July 1, 1878, totaling nearly 150; thirty- six of  these  were institutions, 
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some of which took multiple copies, with three addresses in Paris, six in England, and two in Canada. 

Sylvester was happy at Johns Hopkins University. For the first time in his life, he was able to teach and carry out research based on his own ideas and on chosen topics within a university environment. His  Mathematical Seminarium, as he called his school of mathe matics, was soon recognized in American mathematical circles and in Eu rope, while papers published by this group, most of which appeared in the  American Journal of Mathe matics,  were widely read at home and abroad. The American mathematician George Andrews has commented that the collective output during  these years amounted to a “monumental” contribution to combinatorics,5 and it was widely accepted that Sylvester and his school were succeeding in putting Amer i ca on the mathematical map. 

In December of 1879, the university issued the first of its  Johns Hopkins University Circulars. This publication was initially intended to communicate the full scope of the research being undertaken throughout the university; indeed, Sylvester published some of his notes, papers, and lectures  there. It also included correspondence between (and information about) members of the vari ous faculties, and in a letter to Cayley in 1883, Sylvester observed that the  Circulars acted as “a sort of rec ord of pro gress in connection with the work and personality of the Johns Hopkins”.6

Chemistry and Algebra

William Kingdon Clifford, a gradu ate of Trinity College, Cambridge, was one of the major British mathematicians of his time before his untimely death at the age of 33. Clifford believed, as did Sylvester, that there  were direct connections between chemistry and the algebra of invariants. 

Edward Frankland was a British chemist who held appointments in Britain and in continental Eu rope, and who for many years was responsible for the continuous analy sis of London  water supplies; he also served on a Royal Commission on  water pollution. In 1866, based on the chemical theory of valency that had recently been introduced by August Kekulé and  others, Frankland published his introductory  Lecture Notes for Chemical Students,7 in which he explained how atoms and bonds could be depicted graphically with circles and connecting lines. Beginning with water, he also listed the “symbolic formulae” and “graphic notations” 

for several chemical compounds. His symbolic formulae  were expres-
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Edward Frankland (1825–99) and William Kingdon Clifford (1845–79). 

sions of the atoms and their quantities which combine to form chemical compounds, and for his graphic notation he represented each atom by a letter enclosed in a circle, with all single and multiple bonds identified by lines joining the appropriate circles. For example, he gave  water the symbolic formula OH2 to indicate an oxygen atom (with valency 2) linked to two hydrogen atoms, and his symbolic formula for “ammonic chloride” was NH4Cl, with a nitrogen atom (with valency 5) linked to a chlorine atom and four hydrogen atoms. 

H

H O H

H N Cl

H

H

Frankland’s graphic notations for  water (H2O) 

and ammonium chloride (NH4Cl). 

Sylvester was already convinced of the connection between chemistry and algebra and was much taken with Frankland’s  Lecture Notes. In 1878, while at Johns Hopkins, Sylvester wrote a short note that was published in  Nature.8 Its opening paragraph shows his enthusiasm for the subject, and the extent to which he had been energized by Frankland:

It may not be wholly without interest to some of the readers of  Nature to be made acquainted with an analogy that has recently forcibly impressed 
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me between branches of  human knowledge apparently so dissimilar as modern chemistry and modern algebra. I have found it of  great utility in explaining to non mathematicians the nature of the investigations which algebraists are at pre sent busily at work upon to make out the so called  Grundformen or irreducible forms appurtenant to binary quantics taken singly or in systems, and I have also found that it may be used as an instrument of investigation in purely algebraical inquiries. So much is this the case that I hardly ever take up Dr.  Frankland’s exceedingly valuable  Notes for Chemical Students, which are drawn up exclusively on the basis of Kekulé’s exquisite conception of  valence, without deriving suggestions for new researches in the theory of algebraical forms. I  will confine myself to a statement of the grounds of the analogy, referring  those who may feel an interest in the subject and are desirous for further information about it to a memoir which I have written upon it for the new  American Journal of Pure and Applied Mathe matics, the first number of which  will appear early in February. 

This note was typical of Sylvester’s writing style— scholarly, but verg-ing on the flowery. As promised, he then expanded on this note in a paper in Volume I of his  American Journal of Mathe matics.9

J. J. Sylvester:  On an application of the new atomic theory to the 

 graphical repre sen ta tion of the invariants and covariants of 

 binary quantics,— with three appendices (1878) In this lengthy paper, Sylvester described in detail his reasons for believing in a close connection between the chemistry of organic molecules and the algebraic study of invariant theory. Its first two paragraphs give a flavor of his prose, in language that one now rarely encounters in academic papers:

By the  new Atomic Theory I mean that sublime invention of Kekulé which stands to the  old in a somewhat similar relation as the Astronomy of Kepler to Ptolemy’s, or the System of Nature of Darwin to that of Linnaeus;— like the latter it lies outside of the immediate sphere of energetic, basing its laws on pure relations of form, and like the former as perfected by Newton,  these laws admit of exact arithmetic definitions. 

Casting about, as I lay awake in bed one night, to discover some means of conveying an intelligible conception of the objects of modern 
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algebra to a mixed society, mainly composed of physicists, chemists and biologists, interspersed only with a few mathematicians, to which I stood engaged to give some account of my recent researches in this subject of my predilection, and impressed as I had long been with a feeling of affinity if not identity of object between the inquiry into compound radicals and the search for “Grundformen” or irreducible invariants, I was agreeably surprised to find, of a sudden, distinctly pictured on my  mental ret ina a chemico graphical image serving to embody and illustrate the relations of  these derived algebraical forms to their primitives and to each other which would perfectly accomplish the object I had in view, as I  will now proceed to explain. 

In this paper he again heaped praise on Frankland’s  Lecture Notes: The more I study Dr Frankland’s wonderfully beautiful  little treatise the more deeply I become impressed with the harmony or homology (I might call it, rather than analogy) which exists between the chemical and algebraical theories. 

Some chemical diagrams from Sylvester’s paper. 
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Later in the same work he became even more eloquent, enthus-

ing that “I feel as Aladdin might have done in walking in the garden where  every tree was laden with precious stones”, and continuing: Chemistry has the same quickening and suggestive influence upon the algebraist as a visit to the Royal Acad emy, or the old masters may be supposed to have on a Browning or a Tennyson. Indeed it seems to me that an exact homology exists between painting and poetry on the one hand and modern chemistry and modern algebra on the other. 

In poetry and algebra we have the pure idea elaborated and expressed through the vehicle of language, in painting and chemistry the idea enveloped in  matter, depending in part on manual pro cesses and the resources of art for its due manifestation. 

The analogy that Sylvester was trying to make was between “binary quantics” in algebra and atoms in chemistry. A  binary quantic is a homogeneous expression in two variables, such as

 ax  3 +  3  bx  2 y +  3  cxy  2 +   dy 3, and an  invariant is a function of the coefficients  a,  b,  c, and  d that remains essentially unaltered  under linear transformations of the variables x and  y. Sylvester explained that this analogy evolved from his diagrammatic repre sen ta tions of chemical compounds, and in his 1878 note in Nature, he provided the following explanation of the connections between atoms and binary quantics. It is  here that the word  graph (in our modern sense) made its first appearance. 

The analogy is between atoms and  binary quantics exclusively. 

I compare  every binary quantic with a chemical atom. The number of factors (or rays, as they may be regarded by an obvious geometrical interpretation) in a binary quantic is the analogue of the number of  bonds, or the  valence, as it is termed, of a chemical atom. 

Thus a linear form may be regarded as a monad atom, a quadratic form as a duad, a cubic form as a triad, and so on. 

An invariant of a system of binary quantics of vari ous degrees is the analogue of a chemical substance composed of atoms of corresponding valences. 
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The order of such [an] invariant in each set of coefficients is the same as the number of atoms of the corresponding  valence in the chemical compound . . . 

The weight of an invariant is identical with the number of the bonds in the chemicograph of the analogous chemical substance, and the weight of the leading term (or basic differentiant) of a co variant is the same as the number of bonds in the chemicograph of the analogous compound radical. 

Every invariant and covariant thus becomes expressible by a  graph precisely identical with a Kekuléan diagram or chemicograph . . .  I give a rule for the geometrical multiplication of graphs, that is, for constructing a  graph to the product of in  or co variants whose separate graphs are given. 

H

H

H C

C

O H

H

H

The graph of a chemical molecule. 

In spite of his enthusiasm for his analogy between chemistry and algebra, Sylvester was somewhat apprehensive that it might not meet with universal ac cep tance. Perhaps he suspected that it would be rejected, as he wrote to Simon Newcomb, a mathematician and astronomer at the Naval Observatory in Washington, who in 1884 became professor of mathe matics and astronomy at Johns Hopkins:10

I feel anxious as to how it  will be received as it  will be thought by many strained and over fanciful. It is more a “reverie” than a regular mathematical paper. I have however added some supplementary mathematical  matter which  will I hope serve to rescue the chemical portion from absolute contempt. It may at the worst serve to suggest to chemists and Algebraists that they may have something to learn from each other. 

Although  there was some academic debate on the theory, it soon ran its course as it became apparent that the only link between chemistry and algebra was “the use of a similar notation”.11 Despite the detailed descriptions in Sylvester’s note, the associated paper, and his subsequent correspondence with chemists and mathematicians, his ideas  were generally considered to have only a passing connection between Kekulé’s notation for chemical compositions and the theory of trees developed by Arthur Cayley. 
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Trees

A  tree is a connected graph without cycles. In any tree the number of edges is one less than the number of vertices, and any connected graph with this property is a tree. 

The trees with six vertices. 

As we have seen, Cayley had met Sylvester during their years in London, and they remained lifelong friends and collaborators on mathematical  matters. Between 1857 and 1889, Cayley produced a number of publications on trees. His first paper of 1857 was the earliest to use the word “tree” in our sense,12 although both Gustav Kirchhoff (in connection with his work on electrical networks) and Karl Georg Christian von Staudt had used the idea around ten years  earlier. Cayley’s interest in trees originally “arose . . .  from the study of operators in the differential calculus”, being inspired by some of Sylvester’s work on “differential transformation and the reversion of serieses”. His earliest papers dealt with rooted trees only, in which one par tic u lar vertex is designated as the “root”, usually placed at the top, as follows:

 a

 b

 c

 d

 e

 f

 g

 h

 i

 j

 k

 l

 Isomers are chemical compounds with the same chemical formula but diff er ent atomic configurations; the next figure shows two molecules with the formula C4H10 (n- butane and 2- methyl propane, formerly called butane and isobutane). Cayley wrote several papers in which he related work on chemical compositions to his studies of trees, and in 1874 he published the short paper “On the mathematical theory of isomers”,13 
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in which his work on trees was used in the recognition and enumeration of chemical isomers. Two further papers, in 1875 and 1877, also dealt with the connections between trees and chemical composition.14
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Two chemical isomers. 

Sylvester wrote two short papers on trees while at Johns Hopkins. The first of  these, “On the mathematical question, what is a tree?”, was published in 1879 in the  Mathematical Questions with Their Solutions, from the 

 “Educational Times” . The second, on “ramifications” (his name for trees), appeared in the same year in the first issue of the  Johns Hopkins University Circulars.15

Sylvester undoubtedly felt the lack of mathematical peers at Johns Hopkins University and in the United States generally, especially  after the death of Benjamin Peirce in 1880, and wished that Cayley could visit him. Deprived of their frequent meetings of  earlier days, Sylvester sent Arthur Cayley (1821–95). 
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him a number of letters in early 1881, inviting him to teach for a period at Johns Hopkins. Sylvester painted an encouraging picture of the social and academic life in Baltimore, and promised that Cayley would be rewarded both academically and financially. His letters, and a visit to Cayley in Cambridge in August 1881, fi nally persuaded Cayley to visit Johns Hopkins for six months during the spring semester of 1882, and to pre sent a series of lectures during his visit. While  there, Cayley also published papers in the  Johns Hopkins University Circulars and the  American Journal of Mathe matics. 

ALFRED KEMPE

In 1852, Francis Guthrie, a former student of Augustus De Morgan’s at University College, London, was coloring the counties of a map of England. Finding that just four colors  were sufficient for this task, he asked the following more general question, which would become known as the  four color prob lem:

Can the countries of  every map be colored with at most four colors so that no two neighboring countries are colored the same? 

A map that requires four colors. 

De Morgan became intrigued by the prob lem and wrote to the Irish mathematician William Rowan Hamilton and  others asking  whether four colors always suffice. He also mentioned it in a review of a book by William Whewell in  The Athenaeum,16 but died in 1871 without knowing the answer. The  four color theorem, that all maps on the plane or a sphere can indeed be so colored, was not proved  until 1976—by Kenneth Appel and Wolfgang Haken, two mathematicians at the University of Illinois at Urbana– Champaign (see Chapter 6).17
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Arthur Cayley also became interested in the four color prob lem, and on June 13, 1878, at a meeting of the London Mathematical Society, he asked  whether it had been solved; his query was recorded in the society’s  Proceedings and in a report of the meeting in  Nature.18 In a short note in the  Proceedings of the Royal Geo graph i cal Society in April 1879,19 he described some of the difficulties inherent in tackling the prob lem. He also made the useful suggestion that certain restrictions can be imposed on the maps  under consideration without any loss of generality; in par ticu lar, he proved that when tackling the four color prob lem, we may assume that they are  cubic maps, with exactly three countries at each meeting point. From now on, when desirable, we  shall assume that the maps we are considering are cubic maps. 

Alfred Bray Kempe (1849–1922). 

Also attending the London Mathematical Society’s meeting was Alfred Kempe (pronounced “kemp”), a former student of Cayley’s at Cambridge, and yet another En glish mathematician who then became a barrister. Most of Kempe’s early mathematical work was associated with the geometry of mechanical linkages. He  later became trea surer of the Royal Society of London and was knighted in 1912. 

Kempe was intrigued by Cayley’s query on the four color prob lem and believed that he could solve it. On July 17, 1879, he announced a 

“solution” in  Nature.20 His attempted proof of the four color theorem was “On the geo graph i cal prob lem of the four colours” and— presumably at Cayley’s suggestion—he submitted it to the newly founded  American Journal of Mathe matics,  which was seeking papers from Eu ro pean authors. Kempe outlined the inherent challenge as follows:21
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Some inkling of the nature of the difficulty of the question,  unless its weak point be discovered and attacked, may be derived from the fact that a very small alteration in one part of a map may render it necessary to recolour it throughout.  After a somewhat arduous search, I have succeeded, suddenly, as might be expected, in hitting upon the weak point, which proved an easy one to attack. The result is, that the experience of the map makers has not deceived them, the maps they had to deal with, viz:  those drawn on simply connected surfaces, can, in  every case, be painted with four colours. How this can be done I  will endeavour—at the request of the Editor in Chief—

to explain. 

As we have seen, the editor in chief was J. J. Sylvester. 

Kempe’s paper was published  later in the year in Volume 2 of the American Journal of Mathe matics. Unfortunately, it contained a fatal error which was not discovered  until eleven years  later, during which time his proof had become generally accepted. In 1890 Percy Heawood exposed Kempe’s error (see Interlude A). 

A. B. Kempe:  On  the  geo graph i cal  prob lem   

 of the four colours (1879)

In 1750, Leonhard Euler observed that if a polyhedron has  F   faces, E edges, and  V vertices, then  F +  V =  E + 2. Using this result, Kempe deduced that if a map has  D districts or countries (not counting the external region),  B bound aries between countries, and  P “points of concourse” where at least three districts meet, then

 P +  D −  B − 1 = 0. 

He then used a counting argument to show that, for a general map, 5 d 1 + 4  d 2 + 3 d 3 + 2 d 4 +  d 5 −   etc.  =  0, where, for each  k,  dk is the number of districts of the map with  k bound aries, and the term “ etc.” is a collection of terms whose sum is positive. It follows that the sum of the first five terms is also positive, and so not all of  d 1 to  d 5 can be 0— that is: Every map drawn on a simply connected surface must have a district with less than six bound aries. 
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(A surface is  simply connected if it is in one piece and has no “holes”, so a plane or sphere is simply connected but a torus is not.)

From this remarkable result, Kempe developed an algorithm for 

coloring any map by using a system of what he called “patches”. 

This pro cess involved selecting a district with five or fewer neighbors and covering it with a slightly larger blank piece of paper, or patch. He then joined all the bound aries that touch the edge of the patch to a single point within the patch; this has the effect of reducing the number of districts by 1, as shown below. The pro cess is then repeated  until only one district remains—as Kempe put it, 

“The  whole map is patched out”— and this remaining district is then colored with any of the four colors. 

Kempe’s patching pro cess. 

Kempe then reversed the patching pro cess, removing one patch 

at a time and successively coloring the uncovered districts with any available color  until the original map was colored with four colors. 

Unfortunately, his explanation of this final step was incomplete. 

His patching procedure works as long as each restored district has at most three bound aries, but if it has four or five bound aries, then it may be surrounded by districts that require all four colors. 

To overcome this difficulty, Kempe developed a strategy for coloring maps that is now called the  method of Kempe chains or a Kempe- chain  argument. In this method, we interchange two colors in order to enable the coloring of two neighboring districts that could not previously be colored. His argument was based on the 

fact that if we are given a map in which all the districts except one are colored, and if the districts that surround the uncolored one are assigned all four colors, then such an interchange of colors can enable the uncolored district to be colored also. This impor tant line of argument was  later to become one of the standard tools in the coloring of maps. 
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 B

(yellow)

 A

 C

(green)

? 

(red)

 D

(blue)

As an example of his method, consider the above map in which 

the uncolored district is surrounded by four districts that have been assigned diff er ent colors. The districts  A and  C that have been assigned the colors  green and  red are  either connected by a continuous chain of  green and  red districts, or are not so connected. In the latter case, we may exchange the colors  green and  red in the chain of  green– red districts connected to district  A without altering the color of district  C; this exchange of colors results in districts A and  C both being colored  red, so that the uncolored district can be colored  green. However, if  there is a continuous chain of  green– 

 red districts that joins  A and  C, then  there is no advantage to making such an interchange of colors. But in this case  there can be no continuous chain of  yellow and  blue districts joining districts B and  D, and so we can recolor  either of the  yellow– blue chains connected to  B or  D. The districts  B and  D are then  either both  yellow or both  blue, thereby allowing the four surrounding districts to be colored with three colors, and leaving the fourth color for the central one. 

Kempe then considered maps containing an uncolored district 

with five sides, and the incorrect application of his method in this case gave rise to his famous error. His  mistake was to attempt two color interchanges at the same time;  either interchange by itself would have been valid, but to apply them si mul ta neously could result in two neighboring districts receiving the same new color. 

Kempe then noted the following two special cases of interest:

If  there is an even number of boundary lines at each point, 

two colors suffice to color the map. 

If  every district of a cubic map has an even number of bound-

ary lines, three colors suffice. 
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Before leaving his paper, we mention that Kempe was the first 

to introduce the idea of  duality and to pose the dual formulation of the four color prob lem:

If we lay a sheet of tracing paper over a map and mark a point on it over each district and connect the points corresponding to districts which have a common boundary, we have on the tracing paper a diagram of a “linkage,” and we have as the exact analogue of the question we have been considering, that of lettering the points in the linkage with as few letters as pos si ble, so that no two directly connected points shall be lettered with the same letter. 

 g

 g

 r

 r

 r

 r

 y

 g

 g
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Coloring a map and its dual graph. 

So the four color prob lem can be equivalently stated in terms of coloring the points of a related linkage or graph, as just explained. 

This idea  will reappear in Chapter 4, where we investigate duality, and Chapter 6, where we describe the eventual resolution of the prob lem. 

In the subsequent months, Kempe issued two revisions of his proof.22 

The first, an untitled abstract that is “simpler, and is  free from some errors which appeared in the former” was published in the  Proceedings of the London Mathematical Society in 1879.  There, Kempe mentioned his proof in the  American Journal of Mathe matics, and provided a streamlined 
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description of his reduction and patching methods, with instructions for interchanging colors within chains. His second follow-up paper, “How to colour a map with four colours”, published in  Nature on February 26, 1880, was similar in content to the untitled abstract. It was again offered as a simplification, and in Kempe’s own words, 

I have succeeded in obtaining the following  simple solution in which mathematical formulae are con spic u ous by their absence. 

Neither of  these revised versions indicated any recognition of his fundamental error. 

On reading  these two papers  today, we cannot help arriving at the conclusion that Kempe was not trumpeting his claimed achievement, but was modestly confident that he had found the solution to a problem that had vexed and entertained a considerable number of mathematicians, both professional and amateur. 

WILLIAM STORY

William Edward Story was born on April 29, 1850, in Boston, Mas sa-chu setts. One ancestor, the En glishman Elisha Story, had arrived in Amer i ca around 1700 and settled in Boston, while another took part in the Boston Tea Party. 

William Story entered Harvard University in 1867, and was one of the first students to be awarded the newly created honors degree in mathematics. He then became one of the earliest American mathematicians to attend a German university, gaining a doctorate from Leipzig University William Story 

(1859–1930). 
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in 1875 for his dissertation,  On the Algebraic Relations Existing Between the Polars of a Binary Quantic. 

On returning to the United States, Story became a tutor at Harvard University. He is known to have impressed Benjamin Peirce while an undergraduate at Harvard, and this view increased as Story carried out his tutorial duties. Indeed, so convinced was Peirce of Story’s merits, that when Sylvester solicited suggestions of suitable mathematicians to join the newly founded department of mathe matics at Johns Hopkins University, Peirce recommended Story. 

In the hot summer months of 1876, Sylvester de cided to return to England, and it was left to the Johns Hopkins president, Daniel Gilman, to interview Story and to make any decision on his employment as Sylvester’s assistant. Gilman’s initial terse approach was not enthusiastically received by Story, who found it a  little patronizing, and his reply was perhaps a trifle sharp. But he did ask for an interview, during which he outlined his ideas for the creation of a learned mathematical journal and a student society. Story was duly offered the Johns Hopkins position, but not before he had tried unsuccessfully to improve his status at Harvard. 

In the autumn, Story moved to Baltimore as an “associate” (equivalent to an assistant professor at some other universities).  Later, in 1883, when the university introduced the title of associate professor, Story was promoted to that position. 

Initially, life at Johns Hopkins went well for Story. He set about helping to develop the mathe matics department, and his preference was to model it on the example he had experienced while in Germany. He assisted Sylvester in setting up the  American Journal of Mathe matics and was intimately involved in the founding of a mathematical society within the university. As Roger Cooke and V. Frederick Rickey have observed:23

There is evidence that Story succeeded in founding his student mathematical society.  The Johns Hopkins University Circulars, which are a rich source of information about the university, contain titles and reports of the talks given at the monthly meeting of the “Mathematical Society.” From one of  these we learn that when Lord Kelvin lectured at Hopkins in 1884, he spoke to a group of mathematicians who called themselves “the coefficients”. 

Because Sylvester was not good with  either finance or management, he appointed Story as associate editor in charge of the  Journal, and soon praised his second- in- command in a letter to Benjamin Peirce:24

Story is a most careful managing editor and a most valuable man to the University in all re spects and an honor to the University and its teachers from whom he received his initiation. 
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However, the way in which the  Journal was run was soon to cause fric-tion between Story and Sylvester. This was not a personal difference, but a dissimilarity in the ways that they believed the journal should be edited. 

During his time at Johns Hopkins, it was Sylvester’s custom to spend each summer in  England, leaving Amer i ca in the late spring and returning for the start of the next academic year, while Story was left in charge for the duration of Sylvester’s annual leave. The situation came to a head during Sylvester’s absence from Amer i ca through the publication of Kempe’s paper on the four color prob lem. 

Story had reviewed Kempe’s paper, and on November 5, 1879, he presented the salient points of the “proof ” to an audience of eigh teen at a meeting of the Johns Hopkins Scientific Association. He then offered 

“a number of minor improvements”, which he put in the form of a note that “was intended to make the proof absolutely rigorous”. Story’s “Note on the preceding paper” was then published in the  American Journal of Mathe matics, immediately following Kempe’s.25 By presenting it, Story was to incur the wrath of Sylvester, as we  shall see. 

In his note, Story addressed special cases that Kempe had not covered in his paper. He used both Euler’s formula and the patch method, as Kempe had done, but endeavored to be more precise in his use of the formulas contained in Kempe’s paper. Story’s opening paragraph set out his intention, saying:

it seems desirable, to make the proof absolutely rigorous, that certain cases which are liable to occur, and whose occurrence  will render a change in the formulae, as well as some modification of the method of proof, necessary, should be considered separately. 

It is disappointing that Story was not able to identify the major flaw in Kempe’s argument in his review of Kempe’s paper and in developing his own contribution. 

W. E. Story:  Note on the preceding paper (1879) Story concentrated on two parts of Kempe’s paper. The first of 

these expanded on the patching method, as applied to three of 

Kempe’s figures, and the second dealt with the cases in which more than three districts meet at a point. 

At each stage of the patching, Kempe had denoted the number 

of districts by  D, the number of bound aries by  B, and the number of points by  P, and had used the corresponding symbols  D ′,  B ′, and 
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 P ′  after the next patch was removed. Story took up the argument that if the next patch had no point or boundary on it when it was removed, then an island would appear. Following Kempe, he concluded that, in this case, 

 P ′ =   P,  D ′ =   D  + 1,  and   B ′ =   B  + 1. 

However, if the patch had no point but only a single boundary, 

so that a peninsula or a district with two bound aries appeared when the patch was removed, then for the peninsula, 

 P ′ =   P  + 1,  D ′ =   D  + 1,  and   B ′ =   B  + 2, and for the district with two bound aries, 

 P ′ =   P  + 2,  D ′  =   D  + 1,  and   B ′ =   B  + 3. 

In the second case, Story referred to Kempe’s Figure 15. 

He went on to assert that

These formulae hold only if the bound aries joined by the line on the patch counted as  two (and not  one, as in Figs. 16 and 1) before the patch was put on. 

Story then considered a point where bound aries met, and where 

a district with β bound aries appeared, when the patch was removed. 

This gave

 P ′ =   P  + β  − 1,  D ′ =   D  + 1,  and   B ′ =  B  + β. 
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Story deduced that  these equations  were identical to  those of Kempe (although Kempe had used σ, rather than β ), 

only when three and no more bound aries meet in each point of concourse about the district patched out, giving

 P ′ +   D ′ −  B ′ − 1 =  P  +   D  −  B  − 1. 

Story continued by detailing the alternative situation where the patch has no point of concourse, but only a single line that formed part of the boundary of a district or an island. Removing the patch then revealed Kempe’s Figure 16 or Figure 1. 

For the district, 

 P ′ =   P  + 1,  D ′ =   D  + 1,  and   B ′ =   B  + 1, and for the island, 

 P ′ =   P  + 2,  D ′ =   D  + 1,  and   B ′ =   B  + 2, and so in both cases, 

 P ′ +   D ′ −   B ′ − 1 =   P  +   D  −   B. 

Story next defined a  contour as an aggregate of bound aries, with the contour being  simple or complex, according to  whether it contained one, or more than one, district. He asserted that one could improve Kempe’s theorem by including contours in the patching 

procedure. In par tic u lar, where Kempe had stated that:

in  every map drawn on a simply connected surface the number of points of concourse and number of districts are together one greater than the number of bound aries, 

Story’s theorem read:

in  every map drawn on a simply connected surface the number of points of concourse and number of districts are together one greater than the number of bound aries and number of complex contours 

together. 
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As he explained:

If then  x of the contours formed by the bound aries of any map are complex, for that map

 P  +   D  −   B  − 1 =   x. 

In the second half of his paper, Story questioned one of Kempe’s claims that

if we develop a map so patched out, since each patch, when taken off, discloses a district with less than six bound aries, not more than five bound aries meet at the point of concourse on the patch. 

He asserted that this is valid only when the number of bound aries meeting in each point does not exceed 3, and detailed a procedure to overcome this restriction. His solution was to use an auxiliary patch whenever more than three bound aries met, thereby reducing to 3 the number of bound aries at a point; one could then continue the method of patching as described by Kempe. On completing 

the patching and arriving at a map with just one district and no boundary, coloring could then commence as the map was developed by removing patches (including auxiliary patches) in reverse order. By this method, he maintained, “the map  will be coloured with four colours”, as required. 

Sylvester versus Story

Sylvester believed that  there had been an undue delay in the publication of Volume 2 of the  American Journal of Mathe matics during his absence in  England. He also complained that previously agreed editorial decisions had been changed, and that Story should not have published his note. Sylvester went on to call this “unprofessional”, and the relationship between the two colleagues became strained. 

In 1880, Sylvester wrote to President Gilman, protesting Story’s “conduct” and his “disobeying my directions”. In June, he wrote again asking why Story had not sent him an acknowl edgment regarding a paper that Sylvester had sent from  England. Then, still aggrieved, Sylvester sent a further letter of eight pages to Gilman on July 22— indeed, such was his annoyance that his haste made parts of the letter even more 
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illegible than usual.26 In this letter, Sylvester complained that he was not told  whether the  Journal had been published and, if so, when. He also objected to his treatment by Story and questioned  whether other contributors had been dealt with in an equally poor manner. Sylvester no longer had confidence in Story and was so incensed that he formally requested that Story should have no further involvement with the  Journal. He also made it clear that Story could be made aware of his opinion and the contents of his letter. 

Gilman mediated between the two, but Story’s name did not appear on  later issues of the  Journal. Story resigned from the editorial board and began to seek a new position, a task that took him several years to accomplish. As with most disagreements, it would be wrong to put all of the blame on one party. Sylvester had certainly contributed to the delay in publication by making late changes to his own paper and re-arranging the order of its contents. However, a letter from C. S. Peirce to Gilman, dated August 7, 1880, included the following comment:27

I have received from Sylvester an account of his difficulty with Story. I have written what I could of a mollifying kind, but it  really seems to me that Sylvester’s complaint is just. I  don’t think Story appreciates the greatness of Sylvester, and I think he has undertaken to get the  Journal into his own control in an unjustifiable degree . . .  It is no plea sure to me to intermeddle in any dispute but I feel bound to say that Sylvester has done so much for the University that no one  ought to dispute his authority in the management of his department. 

By this time, Sylvester was well past what we now think of as normal retirement age. In February 1883, Henry Smith, Oxford University’s Savilian Professor of Geometry, died unexpectedly, thereby prompting a search for a successor, preferably an Oxford man. News reached Sylvester, and on March 16 he wrote to Cayley indicating that he would probably offer himself as an applicant, as religious barriers had by then been removed. Sylvester submitted his resignation to Johns Hopkins in the fall of 1883 and returned to Britain on December 21. In January 1884, he wrote to Felix Klein in Germany giving further reasons for leaving Amer i ca:28

I resigned my position in Baltimore

1°  Because I was anxious to return to my native country

2°  Because I had reasons of a strictly individual and personal nature for wishing to quit Baltimore
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3° (and  paramountly)  because I did not consider that my mathematical erudition was sufficiently extensive nor the vigor of my  mental constitution adequate to keep me abreast of the continually 

advancing tide of mathematical pro gress to that extent which 

ought to be expected from one on whom practically rests the 

responsibility of directing and moulding the mathematical 

education of 55 millions of one of the most intellectual races 

of men upon the face of the earth. 

There has been some discussion as to who  really founded the  American Journal of Mathe matics. From the beginning, Gilman had desired all departments of his new university to found research- level journals, and the idea of one in mathe matics had in de pen dently occurred to Story. But most commentators acknowledge Sylvester as the founder, and at his farewell banquet, on December 20, 1883, Gilman indeed gave him the credit. However, Sylvester’s response indicated other wise:29

You have spoken about our  Mathematical Journal. Who is the founder? 

Mr Gilman is continually telling  people that I founded it. That is one of my claims to recognition which I strongly deny. I assert that he is the founder. 

Almost the first day that I landed in Baltimore . . .  he began to plague me to found a  Mathematical Journal on this side of the  water— something similar to the  Quarterly Journal of Pure and Applied Mathe matics [of Oxford] . . . 

Again and again he returned to the charge, and again and again I threw all the cold  water I could on the scheme, and nothing but the most obstinate per sis tence and perseverance brought his views to prevail. To him and to him alone, therefore, is  really due what ever importance attaches to the foundation of the  American Journal of Mathe matics. 

The real ity is that Sylvester had the international standing, with links in Eu rope and previous experience of being involved in the creation of Oxford’s  Quarterly Journal, of which he was editor  until 1878. In de pendently, Story had formulated the idea of a learned mathematical publication and wanted to be involved in its creation. However, without Gilman’s continual encouragement, direction, and belief that such a journal would be of  great benefit to mathe matics in Amer i ca, it prob ably could not have happened as it did in 1878. 

What was Sylvester’s legacy in the United States? Apart from the American Journal of Mathe matics, he successfully established at Johns Hopkins University a successful gradu ate school that invested time and effort into training  future researchers. This in turn had an effect on other educational institutions which then established gradu ate schools, 

44 CHAPTER 

1

and the level of mathematical research throughout Amer i ca gradually improved. As a consequence, it was no longer necessary for gradu ates to journey abroad for postgraduate study, although some continued to do so. 

Sylvester was indeed appointed at the age of 69 to the Savilian Chair of Geometry at Oxford University, a position that he held for the rest of his life. In his late 70s, suffering from partial blindness, he returned to London with a deputy appointed to cover his Oxford duties. 

An unpredictable, erratic, and flamboyant scholar, Sylvester could be brilliant, quick- tempered, and restless, filled with im mense enthusiasm and an insatiable appetite for knowledge. Throughout his life, he had fought for the underdog in society and supported education for the working classes, for  women, and for  people who  were discriminated against. He was awarded many honors and prizes, including his election as a Fellow of the Royal Society in 1839 at the age of 25, and received the Royal Society’s Royal Medal in 1861 and the Copley Gold Medal (its highest award) in 1880. The lunar feature Crater Sylvester was named in his honor. He died on March 15, 1897, in London. 

As for William Story, Sylvester’s departure from Johns Hopkins left him with a similar desire to move to new pastures, and in 1887 he was offered the position of head of mathe matics at the newly founded Clark University in Worcester, Mas sa chu setts. His situation is best summed up by Roger Cooke and V. Frederick Rickey:30

There  were many reasons why Story might have wanted to leave Hopkins. He was not a full professor  there, though he had been  there thirteen years. 

He was not the editor of the  American Journal of Mathe matics, which had been one of his youthful ideas. Fi nally, he had come to feel that Hopkins was not the wonderful place intellectually that he thought it might and should be . . .  But perhaps most importantly of all, he would have the opportunity to develop a department that focused on gradu ate education and on research. And he could do it the way that he thought best. For all these reasons, it is likely that the opportunity to move to Clark would have attracted Story. 

Story did indeed develop a mathe matics faculty according to his own ideas— and in par tic u lar a doctoral program with twenty- five degrees awarded between 1892 and 1921, nineteen  under his direct supervision. 

Indeed, Story was so successful in his new position that for a time Clark University was considered by some to have the best mathe matics department in Amer i ca. But in spite of all his work, misfortune struck in 1921, when financial prob lems forced the university to close its gradu ate 
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William Story at Clark University. 

program, and he was required to resign. In his  later years, Story became interested in the history of mathe matics and compiled a considerable bibliography of mathe matics and mathematicians, which is now in the care of the American Mathematical Society. He died in Worcester, Massa chu setts, on April 10, 1930. 

C . S. PEIRCE

Charles Sanders Peirce is usually remembered as a phi los o pher, mathematician, and logician, and for his controversial and unconventional life-style. He was born on September 10, 1839, in Cambridge, Mas sa chu setts. 

As a young boy, he thrived on the intellectual atmosphere prevailing at the  family home, where his  father, Benjamin Peirce, entertained academics, politicians, poets, scientists, and mathematicians. Although this provided a scholastic environment, his  father avoided discipline, fear-ing that it might inhibit in de pen dence of thought. Such an indulgent attitude provided a platform where the younger Peirce could show off 
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Charles Sanders Peirce 

(1839–1914). 

his undoubted genius, but it also left him ignorant of how to behave or interact with  people. The lack of parental guidance made it difficult for him to fit in to society and led to prob lems in  later life. 

C. S. Peirce enrolled at Harvard College at age 15, but he did not shine in his work, preferring to study on his own with books of his own choosing. He graduated with a bachelor’s degree in 1859 and entered the Lawrence Scientific School  under the influence of his  father, where he met with greater success than in his undergraduate years. He received a master’s degree from Harvard in 1862 and a bachelor of science degree from the Lawrence Scientific School in 1863, receiving Harvard’s first  summa cum laude degree in chemistry. He remained at Harvard where he carried out gradu ate research, and in the spring of 1865 he presented the Harvard Lectures on  The Logic of Science. 

From 1859, for nearly thirty years and in parallel with his academic career, Peirce held a position as a part- time assistant at the Coast Survey; some of this time was  under his  father as director. In 1876, he produced one of his most notable inventions, the  Quincuncial Map Projection, which was published in the  American Journal of Mathe matics in 1879; this earned him a reputation as one of the  great mapmakers of the time. 

Although his invention was not taken up at the time, it was used in the mid-20th  century to display air routes. 

Meanwhile, he was producing seminal work in a wide range of subjects, including probability and statistics, psychophysics (or experimental psy chol ogy), and species classification. In addition, he carried out major astronomical research and explored mathematical logic, associative algebra, topology, and set theory. But  either through choice or  because 
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he was considered unsuitable, he failed to obtain a position within a university mathe matics department  until 1879. 

In the early 1860s, C. S. Peirce encountered the four color prob lem in an  Athenaeum book review and was prob ably the first American to take an interest in it. As he  later recalled:31

About 1860 De Morgan in the  Athenaeum, called attention to the fact that this theorem had never been demonstrated; and I soon  after offered to a mathematical society at Harvard University a proof of this proposition extending it to other surfaces for which the numbers of colours are greater. 

My proof was never printed, but Benjamin Peirce, J. E. Oliver, and Chauncey Wright, who  were pre sent, discovered no fallacy in it. 

His manuscripts, held in the Houghton Library at Harvard University, give no hint of his approach to the prob lem. 

Another manuscript, dated October 1869 and also in the Houghton Library, connects map coloring with his “logic of relatives”. Peirce considered that it was

a reproach to logic and to mathe matics that no proof had been found of a proposition so  simple. 

He also believed that,  because of Cayley’s interest in logic, Cayley must also have tried such an approach to the four color prob lem, but had failed. The following comment by Carolyn Eisele refers to Peirce’s searches for a solution:32

But his writings over the years are interlaced with references to the problem; his notebooks are full of sketches and diagrams of vari ous regional possibilities reflecting his continuing interest and experimentation. The fragmentary nature of  these attempts is evidence of the frustration that never ceased to haunt him. 

In the early 1870s, Peirce made a lengthy tour of Eu rope, and in June of 1870 he visited Augustus De Morgan in London. Although De Morgan was in poor health at the time, it seems likely that their discussions included the four color prob lem.33 De Morgan died in 1871. 

In 1879, C. S. Peirce was appointed a part- time lecturer in logic in the department of mathe matics at Johns Hopkins University, headed by Sylvester. Initially  things went well, and Peirce was exposed to new people and ideas. On November 5, 1879, he attended the meeting of the university’s scientific association where Story discussed Kempe’s paper, and the minutes rec ord that “Remarks  were made upon this paper by Mr. C. S. Peirce”. At the next meeting, on December 3, Peirce presented 
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C. S. Peirce at Johns Hopkins University. 

a paper on the four color prob lem; no copy has survived, but the rec ord of the meeting34 included a comment that Peirce

discussed a new point in re spect to the Geo graph i cal Prob lem of the Four Colors, showing by logical argumentation that a better demonstration of the prob lem than the one offered by Mr. Kempe is pos si ble. 

Peirce’s years at Johns Hopkins  were perhaps his most productive and significant. He had several papers published in the  American Journal of Mathe matics, with at least one, on map projections, at the request of Sylvester. 

But his employment at Johns Hopkins was not to be a long tenure. 

In October of 1876, Peirce separated from his wife of thirteen years and embarked on a path that would greatly affect his  career. He set up home with a  woman named Juliette Froissy Pourtalai, divorced his first wife on April 24, 1883, and married Juliette six days  later. 

Simon Newcomb was a con temporary of Peirce’s who had also studied at Harvard  under Benjamin Peirce and graduated one year before Charles. Over the years they kept up an active correspondence which displayed a mutual re spect, if not a closeness. But in 1884, shortly  after 
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Newcomb was appointed professor of mathe matics and astronomy at Johns Hopkins, he felt it his duty to inform the university’s trustees that Peirce had been living with his mistress while remaining married to his first wife. The university did not wish to attract scandal by association, so Peirce’s contract was not renewed and he was never to hold another academic post. 

Thereafter, his only employment and income  were from his part- time association with the Coast Survey. He became increasingly quarrelsome and distanced from his superiors, working in isolation at a time when the survey was experiencing a lack of funding. In 1890, he submitted his long- awaited major report to the Survey, which declined to publish it without considerable revision. This Peirce failed to carry out, and at the end of 1891 the Survey ran out of patience and requested his resignation. This left him with no regular income. Much of his work  after 1890 was  either rejected for publication or remained incomplete. 

In  later years, Peirce became increasingly withdrawn from public life and colleagues and more erratic in his be hav ior. As the American mathematician Thomas Scott Fiske  later recalled:35

His dramatic manner, his reckless disregard of accuracy in what he termed 

“unimportant details,” his clever newspaper articles describing the meetings of our young Society interested and amused us all . . .  He was always hard up, living partly on what he could borrow from friends, and partly on what he got from odd jobs . . .  He was equally brilliant,  whether  under the influence of liquor or other wise, and his com pany was prized by the various organ izations to which he belonged; and so he was never dropped from any of them even though he was unable to pay his dues. 

Indeed, for much of his  later life he lived like a social outcast, sometimes even stealing to eat and occasionally having no permanent address. Believing that  there was an international plot to undermine and destroy him, his continuing dream was to generate vast wealth from amazing inventions, but this never happened. 

Meanwhile, as we saw  earlier, William Story continued to be involved with the four color prob lem. At a meeting of the National Acad emy of Sciences held in New York City in November of 1899, he presented the paper “The map- coloring prob lem”, but again no manuscript of this has survived.36 He also corresponded on the subject with C. S. Peirce, and their letters indicate how they, like many  others who worked on it, became frustrated about their lack of pro gress. Peirce’s approach to the prob lem was algebraic, and it is more than likely that they had discussed 
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the subject during their years together (from 1879 to 1884) at Johns Hopkins. A letter from Peirce to Story in August of 1900 mentioned that he had found the proof contained in his unpublished paper, while a double-dated letter from Story to Peirce in December of 1900 shows Story’s continued irritation with the prob lem:37

Dec. 1, 1900

As to my not answering your letter about the four color prob lem, I am heartily tired of that subject. I have spent an im mense amount of time on it, and all to no purpose. Your first method had occurred to me years ago, but I did not succeed in getting anything out of it. 

Dec. 6, 1900

My delay in sending this off is largely your own fault. You have again reminded me of that fascinating but elusive prob lem, and I have spent the time since writing the above in trying to solve it, but alas! I believe that the case of exception to Kempe’s method requires that the map  shall have at least one triangular or quadrilateral district, in which case the pentagon is not the next district to be colored, i.e. the exception does not occur. But I cannot prove it. 

This extract indicates that Story had received some communication from Peirce between the two dates of the letter, suggesting a further approach that Story had attempted without success. 

Although Charles Sanders Peirce was not accorded the undoubted 

recognition that he deserved during his lifetime,  there is now a growing interest in his work, especially in logic. Some believe that he was the greatest inventive intellect to have been born on the American continent, and in 1959 Bertrand Russell wrote:38

Beyond doubt . . .  he was one of the most original minds of the late nineteenth  century and certainly one of the greatest American thinkers ever. 

Peirce died of cancer on April 19, 1914, in isolation on his farm in Mil-ford, Pennsylvania. 


* * * * *

The efforts of scholars such as Sylvester, Story, and Peirce provided a climate for American- born and American- educated mathematicians to make significant research contributions to mathe matics in general, and to the study of trees and the four color prob lem in par tic u lar. 
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Additionally, the appearance of gradu ate schools— Johns Hopkins at first, and then Harvard, Yale, Prince ton, and  others— advanced the development of American mathe matics and postgraduate study; this continued through the 1890s and into the 20th  century. By 1910, several professors had received all their training in Amer i ca and would go on to earn international reputations. This healthy state of affairs would pave the way for the United States to become the leading country for mathe matics by the  middle of the 20th  century. 

The solid foundations that had been laid, and the encouragement that had been given by the leading mathematicians around the turn of the century, provided a foundation for American mathematicians to make their mark. In the early 20th  century, American mathematicians  were beginning to take an interest in graph theory and the four color prob lem, a move that would be boosted by the approaches of Oswald Veblen and George Birkhoff, as we see in Chapter 2. But first, we report on some related pro gress that was taking place around Eu rope. 

Interlude A

Graph Theory in Eu rope 1

As American mathematicians began to take an active interest in graph theory in the last quarter of the 19th  century, developments  were continuing in Eu rope. In Scotland, P. G. Tait tried to simplify Kempe’s proof of the four color theorem by coloring the boundary edges of a map rather than the countries. In  England, Percy Heawood pointed out the flaw in Kempe’s proof and investigated colorings of maps on surfaces other than the sphere.  Later explorations into coloring maps on surfaces were made by Lothar Heffter of Germany, who studied orientable surfaces, and Heinrich Tietze of Austria, who investigated non- orientable ones. In Denmark, Julius Petersen discussed the factorization of graphs, while in Germany, Hermann Minkowski tried to convince his students that he could prove the four color theorem. 

These writers used differing terminologies when describing maps. 

Countries (called “districts” by Kempe and Story)  were often called 

“regions”, whereas the bound aries of a country  were called “lines”, 

“edges”, or “sides”, and meeting points of countries and bound aries were “points” or “vertices”. We  shall use  these terms interchangeably, generally following the use by the person whose results are being discussed. 

P. G. TAIT  (SCOTLAND)

Around 1880, Peter Guthrie Tait, a distinguished applied mathematician from Edinburgh, learned of Kempe’s proof of the four color prob lem, which was accepted as correct at the time. Convinced that he could greatly simplify it, he presented some shorter proofs to the Royal Society of Edinburgh,1 but  these  were also deficient. 

However, his attempts contained one useful and original idea. Instead of coloring the countries of a cubic map, he colored their bound aries, obtaining the following result:
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P. G. Tait  (1831–1901). 

The countries of a cubic map can be colored with four colors if and only if their bound aries can be colored with three colors, with adjacent bound aries colored differently. 

He claimed that a proof of his equivalent version “is given easily by induction”— but he was mistaken. His version was as difficult to prove as the original four color theorem. 
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Coloring the countries and bound aries of a cubic map. 

Four years  later, Tait returned to coloring the bound aries and proved that if a cubic map has a  Hamiltonian cycle—  that is, a closed cycle that passes through  every meeting point— then one can indeed color its boundaries with three colors and its countries with four colors.2 He then claimed that  every cubic polyhedron has this Hamiltonian property— a statement that he was unable to prove. Indeed, the En glish mathematician Thomas Kirkman was unable to decide  whether Tait’s claim was actually true: 3

The theorem— that on  every  p edron   P, having only triedral summits, a closed circle of edges passes once through  every summit, has this provoking interest, that it mocks alike at doubt and proof. 
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Eventually, in 1946, the En glish mathematician W. T. Tutte showed Tait’s claim to be false by exhibiting a counter- example with 46 points (see 

Chapter 5). 

PERCY HEAWOOD ( ENGLAND)

Percy John Heawood studied at Oxford University, where he learned about the four color prob lem from Henry Smith, the Savilian Professor of Geometry. In 1887, he was appointed a lecturer at the Durham Colleges,  later to become the University of Durham, where he had a long and distinguished  career. 

In 1890, Heawood wrote a groundbreaking paper, “Map- colour 

theorem”,4 in which he exposed the fundamental flaw in Kempe’s accepted proof of the four color theorem, giving a specific example that showed why Kempe was mistaken in trying to perform two simultaneous color interchanges for the pentagon. By modifying Kempe’s arguments, Heawood was able to prove that the countries of  every map on the plane or sphere can be colored with five colors— itself a remarkable result. 

Unfortunately, Heawood’s revelation of Kempe’s error remained largely Percy John Heawood (1861–1955). 
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unknown for several years, and he received  little recognition for his achievement.5

Eight years  later, Heawood wrote a second paper that developed Tait’s idea of coloring the bound aries of a cubic map with three colors.6 

He first showed that if the number of bound aries around  every country is divisible by 3, then the countries can be colored with four colors. He then explained:

If we can assign the numbers 1 and −1 to the meeting points of a cubic map so that the sum of the numbers around each country is divisible by 3, then we can color the boundary lines with three colors, and the countries with four colors. 

1

–1

–1

–1

1

1

1

1

–1

–1

Labeling the points of a cubic map. 

Moreover, if the points are labeled  v 1,  v 2, . . .  ,  vn, then a system of congruences of the form

 xi  +  xj  + · · · +  xk  ≡ 0 (mod 3)

can be generated, with one congruence for each country.  Here, each unknown  xi is  either 1 or −1, and  xi appears in the congruence for a partic u lar country if and only if the point  vi lies on a boundary of that country. 

Heawood’s 1890 paper also discussed the coloring of cubic maps on surfaces other than a plane or sphere, such as a torus, or the surface of a sphere to which several  handles have been added (or, equivalently, of a many- holed donut). Such a surface is called an  orientable surface. It has genus g if  there are  g  handles or holes, and is denoted by  Sg; for example, the torus  S 1 has genus 1 and the sphere  S 0 has genus 0. 
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Two drawings of the surface  S 2 of genus 2. 

The  chromatic number χ( S ) of a surface  S is the smallest number of colors needed to color the regions of  every map on  S, with neighboring regions colored differently. Heawood showed that the chromatic number χ( S 1) of a torus is 7— that is,  every map on a torus can be colored with seven colors, and  there are torus maps that require all seven colors. 
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Two drawings of a torus map that requires seven colors; in the right hand drawing the opposite sides of the rectangle are to be identified as indicated. 

In trying to establish the chromatic number of the surface  Sg, where g ≥ 1, Heawood used an extension of Euler’s formula (due to the Swiss mathematician Simon- Antoine- Jean L’Huilier7) for maps drawn on it— namely, that if such a map has  R regions,  B bound aries, and  P 

points, then

 R  +   P  =   B  + 2 − 2 g. 

He deduced that, for  g ≥ 1, the countries of  every cubic map on  Sg can be colored with  H( g) colors, where

 H( g) = ⎢1

⎥

⎣ (

)

2 7 + 1 + 48 g ⎦. 
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Here the outer brackets represent the “floor function”, which indicates that the result must be rounded down when it is not a  whole number. 

So for the torus  S 1 and the two- holed torus  S 2, H(1) = ⎢1

⎣

⎥

⎢

2(7 +

49)⎦ = ⎢⎣7⎥⎦ = 7 and  H(2) = 1⎣

⎥

2(7 +

97)⎦ = ⎢⎣8.4244 ...⎥⎦ = 8. 

It follows that

χ( S

⎢

⎥

⎣ (

)

 g) ≤ 12 7 +

1 + 48 g ⎦. 

But Heawood did not consider it necessary to prove that, apart from the torus,  there are maps on  Sg that actually require the number of colors predicted by this formula, so that the in equality becomes an equality. 

This major omission  later came to be known as the  Heawood conjecture, which can be stated as follows:

 Heawood conjecture: For each  g  ≥ 1, the chromatic number of the orientable surface  S

⎢

⎥

⎣ (

)

 g is  χ( Sg) = 12 7 + 1 + 48 g ⎦. 

It would be over seventy years before this was proved in general (see 

Chapter 6). 

Percy Heawood is remembered mainly for exposing Kempe’s error 

and for the Heawood conjecture, but he never lost interest in the four color prob lem. He continued to write papers on the congruences associated with map coloring  until his 90th year.8

JULIUS PETERSEN (DENMARK)

Julius Peter Christian Petersen was a Danish mathematician widely known for his successful school and undergraduate textbooks, as well as for his research into geometry. In 1891, he published a pioneering paper, “Die Theorie der regulären Graphs” (The theory of regular graphs),9 on factorizing graphs. His choice of the En glish word “Graphs”, rather than the German “Graphen”, arose from his extensive discussions on the subject with Sylvester.10

A  regular graph is a graph in which  every vertex has the same degree, and an  r- factor in a graph is a subgraph that is regular of degree  r and includes  every vertex. In par tic u lar, a 1- factor— sometimes called a  perfect 

[image: Image 26]
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Julius Petersen (1839–1910). 

or  complete matching—  is a collection of disjoint edges that includes  every vertex of  G. 

 X

 Y

A 1 factor in a regular graph, 

matching the vertices in the set 

 X with  those in the set  Y. 

Further, an  r- factorization of  G splits  G into  r- factors; for example, the complete graph  K 7, which is regular of degree 6, has a 2- factorization into three  2- factors. 

A 2 factorization of  K 7. 

Petersen asked when it is pos si ble to split a regular graph of degree  k into regular  factors of given degree  r, and proved that
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If  k is even, then any graph that is regular of degree  k can be split into  2- factors. 

He also observed that the situation is more complicated when  k is odd. 

Petersen was particularly interested in  factors in cubic graphs, where k = 3. His main achievement was to prove the following: Petersen’s theorem:  Every cubic graph with at most two leaves has a 1- factor. 

Here, Petersen thought of a  leaf as a part of the graph that is separated from the rest by the removal of a single edge. (Nowadays, the word “leaf” 

refers to just a single vertex of degree 1.) Sylvester’s graph is a cubic graph with three leaves and no 1- factor, so Petersen’s condition on leaves is necessary. 

Sylvester’s graph, with three leaves  

and no 1 factor. 

Petersen’s proof of his theorem was complicated, and simpler proofs were provided  later by the Americans H. Roy Brahana and Orrin Frink, and by the Belgian Alfred Errera.11

We have seen that Tait proved that the four color theorem is true for cubic maps if and only if the bound aries can be colored with three colors with all three colors appearing at each point. Such a coloring of the edges gives a 1- factorization, and Tait conjectured that  every cubic graph without leaves has such a 1- factorization. In 1898, Petersen wrote a short note in which he disproved Tait’s conjecture by constructing a cubic graph with no 1- factorization.12 This graph is now called the  Petersen graph, although Kempe had already published a drawing of it in 1886.13
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Three drawings of the Petersen graph. 

In a  later note on connections between the four color prob lem and the factorization of graphs,14 Petersen commented that Kempe had

only skimmed over the prob lem and committed his error just where the difficulties began

and concluded by remarking, somewhat unexpectedly, that

I am not certain of anything, but if I had to wager, I would hold that the theorem of four colors is not correct. 

LOTHAR HEFFTER (GERMANY)

Lothar Wilhelm Julius Heffter was a German mathematician who studied and lectured at several universities. In a paper of 1891,15 written while teaching in Giessen, he extended Heawood’s results on the coloring of maps on the orientable surface  Sg. 

It was Heffter who spotted the gap in Heawood’s paper. Accept-

ing Heawood’s proof that  H( g) = ⎢1

⎥

⎣ (

)

2 7 + 1 + 48 g ⎦ colors are suffi-

cient  for coloring maps on the orientable surface  S

⎢

⎥

⎣ (

)

 g— that  is,  χ( Sg) ≤ 12 7 +

1 + 48 g ⎦
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Lothar Heffter (1862–1962). 

χ( S

⎢

⎥

⎣ (

)

 g) ≤ 12 7 +

1 + 48 g ⎦—he pointed out that Heawood had neglected to show that when  g  ≥ 2,  there are maps that require this number of colors, so that the in equality becomes an equality. Heffter was determined to fill this gap, and managed to do so for all values of  g up to 6 and for a few other values, but he was unable to produce an argument that worked in general. 

His approach was first to investigate maps in which  every region (country) meets  every other one, calling this a  system of neighboring regions; for example,  there are up to seven neighboring regions on a torus, as we have seen. We note that, if  there are  n neighboring regions, then  n colors are needed to color them. 

Heffter then turned the prob lem inside out! Instead of fixing the genus  g and asking for the largest number  n of neighboring regions that can be drawn on the surface  Sg , he fixed the number  n of neighboring regions and asked for the smallest genus  g for which  n neighboring regions can be drawn on  Sg ; for example, if  there are seven neighboring regions, then the smallest value of  g is 1 (the torus). Using L’Huilier’s generalized version of Euler’s formula, Heffter obtained the lower bound

 g ≥ 1

⎡⎢ 12( n − 3)( n − 4)⎤⎥. 

Here, the outer brackets represent the “ceiling function”, which indicates that the result must be rounded up when it is not a  whole number; for example, when  n = 7, it is
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1

⎡⎢ 12(7 − 3)(7 − 4)⎤⎥ = 1

⎡⎢ ⎤⎥ = 1, 

as expected. With this formulation, the Heawood conjecture takes the following form:

 Heawood conjecture ( neighboring regions): The simplest orientable surface on which  n (≥ 3) neighboring regions can be drawn is  Sg , where   g = 1

⎡⎢ 12( n − 3)( n − 4)⎤⎥. 

Heffter was able to prove this for all values of  n up to 12 and for a few other values. 

Heffter’s final inversion of the prob lem involved the idea of duality, as introduced by Kempe (see Chapter 1). By replacing each of the  n neighboring regions by a point inside it, and joining neighboring points, we obtain a system of  n interconnected points— that is, the complete graph  Kn. 

We now define the  orientable genus g ( G ) of a graph  G to be the smallest value of  g for which  G can be drawn without crossings on the orientable surface  Sg ; for example, the orientable genus of the complete graph K 7 is 1 (the torus). 
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A drawing of  K 7 on a torus. 

The Heawood conjecture then takes the following form:

 Heawood conjecture ( complete graphs): The orientable genus of  Kn ( n  ≥ 3) is

 g( Kn) = 1

⎡⎢ 12( n − 3)( n − 4)⎤⎥. 

[image: Image 28]
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This was  later called the  thread  prob lem,  because one can think of connecting the  n vertices of  Kn by a  simple curve (a thread) on the surface so that  these curves do not intersect.16

It turns out that  these three equivalent versions of the Heawood conjecture are true for all orientable surfaces, as we  shall see in Chapter 6. 

Moreover, although Heffter was unable to prove the conjecture in general, it is significant that his formula for the orientable genus included the number 12, as the eventual proof split into twelve separate cases, depending on the remainder when  n is divided by 12. 

HEINRICH TIETZE  (AUSTRIA)

Almost twenty years  later, the Austrian mathematician Heinrich Franz Friedrich Tietze was thinking along similar lines. He would later become known as the author of the popu lar  Famous Prob lems of Mathe matics, which includes some attractive color plates of maps on surfaces.17

Whereas Heawood and Heffter had been concerned with maps drawn 

on orientable surfaces (spheres with  handles added), Tietze was interested in maps on  non- orientable  surfaces.  These are spheres with “cross-caps” added, where a  cross- cap is obtained by cutting a hole in a sphere and identifying its boundary with the edge of a Möbius band.  These surfaces include the projective plane and the Klein  bottle (first described in 1882 by the German mathematician Felix Klein), which cannot be embedded in three- dimensional space. 

Heinrich Tietze  (1880–1964). 
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A Möbius band and a Klein  bottle. 

Just as a torus can be drawn as a rectangle with opposite sides appropriately identified, a Möbius band, a projective plane, and a Klein  bottle can each be similarly represented. 

Möbius band

projective plane

Klein bottle

Representing a Möbius band, a projective plane, and a Klein  bottle. 

A non- orientable surface has  genus q if it is obtained by adding  q cross-caps to a sphere, and is denoted by  Nq. In par tic u lar, the projective plane  N 1 has genus 1, and the Klein  bottle  N 2 has genus 2. 

In 1910, Tietze wrote a paper in which he showed that up to six neighboring regions can be drawn on a Möbius band.18
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Six neighboring regions on a Möbius band. 
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He then imitated the arguments of Heawood and Heffter in trying to establish the chromatic number χ( Nq) of the non- orientable surface  Nq, where  q ≥ 1. To this end, he used an extension of Euler’s formula for maps drawn on  Nq—   namely, that if such a map has  R regions,  B  bound aries, and  P points, then

 R +  P  =  B  + 2   −  q. 

He deduced that, for  q  ≥ 1, the regions of  every cubic map on  Nq can be colored with  T( q) colors, where

 T ( q) = ⎢1

⎥

⎣ (

)

2 7 + 1 + 24 q ⎦, 

so for the projective plane  N 1 and the Klein  bottle  N 2, T (1) = ⎢1

⎢

2(7 +

25)

⎣

⎥⎦ = ⎢⎣6⎥⎦ = 6 and  T(2)= 1⎣

⎥

2(7 +

49)⎦ = ⎢⎣7⎥⎦ = 7. 

It follows that

χ( N

⎢

⎥

⎣ (

)

 q) ≤ 12 7 +

1 + 24 q ⎦. 

Again, the difficulty is to prove that  there are maps on  Nq that actually require the number of colors predicted by this formula, so that the in equality becomes an equality. The Heawood conjecture for non-orientable surfaces then takes the following form:

 Heawood conjecture ( map coloring): For each  q  ≥ 1, the chromatic number of the non- orientable surface  N

⎢

⎥

⎣ (

)

 q is  χ(  Nq) = 12 7 +

1 + 24 q ⎦. 

But  here Tietze ran into a difficulty. He proved that  every map on a Klein  bottle (where  q = 2) can be colored with seven colors, and he found a Klein  bottle map that requires six colors, but he was unable to find one that requires the predicted seven colors.  Whether such maps exist was not resolved  until the 1930s (see Chapter 3). 

Tietze then turned the prob lem inside out, as Heffter had done, by fixing the number  n of neighboring regions, and asking for the smallest genus  q for which  n neighboring regions can be drawn on the surface Nq. He obtained the lower bound

 q ≥ 1

⎡⎢ 6( n − 3)( n − 4)⎤⎥; 
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for example, when  n = 6 it is

1

⎡⎢ 6(6 − 3)(6 − 4)⎤⎥ = 1

⎡⎢ ⎤⎥ = 1. 

With this formulation, the Heawood conjecture for non- orientable surfaces then takes the following form:

 Heawood conjecture ( neighboring regions): The simplest non- orientable surface on which  n (≥ 3) neighboring regions can be drawn is  Nq, where   q = 1

⎡⎢ 6 ( n − 3)( n − 4)⎤⎥ . 

We now define the  non- orientable  genus  ĝ( G ) of a graph  G to be the smallest value of  q for which  G can be drawn without crossings on the non- orientable surface  Nq; for example, the non- orientable genus of the complete graph  K 6 is 1 (corresponding to the surface  N 1, the projective plane). 
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Six neighboring regions and a drawing of  K 6 on a projective plane. 

The Heawood conjecture then takes the following form:

 Heawood conjecture ( complete graphs): The non- orientable genus of Kn ( n ≥ 3) is

ˆ g( Kn) = 1

⎡⎢ 6 ( n − 3)( n − 4)⎤⎥. 

It turns out that  these equivalent versions of the Heawood conjecture are true for all non- orientable surfaces,  except one, as we  shall discover 

in Chapters 3 and 6. 
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HERMANN MINKOWSKI (GERMANY)

Hermann Minkowski was a Lithuanian- born naturalized German mathematician who taught at Göttingen University from 1902  until his early death in 1909. He is remembered for his contributions to number theory, for originating the geometry of numbers, and for his work on mathematical physics and the theory of relativity. 

Hermann Minkowski (1864–1909). 

But, for all his brilliance, Minkowski was unable to prove the four color theorem. It is recorded that he interrupted a lecture he was giving on analy sis situs (topology) to tell his student audience about it. The story is as follows:19

“This theorem has not yet been proved, but that is  because only mathematicians of the third rank have occupied themselves with it,” Minkowski announced to the class in a rare burst of arrogance. “I believe I can prove it.” 

He began to work out his demonstration on the spot. By the end of the hour he had not finished. The proj ect was carried over to the next meeting of the class. Several weeks passed in this way. Fi nally, one rainy morning, Minkowski entered the lecture hall, followed by a crash of thunder. At the rostrum, he turned  towards the class, a deeply serious expression on his face. 

“Heaven is angered by my arrogance,” he announced. “My proof of the Four Color Theorem is also defective.” 

He then took up the lecture on topology at the point where he had dropped it several weeks before. 


* * * * *
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Although many mathematicians devoted significant time and effort to tackling the four color prob lem, no solution had been found. Eu ro pe ans had carried out most of this work, but this situation would soon change as American mathematicians began to contribute to the subject. The next chapter introduces three of  these: Paul Wernicke, Oswald Veblen, and George Birkhoff. 

Chapter 2

The 1900s and 1910s

Oswald Veblen and George Birkhoff, two of Amer i ca’s most impor tant mathematicians in the early 20th  century, made significant contributions to the development of graph theory. Between their first meeting in Chicago in 1902 and the latter’s death in 1944, they remained close friends and colleagues in their mutual desire to advance and promote mathematics in the United States. 

Birkhoff’s first significant contribution to the subject appeared in 1912, in the same volume of the  Annals of Mathe matics as a paper by Veblen. 

These two papers, a follow-up paper by Birkhoff, and some lectures and a book by Veblen,  were to provide the impetus for the ever- growing American interest in graph theory, and in map coloring in par tic u lar. 

We also look  here at the involvement of some American mathematicians in World War I. But first we examine the notable contribution of another American who has remained largely unknown within the mathematical community. 

PAUL WERNICKE

Paul August Ludwig Wernicke was born in Berlin in 1866. He migrated to the United States in 1893 and by 1900 was already a naturalized American citizen. From 1894 to 1906, he was a professor of modern languages at the State College of Kentucky, but during this period his interests turned increasingly  toward mathe matics and he was soon elected a member of the American Mathematical Society. 

As with many  others at the time, Wernicke became captured by the four color prob lem. His first contribution to mathe matics was to present a talk on this topic at the American Mathematical Society’s summer meeting in Toronto in 1897,  under the chairmanship of the society’s president, Simon Newcomb. An abstract of his talk appeared in the society’s  Bulletin:1
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Given a map correctly colored and with its frontiers marked, the author proves that any triangles, quadrangles, and pentagons can be introduced and correctly marked at the same time. The main theorem then follows by induction. 

Based on Tait’s connection between colorings of the bound aries and the countries of a cubic map, Wernicke’s approach seems to have involved adding new countries to a map to convert it into one that he could color with four colors, but nothing appears to have come from it. 

For a while, Wernicke spent some time back in Germany, studying at the University of Göttingen with Hermann Minkowski, and he received his doctoral degree in mathe matics in 1903 for the thesis  Über die Analysis situs mehrdimensionaler Räume (On the Analy sis of Position for Higher-dimensional Spaces). He then returned to the United States, and in 1904 his best- known paper, which he had written while in Göttingen, made its appearance.2

Kempe had shown that  every cubic map must contain a digon, triangle, square, or pentagon. We call such a set of regions an  unavoidable set, in the sense that  every cubic map must contain at least one of them. 

Wernicke’s achievement was to extend Kempe’s result by showing that if such a map contains no digon, triangle, or square, then not only must it include a pentagon, but  there must be a pentagon adjacent to another pentagon, or a pentagon adjacent to a hexagon. His hope was that  these might prove more amenable to analy sis than the single pentagon that had defeated Kempe. Wernicke’s new unavoidable set was the most significant contribution to solving the four color prob lem since  those of Kempe and Heawood. 

digon

triangle

square

two pentagons pentagon/hexagon

Wernicke’s unavoidable set. 

OSWALD VEBLEN

Oswald Veblen’s paternal grandparents emigrated from Norway to the United States in 1847, where one of their  children, Oswald’s  father, subsequently became a professor of mathe matics and physics at the University of Iowa. Oswald was born in Decorah, Iowa, in 1880, and entered 
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that university at the age of 14, graduating with a bachelor’s degree in 1898.  After spending another year  there as an assistant in the physics department, he transferred to Harvard University for a year, earning a second bachelor’s degree in 1900. 

On leaving Harvard, Veblen spent three years of gradu ate study at the University of Chicago, gaining much of his early mathematical inspiration from his supervisor, E. H. Moore, and from Moore’s German colleagues, Oskar Bolza and Heinrich Maschke, who  were also on the teaching staff. As a fellow student recalled:3

Moore was brilliant and aggressive in his scholarship, Bolza rapid and thorough, and Maschke more brilliant, sagacious and without doubt one of the most delightful lecturers on geometry of all times. 

Veblen’s doctoral dissertation on  A System of Axioms for Geometry was partly inspired by the work of Henri Poincaré in France and earned him his degree in 1903. 

Oswald Veblen 

(1880–1960). 

From 1905 to 1932, Veblen taught mathe matics at Prince ton University, initially as an instructor and then as a full professor from 1910 onward. During the academic year 1928–29 he taught at Oxford University in  England, as part of an exchange arrangement with G. H. Hardy,  after which he became the first professor of mathe matics at the newly established Institute for Advanced Study in Prince ton. 

Oswald Veblen’s research and influence ranged over many areas of mathe matics, including symbolic logic and the foundations of geometry and topology. Through his work, and that of his students, Prince ton became one of the leading centers in topology, earning Veblen the designation of “Statesman of mathe matics”.4
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Veblen’s two contributions to graph theory  were influential and for many years provided among the best introductions to the subject. It can only be speculated as to how he became interested in this area, but during his time in Iowa and Chicago, he may have attended mathematical meetings that presented papers on the subject, such as  those of C. S. Peirce or Paul Wernicke. Additionally, he would have had access to learned journals and may have read the contributions of Kempe, Heawood, and  others.  There seems to be no evidence of Veblen’s having had any direct contact with  either Peirce or Wernicke. 

Modular Equations

When Veblen’s paper on the four color prob lem was published in 1912, topology was still not widely pursued in Amer i ca. The first of his writings on graph theory was the following paper,5 presented to the American Mathematical Society on April 27, 1912. In it, Veblen drew on ideas from finite geometry and incidence matrices, with the adjacencies between the vertices (meeting points), edges (bound aries), and countries of a map providing the matrix entries. He expressed vari ous results on maps, including the four color prob lem, in an algebraic form. His use of matrices followed that of Henri Poincaré.6

O. Veblen:  An application of modular equations  

 in analy sis situs (1912)

Veblen began by showing that any map yields two matrices, re-

marking that:

These matrices are identical on interchanging rows and columns with those employed by Poincaré if the + and − signs used by the latter are omitted. 

He motivated his analy sis with the complete graph  K 4, which he described as

the map obtained by projecting an inscribed tetrahedron from one of its interior points to the surface of a sphere. 

Matrix  A takes the four vertices  V 1 to  V 4 of  K 4 as rows, and the six edges  x 1 to  x 6 as columns, with 1 appearing when the vertex meets the edge, and 0 other wise. Matrix  B takes the edges of  K 4 as rows 
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and the countries  C 1,  C 2,  C 3, and  C 4 as columns, with 1 appearing when the edge borders the country and 0 other wise. 

 V 1

 C 2

 x 2

 x 1

 x 3

 C 4

 C 3

 V 2

 x 4

 x

 C

5

1

 x

 V

6

3

 V 4

0 1 0 1

1 1 1 0 0 0

0 0 1 1

 A =

0 1 0 1 1 0

 B =

0 1 1 0

1 0 0 1 0 1

1 0 0 1

0 0 1 0 1 1

1 0 1 0

1 1 0 0

The complete graph  K 4, and the incidence matrices  A and  B. 

From each matrix, Veblen developed two systems of linear equa-

tions, with all calculations carried out (modulo 2), so that 1 + 1 = 0. 

For matrix  A, the first system has a variable  xa for each edge  a, and an equation of the form

 xa  +  xb  +  xc  + · · · = 0

for each vertex; for example, the equation arising from the first row of matrix  A is  x 1 +  x 2 +  x 3 = 0. Solving  these equations yields a way of labeling the edges with 0s and 1s, such that the number of 1s labeling the edges at each vertex is even. As Veblen observed:

The edges labeled with 1’s in this manner form a number of closed cir cuits no two of which have an edge in common. 

He deduced that the number of linearly in de pen dent solutions is α2 − 1,  where  α2 is the number of countries, and he called them 

“fundamental solutions”. 

The second system of equations for the matrix  A has a variable Va for each vertex, and an equation of the form

 Va +   Vb  = 0
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for each edge  VaVb. Veblen proved that the rank of the matrix  A is α0 − 1, and on combining this with the above result, he deduced that α1 − (α0 − 1) = α2 − 1,  or  α0 − α1 + α2 = 2, 

which is Euler’s formula. 

For matrix  B, the first system of equations has a variable  ya for each country, and an equation of the form

 ya +   yb = 0

for the countries meeting along each edge. The second system has a variable  ea for each edge, and an equation of the form ea +   eb  + · · · = 0

for the edges surrounding each country. Again, he was able to 

deduce Euler’s equation. 

Having established his four systems of linear equations, Veblen turned to the four color prob lem. Using the four ele ments, 0, 1,  i, and  i + 1, to represent the colors, where  i  2 +  i + 1 = 0 and the calculations are carried out (modulo 2), he observed that a solution to the four color prob lem consists in finding a set of values (  y 1,  y 2, ...,  y α ) 2

that satisfies none of the above equations  ya +  yb = 0. 

Veblen continued by remarking that the set of non- zero values 

(  y 1,  y 2, ...,  y α ) can be regarded as a point in a finite projective 2

space of α2 − 1 dimensions. He then explored diff er ent subspaces of this projective space, before reformulating the four color problem in terms of them. More precisely, in a finite projective space of α2 − 1 dimensions with three points on each line,  there are a number of subspaces  SC α  with dimension α

2 −  n

2 −  n, one for each odd 

cycle  Cn, and  these subspaces all have one point in common. Veblen then asserted that

The map can be colored in four colors if and only if  there exists a point not on any of  these  SC α ’ s.  There are as many distinct ways of coloring 2 −  n

the map (aside from permutations of the colors) as  there are real lines in the (α

 C

2 − 1) -  space which do not meet any  S α

( n, odd). 

2 −  n

To conclude, Veblen investigated  those solutions of the equa-

tions that provide conditions  under which the four color prob lem 
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can be solved, pointing out that  these equations are essentially the same as the congruence equations derived by Heawood in his paper of 1898 (see Interlude A). The final paragraph, which sums up the paper’s content, reads:

To solve the four color prob lem it is necessary and sufficient to find a solution of  these equations in which none of the variables vanish. 

The variables may be interpreted as coördinates of points in a finite projective space of α0 dimensions in which  there are four points on every  line. 

Veblen’s Colloquium Lectures

Every few years, the American Mathematical Society selected two prominent mathematicians to give a series of summer Colloquium Lectures to its membership— one of the highest recognitions that a mathematician in Amer i ca could receive.  These lectures  were always well attended, giving rise to considerable discussion, and  were then revised, extended, and collected together as a monograph. 

In 1916, Oswald Veblen presented the Colloquium Lectures in Cambridge, Mas sa chu setts, but  because of World War I and the society’s lack of funds, their publication was delayed. The monograph eventually appeared in 1922  under the title of  Analy sis  Situs (The Analy sis of Position) and gave the first comprehensive description of the fundamental concepts of combinatorial topology.7 It became a standard reference work for many years and constituted Veblen’s most impor tant contribution to graph theory. 

In his preface, Veblen recorded his indebtedness to Philip Franklin (see Chapter 3), who “assisted with . . .  the manuscript, the drawings, and the proof- sheets”. The following paragraph, which opens the preface, succinctly set the scene for the book’s content and indicated the modest and unassuming personality of its author:

The Cambridge Colloquium lectures on Analy sis Situs  were intended as an introduction to the prob lem of discovering the  n dimensional manifolds and characterizing them by means of invariants. For the pre sent publication the material of the lectures has been thoroughly revised and is presented in a more formal way. It thus constitutes something like a systematic treatise on the ele ments of Analy sis Situs. The author does not, however, imagine that 
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it is in any sense a definitive treatment. For the subject is still in such a state that the best welcome which can be offered to any comprehensive treatment is to wish it a speedy obsolescence. 

The work was divided into five chapters, the first one being “Linear graphs”. In it, Veblen established his fundamental definitions by building on the following basic par ameters for linear graphs and using the complete graph  K 4 as an example; this was the same graph as in his earlier paper, but with diff er ent terminology:

a 0 - dimensional  simplex is a single point, 

a 1-  dimensional simplex is a segment or edge, 

a 0-  dimensional cell (0- cell) is an end or vertex, 

a 1-  dimensional cell (1- cell) consists of the points of a segment, a 0-  dimensional complex is the set of distinct 0- cells, a 1-  dimensional complex is a linear graph. 

Veblen then developed some 19th- century algebraic ideas put forth by G. R. Kirchhoff (who had written on electrical networks) and J. B. Listing (who had written on topological complexes), as refined by Henri Poincaré. In order to calculate the currents in a network, Kirchhoff had introduced the idea of a  spanning tree (a tree that includes  every vertex of the network) and from it obtained a “fundamental set of cycles” that enabled him to find all the currents.8 Citing Kirchhoff’s work, Veblen showed that the number of cycles in a fundamental set is related to the rank of the corresponding incidence matrix. 

More generally, Veblen obtained incidence matrices for  these multi-dimensional structures and discussed the theory of the  n- cell,  regular complexes, manifolds, and the associated dual complexes. He also included descriptions of the  rank V − 1 and the  nullity E −  V +  F of a map or planar graph, where  V,  E, and  F are the numbers of vertices, edges, and faces (regions).  These concepts of rank and nullity would  later play a central role in the work of Hassler Whitney (see Chapter 4). 

Following his successful series of lectures, Veblen turned his attention to other areas of mathe matics.  After the publication in 1915 of Einstein’s general theory of relativity, he became interested in differential geometry, and from 1922 most of his publications  were on this subject and on its connections with relativity.  These investigations led to important applications, and atomic physicists  were  later to make use of his discoveries. 
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World War I interrupted Veblen’s  career, as we  shall see, and on his return to Prince ton he quickly became respected as a leading geometer. 

Because of his achievements, many gradu ate students applied to study there or to be employed by the mathe matics faculty. One of  these students was Philip Franklin and, as his postgraduate supervisor, Veblen was undoubtedly instrumental in Franklin’s choice of thesis subject and in his continuing interest in graph theory and the four color prob lem 

(see Chapter 3). 

Apart from his published work, Veblen’s contributions to graph theory were through the direct influence that he had on other math ematicians— 

his near- contemporary, George Birkhoff, in par tic u lar. Their academic lives  were closely linked through their mathematical work, and through their mutual interest in the development of American scholarship and of its standing in the world. 

GEORGE D. BIRKHOFF

George David Birkhoff was the leading American mathematician of his time.9 Of Dutch extraction, he was born in 1884 in Overisel, Michigan. 

From the age of 9, he showed a considerable aptitude for mathe matics, and his solution to a prob lem in number theory appeared in the  American Mathematical Monthly when he was just 15 years old. 

In 1902, Birkhoff attended the University of Chicago where he met Oswald Veblen, then a gradu ate student. Despite their very diff er ent personalities and their disagreements on vari ous issues, they became and remained close friends. In time, Veblen was to influence Birkhoff’s early work and se lection of research subject  matter, including graph theory and the four color prob lem. 

After just a year in Chicago, Birkhoff transferred to Harvard University, being awarded a bachelor’s degree in 1905 and a master’s degree in 1906. Returning to the University of Chicago in 1905 for postgraduate study  under E. H. Moore, he earned his doctoral degree in 1907 for a thesis on the properties and applications of certain ordinary differential equations, work that was heavi ly influenced by the mathe matics of Henri Poincaré. 

Following the award of his doctorate, Birkhoff took up an appointment in 1907 as an instructor of mathe matics at the University of Wisconsin in Madison. In 1909, he moved to Prince ton University, and two years  later he was appointed professor  there and conducted research 
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George D. Birkhoff (1884–1944). 

mainly in dynamics and mathematical physics. In 1912, he returned to Harvard as an assistant professor, was promoted to full professor in 1919, and remained  there for the rest of his life.10 In addition to his work on map coloring, Birkhoff made substantial contributions to many other mathematical areas, including dynamical systems, ergodic theory, differential and difference equations, the calculus of variations, and the three- body  prob lem. 

Chromatic Polynomials

At the same time as Veblen’s paper on modular equations appeared, his colleague George Birkhoff was publishing his first major contribution to the coloring of maps. Birkhoff’s interest and subsequent mild obsession with the four color prob lem had been triggered by attending Veblen’s seminar in  Analy sis  Situs when they  were together at Prince ton. 

His son Garrett, who also became a prominent mathematician,  later recalled that:11

The four color prob lem was one of my  father’s hobbies. I remember that all through the 1920’s, my  mother was drawing maps that he would then proceed to color. He was always trying to prove the four color theorem. 
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Dismissing as prob ably apocryphal a story that his  mother had been requested by her new husband to prepare maps for him to color while on honeymoon, he continued:

A related, definitely true story concerns [Solomon] Lefschetz. He came to Harvard— this must have been around 1942—to give a colloquium talk. 

After the talk my  father asked Lefschetz, “What’s new down at Princeton?” Lefschetz gave him a mischievous smile and replied, “Well one of our visitors solved the four color prob lem the other day.” My  father said: 

“I doubt it, but if it’s true I’ll go on my hands and knees from the railroad station to Fine Hall.” He never had to do this. 

In  later life, the older Birkhoff was to rue the time and effort that he had devoted to the four color prob lem, even though it had always been a keen ambition of his to find a solution. Many years  later, Hassler Whitney (see Chapter 4) recalled:12

In the early 1930s, when I was at Harvard, exploring the prob lem among other  things, Birkhoff told me that  every  great mathematician had studied the prob lem, and thought at some time that he had proved the theorem. In this period I was often asked when I thought the prob lem would be solved. 

My normal response became “not in the next half  century.” 

Birkhoff’s first paper on the subject was “A determinant formula for the number of ways of coloring a map”.13  Here he suggested a new ave nue of investigation by taking a quantitative approach. This led to the introduction of the  chromatic polynomial, which counts the pos si ble colorings of the regions of a map when a given number of colors are available. 

George D. Birkhoff:  A determinant formula for the  

 number of ways of coloring a map (1912)

In how many ways can a given map be colored with λ colors? Birkhoff’s paper included two examples. 

The first map has three mutually adjacent regions (ignoring the outside region):  here, region  A can be colored with any of the λ 

colors, region  B can then receive any of the remaining λ − 1 colors, and region  C can have any of the remaining λ − 2 colors. The total number of ways of coloring the map is therefore

 P(λ) = λ(λ − 1)(λ − 2) = λ3 − 3λ2 + 2λ. 
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So if five colors are available, then the number of colorings is P(5) = 60. 

 A

 B

 A

 D

 B

 E

 C

 C

Birkhoff’s second map has five regions:  here, region  A can be colored with any of the λ colors,  B with λ − 1  colors,  C with λ − 2 

colors, and  D and  E with λ − 3 colors each, so

 P(λ) = λ(λ − 1)(λ − 2)(λ − 3)2 = λ5 − 9λ4 + 29λ3 − 39λ2 + 18λ. 

So if five colors are available, then the number of colorings is P(5) = 240. 

In  every case, as Birkhoff discovered, 

The number of ways of coloring the given map  M in λ colors (λ = 1, 2, . . .) is given by a polynomial  P(λ) of degree  n, where  n is the number of regions of the map  M. 

This polynomial is now known as the  chromatic polynomial of the map. 

Birkhoff also obtained the following formula for its coefficients: P(λ) = ∑  i λ i ∑  k (−1) k ( i,  k). 

The two summations  here extend from  i = 1 to  n, and from  k = 0 to n −  i, and ( i,  k) is

the number of ways of breaking down the map  M in  n regions to a submap of  i regions by  k  simple or multiple coalescences. 

The boundary conditions given  were

( i,  k) = 0 for  k >  n −  i, ( n, 0) = 

1, and ( i, 0) = 0 for  i <  n. 
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However, Birkhoff warned that “the value of ( i,  k) is not immediately obtained”. He indicated that more complicated maps would 

require considerable computation to determine  P(λ) from the above equation or by inspection of the map itself. 

Birkhoff’s main objective was to prove that  P(4) > 0, but he was unable to achieve this. Although he managed to find some general properties of  P(λ), his methods, involving determinants,  were cum-bersome. Twenty years  later, Hassler Whitney discovered a sim-

pler procedure for determining the coefficients of chromatic poly-

nomials (see Chapter 4). 

Birkhoff continued to work on chromatic polynomials for the rest of his life. In 1930, he wrote a paper14 in which he proved that, if λ is any positive integer other than 4, then, for a map with  n (≥ 3) regions, P(λ) ≥ λ(λ − 1)(λ − 2)(λ − 3) n −   3. 

This is a tantalizing result,  because if it could also be proved for λ = 4, then the four color prob lem would be solved! 

In 1934, Birkhoff followed this with a paper15 in which he considered the roots of the equation  P(λ) = 0, in order to place the prob lem in a wider context. Fi nally, in the early 1940s, he teamed up with Daniel C. 

Lewis to write a major work on chromatic polynomials (see Chapter 5). 

Reducibility

In 1913, Birkhoff proved Henri Poincaré’s “last geometric theorem”, a restricted form of the three- body prob lem of finding the simultaneous motion of the sun, earth, and moon, which Poincaré had been unable to solve. Few scholars knew and understood Poincaré’s work better than Birkhoff, whose efforts in this area helped to establish his international fame. He soon came to be regarded as North Amer i ca’s leading mathematician, and his proof remains widely cited  today. 

Also published in 1913 was Birkhoff’s pioneering paper, “The reducibility of maps”,16 which would prove significant in the development of the solution to the four color prob lem. In it he took a more systematic approach to map coloring, by first defining a  configuration 
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in a map to be a collection of regions that are surrounded by an outside ring of regions. 

A configuration of regions in a map. 

Birkhoff then investigated which colorings of the regions in the surrounding ring can be extended to the regions inside it— either directly or by interchanging pairs of colors, as described by Kempe (see Chapter 1).  

When this can be done, the configuration is said to be  reducible;  other wise, it is  irreducible. It follows that a reducible configuration is an arrangement of regions that cannot occur in a minimal counter- example to the four color theorem— that is, in a map that requires more than four colors, but for which all maps with fewer regions can be colored with four colors. 

Kempe had shown that digons, triangles, and quadrilaterals are all reducible. Birkhoff now carried this idea much further by systematically investigating for reducibility  those configurations that are surrounded by rings with up to six regions. 

George D. Birkhoff:  The reducibility of maps (1913) This pioneering paper was published in the  American Journal of Mathe matics. In his introduction, Birkhoff maintained that all previous work on the four color prob lem could be stated in terms of the following four “reductions” or simplifications:

If more than three boundary lines meet at any vertex of a 

map, the coloring of the map may be reduced to the color-

ing of a map of fewer regions. 

If any region of a map is multiply- connected, the coloring of 

the map may be reduced to the coloring of maps of fewer 

regions. 

If two or three regions of a map form a multiply- connected 

region, the coloring of the map may be reduced to the 

coloring of maps of fewer regions. 
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If the map contains any 1- , 2- , 3-  or 4- sided region, the coloring of the map may be reduced to the coloring of a map of 

fewer regions. 

Birkhoff concluded his introductory remarks by declaring that his purpose was

to show that  there exist a number of further reductions which may be effected with the aid of the notion of  chains due to Kempe. 

To this end, he developed Kempe’s arguments by systematically 

studying rings of regions in his search for reducible configurations. 

Birkhoff considered a ring  R of regions that divides a map  M 

into two sets of regions,  M 1 and  M 2, so that  M =  M 1 +  M 2 +  R. The colorings of the maps  M 1 +  R and  M 2 +  R can then be combined to give a complete coloring of  M, provided that the two separate colorings can be made to agree on the ring  R. By applying the method of Kempe chains to colorings of  M 1 +  R and  M 2 +  R, Birkhoff was able to prove that no irreducible map can contain a ring with four regions. 

 M 1

 R

 M 2

He next repeated the procedure for rings with five regions and 

showed that for such rings the configuration is always reducible, except when the ring surrounds a single pentagon. He had less success with rings with six regions, but managed to prove that a par ticu lar arrangement of four pentagons is reducible—it is now known as the  Birkhoff diamond.  Here, as we  shall see in Chapter 6,  there are thirty- one essentially diff er ent ways of coloring the outside ring, 
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and all of  these colorings can be extended,  either directly or  after Kempe- interchanges of color, to the inner pentagons. 

Birkhoff’s drawing of the Birkhoff diamond. 

Included in Birkhoff’s paper was a list of pos si ble outcomes of the four color prob lem, summarized as follows:

1.  There are maps that cannot be colored in four colors. 

2. All maps can be colored in four colors, and a list of reducible rings can be found, at least one of which appears in  every map. 

3. All maps can be colored in four colors, but only by means of more complicated reductions. 

His desire for a listing of pos si ble reducible configurations provided the basis upon which  future investigators would continue his work. Several mathematicians would use Birkhoff’s results on rings with five regions, one being Philip Franklin (see Chapter 3). A full analy sis of the rings with six regions was not completed  until the 1940s, as we  shall see in Chapter 5. 

George Birkhoff was a complex man. As a widely respected figure in his homeland and abroad, he received many honors and awards from 

around the world. He was also warmly praised for the encouragement and support that he gave his research students and colleagues, but he seems not to have favored  women in academia. In the 1930s, he was criticized for anti- Semitism, as we  shall see. 
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WORLD WAR  I

As a British Dominion, Canada declared war on Germany on August 4, 1914, with the United States following on April 6, 1917,  after more than two years of action in Eu rope. In  doing so, Amer i ca then initiated a de-ployment program of academics from universities and colleges across the country to assist in the war effort. Included in this effort  were nearly 200 mathematicians who became engaged in war ser vice. 

Of  those mathematicians who  were called to arms, the majority  were employed in research into war- related technologies, while  others saw active duty with the army, navy, or air force, or acted as instructors and technical administrators. Whereas most  were stationed in North Ameri ca, some served in France, Italy, and Britain. Included among  these in 1917  were two who feature in our story:

Oswald Veblen (aged 37), professor of mathe matics at Prince ton University, was commissioned as a major in the US Army and was 

assigned to research in ordnance at the Aberdeen Proving Ground in  Mary land. 

Philip Franklin (aged 19), an undergraduate at the College of the City of New York, worked alongside Veblen in the range- finding section at the Aberdeen Proving Ground. 

We have found no mention of George Birkhoff among the American 

mathematicians who assisted in the war effort—in par tic u lar, his name does not appear in the list of  American Mathematicians in War Ser vice, later published by the American Mathematical Society.17 Nor is  there any mention of Paul Wernicke, even though he had become a naturalized American citizen some years  earlier. While continuing to teach in Kentucky, he had been in charge of his college’s military training, holding a commission as a col o nel in the Kentucky militia. 

This involvement of academics in the practical world of war- related technologies resulted in many pure mathematicians becoming exposed to more applied pursuits. Once the war was over, life then returned to normal for  these mathematicians, with most resuming their academic positions, while  others, like Franklin, were able to complete their degrees. 


* * * * *

In the quest for a solution to the four color prob lem, the contributions of Paul Wernicke (on unavoidable sets) and George Birkhoff (on reducible 
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configurations) proved to be of fundamental importance, while the more abstract approach of Oswald Veblen helped to position the study of graphs in a more mathematical context. In the 1920s, valuable advances  were made by Franklin and  others, as we  shall discover in Chap-

ter 3, but it would not be  until the 1930s that the American graph theory scene became transformed forever. 
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Chapter 3

The 1920s

The 1920s was a de cade of increasing involvement in graph theory in Amer i ca, and in coloring prob lems in par tic u lar, as American mathematicians began to follow the directions set by Oswald Veblen and George Birkhoff. One of  these was Philip Franklin, a postgraduate student of Veblen’s whose doctoral thesis was on map coloring.  Others that we discuss  here are H. Roy Brahana, the “forgotten mathematician” Howard Redfield, and Clarence Reynolds Jr. We also leap forward to look briefly at further contributions to map coloring in the late 1930s. 

PHILIP FRANKLIN

Philip Franklin was a quiet and unassuming man who seemed less able or willing than  others to promote himself, but who nevertheless provided undemonstrative encouragement and support to his students. He was also loyal to his colleagues, and to the departments to which he was Philip Franklin (1898–1965). 
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appointed, but  because he preferred to maintain his privacy,  there is less biographical information available on him than on other mathematicians we have featured. 

In 1914, Franklin enrolled at the City College of New York and graduated with a bachelor’s degree in 1918. He then undertook postgraduate study at Prince ton University, where he received a master’s degree in 1920 and his doctorate in 1921. His supervisor was Oswald Veblen, and his chosen research topic was the four color prob lem. 

Franklin remained for a further year at Prince ton as an instructor in mathe matics, before spending two years at Harvard University as Benjamin Peirce Instructor. In 1924, he transferred to the Mas sa chu setts Institute of Technology, becoming an assistant professor  there in 1925 

and an associate professor five years  later. He was promoted to full professor in 1937, a position that he held  until his retirement in 1964. A highly praised teacher, he wrote eight undergraduate textbooks on a range of topics. 

As we have seen, World War I interrupted Franklin’s undergraduate studies when he joined the army’s ordnance Aberdeen Proving Ground in Mary land. While  there, he met another member of Veblen’s group, Norbert Wiener,  later the inventor of cybernetics. A fellow mathematician was David Widder, who had a bunk in the same barracks as Franklin and Wiener and who  later recalled:1

I learned a lot from  these enthusiasts, but at times they inhibited sleep when they talked mathe matics far into the night. On one occasion I hid the light bulb, hoping to induce  earlier quiet. 

A child prodigy, Wiener had enrolled in college at the age of 11 and obtained his doctoral degree from Harvard when he was only 18. But he failed to get an appointment  there, suspecting that Harvard’s newly appointed assistant professor, George Birkhoff, was partly responsible for this. Birkhoff was one of a small number of Harvard mathematicians in the 1920s who warned Wiener against pursuing the then- topical subject of potential theory, so as to leave the field clear for other Harvard scholars, but Wiener also claimed that Birkhoff showed him special antipathy as a Jew. Wiener eventually found a position in the mathe matics faculty at MIT, which he took up in 1919, and remained  there for forty-five years  until his death in 1964. 

Philip Franklin would  later become Wiener’s brother- in- law, when he married Wiener’s  sister Constance, who was a mathematician in her own right. Both Franklin and Wiener  were involved in introducing topology to MIT, as  later recalled by their colleague Dirk Struik:2
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Since Franklin brought topology to MIT in his “analy sis situs” form, and Wiener in its “point set Lebesgue” form, we see that it came to the Institute through  two  brothers in law. 

The Four Color Prob lem

After the war, Franklin returned to academic life and was working on his doctorate, and on November 17, 1920, he presented some of his results on the four color prob lem to the National Acad emy of Sciences. 

Soon  after this, following the submission of his doctoral thesis in 1921, he published a major paper on the topic in which he developed the work of Wernicke on unavoidable sets and that of Birkhoff on reducible configurations.3 This paper made a significant contribution to the ideas of unavoidable sets and reducibility as ave nues  toward solving the four color prob lem. It was the first in a continuing line of papers that  adopted this approach over the years, as we  shall see. Franklin’s development of the subject was a model of clarity and precision. 

Philip Franklin:  The four color prob lem (1922) The following result is similar to the one used by Kempe (see Chap-

ter 1) and is a consequence of Euler’s formula:

 Counting theorem: If, for each  k,  Ck is the number of  k- sided regions in a cubic map, then

4 C 2 + 3 C 3 + 2 C 4 +  C 5 −  C 7 − 2 C 8 − 3 C 9 − 4 C 10 − · · · = 12. 

So  every cubic map that contains no digon, triangle, or square ( C 2 =  C 3 =  C 4 = 0) must contain at least twelve pentagons, and it follows that all maps with up to 12 regions can be colored with four colors. As we saw in Chapter 2, Wernicke had further proved that such a map must contain a pentagon adjacent to another pentagon, or a pentagon adjacent to a hexagon, and Franklin now 

showed that it must contain at least one of the following:

a pentagon adjacent to two other pentagons, 

a pentagon adjacent to a pentagon and a hexagon, 

a pentagon adjacent to two hexagons. 

This result gave rise to a new unavoidable set with nine configurations. 
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digon

triangle

square

three pentagons

two pentagons and a hexagon

a pentagon and two hexagons

Franklin’s unavoidable set. 

Franklin also proved that no hexagon can have three consecutive pentagons as neighbors, and then introduced some new reducible 

configurations, including

an  n- sided polygon in contact with  n − 1 pentagons, a pentagon in contact with three pentagons and one hexagon, 

a pentagon in contact with two pentagons and three hexagons, 

a hexagon in contact with four pentagons and two hexagons. 

We have just seen that all maps with up to 12 regions can be 

colored with four colors. By a detailed analy sis of maps that contained no known reducible configurations, such as  those of Birkhoff and the four listed above, Franklin was able to improve on this result:

Every map on the plane or sphere containing 25 or fewer regions can be colored in four colors. 

Defining a map to be  irreducible if it is a minimal counter- example to the four color theorem, Franklin deduced that an irreducible map must have at least 26 regions, and continued:

The question naturally arises  whether 25 is the greatest number for which we can prove such a theorem as the above on the basis of the reductions already described. While an exact answer to this question is lacking, it is evident that the smallest number of regions in a map not containing any of  these known reducible configurations is not con
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siderably above 25, as we can construct a map with a small number of regions not containing any of them. 

Franklin’s example had 42 regions and can be colored with four 

colors. 

Philip Franklin’s 1922 paper was an impor tant step along the road that other map colorers  were to follow. But his second publication on graph theory, “The electric currents in a network”, had nothing to do with map coloring.4

Electrical Networks

In our discussion of Veblen’s Colloquium Lectures on Analy sis Situs (see 

Chapter 2), we outlined Kirchhoff’s methods for determining the currents in an electrical network by obtaining a “fundamental set of cycles” 

from which they could con ve niently be calculated. Franklin examined this approach and,  after commenting that Kirchhoff’s paper had been 

“essentially the first contribution to the study of analy sis situs of the linear graph”, he discovered an alternative proof of Kirchhoff’s result that was “somewhat shorter than his and also brings to light the mathematical nature of the result”. 

Franklin presented his proof to the American Mathematical Society on October 25, 1924, crediting Veblen’s lectures for the terminology and treatment of graphs, and adopting his example of the complete graph  K 4. 

Further work along  these lines was subsequently carried out by Ronald M. 

Foster, a mathematician at the Bell Telephone Laboratories.5
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A Six Color Prob lem

A few years  later, in 1934, Franklin returned to map coloring when he confirmed a pos si ble exception to the Heawood conjecture for non-orientable surfaces. As we saw in Interlude A, Heinrich Tietze used a version of Euler’s formula to prove that, when  q ≥ 1, the regions of  every cubic map drawn on the non- orientable surface  Nq can be colored with T ( q) = ⎢1

⎥

⎣ (

)

2 7 + 1 + 24 q ⎦

colors; for example, the regions of  every map on a Klein  bottle (where q  = 2) can be colored with seven colors. 

Heawood’s conjecture for non- orientable surfaces asserted that  there are maps on  Nq that require this number of colors. But although Tietze had found a map on the Klein  bottle requiring six colors, he was unable to find one that needs seven. Franklin proved definitively that  there are no such maps, so that the Heawood conjecture fails when  q  = 2. He also presented the following map that requires six colors. 

1

4

3

2

5

2

3

6

1

Franklin further remarked that  because “Heawood’s formula is incorrect for this surface”, it “may also fail in other cases”. But in the succeeding years, Isidore Kagno of Columbia University proved that Tietze’s formula gives the correct values of 7, 8, and 9, when  q  = 3, 4, and 6 (see Chapter 5), and Donald Coxeter and R. C. Bose confirmed the corresponding results for  q  = 5 and 7.6 Then, in 1952, Gerhard Ringel proved that Franklin had indeed found the only instance where Tietze’s formula fails (see 

Chapter 6). 

In Interlude A, we also met Tietze’s version of Heawood’s conjecture which asserts that the simplest non- orientable surface on which the complete graph  Kn can be drawn without crossings is  Nq, where q = 1

⎡⎢ 6( n − 3)( n − 4)⎤⎥. 
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Again, this result is true, except in a single case: when  n = 7, this formula gives  q  = 2, whereas the correct value is 3. 

Franklin’s paper “A six color prob lem” was published in the 1934 edition of the  Journal of Mathe matics and Physics and was presented to the American Mathematical Society that same year.7 In subsequent years, he wrote two further papers on map coloring, which we look at  later in this chapter, but first we turn our attention to another American mathematician who colored maps in the 1920s. 

H. ROY BRAHANA

Henry Roy Brahana attended Dartmouth College in New Hampshire 

and Prince ton University, where he obtained his doctorate in 1920 on Systems of Cir cuits on Two- Dimensional Manifolds,  under the supervision of Oswald Veblen. He then transferred to the University of Illinois at Urbana– Champaign, where he became a professor and supervised 

twenty- seven doctoral students. He retired in 1963. 

Brahana’s contributions to graph theory amounted to three papers. 

The first of  these, “A proof of Petersen’s theorem”,8 was published at a time when American scholars  were beginning to take an interest in graph theory and coloring prob lems. Written in 1917 during his postgraduate H. Roy Brahana (1895–1972). 
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studies at Prince ton, it provided a simpler proof of Petersen’s factorization theorem (see Interlude A). 

His second paper, “The four color prob lem”,9 which appeared in 1923, outlined the prob lem’s history from Francis Guthrie’s initial query in 1852 to the early 1920s. In his survey, Brahana cited most of the mathematicians who had worked on coloring prob lems, including De Morgan, Cayley, Kempe, Tait, Heawood, Wernicke, Petersen, Veblen, Birkhoff, Errera, and Franklin. His paper included some pertinent observations, such as:

The prob lem is still unsolved. It has afforded many mathematicians experience and very  little  else. 

It was also in 1923 that Brahana presented an impor tant result on the topology of surfaces (see Interlude A):10

 Brahana’s theorem:  Every surface is topologically equivalent to  either some orientable surface  Sg or some non- orientable surface  Nq. 

This implies that any surface obtained from a sphere by adding  handles and cross- caps can be produced by adding  handles only or cross- caps only. 

Brahana’s third paper, “Regular maps on an anchor ring”,11 was published in 1926. On a sphere, the “regular maps”— those whose regions are all the same— are obtained by projecting the five regular polyhedra onto it. Brahana was interested in the corresponding maps on an “anchor ring” or torus and, as he observed:

any regular map on an anchor ring [has] triangular, quadrangular or hexagonal regions. In none of  these cases is  there a restriction on the number of regions. If the regions are triangular they appear six at a vertex; if quadrangular, four at a vertex; and if hexagonal, three at a vertex. Since two adjacent vertices are joined by a line and two adjacent regions are separated by a line  there is a sort of duality between the maps of triangles and the maps of hexagons. The quadrangular maps are self dual. 

He consequently restricted his investigations to maps with quadrangular and hexagonal regions only, seeking conditions for their existence. 

Invoking the algebraic theory of abstract groups, he obtained the following results:

A regular map with  n quadrangles exists if and only if  there is a group of order 4 n that is generated by two ele ments of  orders 2 

and 4 whose product has order 4. 
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A regular map with  n hexagons exists if and only if  there is a group of order 6 n that is generated by two ele ments of  orders 2 and 3 

whose product has order 6. 

In 1901, the American group- theorist George A. Miller had found the values of  n that produce regular hexagonal maps.12 Brahana obtained the corresponding values for regular quadrangular maps, and proved that each corresponding group yields a unique map. Further work on this topic was subsequently carried out by Richard  P. Baker, an En-glishman who taught mathe matics for many years at the University of Iowa.13

J. HOWARD REDFIELD

The name of John Howard Redfield was largely unknown  until the 1960s, and yet his results anticipated one of the most impor tant achievements in combinatorial mathe matics in the mid-20th  century— the enumerative work of George Pólya in the 1930s. It is only more recently that Redfield’s contributions to the subject have been recognized.14

Howard Redfield had a most unusual student  career.  After gaining a bachelor of science degree from Haverford College near Philadelphia, he then took a second bachelor’s degree in civil engineering from MIT before completing a doctorate in romance languages from Harvard University. His subsequent employment as a civil engineer led him to an interest in the mathematical theory of elasticity, and in J. Howard Redfield 

(1879–1944). 
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turn to other areas of mathe matics such as mathematical logic and the theory of knots. Particularly inspired by topics in Percy A. MacMahon’s two- volume  treatise  on   Combinatory  Analy sis,15 he began to investigate counting prob lems that involved symmetry. Such considerations led him to explore the connections between enumeration and algebraic groups of symmetries, and in 1927 he wrote the following remarkable paper on the subject, which included applications to the theory of graphs.16

J. Howard Redfield:  The theory of group- reduced  

 distributions (1927)

An example of the type of prob lem that interested Redfield is the following:

Required the number of distinct configurations which can be obtained by placing a solid node ● at each of four vertices of a cube, and a hollow node ○ at each of the four remaining vertices, configurations differing only in orientation not being regarded as distinct. 

⎛ ⎞

Without this last restriction  there would be  8

⎝⎜ 4⎠⎟ = 70   diff er ent  ways 

of selecting the four solid nodes, but if we regard two placings of the vertices as the same when we can rotate the cube to get from one to the other, then this number is reduced to 7, as we  shall see. 

Redfield first set the scene:

In view of the similarity which  will be admitted to hold between the subject  matters of the Theory of Finite Groups and of Combinatory Analy sis, it is somewhat surprising to find that in their lit er a tures the two branches have proceeded on their separate ways without developing their interrelationship, and with scarcely any reference to one another beyond the use by each of certain very elementary results of the other. 

To solve such problems, Redfield introduced a polynomial ex-

pression which he called the  group reduction function of a finite group  G of operations acting on a set of ele ments  S. This polynomial rec ords the lengths of cycles associated with each ele ment of  G, regarded as a permutation of the members of  S. For this 
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prob lem,  S is the set of eight nodes and the group  G consists of the 24 rotations of the cube, which can be classified as follows: 4

4

4

3

3

3

1

2

2

1

1

2

8

8

8

7

7

7

5

5

5

6

6

6

one identity ele ment that fixes all eight nodes, giving eight 

1- cycles, (1)(2)(3)(4)(5)(6)(7)(8): he recorded this as  s 81, three rotations through 180° about opposite  faces, each 

one interchanging four pairs of nodes (2- cycles) such as  

(13)(24) (57)(68): he recorded  these as 3 s 42, 

six rotations through ± 90° about opposite  faces, each one 

with two 4- cycles such as (1234)(5678): he recorded  these 

as 6 s 24, 

eight rotations through ± 120° about a line through a pair of 

opposite vertices, each one fixing two nodes (1- cycles) and 

with two 3- cycles such as (1)(7)(245)(368): he recorded 

these  as  8 s 2 2

1  s 3, 

six rotations through 180° about a line joining the midpoints 

of opposite edges, each one interchanging four pairs of 

nodes such as (17)(28)(34)(56): he recorded  these as 6 s 22. 

The group reduction formula is the average of  these, which is

1

8

4

2 2

2

(

)

24  s 1 + 9 s 2 + 8 s 1  s 3 + 6 s 4 . 

Redfield then replaced each symbol  sk by  x k +  y k, where  x corresponds to a solid node and  y corresponds to a hollow one, giving 124(( x +  y)8 + 9( x 2 +  y 2)4 + 8( x +  y)2( x 3 +  y 3)2 + 6( x 4 +  y 4)2)

= 1 x 8 + 1 x 7  y + 3 x 6  y 2 + 3 x 5  y 3 + 7 x 4  y 4 + 3 x 3  y 5 + 3 x 2  y 6 + 1 xy 7 + 1 y 8. 

Here, the coefficient of  x ty 8 −  t is the number of placings with  t solid nodes and 8 −  t hollow ones, and so the answer to Redfield’s original 
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prob lem is 7. Notice also that the sum of the coefficients is 23, which is the total number of diff er ent placings of the nodes, taking into account the rotations of the cube. 

Much of Redfield’s paper was difficult to read and involved complicated notation and terminology— for example, in his enumera-

A page from Redfield’s paper. 
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tion of  simple graphs with five vertices and five edges, he called them “symmetrical aliorelative dyadic relation- numbers”. This may be why his paper lapsed into obscurity. 

Redfield’s enumeration of some  simple graphs. 

In the mid-1930s, unaware of Redfield’s prior contributions to the subject, George Pólya in de pen dently wrote a number of papers on enumerative combinatorics. He was a Hungarian mathematician who taught from 1914 to 1940 in Zürich, but  because of the po liti cal situation in Eu rope he migrated to the United States, where he taught for a short while at Brown University and Smith College, before he moved to Stanford University, where he spent the remainder of his long life. He is widely remembered for his writings on mathe matics education, in partic u lar  his  best- selling  book,  How to Solve It,17 first published in German and then in En glish in 1945. 

The most impor tant of Pólya’s contributions to the theory of enumeration was a groundbreaking paper in 1937 of over 100 pages,18 written George Pólya (1887–1985). 
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in German while he was still in Zürich. In it Pólya used the group reduction formula,  here renamed the “cycle index”, to enumerate vari ous types of graphs and chemical molecules. Although some of his results had been anticipated by  those of Redfield, he carried them much further, and this paper is of fundamental importance to the history of the subject. It was eventually translated into En glish in 1987.19

A TRIO OF MAP COLORERS

We have seen how a detailed analy sis of maps that contained no known reducible configurations enabled Philip Franklin to prove that

Every map on the plane or sphere containing 25 or fewer regions can be colored with four colors. 

Over the next few years, three American mathematicians improved on this result— Clarence Reynolds Jr. raised the number of regions from 25 to 27 in 1927; then, a few years  later, Philip Franklin (again) increased it to 31, and C. E. Winn raised it still further to 35. In order to do this, they sought “irreducible maps”—minimal  counter- examples to the four color theorem. By discovering more and more information about such maps— for example, that they contained no reducible configuration then known— they hoped to be able  either to construct them explic itly or to prove that they could not exist. 

Clarence N. Reynolds Jr. 

Clarence Newton Reynolds Jr. undertook his postgraduate studies at Harvard,  under the direction of Maxime Bôcher and George Birkhoff, and was awarded his doctorate in 1919 for a dissertation on the solutions of differential equations.  After leaving Harvard, he moved to the University of West  Virginia, became head of the mathe matics department in 1938, and remained  there  until his retirement in 1946. 

After learning of the four color prob lem, possibly from Birkhoff, Reynolds published several papers on map coloring. The most important of  these  were two papers that he wrote around 1926, in which he developed the methods of  earlier authors.20 The first of  these papers sets the scene:

The prob lem of coloring in four colors the map of a simply connected closed surface has been reduced to the prob lem of coloring maps in which certain 
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Clarence N. Reynolds Jr. 

(1890–1954). 

configurations, known as reducible configurations, are absent. In this paper we  shall develop some methods of so analysing the known geometric reductions of our prob lem as to discover and to prove some of their more impor tant  implications. 

Reynolds’s aim was to investigate irreducible maps that excluded 

“the known geometric reductions” (reducible configurations) of Birkhoff and Franklin:

Our fundamental method  will be a systematic study of geometric operations which suffice to build any connected configuration of pentagons which exist in an irreducible map.  Under  these operations certain numerical topological characteristics are found to undergo well defined increments. 

But his analy sis was even more detailed than Franklin’s had been, and he was also able to simplify the pro cess by excluding a reducible configuration of the Belgian mathematician Alfred Errera (see Interlude B) that involved pairs of adjacent pentagons surrounded by hexagons. He continued:

Linear relations between  these increments imply homogeneous linear difference equations which yield certain homogeneous relations between our topological characteristics. 

From  these linear relations, Reynolds derived some inequalities between these topological par ameters and then applied  these inequalities to improve on Franklin’s  earlier result:

Every map on the plane or sphere containing 27 or fewer regions can be colored in four colors. 
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This could also have been obtained without excluding Errera’s configuration, but the passage was smoothed considerably by  doing so. Reynolds also presented a map with 28 regions, which avoided the configurations of Birkhoff and Franklin, but not that of Errera, and observed that his result could not be improved further without excluding further reducible configurations. 

In 1934, in his last paper on graph theory, “Cir cuits upon polyhedra”,21 

Reynolds left the world of coloring to investigate when closed curves can be drawn on a convex polyhedron or map. In par tic u lar, he derived some necessary and sufficient conditions for the existence of closed curves that pass exactly once through  every region, and of Hamiltonian cycles that pass along its bound aries, visiting  every point exactly once. 

Philip Franklin

Several years  later, in 1938, Philip Franklin succeeded in improving Reynolds’s result on map coloring, proving in his “Note on the four color prob lem”22 that

Every map on the plane or sphere containing 31 or fewer regions can be colored with four colors. 

To do so, he investigated the properties of irreducible cubic maps with 32 regions or more. Observing that 3 P = 2 B, for a cubic map with B boundary lines and  P meeting points, he substituted this into Euler’s formula,  R +  P =  B + 2,  where   R is the number of regions, and deduced that  R = 2 +  P/ 2. It follows that  P is even. 

Franklin then showed that an irreducible map cannot contain any of the following new configurations:

exactly six heptagons, and no region with more than seven 

bound aries, 

more than six heptagons, and no region with more than seven 

bound aries, 

one octagon, at least five heptagons, and no other region with more than seven bound aries, 

one region with more than eight boundary lines, or at most two 

regions with more than seven bound aries, 

at least three regions with more than seven bound aries. 

For each of  these, Franklin calculated that  P ≥ 60, and so, by the preceding formula,  R ≥ 32. It follows that any irreducible cubic map must have 
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at least 32 regions, and therefore that any map with at most 31 regions can be colored with four colors, as he had claimed. 

In his proof, Franklin was also able to involve some reducible configurations that C. E. Winn had just published. It is to Winn that we now turn our attention. 

C. E. Winn

Charles Edgar Winn was another American mathematician who was 

captivated by coloring prob lems and who, between 1937 and 1940, published five papers on the subject. He spent most of his  career at the Egyptian University in Cairo and, with his university colleague Ismail Ratib, contributed a paper23 to the International Congress of Mathematicians in Oslo in 1936. In it they extended one of Errera’s reductions of the four color prob lem. Errera had proved that any map containing no regions with more than six bound aries is reducible, and Ratib and Winn strengthened this by allowing the map to have at most one such region. 

In 1937 and 1938, Winn wrote three papers on map coloring24 in 

which he discovered several new reducible configurations, such as a heptagon that is adjacent to four consecutive pentagons. He also listed all the reducible configurations known up to that time. In 1939, he published a short note outlining the history of the four color prob lem.25 But his most impor tant contribution to the subject was the paper “On the minimum number of polygons in an irreducible map”, published in 1940.26  Here he found yet more reducible configurations, which—in conjunction with  those of Birkhoff, Franklin, Errera, and Reynolds— 

enabled him to prove that an irreducible map must contain at least 36 

regions, and hence that

Every map on the plane or sphere containing 35 or fewer regions can be colored with four colors. 

No further improvements along  these lines would be made for another thirty years. 

Philip Franklin

We conclude this chapter by returning once more to Philip Franklin. 

Around 1939, he lectured on the four color prob lem at the Galois Institute of Mathe matics at Long Island University in New York. A revised version of his lecture soon appeared as a two- part expository paper27 and 
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provides an excellent summary of all the topics on map coloring that we have met so far, including:

a statement of the four color prob lem, 

a history of the prob lem from its beginnings to the late 1930s, Euler’s formula for maps, and the consequent restriction of the problem to cubic maps with no digons, triangles, or quadrilaterals, a proof of the five color theorem, 

the definition of a reducible configuration (with several examples), the fact that irreducible maps have at least 36 regions, 

Kempe’s conditions for maps to be colorable with two or three 

colors, 

Tait’s result on the coloring of the bound aries of a cubic map, Heawood’s results on the coloring of cubic maps, 

Petersen’s theorem on the existence of a 1- factor in a cubic graph, coloring cubic maps with a Hamiltonian cycle, 

coloring maps on orientable and non- orientable surfaces, 

the connection with mutually neighboring regions, 

the chromatic polynomial of a map. 

Franklin concluded his impressive list of topics by citing a probabilistic argument of Heawood’s which implied that if the number of regions exceeds 35, then the probability that an uncolorable map can exist is less than 1 in 1010,000— a power ful argument in  favor of the truth of the four color theorem, but still a long way from a proof. 


* * * * *

Whereas the mathematicians mentioned in this chapter made notable 

contributions to graph theory, none of them approached the significance of Hassler Whitney’s achievements in the 1930s. Chapter 4 is devoted mainly to Whitney’s deep and varied results, but first we pay a brief return visit to Eu rope. 

Interlude B

Graph Theory in Eu rope 2

While American graph theorists in the early 20th  century concentrated on map coloring, their Eu ro pean counter parts  were mainly heading in other directions. In Hungary, Dénes König worked on factorization and matching, while writing popu lar books on mathematical recreations. In Belgium, the interests of Alfred Errera lay still with the four color problem, but in France, André Sainte- Laguë wrote an early introductory monograph on other aspects of graph theory, while Karl Menger of Austria presented an impor tant “minimax theorem” on the connectivity of graphs, and Kasimierz Kuratowski of Poland proved a classic result on planar graphs. 

With this Interlude, we begin to move away from the regions, boundaries, and meeting points of maps,  toward the language of graphs, vertices, and edges. 

DÉNES KÖNIG (HUNGARY)

Dénes König was born in Budapest in 1884, a son of the eminent mathematician Gyula (Julius) König. He published his first mathe matics paper at the age of 14, and this was followed soon  after by two short books on mathematical recreations, written for a wide readership.1   After studying for two years at the University of Budapest, he spent five semesters at the University of Göttingen.  There he attended Hermann Minkowski’s lectures on analy sis situs (see Interlude A) and subsequently published a short paper on the four color prob lem.2

After the completion of his doctorate in 1907 with a dissertation on geometry, König joined the staff of the Technical University of Budapest, where he spent the rest of his life.  There he lectured on a range of topics, including set theory, real numbers and functions, analy sis situs, and graph theory. An excellent teacher with a cheerful and out going personality, he inspired a generation of Hungarian mathematicians, some 
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Dénes König (1884–1944)

of whom (such as Paul Erdős and Paul Turán) would become well- 

known figures in the world of mathe matics. Further information about König’s life and mathematical activities can be found in an article by Tibor Gallai, his only doctoral student.3

König contributed to several of the topics that we met in Interlude A. 

In 1911, he wrote two papers on the genus of graphs drawn on orientable surfaces,4 building on the  earlier contributions of Percy Heawood and Lothar Heffter. He was also inspired by Julius Petersen’s 1891 paper on the decomposition of regular graphs into 1- factors (or perfect matchings), as we  shall see. 

In 1914, König attended a Congress of Mathe matics and Philosophy in Paris, where he presented some results on bipartite graphs. A graph is bipartite if its set of vertices can be divided into two sets so that  every edge joins a vertex of one set to a vertex of the other, and König proved that this is the case if and only if  every cycle in the graph has an even number of edges. A  complete bipartite graph is a bipartite graph in which  every vertex in each set is joined to  every vertex of the other set; if the sets have  r and  s vertices, the complete bipartite graph is denoted by  Kr,   s. 

König’s results developed some work on matrices by the German algebraist Georg Frobenius and appeared in an impor tant paper, “On graphs and their applications in determinant theory and set theory”, that was published in 1916 in Hungarian and German.5 In its opening sec-
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tion, König investigated factorization in bipartite graphs, by coloring all the edges so that adjacent edges are colored differently and looking at “alternating paths” (paths of edges in two alternating colors). He obtained the following result:

If each vertex of a bipartite graph meets at most  k edges, then we can assign one of  k colors to each edge of the graph, so that no two edges that meet have the same color. 

In modern terminology, this states that the chromatic index of a bipartite graph is the largest vertex- degree. 

1

2

3

2

1

3

A coloring of the edges of the bipartite graph  K 2, 3. 

He deduced,  because all the edges in each color form a 1- factor in the graph, that

Every bipartite graph that is regular of degree  k splits into  k 1- factors— that is, it is 1- factorizable

—in  par tic u lar, 

Every regular bipartite graph has a 1- factor. 

König also presented this remarkable result in the language of matching: If, at a dancing party,  every man is acquainted with  k  women, and every  woman is acquainted with  k men, then we can match them up in such a way that  every pair is acquainted. 

This was the earliest result in what came to be known as  matching theory, an area of study that would feature prominently in the ensuing years, as we  shall see. 

Two years  later, following his  earlier papers on the drawing of graphs on orientable surfaces, König wrote the monograph  The Ele ments of Analysis Situs, in which he carefully presented results on this topic.6 It was the first book on topological graph theory to be published anywhere, and it provided an early opportunity for many of his readers to learn about the classification of surfaces. 
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One feature of König’s work that distinguishes him from most other writers on graph theory is that, arising from his lifelong interest in set theory, a topic he had shared with his  father, he was particularly fascinated by infinite graphs. In impor tant papers from 1926 and 1927, he presented his  infinity lemma, which provides the means for extending results on finite graphs to infinite ones;7 for example:

If, on a given surface,  every map with a finite number of regions can be colored with  k colors, then so can maps with infinitely many regions. 

A  minimax theorem in graph theory is one in which the maximum value of one graph pa ram e ter is equal to the minimum value of another. 

Konig’s most impor tant contribution to graph theory is often considered to be the following minimax theorem, which he proved in 1931, again using alternating paths;8  here, a  matching is a set of edges, no two of which meet at a common vertex:

 König’s theorem: In any bipartite graph, the maximum size of a matching is equal to the minimum number of vertices that collectively meet all the edges. 

A generalization of this result to weighted graphs (graphs with numbers associated with their edges) was then developed by his compatriot Jenő 

(or Eugene) Egerváry.9 This proved to be central to assignment problems, as we  shall see in Chapter 5. 

Another extension of König’s theorem, in this case to infinite graphs, was discovered in 1932 by the 19- year- old Hungarian mathematician Paul Erdős, while attending König’s graph theory class, and was published by König.10  Later, we  shall meet other examples of minimax theorems, such as Menger’s theorem and the max- flow min- cut theorem for capacitated networks. 

In several of his papers, König applied his results to matrices and determinants, following the work of Frobenius. For example, his minimax theorem can be restated as:

In any matrix the maximum number of non- zero entries, no two 

of which appear in the same line, is equal to the minimum num-

ber of lines that contain all the non- zero entries. 

Here, the lines (rows and columns) of the matrix correspond to the two sets of vertices in the bipartite graph. 

In the late 1920s, König wrote what has often been described as “the first textbook on graph theory”, his  Theorie der endlichen und unendlichen 
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 Graphen (Theory of Finite and Infinite Graphs).11 This thoroughly researched and carefully written work was published in 1936, and became influential throughout Eu rope, with no other book on the subject appearing  until the late 1950s. An En glish translation of König’s book did not become available  until 1990.12

Written in German, König’s book had thirteen chapters and dealt with many of the now standard topics, such as Eulerian and Hamiltonian graphs, trees and forests, directed graphs, factorization, and minimax theorems. As its title indicates, substantial attention was paid to infinite graphs, and  there  were also sections on other topics such as labyrinths, automorphism groups, and game theory. 

König’s  Theorie der endlichen und unendlichen Graphen  

(Theory of Finite and Infinite Graphs). 

König’s life came to a tragic end, and he never lived to see the success of his book or the subsequent rise in interest in graph theory. During World War II, he had been greatly involved in helping persecuted mathematicians, but on October 15, 1944, Germany invaded Hungary. Coming from a Jewish  family, he then became highly vulnerable, and four days  later he committed suicide. 
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ALFRED ERRERA (BELGIUM)

Alfred Errera spent most of his  career at the University of Brussels. A lone Belgian voice in graph theory, and map coloring in par tic u lar, he published many papers on the subject. In the 1920s, he was working along similar lines as his American counter parts, with whom he was in correspondence, and his writings included many references to them. 

In 1921, Errera was awarded a doctorate for his thesis,  Du Coloriage des Cartes et de Quelques Questions d’Analy sis Situs, which was soon published in Brussels and Paris.13 Although it was mainly on the map color theorem, it included a simpler proof of Petersen’s theorem (see Interlude A), which he also published separately.14 Also featured in his thesis was a graph that he used to explain the error in Kempe’s attempted proof of the four color theorem; Percy Heawood, another mathematician with whom Errera corresponded, had presented a diff er ent example in his paper of 1890. 

Errera was also interested in other prob lems of a recreational nature. 

A well- known example is the  utilities  prob lem, mentioned by the famous Alfred Errera (1886–1960)  

and his doctoral thesis. 
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W
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E

A

B

C

 A

 B

 C

The utilities prob lem and the complete bipartite graph  K 3, 3. 

American puzzler, Sam Loyd, around 1900. It was described by his English con temporary, Henry E. Dudeney, in the following terms:15

For some quite unknown reason I have lately received an extraordinary number of letters (four of them from the United States) respecting the ancient puzzle that I have called “ Water, Gas, and Electricity.” It is much older than electric lighting, or even gas, but the new dress brings it up to date. 

The puzzle is to lay on  water, gas, and electricity, from W, G, and E, to each of three  houses, A, B, and C, without any pipe crossing another. Take your pencil and draw lines showing how this should be done. You  will soon find yourself landed in difficulties. 

In graphical terms, the utilities prob lem asks us to draw the complete bipartite graph  K 3, 3 in the plane without any edges crossing. It is easy to insert eight edges, but it is impossible to draw all nine, as a  simple argument involving Euler’s formula shows. 

In 1923, Errera wrote a short paper in which he generalized the problem to an arbitrary number of utilities and  houses.16 His main result was as follows:

If the points  A 1,  A 2, . . .  ,  Au:  B 1,  B 2, . . .  ,  Bv lie in a plane, then exactly 2 u + 2 v − 4 

of the  uv edges  Ai Bj , and not more, can be drawn without any two of the edges crossing each other in the plane ( u > 1,  v > 1). 

Over the next few years, Errera returned to the coloring of maps, writing five further papers. In 1924, he gave a brief pre sen ta tion17 at the International Congress of Mathematicians, held in Toronto, at which he outlined the history of the four color prob lem from Cayley and Kempe to Heawood and Petersen, and summarized the conclusions of Birkhoff’s paper on reducibility and Franklin’s paper of 1922. He also listed all the reducible configurations that  were known at the time and recalled Franklin’s proof that an irreducible map must have at least 26 regions. Three 
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years  later, he expanded his pre sen ta tion into “A historical exposition of the four color prob lem”.18 This comprehensive article included most of the results that had been proved up to that time, including a discussion of Petersen’s theorem and Reynolds’s recent result that an irreducible map must have at least 28 regions. 

In other papers, Errera contributed to the study of reducibility. In 1925, his main conclusion was that a map whose regions are all pentagons and hexagons is reducible.19 It follows from the Counting theorem (see Chapter 3) that  every irreducible map must have at least one region with seven or more sides, and that it must contain at least thirteen pentagons. 

Like his En glish correspondent, Percy Heawood, Alfred Errera continued to write papers  until the 1950s on topics that  were mainly related to the four color prob lem.20

ANDRÉ SAINTE LAGUË (FRANCE)

Jean André Sainte- Laguë (pronounced “sant- lagoo”) is mainly remembered for his work in po liti cal theory, with a method that he presented at the age of 28 for allocating po liti cal seats following an election. A man of wide interests, he was a prolific writer in both the academic and popu-lar spheres. 

Born in southwestern France in 1882, he spent part of his childhood in Haiti before returning to his home country. Following military ser-vice, he entered the prestigious École Normale Supérieure at the age of 20,  after which he spent several years in high school teaching. 

Sainte- Laguë joined the infantry during World War I and was awarded military honors, but was  later wounded and invalided out to the Department of Invention and the laboratories of the École Normale Supérieure. 

There he studied the aeronautics of artillery shells and the flight of birds, and began his investigations into the mathe matics of graphs and networks. 

Among Sainte- Laguë’s lifelong interests was recreational mathe matics, a fascination that he had prob ably acquired from Édouard Lucas’s four-volume  Récreations Mathématiques and other books of games and puzzles. The enjoyment of such prob lems as Euler’s Königsberg bridges and Hamilton’s Icosian game seems to have led him  toward working for a doctoral degree in graph theory, which he was awarded in 1924. 

In 1926, Sainte- Laguë published his thesis in book form, with the title of  Les Réseaux ( ou graphes) (On Networks, or graphs).21 This is 
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André Sainte Laguë (1882–1950) and 

his monograph on graph theory. 

sometimes referred to as “the zeroth book on graph theory”; it precedes by ten years Dénes König’s groundbreaking textbook on the subject, which includes several references to his pre de ces sor. Sainte- Laguë’s monograph has recently been translated into En glish as  The Zeroth Book of Graph Theory and provides us with a useful picture of the topics that were studied at the time.22

After some introductory definitions,  Les Réseaux pre sents chapters on trees, chains and cycles (including the tracing of mazes), regular graphs, cubic graphs (including Petersen’s theorem), tableaux (matrices) and bipartite graphs, and Hamiltonian graphs. His book concludes with two chapters on chessboard prob lems and an extensive bibliography. 

 Les Réseaux includes no mention of the drawing of graphs on surfaces or the coloring of maps, but three years  later, Sainte- Laguë made up for this with a monograph on the geometry of situation and games, in which these topics  were amply covered.23 This second book mentioned the reducible configurations of Birkhoff, Franklin, Errera, and Reynolds, and concluded with a discussion of many games and recreations, such as the Tower of Hanoi, the game of Fan- Tan (or Nim), the Josephus prob lem, and Kirkman’s 15 schoolgirls prob lem. 

In 1938, André Sainte- Laguë was appointed professor of mathe matics for applications at the Conservatoire National des Arts et Métiers. As well as his many publications in abstract and recreational mathe matics, he 
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wrote increasingly on the applications of his subject to science and engineering and in the natu ral world. He also or ga nized the mathe matics rooms of the Palace of Discovery for the Paris World’s Fair of 1937. 

As a highly popu lar and innovative lecturer on a wide range of topics, Sainte- Laguë employed such aids as the showing of films for his teaching of geometrical ideas. He emphasized an understanding of basic princi ples, rather than the application of rules, to solve practical prob lems. 

By this time, Sainte- Laguë was an established public figure, having been elected president of the International Confederation of Intellectual Workers; he also became vice president of the National Economic Council. During World War II, he worked for the under ground re sistance movement and for a short while suffered imprisonment by the German occupying forces. He was made an officer of the Legion of Honour and was decorated with the Croix de Guerre for his patriotic efforts. 

KARL MENGER (AUSTRIA)

We have seen that König obtained a “minimax theorem”, in which the maximum of one quantity is equal to the minimum of another. His interest in such results arose partly from a theorem of the Austrian mathematician Karl Menger on the connectedness of graphs. 

Karl Menger was born in Vienna, the son of the economist Carl Menger. 

In 1924, he received his doctorate from the University of Vienna for a dissertation on the theory of curves and dimension theory, and became a member of the Vienna Circle, a recently formed discussion group of philos o phers and scientists.  After two years of teaching in Amsterdam, he returned to Vienna in 1927. He spent the academic year of 1930–31 at Harvard University and the Rice Institute in Houston, Texas. In the mid-1930s he migrated to the United States, where he spent the rest of his life teaching and researching at Notre Dame University in Indiana, and at the Illinois Institute of Technology in Chicago. He worked in several areas of mathe matics and, apart from his theorem in graph theory, is remembered mainly for his researches into curves and dimension— and, in par tic u lar, for the “Menger sponge”, a three- dimensional fractal curve. 

One of the most impor tant prob lems in graph theory is to determine how connected a given graph is. One way of interpreting this prob lem is to ask how many disjoint paths  there are joining two given vertices; 

[image: Image 52]

GRAPH THEORY IN EUROPE 2 

115

Karl Menger (1902–1985). 

another is to ask how many vertices or edges one needs to remove from the graph in order to disconnect it. Such issues arise in a wide range of practical areas, ranging from the connectivity of airline networks to the security of telecommunications networks. 

Menger’s approach to such prob lems resulted in a celebrated minimax theorem in a paper that he submitted while investigating the properties of curves; it was published in 1927, during his time in Amsterdam.24 

Here,  v and  w are two fixed vertices of a finite graph, and the question is to find the maximum number of paths from  v to  w that have no vertices in common (apart from  v and  w). 

 Menger’s theorem: Let  v and  w be non- adjacent vertices in a connected graph. Then the maximum number of vertex- disjoint paths joining v and  w is equal to the minimum number of vertices whose removal separates  v from  w. 

It follows that if, for some number  k, we can find  k vertex- disjoint paths and  k vertices that separate  v from  w, then  k must be the  maximum number of disjoint paths from  v to  w, and also the  minimum number of vertices whose removal separates  v from  w. 

There are also many variations of Menger’s theorem, such as  those for edge- disjoint paths and directed graphs, but  these did not appear until   later. 
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An example illustrating Menger’s theorem, with three 

vertex disjoint paths from  v to  w, and three vertices ( x,  y, and  z) that separate  v from  w. 

Unfortunately, Menger’s own proof of his theorem contained a serious gap, in that it omitted the special case of bipartite graphs; the first complete proof was given by his German doctoral student, Georg Nöbeling. Dénes König also filled this gap, and Menger then used König’s result to pre sent a complete proof in his book on the theory of curves.25

Another result that is closely related to Menger’s theorem is  Hall’s theorem on selecting representatives of cosets in group theory, which was first proved by Philip Hall of Cambridge ( England) in 1935. It is often referred to as the “marriage theorem”,  after the following reformulation by Paul R. Halmos and Herbert E. Vaughan:26

 Hall’s “marriage” theorem: Suppose that each of a collection of boys is acquainted with a collection of girls. Then each boy can marry one of his acquaintances if and only if, for each number  k,   every set of  k boys is collectively acquainted with at least  k girls. 

This condition is clearly necessary and also turns out to be sufficient. 

What is less obvious is that Hall’s theorem and Menger’s theorem are equivalent— each can be deduced from the other. 

KAZIMIERZ KURATOWSKI (POLAND)

Kazimierz (or Casimir) Kuratowski was a Polish mathematician whose main interests lay in point- set topology and related areas. He also made a significant contribution to graph theory in his celebrated theorem on planarity that was published in 1930. 

Kuratowski was born in Warsaw in Vistula Land, a part of Poland that was  under Rus sian control. In 1913, following his years at high school, 
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Kazimierz Kuratowski (1896–1980). 

and like other Polish students who did not wish to study in the Rus sian language, he enrolled in the excellent engineering school at the University of Glasgow, being awarded the class prize in mathe matics at the end of his first year. 

On arriving home for the summer vacation, he suddenly found himself unable to return to Scotland  because of the outbreak of World War I. In 1915, the Rus sians withdrew from Warsaw and the University of Warsaw was reopened. Kuratowski enrolled as one of its first mathematics students. 

By 1921, Kuratowski had completed his studies and was awarded a doctorate for a spectacular dissertation in which he showed how to construct point- set topology from its closure axioms (now sometimes called the “Kuratowski closure axioms”). In 1923, he took up an academic post at the University of Warsaw, but four years  later he was appointed to a full professorship at the University of Lwów (now Lviv, in Ukraine), where he stayed  until 1934, before returning to Warsaw. 

It was while he was at Lwów that he carried out his investigations on planar graphs. 

A graph  G is  planar if it can be drawn on the plane without edges crossing; any such depiction is a  plane drawing of  G. Such a drawing divides the set of points of the plane not lying on  G into  regions; one of 

118 

INTERLUDE B

these is of infinite extent and is the  external region. The number of regions is given by  Euler’s formula:

For a plane drawing with  V vertices,  E edges, and  R regions, V −  E +  R = 2. 

 a

 b

 a

 f

 c

 e

 f

 d

 e

 d

 c

 b

A graph and a plane drawing with eight regions. 

Not all graphs are planar— for example, one can show,  either directly or by using Euler’s formula, that the complete graph  K 5 and the complete bipartite graph  K 3, 3 (the graph of the utilities prob lem) are both non- planar. 

The non planar graphs  K 5 and  K 3, 3. 

Inserting vertices of degree 2 into the edges of a graph does not affect the planarity of the graph. We say that two graphs are  homeomorphic if they can be obtained from each other by the insertion or removal of vertices of degree 2. 

Graphs that are homeomorphic to  K 5 and  K 3, 3. 
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In June 1929, Kuratowski announced his results on planar graphs to the Warsaw section of the Polish Mathematical Society. Written from the standpoint of analytic topology,  these results  were published in 1930.27 

His central theorem was the following:

 Kuratowski’s theorem: A graph is planar if and only if it has no subgraph that is homeomorphic to  K 5 or  K 3, 3. 

Kuratowski claimed that he had initially believed the only obstruction to planarity to be  K 5, and that it was only  later when  K 3, 3 emerged on the scene:28

I must confess that when I started to think that prob lem over, I had in mind just one graph. Namely, the graph called now commonly  K 5. 

But I noticed soon that  there is another one which is also irreducibly non embeddable in the plane. Namely the graph  K 3, 3. Now (fortunately for me) [ there does] not exist any other irreducible skew graph. 

I proved [this] in 1929 in my paper. 

Kuratowski was not the only person to be working on this topic. 

Around the same time, Karl Menger proved the more restricted result that   every  non- planar   cubic graph has a subgraph that is homeomorphic to  K 3, 3.29 Two American mathematicians— Orrin Frink of Pennsylvania State University (whom we have already met in connection with Petersen’s theorem) and Frink’s former colleague Paul A. Smith of Barnard College, New York— independently arrived at the same conclusions as Kuratowski. Frink and Smith prepared a paper for the  Transactions of the American Mathematical Society and submitted the following abstract to the society’s  Bulletin:30

 Irreducible non- planar graphs. One of the results of this paper is a  simple necessary and sufficient condition that an arbitrary linear graph be mappable on a plane. (Received February 10, 1930.)

As Frink informed one of us in 1974:31

Unfortunately Kuratowski’s proof came out in  Fundamenta [ Mathematicae] 

just at that time, and equally unfortunate was the fact that our proof was similar to Kuratowski’s. Hence our paper was simply rejected by the  Transactions. 

He  later remarked that:32

Kuratowski’s proof was actually dif fer ent from ours, since he did not use the notion of an irreducible non planar graph, but the two papers  were not dif fer ent enough so that ours could be published. 
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Claims have also been made that the distinguished Rus sian topologist Lev Sem yo no vich Pontryagin obtained a proof of the theorem during the winter of 1927–28, while still a second- year student at Moscow State University; the theorem is now often referred to in Rus sia as 

“the Pontryagin– Kuratowski theorem”. But  because Pontryagin seems never to have communicated or published his proof, it is difficult to judge how valid  these claims are; they are analyzed in detail in a historical article by John W. Kennedy, Louis V. Quintas, and Maciej J. Sysło.33

In  later life, Kuratowski had a most distinguished  career. He played a central role in Polish mathematical life, collaborated with such major figures as Stefan Banach, Max Zorn (on “Zorn’s lemma”), Stanisłav Ulam, and John von Neumann, and won international awards while acting as a world ambassador for Polish mathe matics. 


* * * * *

The years around 1930 marked a significant change in graph theory, as the movement from map coloring  toward graph theory as a worthy study in its own right gathered momentum. In the next chapter, we  shall see how this change in direction was strengthened by the seminal contributions of Hassler Whitney. 

Chapter 4

The 1930s

When the distinguished graph- theorist W. T. Tutte provided an introductory commentary for the En glish edition of Dénes König’s  Theory of Finite and Infinite Graphs, originally published in German in 1936, he observed:1

Low was the prestige of Graph Theory in the Dirty Thirties. It is still remembered, with resentment now shading into amusement, how one mathematician scorned it as “The slums of Topology”. It was the so called science of trivial and amusing prob lems for  children, prob lems about drawing a geometrical figure in a single sweep of the pencil, prob lems about threading mazes, and prob lems about colouring maps and cubes in cute and crazy ways. It was too hastily assumed that the mathe matics of amusing prob lems must be trivial, and that if noticed at all it need not be rigorously established. 

Hassler Whitney and Saunders Mac Lane, two of the leading American mathematicians of the 20th  century, changed all this with the depth of their discoveries. Early in his  career, Whitney made significant contributions to graph theory, with his doctoral thesis in 1932 and several papers on topics ranging from planar graphs and coloring to connectivity and separability. He also in ven ted matroids, a notion that generalizes in de pen dence in vector spaces and links the areas of linear algebra and graph theory. Inspired by Whitney’s work, Mac Lane wrote three papers on graph theory in the late 1930s, obtaining further conditions for a graph to be planar. 

We conclude this chapter by assessing the state of American mathematics in the 1930s, prior to World War II. 

HASSLER WHITNEY

Hassler Whitney came from a prominent American  family.2 His name-sake was Ferdinand Hassler, the first superintendent of the US Coast Survey, whose grand daughter married Whitney’s maternal grand father, 
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Hassler Whitney  (1907–89). 

the astronomer and mathematician Simon Newcomb (whom we met in 

Chapter 1). Whitney’s paternal grand father was William Dwight Whitney, a professor of ancient languages at Yale, whose eldest  brother was Josiah Whitney, the state geologist of California  after whom Mount Whitney was named. Whitney’s parents  were Edward Whitney, an attor-ney general who was appointed to the New York Supreme Court, and Josepha Newcomb Whitney, an accomplished artist who was active in the  women’s rights movement and became a member of the Connecticut State Legislature. 

Hassler Whitney was born in Cornwall in the Hudson River Valley, about fifty miles north of New York City. He was 3 years old when his father died, and his  mother moved her six  children to New Haven to live with two sisters- in- law; one of  these, Aunt Emily, was an accomplished pianist who greatly influenced his life. Hassler was also close to his eldest  sister, Caroline, who encouraged his mathe matics and physics proj ects as a young boy and with whom he  later corresponded regularly. When he was 14, his  mother took him to Switzerland, where he spent two years at school, learning French in the first year and German in the second. With the Alps so accessible, much of his time was spent in mountain climbing with his elder  brother, Roger, and this remained a passion for the rest of his life. 

When Hassler was 17, he enrolled at Yale University and majored in physics, taking just one mathe matics course (complex variables) in his 
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se nior year.  Music also became a major part of his life: he played piano, violin, and viola, and his  Fantasie for Orchestra won the award for the best original composition in his se nior year.  After completing his bachelor’s degree in physics in 1928, he stayed on for a further year to complete a degree in  music. 

Whitney intended to continue to gradu ate school in theoretical physics at Harvard, where he had already been accepted. First, however, he spent three weeks in the summer of 1930 visiting Göttingen, whose university was then considered the foremost center for mathematics in the world. While  there, he turned to the serious business of preparing for the upcoming semester by reading some extensive 

notes on the “General Theory of Mathematical Physics” that he had taken during a course at Yale, but  things did not go well. As he  later recalled:3

I had physics notes to review, which I thought would go quickly; instead I found that I had forgotten most of it, in spite of much recent physics study. 

Seeing  Hilbert– Ackermann,  Grundzuge der Theoretishcen Logik, in a bookstore, I got it and started working on it, along with George Sauté, a math student from Harvard. 

During his short time in Göttingen, he also enjoyed stimulating conversations with Paul Dirac about prob lems in number theory and with a student from Yale who had enthused about the four color prob lem:

So I soon de cided that since physics required learning and remembering facts, which I could not do, I would move into mathe matics. I have always regretted my quandary, but never regretted my decision. 

Back in the United States, he duly arrived at Harvard University, but to study mathe matics. Once  there, he became obsessed with the four color prob lem and spent much  free time outside class thinking about it. Whitney showed his ideas to George Birkhoff, who had worked on the prob lem for many years (see Chapter 2). Birkhoff was impressed and became his doctoral advisor. 

Whitney’s thesis  The Coloring of Graphs was inspired by Birkhoff’s 1912 

paper on chromatic polynomials. Birkhoff advised Whitney to submit an immediate summary of his results to the National Acad emy of Sciences to establish priority, and then to follow this with a full account in the  Annals of Mathe matics.4

While Whitney was a gradu ate student at Harvard, Birkhoff ar-

ranged an instructorship for him in mathe matics, which he held from 1930 to 1931 and from 1933 to 1935, moving to Prince ton University in 
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the intervening years on a fellowship from the National Research Council. It was during his time at Prince ton that he wrote most of his papers on graph theory. In 1935, Whitney was appointed to an assistant professorship at Harvard, and promoted to associate professor in 1940 and to full professor in 1946, a position that he held  until 1952. He then transferred to the Institute for Advanced Study at Prince ton, where he remained for the rest of his life. 

Whitney’s earliest researches  were in graph theory, and in the early 1930s he wrote a dozen papers on the subject.  These papers provided a brief, yet extraordinary, contribution to the subject, and ranged over planarity, coloring, combinatorics, and other areas, as we now discover. 

Coloring

As we saw in Chapter 2, George Birkhoff had introduced a quantitative approach to the four color prob lem in 1912, when he defined  P(λ) to be the number of ways of coloring the regions of a map with at most λ 

colors, where neighboring regions are assigned diff er ent colors. He showed that this function is always a polynomial and derived a general formula for producing its coefficients by means of a difficult proof involving determinants. 

By 1930, around the time that Whitney was beginning his gradu ate studies at Harvard, Birkhoff had once again taken up the four color prob lem, proving (as we saw in Chapter 2) that

 P (λ) ≥ λ  (λ − 1)(λ − 2)(λ − 3) n − 3

for any map with  n ≥ 3 regions and for any positive integer λ (except 4). 

Whitney, who had written up Birkhoff’s 1930 paper for him,5 then applied this same quantitative approach to graphs, rather than maps, using the  dual graph of the map, as explained by Kempe in his paper of 1879 

(see Chapter 1):

Place a vertex within each region of the map, and join two vertices by an edge whenever the corresponding regions have a common 

boundary. 

In this way, a  coloring of a graph is an assignment of colors to its vertices, where adjacent vertices are assigned diff er ent colors. Coloring the regions of a map is then equivalent to coloring the vertices of its dual graph. Whitney used the notation  M(λ) for the number of ways of col-
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oring a given graph with at most λ colors; it is now known as the  chromatic polynomial of the graph. 

In 1932, Whitney produced the following paper, which developed the quantitative approach to the four color prob lem by presenting explicit and efficient procedures for computing the coefficients of a chromatic polynomial,  M(λ).6

Hassler Whitney:  A logical expansion in mathe matics (1932) Whitney’s main achievement in this paper was an expression for 

the coefficients of the chromatic polynomial, similar to that found by Birkhoff in 1912, although Whitney’s approach was far simpler. 

It was derived from the  princi ple of inclusion and exclusion (which he called “a logical expansion”), a counting method that had originated in Abraham De Moivre’s  The Doctrine of Chances of 1718. 

In the introduction to his paper, Whitney described the simplest cases of the princi ple. He took a finite set of objects (his example was the books on a  table), where each object  either has, or does not have, a given property  A (of being red, say). He let  n be the total number of objects,  n( A) the number with the property  A, and n( Ᾱ ) the number without the property  A, so  n( Ᾱ ) =  n −   n( A). 

He next took a set of  n objects with two properties,  A 1 and  A 2, let  n( A 1  A 2) be the number with both properties, and  n( Ᾱ 1  Ᾱ 2) be the number with neither property, and observed that

 n( Ᾱ 1  Ᾱ 2) =  n −   n( A 1) −   n( A 2) +   n( A 1  A 2). 

For three properties the corresponding formula is

 n( Ᾱ 1  Ᾱ 2  Ᾱ 3) =     n − ( n( A 1) +   n( A 2) +   n( A 3))  

+ ( n( A 1  A 2) +  n( A 1  A 3) +   n( A 2  A 3)) −   n( A 1  A 2  A 3). 

In the second section of the paper (which he called  The Logical Expansion), Whitney used mathematical induction to prove the corresponding formula for  m properties— that is,  n( Ᾱ 1  Ᾱ 2 · · ·   Ᾱm). 

Commenting that this extension to the general case is quite  simple, and that it was well known to logicians of the time, he added that it should also be better known to mathematicians. 

To illustrate its usefulness, Whitney applied the princi ple to three areas of mathe matics. He first derived an expression for the 
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number of integers up to a given number that are not divisible by any of a given set of primes. He next calculated the probability that, if a pack of  m cards is laid out on a  table, and if another pack of  m cards is laid out on top of it, then no card of the second pack lies over the same card of the first. This is the  derangement  prob lem of Pierre Raymond de Montmort and Nicholas Bernoulli from 

around 1710. The probability is the sum of the first  m + 1 terms in the series expansion of 1/ e. 

Fi nally, Whitney turned to his most significant application. He considered a  simple graph  G with  v vertices. If λ colors are available, then  there are λ v pos si ble colorings of the vertices in total, and he wished to find  M(λ), the number of  these colorings in which no two adjacent vertices have the same color. To do so, for each edge ab of  G, he let  Aab be the set of colorings in which the vertices  a and b are colored alike. The set of admissible colorings is then Ᾱab  Ᾱbd  · · ·   Ᾱcf , 

where the subscripts range over all the edges of  G, and so M(λ) =  n( Ᾱab  Ᾱbd  · · ·   Ᾱcf ). 

Whitney then applied his logical expansion formula. To evalu-

ate a typical term,  n( Aab  Aad  · · ·    Ace), of the logical expansion, he considered the corresponding subgraph  H in which all the edges ab,  ad, . . .  ,  ce have ends of the same color; in par tic u lar, all the vertices in a single connected component of  H are colored the same. So if  H has  p components, then the value of this term in M(λ) is λ  p. Also, if  H has  s edges, then the sign of the term is (−1) s, and so (−1) s  n( Aab  Aad  · · ·   Ace) = λ  p. Using Birkhoff’s symbol (  p,  s) for the number of subgraphs with  p components and  s edges, Whitney noted that the corresponding terms contribute (−1) s (  p,  s) λ p to the chromatic polynomial, and so

 M(λ) = ∑  p,  s (−1) s (  p,  s) λ  p. 

Next, following the ideas of Oswald Veblen (see Chapter 2), Whitney defined the  rank i and the  nullity j of a subgraph  H with  v vertices,  s edges, and  p components by

 i =  v −  p and  j =  s −  i =  s −  v +  p,  so that   p =  v −  i and  s =  i +  j. 
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Fi nally, on putting (  p,  s) =  mv −  p,  s −  v +  p =  mij, where  mij is the number of subgraphs of  G with rank  i and nullity  j, he obtained his final formula for the chromatic polynomial:

 M(λ) = ∑  i,  j (−1) i +   j  mij λ v −  i = ∑  i  mi λ v −  i, where  mi = ∑  j (−1) i +   j  mij. 

Whitney then proceeded to develop a  simple method for deter-

mining the coefficients  mi of the chromatic polynomial, in terms of what he called the  broken  cir cuits of  G—  that is, cycles with one edge removed: specifically, the number (−1) i  mi turns out to be the number of subgraphs with  i edges which do not contain all the edges of any broken cir cuit. We illustrate his method with the two examples from his paper. 

 a

 a

 c

 b

 c

 b

 d

 Example 1. Let  G be the complete graph  K 3, with vertices  a, b, c, and with the edges  ab,  ac, and  bc, listed in this definite order. Then there is only one cycle—  ab,  ac,  bc, with the edges listed in the same order— and from this, we form the broken cir cuit  ab,  ac by dropping  the last edge. Then:

only one subgraph has 0 edges, so  m 0 = 1; 

three subgraphs have 1 edge, so − m 1 = 3; 

three subgraphs have 2 edges, one of which contains the bro-

ken cir cuit, so  m 2 = 2; 

one subgraph has 3 edges which contain the broken cir cuit, 

so − m 3 = 0. 

So,   because   v = 3, 

 M(λ) = λ3 − 3λ2 + 2λ. 

This is easily verified,  because  there are λ ways to color vertex  a, λ − 1 

colors left for vertex  b, and then λ − 2 colors left for vertex  c, and so M(λ) = λ(λ − 1)(λ − 2) = λ3 − 3λ2 + 2λ. 
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 Example 2. Let  G be the complete graph  K 4, with one edge removed, with vertices  a, b, c,  d, and with the edges  ab,  ac,  bc,  bd, and cd, listed in this definite order. Then  there are three cycles, ab,  ac,  bc;  bc,  bd,  cd; and  ab,  ac,  bd,  cd (with their edges listed in the same order), and from  these, we form the broken cir cuits

 ab,  ac;  bc,  bd; and  ab,  ac,  bd by dropping the last edge from each cycle. Then:

only one subgraph has 0 edges, so  m 0 = 1; 

five subgraphs have 1 edge, so − m 1 = 5; 

ten subgraphs have 2 edges, two of which are broken cir-

cuits, so  m 2 = 8; 

ten subgraphs have 3 edges— but  here we can ignore the 

last broken cir cuit  because it contains the first one, and 

only four subgraphs contain neither of the first two, so 

− m 3 = 4; 

five subgraphs have 4 edges, and each contains a broken cir-

cuit, so  m 4 = 0. 

So,   because   v = 4, 

 M(λ) = λ4 − 5λ3 + 8λ2 − 4λ. 

Again, this is easily verified,  because  there are λ ways to color vertex  a, λ − 1 colors left for vertex  b, and then λ − 2 colors left for vertices  c and  d, and so

 M(λ) = λ(λ − 1)(λ − 2)2 = λ4 − 5λ3 + 8λ2 − 4λ. 

Whitney made several other significant contributions to the coloring of graphs. In his  Annals of Mathe matics paper “The coloring of graphs”, a revised form of his doctoral thesis, he had obtained further results on the coefficients  mi of the chromatic polynomial  M(λ)—in  par tic u lar, that they alternate in sign, as in the preceding examples. He also proved that we can obtain  these coefficients more efficiently by considering only “non- separable” subgraphs  H, instead of the much larger collection of all subgraphs.  Here, a connected graph is  non- separable if it cannot be disconnected by the removal of a single vertex (a  cut- vertex) and is 
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 separable other wise. A maximal non- separable subgraph of a graph is called a  block. 

The blocks of a separable graph. 

As a curiosity, we note that Whitney’s  Annals paper concluded with a calculation of the chromatic polynomial of the dodecahedron graph: M(λ) =  λ(λ − 1)(λ − 2)(λ − 3) × (λ8 − 24λ7 + 260λ6 − 1670λ5  

+ 6999λ4 − 19698λ3 + 36408λ2 − 40240λ + 20170). 

We have seen that Whitney was fascinated by the four color prob lem, and we conclude this section with three further results that he obtained on this topic. 

The first of  these also comes from his  Annals paper. If  G is a planar graph with rank  r and nullity  n, if  G* is a dual of  G, and if  mij and  mij* are the corresponding coefficients for  G and  G*, then  mij* =  mr −  j,  n −  i. Now, if  C 

is the class of graphs for which all the coefficients  mij and  mij* arise from graphs, then  C includes all the planar graphs. Whitney showed that if

∑ i,  j (−1) i +   j  mij 4 v −  i > 0

can be proved for all graphs in  C, then the four color theorem follows. 

As he observed, this condition is stronger than the four color theorem, because  there are graphs in  C that are not planar. 

In another paper on graph coloring, “A theorem on graphs”,7 communicated to the American Mathematical Society on February 22, 1930, Whitney presented the following remarkable result. 

Given any  simple planar graph in which  every region has exactly three bound aries (a “triangulation”), but where no other cycle has three edges,  there is always a cycle that passes through  every vertex— that is, a Hamiltonian cycle. 

After deriving the dual form for cubic planar graphs, he deduced that, when trying to solve the four color prob lem, we can restrict our attention to planar graphs that are Hamiltonian. 

According to Whitney, Alfred Errera was intrigued by this paper and corresponded with him about it. Whitney visited him in Belgium in 1931 

and 1933, where they “talked a lot about graph theory”.8
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The four color conjecture is usually thought of in geometric terms, but in his last paper on coloring, Whitney presented alternative forms that are more combinatorial in nature.9 One of  these involves sums of numbers. 

Consider the sum  a +  b +  c +  d. We can evaluate it by first inserting parentheses in vari ous ways, such as in the “arranged sums” 

(( a +  b) +  c) +  d, ( a + ( b +  c)) +  d, ( a +  b) + ( c +  d ), or  a + ( b + ( c +  d )). 

We then carry out the additions in order, as directed by the parentheses, listing the “partial sums” that we encounter along the way; for example, the partial sums for (3 + 7) + (1 + 4) are the single numbers 3, 7, 1, 4, the pairs 3 + 7 = 10 and 1 + 4 = 5, and the final addition 10 + 5 = 15.  Whitney then proved that the four color prob lem can be restated, as follows: If an  n fold sum (any  n) is expressed in any two ways as an arranged sum, is it always pos si ble to choose the terms of the sum as integers so that no partial sum of  either arranged sum is divisible by 4? 

This paper concludes with an estimate by Whitney, along the lines of the  earlier ones of Heawood and Franklin, of the tiny “probability” that there is a map with more than  N regions that cannot be colored with four colors, when   N  is sufficiently large. 

Planarity and Duality

Several of Hassler Whitney’s most impor tant contributions to graph theory involved his investigations into planarity and duality, based on the concepts of rank and nullity that we encountered in his work on coloring. In par tic u lar, he sought to replace the geometric idea of duality, as introduced by Kempe (see Chapter 1), with equivalent combinatorial definitions in which geometry does not feature. For ease of reading, we shall  write   G* instead of Whitney’s  G′. 

Whitney began by recalling that, if a connected graph  G can be mapped on a sphere, then it can be mapped on a plane by stereographic projection, and conversely. Moreover, by rotating the sphere in an appropriate manner, we can arrange for any specified region of the map to be the external region of  G. A  geometric dual G* is then formed from a plane drawing of  G, as follows:

inside each region of  G select a point  v*— these points are the vertices of  G*; 

for each edge  e of  G, draw a line or curve  e* that crosses  e (but no other edge of  G ) and joins the vertices  v* in the regions adjoining e—  these lines are the edges of  G*. 
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It follows that, if a plane drawing of  G has  V vertices,  E edges, and  R 

regions, then  G* has  R vertices,  E edges, and  V regions, and that the dual G** of  G* is simply  G. Note that diff er ent plane drawings of  G can lead to diff er ent geometric duals  G*. 
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1
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2

6 

A plane drawing of a planar graph  G, 

and a geometric dual  G*. 

On January 14, 1931, Whitney communicated to the American Math-

ematical Society his results on planarity and duality. Like his paper on the coloring of graphs,  these  were first published in abstract form by the National Acad emy of Sciences to establish priority, before appearing in full detail.10

Hassler Whitney:  Non- separable and planar graphs (1932) In the first part of this paper, Whitney began by defining the  rank r ( G ) and  nullity n( G ) of a graph  G with  V vertices,  E edges, and  P 

connected components:

 r ( G ) =  V −  P and  n( G ) =  E −  r ( G ) =  E −  V +  P. 

He then derived some  simple consequences of  these definitions, such as:

for any graph, the rank and the nullity are non- negative; 

if isolated vertices are added or removed, the rank and the 

nullity are unchanged; 

if an edge  ab is added, where  a and  b are in the same component of  G, the rank remains unchanged and the nullity 

increases by 1; 

if an edge  ab is added, where  a and  b are in diff er ent components of  G, the nullity remains unchanged and the rank 

increases by 1. 
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This was followed by several substantial results on the ranks and nullities of separable and non- separable graphs. 

In the second part of this paper, Whitney turned his attention 

to duality. Given a graph  G, he defined the graph  G* to be a  dual of G if  there is a one –  one correspondence between the set of edges of  G and the set of edges of  G* with the property that, if  H is any subgraph of  G with the same vertex- set as  G, then the corresponding subgraph  H* of  G* satisfies

 r ( G*) =  r ( Ĥ*) +  n( H ), where  Ĥ* is the complement of  H* in  G* (the graph obtained from G* by removing the edges of  H*). 

This abstract form of dual graph is combinatorial in nature, 

rather than geometric,  because  there is no mention of the graphs being drawn on the plane, the sphere, or any other surface. We  shall refer to it as a  combinatorial dual (sometimes called a  Whitney dual ) to distinguish it from the geometric dual described  earlier. 

After presenting his definition, Whitney proved that:

If  G* is a dual of  G, then  r ( G*) =  n( G ) and  n( G*) =  r ( G ). 

The first result follows on putting  H =  G, so that  Ĥ* is an empty graph and  r ( Ĥ*) = 0. 

The second result follows from the first, and from the equal ities r ( G*) +  n( G*) = | E( G*)| = | E( G )| =  r ( G ) +  n( G ). 

He also proved that:

If  G* is a dual of  G, then  G is a dual of  G*. 

This is  because

 r( H) +  n( ˆ

 H*) = (| E( H)| −  n( H)) + (| E( ˆ

 H*)| −  r( ˆ

 H*))

= | E( H)| + | E( ˆ

 H)| −  r( G*)(because| E( ˆ

 H*)| = | E( ˆ

 H)|)

= | E( G)| −  n( G) =  r( G). 

Note that this is a general result which makes no reference to the geometric situation for connected planar graphs that we described earlier. 
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Whitney’s main achievement in this paper was to prove that

A graph is planar if and only if it has a combinatorial dual. 

This result provides a purely combinatorial (non- geometric) characterization of planarity, and was a major contribution to the study of planar graphs and to graph theory in general. 

To prove it, Whitney began by showing the necessity of the condition, by mapping a planar graph  G of nullity  n onto the surface of a sphere, and proving that  G divides the surface of the sphere into n + 1 regions. 

He next constructed the graph  G*, by placing a new vertex in each region of  G, and crossing each edge of  G with an edge of  G* 

that joins  those vertices of  G* lying on  either side of it. This produces a one –  one correspondence between the edges of  G and those  of   G*. 

Whitney then had to prove that the graphs  G and  G* satisfied his definition of duality. To do so, he first built up  G, one edge at a time, removing the corresponding edge from  G* whenever he added an edge to  G. He showed that:

each time the nullity of  G increases by 1 when an edge is added, removing the corresponding edge of  G* decreases the 

number of components of  G* by 1; 

each time the nullity of  G remains the same when an edge is added, the number of components of  G* remains the same. 

Now let  H be a subgraph of  G, and let  Ĥ* be the complement of the corresponding subgraph of  G*. Once again, Whitney built up  H one edge at a time, removing the corresponding edges of G* at the same time as he formed  Ĥ*. By the preceding results, the increase in the number of connected components in forming  Ĥ* is equal to the nullity of  H—  that is, 

 P( Ĥ*) −  P( G*) =  n( H ). 

But,   because   G* and  Ĥ* contain the same vertices, r ( Ĥ*) =  V( Ĥ*) −  P( Ĥ*) =  V( G*) −  P( Ĥ*)  and   r ( G*) =  V( G*) −  P( G*). 
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It follows that

 r ( G*) −  r ( Ĥ*) =  n( H )

— that  is,  G* is a combinatorial dual of  G, as desired. 

To prove the sufficiency of the condition— that is, if a graph 

has a combinatorial dual, then it is planar— Whitney claimed that it was enough to show this for non- separable graphs. To do so, he first proved that if a separable graph  G has a dual, then its blocks also have duals— thus, its blocks are planar, and so  G is planar. 

Sufficiency was therefore a consequence of the following theorem, which he then proceeded to prove:

Let the non- separable graph  G have a dual  G*. Then we can map  G and  G* together onto the surface of a sphere, so that corresponding edges in  G and  G* cross each other, no other two edges cross each other, and inside each region of one 

graph  there is just one vertex of the other graph. 

This completed the proof of Whitney’s main theorem. 

This paper of Whitney’s concluded with a proof that neither  K 5 nor K 3, 3 has a combinatorial dual. It follows that Kuratowski’s characterization in Interlude B— that a graph is planar if and only if it has no subgraph homeomorphic to  K 5 or  K 3, 3— can be used to give an alternative proof that a graph that has a combinatorial dual is planar. In a subsequent paper, entitled simply “Planar graphs”,11 Whitney reversed the argument, by proving that a graph that contains no subgraph homeomorphic to K 5 or  K 3, 3 has a combinatorial dual, thereby obtaining a new (and less geometric) proof of Kuratowski’s theorem. 

There is an addition to this story, in that the paper just cited included a further non- geometric characterization of planar graphs. It involves the cycles and cutsets of a connected graph, where a  cutset is a set of edges whose removal splits the graph into two pieces, and is minimal with re spect to this property. Whitney’s alternative characterization was as follows: Two connected graphs  G and  G* are duals if  there is a one- one correspondence between their edge- sets with the property that a set of edges in  G forms a cycle of  G if and only if the corresponding set of edges of  G* forms a cutset of  G*. 

We  shall call  G and  G*  abstract duals of each other. 
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To indicate why this result is true, we take a plane drawing of  G and let  C be a cycle. Then  C encloses one or more finite  faces of  G, and so surrounds a non- empty set  S of vertices of its geometric dual  G*. 

Those edges of  G* that cross the edges of  C then form a cutset of  G*, whose removal disconnects  G* into two subgraphs, one with vertex- set  S 

and the other containing the remaining vertices. The converse argument is similar. 

C

S

A cycle (solid) and a corresponding cutset (dotted). 

To prove that abstract duals are the same as combinatorial duals, Whitney argued as follows. Suppose that cutsets in  G* correspond to cycles in G. Let  H be a subgraph of  G with nullity  n( H ), and let  Ĥ* be the complement of the corresponding subgraph of  G*. We can then form  H and  Ĥ* 

si mul ta neously, by starting with no edges in  G and  every edge in  G*, and adding edges one at a time to  H, while removing the corresponding edges from  G*. At each stage, the nullity of the resulting subgraph of  G increases if and only if the last edge added forms a cycle with the edges already present, and the rank of the subgraph of  G* decreases if and only if the last edge removed forms a cutset with the edges already removed. So,  because cycles in  G correspond to cutsets in  G*, the nullity of the first subgraph increases if and only if the rank of the second one decreases. It follows that r ( G*) =  r ( Ĥ*) +  n( H ), and so  G* is a combinatorial dual of  G. Whitney proved the converse result in a similar way. 

Matroids

In September 1934, Hassler Whitney presented to the American Mathematical Society his investigations into matroids, which  were published in the following year.12 Having spent several years working on graphs, he had noticed similarities between the ideas of rank and in de pen dence in 
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graph theory and  those of dimension and linear in de pen dence in vector spaces. We have seen how Whitney used the complementary concepts of rank and nullity as a foundation for his studies, and in his groundbreaking paper on matroids he went further, motivated by the following correspondences between algebraic vectors and the edges of a graph:

subsets of a vector space 

↔  subsets of edges in a graph

dimension of a span of vectors  ↔  rank of a subgraph

linearly  in de pen dent  vectors 

↔  cycle- free sets of edges

basis of a vector space 

↔  spanning forest in a graph

minimal dependent set 

↔  cycle of a graph

Whitney first axiomatized the properties of a rank function, mirror-ing results on dimension in a vector space and the rank function in graph theory, and then presented three equivalent axiom systems for in de pendent sets, bases, and cycles. The resulting structure, called a  matroid, has proved to be of fundamental importance, not only in graph theory but also in other branches of mathe matics. 

Hassler Whitney:  On the abstract properties  

 of linear dependence (1935)

A  matroid M consists of a non- empty finite set  E of ele ments, where for each subset  S of  E,  there is an integer  r ( S ), called the  rank of  S, satisfying the following conditions:

(R1)  r (∅ ) = 0; 

(R2) for any subset  S, and any ele ment  e not in  S, r ( S ∪ ( e)) =  r ( S ) +  k, where  k = 0 or 1; (R3) for any subset  S, and any ele ments  e and   f not in  S, if  r ( S ∪ ( e)) =  r ( S ∪ (   f  )) =  r ( S ), then  r ( S ∪ ( e,  f  )) =  r ( S ). 

It follows that:

for each subset  S of  E, 0 ≤  r ( S ) ≤ | S|; if  S is a subset of  T, then  r ( S ) ≤  r ( T   ); for all subsets  S and  T of  E,  r ( S ∪  T   ) +  r ( S ∩  T   ) ≤  r ( S ) +  r ( T   ). 

These last three results can be taken as alternative axioms. 
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Whitney called a subset  S  in de pen dent if  r ( S ) = | S|, and  dependent other wise. He then defined a matroid in terms of its in de pen dent sets, by requiring that:

(I1) any subset of an in de pen dent set is in de pen dent; 

(I2) if  S and  T are in de pen dent sets with | S| =  p and | T  | =  p + 1, then  there is an ele ment  e that is in  T but not in  S for which S ∪ ( e)  is  in de pen dent. 

For a graph, the in de pen dent sets are the sets of edges that contain no cycles. 

By repeating property (I2) as often as necessary, we eventually obtain a maximal in de pen dent set, which he called a  base of the matroid. Whitney defined a matroid in terms of its bases, by requiring that:

(B1) no proper subset of a base is a base; 

(B2) ( exchange axiom) if  B 1 and  B 2 are bases, and if  e is an element of  B 1, then  there is an ele ment  f in  B 2 for which ( B 1 − ( e)) ∪ (   f ) is a base. 

For a connected graph, the bases are its spanning trees. 

By successively replacing ele ments of  B 1 by  those in  B 2, as guar-anteed by the exchange axiom, Whitney proved that

any two bases have the same number of ele ments. 

Note that a subset is in de pen dent if it is contained in a base, and that a base is a set with rank  r ( B) = | B| =  r ( E ). 

Whitney’s last definition of a matroid was in terms of its minimal dependent sets, called  cir cuits. We can define a matroid in terms of  these by requiring that:

(C1) no proper subset of a cir cuit is a cir cuit; 

(C2) if  C 1 and  C 2 are cir cuits, each containing an ele ment  e, then  there is a cir cuit in  C 1 ∪  C 2 that does not contain  e. 

Now, if  G is a graph, we can define a matroid by taking as its cir-cuits the cycles of  G, and we call this the  cycle matroid of  G, denoted by  M( G ). But we could alternatively have taken as cir cuits the (minimal)  cutsets of  G,  because  these also satisfy the cir cuit axioms, and we call this matroid the  cutset matroid of  G, denoted by  M*( G ). To see the connection between  these two matroids, we show how the idea of duality can be extended to matroids. 
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Given any matroid  M on a set  E, we can construct another matroid on  E, called its  dual matroid M*, by taking as its bases the complements of the bases of  M—  so if  B is a base of  M, then  E −  B 

is a base of  M*. It follows that  every matroid has a unique dual (in contrast to the duality of planar graphs), and that if  M* is a dual of  M, then  M is a dual of  M*. 

But we can say more. We recall that two connected graphs  G and G* are abstract duals of each other if  there is a one– one correspondence between their edge- sets so that a set of edges in  G forms a cycle of  G if and only if the corresponding set of edges in  G* 

forms a cutset of  G*. It can be proved that, for any graph  G, the cir cuits of the dual of the cycle matroid  M( G ) are precisely the cutsets of  G. It follows from this that

The cycle and cutset matroids  M( G ) and  M*( G ) are duals of each other. 

Moreover, if we now calculate the rank function  r* of  M*, it turns out to be a restatement of the formula  r ( G*) =  r ( Ĥ*) +  n( H ) for the combinatorial dual of  G. It follows that matroid duality is the natural setting for both the abstract and the combinatorial duals of a connected graph. 

Whitney’s seminal work on matroids was largely ignored for over twenty years, even though Saunders Mac Lane wrote an article in 1936 

on connections between matroids and projective geometry,13 B. L. van der Waerden formalized the ideas of algebraic and linear dependence in 1937 in his classic textbook,  Moderne Algebra,14 and in 1942 Richard Rado developed the connections between matroids ( under the name of “in depen dence systems”) and transversal theory.15 The situation changed dramatically in 1958, when W. T. Tutte presented a characterization of those matroids that arise from graphs (see Chapter 5). 

Other Topics

Whitney’s papers on graph theory represented an impor tant advance in the subject. Indeed, as Tutte  later pronounced:16

The graph theoretical papers of Hassler Whitney, published in 1931–1933, would have made an excellent textbook in En glish had they been collected and published as such. 
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We have already chronicled Whitney’s work on graph coloring, planarity, and matroids, and we now turn to a few other topics that he investigated in the early 1930s. 

IsomorphIsm and lIne graphs

One of Whitney’s earliest papers, communicated to the American Mathematical Society on February 28, 1931, was “Congruent graphs and the connectivity of graphs”.17 It was a remarkable achievement, in that it contributed to two very diff er ent areas of graph theory. 

Two graphs,  G and  G′, are said to be  isomorphic if  there is a one– 

one correspondence between their vertex- sets, so that two vertices are adjacent in  G if and only if the corresponding vertices are adjacent in  G′. (Whitney referred to such graphs as  congruent.) In graph theory, isomorphic graphs are usually regarded as indistinguishable, even though drawings of them may look dissimilar; for example, the three drawings of the Petersen graph in Interlude A look markedly diff er ent. 

Whitney also investigated other forms of isomorphism. For example, G and  G′ are  edge- isomorphic if  there is a one– one correspondence between their edge- sets, so that if two edges of  G meet at a common vertex, then so do the corresponding edges of  G′. It is easy to check that if the graphs  G and  G′ are isomorphic, then they are also edge- isomorphic, but is the converse result necessarily true? Whitney proved that this is always the case, except when one graph is the complete graph  K 3 and the other is the complete bipartite graph  K 1, 3. 

 K 3

 K 1,3

The graphs  K 3 and  K 1, 3. 

Another way of expressing this result (not explic itly mentioned by Whitney) is to define the  line graph L( G ) of a connected graph  G to be the graph whose vertices correspond to the edges of  G, with two vertices of L( G ) adjacent if and only if the corresponding edges of  G meet. It follows from Whitney’s result that, if  L( G ) is isomorphic to  L( G′ ), then  G is isomorphic to  G′, except when  G and  G′ are  K 3 and  K 1, 3. 
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 G

 L( G)

A graph  G and its line graph  L( G ). 

Further types of isomorphism  were developed in two  later papers, both published in 1933. In the first of  these, “2- isomorphic graphs”,18 

Whitney investigated the relationships between two graphs in which the cycles of one graph are in a one– one correspondence with the cycles of the other. In the second paper, “On the classification of graphs”,19 he built on an investigation by Ronald Foster of the Bell Telephone Company, “Geometrical cir cuits of electrical networks”.20 Whitney had corresponded with Foster on the subject, and his paper began:

R. M. Foster has given an enumeration of graphs, for use in electrical theory. He used two distinct methods, classifying the graphs according to their nullity, and according to their rank. In  either case, only a certain class of graphs is listed; the remaining graphs are easily constructed from  these. In the pre sent paper we give theorems sufficient to put the first method of classification on a firm foundation. 

To do so, Whitney considered certain operations on graphs, and he explored the vari ous types of homeomorphism and isomorphism which can exist between two graphs that are related by combinations of  these operations. He concluded his paper by outlining a method for constructing graphs with given nullities. 

The connecTIvITy of graphs

In the second half of his paper “Congruent graphs and the connectivity of graphs”, Whitney devised a mea sure of how “joined up” a given connected graph is. A connected graph is “1- connected”. It is “2- connected” 

if it is a block— that is, it remains connected if a single vertex is deleted (with its incident edges). Whitney extended this idea by defining a connected graph to be  n- connected if it remains connected whenever up to  n − 1 vertices are deleted. If a graph is  n- connected, then it is also k- connected for all values of  k that are less than  n. 
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In Interlude B we met Menger’s theorem, which states that if  v and  w are non- adjacent vertices in a finite connected graph, then the maximum number of vertex- disjoint paths joining  v and  w is equal to the minimum number of vertices whose removal separates  v from  w. Whitney expressed this minimax result as follows:

A graph with at least  n + 1 vertices is  n-  connected if and only if any two vertices are joined by at least  n paths, no two of which have any other vertices in common. 

He further defined the  connectivity of a graph to be  n if it is  n- connected but not ( n − 1)- connected. It is the minimum number of vertices whose deletion leaves a disconnected (or trivial) graph. 

The final section of Whitney’s paper concerned the duals of planar graphs. We have mentioned that diff er ent plane drawings of the same planar graph  G can lead to diff er ent geometric duals. Whitney proved, among other results, that if  G is further assumed to be 3- connected, then it has a unique dual. 

TopologIcal InvarIanTs of graphs

In Interlude B, we defined two graphs to be  homeomorphic if they can be obtained from each other by the insertion or removal of vertices of degree 2. In his paper, “A set of topological invariants for graphs”,21 

Whitney investigated  those properties of a graph that are the same for homeomorphic graphs. This paper was presented to the American Mathematical Society on December 28, 1931, but was not published until  1933. 

A  simple example of a topological invariant for a graph is the  number of components, which remains unchanged when vertices of degree 2 are inserted or removed. Another example is the  nullity, which is  E −  V +  P 

for a graph with  E edges,  V vertices, and  P components,  because if a vertex of degree 2 is inserted or removed, then  E and  V both increase or decrease by 1. 

A more substantial example arises from Whitney’s work on chromatic polynomials. In his 1932 paper, “A logical expansion in mathe matics”, which we described  earlier, he defined  mij to be the number of subgraphs with rank  i and nullity  j. Whitney now asserted: Given the  table of the numbers  mij for a graph  G, if we sum over the ele ments in each row with alternating signs, we get the coefficients mi of the polynomial  M(λ) for the number of ways of coloring  G 
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in λ colors. But if we sum over the columns, we get a set of numbers  pi. If  G is of rank  r and nullity  n, then  these numbers are pi = ∑  j (−1) i +   j  mr −  j,  n −  i. 

Whitney proved that if  G is a planar graph, then the numbers  pi are topological invariants for  G. For, if  G has a dual  G*, and if the corresponding numbers are  mij*, then  mij* =  mr−  j,  n− i, and so m* i = ∑  j(−1) i+  j mi,* j = ∑  j(−1) i+  j mr−  j,  n− i =  pi. 

It follows that if  G has a dual  G*, then the numbers  pi are the coefficients of the chromatic polynomial of  G*. Moreover, if  G is planar, then  these coefficients  pi remain unchanged when vertices of degree 2 

are inserted or removed, and so they are indeed topological invariants for  G. 

Whitney proved further that, just as (−1) i  mi is the number of subgraphs with  i edges that do not contain all the edges of any broken cir cuit, so (−1) i  pi is the number of subgraphs with  i edges that do not contain all the edges of any broken cutset. 

Whitney’s  Later Life

After Whitney’s early work in graph theory, he turned his attention to other topics, which we outline briefly.22

•  It was well known that any continuous function on a closed 

subset of ℝ n can be extended to a continuous function on all of ℝ n. In an impor tant paper, Whitney extended this result from continuous functions to  k- differentiable (or even infinitely differentiable) ones. 

•  Based on this result, Whitney proved his  strong embedding theorem, that any  n- dimensional differentiable manifold can be embedded in ℝ2 n. This result is optimal,  because the Klein bottle is a 2- dimensional manifold that can be embedded in 

ℝ4, but not in ℝ3. 

•  In the 1930s, homology groups  were found to be insufficiently structured to distinguish between topologically diff er ent 

manifolds. The solution was to replace them by “cohomology 

rings”, but a suitable ring product proved difficult to find. 

Working with Eduard Čech, Whitney (then aged just 28) 

proposed the  cup product, and showed that diff er ent manifolds 
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always have diff er ent cohomology rings, even when their 

homology groups are the same. 

•  In the 1950s, by now at the Institute for Advanced Study, 

Whitney was engrossed in the topology of singular spaces and 

the singularities of smooth maps. This work led to catastrophe 

theory (founded by René Thom), and eventually to non- linear 

dynamics and chaos theory, fields that are still very active  today. 

•  In 1965, Whitney published a major paper on  stratifications, in which he described how to decompose a non- smooth manifold 

into smooth manifolds. He proposed that a “good stratifica-

tion” needed to satisfy two conditions, and it was  later proved that   these   Whitney conditions provide just the right definition for a stratification. 

During his long and successful  career, Whitney’s achievements  were recognized by honorary doctorates and memberships in learned societies. He presented the American Mathematical Society’s Colloquium Lectures in 1946 on the  Topology of Smooth Manifolds, and became vice president of the society in 1948–49. He also received a number of awards, including the National Medal of Science, conferred on him in 1976 by President Jimmy Car ter. 

By the 1970s, much to the puzzlement and consternation of some colleagues, Whitney had abandoned his  career as a research mathematician and embarked upon a second one. Motivated by his discovery of the appalling way in which his own  children  were being taught mathe matics, he devoted the last two de cades of his life to improving mathe matics education for schoolchildren. 

SAUNDERS MAC LANE

Saunders Mac Lane is best known for co- founding category theory with Samuel Eilenberg. Born in Norwich, Connecticut, he was christened Leslie Saunders MacLane, but his parents came to dislike “Leslie” and it fell into disuse.  Later, he began to insert a space in his surname  because his wife found it difficult to type it without one. His grand father was a church minister, but was forced out of the church  because he believed in evolution. His  father also was a minister, and his  mother taught En glish, Latin, and mathe matics. He was the oldest of three  brothers (a  sister died as a baby), and his  brother Gerald became a mathe matics professor at Rice University and Purdue University. 

[image: Image 55]
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Saunders Mac Lane (1909–2005). 

Mac Lane enrolled at Yale University in 1926, where he studied mathematics and physics as a double major, and graduated with a bachelor’s degree and the best grade point average yet recorded at Yale. He began his gradu ate work at the University of Chicago, where he studied with E. H. Moore, Leonard Dickson, G. A. Bliss, and the phi los o pher Mor-timer Adler, gaining his master’s degree in 1931. With Moore’s encouragement, he was awarded a fellowship at the University of Göttingen. While there, he studied with Emmy Noether before receiving his doctorate in 1934 for the thesis  Abbreviated Proofs in the Logical Calculus,  under the supervision of Hermann Weyl and Paul Bernays. 

From 1934 to 1936, Saunders Mac Lane was the Peirce Instructor of Mathe matics at Harvard University.  Here, he met the new assistant professor, Hassler Whitney, and published three papers that extended Whitney’s work. The first of  these, “Some unique separation theorems for graphs”,23 was published in 1935 and explored some methods of Whitney and R. M. Foster on separating graphs by chains. In the concluding paragraph, Mac Lane observed that his techniques could also be used to study the separation of graphs by cycles. 
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He did this in his next paper, “A combinatorial condition for planar graphs”,24 where he provided a new condition for planarity.  After recalling Kuratowski’s theorem and Whitney’s combinatorial dual, Mac Lane proved that

A combinatorial graph is planar if and only if it contains a complete set of cycles with the property that no edge appears in more than two of  these cycles. 

Here, a set of cycles is  complete if  every cycle in the graph can be written as a sum (modulo 2) of cycles in the set— that is, each edge of the cycle appears in an odd number of  these cycles. 

Mac Lane’s third paper, “A structural characterization of planar combinatorial graphs”,25 also dealt with planar graphs and cycles. The paper began by recalling the planarity results of Kuratowski, Whitney, and himself, and the condition that he developed was the following:

A set of cycles  C 1, . . .  ,  Cm in a non separable graph  G is the set of complementary domain bound aries of a planar map of  G if and only if each edge of G is contained in exactly two of the cycles  C, while the cycles  C 1, . . .  ,  Cm −   1 

form a complete in de pen dent set of cycles in  G, mod 2. 

This implies that a non- separable graph is planar if and only if it contains a set of cycles with the property that each edge of the graph lies in exactly two of  these cycles. 

For two years, Saunders Mac Lane taught at Cornell University and the University of Chicago, before joining the mathe matics faculty at Harvard from 1938 to 1947. In 1944–45 he was involved in war work, directing the Applied Mathe matics Group at Columbia University. He returned to the University of Chicago as professor of mathe matics in 1947 and became the mathe matics department’s chair in 1952, serving in this capacity for six years. During his teaching  career, Mac Lane supervised forty- two doctoral students, including David Eisenbud, Irving Kaplansky, and John Thompson. 

Mac Lane was the recipient of many honors. Elected to the National Acad emy of Sciences in 1949, he  later served as its vice president, also becoming president of both the Mathematical Association of Amer i ca (MAA) and the American Mathematical Society (AMS). He was awarded the MAA’s Chauvenet Prize and Distinguished Ser vice Award, and the AMS’s Steele Prize, and in 1989 he received the National Medal of Science, Amer i ca’s highest award for scientific achievement. 

Saunders Mac Lane authored highly regarded books on a wide variety of mathematical subjects. In 1941, he collaborated with Garrett Birkhoff 
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on  A Survey of Modern Algebra, an influential text that introduced modern abstract algebra to generations of undergraduates, while his 1972 

book,  Categories for the Working Mathematician, remains the definitive introduction to category theory. 

AC ADEMIC LIFE IN THE 1930s

The stock market collapse in 1929 led to a worldwide economic down-turn, known as the  Great Depression, and hard times for all. In par ticu lar, the United States and Canada witnessed many business failures that led to high levels of unemployment and privation. The jobless figures  rose to 25  percent at a time of no unemployment benefits and few pension plans. 

As in other countries, the situation affected academics in varying degrees.26 In the early 1930s, the salaries of full professors became subject to reductions of 10–15  percent, although this coincided with a general lowering of the cost of living, so  those at the higher end of the academic ladder remained relatively well off. But this was not the case for  those on the lower rungs, or for  those with recently acquired degrees, as too many  people with mathe matics doctorates found themselves chasing too few jobs. State and central governments drastically reduced their funding for establishments of higher learning, while many colleges and universities  were forced to terminate the contracts of ju nior staff, and  there  were instances of increased teaching workloads to cover for released staff. 

In the 1930s, some mathematicians with new doctoral degrees  were unable to gain academic positions related to their own research interests.  Others took positions as high school teachers or in industry that was unrelated to their research, or indeed to mathe matics in general, and a few even became unemployed. Even forsaking colleges and universities in order to obtain high school positions was not without its problems. Many heads of mathe matics departments in high schools  were wary of bringing in someone with greater mathematical knowledge and understanding than themselves, but who might not teach well. Even when mathematicians  were fortunate enough to obtain teaching positions at a college, university, or high school, it was unlikely that any increases in salary would be awarded,  unless they  were attached to promotions that could take years to achieve. 

Although World War I and the  Great Depression undoubtedly had 

many negative effects on academic life in the 1930s,  there  were positive 
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developments as well. It was precisely during the Depression years that major academic developments took place at a number of institutions, such as Prince ton, Berkeley, Duke University, the University of  Virginia, and many of the land- grant universities and elsewhere. 

Immigration

In the 1930s, the events in Eu rope, and particularly  those that followed Hitler becoming chancellor of Germany in 1933, had a considerable impact on the world at large. For  those who  were employed in American higher education,  these happenings triggered an exodus of  people from German- speaking countries  because of persecution. Many Jewish mathematicians migrated to Amer i ca, where some  were subjected to prejudice and anti- Semitism, but all  were soon to be caught up in a new global conflict. Most of them actively and proudly assisted their new country and its allies in defeating German and Japa nese aggression. 

Throughout its history, the United States has been a haven for the oppressed of other countries. It was therefore unsurprising that large numbers of Americans  were moved to help  those who  were subject to persecution in German- speaking countries.  These included many academics who became active in the efforts to help individual scholars who were losing their livelihoods for being non- Aryans or for activities that were po liti cally unacceptable to the Nazis. 

An Academic Assistance Council had already been formed in Britain, and this influenced efforts that  were being made in the United States. 

An American organ ization, the Emergency Committee for Displaced German Scholars ( later, Displaced Foreign Scholars), was formed to plan the immigration and absorption of  these displaced scholars. Indeed, by the conclusion of World War II, up to 120 mathematicians dismissed from their posts by the Nazis had entered the United States, and many remained permanently. 

It was no easy task that  these agencies had set for themselves, as Ameri ca was still recovering from the stock market collapse and the subsequent economic depression. Some in the academic world believed that an influx of foreign scholars would deprive homegrown talented young people from obtaining suitable positions. Additionally,  there  were feelings of nationalism and anti- Semitism to contend with. 

But foreign mathematicians benefited, not least through mathematical prac ti tion ers in the vari ous organ izations— for example, both the president and the head of the natu ral science program of the Rocke feller Foundation  were mathematicians.27 In addition, many older foreign 
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mathematicians came from Eu ro pean families that had migrated to Amer i ca only one or two generations  earlier, and  were of the age to remember the days when American scholars had traveled to Eu rope for postgraduate study. By so  doing,  these Americans had established close academic and personal relationships with Eu ro pean universities, many of which had been in Germany, the leading center for mathe matics. 

As an example of the effects of the  Great Depression, it was reported by Edward R. Murrow, the second- in- command of the Emergency Committee, that by October of 1933, 2000 teachers (out of 27,000) had been dismissed from the faculties of 240 American institutions of higher learning.28 The Emergency Committee and the Rocke fel ler Foundation decided to use their funds to aid scholarships, while endeavoring not to displace existing faculty members, or to act in such a way as to encourage anti- Semitism or resentment of incoming foreigners. Even with  these intentions, their actions  were not without critics within the American education system, with some native scholars resentful that the influx of foreigners would prevent young homegrown scholars from progressing up the education ladder. 

One of the foremost mathematicians to be actively involved in pro-curing American entry for displaced scholars from Nazi persecution was Oswald Veblen. Among  these immigrants  were three notable academics from Göttingen:

Richard Courant, who was placed on leave of absence by the Nazis in 1933, traveled to the United States via  England in 1934, and later became director of the Institute of Mathematical Sciences at New York University; 

Otto Neugebauer, who arrived via Denmark, and became professor 

of the history of mathe matics at Brown University in Providence; Hermann Weyl, who moved to the Institute of Advanced Study in 

1933, where he remained  until his retirement in 1952. 

Insisting on fair play and opportunity for every one, Veblen had declared:29

One of the greatest dangers . . .  is the timid attitude which is taken by most of the scientific  people who deal with  these questions. 

But Veblen himself was anything but timid. In 1943, he declined to fill in the entry for “race” on a form associated with his war work at the army’s ordnance Aberdeen Proving Ground; he had,  after all, been a major 
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in ordnance, working on ballistics research during World War I. He wrote to the secretary of war, protesting that the question was invidious and of the type that would have been the norm in Germany. In 1946, he again refused to sign a form that waived the right to strike at Aberdeen. A few years  later, during Joseph McCarthy’s infamous witch- hunt period, it was suggested that Veblen was a Communist and should be denied a pass-port. But he was not a Communist— rather, he claimed to be an old-fashioned liberal. 

Veblen became a member of the Emergency Committee at its foundation and provided detailed information on each pos si ble immigrant. Along with Hermann Weyl, he ran a placement bureau for displaced mathematicians  until the end of the war. As described by Nathan Reingold:30

In Veblen’s papers in the Library of Congress are lists of names with headings such as scholarship, personality, adaptability and teaching ability. When information about a person was incomplete in the United States,  Veblen wrote to  Eu ro pean  colleagues. 

In 1933, the American Mathematical Society formed a committee to co-operate with the Emergency Committee. Veblen was one of the three people appointed to this new committee. 

The agreed- upon policy of the two organ izations that helped the dis-possessed and po liti cally unacceptable foreign academics to enter Ameri ca was that the most eminent should be placed in institutions with research capabilities. Veblen, Weyl, and  others  were soon placing the less renowned refugees in  those universities, colleges, and ju nior colleges that would take them. 

But this unofficial policy was controversial and did not find support in some quarters— and particularly at Harvard University, which endeavored to raise alternative funds for aiding refugees in an attempt to ease the Emergency Committee aside and regain control of its own faculty appointments. George Birkhoff, in par tic u lar, was deeply concerned about the employment opportunities for homegrown mathematicians at a time when immigrant scholars seemed to be gaining an unfair advantage. To avert a major crisis within the mathe matics community, Veblen sought an agreement with Birkhoff, and on May 24, 1939, Harlow Shapley, head of the Harvard College Observatory, wrote:31

When Veblen and Birkhoff  were in my office the other day, it was agreed that the distribution of  these first rate and second rate men among smaller American institutions would in the long run be very advantageous, providing 
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at the same time we defended not too feebly the inherent right of our own gradu ate  students. 

This agreement was prob ably reached  because both of them, and  others in the American Mathematical Society, believed that the United States would soon be at war again. Once the war was over, Amer i ca could feel reasonably proud that, despite all the differing opinions and the many arguments and deals, the nation had again become a haven for the oppressed when it was required. 

A New Publication

Prior to 1933 and the rise of the Nazi Party, Germany had been the leading center for mathe matics and had published the most respected of reviewing and abstracting vehicles, the  Zentralblatt für Mathematik. The journal’s editor was Otto Neugebauer, who was not Jewish, but who held views that  were po liti cally unacceptable to the new German regime; he was forced to flee to Denmark in 1934. Four years  later, Tullio Levi-Civita, an Italian mathematician, was dismissed from his professorship and removed from the board of  Zentralbatt for po liti cal reasons. A number of resignations swiftly followed, including  those of G. H. Hardy, Harald Bohr, and Oswald Veblen. The journal’s management also decided that refugee mathematicians and Rus sians should be barred from being collaborators in, and referees for, its published articles. The resulting reaction in Amer i ca and elsewhere was one of  great indignation that the in de pen dence of scientific internationalism had been  violated, and that the worldwide body of mathematicians had been insulted and its integrity impugned. 


As a result of the actions of  Zentralblatt’s governing board and the resignations of advisory members, Veblen urged that American mathematicians should found a new review journal— a suggestion that he had made some fifteen years  earlier, even though he recognized that the mathe matics community was then unprepared for taking on such a task. 

But by 1938, Veblen believed that such a move was now pos si ble in Amer i ca. The number of research mathematicians had considerably increased over the previous two de cades, including the recent immigrants, and Amer i ca was rapidly becoming the world center for mathematical activity. 

In December 1938, the American Mathematical Society formed a 

committee to discuss the idea, and all the diff er ent factions of the American mathe matics community joined in the deliberations.  These covered 
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Announcing  Mathematical  

 Reviews, 1940. 

po liti cal, religious, and racial questions, and considered financial security and international cooperation. Veblen used his considerable powers of persuasion to obtain a $65,000 grant from the Car ne gie Corporation.  After much debate, with many conflicting opinions— not least a pro- German stance by Harvard’s mathe matics department (including Birkhoff )— the society’s council decisively voted on May 25, 1939, in favor of the journal. Veblen was appointed chairman of the committee entrusted to or ga nize and launch the new publication, which was named Mathematical Reviews. The first issue appeared in January 1940. 

Anti Semitism

Like other forms of prejudice, anti- Semitism has existed for millennia, as it has waxed and waned over time and moved geo graph i cally around the globe. Between the two world wars, it was to be found within American society and, in par tic u lar, by some mathematicians at se nior institutions of higher education. Prior to a general understanding of Hitler’s 

“final solution” and the evidence of the Holocaust, anti- Semitism had often been seen, not as a mortal sin, but simply as ugly and petty minded. 
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It is sometimes difficult to distinguish between nationalistic feelings and anti- Semitism; some expressions of national sentiment have no hidden anti- Semitic intent, whereas other nationalistic comments against foreigners mask prejudice. Although Amer i ca’s history had been built on immigration, some newcomers expressed an antipathy  toward other foreigners, especially  those also wishing to  settle in the United States. 

Because many of the immigrants fleeing Nazi Germany  were of Jewish extraction, it was pos si ble to hide anti- Semitic prejudice  behind concerns that the incoming academics would prevent homegrown post-

graduates from securing appropriate positions. 

The 1920s and 1930s witnessed many examples of university faculties operating an anti- Jewish policy, and  those which allowed employment for a Jewish scholar rarely hired a second one. However, most members of mathematical departments showed no anti- Semitism and positively worked to undermine the actions of their colleagues who did. 

One prominent figure who has been accused of anti- Semitic tendencies was George Birkhoff, and as one of Amer i ca’s two leading mathematicians, his words and actions have been remembered, especially as the other, Oswald Veblen, held opposing views. In 1934, for example, Birkhoff was initially against Solomon Lefschetz’s becoming the first Jewish president of the American Mathematical Society, as a letter from him to R.G.D. Richardson, the society’s secretary, declared:32

I have a feeling that Lefschetz  will be likely to be less pleasant even than he had been, in that from now on he  will try to work strongly and positively for his own race. They are exceedingly confident of their own power and influence in the good old USA. The real hope in our mathematical situation is that we  will be able to be fair to our own kind . . .  He  will get very cocky, very racial and use the Annals [of Mathe matics] as a good deal of racial perquisite. The racial interests  will get deeper as Einstein’s and all of them do. 

At the AMS’s semicentennial meeting in 1938, Birkhoff presented a historical survey of mathe matics in Amer i ca. In his lecture, he discussed foreign- born mathematicians, particularly the recent immigrant scholars, and although his list of names included some who  were neither German nor Jewish, many in his audience considered his views anti- Semitic. 

Long  after the occasion, this lecture still caused much heated debate, and even Einstein apparently described him as “one of the world’s greatest academic anti- Semites”.33 However, in his article “The migration of Eu ro pean  mathematicians  to  Amer i ca”,34 Professor Lipman Bers opined that, “even the  great mathematician G. D. Birkhoff was not  free from anti- Jewish prejudices”, but then added:
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Besides,  people are complicated. The same Birkhoff who could toss off an anti Semitic remark in a private letter, did not let his racial prejudices interfere with his evaluations of other  peoples’ scientific work. The late complex analyst Wladimir Seidel, who graduated from Harvard and  later taught there as a Benjamin Peirce Instructor, told me about a phone call made by Birkhoff to a departmental chairman. “I know you hesitate to appoint the man I recommended  because he is a Jew. Who do you think you are, Harvard? Appoint Seidel, or you  will never get a Harvard Ph.D. on your faculty.” 

Seidel was duly appointed. 

Others who have written on this subject in support of Birkhoff have included Saunders Mac Lane, to whom we give the last word:35

It is my view that the 1930s tension between placing refugees and helping young Americans came to a reasonable balance of  these interests— and that the differing views of  Veblen and Birkhoff served to help the balance. 


* * * * *

Like their pre de ces sors, Veblen, Birkhoff, and Franklin, Hassler Whitney and Saunders Mac Lane both had long and successful  careers as they contributed to the development of graph theory in Amer i ca and to mathematics worldwide. On many occasions, the  careers and academic interests of  these five mathematicians overlapped: Veblen and Birkhoff coincided as gradu ates of E. H. Moore at Chicago, and then as colleagues at Princeton, as they  were the doctoral supervisors of Franklin and Whitney. 

Moore provided academic encouragement to Mac Lane; and Birkhoff, Whitney, and Mac Lane converged at Harvard in the late 1930s. 

These mathematicians all provided academic support to their upcoming colleagues, and the following chapters include notable collabora-tions between Birkhoff and D. C. Lewis on chromatic polynomials, and between Whitney and W. T. Tutte on the four color prob lem, as graph theory increasingly established itself on the mathematical scene. 

Chapter 5

The 1940s and 1950s

Although many mathematicians in North Amer i ca and Eu rope served their countries by contributing to the war effort, research activity continued, and among the American scholars who contributed to graph theory in the 1940s  were George Birkhoff, Daniel C. Lewis, Arthur Bernhart, Isidore Kagno, Richard Otter, and Claude Shannon. In this chapter, we outline their achievements, and also describe the notable contributions of Bill Tutte, an En glishman who settled in Canada in 1948, and of Frank Harary, a major figure in the development of graph theory from the 1950s onward. We also survey the graph algorithms that  were being developed during and  after the war as the computer age began. 

WORLD WAR  II

The Second World War began with Nazi Germany’s attack on Poland in September 1939 and the fall of France to Germany in June 1940. 

With  great public support, President Roo se velt placed the substantial resources of the United States  behind the British, but isolation-ism was a major po liti cal force in Amer i ca at the time. The entry of the United States into World War II seemed far from inevitable, but on December 7, 1941, Japan launched a devastating surprise attack against the US naval and air installations at Pearl Harbor in Hawaii. The United States declared war on Japan and, within days, on Germany and Italy also. A once po liti cally divided nation had fi nally unified and entered this global conflict. Meanwhile, Canada had entered the conflict in stages, declaring war on Germany in 1939, then on Italy in 1940, and fi nally on Japan in 1941. 

As in World War I, most patriotic citizens willingly contributed their skills to winning this war, with several hundred American mathematicians among them. Some became uniformed combatants as enlisted 
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and civilian staff in such units as the army, the navy, and the navy’s Bureau of Aeronautics and Bureau of Ordnance.  Others went into industry to work on war- related proj ects or remained in their academic posts while providing much needed training programs. A number 

were recruited into cryptanalysis, and also into the Manhattan Proj ect, which had been set up to produce nuclear weapons  under the direction of the physicist Robert Oppenheimer at New Mexico’s Los Alamos National Laboratory. 

Prior to World War II, applied mathe matics had not featured highly in the mathe matics departments of North American universities and colleges, its development being left mainly to engineers and physicists; this state of affairs had arisen back in 1917 and continued. But the time had come for all  those involved in the war effort to tackle what ever duties  were assigned to them. Most of  these tasks lay within the realm of applied mathe matics, with a number of graph theorists rising to the challenge. 

Foremost among  these was W. T. Tutte. In 1941, he joined the now famous British Government Code and Cypher School at Bletchley Park, and played a major role in decrypting communications enciphered by the Lorenz cipher, as we  shall see. For this achievement, he was inducted as an Officer of the Order of Canada in 2001, for “one of the greatest intellectual feats of World War II”. 

W. T. (Bill) Tutte (1917–2002). 
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As we saw in Chapter 4, the American mathematician who contrib-

uted most to the war effort was Oswald Veblen, who returned to the Ballistics Research Laboratory at Mary land’s Aberdeen Proving Ground where he had been assigned during World War I. Veblen took responsibility for recruiting mathematicians, but was sometimes confronted by universities or colleges that  were reluctant to release faculty members for the war effort. In such cases, he regularly arranged for foreign-born substitutes who could not work for the American military; one such substitute was Gerhard Karl Kalisch, Veblen’s assistant at Princeton’s Institute for Advanced Study. In this way, the influx of talented mathematicians from abroad helped to maintain the nation’s continuing need for education in mathe matics, while also helping to provide the military with mathematicians whose specialized abilities  were needed for war work. 

In 1942, an Applied Mathe matics Panel was formed as a division of the National Defense Research Committee. Headquartered in Manhattan, it was responsible for a variety of research proj ects, most notably at Prince ton and Columbia universities. At the latter institution, the Applied Mathe matics Group was directed first by E. J. Moulton and then by Saunders Mac Lane, whose work involved applying differential equations to a par tic u lar prob lem known as the “fire control prob lem” for air- to- air  rockets. 

The relentless bombing of London (known as the “Blitzkrieg”) began in 1940 and had spread to other cities in Britain. Waves of German planes had met with almost no re sis tance,  because of the British gunners’ in-ability to aim their anti- aircraft weapons at rapidly moving targets. In 1942, Mac Lane recruited Hassler Whitney to join his Applied Mathematics Group to work on this fire control prob lem. Specifically, Whitney’s task was to design a gunsight that could accurately aim a gun at another plane, by making calculations that  were based on such data as the range to the target, its angular velocity, and the flight time of the projectile, while the gunner kept the image of the  enemy plane within a target circle on a screen. Whitney quickly worked out the relevant differential equations and suggested improvements. In a test of his ideas on two par tic u lar flight simulators, one simulator employed the usual aiming method and shot down only two  enemy planes, while Whitney’s simulator successfully hit them all. 

Like all wars, World War II was a period of enormous innovation. 

Many of the inventions that  were developed during the war, such as the atomic bomb, jet engines, and radar, have dramatically changed our lives forever.  Others  were far less momentous, but still remain with us 
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today. For example, when the United States joined the war, a plant in Newark, New Jersey, began the production of M&M’s candies, to be sold exclusively to the military as a con ve nient way to provide troops with choco late. 

There  were also tremendous innovations in mathe matics as a result of the war. The field of cryptography underwent enormous development through the advent of electronic computing and the decryption work at Bletchley Park. George Birkhoff had recognized the potential of calculating devices as aids to mathe matics and— with funds from a bequest to Harvard University and considerable assistance from IBM—he financed the installation in 1944 of a computer, the Harvard Mark I, that had been designed by the physicist and computer pioneer Howard 

Aiken. Its success led the US Navy to order three more machines, with improved specification for use in naval laboratories. 

GRAPH THEORISTS  OF THE  1940s

In this section, we meet five American mathematicians who contributed to the development of graph theory during the 1940s. It was in this de cade that the areas of interest began to diverge more widely, from the chromatic polynomials and map coloring of  earlier years to automorphism groups, trees, and the coloring of wires in an electrical network. 

Daniel C. Lewis

In the early 1940s, George Birkhoff collaborated with D. C. Lewis in an attempt to systematize the previous work on map coloring and to offer further results. Their alliance resulted in a lengthy paper, “Chromatic polynomials”,1 which Lewis presented to the American Mathematical Society on August 23, 1946, two years  after Birkhoff’s death. 

Daniel Clark Lewis was born in New Jersey in 1904 and graduated from Haverford College near Philadelphia. He then transferred to Harvard University, where he obtained his doctoral degree in 1932 for a thesis on differential equations  under Birkhoff’s supervision. In 1934–35 

he attended Prince ton’s recently founded Institute for Advanced Study. 

Following the award of a National Research Council Fellowship, he held teaching posts at Cornell University and the University of New Hampshire. From 1943 to 1945, he worked at Columbia University in its war research establishment,  after which he was appointed professor 
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of applied mathe matics at Johns Hopkins University, retiring in 1971. His main research interests continued to be in differential equations, where he discovered and developed the theory of “autosynartetic” solutions, and generalized the results of Henri Poincaré on periodic solutions of ordinary differential equations. 

While working together in 1942, Birkhoff and Lewis received a letter from Clarence Reynolds, claiming a solution of the four color prob lem that used some of their joint work.2 Lewis, concerned, wrote to Birkhoff:

If Reynolds  really has solved the prob lem (I remain sceptical  until I have chance to see what he has actually done),  don’t you think it would be a good thing for us to publish immediately the part of our work on which he based his solutions? 

But Reynolds’s “proof” was unconvincing, and Lewis told him that if his work  were to be published, then he and Birkhoff wished to take no credit for results on which it was based. Reynolds apologetically replied to Birkhoff:

Referring to my two communications concerning the four color prob lem which have been sent to you this summer, you  will please carefully place the second one in your waste basket. Yes, I have burned my fin gers! . . . 

I do sincerely apologise for sending you my last letter. 

With a very red face, Clarence N. Reynolds. 

One can empathize with him for having to swallow his pride before such a world- renowned mathematician. 

In 1942, George Birkhoff and his wife visited Mexico and South 

Amer i ca as goodwill ambassadors, cooperating in the efforts of Nelson Rocke fel ler, coordinator of Inter- American Affairs, to promote solidar-ity against Hitler. In August, in a letter to Birkhoff about their joint paper, Lewis (who was responsible for its writing and production) commented that he had “so far written some 90 pages”, predicting that the final paper would be “about 75 printed pages”; it eventually came to 97 

pages. Relying on Birkhoff only for minor suggestions and comments, Lewis eagerly awaited Birkhoff’s return to the United States so that the draft paper could be reviewed. But although the manuscript was essentially complete by mid-1943, it was not  until November of 1945 that the American Mathematical Society fi nally received it. 
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G. D. Birkhoff and D. C. Lewis:  Chromatic polynomials (1946) Birkhoff and Lewis’s paper opened with a lengthy introduction, relating it to  earlier writings on the subject, and succinctly set the scene by separating the two “quite diff er ent types of investigation”, the quantitative and the qualitative. 

The paper had six chapters. Chapter I, on “First princi ples”, was essentially quantitative. It reviewed the basic properties of chromatic polynomials, focusing in par tic u lar on reduction formulas for the chromatic polynomial of a given map in terms of  those of simpler maps. The main result of this chapter was:

Let  T be an  m- gon in a map  Pn of  n regions. Let ∏  n −    k(λ) denote the sum of the chromatic polynomials associated 

with the submaps obtained by erasing just  k bound aries of T. Then

 Pn(λ) = (1/ m) ∑ k ( k λ −  m) ∏  n −  k(λ), where the summation extends from  k = 1 to ⎣ m/ 2⎦. 

The opening of Birkhoff and Lewis’s paper on chromatic polynomials. 
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Chapter II then included a systematic list of the chromatic polynomials of all 111 cubic maps with 6 to 17 regions. 

The next two chapters presented inequalities for the coefficients, with results that  were related to the  earlier contributions of Birkhoff and Whitney (see Chapters 2 and 4). Also featured  here was a conjecture whose proof would imply the four color theorem. Noting 

that for a cubic map with  n − 3  regions,  λ(λ − 1)(λ − 2) must divide the chromatic polynomial  P(λ), the authors proposed that (λ − 3) n <<  P(λ) / (λ(λ − 1)(λ − 2)) << (λ − 2) n, for λ ≥ 4, where  f (λ) <<  g(λ) when the coefficients of the polynomial  f are non-negative and do not exceed the corresponding coefficients of the polynomial  g. Using their data from Chapter II, they verified the truth of their conjecture when  n ≤ 8, and also whenever λ ≥ 5.  Expressing the hope that it may “eventually turn out to be easier to establish”, they continued:

It is also hoped that the theory of the chromatic polynomials may be developed to the point where advanced analytic function theory may be profitably applied. 

The final two chapters of their paper recalled Birkhoff’s  earlier use of Kempe- chain arguments to investigate the reducibility of configurations surrounded by rings with 4, 5, and 6 regions (see 

Chapter 2), and showed how to obtain the same results in a diff erent way, asserting that:3

Undoubtedly numerous other similar configurations can be proved to be reducible by the same methods, which are characteristic of the quantitative point of view . . .  Thus the pre sent work can to some extent be regarded as an attempt to bridge the gap between two 

previously separated points of view. 

For years afterward, the Birkhoff– Lewis paper would be an authori-tative resource for the study of chromatic polynomials, with many  later authors citing it in their writings. However, it was not easy to read, as W. T. Tutte would  later recall:4

They do give a partial theory of  these equations in their paper, but I confess that I was never able to read right through it and understand it clearly. 
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Arthur Bernhart

Arthur Frederick Bernhart was born in 1908.  After studying at Olivet College in central Michigan, he transferred to the University of Michigan in Ann Arbor, where in 1934 he was awarded his doctoral degree in mathematical physics and quantum theory for a thesis on the mechanics of a top. He published papers on geometry and was an early authority on curves of pursuit. In 1943, he joined the mathe matics faculty of the University of Oklahoma, where he remained  until his retirement. 

Captivated by map coloring prob lems, and inspired by Birkhoff and Franklin’s detailed studies of reducible configurations, he wrote the significant paper “Six- rings in minimal five- color maps”.5  Here he confirmed Birkhoff’s results on rings with four or five regions, before continuing Birkhoff’s investigations into configurations surrounded by a ring with six regions. His detailed and exhaustive analy sis showed that these configurations  were of six types, which he called “solutions”; the first three of  these consisted of rings with six regions that, respectively, surround a single hexagon, two pentagons sharing a common edge, and three pentagons sharing a common vertex. 
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Three of Bernhart’s “solutions” for rings with six regions. 

In a second paper on reducibility, “Another reducible edge configuration”,6 Arthur Bernhart used a Kempe- chain argument to prove the reducibility, in a cubic map, of the configuration that consists of an edge common to two hexagons which border two pentagons. 

On rare occasions, the map coloring disease has been hereditary.  After attending the Universities of Oklahoma and Michigan, Arthur Bernhart’s son, Frank, was awarded a doctoral degree from Kansas State University in 1974 for a thesis on map coloring. He then undertook postdoctoral work at the University of Waterloo in Ontario, before moving to teaching positions at a number of other colleges and universities. During this time, he discovered several significant results on graph coloring, and proved, for example, that a graph is 5- colorable if it becomes planar whenever any edge is removed.7 He also gained an enviable reputation for his remarkable ability to uncover flaws in attempts on the four color 
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prob lem, with one of his papers pointing out errors that had already appeared in two published “solutions” of the prob lem.8

By the  middle of the 20th  century, good pro gress had been made on solving the four color prob lem. But although  those who followed in the footsteps of Birkhoff, Franklin, Errera, Reynolds, and Winn discovered many hundreds of reducible configurations, relatively  little pro gress had been made on the construction of unavoidable sets. Indeed, apart from Kempe, Wernicke, and Franklin, only one further investigator seems to have contributed to this area by presenting several new unavoidable sets in 1940; this was Henri Lebesgue, best known for his theory of integra-tion (the “Lebesgue integral”) in the last paper that he ever wrote.9   There was then a lull in activity, as significant new contributions to solving the four color prob lem  were not to appear  until the 1960s, leading to its eventual solution in 1976. 

Isidore N. Kagno

Isidore Noah Kagno was born in 1908 and graduated in mathe matics from Columbia University in 1930, receiving his master’s degree in the following year for an essay “On the isomorphism between an algebra of symbols and the algebra of points on a line”. He was awarded his doctoral degree from Columbia in 1939 for a thesis on topology,  Perfect Subdivisions of Surfaces, which was also published.10  Earlier, he had written a number of other papers on topological graph theory.11  These included 

“The mapping of graphs on surfaces”, in which he constructed graphs that cannot be embedded on the torus, the projective plane, and other surfaces; “The triangulation of surfaces and the Heawood color formula”, where he investigated the Heawood conjecture; and the note (mentioned 

in Chapter 3) in which he showed that Tietze’s formula for coloring maps on the non- orientable surface  Nq holds when  q is 3, 4, and 6. 

Much of the aesthetic appeal of graph theory derives from attractive drawings of graphs with many symmetries, such as the Petersen graph (see Interlude A). The symmetries of a graph can be specified by its  automorphism group, which consists of  those mappings from the graph to itself that preserve the adjacency of vertices. For example, the complete graph   Kn has  n! automorphisms, corresponding to the  n! permutations of the set of vertices, while the Petersen graph with ten vertices has 5! = 120 automorphisms. We met groups of graphs briefly in the work of H. Roy Brahana (see Chapter 3), and in 1938 the German– Chilean mathematician Roberto Frucht proved that  every abstract group is the automorphism group of some graph— indeed, of some cubic graph.12 For 
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this, he invoked the concept of a “Cayley color graph”, which Arthur Cayley had introduced in 1878.13

In the 1940s, Kagno’s interests turned to automorphism groups, and in 1946 he wrote his best- known paper, “Linear graphs of degree  ≤  6 and their groups”,14 in which he determined the automorphism groups of all twenty- two connected  simple graphs with up to six vertices (but with none of degree 1 or 2). He followed this with the paper “Desargues’ and Pappus’ graphs and their groups”,15 in which he cited some work on “Toroidal and non- toroidal graphs” by  Sister Mary Petronia Van Straten,16 

who had written the doctoral thesis  The Topology of the Configuration of Desargues and Pappus for Notre Dame University in Indiana,  under the supervision of Karl Menger. Born in Wisconsin, she  later taught at Mount Mary College in Milwaukee, and became president of the Wisconsin Mathe matics Council. In  great demand for her lectures on mathematics and its teaching, she was awarded the Outstanding Educator of Amer i ca Award and appeared in  Who’s Who of American  Women. 

Sister Mary Petronia Van Straten 

(1913–87). 

Richard Otter

In Chapter 1, we saw how Arthur Cayley had investigated trees and their connections with certain chemical molecules. In the first of his papers, in 1857, his interest was in counting rooted trees with a given number of vertices or edges.17 By removing the root, and examining the rooted trees that result from  doing so, he showed that, if  rn is the number of rooted trees with  n vertices, then their generating function r ( x) =  r 1   x +  r 2   x 2 +  r 3   x 3 +  r 4   x 4 +  r 5   x 5 + · · ·  =   x +  x 2 + 2   x 3 + 4   x 4 + 9  x 5 + · · ·
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satisfies the recurrence relation

 r( x) =  x × (1 −  x)− r 1 × (1 −  x 2)− r 2 × (1 −  x 3)− r 3 × .... 

By expanding each of  these binomial expressions as far as necessary, he was then able to calculate the numbers  rn, one at a time. 

Counting unrooted trees is more difficult, but Cayley was able to obtain information about their number by building up each tree from its central vertex or vertices.18 If  tn is the number of unrooted trees with  n vertices, then their generating function is

 t( x) =  t 1  x +  t 2  x 2 +  t 3  x 3 +  t 4  x 4 +  t 5  x 5 + · · · =  x +  x 2 +  x 3 + 2  x 4 + 3  x 5 + · · · . 

But is  there any connection between  these two generating functions,  r ( x) and  t( x)? 

This question was answered by Richard Robert Otter.  After graduating from Dartmouth College in 1941, he transferred to Indiana University in Bloomington where he completed a doctoral degree in organic chemistry in 1946. His interests then changed to mathe matics, and he spent a short time at Prince ton University. In 1948, he was appointed to the mathe matics faculty at Notre Dame University, where he taught until his retirement in 1985. 

While still at Prince ton, Richard Otter wrote a paper, “The number of trees”, in which he explored the properties of generating functions in general before turning to the enumeration of trees in par tic u lar.19 Dismissing the approach of George Pólya (see Chapter 3) as “superfluous for the treatment of trees and rooted trees alone”, he observed: in this paper purely combinatorial methods are employed for the development of relations between the generating functions.  These methods enable one to study some general prob lems concerning the number of trees and of rooted trees and to find recursion formulas for counting  these objects. 

Furthermore, the method used  here for the counting of trees is new and inter est ing and considerably simpler than the methods used in the past. 

Otter’s main result was the following remarkable connection between the generating functions  r ( x) and  t( x): t( x) =  r( x) − 12( r 2( x) −  r( x 2)). 

Now known as  Otter’s formula, this result gives us the simplest way of calculating the tree- counting numbers  tn. 
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Otter’s paper contains a footnote in which he “wishes to express his gratitude to Professor E. Artin for the suggestion of this prob lem and for his encouraging help  towards its solution”. Emil Artin was a celebrated algebraic number theorist. An academic refugee from Hamburg, he had arrived in the United States in 1937 and taught for a year at Notre Dame University, before moving to Indiana University in Bloomington for eight years. In 1946, he took up a position at Prince ton University, where he stayed  until 1958 before returning to Germany. Coincidentally these  were the same institutions as  those attended by Otter, but it is not recorded when and where they collaborated on the counting of trees. 

Claude E. Shannon

In Interludes A and B, we featured two results on coloring the edges of maps and graphs, with adjacent edges ( those that share a common vertex) always colored differently. The first of  these was Tait’s observation from 1880 that the four color conjecture is true if and only if the edges of every cubic planar graph can be colored with just three colors. The second was König’s result from 1916 that the edges of any bipartite graph with maximum vertex degree Δ can be colored with Δ colors. More than thirty years  were then to elapse before the next substantial result on edge- colorings was presented, by one of the most impor tant scientific figures of the 20th  century, as we now see. 

Claude Elwood Shannon graduated from the University of Michigan in 1936, with bachelor’s degrees in electrical engineering and mathe matics. 

He then moved to MIT where, at the age of 21, he effectively founded Claude E. Shannon (1916–2001). 
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digital cir cuit theory by showing how all prob lems of Boolean logic can be solved by electrical cir cuits, using open and closed switches for the symbols 0 (true) and 1 (false). He next worked with the computer pioneer Vannevar Bush on the construction of a differential analyzer, and at Bush’s suggestion transferred to the Cold Spring Harbor Laboratory in New York to write his doctoral thesis on a mathematical foundation for Mendelian ge ne tics. In 1941,  after a year as a National Research Fellow at Prince ton’s Institute for Advanced Study, he transferred to Bell Telephone Laboratories for war work on codebreaking and the mathematical theory of cryptography. This quickly led to fundamental work on telecommunications and, in 1948, to a seminal paper on “A mathematical theory of communication”, which earned him the description of 

“the  father of information theory”. 

In 1949, Claude Shannon wrote a paper on the color coding of wires in electrical units such as relay panels, which began:20

In  these units  there are a number of relays, switches, and other devices A,  B, . . .  ,  E to be interconnected. The connecting wires are first formed into a cable . . .  and it is necessary, in order to distinguish the dif fer ent wires, that all  those coming out the cable at the same point be differently colored. 

Assuming that at most  m wires can emerge at any one point, Shannon proved that  3

⎢⎣ 2 m⎥⎦ colors are sufficient to color all the wires, and gave examples where this many colors are needed. Expressed in the language of graphs, his result asserts that the edges of any graph with multiple edges and maximum vertex- degree Δ can be colored with  3

⎢⎣ 2Δ⎥⎦ col-

ors, with adjacent edges colored differently. Shannon’s result on edge-colorings was not improved on  until the mid-1960s, when discoveries by the Rus sian mathematician Vadim G. Vizing completely transformed the subject.21

Two multigraphs for which Shannon’s  

bound is achieved. 
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W. T. TUTTE

Bill Tutte is remembered for his very considerable contributions at Bletchley Park to the Allies’ victory in World War II, and also for his groundbreaking work in graph theory and related topics. For a firsthand account of his fascination for the latter, see his autobiographical  Graph Theory as I Have Known It.22 Further information about his life and work can also be found in the biographies by his Waterloo friend and colleague Dan Younger and by Arthur Hobbs and James Oxley,23 and in the  two- volume   Selected Papers of W. T. Tutte.24

William Thomas Tutte was born in Newmarket, near Cambridge, and enjoyed a successful high school  career. While at school he developed an interest in mathematical puzzles, as he  later recalled:25

I was chiefly interested in the scientific subjects, including mathe matics. One stimulus that seems to me supremely impor tant came from outside the regular curriculum. In the school library I came upon a copy of Rouse Ball’s Mathematical Recreations and Essays [Ball 1892].  There I found much information about graph theory and more general combinatorics. I read the basic theory of the Four Colour Prob lem and a discussion, without proofs, of Petersen’s work on cubic graphs. This was my first encounter with the subject in which I was  later to specialize. 

In 1935, Bill Tutte entered Trinity College, Cambridge, to read natural sciences, and although his undergraduate studies  were in chemistry,26

I did have an interest in mathematical prob lems, strong enough to make me join the Trinity Mathematical Society. I often talked about such prob lems with three other members of the Society, students of Mathe matics. They  were Leonard Brooks, Cedric Smith and Arthur Stone. Each was destined to make his mark in Graph Theory. 

The four of them became the closest of friends, and Tutte found that:27

As time went on, I yielded more and more to the seductions of Mathe matics. 

In 1938, Tutte graduated with a first- class honors degree in chemistry and began postgraduate study in physical chemistry in Cambridge University’s Cavendish Laboratory, working on spectroscopy and writing short notes for  Nature.28 But increasingly he came to realize that he would never make any headway as an experimental scientist and that his  future should lie in mathe matics. So, at the end of 1940, his tutor, Patrick Duff, arranged for Trinity College to transfer him 
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from science to mathe matics. But by then, World War II had already lasted for over a year, and Duff, recognizing Tutte’s brilliance, arranged for him to be interviewed by the highly secret organ ization at Bletchley Park. 

Bletchley Park  housed the war time headquarters of the British Government Code and Cypher School (now called GCHQ ), where German airborne communications and  those of the Italians and Japa nese  were monitored by Alan Turing and his associates. Bill Tutte joined the unit as a codebreaker in January 1941 and remained  there for the duration of the war. In that year, the Germans began to replace their  earlier Enigma cipher machines by a state- of- the- art Lorenz machine (code-named “Tunny” by the British codebreakers) for sending intelligence messages from the German army’s high command. With messages coming directly from Hitler, Rommel, and  others, the greatest degree of se-crecy was essential. The Tunny machine was necessarily highly complex, but in just a few months, the 24- year- old Tutte succeeded in unraveling its internal workings—an astonishing feat of cryptanalysis that is sometimes believed to have shortened the war by two years or more. 

After the war was over, Tutte returned to academic life in Cambridge. 

Elected to a research fellowship in mathe matics at Trinity College, he submitted no fewer than six articles for publication in his first year, on Hamiltonian graphs, factorization, the dichromate (or “Tutte polynomial”), and other topics. At the same time, he began to work on his doctorate, eventually producing a remarkable 417- page dissertation on  An W. T.  Tutte at Bletchley Park and at the University of  Waterloo. 
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 Algebraic Theory of Graphs that appeared in 1948 and combined a wide range of ideas from algebra and combinatorics:29

My thesis attempted to reduce Graph Theory to Linear Algebra. It showed that many graph theoretical results could be generalized as algebraic theorems about structures I called ‘chain groups’. Essentially, I was discussing a theory of matrices in which elementary operations could be applied to rows but not columns. 

His results represented the first major advances on matroids since their introduction in 1935 by Hassler Whitney (see Chapter 4) and are discussed in a survey of Tutte’s contributions to matroid theory.30 Over the coming years, the innovations in his thesis would give rise to a number of significant publications that put him at the forefront of this subject. 

After receiving his doctoral degree from Cambridge University, Bill Tutte was invited by the well- known geometer H.S.M. (Donald) Coxeter to cross the Atlantic Ocean and join the University of Toronto in Canada, first as a lecturer and  later as an associate professor. During his fourteen years in Toronto, Tutte became increasingly well known in mathematical circles for his wide- ranging achievements in combinatorics. 

In 1958, Tutte was elected a Fellow of the Royal Society of Canada, and four years  later he was invited by Ralph G. Stanton to join the mathe matics faculty of the University of Waterloo in Ontario. Established in 1959, the university had been gradually enhancing its identity and standing within the academic world, and in 1967, it created what would become its highly regarded Department of Combinatorics and Optimization.  Under the direction of Bill Tutte, its reputation soon attracted combinatorialists from all around the world. Meanwhile, in 1966, the  Journal of Combinatorial Theory had been launched, with Tutte as its editor in chief. He retired in 1985. 

A prolific writer of papers and books, even though his writing style made some of his publications difficult to understand, Bill Tutte published on a wide range of topics. We now look at a se lection of  these. 

Squaring the Square

Once upon a time  there  were four undergraduates of Trinity College, Cambridge, and they took as their hobby the study of perfect rectangles. By a perfect rectangle they meant a rectangle that is dissected into unequal squares . . . 

They hoped to find a perfect square, a perfect rectangle that was itself a square. 

A conjecture was  going around that such a figure was impossible. 
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So recalled Bill Tutte31— and, as we mentioned  earlier, the four undergraduates  were Leonard Brooks, Cedric Smith, Arthur Stone, and Tutte himself. Stone had learned about the “squaring the square” prob lem from his tutor, who in turn had heard of it at a lecture in Cambridge given by Paul Erdős. The four friends  were determined to  settle it.32

In this prob lem, all squares are required to have integer- length sides. 

The prob lem was first solved for rectangles in 1925 by a Polish student named Zbigniew Moroń,33 who divided a 33 × 32 rectangle into nine unequal squares— but no one seemed able to solve it for squares. While struggling with the intricacies of the prob lem, the “Gang of Four” (as they sometimes named themselves) soon discovered an unexpected connection between squared rectangles and electrical networks, with the horizontal levels of the vari ous squares as vertices that  were joined by downward arcs labeled with the sizes of the squares. 

These networks (or “Smith diagrams”) satisfy Kirchhoff’s current laws, in that the sum of the numbers into any vertex (other than the top and bottom ones) is equal to the sum of the numbers out of it, and the sum of the numbers around each cycle is 0. Working with the networks proved to be simpler than searching for the squares directly, and the Gang of Four eventually managed to discover solutions, such as a dissection of a 61 × 69 rectangle into nine unequal squares.  After much further effort, they came across what they believed to be the first squared square, with 26 unequal squares and side- length 608, but unfortunately for them, they  were beaten by Roland Sprague of Berlin,34 who had just The Gang of Four’s 61 × 69 squared rectangle and its associated network. 
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found one with 55 unequal squares and side- length 4205. It is now known that the smallest pos si ble number of squares is 21, and an example with this number was found in 1978 by the Dutch computer scientist Arie Duijvestijn.35

The Gang of Four remained close friends for the rest of their lives. In 1941, Leonard Brooks proved “Brooks’s theorem”,36 an impor tant result on coloring the vertices of a graph. Cedric Smith, a statistician and ge-ne ticist, became the Weldon Professor of Biometry at University College, London. Arthur Stone obtained a doctoral degree at Prince ton University before returning to  England to teach at Trinity College, Cambridge, and Manchester University; a distinguished topologist, he migrated to the United States in 1961, where he taught at the University of Rochester in New York. Meanwhile, Bill Tutte continued to write on squaring the square and related puzzles for many years to come, including an article in 1950 that delved more deeply into the methods that underlie their construction.37

Hamiltonian Graphs

In Interlude A, we presented P. G. Tait’s claim of 1884 that  every cubic polyhedron has a Hamiltonian cycle, a conjecture whose truth would have led to a  simple proof of the four color theorem. For over sixty years the issue remained unresolved, but while still at Bletchley Park, Bill Tutte constructed the following counter- example with 25 regions, 46 vertices, and 69 edges. It was published in 1946.38
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Tutte’s example of a cubic polyhedron  

with no Hamiltonian cycle. 

A cubic polyhedron can be thought of as a 3- connected planar graph, and Tutte proved that if such a graph has any Hamiltonian cycles, then there must be at least three of them. In a  later paper, building on ideas of Hassler Whitney, he proved further that if a planar graph is 4- connected, then it must always have Hamiltonian cycles.39

Factorization

In Interlude A, we defined a 1 - factor (or  perfect matching) in a graph  G 

to be a collection of non- adjacent edges meeting  every vertex of  G, and we presented Julius Petersen’s sufficient condition for a cubic graph to have a 1- factor. We further defined an  r- factor in  G to be a regular subgraph of degree  r that includes  every vertex of  G. In Interlude B, we presented Dénes König’s result that  every regular bipartite graph has a 1- factor. 

In 1947, while working on his doctoral thesis, Bill Tutte significantly advanced the subject by presenting the following condition for a connected graph to have a 1- factor:40

A connected graph  G has a 1- factor if and only if, for each proper subset  S of vertices, the number of odd components of  G −   S is at most | S |. 

Here, an “odd component” is a connected component with an odd number of vertices, and  G −  S is the graph obtained from  G by removing the vertices in  S and their incident edges. 
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Unfortunately, Tutte’s proof was somewhat clumsy, involving Pfaffian determinants, but soon  after, Tibor Gallai and F. G. Maunsell presented simpler proofs that avoided them.41 In 1952, Tutte returned to the topic and found a condition for a given graph to have an  r- factor for any number  r.42 He realized that  matters had become very complicated, and in a follow-up paper, he proved the surprising fact that the result for  r- factors, rather than generalizing his result for 1- factors, could also be deduced from it.43 To do so, he constructed a new graph  G′ from the original graph G, and proved that  G has an  r- factor if and only if  G′ has a 1- factor. The subject of factorization had been transformed in just five years. 

Matroids

In Chapter 4, we saw how Hassler Whitney had introduced the concept of a matroid. This generalized ideas from both linear algebra and graph theory, with the properties of in de pen dence and bases arising from the former, and  those of cycles arising from the latter. Although Whitney’s 1935 paper had caused some  limited interest,  there was then  little activity for over twenty years. 

The situation changed dramatically in the late 1950s, with a succession of remarkable papers in which Bill Tutte built on results from his doctoral thesis.44  These relaunched the subject and stimulated a flurry of activity, especially  after links  were discovered between matroids and matchings. Matroid theory is now part of mainstream combinatorial  mathe matics. 

Whitney had concluded his paper with a section on matroids that arise from linear algebra. We say that a matroid  M is  representable over a field if it can arise from a set of vectors in some vector space over that field. If  M is representable over  every field, then it is called a  regular matroid, and if it is representable over the field of two ele ments (0, 1) (modulo 2), it is a  binary matroid. It can be proved that the dual matroid of a regular matroid is regular and of a binary matroid is binary. 

Of par tic u lar importance is the  Fano matroid on the set  E  =  (1,  2, 3, . . .  , 7), whose bases are all  triples of numbers in  E, except for the  triples (1, 2, 4), (1, 3, 5), (1, 6, 7), (2, 3, 6), (2, 5, 7), (3, 4, 7), (4, 5, 6). 

These  triples correspond to the lines of the finite projective plane of order 2, named the  Fano plane  after the Italian geometer, Gino Fano, who introduced it in 1892.45 Whitney showed that this matroid is not representable over the field of real numbers, but that it is representable 
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over the field of two ele ments (0, 1). It is therefore a binary matroid that is not regular. 
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The Fano plane. 

Before proceeding, we recall Kuratowski’s theorem (from Interlude B) that a graph is planar if and only if it has no subgraph that is homeomorphic to the complete graph  K 5 or the complete bipartite graph  K 3, 3. 

An alternative version was obtained by K. Wagner, and  later by Frank Harary and Bill Tutte, based on the operations of deleting and contracting the edges of a graph.46 If  e =  vw is an edge of a graph  G, we can obtain two more graphs from  G:

 deletion:  G −  e is the graph we obtain by deleting  e from  G, but not the vertices  v and  w; 

 contraction:  G/ e is the graph we obtain by contracting  e—  that is, deleting  e, and identifying  v and  w, so that all edges that  were formerly incident to  either are incident to the new vertex. 

 e

delete  e

 v

 w

 v

 w

 e

contract  e

 vw

 v

 w

Deleting and contracting the edge  e. 

The alternative version of Kuratowski’s theorem is then as follows: Kuratowski’s theorem: A connected graph is planar if and only if it cannot be reduced to  K 5 or  K 3, 3 by a succession of edge deletions and contractions. 
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There are corresponding operations for matroids, and a  minor of a matroid  M is any matroid that can be obtained from  M by a succession of such deletions and contractions. 

Bill Tutte’s  great achievement was to find Kuratowski- like characterizations of the matroids that arise from graphs, as we now see. 

W. T. Tutte:  Matroids and graphs (1959)

We recall from Chapter 4 that two matroids are naturally associated with a connected graph  G: its cycle matroid  M( G ), whose cir cuits are the cycles of  G, and its cutset matroid  M*( G ), whose cir cuits are the (minimal) cutsets of  G.  These matroids are duals of each other. 

We say that a matroid is  graphic if it is the cycle matroid of some graph, and  cographic if it is the cutset matroid of some graph. A matroid that is both graphic and cographic is a  planar matroid: these are the graphic matroids that arise from planar graphs. It can be shown that the cycle and cutset matroids of the two Kuratowski graphs  K 5 and  K 3, 3 are neither graphic nor cographic. 

We have seen that a binary matroid is one that is representable over the field of two ele ments (0, 1) (modulo 2). If  G is a graph, then its cycle matroid  M( G ) is a binary matroid. To see this, we associate with each edge of  G the corresponding row of its incidence matrix, regarded as a vector with components 0 and 1. Then, if a set of edges forms a cycle in  G, the sum (modulo 2) of the corresponding vectors is 0. It follows that we may have to restrict our attention to binary matroids when attempting to extend properties of graphs to matroids. 

When is a given matroid graphic? We have seen that it must be 

a binary matroid (in fact, it is regular), and also that it cannot contain as a minor the Fano matroid  F or its dual  F*, or  either of the dual matroids  M*( K 5) and  M*( K 3, 3). Tutte proved that  these necessary conditions are sufficient:

A matroid  M is graphic if and only if it is binary and has no minor that is isomorphic to  M*( K 5),  M*( K 3, 3),  F, or  F   *. 

Applying this result to the dual matroid  M*, and recalling that the dual of a binary matroid is binary, we deduce that:

A matroid  M is cographic if and only if it is binary and has no minor that is isomorphic to  M( K 5),  M( K 3, 3),  F, or  F*. 
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In an  earlier paper, Tutte had also proved the following very deep result:

A binary matroid is regular if and only if it has no minor that is isomorphic to the Fano matroid  F or its dual  F*. 

Combining  these results, we obtain Tutte’s matroid analog of Kuratowski’s theorem:

A matroid is planar if and only if it is regular and has no minor that is isomorphic to  M( K 5),  M( K 3, 3), or their duals. 

The Tutte  Polynomial

While examining the networks associated with the “squaring a square” 

prob lem, the four Trinity College students discovered that if  C( G ) is the number of spanning trees in a connected graph  G, then for any edge  e, C( G ) satisfies the recursion formula

 C( G ) =  C( G −  e) +  C( G/ e), where  G −  e and  G/ e are obtained by deletion and contraction, as explained   earlier. 

In a similar way, if  P( G, λ) is the chromatic polynomial of a connected graph  G, and if  e =  vw is an edge of  G, then, by counting the number of colorings in which the vertices  v and  w have the same, or diff er ent, colors, we have

 P( G, λ) =  P( G −  e, λ) −  P( G/ e, λ), or, if  Q( G, λ) =  a( G )  P( G, λ), where  a( G ) = 1 or −1, according to  whether the number of vertices of  G is even or odd, then

 Q( G, λ) =  Q( G −  e, λ) +  Q( G/ e, λ). 

This provides an unexpected link between squaring the square and chromatic polynomials, and also with another polynomial called the “flow polynomial”, which is a sort of dual of the chromatic polynomial. 

Tutte became very interested in recursion formulas of the form

 W( G ) =  W( G −  e) +  W( G/ e), 
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where  W is a graph pa ram e ter, and in his thesis and in a paper written in 1947,47 he investigated their properties. As he recalled  later:48

Playing with my  W functions I obtained a two variable polynomial from which either the chromatic polynomial or the flow polynomial could be obtained by setting one of the variables equal to zero, and adjusting signs. With minor simplifications this became a function  T( G;  x,  y) . . .  In my papers I called this function the dichromate, but it is now generally known as the Tutte polynomial. This may be unfair to Hassler Whitney who knew and used analogous coefficients without bother ing to affix them to two variables. 

These “analogous coefficients”  were Whitney’s numbers  mij, which recorded the number of subgraphs with rank  i and nullity  j (see Chapter 4). 

In his calculations of chromatic polynomials, Whitney had used an observation of R. M. Foster’s that the numbers  mij satisfy the recursion formula mij( G ) =  mij( G −  e) +  mi −   1,  j( G/ e), for any graph  G and edge  e. Recognizing this as a  W- function led Tutte to define the  Whitney rank- generating function of a graph  G with edge- set  E, as RG( x,  y) = ∑ A ⊆  E  x r ( E ) −  r ( A)  y | A| −  r ( A), where  r ( A) is the rank of  A.  Here, the coefficient of each term  x  i   y j counts the number of subgraphs with rank  i and  j edges. The  Tutte polynomial is then given by

 TG( x,  y) =  RG( x − 1,  y − 1) = ∑  A ⊆  E ( x − 1) r ( E ) −  r ( A)  (   y − 1)| A| −  r ( A). 

It can also be defined recursively by defining

 TG( x,  y) = 1, if  G has no edges, TG( x,  y) =  x TG −  e( x,  y), if  G −  e is disconnected, TG( x,  y) =  y TG/ e( x,  y), if  e is a loop, and successively using the recursion relation

 TG( x,  y) =  TG −  e( x,  y) +   TG/ e ( x,  y). 

The Tutte polynomial has the following properties for a connected graph  G:

 TG(1, 1) is the number of spanning trees in  G. 

 TG(1, 2) is the number of spanning subgraphs. 
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 TG(2, 1) is the number of forests (cycle- free subgraphs) in  G. 

 TG(2, 2) = 2 m, where  m is the number of edges of  G. 

The chromatic polynomial of  G is λ (−1) r ( E )  TG(1 − λ, 0). 

If  G is a planar graph, and  G* is a dual graph of  G, then  TG( x,  y) =  

 TG*(  y,  x). 

Because  every matroid can be defined in terms of a rank function, Tutte realized that matroids form the most natu ral setting for the above ideas, and showed how this could be done— noting, for example, that Every  matroid   M has a dual  M*, and  TM( x,  y) =  TM*(   y,  x), for all x and  y. 

Tutte polynomials have also found significant applications in areas as varied as knot theory, coding theory, and statistical mechanics. 

Chromatic Polynomials

We have seen how George Birkhoff and Hassler Whitney attempted 

to  settle the four color prob lem for planar graphs or maps by proving that   P(4) > 0,  where   P(λ) is the chromatic polynomial.  Because few planar graphs are 3- colorable, the values  P(1),  P(2), and  P(3) are usually 0, and in 1968, Bill Tutte sought to increase his understanding of chromatic polynomials by investigating other zeros that they may have. Concentrating mainly on large cubic planar graphs and triangulations, he amassed hundreds of chromatic polynomials, mainly from the doctoral thesis of Ruth A. Bari, written at Johns Hopkins University  under the supervision of Daniel  C. Lewis, and from the collection of Dick Wick Hall of the State University of New York at Binghamton. 

With the help of his Waterloo colleague, Gerald Berman, Tutte obtained all the zeros of  these polynomials from the university’s IBM 700 

computer. Analyzing this wealth of data,49 they then made some surprising discoveries that involved the golden ratio, 

τ = 12(1 + 5) = 1.618034 ..., where τ2 = τ + 1. 

In par tic u lar, they noted that, for large planar graphs, most chromatic polynomials seem to have zeros that lie very close to τ, and to the negative number τ − 2 = 12(−3 + 5) = − 0.381966 .... 
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Tutte then demonstrated50 that chromatic polynomials  P(λ) of large graphs also tend to have zeros that lie very close to the value λ = τ2 = τ + 1 = 12(3 + 5) = 2.618034 ..., 

by proving that  P(τ + 1) is extremely small—in fact, for a triangulation with  n vertices, 

0 < | P (τ + 1)| ≤ τ5 −  n. 

Moreover, for

λ = τ + 2 = τ 5 = 12(5 + 5) = 3.618034 ..., 

Tutte proved what he called his  golden identity:51

 P(τ + 2) = (τ + 2) τ3 n − 10  P  2(τ + 1). 

It follows that  P(λ) is positive when λ = 3.618034 . . .  , and also when λ = 4 

(assuming the four color theorem). One might won der  whether  P(λ) also remains positive between  these values, but this is not the case. 

In 1975, Sami Beraha wrote a doctoral thesis for Johns Hopkins University, observing that the zeros of chromatic polynomials of large planar graphs tend to congregate around the numbers

 Bn = 2 + 2 cos 2π/ n, for  n = 2, 3, . . .  , and  these numbers are now known as “Beraha numbers”. For small values of  n, they are

 n 

:  2  3 4   





5   



6    

7     



8      



9     

10  

 Bn  :    0    1    2    2.618  ...    3    3.247  ...     3.414  ...     3.532  ...     3.618  ... 

Tutte was interested in  these numbers, but it remains unknown as to why they seem to play such an impor tant role in the theory of chromatic polynomials. Meanwhile, his interest in graph colorings continued for many 

years, and in Chapter 6 we  shall see how he became involved with the four color theorem. 


* * * * *

Bill Tutte has rightly been acknowledged as the postwar leader of combinatorial thinking, becoming North Amer i ca’s natu ral successor to Oswald Veblen, George Birkhoff, and Hassler Whitney. In the Foreword 
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to Tutte’s  Selected Papers, Professor Ralph Stanton summed up his friend’s achievements as follows:52

I want to end this rather digressive foreword on a personal note, just to stress to readers the real significance of Bill Tutte’s work. Not too many people are privileged to practically create a subject, but  there have been several this  century.  Albert Einstein created Relativity . . .  Similarly, modern Statistics owes its existence to Sir Ronald Fisher’s exceptionally brilliant and creative work. And I think that Bill Tutte’s place in Graph theory is exactly like that of Einstein in relativity and that of Fisher in Statistics. He has been both a  great creative artist and a  great developer. 

ALGORITHMS

An  algorithm (named  after the 9th- century Persian mathematician, al-Khwārizmī) is a finite step- by- step pro cess for solving a mathematical prob lem. We can think of it as a  recipe, where we are given some input (ingredients), apply the algorithm (the steps of the  recipe), and produce the required output (a perfect dish). The earliest graph theory algorithms, dating from the late 19th  century, seem to be  those of M. Fleury for producing an Eulerian trail, and the maze- tracing algorithms of Gaston Tarry and C. P. Trémaux.53 Methods for tracing mazes  were also discussed in the books by André Sainte- Laguë and Dénes König, mentioned in Interlude B, but few other algorithms appeared in graph theory publications in the early 20th  century. 

The situation changed markedly in the 1940s and 1950s, when systematic solutions  were needed for a range of practical prob lems, arising first from World War II requirements and then as a consequence of the rapidly expanding computer industry. In this section, we outline the development of specific algorithms for investigating prob lems on matching, assignment, and transportation, finding flows in capacitated networks and minimum spanning trees, and solving path prob lems. 

Further information can be found in the excellent historical survey by Alexander Schrijver.54

Matching and Assignment

In Interlude B, we presented Philip Hall’s “marriage” theorem:

 Hall’s theorem: Suppose that each of a collection of boys is acquainted with a collection of girls. Then each boy can marry one of 
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his acquaintances if and only if, for each number  k,  every set of  k boys is collectively acquainted with at least  k girls. 

This is a theorem on  matchings, and can be illustrated by a bipartite graph in which one set of vertices corresponds to the boys and the other set corresponds to the girls, with edges joining the boys to the girls with whom they are acquainted. Similar graphs can be used in  assignment prob lems, where a number of candidates apply for vari ous jobs, and the bipartite graph has vertices for the applicants and the jobs, with edges joining the applicants to jobs for which they are qualified. The aim is to assign the greatest pos si ble number of applicants to suitable jobs. 

 a

1

 b

2

applicants

 c

jobs

3

 d

4

 e

A maximum matching in a bipartite graph. 

In such assignment prob lems,  there may be several ways of matching the applicants to suitable jobs, and we may wish to determine which one is the “best”.  Because each applicant may be better suited to some jobs than others, we associate a “cost” or “weight” with each edge of the bipartite graph— the smaller the cost, the greater is the applicant’s suitability for that job. The aim is then to find the assignment with the least total cost. 

In Interlude B, we also presented König’s minimax theorem on the largest size of a matching in a bipartite graph:55

 König’s theorem: In any bipartite graph, the maximum size of a matching is equal to the minimum number of vertices that collectively meet all the edges. 

This theorem can be used to find a maximum matching in any given bipartite graph, and it was then generalized to weighted bipartite graphs by Jenő Egerváry.56 Although Egerváry did not specifically mention an algorithm, his proof easily gives rise to one (though not an efficient one) for finding a maximum matching in a weighted bipartite graph. 
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Following the papers of König and Egerváry, assignment prob-

lems  were ignored for several years. But in 1955, Harold W. Kuhn of Bryn Mawr College (near Philadelphia), and  later of Prince ton University, reexamined their work.  After presenting the assignment problem, he added:57

It is shown that ideas latent in the work of two Hungarian mathematicians may be exploited to yield a new method of solving this prob lem. 

Using their ideas, Kuhn was able to develop an efficient algorithm for solving assignment prob lems, and named it the  Hungarian method, a name that remains to this day. Kuhn’s pioneering work was not expressed in the language of graph theory, but such a pre sen ta tion can be found in a historical account by András Frank.58 As Kuhn  later recalled:59

Using Egerváry’s reduction and König’s maximum matching algorithm, in the fall of 1953 I solved several 12 by 12 assignment prob lems (with 3 digit integers as data) by hand. Each of  these examples took  under two hours to solve and I was convinced that the combined algorithm was ‘good’. This must have been one of the last times when pencil and paper could beat the largest and fastest electronic computer in the world. 

Shortly  after developing the Hungarian method, Kuhn moved to 

Prince ton University.  There, he had a successful  career, developed many ideas that are named  after him, received a major award for his contributions to game theory, and enjoyed a long and fruitful association with the Nobel Prize winner John Nash. 

Transportation and Linear Programming

It is now known that the Hungarian algorithm had already been solved around 1836 by the German mathematician Carl Jacobi and published posthumously. The origins of the  transportation  prob lem and linear programming can similarly be traced back to Eu ro pe ans. In 1794, the French geometer Gaspard Monge investigated a prob lem of minimizing the cost of transporting quantities of earth from one area to another, and in the 1820s, Joseph Fourier was experimenting with the solution of linear inequalities. Both of  these topics resurfaced in Ameri ca in the 1940s. 

In 1941, the Harvard gradu ate and MIT mathematician Frank L. 

Hitchcock was analyzing the optimal distribution of vari ous commodities through a network at minimum cost, and discovered a method for solving the following general transportation prob lem:60
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When several factories supply a product to a number of cities we desire the least costly manner of distribution. Due to freight rates and other matters the cost of [sending] a ton of product to a par tic u lar city  will vary according to which factory supplies it, and  will also vary from city to city. 

This is similar to the assignment prob lem for bipartite graphs, in which each edge still has a given cost, but  there are now additional supply requirements out of each factory vertex, and demand requirements into each city vertex. 

Meanwhile, the Rus sians A. N. Tolstoĭ and Leonid Kantorovich had solved a range of transportation prob lems for the Soviet railway network, and Tjalling Koopmans, a Dutch mathematician and economist who had moved to the United States in 1940, was involved with problems of merchant shipping during World War II. Such prob lems led to maximizing or minimizing a function of variables that are subject to given equations or inequalities, and as the 1940s progressed, attempts to formulate them in this way led to a more efficient method of solution. Koopmans would  later call this pro cess  linear programming. Many years  later, in 1975, Kantorovich and Koopmans  were jointly awarded a Nobel Prize for their achievements. 

At this stage, George B. Dantzig, the “ father of linear programming”, entered the scene.  After earning his first degrees from the Universities of Mary land and Michigan, he worked on an urban study at the US Bureau of  Labor Statistics in Washington, DC. Two years  later, he moved to San Francisco to work on a doctorate in statistics at Berkeley, where he amazed every one by solving two famous unsolved prob lems in statistics: he believed them to be homework prob lems which had been set for a course that he was studying. With the outbreak of World War II, he moved back to Washington and became head of the Combat Analysis Branch of the US Army Air Forces Statistical Control, carry ing out impor tant work for which he received an Exceptional Civilian Ser vice Award medal.  After the war, he returned briefly to California to receive his doctoral degree, but was soon back in Washington as mathematical advisor to the Defense Department in the Pentagon. 

It was around this time, in 1947, that Dantzig made his best- known contribution to mathe matics. Building on the methods of Hitchcock, Kantorovich, and Koopmans, and on his own work with the US Air 

Force, he in ven ted the  simplex method for solving linear programming prob lems, and demonstrated its power by solving an assignment prob lem with 70 applicants and 70 jobs.61 A meeting between Dantzig and John von Neumann, the mathematician and computer pioneer, led to the 
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introduction of  duality in linear programming, an impor tant idea that had already been implicit many years  earlier in the writings of Fourier. 

In 1952, Dantzig moved to the RAND Corporation in California, 

where he worked on the computer implementation of linear programming. In 1960, he was back at Berkeley, where he set up the Operations Research Center, and then transferred to Stanford University, where he spent the rest of his  career. Further information about his life and works can be found in his classic book  Linear Programming and Extensions and in his historical reminiscences.62

Flows in Networks

In 1954, Ted Harris, a mathematician at the RAND Corporation, posed the following prob lem:

Consider a rail network connecting two cities by way of a number of intermediate cities. If each link of the network has a number assigned to it, representing its capacity, find a maximal flow from one city to the other. 

Prob lems of this kind arise whenever one wishes to maximize the amount of a commodity that is transmitted from a factory to a market along various channels. 

Harris’s prob lem arose in connection with a secret report that he and his colleague Frank Ross had been writing for the US Air Force, on the flow of rail traffic in the Soviet Union and Eastern Eu rope.63 They split the railway network into a large number of arcs, each bearing a  limited amount of traffic, and the aim was to find how much traffic could be carried by the  whole network without any part of it becoming over-loaded. Their initial approach was to send as many trains as pos si ble and to deal with any bottlenecks as they arose. Eventually, they calculated a maximum flow of 163,000 tons from the Soviet Union to Eastern Eu rope, and located a bottleneck of the same total capacity through which it needed to flow. 

Ted Harris mentioned the network flow prob lem to his colleagues Lester Randolph Ford Jr. and Delbert Ray Fulkerson. Ford had graduated from the University of Chicago and received his doctorate from the University of Illinois at Urbana– Champaign, while Fulkerson’s doctoral degree had been awarded by the University of Wisconsin in Madison. 

By 1954, both  were working for the RAND Corporation. 

Lester Ford and Ray Fulkerson soon became interested in network flow prob lems. They realized that all such prob lems could be solved by the simplex method of linear programming, but sought a more direct 

[image: Image 66]
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The railway network of Ted Harris and Frank Ross. 

method. The results  were a fundamental minimax theorem and an algorithm for finding a maximum flow.  These appeared in a  couple of RAND 

technical reports in 1954 and 1955, and  were subsequently published in the  Canadian Journal of Mathe matics.64

L. R. Ford Jr. and D. R. Fulkerson:  

 Maximal flow through a network (1956)

We can think of a  capacitated network as a directed graph in which two vertices are designated as the  start vertex S and the  terminal vertex T, and where each arc has been assigned a positive number, called its  capacity. A  flow in the network is an allocation of a non-negative number to each edge, for which

the flow along each arc does not exceed the capacity of the arc; the total flow into any vertex (other than  S and  T  ) equals the total flow out of it. 

An arc is  saturated if the flow along it equals its capacity, and the value of the flow is the total flow out of  S, which equals the total 
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flow into  T. The aim is to find a  maximum flow— that is, a flow from S into  T with the largest pos si ble value. 

As an example, the following is a network flow in which the first number alongside each arc is the flow along it, and the second 

number is its capacity.  Here, the arcs  CD and  C T are both saturated, and the value of the flow is 5. 

 A

3,4

 C

3,5

2,2

 S

0,3

1,1

 T

2,4

3,8

 B

2,3

 D

Ford and Fulkerson’s main achievement in this paper was their 

“max- flow min- cut theorem”. A  cut in a network is a minimal set of arcs whose deletion splits the network into two parts, one containing  S and the other containing  T. The  capacity of the cut is the sum of the capacities of  those arcs in the cut that are directed from the part containing  S to the part containing  T; for example, in the above network, ( AC,  BD) is a cut with capacity 7, and ( BD,  CD,  C T  ) is a cut with capacity 6. A  minimum cut is a cut with the smallest pos si ble capacity. It is easy to see that

the value of any flow cannot exceed the value of any cut, 

and it follows that

the value of a maximum flow cannot exceed the capacity of a 

minimum cut. 

The max- flow min- cut theorem states that  these two numbers are always equal:

 Max- flow  min- cut  theorem: In a capacitated network, the value of a maximum flow from the start to the terminal is equal to 

the capacity of a minimum cut. 

The following figure shows this network with a maximum flow of 

value 6 and a minimum cut of capacity 6; we note that minimum 

cuts always consist of saturated arcs. 
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 A

3,4

 C

2,2

3,5

 S

0,3

1,1

 T

3,4

4,8

 B

3,3

 D

Ford and Fulkerson’s second paper included an algorithm for 

finding a maximum flow. The aim is to accumulate  flow- augmenting paths— that is, paths from  S to  T along which the flow can be increased. For example, starting with no flow in the above network, we can send

a flow of 2 along the path  S–  A–  C–  T, a flow of 3 along the path  S–  B–  D–  T, and a further flow of 1 along the path  S–  A–  C–  D–  T. 

This saturates the arcs  BD,  CD, and  CT, and gives the maximum flow of value 6. 

Ford and Fulkerson’s methods can easily be adapted to deal with the following modifications to the network:

if the network contains any undirected edges, we replace each such edge by two arcs, one in each direction, and proceed as before; if the network has several start vertices and/or terminal vertices, we add a new start vertex joined to all the start vertices, and a new terminal vertex to which all the terminal vertices are joined, and proceed as before; 

if  there are also capacity restrictions on the vertices (limiting the flow through a city, for example), we replace each such vertex  V 

by two linked vertices,  V 1 and  V 2, with all incoming arcs to  V directed   toward   V 1, and all out going arcs from  V emerging from  V 2. 

We can also apply the max- flow min- cut theorem to the following situations:

to deduce Menger’s theorem (see Interlude B), take the capacity of every edge to be 1; 
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to deduce Hall’s theorem, add a new start vertex joined to all the boys, and a new terminal vertex joined to all the girls, and take the capacity of  every edge to be 1; 

to answer assignment or transportation prob lems, add a new start vertex joined to all the applicants (or factories), and a new terminal vertex joined to all the jobs (or cities). 

The contributions of Ford and Fulkerson marked an impor tant step in the development of combinatorial optimization, and the ensuing years witnessed other variations on the max- flow min- cut theorem, including a diff er ent proof by P. Elias, A. Feinstein, and C. E. Shannon.65 In 1962, Ford and Fulkerson published their book  Flows in Networks,66 which quickly became the standard work on the subject. 

Minimum  Spanning Trees

In the mid-1950s, two American mathematicians, Joseph Kruskal Jr. and Robert Prim, presented algorithms for solving what is sometimes called the “minimum connector prob lem”:

 Minimum connector prob lem: A railway network is to be built connecting several towns. If the distances between all pairs of towns are known, how can we design the network so that the total amount of railway track is as small as pos si ble? 

If we construct a weighted graph with vertices representing the towns, and weighted edges representing the portions of track connecting them, then we seek a set of edges with minimum total length that connects all the vertices.  Because  these edges can include no cycle, they must form a spanning tree. But for  n towns,  there are  nn−2 spanning trees (by a result of Arthur Cayley), so how do we find the shortest one? 

Joseph B. Kruskal Jr. graduated from the University of Chicago and transferred to Prince ton University, where he was awarded his doctoral degree for a thesis on partially ordered sets in which he solved a prob lem put forth by Paul Erdős. For a period he worked for the Office of Naval Research at George Washington University and at the University of Wisconsin, before moving in 1959 to Bell Laboratories for the rest of his  career. 

It was while he was at Prince ton that Kruskal wrote his paper on the minimum spanning tree prob lem, which he described as follows:67

If a (finite) connected graph has a positive real number attached to each edge (the length of the edge), and if  these lengths are all distinct, then among the spanning trees of the graph  there is only one, the sum of whose edges is a minimum; that is, the shortest spanning tree is unique. 
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The method that Kruskal gave for finding the minimum spanning tree was as follows:

CONSTRUCTION A. Perform the following step as many times as pos si ble: Among the edges of  G not yet chosen, choose the shortest edge which does not form any loops [cycles] with  those edges already chosen. Clearly the set of edges eventually chosen must form a spanning tree of  G, and in fact it forms a shortest spanning tree. 

The mathematician and computer scientist Jack Edmonds  later called this the  greedy algorithm,  because at each stage we make the “greediest” 

choice of an edge. He also noted that matroids form the natu ral setting for such algorithms.68
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A minimum connector prob lem and its solution. 

We illustrate the greedy algorithm with a  simple example with five towns. 

We first choose the edges  AB (length 3) and  AD (length 4). 

We cannot then choose  BD (length 5),  because this would create the cycle  ABDA, so instead we choose  CD (length 7). 

We cannot then choose  AC (length 8), or  BC (length 9),  because either of  these would create a cycle, and so instead we choose  AE 

(length 10). 

This completes the spanning tree, with minimum total length 

3 + 4 + 7 + 10 = 24. 

It can be shown that if the edge- lengths are all diff er ent, as specified by Kruskal, then  there is just one minimum connector. But if some edges are of equal length, then  there may be several solutions, but they  will all have the same total minimum length. 

Kruskal continued with two more constructions for finding minimum spanning trees. In the first of  these, we always choose the shortest edge between a town that we have already visited and a new one; for example, 
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after  choosing   AB in the preceding example, we seek the shortest link between  A or  B, and  C,  D, or  E; this is  AD, as before. In the second construction, we begin with the  whole graph, and successively remove the longest edge whose deletion does not disconnect the graph. So, in the preceding example:

We first remove the edges  CE (length 13),  DE (length 12), and  BE 

(length 11). 

We cannot then remove  AE (length 10),  because this would disconnect the graph, so instead we remove  BC (length 9) and  AC 

(length 8). 

This leaves the spanning tree that we obtained  earlier. 

Kruskal concluded his paper with a proof that Construction A always produces the desired minimum spanning tree. 

Robert C. Prim received his bachelor’s degree in electrical engineering from the University of Texas at Austin, and his doctoral degree in mathe matics from Prince ton University. During World War II, he worked at the General Electric Com pany, and  later at the US Naval Ordnance Laboratory in Mary land. He spent much of his  career at Bell Laboratories, while also working for Sandia National Laboratories in New Mexico. In 1957, while at the Bell Telephone Com pany, Prim produced his paper on the minimum spanning tree prob lem, in which he presented a variation on Kruskal’s constructions, gave a more substantial example of its use, and explained why his method was more suitable for computer implementation.69

R. C. Prim:  Shortest connection networks  

 and some generalizations (1957)

Prim’s paper on the minimum spanning tree prob lem opens with 

these  words:

A prob lem of inherent interest in the planning of large scale communication, distribution and transportation networks also arises in connection with the current rate structure for Bell System leased line ser vices. It is the following:

Basic  Prob lem—  Given a set of ( point)  terminals, connect them by a network of direct terminal- to- terminal links having the smallest pos si ble total length. 
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His method for solving this prob lem involved the joining of 

“fragments” by links of shortest length, where a  fragment is a set of terminals (vertices) that are connected by direct links (edges). 

A terminal or fragment is  isolated if it has no external connections; for example, the following partial network has three isolated terminals, 2, 4, and 9, and two isolated fragments, 8–3 and 1–6–7–5. 

2

9

3

1

8

6

7

4

5

To obtain the required shortest connection network, Prim ap-

plied the following two construction princi ples:

P1: Any isolated terminal can be connected to a nearest 

neighbor. 

P2: Any isolated fragment can be connected to a nearest 

neighbor by a shortest available link. 

For example, in the above network we might proceed as follows:

apply P1 to terminal 4, by adding the link 4–8; 

apply P2 to the fragment 4–8–3, by adding the link 8–2; 

apply P1 to terminal 9, by adding the link 9–2; 

apply P2 to the fragment 1–6–7–5, by adding the link 1–9. 

This gives the following shortest connection network. 
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8
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5
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As a second example, Prim considered the network formed by 

the (then) 48 state capitals and Washington, DC, where the appropriate distances are assumed known. 

As he observed, the network could be constructed by applying

P1: Olympia– Salem; P2: Salem– Boise; P2: Boise– Salt Lake 

City; P1: Helena– Boise; P1: Sacramento– Carson City; P2: 

Carson City– Boise; P2: Salt Lake City– Denver; P1: Phoenix– 

Santa Fe; P2: Santa Fe– Denver; and so on, 

and he commented that

With only a few minutes of practice, an example as complex can be solved in less than ten minutes. 

Prim then suggested a simpler version, where we use P1 to begin with, and then P2 ever  after; this has “advantages for computer mechanization”,  because we do not have to list all the links and their lengths in advance.  Here, starting from Sacramento, we get the following links, where at each step we join a capital already visited to a new one:

Sacramento– Carson City; Carson City– Boise; Boise– Salt 

Lake City; Boise– Helena; Boise– Salem; Salem– Olympia; 

Salt Lake City– Denver; Denver– Cheyenne; Denver– Santa Fe; 

and so on. 
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Because the application of  either P1 or P2 reduces by 1 the number of isolated terminals and fragments, an   N- terminal network becomes connected   after   N − 1 applications. 

The rest of Prim’s paper concerned the justification and computer implementation of his method, and comparisons with Kruskal’s 

approach. He concluded by contrasting the minimum spanning 

tree prob lem with two well- known unsolved challenges:

The simplicity and power of the solution afforded by P1 and P2 for the Basic Prob lem of the pre sent paper comes as something of a surprise,  because  there are well known prob lems which  seem quite similar in nature for which no efficient solution procedure is known. 

One of  these is  Steiner’s  Prob lem: Find a shortest connection network for a given terminal set, with freedom to add additional terminals whenever desired. A number of necessary properties of these networks are known, but do not lead to an effective solution procedure. 

Another is the  Traveling Salesman Prob lem: Find a closed path of minimum length connecting a prescribed terminal set. Nothing even approaching an effective solution procedure for this prob lem is now known. 

Kruskal and Prim  were not the originators of the minimum spanning tree prob lem, as explained in a historical article on the minimum spanning tree prob lem by Ron Graham and Pavol Hell.70 In 1926, the Czech mathematician, Otakar Borůvka, contributed to an engineering magazine a short note on electrical power networks in Western Moravia; in it, he solved an example with forty cities, by linking each city to its nearest neighbor and joining the resulting pairs together by a succession of links of minimum length. Borůvka also wrote a theoretical paper that was cited by both Kruskal and Prim, in which he proved why his method works. An En glish translation and analy sis of both papers was  later written by J. Nešetřil et al.71

In 1930, Borůvka’s compatriot, Vojtĕch Jarník, presented an alternative solution, by choosing a city and selecting each successive link so that it joined a city previously visited to a new one. This is the method that was 
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later rediscovered by Prim.72 Four years  later, Jarník collaborated with Milos Kössler on the Steiner prob lem, mentioned at the end of Prim’s paper, where extra locations can be added. In their paper, they proved that such a minimum- length tree always exists, and gave solutions in some special cases.73

The other unsolved prob lem that Prim mentioned at the end of his paper superficially resembles the minimum spanning tree prob lem: Traveling salesman prob lem: Given a number of cities connected by links that join cities in pairs, and given the distances between all pairs of cities, what is the shortest cyclic route that visits  every city? 
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A traveling salesman prob lem and its solution. 

The traveling salesman prob lem received an early mention in a sales manual of 1831. It was discussed by Karl Menger at a mathematical colloquium in Vienna in 1930, and soon afterward at a seminar talk by Hassler Whitney at Prince ton University.  After reappearing from time to time in the 1940s, and having been pop u lar ized by Merrill Flood of Columbia University, it achieved prominence in 1954 in an influential paper by George Dantzig, Ray Fulkerson, and Selmer Johnson of the RAND Corporation. Here they used linear programming techniques to solve the prob lem for the (then) 48 US state capitals and Washington, DC.74 It has since been solved for networks with many thousands of cities. 

Further information about the traveling salesman prob lem can be found in several books on the subject.75

Search Algorithms and Path Prob lems

In several practical prob lems we need to visit  every vertex of a graph in a systematic way, and vari ous search algorithms have been developed for  doing so. The best known of  these are  depth- first  search and  breadth- 
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 first search, both of which originated in the tracing of mazes— depth- first search, by C. P. Trémaux in the late 19th  century, and breadth- first search, by Edward F. Moore in the 1950s.76 Depth- first search can also be employed when we seek flow- augmenting paths in capacitated networks, whereas breadth- first search can be used for the shortest path prob lem that we describe below. 

In a depth- first search, we penetrate the graph as deeply as pos si ble, before backtracking to other vertices. For example, if we start from vertex  A in the following tree, we might proceed to  B, and then go directly to  D and  I. We cannot now go any deeper, so we pick up  J and  K, before backtracking to  A via  B, picking up  E along the way. We then proceed down the other branch, visiting  C,  F, and  L, before backtracking, picking up  G and  H on the way back to vertex  A. This gives the vertex- ordering

 A →  B →  D →  I →  J →  K →  E →  C →  F →  L →  G →  H. 

 A

 B

 C

 D

 F

 E

 G

 H

 I

 J

 K

 L

In breadth- first search, we visit all the nearby vertices, before proceeding to more remote ones. For example, starting from vertex  A in the above tree we first visit its neighbors  B and  C, and then the neighbors of  B (which are  D and  E ) and of  C (which are  F,  G, and  H ). Fi nally, we visit the neighbors of  D (which are  I,  J, and  K ), and of  F (which is  L). 

This places the vertices in alphabetical order:

 A →  B →  C →  D →  E →  F →  G →  H →  I →  J →  K →  L. 

The  shortest path prob lem is that of determining the shortest route between two given locations in a network or weighted graph. For example, given a road map of the United States, what is the shortest high-way route from Los Angeles to Boston? 

196 

CHAPTER 5

 A

2

 D

1

4

7

5

1

3

 B

7

 E

5

 S

 T

3

4

6

2

2

 C

6

 F

A shortest path in a network. 

Several algorithms for finding a shortest path  were developed in the 1950s by Richard Bellman, Lester Ford Jr., and  others. One imaginative method was presented in 1957 by George J. Minty of the University of Michigan:77

Build a string model of the travel network, where knots represent cities and string lengths represent distances (or costs). Seize the knot ‘Los Angeles’ in your left hand and the knot ‘Boston’ in your right hand and pull them apart. 

Others used a breadth- first search, beginning with the cities nearest to the start, before moving out to remoter ones; the best- known of  these algorithms, published in 1959, was by the Dutch computer scientist Edsger Dijkstra, who applied it to sixty- four locations in the Nether-lands.78 Two years  earlier, Dantzig had used linear programming methods to find the shortest route from San Francisco to Boston.79

A related prob lem is the  longest path prob lem, where we seek the path of greatest length between a source and a sink. Such prob lems arise in critical path analy sis, where we are faced with the scheduling of key tasks in a proj ect (such as the erection of a building), and where certain tasks cannot begin  until other tasks have been completed.  Here, the situation may be modeled by an “activity network”, in which the vertices represent the activities to be carried out (such as laying the drains), and each arc is labeled with the time needed to complete the activity. 

The  critical path method (CPM) for finding such paths was initiated in the late 1950s by Morgan R. Walker of DuPont and James E. Kelley of Remington Rand.  Under the acronym of PERT (Program Evaluation 
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Research Task), it was developed by the US Navy for the analy sis and design of large and complex proj ects, such as the Polaris nuclear sub-marine. PERT was subsequently renamed “Program Evaluation and Review Technique”. 

FRANK HARARY

There are several reasons for the acceleration of interest in graph theory. 

It has become fash ion able to mention that  there are applications of graph theory to some areas of physics, chemistry, communication science, computer technology, electrical and civil engineering, architecture, operational research, ge ne tics, psy chol ogy, sociology, economics, anthropology, and linguistics. The theory is also intimately related to many branches of mathematics, including group theory, matrix theory, numerical analy sis, probability, topology, and combinatorics. The fact is that graph theory serves as a mathematical model for any system involving a binary relation. Partly  because of their diagrammatic repre sen ta tion, graphs have an intuitive and aesthetic appeal.  Although  there are many results in this field of an elementary nature,  there is also an abundance of prob lems with enough combinatorial subtlety to challenge the most sophisticated mathematician. 

So begins the preface of  Graph Theory,80 one of the most impor tant and frequently cited textbooks in the subject, and one that has defined, developed, and directed the path of modern graph theory. Its author, Frank Harary, was a major and memorable figure on the graph theory stage, both in Amer i ca and throughout the world. In addition to his writings on mathematical topics, he applied graph theory to many of the subject areas that he listed in the preface. With his wide range of interests and his ever- enthusiastic propagation of the subject, it is not surprising that he came to be known as “the  father of modern graph theory”. 

Frank Harary was born of Syrian and Rus sian parents and grew up in New York City, being awarded his bachelor’s and master’s degrees by Brooklyn College.  After a year at Prince ton University (learning theoretical physics) and a year at New York University (studying applied mathe matics), he moved to the University of California, Berkeley, where he was awarded a doctoral degree in 1948 for the thesis  The Structure of Boolean- like Rings. He then transferred to the University of Michigan in Ann Arbor, where he was appointed as a research assistant in the Institute for Social Research and an instructor in the department of mathe matics. He eventually achieved promotion to professor of mathematics in 1964. 
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Frank Harary (1921–2005) enjoying a 

combinatorics conference in Balatonfüred, 

Hungary, in 1969;  behind him is Robin Wilson. 

Throughout his long  career, Frank Harary lectured widely in the United States and in over seventy countries, and spent sabbatical periods in several academic institutions, including Prince ton’s Institute of Advanced Study and the Universities of London, Oxford, and Cambridge. 

While at Ann Arbor, he helped to launch the  Journal of Combinatorial Theory in 1966 and the  Journal of Graph Theory in 1977. On his retirement from Michigan in 1987, he transferred to New Mexico State University in Las Cruces as Distinguished Professor of Computer Science, a position that he occupied  until his death in 2005. 

In addition to his eight books, including  Graph Theory, Harary wrote more than seven hundred papers, including over one hundred that appeared in journals devoted to subjects other than mathe matics. His writings covered many areas of graph theory, both pure and applied, of which we outline just three: signed graphs, graph enumeration, and Ramsey graph theory. 

Signed Graphs

In connection with his work with the Institute for Social Research at Michigan, Harary introduced the concepts of “signed graphs” and 

“balance”, extending  earlier ideas of Dénes König and the psycholo-gist Fritz Heider. A  signed graph is a graph in which each edge is designated as  either  positive (+) or  negative (−). A path or cycle in the graph is positive if it has an even number of negative edges, and is  negative other-wise. In the language of social networks, we can think of the vertices as people, and the positive and negative edges as indicating pairs of indi-
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viduals who are friends or non- friends. For example, a positive 3- cycle corresponds to three mutual friends, or to two friends who have a common non- friend, while a negative 3- cycle corresponds to three mutual non- friends, or to two non- friends who have a common friend. 
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3 cycles in a signed graph. 

A signed graph is called  balanced if  every cycle is positive, and in 1954 

Harary wrote the first of several papers on balance in signed graphs,81 

proving that

A signed graph is balanced if and only if its vertices can be partitioned into two disjoint sets (one of which may be empty) in 

such a way that each positive edge joins vertices in the same set, and each negative edge joins vertices in diff er ent sets. 

In general, balanced signed graphs correspond to social situations that are stable. With this interpretation, Harary’s result asserts that a group of people is stable if it can be split into two parts so that the  people within each part are friends, while  those in the diff er ent parts are not. 
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A balanced signed graph. 

A few years  later, Harary developed  these ideas in his book  Structural Models: An Introduction to the Theory of Directed Graphs, written with his former research student Robert Z. Norman and his colleague Dorwin Cartwright.82
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Graph Enumeration

As we have seen, graph enumeration is the counting (up to isomorphism) of graphs of a specified kind.  Earlier in this chapter, we saw how Arthur Cayley and Richard Otter contributed to the counting of rooted and unrooted trees, and in Chapter 3, we explained how the methods of Redfield and Pólya led to the enumeration of vari ous other types of graphs. 

Throughout his life, Harary wrote extensively about enumeration. 

In 1955, he built on Pólya’s work in a significant paper in which he enumerated linear, directed, rooted, and connected graphs, and in the same year he also wrote an elegant note showing how Otter’s formula for trees could be deduced directly from Pólya’s results.83 He continued to write papers on the enumeration of graphs and digraphs of vari ous types, and in 1973 he brought all of  these contributions together in  Graphical Enumeration, a book written with his former research student Edgar M. Palmer.84

Ramsey  Graph Theory

An area of graph theory that developed in the 1950s was  Ramsey graph theory, named  after the British logician and phi los o pher Frank P. Ramsey, who proved in 1930 that (loosely speaking) subsets of a specified type can always be found within sets that are sufficiently large.85 In the words of the American mathematician Ron Graham:86

Ramsey theory says that complete disorder is impossible.  There is always structure somewhere. 

The topic became popu lar  after the following question appeared, at Frank Harary’s suggestion, in the annual William Lowell Putnam Mathematical Competition for 1953:

Six points are in general position in space (no three in a line, no four in a plane). The fifteen line segments joining them in pairs are drawn, and then painted, some segments red, some blue. Prove that some triangle has all its sides the same color. 

A similar question had been posed in the Hungarian Mathematical Olympiad of 1947 and frequently appears in books on recreational mathe matics in the form:

If  there are six  people at a party, prove that  there must be at least three mutual friends or three mutual non- friends. 
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In graphical terms, this prob lem asks us to show that any red and blue coloring of the edges of the complete graph  K 6 must contain  either a red  K 3 or a blue  K 3. To prove this, we select a vertex  v and consider the five edges incident to it; at least three of  these edges must have the same color— say,  va,  vb, and  vc are all red. Then, if any of the edges  ab,  ac, or  bc is red, we have a red triangle, and if not, then  abc is a blue triangle. 

 v

 a

 b

 c

Because the edges of the complete graph  K 5 can be colored red and blue without producing a red  K 3 or a blue  K 3, we have just seen that  K 6 

is the smallest complete graph that must contain a red  K 3 or a blue  K 3. 

We express this by saying that the “Ramsey number  r (3, 3) is 6”. 

More generally, in 1955 Robert  E. Greenwood and Andrew  M. 

Gleason defined the  Ramsey number N =  r ( m,  n) to be the minimum number of vertices that are needed to ensure that any red– blue coloring of the edges of  KN contains  either a red  Km or a blue  Kn—   that is,  m mutual friends or  n mutual non- friends— and found the following Ramsey numbers:87

 r (4, 3) = 9,  r (5, 3) = 14,  r (4, 4) = 18,  and   r (2,  n) =  n, for any  n; general bounds for  r ( m,  n) can be found in an  earlier paper by Paul Erdős.88 Greenwood and Gleason also extended the prob lem to a larger number of colors, and proved that  r (3, 3, 3) = 17— that is, with the three colors red, blue, and green, 17 vertices are needed to ensure a red, blue, or green  K 3. 

In  later years Frank Harary extended the idea much further, in an expanded series of thirteen mainly co- authored papers  under the general heading of “generalized Ramsey theory”.  Here, the complete graph  K 3 

of the classical Ramsey prob lems is replaced by other graphs, such as a complete bipartite graph  Kr,  s, a path  Pn, or a cycle  Cn. The  generalized Ramsey number r ( H 1,  H 2) is the smallest number  N of vertices that are 
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needed to ensure that any red– blue coloring of the edges of  KN contains a red graph  H 1 or a blue graph  H 2. For example, in one of  these papers, Václav Chvátal and Frank Harary found the generalized Ramsey numbers for the graphs  H 1 and  H 2 with up to four vertices,89 showing in partic u lar  that

 r ( K 1, 3,  C 4) = 6,  r ( P 4,  P 4) = 10,  and   r ( C 4,  K 4) = 10. 


* * * * *

In the twenty years covered by this chapter, graph theory in Amer i ca and elsewhere was transformed from a rather narrow discipline, primarily obsessed with map coloring and related topics, into a wide- ranging area of mathe matics with links to many areas within mathe matics and with impor tant applications to most of the sciences and social sciences. 

This transformation would continue over the next twenty years, as major prob lems  were solved and graph theory increasingly became part of mainstream  mathe matics. 

Chapter 6

The 1960s and 1970s

The 1960s witnessed graph theory becoming ever more established throughout North Amer i ca and the world, through the publication of new textbooks, the organ ization of international conferences, and the gradual emergence of the subject in university and college curricula. Applications became widespread, especially in the physical sciences, operational research, and the rapidly developing area of computer science. 

New names, such as Oystein Ore, Gerhard Ringel and Ted Youngs, and Jack Edmonds, come to feature in our story, and the de cade saw the long- awaited proof of the Heawood conjecture on the coloring of maps and graphs on topological surfaces. 

These developments continued into the 1970s, with the establishment of regular series of conferences, with the publication of increasingly many books on specific areas of the subject, and with many universities and colleges then presenting graph theory, combinatorics, and operational research among their offerings. Research was active in a wide variety of areas, both theoretical and practical, as the subject continued to gain credence. Most noteworthy of all was the publicity arising from Kenneth Appel and Wolfgang Haken’s proof of the four color theorem— 

the subject’s most celebrated challenge— which had been a central preoccupation for over a hundred years. 

OYSTEIN ORE

Øystein Ore (pronounced “oo- reh”, and usually spelled in the United States as “Oystein”) was born in 1899 in Norway’s capital city of Kristi-ania ( later renamed Oslo). He graduated from the University of Kristi-ania in 1922, and two years  later he received his doctoral degree for a thesis on the theory of algebraic fields. He then traveled around Eu rope, and visited the University of Göttingen, the Mittag- Leffler Institute in 
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Oystein Ore (1899–1968). 

Sweden, and the Sorbonne in Paris, before he returned as a research assistant at what was by then the University of Oslo. His mathematical interests at this time lay mainly in algebraic number fields, rings, and Galois theory, with graph theory, lattice theory, and the history of mathematics emerging as  later concerns. 

In 1927, Ore was recruited by Yale University and moved  there as an assistant professor. He became a full professor in 1929 and two years later was promoted to Sterling Professor, Yale’s highest academic position. He was a plenary speaker on algebra at the International Congress of Mathematicians in Oslo in 1936 and remained at Yale  until his retirement in 1968, just before his untimely death. 

During World War II, Ore became actively involved with the “American relief for Norway” and “ Free Norway” movements. In 1947, King Haakon VII decorated him with the Royal Norwegian Order of Saint Olav, an honor that eigh teen years  earlier had been awarded to Oswald Veblen. 

Oystein Ore wrote nine books while at Yale, on topics ranging from algebra and number theory to the history of mathe matics. In 1936, Dénes König had written his groundbreaking text on graph theory (see Interlude B), and no other books on the subject then appeared  until 1958, with the publication of Claude Berge’s  Théorie des Graphes et ses Applications, followed by an En glish translation in 1962.1 In the summer of 1941, Ore had presented the American Mathematical Society’s Colloquium Lectures on “Mathematical relations and structures” in Chicago, but these  were not published at the time. They eventually appeared in 1962 in the AMS Colloquium Lecture series, as his  Theory of Graphs.2  These books by Berge and Ore  were the first texts on the subject to be published in the En glish language. 
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Ore wrote two further books on graph theory. In 1963, his book 

 Graphs and Their Uses 3 introduced the subject to high school students. 

Four years  later, his classic  The  Four- Color  Prob lem 4 was the first major book in En glish devoted exclusively to the topic. 

Ore wrote few papers on graph theory, but one of them seems particularly noteworthy. One would expect that graphs with many edges are more likely to be Hamiltonian than  those with fewer edges, and several general results on Hamiltonian graphs are of this type. For example, Gabriel Dirac proved in 1952 that if a graph has  n vertices, and if the degree of each vertex is at least  n/2, then the graph is Hamiltonian.5 Ore’s note, remarkably just one page in length, pre sents a strengthening of Dirac’s theorem.6

Oystein Ore:  Note on Hamilton cir cuits (1960) In his note, Ore proved that if  G is a graph with  n (≥ 3)  vertices, and if

deg ( v) + deg ( w) ≥  n, 

whenever the vertices  v and  w are not adjacent, then  G is Hamiltonian. Dirac’s theorem is clearly a special case of this result. 

We recall that if  G is Hamiltonian, then we can arrange its vertices in cyclic order, 

 a 0,  a 1,  a 2, . . .  ,  an −   1,  a 0, where  ak is adjacent to  ak + 1 for each  k, and  an −   1 is adjacent to  a 0. It follows that, if  G is not Hamiltonian, then any cyclic arrangement of its vertices must have “gaps”, where a gap occurs between  ak and ak +   1 when they are not adjacent. To obtain a contradiction, Ore assumed that  G is not Hamiltonian, and also, without loss of generality, that the preceding cyclic order has a minimum number of gaps, one of which he took to be between  a 0 and  a 1. 

He next observed that if  a 0 is adjacent to  ai, for some  i, then  a 1 

cannot also be adjacent to  ai +   1,  because other wise we could reor-der the vertices as

 a 0,  ai,  ai − 1, . . .  ,  a 2,  a 1,  ai + 1,  ai + 2, . . .  ,  an − 1,  a 0, with one fewer gap, as shown below. 
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 a 0

 a 1

 a 2

 . . . 

 ai–1

 ai

 ai+1  ai+2

 . . . 

 an–1

 a 0

It follows that  there are at least as many vertices that are not adjacent to  a 1 as  there are vertices that are adjacent to  a 0, and so n − 1 − deg ( a 1) ≥ deg ( a 0),  so that  deg ( a 0) + deg ( a 1) ≤  n − 1. 

This gives the required contradiction, and the result follows. 

One of Ore’s doctoral students at Yale was Marshall Hall Jr., who became a well- known combinatorialist. Another was Joel G. Stemple, who received his doctorate in 1966 and subsequently worked with Ore on the four color prob lem. Together they  were able to extend C. E. Winn’s result from almost thirty years  earlier (see Chapter 3), announcing their achievement in the  Notices of the American Mathematical Society:7

OYSTElN ORE,  Yale University, New Haven, Connecticut, and JOEL STEMPLE, Queens College, City University of New York, Flushing, New York 11367. On the four color prob lem. It is shown that a planar map not colorable in four colors must have at least n = 40 countries. This improves on the result n = 36 due to C. E. Winn (1938). The rather elaborate calculations are based upon the Euler contributions of the  faces in an irreducible graph and upon three new reducible configurations. (Received October 13, 1967.) Their proof appeared in 1970,8 but it involved so many special cases that the full details could not be published and  were lodged in the library of Yale’s mathe matics department. A mistaken assumption in their proof was subsequently discovered and quickly dealt with by Frank Bernhart. 

Jean Mayer, a professor of French lit er a ture at the University of Montpellier and keen amateur mathematician, then managed to push the number of countries in an irreducible map up to 48,9 and  later to 96— 

but  there was still a long way to go. 

THE HEAWOOD CONJECTURE

In 1890 P. J. Heawood . . .  published a formula which he called the Map Colour Theorem. But he forgot to prove it. Therefore the world of mathematicians called it the Heawood Conjecture. In 1968 the formula was proven 
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Gerhard Ringel (1929–2008) and Ted Youngs (1910–70) in 1968. 

and therefore again called the Map Color Theorem. (This book is written in California, thus in American En glish.)

So commented Gerhard Ringel in the foreword to his classic book  Map Color Theorem,10 which tells the story of how he and J.W.T. Youngs proved the Heawood conjecture, with assistance from several  others. We next examine some of the ideas which led to the  tour de force that is now known as the  Ringel– Youngs  theorem. 

Gerhard Ringel

Gerhard Ringel was born in Austria and raised in Czecho slo va kia, where he graduated from Charles University in Prague. During World War II, he was drafted into the Wehrmacht,  later spending four years as a prisoner of war in a Soviet jail. On his release, he attended the University of Bonn, where he received his doctoral degree in 1951 and taught for a further nine years. In 1960, he was appointed professor of mathe matics at the  Free University of Berlin, and ten years  later he accepted a permanent position at the University of California in Santa Cruz, succeeding his friend Ted Youngs, who had retired. 

We recall from Interlude A the vari ous equivalent forms of the Heawood conjecture. For orientable surfaces:

 Heawood conjecture ( map coloring): For each  g ≥ 1, the chromatic number of the orientable surface  S

⎢

⎥

⎣ (

)

 g is χ( Sg) = 12 7 +

1 + 48 g ⎦. 
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 Heawood conjecture ( neighboring regions): The simplest orientable surface on which  n (≥ 3) neighboring regions can be drawn is  Sg , where  g = 1

⎡⎢ 12( n − 3)( n − 4)⎤⎥. 

 Heawood conjecture ( complete graphs): The orientable genus of Kn( n ≥ 3) is

 g( Kn) = 1

⎡⎢ 12( n − 3)( n − 4)⎤⎥. 

We note that the formula for the chromatic number of  Sg also happens to give the correct answer, χ( S 0) = 4, for the number of colors needed for maps drawn on the sphere ( g = 0). But we cannot deduce the four color theorem from a proof of the Heawood conjecture, which applies only when  g ≥ 1. 

For non- orientable surfaces, noting the exceptional case of the Klein bottle in  every case (see Chapter 3):

 Heawood conjecture ( map coloring): For each  q ≥ 1, the chromatic number of the non- orientable surface  N

⎢

⎥

⎣ (

)

 q is χ(  Nq) = 12 7 + 1 + 24 q ⎦, 

except that χ( N 2) = 6. 

 Heawood conjecture ( neighboring regions): The simplest non- orientable surface on which  n (≥ 3) neighboring regions can be drawn is  Nq, where   q = 1

⎡⎢ 6( n − 3)( n − 4)⎤⎥ , except that  q  = 3 when  n = 7. 

 Heawood conjecture ( complete graphs): The non- orientable genus of Kn ( n ≥ 3) is

ˆ g( Kn) = 1

⎡⎢ 6( n − 3)( n − 4)⎤⎥, 

except that  ĝ( K 7) = 3. 

From the early 1930s, rumors  were circulating that the Heawood conjecture had been proved. For example, in the first edition of Richard Courant and Herbert Robbins’s well- known book,  What Is Mathe matics? , published in 1941, it was claimed that:11

for surfaces more complicated than the plane or sphere the corresponding theorems have actually been proved. 

But  these reports  were premature, and it was not  until the 1950s that much pro gress would be made. 

The breakthrough was achieved by Gerhard Ringel. In his doctoral thesis for the University of Bonn, he investigated coloring theorems for non- orientable surfaces, and followed this with a remarkable sequence 
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of papers involving both the orientable and non- orientable cases.12 

In par tic u lar, he solved the complete graphs prob lem for orientable surfaces when  n = 8, and for all values of  n of the form 12 s + 5, such as 17, 29, 41,  etc. 

In 1954, Ringel published a paper that completely settled the neighboring regions and complete graphs versions of the Heawood conjecture for all  non- orientable surfaces.13 It may seem surprising that  these surfaces should have been easier to deal with than their orientable analogs (the many- holed toruses), but Ringel found an argument that avoided splitting the prob lem into many separate cases, as would  later be necessary for the orientable version. 

In 1959, Ringel produced a significant book on the coloring of graphs, Färbungsprobleme auf Flächen und Graphen (Coloring Prob lems for Surfaces and Graphs).14 This book and his many papers  were major contributions to topological graph theory. 

Before we outline the history of the solution to the Heawood conjecture for orientable surfaces, we make some preliminary remarks. Two versions of the conjecture involve the number 12, and the eventual proof turned out to split into twelve separate cases, depending on the remainder when  n (the number of neighboring regions or vertices) is divided by 12— that is, on the value of  n (modulo 12). If  n is of the form 12 s +  k— 

that is,  n ≡  k (mod 12)— this is called  Case k. In 1891, Heffter had already solved the neighboring regions prob lem for several values of  n in Case 7 

(see Interlude A), and we have just seen that Ringel  later solved Case 5 in its entirety. 

Of par tic u lar interest are Cases 0, 3, 4, and 7,  because for each of  these, 112( n − 3)( n − 4) is an integer that does not need to be “rounded up”. In these cases, the corresponding embedding of the complete graph  Kn on the surface turns out to be a  triangulation, where  every region is a triangle. For the other eight cases, the solution involved two parts: the  regular part, where a “near- triangulation” was found, and the  additional adjacency prob lem, where the embedding had to be adjusted to cope with the partic u lar situation. For some of  these cases, the additional adjacency problem proved to be the most difficult part, involving the addition of an extra  handle or some other adjustment. 

For a brief overview of the methods employed, we now look at the simplest case, Case 7.  Here  n = 12 s + 7, for some  s, and we seek an embedding of the complete graph  Kn on the appropriate orientable surface; as we just mentioned, this embedding is a triangulation of the surface. 
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Case 7

In 1891, one of Heffter’s most fruitful contributions to the proof of the Heawood conjecture had been the introduction of  rotation schemes that specify, for each region of a map, the colors of its neighboring regions, listed in counter- clockwise order. In its dual version, a rotation scheme specifies, for each vertex of the complete graph  Kn, the colors of its neighboring vertices, listed in cyclic order. To see what is involved, consider the following drawing of  K 7 on a torus. 
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Here, the vertex labeled 0 is adjacent to the vertices labeled 1, 3, 2, 6, 4, and 5 in counter- clockwise order, and we rec ord this by writing (0): 1 3 2 6 4 5

as the first row of our rotation scheme. Repeating this for the vertex that is labeled 1, we have

(1): 2 4 3 0 5 6. 

Continuing in this way, we obtain the following rotation scheme, which describes the arrangement of the vertices. Notice how each successive row is obtained from the previous one by adding 1 (modulo 7) to each number, so that the entire coloring is determined, once we have found the first row:

(0): 1 3 2 6 4 5

(1): 2 4 3 0 5 6

(2): 3 5 4 1 6 0

(3): 4 6 5 2 0 1

(4): 5 0 6 3 1 2

(5): 6 1 0 4 2 3

(6): 0 2 1 5 3 4. 
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Conversely, given a rotation scheme, we can assign to any vertex the label 0, and then label the other vertices accordingly. This gives the required triangular embedding. 

But how do we find the first row of the rotation scheme, from which the other rows can then be generated? In 1963, William Gustin of Indiana University and the National Bureau of Standards presented an ingenious way of  doing so. He considered an associated network, which he called a  current graph, of arcs labeled with numbers that satisfy Kirchhoff’s current laws.15

1

3

2

Gustin’s current graph for 

 n = 7. 

To see what is involved, consider the current graph for  n = 7, and follow this rule:

 Rule: Follow the arcs, turning  left at each solid vertex (●) and  right at each hollow vertex (○), and list the arcs as you go, with a minus sign whenever you need to traverse an arc in the wrong direction. 

So, following this rule, and starting with arc 1 and listing the arcs as we go, we have:

follow arc 1 to vertex ● 1

turn left, and follow arc 3 to vertex ○ 3

turn right, and follow arc 2 to vertex ● 2

turn left, and follow arc 1 backwards to vertex ○ 

−1

turn right, and follow arc 3 backwards to vertex ● 

−3

turn left, and follow arc 2 backwards to vertex ○ 

−2

Every arc has now been traced in both directions, and we have the sequence

1 3 2 −1 −3 −2, 

which (modulo 7) is

1 3 2 6 4 5. 

This is the first row of the rotation scheme, from which the other rows can then be deduced. 
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The next example in Case 7 is  n = 19, and  here we use the following current graph:

3

8

9

7

1
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6

Gustin’s current graph for 

 n = 19. 

To generate the rotation scheme, we carry out the preceding rule as before, again starting with arc 1:

follow arc 1 to vertex ● 1

turn left, and follow arc 8 backwards to vertex ● 

−8

turn left, and follow arc 5 backwards to vertex ○ 

−5

and so on. 

When  every arc has been traced in both directions, we have the sequence 1 −8 −5 −6 −4 3 8 9 7 4 −2 −9 −1 5 −3 −7 2 6, 

which (modulo 19) is

1 11 14 13 15 3 8 9 7 4 17 10 18 5 16 12 2 6. 

This yields the following rotation scheme, in which each successive row is obtained by adding 1 (modulo 19) to the preceding row:

(0): 1 11 14 13 15 3 8 9 7 4 17 10 18 5 16 12 2 6

(1): 2 12 15 14 16 4 9 10 8 5 18 11 0 6 17 13 3 7

(2): 3 13 16 15 17 5 10 11 9 6 0 12 1 7 18 14 4 8

. . . . . 

(18): 0 10 13 12 14 2 7 8 6 3 16 9 17 4 15 11 1 5, 

from which the labeling of the vertices can be determined. 

For the general case, when  n = 12 s + 7, Gustin used the following current graph to find the rotation scheme, and thereby the triangular embedding of  Kn. 
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2 s + 1

5 s + 4

5 s + 2

4 s + 4

6 s + 3

3

4 s + 

5 s + 

3

1

2

·  ·  ·

2 s – 1

2 s

3 s + 

2

3

2 s + 

3 s + 2

3 s + 1

2 s + 3

4 s + 2

Gustin’s current graph for  n = 12 s + 7. 

The  Ringel– Youngs  Theorem

John William Theodore (Ted) Youngs was an American, born in India but educated in the United States, who gained his doctoral degree in 1934 from the Ohio State University for a thesis on topology. He then taught at Ohio State and Purdue Universities, served in the US Air Force during World War II, and was a con sul tant to the Institute of Defense Analy sis and to industry.  After the war, he taught at Indiana University for eigh teen years, moving in 1964 to the new Santa Cruz campus of the University of California, where he remained  until his death in 1970. His numerous papers on topology contained many significant results, with his best early work on the abstract concept of a surface, but  today he is mainly remembered for his contributions to graph theory during the last ten years of his life. 

Between 1963 and 1968, Ringel and Youngs collaborated on several papers related to the Heawood conjecture. They, and  others, had dealt with nine of the twelve cases, but the remaining three— Cases 2, 8, and 11— caused par tic u lar difficulties, and Youngs invited Ringel to spend the academic year 1967–68 on sabbatical in California trying to resolve them. Their success in  doing so resulted in the paper, “Solution of the Heawood  map- coloring  prob lem”,16 published in 1968, which brought together all their findings. 

Gerhard Ringel and J.W.T. Youngs,  Solution of the  

 Heawood  map- coloring  prob lem (1968) This three- part paper began with a description of the four color prob lem, Kempe’s attempted solution, Heawood’s discovery of 

Kempe’s error, and a description of the vari ous forms of Heawood’s conjecture and of the connections between them. 
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The second part of the paper summarized how the solution 

was reached:

1891: Heffter solved the complete graphs prob lem for  n ≤ 12, and for certain values of  n in Case 7. 

1952: Ringel proved the equivalence of Heawood’s conjec-

ture on the chromatic number of a surface and the neigh-

boring regions prob lem, and found the orientable genus 

of  K 13. 

1954: Ringel solved Case 5, the first case to be settled com-

pletely. 

1961: Ringel solved Cases 7, 10, and 3. 

1962: Gustin became interested in Cases 0, 3, 4, and 7, intro-

duced current graphs, and announced solutions to Cases 3, 

4, and 7, although his example for Case 4 was in error. 

1963: C. M. Terry, L. R. Welch, and Youngs found solutions 

to Case 4 and Case 0; Gustin also solved Case 4. 

1963–64: Youngs developed a theory of “vortex graphs”, 

and with Gustin solved Case 1. 

1965: Case 9 was solved, mainly by Gustin. 

1966: Youngs solved Case 6. 

1967–68: Ringel and Youngs joined forces in California and 

solved Cases 2, 8, and 11, except for a few small values 

of  n: 18, 20, 23, 30, 35, 47, and 59.  These  were solved by various  people, including Jean Mayer of the University of 

Montpellier. 

The last part of this paper illustrated a solution of Case 8, when n = 32.  Here the regular part of the prob lem used a current graph to construct a map with 33 regions on a surface, and the additional adjacency part added an extra  handle to the surface in order to present a map in which all 32 regions are mutually adjacent. 

With the help of  others, Ringel and Youngs had indeed proved the Heawood conjecture for orientable surfaces. Two years  later, Ted Youngs died, and Ringel recalled:17

I can only say that working together proved to be extremely profitable and enjoyable for both of us. Ted’s enthusiasm, his knowledge, and his dedication to this prob lem as well as to mathe matics, in general,  were admirable. 
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The solutions for all twelve cases  were published in the  Journal of Combinatorial Theory, and in Ringel’s subsequent book,  Map Color Theorem, which appeared in 1974. 

We conclude this section with a true story, which shows that solving map coloring prob lems can yield unexpected benefits:18

Shortly  after the Heawood conjecture had been proved, Ringel’s wife was driving along the California expressway, but was  stopped by a traffic cop for a traffic violation. On learning that her name was “Ringel”, the traffic cop inquired: “Is your husband the one who solved the Heawood conjecture?” Surprised, she gave an affirmative answer, and was duly let off with only a warning. It tran spired that the traffic cop’s son had been in Ted Youngs’s calculus class when the proof of the conjecture had been announced. 

RON GRAHAM

No book on discrete mathe matics in Amer i ca would be complete without a mention of one of its most colorful characters. Once described as 

“one of the charismatic figures in con temporary mathe matics, as well as the leading problem- solver of his generation”,19 Ronald Lewis Graham wrote around 400 papers on a wide variety of topics that ranged from graph theory and computational geometry to number theory and the theory of approximation. But as well as being remembered as a popu-lar writer and lecturer who enjoyed juggling mathematical symbols, he had also been a circus performer who juggled balls and clubs and became president of the International Jugglers’ Association.20

Ron Graham had an unconventional childhood. His  father worked 

in oil fields and shipyards, frequently changing jobs and working variously in California, Georgia, and Florida. As a result, Ron rarely remained at any school for longer than a year or so, and he never graduated from high school. His parents eventually divorced, and while living with his  mother in Florida, he was awarded a Ford Foundation scholarship at the age of just 15 to study at the University of Chicago. Although he had already developed an interest in astronomy and mathe matics, he spent much of his time in Chicago in gymnastic activities, such as acrobatics and trampolining. When his scholarship ran out, he spent a year at the University of California, Berkeley, majoring in electrical engineering while also taking a one- year course on number theory with D. H. Lehmer and continuing with his acrobatics. 

In 1955, in order to avoid being drafted, he enlisted for four years in the US Air Force and was sent for three of  these years to Fairbanks, 
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Ronald L. Graham (1935–2020). 

Alaska. In addition to his military duties as a telephone operator, which he fulfilled at night, he enrolled at the University of Alaska and graduated in 1959 with a bachelor’s degree in physics. Returning to Berkeley, he received a master’s degree in 1961 and a doctoral degree a year  later for a thesis on number theory, supervised by Derrick Lehmer. To fund his studies at Berkeley, he created a trampolining troupe (the Bouncing Baers) and a juggling act (the Fumbling Franklins), and performed in circuses and elsewhere. 

In 1962, Ron Graham began to work for Bell Laboratories in Murray Hill, New Jersey ( later renamed AT&T Laboratories), where he became the director of information ser vices, managing the research activities of a large department; he stayed  there for 37 years. In 1982 his responsibilities as head of the Mathematical Studies Center  were described as follows:21

For the past 20 years he has confronted the formidable challenges that arise from the need to route hundreds of millions of telephone calls through the intricate communications web of cables, micro waves, and satellites that embraces the earth. The mathematical techniques and theorems he has developed in the pro cess can be applied not only to the routing of information with a computer, but also to the efficient scheduling of an astronaut’s day, or even to the allocating of an entire nation’s resources . . .  By finding better approaches to the traveling salesman and other related prob lems, Graham and his colleagues continue to improve long line telephone efficiency. 
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He had the rare ability to translate real- world prob lems into mathematics and, in the words of a mathematical colleague from Stanford University:22

Ron, as much as anybody, is responsible for bringing high powered math to bear on computer science. 

While at Bell Laboratories, Ron Graham developed a world- class center for research in many areas of discrete mathe matics. From his first two years, when he completed eight papers, he gradually built up to producing a dozen or more research publications per year. In par tic u lar, among  those papers on graph theory that fall within our time period was an impor tant pair with his Bell Labs colleague Henry O. Pollak that related to telephone switching theory.23 As Pollak  later recalled:24

It started when John Pierce, my boss, walked into my office and said: “I’ve inven ted a new system for data transmission, and every thing is clear except how the messages are  going to figure out where to go. See if you can figure something out.” That’s how that par tic u lar prob lem started. It turned out to be a very exciting graph theory development. We had to consider the properties of the distance matrix of the graph.  People had only studied the adjacency matrices of graphs before. The distance matrices of graphs had fantastically in ter est ing properties that  were a solution to this addressing prob lem that John was interested in. It has led to some very nice mathe matics. 

Graham and Pollak’s main theorem had wide- ranging consequences. 

One of  these is an evaluation of the determinant of the distance matrix D = ( di,  j) of a tree, where  di,  j is the length of the shortest path between vertices  i and  j:25

For a tree  T with  n vertices, 

det ( D) = − ( n − 1) (−2) n −   2, and is in de pen dent of the structure of  T. 

An ingenious proof of this result is based on a determinant rule discovered by the En glish mathematician C. L. Dodgson (better known as Lewis Carroll, the author of  Alice’s Adventures in Wonderland ). 

Another consequence of the Graham– Pollak theorem involves splitting a complete graph into edge- disjoint complete bipartite graphs:26

The edges of the complete graph  Kn cannot be partitioned into fewer than  n − 1 complete bipartite graphs. 
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This result is best pos si ble,  because we can number the vertices 1,  2, . . .  ,  n and successively join each vertex to all higher- numbered vertices, producing a partition into exactly  n − 1 subgraphs of the form K 1,  k. For example, we can split the complete graph  K 6 into the five subgraphs with edges

(12, 13, 14, 15, 16), (23, 24, 25, 26), (34, 35, 36), (45, 46), and (56). 

Another partition splits  K 6 into the complete bipartite graphs  K 3, 2,  K 2, 2, K 1, 3,  K 1, 1, and  K 1, 1. 
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Two partitions of  K 6 into edge disjoint complete bipartite graphs. 

Another topic in which Graham had a  great interest, and on which he wrote extensively, was Ramsey theory (see Chapter  5). 27 He co-authored an early result in 1975 with his Bell Labs colleague Fan Chung (who  later became his wife, and with whom he wrote around 100 papers). It concerned the generalized Ramsey number  r ( C 4,  C 4, . . .  ,  C 4); where  there are  k copies of the cycle graph  C 4,  k colors are available, and we seek the smallest number  N of vertices that are required to ensure that any coloring of the edges of  KN contains a copy of  C 4 in one of the k colors. In 1975, they proved that:28
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 r ( C 4,  C 4, . . .  ,  C 4) ≤  k 2 +  k + 1, for all  k, and  r ( C 4,  C 4, . . .  ,  C 4) >  k 2 −  k + 1 if  k is a prime- power. 

Graham’s activities  were also closely connected with  those of his friend, the itinerant and prolific Hungarian mathematician Paul Erdős; they first met at a conference in Boulder, Colorado, in 1963 and wrote many joint papers. In  later years, he used to or ga nize Erdős’s life, arranging his academic visits, booking his travel tickets and  hotels, buy-ing his clothes, and paying his taxes. He also defined the  Erdős number of an author to be the length of the shortest chain of collaborators from Erdős to the author; for example, if  A has written a joint paper with Erdős, then  A’s Erdős number is 1; if not, but if  A has written a joint paper with  B who has written a joint paper with Erdős, then  A’s Erdős number is 2, and so on for larger numbers. 

Ron Graham won many honors and awards and was frequently 

seen with his juggling equipment at vari ous meetings where he was giving prestigious lectures. He is one of the few mathematicians who became president of both the Mathematical Association of Amer i ca and the American Mathematical Society. From the latter organ ization he was awarded the Leroy P. Steele Award for Lifetime Achievement with the following citation, which summarizes his wide- ranging accomplishments:29

Ron Graham has been one of the principal architects of the rapid development worldwide of discrete mathe matics in recent years. He has made many impor tant research contributions to this subject, including the development, with Fan Chung, of the theory of quasirandom combinatorial and graphical families, Ramsey theory, the theory of packing and covering,  etc., as well as the theory of numbers, and seminal contributions to approximation algorithms and computational geometry (the “Graham scan”). Furthermore, his talks and his writings have done much to shape the positive public image of mathematical research in the USA, as well as to inspire young  people to enter the subject. He was chief scientist at Bell Labs for many years and built it into a world class center for research in discrete mathe matics and theoretical computer science. 

On receiving the award, Graham characteristically replied:

I  can’t remember a time when I  didn’t love  doing mathe matics, and that desire has not dimmed over the years (yet!). But I also get  great plea sure sharing mathematical discoveries and insights with  others, even though this 
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can pre sent a special challenge for mathematicians talking to nonmathematicians. However, I  really believe that this type of communication  will become increasingly impor tant in the  future. 

COMPLEXITY

In 1798, in his  Essay on the Princi ple of Population, Thomas Malthus contrasted the linear rise in food supply with the competing exponential growth of the population. He predicted that, however well  people may survive in the short term, the exponential increase would eventually dominate, with severe consequent food shortages— a conclusion that was borne out in practice. 

Malthus’s perception of the difference between linear (or, more generally, polynomial) growth and exponential growth became of the greatest importance in the 1950s and 1960s. With the rapid advance of computer science, it became increasingly necessary to distinguish between algorithms that  were efficient, and  those that  were likely to take much longer to carry out. 

But what do we mean by “efficient”? Consider the minimum span-

ning tree prob lem and the traveling salesman prob lem that we described 

in Chapter 5:

 Minimum connector prob lem: A railway network is to be built connecting several towns. If the distances between all pairs of towns are known, how can we design the network so that the total amount of railway track is as small as pos si ble? 

 Traveling salesman prob lem: Given a number of cities connected by links that join cities in pairs, and given the distances between all pairs of cities, what is the shortest cyclic route that visits  every city? 

For the former prob lem, we presented algorithms which rapidly produce the shortest spanning tree that connects all the cities;  these “greedy algorithms” are easy to describe and quick to carry out. But for the second prob lem, if  there are  N cities, then  there are ( N − 1)! cyclic routes that pass through all the cities, and this number grows very fast as  N increases. 

It seems unlikely that  there is an efficient algorithm for this prob lem— 

and indeed, no such algorithm has ever been found. 

All algorithms have a   running  time, such as the maximum time that a computer requires to complete all the necessary calculations or the number of such calculations.  Every prob lem also has an  input size, which may be the number of cities in a network or the number of vertices in 
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an associated graph. The  running time generally increases with the input size, but exactly how quickly this occurs is often the crucial question. 

Particularly impor tant are  polynomial- time  algorithms, in which the running time is proportional to some power of the input size  n— often, to  n 2 or  n 3. For any number  k, we say that the  running time of a graph algorithm is  O( nk) if it is at most a constant multiple of  nk. Several of the graph prob lems in Chapter 5 have polynomial- time algorithms, where the input size  n is the number of vertices. Examples are the following: the minimum connector prob lem, where the  running time is  O( n 2), the shortest path prob lem, where the  running time is  O( n 2), the maximum matching prob lem, where the  running time is  O( n 3), the maximum flow prob lem, where the  running time is  O( n 3). 

But  there are also algorithms that usually take longer than polynomial time— such as the  exponential- time  algorithms with  running time proportional to an  n th power, such as 2 n or 10  n. To see the difference between polynomial- time and exponential- time algorithms, let us compare two algorithms with  running times  n 3 and 2 n on a computer that performs one million operations per second. If the input size  n is 10, then 103 = 

1000 and 210 = 1024, 

and so both algorithms have  running times of about 0.001 second. But if the input size  n is 50, then

503 = 

125,000 and 250 = 1,125,899,906,842,624, 

and the former algorithm has a  running time of 0.125 second, whereas the latter algorithm takes 35.7 years to complete. 

So, in general, exponential- time algorithms take significantly longer to carry out than polynomial- time ones. Algorithms that run in polynomial time are generally thought to be “efficient”, whereas  those that run in exponential time are considered “inefficient”, certainly as the input size increases. In practice, however, an algorithm whose  running time is  n 100 may not be faster than one with  running time 2 n/100,   unless   n is very large (say,  n = 200,000). Moreover, a  running time that is proportional to  n 3 might exceed one that is proportional to 2 n, for small values of  n, if the constant of proportionality of the former greatly exceeds that of the latter. For example, if 100 n 3 is compared with 2 n/100, then the polynomial- time algorithm becomes faster only when  n is at least 27. 
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Interest in the efficiency of algorithms began to increase in 1953, when John von Neumann distinguished between polynomial- time and exponential- time algorithms in a paper linking a par tic u lar zero- sum two- person game to the optimal assignment prob lem.30 The dichotomy was further discussed in the mid-1960s by Alan Cobham of IBM’s Research Center at Yorktown Heights, New York, and by several  others.31

Jack Edmonds (b. 1934). 

Particularly impor tant contributions  were made by the American-born Jack Edmonds, who spent much of his working life in Canada, in the Department of Combinatorics and Optimization at the University of Waterloo.  After receiving his master’s degree from the University of Mary land for a dissertation on the embedding of graphs on surfaces, he worked at the National Bureau of Standards and the RAND Corporation in California. In 1965, his award- winning article “Paths, trees, and flowers”32 built on W. T. Tutte’s criterion for the existence of a perfect matching (1- factor) in a graph (see Chapter 5). It presented a remarkable polynomial- time algorithm for finding a maximum matching in a general graph. Edmonds followed this with other seminal work, which extended his results to weighted graphs and linked them to linear programming and related topics.33 He also worked on matroids and proved a major result called the “matroid intersection theorem”, which links matroids to minimax theorems, linear programming, and duality.34

The so- called “Cobham– Edmonds thesis”, named  after Alan Cobham and Jack Edmonds, characterized “easy, fast, and practical” computational prob lems as  those that can be solved by polynomial- time algorithms, or “good algorithms”, as Edmonds called them. However, in his 1965 paper, Edmonds also observed that:35

One can find many classes of prob lems, besides maximum matching and its generalizations, which have algorithms of exponential order but seemingly 
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none better. An example known to organic chemists is that of deciding whether two given graphs are isomorphic. For practical purposes the difference between algebraic and exponential order is often more crucial than the difference between finite and non finite. 

Before we move on from polynomial algorithms, we mention just one more type of prob lem— that of determining  whether a given graph with n vertices is planar. Kuratowski’s criterion involving the graphs  K 5 and K 3, 3 (see Interlude B) does not provide a suitable method. More successful was an approach by L. Auslander and S. V. Parter,36 who successively removed cycles from the graph and examined the resulting subgraphs for planarity; this led to an algorithm with  running time  O( n 3). But the coup de grâce was made in 1974, with the publication by John Hopcroft and Robert Tarjan of a linear algorithm— one with  running time  O( n)—in their seminal paper, “Efficiency planarity testing”.37

The P versus NP Prob lem

The collection of all tractable prob lems— those that can be solved by a polynomial- time algorithm—is denoted by P. But, as we have seen, there are many prob lems for which no polynomial algorithm has ever been found;  these include the traveling salesman prob lem. However, if someone  were to propose a pos si ble cyclic route for a salesman to take, then we can certainly check in polynomial time  whether that route is cyclic, and  whether its length is less than the minimum length already known. 

At this point, we introduce NP, the set of “non- deterministic 

polynomial- time prob lems”.  These are prob lems for which a solution, when proposed, can be  checked in polynomial time; it follows that the traveling salesman prob lem is in NP. Indeed, the introduction of NP was partly due to Jack Edmonds, who had  earlier conjectured that the traveling salesman prob lem has no polynomial solution. 

Clearly, P is contained in NP,  because if a prob lem can be solved in polynomial time then a solution can certainly be checked in polynomial time— checking solutions is usually easier than finding them in the first place— and this leads naturally to a fundamental question that may have originated with Edmonds around 1967:

Is P = NP? 

Equality seems very unlikely— certainly, few  people believe that the answer to this question is “yes”,  because this would mean that all prob lems 
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for which a solution is easy to check would also be easy to solve. But this has never been proved. 

Stephen Cook and NP completeness

Impor tant insight into the “P versus NP” prob lem was provided by Stephen A. Cook, another American- born mathematician and computer scientist who moved to Canada.  After graduating from the University of Michigan in 1961 and receiving his doctoral degree at Harvard University in 1966 for the thesis  On the Minimum Computation Time of Functions, Cook taught at the University of California at Berkeley from 1966 

to 1970. When his position  there was not renewed, he transferred to the University of Toronto, where he remained. 

In 1971, Cook wrote a seminal paper, “The complexity of theoremproving procedures”,38 in which he considered a par tic u lar NP prob lem in mathematical logic called the  satisfiability  prob lem.  Here, the prob lem is to determine  whether  there is an assignment of truth values (true/ false) to the variables that makes a given logical expression true: for example, the expression

( a ∨  e ∨  i) ∧ ( ā ∨  e ∨  ī) ∧ ( a ∨  ē ∨  o) ∧ ( ā ∨  ī ∨  ō) (where the variables  ā,  ē,  ī, and  ō are the negations of  a,  e,  i, and  o) is true when  a and  e are true and  i and  o are false. 

Cook proved the startling result that any other prob lem in NP can be transformed into the satisfiability prob lem in polynomial time. It follows Stephen Cook (b. 1939). 
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that if the satisfiability prob lem is in P, then so also is every thing  else in NP and we can deduce that P = NP, but if the satisfiability prob lem is not in P, then P ≠ NP. So the  whole P versus NP question depends on  whether there is a polynomial algorithm for solving just one par tic u lar prob lem. 

Based on  these findings, Cook defined a prob lem to be NP - complete if its solution in polynomial time implies that   every NP prob lem can be solved in polynomial time.  These NP- complete prob lems include the satisfiability prob lem and hundreds of  others, such as the following: the traveling salesman prob lem; 

the Hamiltonian cycle prob lem: does a given graph have a Hamiltonian cycle? 

the 3- colorability prob lem: can the vertices of a given graph be colored in three colors? 

the isomorphism prob lem: are two given graphs isomorphic? 

A discussion of such prob lems appears in two survey articles by Richard Karp;39 it was in the first of  these that the notations P and NP  were introduced. More information can be found in Michael Garey and David Johnson’s classic text,  Computers and Intractability: A Guide to the Theory of  NP- Completeness,40 published in 1979, which includes a comprehensive list of more than three hundred NP- complete prob lems. If a polynomial algorithm could be discovered for any one of them, then polynomial algorithms would exist for them all, and P would equal NP. If, on the other hand, it could be proved that any one of  these prob lems has no polynomial algorithm, then none of the  others could have a polynomial algorithm  either, and P would be diff er ent from NP. 

Knowing  whether P = NP is not just a theoretical  matter. Many NP-complete prob lems are of  great practical importance, and an enormous amount of money is at stake, including a millennium prize of one million dollars offered by the Clay Mathe matics Institute for deciding the issue. But since the 1970s,  little pro gress has been made in settling this general  prob lem. 

It is also worthy of note that several winners of the prestigious A. M. 

Turing Award of the Association for Computing Machinery— Stephen Cook (1982), Richard Karp (1985), and John Hopcroft and Robert 

Tarjan (1986)— have all featured in our story. Indeed, graph theory has played a central role in the general development of the theory of algorithms and their complexity. Not only does algorithmic theory use examples from graph theory, but such examples and applications have been fundamental for creating some of its basic concepts. 
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THE FOUR COLOR THEOREM

For over twenty- five years, following the contributions of Philip Franklin, Clarence Reynolds, and C. E. Winn in the 1920s and 1930s (see 

Chapter 3),  little pro gress had been made in Amer i ca on solving the four color prob lem. Interest revived in the mid-1960s, however, partly though the publication of Oystein Ore’s book  The  Four- Color  Prob lem, and within just ten years the prob lem was fi nally conquered.41 Meanwhile, pro gress had already been made in Germany that would have major consequences for the eventual solution. 

Heinrich Heesch and Wolfgang Haken

Heinrich Heesch (pronounced “haish”) was born in Kiel, Schleswig-Holstein, in 1906.  After graduating in mathe matics and  music from the University of Munich, and receiving his doctoral degree from the University of Zürich for a dissertation on geometry, he moved to Göttingen University where he assisted Hermann Weyl with work on the geometry of crystals. Heesch soon achieved some recognition for constructing a tiling of the plane that answered a prob lem presented by David Hilbert; Hilbert had included it among the twenty- three prob lems that he posed at the 1900 International Congress of Mathematicians in Paris, thereby setting the agenda for mathematical research activity in the 20th  century. 

In 1935,  because of what was happening with the National Socialists and the Nazi work camps, Heesch resigned his university post and returned to Kiel.  Here, he earned his living as a schoolteacher  until he was able to gain employment at the Leibniz University Hannover ( later the Technische Universität of Hannover) and the University of Kiel. 

Heinrich Heesch became interested in the four color prob lem around 1935. He recalled that an unavoidable set of configurations is a collection of configurations, at least one of which must appear in any map, and that a reducible configuration is a configuration for which any coloring of the surrounding ring of regions can be extended to the regions inside (so that it cannot feature in a minimal counter- example to the four color theorem), and gradually came to believe that the best approach to solving the prob lem would be to search for an  unavoidable set of reducible configurations.  If such a set  were to exist, then  every map must include at least one of them, and yet none could appear in a counter- example to the theorem, and so the four color theorem would be true. By this time, unavoidable sets of configurations had been presented by Kempe, Wernicke, Franklin, and Lebesgue, and reducible configurations had been produced by Birkhoff, Franklin, Errera, Reynolds, and Winn. But Heesch feared that 
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the required unavoidable set would have to be very large, possibly amounting to many thousands of reducible configurations. 

In 1948, Heesch lectured on the four color prob lem at the University of Kiel to an audience that included the young Wolfgang Haken. Haken recalls Heesch mentioning that ten thousand special cases may need investigation. Five hundred of  these configurations had already been checked at a rate of one per day, and Heesch seemed optimistic about working through the remaining nine- and- a- half thousand. 

Haken also attended lectures on topology, where he learned of three long- standing unsolved prob lems: the  knot  prob lem, of determining whether any given tangle of string contains a knot; the  Poincaré  conjecture, concerning the classification of spheres in four- dimensional space; and the  four color prob lem. Haken explored the first of  these for his doctoral degree, awarded by the University of Kiel in 1953, and soon  after managed to solve the prob lem in full— a magnificent achievement that was rewarded by an invitation to lecture at the 1954 International Congress of Mathematicians in Amsterdam. 

Haken’s solution of the knot prob lem so impressed Bill Boone, a logician at the University of Illinois at Urbana– Champaign, that Haken was invited  there as a visiting professor. He then spent a  couple of years at the Institute for Advanced Study in Prince ton, before returning to a permanent position in Illinois.  There he worked on the Poincaré conjecture, which he reduced to the consideration of two hundred special cases. He managed to deal with no fewer than 198 of  these, but  after struggling with the remaining two for over ten years, he eventually gave up and turned his attention to the four color prob lem. The Poincaré conjecture was eventually proved by Grigori Perelman in 2004. 

Wolfgang Haken (b. 1928). 
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Unavoidable Sets and Reducible Configurations

In order to set the scene for Haken’s work on the four color theorem, we need to say more about unavoidable sets and reducible configurations, and this takes us back to the work of Heinrich Heesch. 

In the 1960s, Heesch developed a method for testing unavoidable sets of configurations, which Haken  later called the  method of discharging. We illustrate the idea by explaining why Wernicke’s set of configurations— a digon, a triangle, a square, two adjacent pentagons, and a pentagon ad-

joined to a hexagon (see Chapter 3)—is an unavoidable set. 

digon

triangle

square

two pentagons pentagon/hexagon

Wernicke’s unavoidable set. 

Let us assume that Wernicke’s configurations do not form an unavoidable set, so that  there is a cubic map that includes none of them; in such a map,  every pentagon can adjoin only regions with at least seven sides. 

By the Counting theorem given in Chapter 3, 

4 C 2 + 3 C 3 + 2 C 4 +  C 5 −  C 7 − 2 C 8 − 3 C 9 − 4 C 10 − · · · = 12, where, for each  k,  Ck is the number of  k- sided regions in the map. It follows that if  there are no digons, triangles, or squares, then

 C 5 −  C 7 − 2 C 8 − 3 C 9 − 4 C 10 − · · · = 12. 

We next assign to each region with  k sides an “electric charge” of 6 −  k, so that each pentagon receives a charge of 1, hexagons have zero charge, heptagons have charge −1, and so on. It follows from the preceding equation that the total charge of the regions of the map is 12, a positive number. We then move the charges around the map in 

such a way that no charge is created or destroyed— this is called  discharging the map. 

One way of moving the charges is to transfer one- fifth of a unit of charge from each pentagon to each of its five negatively charged neighbors with seven or more sides. The result of this operation is that each pentagon now has zero charge, each hexagon keeps its zero charge, and (as can easily be checked) no region with seven or more sides receives 
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enough contributions of  1  

5 to acquire positive charge. So all regions of 

the map now have zero or negative charge, but the total charge is still 12. From this contradiction, we deduce that Wernicke’s set of configurations is indeed an unavoidable set. 

6

1

5

2

4

3

The Birkhoff diamond. 

Let us now turn our attention to reducible configurations. In Chap-

ter 2, we claimed that the “Birkhoff diamond”, consisting of four pentagons surrounded by a ring of six regions, is a reducible configuration, in the sense that any coloring of the regions in the ring can be extended,  either directly or  after some Kempe- interchanges of color, to the pentagons inside. For, if the colors are red ( r), blue ( b), yellow ( y), and green ( g), then it can be shown that  there are thirty- one essentially diff er ent colorings of the regions in the ring, such as  rgrgrb and  rgrbry. Sixteen of  these (such as rgrgrb) are “good colorings”, in that they can be extended directly to the pentagons inside the ring, whereas the  others (such as  rgrbry) cannot. 

But by suitable Kempe- interchanges of color,  these latter colorings can all become good colorings, and so the Birkhoff diamond is reducible. 

 b

 r

 g

 r

 y

 y

 g

 b

 g

 r

Extending the good coloring  rgrgrb to the 

pentagons inside the ring. 

Heesch defined a configuration to be  D- reducible if  every coloring of the regions in the surrounding ring extends,  either directly or  after a 
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succession of Kempe- interchanges, to the interior regions—so a digon, a triangle, a square, and the Birkhoff diamond are all  D- reducible.  He also defined a configuration to be  C- reducible if it can be proved reducible  after it has been modified in some way, and he explored vari ous methods for  doing so. We  shall return to  these concepts shortly. 

By this time, almost every one working on the four color prob lem was using the dual formulation, first introduced by Kempe, of coloring the vertices of the corresponding planar graph, with adjacent vertices colored differently. In par tic u lar, Heesch introduced a notation that became widely used, in which he represented each vertex by a “blob” to make it more easily distinguishable; for example, vertices of degree 5, 6, 7, and 8 (corresponding to pentagons, hexagons, heptagons, and octagons) were represented respectively by ●, •, ○, and □.  In this section, we  shall continue with the original version for maps. 

pentagon

hexagon

heptagon

octagon

6

6

5

8

5

7

5

7

5

8

A Heesch drawing and a corresponding configuration of regions. 

In 1969, Heesch published a paperback book42 in which he presented his method of discharging and many of his other contributions to the solution of the four color prob lem. 

Enter the Computer

In 1967, Wolfgang Haken contacted Heinrich Heesch— who by this time had in ven ted the methods of discharging and had discovered thousands of reducible configurations— and invited him to lecture at the University of Illinois. During Heesch’s visit, Haken asked him  whether computers might help with the analy sis of large numbers of configurations. 

Heesch had already been thinking along similar lines and, with the help of Karl Dürre (a mathe matics gradu ate from Hannover), had developed a method for testing  D- reducibility that was sufficiently algorithmic to be carried out on the University of Hannover’s CDC 1604A computer. 


By the end of 1965, Dürre had verified that the Birkhoff diamond is 
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 D- reducible and had confirmed the  D- reducibility of many configurations of increasing complexity. 

The complexity of a configuration is usually mea sured by its  ring-size, the number of regions surrounding the configuration. As we have seen, the Birkhoff diamond has ring- size 6, with thirty- one essentially diff er ent colorings to be examined. Unfortunately, this number grows rapidly as the ring- size increases, as we can see from the following: ring- size: 6 7 8 9 10  11  12  13  14

 colorings: 31 91 274 820 2461 7381 22,144 64,430 199,291

Heesch and Dürre discovered that the time that their computer took to analyze a configuration grew rapidly as the ring- size increased, with a typical configuration with ring- size 12 taking six hours, and  those of ring- size 14 being then beyond reach. They also estimated that it might take many thousands of hours to examine all ten thousand cases that Heesch had predicted, and this was unrealistic for any computer of the time. Meanwhile, Edward F. Moore of the University of Wisconsin had discovered large and complicated maps that contained no known reducible configurations, and had deduced that any unavoidable set of reducible configurations must include at least one configuration with ring- size 12 or more.43

It was becoming clear that the Hannover computer could no longer carry out the work required of it, and Haken bid to the University of Illinois for time on a new parallel supercomputer whose construction was nearing completion. This was not yet ready for use, but the university’s computer department arranged for Heesch and Dürre to use the Cray Control Data 660 computer, the most power ful machine of its day, which was located at the Atomic Energy Commission’s Brookhaven National Laboratory in Long Island, New York. Helpfully, Yoshio Shimamoto, the computer center’s director, was an enthusiast for the four color prob lem and strongly supported Heesch’s approach to solving it. He invited Heesch and Dürre to visit Brookhaven for extended periods of time to continue their reducibility tests on the Cray computer. As a result, they  were able to confirm the  D- reducibility of over a thousand configurations with ring- size up to 13, and began to test some with ring-size 14. 

Meanwhile, Shimamoto was continuing with his own research into the prob lem and, unlikely though it may seem, showed that if he could find a single  D- reducible configuration with certain par tic u lar properties, then the four color theorem would follow—so the entire proof would 
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depend on just one configuration! On September 30, 1971, he discovered what he was seeking— a configuration with ring- size 14 with the required properties. This configuration became known as the  Shimamoto   horse shoe, and it remained only to confirm that it was indeed  D- reducible. 

6

6

6

8

6

6

5

5

Shimamoto’s   horse shoe 

configuration. 

By chance, Heesch and Haken  were visiting Brookhaven at that time. 

Heesch believed the  horse shoe to be one of his  D- reducible  configurations, and excitement ran riot as rumors about Shimamoto’s discovery began to spread around the world. But  things did not work out as he had hoped. Three lengthy computer runs to test the  D- reducibility  of the  horse shoe  were attempted, and in the last of  these the Cray computer was allowed to run for a  whole weekend.  After grinding on for twenty-six long hours, it eventually showed, to every one’s  great disappointment, that the  horse shoe was  not D- reducible. 

Haken then reworked Shimamoto’s theoretical arguments and found them to be completely correct— and this was confirmed in a lengthy and influential paper from an unexpected source. Hassler Whitney and Bill Tutte, the most distinguished graph- theorists of their day, had also 

“found no essential flaw in Shimamoto’s reasoning”, and concluded that the computer implementation must therefore be incorrect. They explained Shimamoto’s approach as follows:44

Shimamoto, on the assumption that the Four Colour Conjecture was false, showed that  there must be a non colourable map  M containing a configuration  H [the  horse shoe] that had already passed the computer test for  D 

reducibility. He then arrived at a contradiction by showing that the  D 

reducibility of  H implied the 4 colourability of  M . . .  The burden of proof was not now on a few pages of close reasoning, but on a computer! 

They also recalled how they had in de pen dently greeted the method of proof with “some misgivings and then with real scepticism”, adding: It seemed to both of us that if the proof was valid it implied the existence of a much simpler proof (to be obtained by confining one’s attention to one 
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small part of  M), and that this simpler proof would be so  simple that its existence was incredible. The pre sent paper is essentially the result of our attempts to give a proper mathematical form to our objection. 

Whitney and Tutte then presented a detailed discussion of Kempe chains, elementary reductions, and  D- reducibility, and explained at some length why the Shimamoto  horse shoe (and indeed  any configuration that was produced by his method) could not be  D- reducible. 

It seemed as though the four color prob lem had again reached a dead end. But Heesch’s approach was beginning to pay dividends, and in the hands of Appel and Haken would yield the eagerly desired goal within the next five years. 

A New Approach

In 1970, Heesch sent Haken the results of a new discharging experiment in which the positive charge on each pentagon was then to be distributed  equally to all neighboring regions with negative charge. He estimated that this pro cess would have the effect of reducing the prob lem to the consideration of  8900 “bad configurations”, extending up to ring-size 18, which he proposed to work through one at a time. 

By this time, Heesch had developed the uncanny knack of being able to look at a configuration and to predict, with at least 80  percent accuracy,  whether it was reducible. He invited Haken to collaborate with him, and in 1971 sent him three “obstacles to reducibility”, whose pres-ence seemed to prevent configurations from being reducible.  These  were: a 4 - legger  region, which adjoins four consecutive regions of the surrounding ring (marked with stars); 

a 3 - legger articulation region, which adjoins three regions of the surrounding ring that are not all adjacent; 

a  hanging 5 –  5  pair, a pair of adjacent pentagons that adjoin a single region inside the surrounding ring. 

*

*

*

 C

 C

 C

*

*

*

*

*

*

4-legger region

3-legger articulation region

hanging 5-5 pair
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But Haken was becoming increasingly pessimistic about being able to deal with so many thousands of configurations, and began to change his approach to the prob lem. Unlike every one  else’s method, which seemed to involve generating reducible configurations by the hundreds and attempting to package them up into an unavoidable set, Haken’s primary motivation (which he  later developed with Appel) involved aiming directly for an unavoidable set which contained configurations that seemed  likely to be reducible—in par tic u lar, they should not include any of the three obstacles to reducibility—in order to avoid wasting time checking configurations that would eventually be of no interest. Any configurations that subsequently proved not to be reducible could then be dealt with individually as necessary. As he  later commented:45

If you want to improve something, you should not improve that part which is already in good shape. The weakest point is always the one you should improve. This is a very  simple answer to why we got it and not the  others. 

So, from this point on, Haken headed in a diff er ent direction from every-one  else: he concentrated on the unavoidable set and left all details of the reducibility  until much  later. 

Even so, having  little knowledge of computing, Haken considered giving up the prob lem for a few years  until more power ful computers were available to deal with the massive calculations that would clearly be necessary. He had been told that his ideas could not be programmed, and during a lecture that he gave in Illinois on the  horse shoe episode,46 

he remarked that

The computer experts have told me that it is not pos si ble to go on like that. But right now I’m quitting. I consider this to be the point to which and not beyond one can go without a computer. 

Among  those attending Haken’s lecture was Kenneth Appel, who had graduated from Queens College, New York, before receiving his doctoral degree from the University of Michigan for a thesis on the application of mathematical logic to prob lems in algebra. As an experienced computer programmer, he had learned to program at the University of Michigan. He then gained further experience with Douglas Aircraft and the Institute for Defense Analyses at Prince ton, before settling at the University of Illinois at Urbana– Champaign. His experience was to prove invaluable for solving the four color prob lem. 

After the lecture, Appel told Haken that he considered the computer experts to be talking nonsense, and offered to work on the prob lem of implementing the discharging procedures for the creation of unavoidable sets:47
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I  don’t know of anything involving computers that  can’t be done; some  things just take longer than  others. Why  don’t we take a shot at it? 

Coincidentally, Appel was a member of the thesis examination panel for a research student of Haken’s who had just submitted his doctoral thesis on a special case of the four color prob lem. Hence, the collaboration could prove beneficial to all concerned. 

Haken was delighted to accept Appel’s offer to take care of the computing side of  things, and they agreed to concentrate their search on unavoidable sets, without taking time to check the configurations for reducibility. In par tic u lar, they focused on  geo graph i cally  good  configurations— 

those that contained neither of Heesch’s first two obstacles to reducibility: such configurations could easily be identified by computer or indeed by hand. They would then check their configurations for reducibility once the entire set had been constructed. 

Getting Down to Business

When they started work in late 1972, Appel and Haken’s first computer runs already provided much useful information. But the computer output was enormous, with many configurations appearing multiple times: it would be necessary to control  these duplications if the eventual list were to be manageable. Fortunately, the computer program had run in just a few hours, and so they would be able to experiment as much as they needed to. 

Kenneth Appel (1932–2013). 
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The necessary changes to the program proved to be straightforward to implement, and the next runs  were a definite improvement. As major prob lems  were overcome, lesser ones would emerge, and from then on, every two weeks or so, Appel and Haken modified the discharging algorithm or the computer program as necessary. This two- way dialogue with the computer continued, and as each successive difficulty was sorted out, new ones arose. Within six months of experimenting and improving their procedures, they came to realize that their goal of producing a finite unavoidable set of geo graph i cally good configurations in a reasonable amount of time was indeed feasible. 

At this stage, they de cided to prove  theoretically that their approach would provide such an unavoidable set: for this they would have to include  every pos si ble case, even if it  were unlikely to occur in practice. 

This proved to be more complicated than they had expected, but the eventual outcome, in the fall of 1974, was a lengthy proof that  an unavoidable set of geo graph i cally good configurations exists, together with an achievable method for constructing such a set.48

In early 1975, they introduced Heesch’s third obstacle to reducibility. 

This inevitably involved further changes in procedure, but was carried out successfully with only a doubling in the size of the unavoidable set. 

They also programmed the computer to search for sets of configurations with relatively small ring- size. At this stage, the computer started to think for itself, as Appel and Haken  later recalled:49

It would work out complex strategies based on all the tricks it had been 

“taught” and often  these approaches  were far more clever than  those we would have tried. Thus it began to teach us  things about how to proceed that we never expected. In a sense it had surpassed its creators in some aspects of the “intellectual” as well as the mechanical parts of the task. 

As soon as it seemed probable that they could find an obstacle- free unavoidable set of configurations that  were likely to be reducible, it would be time for them to start their massive detailed check on reducibility. Inevitably,  there would be some awkward configurations in the list, but they hoped that  these would be relatively few in number. With configurations that might extend to ring- size 16, or cause trou ble in other ways, they expected to have to find some clever shortcuts. 

In the  middle of 1974, realizing that they needed help with the reducibility programs, Appel visited the computer science department to ask whether any gradu ate student would be interested in joining them. John Koch had just learned that the thesis prob lem on which he was working had been solved by someone  else, and was seeking another topic. 
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He was quickly set to work on the  C- reducibility of configurations, where the configuration in question could be modified so that the reducibility arguments would go through, but where it was not always clear how this might be done. Appel and Haken  were particularly interested in modifications that could easily be implemented, and Koch discovered that most configurations with ring- size 11  were of this kind. Arguing that little would be gained by including the  others, which would have been difficult to program, he focused on  simple modifications, devising an elegant method for testing the  C- reducibility of all configurations with ring- size 11. Appel was then able to extend this method to configurations with ring- sizes 12, 13, and 14. 

Throughout the first half of 1976, Appel and Haken worked on the final details of the discharging procedure, in order to produce the desired unavoidable set of reducible configurations. To do so, they sought 

“prob lem configurations” that would necessitate further changes to the discharging procedure and, on finding one, would immediately test it for reducibility— this could usually be done fairly quickly. In this way, the reducibility testing by computer could keep pace with the manual construction of the discharging procedure. The final pro cess involved 487 discharging rules, requiring the investigation by hand of about ten thousand neighborhoods of regions with positive charge, and the reducibility testing of some two thousand configurations by computer. 

Because awkward configurations sometimes took a long time to check, Appel and Haken imposed a limit of thirty minutes on each one. If it could not be proved reducible during this time, it was abandoned and replaced by other configurations: finding  these was usually a straightforward pro cess. By way of comparison, they estimated that checking the computer output for a difficult configuration by hand might take someone who was working 40- hour weeks about five years to complete. 

The last few months  were extremely heavy on computer time, but  here, Appel, Haken, and Koch  were fortunate, as the University of Illinois’s computer center allowed them access when the computer was not other-wise in use. In March  1976, a power ful new computer was bought by the university’s administrators, and  because Appel seemed to be the only scientist who could get the machine to run properly, he initially became almost its only user, with a valuable fifty hours of computer time over the spring break. 

The new computer proved to be so power ful that every thing proceeded far more quickly than they had expected, saving Appel and Haken (by their own estimation) a full two years on the reducibility testing. Suddenly, by late June, and almost before they realized what was 
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The computer output for one of Appel and Haken’s reducible configurations. 

happening, the entire job was finished: working with his  daughter, Haken had completed the construction of the unavoidable set, and within two days Appel was then able to test the final configurations for reducibility. Appel duly celebrated their achievement by placing a notice on the department’s blackboard:

Modulo careful checking, 

it appears that

four colors suffice. 

This phrase,  four colors suffice, subsequently became the department’s postal meter slogan. 

All that remained to be done was the final checking, which needed to be carried out speedily  because Appel had arranged a sabbatical visit to France and was due to leave in late July. Although they had not fully realized it, time was indeed of the essence, as they feared that several other map colorers  were near to solving the four color prob lem—as was indeed the case:

At the University of Waterloo in Ontario, Frank Allaire had the best reducibility methods around. By 1976, he was several months 

ahead of Appel and Haken in his investigations into reducibility, and was expecting to complete his solution within a few months. 

At the University of Rhodesia (now the University of Zimbabwe), Ted Swart, a former chemist who had carried out the first radiocar-bon dating in Africa, had submitted a paper to the  Journal of 
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 Combinatorial Theory and was informed by its editor, Bill Tutte, that Allaire was working along similar lines. Allaire and Swart pooled their results and submitted a paper just before Appel and Haken’s proof was announced: this described an algorithm for determining reducibility, and listed all the reducible configura-

tions with ring- size 10 or less. 

At Harvard, doctoral student Walter Stromquist had been devel-

oping power ful new methods for tackling the prob lem and ex-

pected to complete his solution within a year. 

Although no one was aware just how close  others  were to completing their solutions, Appel and Haken suspected that it would be too risky to delay, especially if a rumor  were to leak out that they had almost reached their goal. 

They had no time to lose. Drafting in their  children to help, they immediately set to work, and within a few weeks they had completed the task, producing an unavoidable set of 1936 reducible configurations. By this stage, they knew that they  were safe: even if a few configurations had turned out not to be reducible  after all,  there was more than enough self- correction in the system for  these to be replaced easily and quickly. 

It was not pos si ble for a single faulty configuration, if one existed, to destroy the entire edifice. 

Armed with this confidence, Appel and Haken went public, and on July 22, 1976, they formally informed their colleagues and sent out complete preprints to every one in the field. One recipient was Bill Tutte, who two years  earlier had written an article in the  American Scientist, claiming that  people who used Appel and Haken’s approach  were real optimists, because their method seemed extremely unlikely to work.50 But when he heard the news, he waxed eloquent, comparing their achievement with the slaying of a fabled Norwegian sea monster:51

Wolfgang Haken

Smote the Kraken

One! Two! Three! Four! 

Quoth he: ‘The monster is no more’. 

And when Tutte was interviewed by  The New York Times, he replied: If they say  they’ve done it, I have no doubt that  they’ve done it. 

Appel and Haken  were delighted that a mathematician of Tutte’s stat-ure should have given his positive support so quickly. His endorsement would go a long way to setting  people’s minds at rest, while a lukewarm response might have cast doubts on their solution. 
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Some of Appel and Haken’s reducible configurations. 

On July  23, 1976, the following report appeared in  The Times of London:52

Two American mathematicians have just announced that they have solved a proposition that has been puzzling their kind for more than 100 years . . . 

Their proof, published  today, runs to 100 pages of summary, 100 pages of 
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detail and a further 700 pages of backup work. It took each of them about 40 

hours research a week and 1000 hours of computer time. Their proof contains 10,000 diagrams, and the computer printout stands four feet high on the floor. 

Other newspapers around the world, from the German  Neue Zürcher Zeitung to the Japa nese  Asahi Shinbun, latched on to the story and  there was  great excitement. The solution was featured in  Time, and some of the configurations appeared on the front cover of  New Scientist. In the September 1976 issue of its  Bulletin, the American Mathematical Society published the following two- page “Research Announcement” by Appel and Haken, outlining the main ideas of their proof.53 They also wrote another short note in  Discrete  Mathe matics and a lengthy article in Scientific American.54

K. Appel and W. Haken:  Every planar map  

is four colorable (1976)

Appel and Haken’s research announcement opened with the fol-

lowing words:

The following theorem is proved. 

THEOREM.   Every planar map can be colored with at most four colors. 

After remarking that they would be considering the prob lem in its dual formulation of coloring the vertices of a planar graph, the authors further restricted their attention to triangulations with all vertices of degree 5 or more, corresponding (in the map formulation) to cubic maps containing no digons, triangles, or squares. 

They then introduced a  configuration as a subgraph of a planar triangulation consisting of a cir cuit (or  ring) and its interior, and a reducible configuration as one for which “it can be shown by certain standard methods that it cannot be immersed in a minimal coun-terexample to the four color conjecture”. This referred to  earlier work on reducibility by Kempe, Birkhoff, and Heesch.  After recalling that “A set of configurations is called  unavoidable if  every planar triangulation contains some member of the set”, they confirmed that It is immediate that the four color theorem is proved if an unavoidable set of reducible configurations is provided. 

Appel and Haken asserted that “the most efficient known method 

for producing unavoidable sets” is the method of discharging, 
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which “treats the planar triangulation as an electrical network with charge assigned to the vertices”. Declaring that “the major effort in the work was involved in the development of the discharging procedure”, they remarked that— although they had made extensive use of the computer when developing the discharging algorithms— the eventual algorithm was technically simpler than in their  earlier approaches and had been implemented by hand. As they explained:

The method actually produces a class of discharging algorithms which differ from one another only in minor details . . .  The par tic u lar procedure chosen was determined principally to avoid configurations of ring size greater than fourteen and to employ configurations whose reducibility could be proved without exorbitant use of computer time. The algorithm produced a set U of fewer than 2000 configurations, each of ring size fourteen or smaller. 

They then turned to reducible configurations, giving credit to 

“H. Heesch, S. Gill, and F. Allaire and E. R. Swart”, and confirm-ing the involvement of John Koch. They emphasized that their reducibility techniques “ were designed for speed and efficiency in treating  those configurations they could prove reducible”. 

Fi nally, they accepted that their configurations did not constitute a smallest pos si ble such list, suggesting that minor changes in both the discharging algorithm and the reduction procedures might reduce the list by at least 25  percent. They concluded by insisting that It seems unlikely, however, that the theorem could be proved by  these methods in a way which would avoid massive computations which required the use of computers. This last conclusion is supported by work of E. F.  Moore and probabilistic calculations of the authors which indicate that such an argument always requires configurations of ring size fourteen. 

Appel and Haken de cided to submit their full solution to the  Illinois Journal of Mathe matics, and the resulting paper was a substantial improvement on the rough- and- ready preprint that they had sent out in July 1976. In par tic u lar, they had discovered that their preprint included repeated configurations and many instances of one configuration containing another. By eliminating  these superfluous configurations, they 
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Appel and Haken’s first paper for the  Illinois Journal of Mathe matics. 

were able to reduce their original list of 1936 reducible configurations to the 1482 configurations of the published version. 

Their solution appeared in two parts, in the December 1977 issue of the  Illinois Journal of Mathe matics.55 Part I,  Discharging, written by the two of them, outlined the overall strategy of their proof and described their methods of discharging for constructing the unavoidable set. 

Part II,  Reducibility, written with John Koch, described the computer implementation and listed the entire unavoidable set of reducible configurations.  These  were supplemented by a microfiche that contained 450 pages of further diagrams and detailed explanations. 

Appel and Haken had achieved their goal:

 the four color theorem was proved. 

Aftermath

As we have seen, the 1960s and 1970s witnessed greatly increased activity in graph theory and combinatorics in Amer i ca and around the world, but the observations that we made in Chapter 6 represent only part of the story. Alongside the opening of the University of Waterloo’s Department of Combinatorics and Optimization in 1967, de-

partments of mathe matics and computer science in universities and colleges throughout Amer i ca  were increasingly hiring faculty members whose research interests lay in combinatorics and graph theory, and the curriculum was gradually expanded to include  these and related subjects. 

Meanwhile, international conferences on combinatorics and graph theory  were becoming more frequent occurrences. The first of  these had been a conference on combinatorics that took place in 1959 in Dobogókő, Hungary, and this was followed by other Eu ro pean meetings in Germany, Czecho slo va kia, Hungary, and  England. In the United States, the Chapel Hill combinatorics conferences at the University of North Carolina commenced in 1967, to be followed a year  later by the first of the Kalamazoo quadrennial meetings on graph theory at Western Michigan University. 

The series of Southeastern International Conferences on Combinatorics, Graph Theory, and Computing began in 1970 at Louisiana State University in Baton Rouge, and  these annual meetings have continued to this day, now taking place at Florida Atlantic University in Boca Raton. 

Several of  these meetings issued conference proceedings, and  there was a corresponding increase in other books on graph theory and combinatorics.  Those by Claude Berge and Oystein Ore, mentioned in Chapter 6,  were succeeded by Robert G. Busacker and Thomas L. 

Saaty’s   Finite Graphs and Networks: An Introduction with Applications, which appeared in 1965, and  these  were soon complemented by Mehdi Behzad and Gary Chartrand’s  Introduction to the Theory of Graphs in 
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1971, Robin Wilson’s  Introduction to Graph Theory, in 1972, and J. A. Bondy and U.S.R. Murty’s  Graph Theory with Applications in 1976.1 In combinatorics,  there  were corresponding introductions to the subject by John Riordan, Herbert Ryser, Marshall Hall Jr., C. L. (Dave) Liu, and Ian Anderson.2

Meanwhile, books on specific areas of graph theory began to appear with increasing frequency, to join Ford and Fulkerson’s  Flows in Networks, Harary, Norman, and Cartwright’s  Structural Models, and Harary and Palmer’s  Graphical Enumeration (mentioned in Chapter 5), and Ore’s  The Four- Color  Prob lem, Ringel’s  Map Color Theorem, and Garey and Johnson’s Computers and Intractability (see Chapter 6).  These new works included two volumes edited by Frank Harary,  Graph Theory and Theoretical Physics and  A Seminar on Graph Theory (1967), and monographs by W. T. Tutte,  Connectivity in Graphs (1966), and John Moon,  Topics on Tournaments (1968). Among those published in the 1970s  were books by John Moon,  Counting Labelled Trees (1970), Richard Bellman, Kenneth L. Cooke, and Jo Ann Lockett,  Algorithms, Graphs and Computers (1970), Arthur  T. White, Graphs, Groups and Surfaces (1973), Paul Erdős and Joel Spencer, Probabilistic Methods in Combinatorics (1974), and Fred S. Roberts,  Discrete Mathematical Models (1976).3 Also in 1976, N.  L. Biggs, E.  K. 

Lloyd, and R.  J. Wilson produced  Graph Theory 1736–1936, on the early history of the subject.4 A  couple of years  later, Lowell W. Beineke and Robin J. Wilson edited  Selected Topics in Graph Theory and Applications of Graph Theory,5 the first of their many collections of survey chapters by well- known experts. 

New journals emphasizing research in graph theory  were also being developed. In 1966, the  Journal of Combinatorial Theory was founded by Frank Harary and Gian- Carlo Rota,  later to be divided into Series A on combinatorial structures and Series B on graphs. This was followed soon after  by   Discrete  Mathe matics in 1971, the  Journal of Graph Theory in 1977, and many  later ones. 

SOME  RESEARCH TOPICS

On the research side,  there was also an explosion of activity in the 1960s and 1970s. Alongside the subjects covered in Chapter  6, new areas of study within graph theory  were developing, including generalized Ramsey theory, generalized colorings, traversability, connectivity, random graph theory, extremal graph theory, graph decompositions, labelings, 
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and coverings. The following topics are among  those explored at this time by graph theorists from the United States and Canada. 

Moore Graphs

The  dia meter of a graph is the maximum distance between any two vertices of the graph, and the  girth is the length of the shortest cycle in the graph. 

A  Moore graph (named  after Edward F. Moore) is a regular graph with dia meter   k and girth 2 k + 1. In 1960, Alan Hoffman and Robert Singleton of IBM proved that the only Moore graphs with dia meter 2 are graphs that are regular of degree 2 (the cycle with five vertices), degree 3 (the Petersen graph), degree 7 (the so- called “Hoffman– Singleton graph”), and possibly one of degree 57 whose existence is still unknown.6 The only Moore graph with dia meter 3 is the cycle with seven vertices, and  there are no Moore graphs with dia meter greater than 3. 

The Hoffman– Singleton graph with 50 vertices. 

Degree Sequences

The  degree sequence of a graph is a list of the degrees of the vertices, usually in decreasing order. In 1962, the Iranian– American graph theorist S. L. Hakimi, of Northwestern University in Illinois, characterized  those lists that are the degree sequences of graphs.7 His well- known result had  earlier been discovered in de pen dently by Václav Havel and published in Czech. 
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Two graphs with degree  

sequence (4, 3, 3, 2, 2, 2). 

Tournaments

A  tournament is a complete graph in which a direction has been assigned to each edge. In 1964, John Moon of the University of Alberta in Edmon-ton, Canada, explained why no tournament has a group of symmetries with an even number of ele ments. He also showed that  every abstract group with an odd number of ele ments is the group of symmetries of a tournament—in fact, of infinitely many.8

 v

 z

 w

 y

 x

A tournament with 

five vertices. 

Matroids

Following Bill Tutte’s characterizations of graphic and cographic matroids in 1959 (see Chapter 5), his interest in the subject continued. In 1964, the National Bureau of Standards in Washington, DC, hosted the first conference on matroid theory, or ga nized by Jack Edmonds, and at this meeting Tutte presented some notable “Lectures on matroids”.  These were then published in the conference’s proceedings, together with an analog for matroids of Menger’s theorem that had originally appeared in Tutte’s Cambridge doctoral thesis.9

Line Graphs

An  induced subgraph of a graph  G is a subgraph  H with the property that every edge of  G with both of its ends in  H is also an edge of  H. As we saw in Chapter 4, the  line graph L( G) of a graph  G is the graph whose vertices correspond to the edges of  G, with two vertices adjacent whenever the corresponding edges of  G meet at a common vertex. In 1968, 
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Lowell W. Beineke of Purdue University, Fort Wayne, Indiana, characterized line graphs in terms of nine forbidden induced subgraphs.10

The nine forbidden induced subgraphs for line graphs. 

Probability

In his early papers on Ramsey numbers, Paul Erdős introduced the  probabilistic method used to prove the existence of certain mathematical objects with a par tic u lar property (such as being a certain type of graph) by showing that the probability of an object existing with that property is strictly positive. Such proofs give no clue as to how to construct a specific object of this type. The first construction of this kind seems to have been produced by Ron Graham and Joel Spencer in 1971, for a specific type of tournament whose existence had been predicted eight years  earlier by Erdős using the probabilistic method.11

Hamiltonian Graphs

In Chapter 6, we presented Oystein Ore’s theorem, that a graph with  n vertices is Hamiltonian if deg ( v) + deg  ( w) ≥  n whenever the vertices  v and  w are not adjacent. This result was generalized in 1971 by J. Adrian Bondy of the University of Waterloo.12 He defined a graph  G with  n vertices to be  pancyclic if it contains cycles of all lengths from 3 to  n, and 
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proved that if Ore’s condition holds, then the graph is  either pancyclic or is the complete bipartite graph  Kn/2,  n/2.  Later, he developed  these ideas with Václav Chvátal to prove that a graph is Hamiltonian if and only if its closure is Hamiltonian, where the  closure of a graph is the graph (not necessarily complete) obtained by successively joining pairs of non-adjacent vertices whose degrees add up to at least  n. 

 A
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 D

 E

 D
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 D

Forming the closure of a graph. 

Voltage Graphs

Also in Chapter 6, we saw how William Gustin introduced current graphs, where Kirchhoff’s current law is satisfied, when solving the “thread prob lem” of drawing complete graphs on orientable surfaces. In 1974, Jonathan Gross of Columbia University introduced the dual idea of a voltage graph, where Kirchhoff’s voltage law is satisfied.13  These have turned out to be a more natu ral and flexible setting for some prob lems on the embedding of graphs on surfaces. 

Graph Embeddings

In Interlude B, we met Kuratowski’s theorem, which states that a graph is planar if and only if it contains no subgraph that is homeomorphic to the complete graph  K 5 or the complete bipartite graph  K 3, 3. The question then arises  whether  there are corresponding lists of “forbidden subgraphs” for other surfaces. In 1977, Henry Glover and John P. Huneke of the Ohio State University proved that a graph can be embedded in a projective plane if and only if it contains no subgraph that is homeomorphic to one of 103 graphs.14 This was the first surface, other than the sphere, for which an explicit list of forbidden subgraphs had been produced. 

THE GRAPH MINORS PROJ ECT

Central to the subsequent development of graph theory has been the 

“Graph Minors Proj ect”, an extended program of activity undertaken by Neil Robertson of Ohio State University and Paul Seymour, originally 
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from Oxford University, but  later resident at Ohio State before moving to Prince ton University. Working together with vari ous collaborators for two months of  every summer from around 1983 to 2004, they succeeded in solving an astonishing number of difficult prob lems in graph theory, including the following:

Generalizing  Kuratowski’s Theorem

Continuing on from the results of Kuratowski, and of Glover and Huneke (as mentioned above), Robertson and Seymour announced in 1984 that they had proved that  there is a finite collection of forbidden subgraphs for any surface,  whether orientable or non- orientable. Their full proof of this remarkable result was eventually published in 2004.15

Hadwiger’s Conjecture

In 1943, the Swiss mathematician Hugo Hadwiger conjectured that every  connected   k- colorable graph could be reduced to the complete graph  Kk by contracting edges (see Chapter 5). 16 Hadwiger proved this conjecture for  k = 2, 3, and 4, and its truth for  k = 5 was shown to be equivalent to the four color theorem, and was thereby confirmed in 1976. 

In 1993, Robertson and Seymour, together with Robin Thomas, proved Hadwiger’s conjecture for  k = 6,  after a long and difficult strug gle that again used the four color theorem.17 It is not known  whether the conjecture is true when  k > 6. 

The Four Color Theorem

Appel and Haken’s somewhat ad hoc proof of the four color theorem was greeted with enthusiasm, but also with dismay by  those who questioned the validity of a computer- assisted proof whose details could not be checked by hand. Around 1994, by using essentially the same approach as Appel and Haken had, but applying it more systematically, Robertson and Seymour, in collaboration with Daniel Sanders and Robin Thomas, presented a new proof which involved only 633 reducible configurations and could be checked directly on one’s own personal computer in a  matter of hours.18 This proof was widely accepted and later formally verified as correct.19
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Perfect Graphs

In 1961, Claude Berge defined a graph to be  perfect if the chromatic number and the clique number (the size of the largest complete subgraph) are equal for the graph and for each of its induced subgraphs, and he made the following conjecture:20

 Strong perfect graph conjecture: A graph is perfect if and only if it contains no odd cycle or its complement as an induced subgraph. 

In 1972, László Lovász had proved the following weaker form of this conjecture:21

A graph is perfect if and only if its complement is perfect. 

The strong form of the conjecture was much more difficult to prove. This was eventually achieved in 2002 by Robertson and Seymour, together with Maria Chudnovsky and Robin Thomas, and published in 2006.22


* * * * *

The development of graph theory in Amer i ca over the  century from 1876 

to 1976 was truly remarkable— from James Joseph Sylvester’s appointment at Johns Hopkins University, and the  later advances by Oswald Veblen, George Birkhoff, Philip Franklin, and Hassler Whitney, to the subsequent development of graph algorithms, the achievements of Bill Tutte, and the proofs of the Heawood conjecture by Gerhard Ringel and Ted Youngs, and the four color theorem by Kenneth Appel and Wolfgang Haken.  These  were not the only mathematicians in North Ameri ca to advance the subject, as we have seen, but they  were undoubtedly among the most significant, as they helped to prepare the ground for the subsequent explosion of activity by many thousands of graph theorists throughout the world. 


G L O S S A R Y

abstract dual  A form of graph duality in which two connected graphs  G and G* are duals if  there is a one– one correspondence between their edge- sets with the property that a set of edges in  G forms a cycle of  G if and only if the corresponding set of edges of  G* forms a cutset of  G*; this form of duality was introduced by Hassler Whitney in 1933. 

adjacent edges  Two edges in a graph that share a common vertex. 

adjacent vertices  Two vertices in a graph that are joined by an edge. 

algorithm  A finite step- by- step pro cess for solving a prob lem. 

analy sis  situs  The study of position or situation, now called  topology. 

assignment  prob lem  A matching prob lem in a weighted bipartite graph where the object is to assign applicants in an optimal way to jobs for which they are qualified. 

balanced signed graph  A signed graph in which  every cycle has an even number of negative edges. 

base of a matroid  A maximal in de pen dent set in a matroid; for a connected graph, the bases are the spanning trees. 

binary matroid  A matroid that can be represented as a set of vectors in a vector space over the field of two ele ments, 0 and 1. 

bipartite graph  A graph whose vertices can be divided into two sets  A and  B 

so that  every edge joins a vertex in  A to a vertex in  B. 

Birkhoff diamond  A reducible configuration consisting of four pentagons surrounded by a ring of six regions; it was introduced by G. D. Birkhoff in 1913. 

block A maximal connected subgraph with no cut- vertices— that is, a maximal non- separable  graph. 

boundary  An edge bordering two neighboring countries (regions) of a map. 

Brahana’s theorem   Every surface is topologically equivalent to  either some orientable surface or some non- orientable surface. 

breadth- first  search  A search method for graphs in which one starts at an arbitrary vertex and explores all of its neighboring vertices before moving on to more distant vertices. 

capacitated network  A directed graph in which each arc is assigned a positive number (its capacity) that represents the maximum amount of flow allowed along it. 

Cayley’s theorem  The number of labeled trees on  n vertices, or of spanning trees in the complete graph  Kn, is  nn −   2. 

ceiling function  The function that rounds up a real number  x and whose output is denoted by ⎡ x⎤; for example, ⎡π⎤  =  4,  ⎡−π⎤  =  −3, and ⎡7⎤  =  7. 

chromatic number of a graph  The smallest number  k for which the vertices of a graph can be colored with  k colors, so that adjacent vertices are colored differently. 
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chromatic number of a map  The smallest number  k for which the regions of a map can be colored with  k colors, so that neighboring regions are colored differently. 

chromatic number of a surface  The smallest number  k for which the vertices of any graph, or the regions of any map, drawn on the surface can be colored with  k colors with adjacent vertices, or neighboring regions, colored differently. 

chromatic polynomial of a graph  The number of ways of coloring the vertices of a graph with a given number of colors, so that adjacent vertices receive diff er ent colors; it is always a polynomial in the number of colors. 

chromatic polynomial of a map  The number of ways of coloring the regions of a map with a given number of colors, so that neighboring regions receive diff er ent  colors. 

cir cuit of a matroid  A minimal dependent set in a matroid; for a graph, the cir cuits are the cycles. 

cographic matroid  A matroid that is the cutset matroid of some graph. 

coloring of a graph or map  An assignment of colors to the vertices of a graph, or the regions of a map, so that adjacent vertices, or neighboring regions, are colored differently. 

combinatorial dual  A form of dual graph whose definition depends on the rank and nullity of its subgraphs; introduced by Hassler Whitney, it is sometimes called the  Whitney dual. 

combinatorial topology  An  earlier name for what is now called  algebraic topology. 

combinatorics  The branch of mathe matics that is primarily concerned with the arrangement and enumeration of ele ments of a (usually finite) set. 

complete bipartite graph  A bipartite graph whose vertices are divided into two sets  A and  B such that  every vertex in  A is joined to  every vertex in  B by an edge; if the sets  A and  B have  r and  s vertices, the complete bipartite graph is denoted by  Kr,  s. 

complete graph  A graph in which  every vertex is joined to  every other vertex; the complete graph with  n vertices is denoted by  Kn. 

complete matching  See perfect matching. 

complete set of cycles  A set of cycles in a graph with the property that  every cycle of the graph can be written as a sum (modulo 2) of cycles in the set. 

complexity  The study of the efficiency of algorithms for solving prob lems. 

component  The separate pieces of a graph; in each component  there is at least one path between each pair of vertices. 

configuration in a graph  A collection of vertices that are surrounded by an outside ring of vertices. 

configuration in a map  A collection of regions that are surrounded by an outside ring of regions. 

connected component  See component. 

connected graph  A graph that is in one piece, so that  there is at least one path between each pair of vertices. 

connectivity of a graph  A mea sure of how connected a connected graph is; a connected graph is  k- connected if  k is the smallest number of vertices whose deletion disconnects the graph or leaves a single vertex. 
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contracting an edge  Removing an edge  vw and identifying the vertices  v and w so that all edges that  were formerly incident with  either  v or  w are now incident to the new vertex. 

Counting theorem  If, for each  k ≥ 2,  Ck is the number of  k- sided regions in a cubic map, then

4 C 2  +  3 C 3  +  2 C 4  +   C 5  −   C 7  −  2 C 8  −  3 C 9  −  4 C 10  − · · ·  =  12. 

 C- reducible  configuration  A configuration that can be proved to be reducible only  after it has been modified in some way. 

critical path analy sis  The study of prob lems involving the scheduling of key tasks in a proj ect; it usually involves finding longest paths between the vertices of a graph or network. 

cross- cap  To add a cross- cap to a surface, cut a hole in the surface, and identify the boundary of the hole with the edge of a Möbius band. 

cubic graph  A graph in which exactly three edges meet at each vertex cubic map  A map in which exactly three regions and three boundary lines meet at each point. 

current graph  A network of arcs labeled with numbers that satisfy Kirchhoff’s current law; current graphs  were used in the proof of the Heawood conjecture to produce rotation schemes, and in solving the prob lem of squaring the square. 

cutset (or minimal cutset)  A set of edges whose removal splits a connected graph into two pieces, and is minimal with re spect to this property. 

cutset matroid  A matroid whose cir cuits correspond to the cutsets of a graph. 

cut- vertex  A vertex whose deletion increases the number of components of a graph. 

cycle  A sequence of distinct alternating vertices and edges of a graph (where each edge joins the preceding and succeeding vertices) that returns to the starting vertex; a cycle can be represented by a list of the form v 0,  e 1,  v 1,  e 2,  v 2, . . .  ,  vn−1,  en ,  v 0. 

cycle matroid  A matroid whose cir cuits correspond to the cycles of a graph. 

degree of a vertex  The number of edge- ends attached to that vertex. 

deleting an edge  Removing an edge  vw from a graph, leaving the vertices  v and  w. 

deleting a vertex  Removing from a graph a vertex and all of its incident edges. 

dependent set in a matroid  A minimal set of ele ments that contains a cir cuit. 

depth- first  search  A search method for graphs in which one starts at an arbitrary vertex and penetrates the graph as deeply as pos si ble before backtracking to other vertices. 

dia meter of a graph  The maximum distance between any two vertices of the graph. 

digon  A two- sided region in a map. 

discharging  See method of discharging. 

distance between two vertices  The number of edges in a shortest path joining the vertices. 

 D- reducible  configuration  A configuration in which  every coloring of the regions in the surrounding ring is a proper coloring, or may be converted into one by applying the method of Kempe chains. 
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dual graph  To construct a (geometric) dual  G* of a plane drawing of a planar graph  G, place a vertex of  G* inside each region of  G (including the external region), and for each edge of  G join the vertices of  G* in the regions on each side of the edge with an edge of  G* crossing the edge of  G. 

dual matroid If 

 M is a matroid with bases  B, then its dual matroid is the matroid whose bases are the complements of the bases of  M. 

edge A line or curve joining two vertices of a graph or a boundary line between two regions of a map. 

Euler’s formula (for polyhedra)  If a polyhedron has  F   faces,  E edges, and V vertices, then  F −  E +  V = 2; this was first observed by Leonhard Euler in 1750. 

Euler’s formula for maps on a plane or sphere  For any map drawn on a plane or sphere, 

(number of regions) − (number of edges) + (number of vertices) = 2. 

Euler’s formula for maps on a non- orientable surface  For any map drawn on the non- orientable surface  Nq with  q  cross- caps, (number of regions) −  (number of edges) + (number of vertices) = 2 −  q. 

Euler’s formula for maps on an orientable surface  For any map drawn on the orientable surface  Sg with  g   handles, 

(number of regions) − (number of edges) + (number of vertices) = 2 − 2 g. 

exponential- time  algorithm  An algorithm whose  running time is proportional to  kn (for some number  k > 1), where  n is the input size. 

external region  The unbounded region of a map or a plane drawing of a planar graph. 

Fano matroid  A matroid whose bases are all  triples of integers from 1 to 7, except  those corresponding to the lines of a Fano plane. 

Fano plane  A geometric configuration with seven points and seven lines, with three points on each line, and three lines through each point. 

floor function  The function that rounds down a real number  x and whose output is denoted by ⎣ x⎦; for example, ⎣π⎦  =  3,  ⎣−π⎦  =  −4, and ⎣7⎦  =  7. 

flow in a network  An allocation of a non- negative number to each edge of a capacitated network so that the flow along each arc does not exceed the capacity of the arc and the total flow into any vertex (other than the start and terminal vertices) equals the total flow out of it. 

four color prob lem for graphs  Can the vertices of  every planar graph be colored with at most four colors so that adjacent vertices are colored differently? 

four color prob lem for maps  Can the regions of  every map drawn on a plane or the surface of a sphere be colored with at most four colors so that neighboring regions are colored differently? 

four color theorem  The regions of  every map drawn on a plane or the surface of a sphere can be colored with at most four colors so that neighboring regions are colored differently. Equivalently, the vertices of  every planar graph can be colored with at most four colors so that adjacent vertices are colored differently. 

genus of a surface  An orientable surface is of genus  g if it is topologically equivalent to a sphere with  g  handles; examples are the sphere ( g = 0) and the torus ( g = 1). 
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A non- orientable surface is of genus  q if it is topologically equivalent to a sphere with  q cross- caps; examples are the projective plane ( q  = 1) and the Klein   bottle  ( q = 2). 

geo graph i cally  good  configuration  A configuration that contains neither of Heesch’s first two obstacles to reducibility. 

geometric dual  See dual graph. 

girth of a graph  The number of edges in a shortest cycle of the graph. 

good algorithm  Another name for a polynomial- time algorithm. 

good coloring  A coloring of a ring of regions that can be extended directly to a coloring of the regions within the ring. 

graph  A set of vertices (usually finite) and a set of unordered pairs of vertices, called edges, where each edge joins two vertices; when an edge joins a vertex to itself it is called a loop. 

graphic matroid  A matroid that is the cycle matroid of some graph. 

greedy algorithm  An algorithm in which one makes the optimal choice at each stage; an example is Kruskal’s algorithm for the minimum spanning tree prob lem. 

Hadwiger’s conjecture   Every  connected   k- colorable graph can be reduced to the complete graph  Kk by contracting some edges. 

Hall’s “marriage” theorem  Suppose that each of a collection of boys is acquainted with a collection of girls. Then each boy can marry one of his acquaintances if and only if, for each number  k,  every set of  k boys is collectively acquainted with at least  k girls. 

Hamiltonian cycle  A cycle in a graph that includes  every vertex. 

Hamiltonian graph  A graph that has a Hamiltonian cycle. 

Heawood conjecture for a non- orientable surface  For each  q ≥ 1, the chromatic number of the surface   N

⎢

⎥

⎣ (

)

 q is  χ(  N q) = 12 7 + 1 + 24 q ⎦, except that χ( N 2) = 6; equivalently, the non- orientable genus of  Kn ( n ≥ 3) is  ˆ g( Kn) = 1

⎡⎢ 6( n − 3)( n − 4)⎤⎥, 

except that  ĝ( K 7) = 3. 

Heawood conjecture for an orientable surface  For each  g ≥ 1, the chromatic number of the surface  S

⎢

⎥

⎣ (

)

 g is  χ( Sg) = 12 7 + 1 + 48 g ⎦; equivalently, the orientable genus of  Kn ( n ≥ 3) is   g( Kn) = 1

⎡⎢ 12( n − 3)( n − 4)⎤⎥. 

Heesch’s obstacles to reducibility  See obstacles to reducibility. 

Hoffman– Singleton graph  A Moore graph with dia meter 2 and girth 5. It has fifty vertices and is regular of degree 7. 

homeomorphic graphs  Two graphs are homeomorphic if they can be obtained from each other by the insertion or removal of vertices of degree 2. 

Hungarian method  An efficient algorithm for solving assignment prob lems; it was developed by H. W. Kuhn, based on  earlier results of Dénes König and Jenö Egerváry. 

incidence If  e =  vw is an edge of a graph, then  e is incident to both  v and  w, and  v and  w are both incident to  e. 

in de pen dent set in a matroid  A set of ele ments that contains no cir cuit; for a graph, the in de pen dent sets consist of trees. 

induced subgraph  A subgraph  H of a graph  G such that  every edge of  G with both of its ends in  H is also an edge of  H. 
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irreducible configuration  A configuration that is not reducible. 

irreducible map  A minimal counter- example to the four color theorem; the proof of the theorem in 1976 showed that such maps do not exist. 

isomers  Molecules with the same chemical formula but with diff er ent atomic configurations. 

isomorphic graphs  Graphs for which  there are one– one correspondences between their vertex- sets that preserve the adjacency of vertices. 

Kempe chain  A chain of regions in a map, or a path in a graph, that is colored with two alternating colors. 

Kempe- chain  argument  A procedure used in map or graph coloring in which two colors are interchanged along a chain of regions or vertices to enable the coloring of a region or vertex that could not previously be colored. 

Kirchhoff’s current laws  The sum of the currents entering each vertex of an electrical network equals the sum of the currents leaving it, and the sum of the currents around any cycle is 0. 

Klein   bottle  A non- orientable surface of genus 2 that can be constructed by gluing the top and bottom sides of a rectangle together, and then gluing the other two sides of the rectangle together but in opposite directions; this cannot be done in three dimensions without the resulting “ bottle” self- intersecting. 

The Klein  bottle is topologically equivalent to a sphere with two cross- caps and was first described by Felix Klein in 1882. 

König’s theorem  In any bipartite graph, the maximum size of a matching is equal to the minimum number of vertices that collectively meet all the edges. 

Kruskal’s algorithm  An algorithm that is used to solve the minimum spanning tree prob lem for a weighted graph by successively selecting an edge not previously chosen of smallest weight that does not create a cycle; it is a greedy algorithm that is based on a method described by O. Borůvka in 1926 and was rediscovered in 1956 by J. Kruskal. 

Kuratowski’s theorem  A graph is planar if and only if it has no subgraph that is homeomorphic to the complete graph  K 5 or the complete bipartite graph  K 3, 3. 

leaf A vertex of degree 1; a previous meaning, used, for example, in Petersen’s theorem, was a part of a graph that could be separated from the rest by the removal of a single edge. 

line graph  For a connected graph  G, the graph  L( G ) whose vertices correspond to the edges of  G, with two vertices of  L( G ) adjacent whenever the corresponding edges of  G are adjacent. 

linear programming  A method to optimize the outcome in a situation represented by given linear equations and inequalities. 

linkage  A planar graph obtained by marking a point in each region of a map and joining the points in neighboring regions. 

longest path prob lem  The prob lem of determining a longest route between two vertices of a network or weighted graph; such prob lems arise in critical path  analy sis. 

loop  An edge joining a vertex to itself. 

manifold An 

 n- dimensional space that near each point resembles a Euclidean space; examples are a circle, sphere, torus, and the Klein  bottle. 

matching  A set of edges in a graph (often bipartite) with no vertices in common. 
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matching  prob lem  The prob lem of finding a matching in a given graph; an example is the matching of applicants to jobs for which they are variously qualified. 

matroid  An abstract notion that generalizes the ideas of rank and in de pendence in graph theory and of dimension and linear in de pen dence in vector spaces. 

max- flow  min- cut  theorem  In a capacitated network, the value of a maximum flow from the start to the terminal is equal to the capacity of a minimum cut. 

meeting point in a map  A point where countries (regions) and boundary lines meet. 

Menger’s theorem Let 

 v and  w be non- adjacent vertices in a connected graph. 

Then the maximum number of vertex- disjoint paths joining  v and  w is equal to the minimum number of vertices whose removal separates  v from  w. 

method of discharging  A procedure that involves the movement of (electrical) charges around a graph; it is used for determining  whether a given set of configurations is an unavoidable set. 

method of Kempe chains  See Kempe- chain argument. 

minimax theorem  A theorem that asserts that the minimum of one quantity in a graph is equal to the maximum of another quantity; examples are König’s theorem, Menger’s theorem, and the max- flow min- cut theorem. 

minimum connector prob lem  See minimum spanning tree prob lem. 

minimum spanning tree prob lem  The prob lem of finding a spanning tree of minimum total length in a weighted graph; see Kruskal’s algorithm. 

Möbius band  A one- sided object constructed from a rectangular strip by identifying its ends in opposite directions. 

Moore graph  A regular graph with dia meter  k and girth 2 k + 1, for some number  k; examples include the Petersen graph and the Hoffman– Singleton graph. 

multiple edges  More than one edge joining a pair of vertices. 

neighboring regions  Two regions that share a common boundary line. 

non- orientable genus of a graph  The smallest number  q for which the graph can be drawn without crossings on the non- orientable surface  Nq. 

non- orientable  surface  A surface in which clockwise rotation is not maintained when moving on the surface; examples are a Möbius band, projective plane, Klein  bottle, and a sphere with cross- caps attached. 

non- separable  graph  A connected graph that cannot be disconnected by removing a single vertex (a cut- vertex). 

NP  The set of prob lems where solutions, once obtained, can be checked in polynomial time; NP is short for non- deterministic polynomial- time prob lem. 

NP- complete  prob lem  A prob lem whose solution in polynomial time implies that  every NP prob lem can be solved in polynomial time. 

nullity of a graph   E −  V +  P, where  E is the number of edges,  V is the number of vertices, and  P is the number of components. 

obstacles to reducibility  Three arrangements of countries, introduced by Heinrich Heesch, whose appearance in a configuration seems to indicate that it is not reducible. 

orientable genus of a graph  The smallest number  g for which the graph can be drawn without crossings on the orientable surface  Sg. 
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orientable surface  A surface in which the concept of clockwise rotation is maintained when moving in a continuous manner on the surface; examples are a plane, sphere, torus, and a sphere with  handles attached. 

P  The set of prob lems that can be solved in polynomial time. 

pancyclic graph  A graph with  n vertices that contains cycles of all lengths from 3 to  n. 

perfect graph  A graph whose chromatic number and clique number (the size of its largest complete subgraph) are equal for the graph and each of its induced subgraphs. 

perfect graph theorem  Weak form (1972): a graph is perfect if and only if its complement is perfect. Strong form (2002): a graph is perfect if and only if it contains no odd cycle or its complement as an induced subgraph. 

perfect matching  (also called a complete matching or 1- factor) A collection of disjoint edges that includes  every vertex of a graph. 

Petersen graph  A cubic graph with ten vertices and fifteen edges; it was introduced by Julius Petersen in 1898. 

Petersen’s theorem  Every cubic graph with at most two leaves has a 1- factor. 

planar graph A graph that can be drawn on a plane or sphere without any edges crossing. 

planar matroid  A matroid that is both graphic and cographic. 

plane drawing of graph  A drawing of a graph in which no two edges intersect, except at a vertex where both are incident. 

polyhedron  A 3- dimensional shape with flat polygonal  faces, straight edges, and sharp corners (or vertices). 

polynomial  An algebraic expression such as  x 4 − 5 x 3 + 8 x  2 − 4 x  + 3. 

polynomial- time  algorithm  An algorithm whose  running time is proportional to  nk (for some positive number  k), where  n is the input size. 

projective plane  A surface obtained by identifying opposite sides of a rectangle in opposite directions; it is the surface with non- orientable genus 1. 

Ramsey graph theory  An area of graph theory that investigates the number of vertices that a graph must have in order to ensure the appearance of subsets of a specified type. 

Ramsey number  The minimum number  N =   r ( m,  n) of vertices needed to ensure that any red– blue coloring of the edges of  KN contains  either a red  Km or a blue  Kn. 

rank of a graph   V −  P, where  V is the number of vertices of the graph and  P is the number of components. 

rank of a matrix  The maximum number of linearly in de pen dent columns in the matrix. 

rank of a subset in a matroid  The number of ele ments in a largest in de pendent set in the subset. 

reducible configuration  A configuration that cannot occur in a minimal counter- example to the four color theorem; if a map contains a reducible configuration, then any coloring of the rest of the map with four colors can be extended (possibly  after some recoloring) to a coloring of the entire map. 

region of a map  A general term for a country or county in a map; it may also refer to the external region. 
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region of a planar graph  An area surrounded by edges on a plane drawing of the graph; one of  these regions is unbounded and is called the external region. 

regular graph  A graph in which  every vertex has the same degree. 

regular matroid  A matroid that is representable over  every field. 

representable matroid  A matroid that can be represented as a set of vectors in a vector space over some field. 

 r- factor  A regular subgraph of degree  r that includes  every vertex of a graph; in par tic u lar, a 1- factor is often called a “perfect matching” or a “complete matching” and is a collection of disjoint edges that includes  every vertex of the graph. 

 r- factorization An  r- factorization of a graph splits the graph into disjoint r- factors. 

ring (in a configuration)  The regions that bound a configuration. 

ring- size  The number of regions in the ring that bounds a configuration; it is a mea sure of the configuration’s complexity. 

Ringel– Youngs  theorem  The theorem of Gerhard Ringel and J.W.T. Youngs that proved the Heawood conjecture. 

rooted tree  A tree in which one par tic u lar vertex is designated as the “root”. 

rotation scheme  In a colored map, a list that specifies for  every region the colors of the regions that surround it. In a colored complete graph, a list that specifies for  every vertex the colors of the vertices adjacent to it; in each case, the colors appear in counter- clockwise order. 

saturated arc  An arc in a capacitated network for which the flow along it equals its capacity. 

search tree  A tree network in which the aim is to visit  every vertex in a specified manner. 

separable graph  A connected graph that can be disconnected by the removal of a single vertex (cut- vertex); removing all such cut- vertices splits the graph into smaller pieces called “blocks”. 

seven color theorem for a torus  The regions of  every map on a torus can be colored with at most seven colors, with neighboring regions colored differently, and  there are maps that require seven colors. 

Shimamoto   horse shoe  A configuration with ring- size 14 whose  D- reducibility would have implied the four color theorem. 

shortest path prob lem  The prob lem of determining a shortest route between two given locations in a network or weighted graph. 

signed graph  A graph in which each edge is designated as  either positive or negative. 

 simple  graph  A graph with no loops or multiple edges. 

simply connected surface  A surface which is connected (any two points can be joined by a path) and has no “holes” (any loop joining a point to itself can be shrunk to a single point); for example, a plane and a sphere are simply connected, but a torus is not. 

spanning tree  A tree in a connected graph which includes  every vertex of the graph. 
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squaring the square (or rectangle)  The prob lem of finding a square (or rectangle) with integer sides that can be divided into squares with unequal integer sides. 

subgraph  A graph  H is a subgraph of  G if all the vertices and edges of  H appear in  G. 

surface  The two types of surfaces are orientable surfaces (such as a sphere or torus) and non- orientable surfaces (such as a projective plane or Klein  bottle). 

system of neighboring regions A map in which  every region meets  every other one. 

thread  prob lem  Another name for the complete graph version of the Heawood conjecture. 

topology  The branch of mathe matics which deals with geometric properties of objects that are preserved  under continuous deformations such as stretch-ing or twisting. 

torus  A two- dimensional surface that looks like an inner tube or the surface of a bagel; formally, a torus is generated by rotating a circle through 360° 

around an axis outside the circle. 

tournament  A complete graph for which a direction has been assigned to each edge. 

transportation  prob lem  The prob lem of determining how to distribute commodities from factories to markets in a network at minimum cost. 

traveling salesman prob lem  Given a number of cities connected by links that join cities in pairs, and given the distances between all pairs of cities, what is a shortest cyclic route that visits  every city? 

tree  A connected graph with no cycles. 

triangulation  A plane graph or map in which each region is bounded by three edges. 

Tutte polynomial  A polynomial in two variables which represents many properties of graphs and has numerous applications in other areas as well. 

unavoidable set of configurations  A collection of configurations, at least one of which must appear in  every map. 

utilities  prob lem  Can one join three utilities ( water, gas, and electricity) to three  houses without any pipes crossing? This prob lem is equivalent to that of determining  whether the complete bipartite graph  K 3, 3 can be drawn in the plane without any edges crossing. 

value of a flow  The total flow from the start vertex to the terminal vertex in a capacitated network. 

vertex  A point in a graph or map where edges meet. 

Whitney dual  See combinatorial dual. 

N O T E S ,   R E F E R E N C E S ,   A N D   

F U R T H E R   R E A D I N G
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CHAPTER 1: THE  1800s

In this chapter, we use the following abbreviation:

 Sylvester Papers: J. J. Sylvester,  Collected Mathematical Papers of James Joseph Sylvester, 4 volumes, Cambridge University Press, 1904–12. 

1.  For more information about Sylvester, see Karen Hunger Parshall’s  James Joseph Sylvester: Life and Work in Letters (referred to below as “Letters”) and James Joseph Sylvester: Jewish Mathematician in a Victorian World, Johns Hopkins University Press, 1998 and 2006. 

2. Letter from Benjamin Peirce to Daniel C. Gilman, 18 September 1875, Daniel C. Gilman Papers, Ms. 1, Special Collections Division, Milton S. 

Eisenhower Library, Johns Hopkins University, as quoted in Karen Hunger Parshall, “Amer i ca’s first school of mathematical research: James Joseph Sylvester at the Johns Hopkins University 1876–1883”,  Archive for History of Exact Sciences 38 (2) (1988), 153–96. 

3.  H. F. Baker, “Biographical notice”,  Sylvester Papers, Volume 4, xv– xxxvii, on page xxx. 

4.  Karen Hunger Parshall and David E. Rowe, “American mathe matics comes of age: 1875–1900”,   Century  of  Mathe matics, III, 3–28, on pages 8–9. 

5.  George P. Andrews, “The theory of partitions”,  Encyclopaedia of Mathe matics and Its Applications, Volume 2, Addison- Wesley (1976), 14. 

6.  Letter from J. J. Sylvester to A. Cayley, 1 February 1883, J. J. Sylvester Papers, Library of St. John’s College, Cambridge, Box 11. 

7.  E. Frankland,  Lecture Notes for Chemical Students, London, 1866. 

8.  J. J. Sylvester, “Chemistry and algebra”,  Nature 17 (1877–78), 284 =  Sylvester Papers, Volume 3, 103–4. 

9.  J. J. Sylvester, “On an application of the new atomic theory to the graphical repre sen ta tion of the invariants and covariants of binary quantics,— with three appendices”,  American Journal of Mathe matics 1 (1878), 64–125, on pages 64, 87, and 109 =  Sylvester Papers, Volume 3, 148–206, on pages 148, 169, and 190. 

10.  R. C. Archibald, “Unpublished Letters of James Joseph Sylvester and other new information concerning his life and work”,  Osiris 1 (1936), 85–154, on page 134. 

11.  Graph Theory 1736–1936, on page 67. 

12.  A. Cayley, “On the theory of the analytical forms called trees”, and “On the theory of the analytical forms called trees— part II”,  Philosophical Magazine ( 4) 13 (1857), 172–76, and 18 (1859), 374–78 =  Cayley Papers, Volume 3, 242–46, and Volume 4, 112–15. 

13.  A. Cayley, “On the mathematical theory of isomers”,  Philosophical Magazine ( 4) 47 (1874), 444–46 =  Cayley Papers, Volume 9, 202–4. 

14.  A. Cayley, “On the analytical forms called trees, with application to the theory of chemical combinations”,  Report of the British Association for the Advancement of Science 45 (1875), 257–305, and “On the number of the univalent radicals C n H2 n +   1”,  Philosophical Magazine ( 5) 3 (1877), 34–35 =  Cayley Papers, Volume 9, 427–60 and 544–45. 

15.  J. J. Sylvester, “On the mathematical question, what is a tree?”,  Mathematical Questions with Their Solutions, from the “Educational Times”  30 (1879), 52, 
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and [On the geometrical forms called trees],  Johns Hopkins University Circulars 1 (1879–82), 202–3 =  Sylvester Papers, Volume 3, 640–41. 

16. [A. De Morgan, Unsigned review of W. Whewell,  The Philosophy of Discovery],  The Athenaeum, No. 1694 (April 14, 1860), 501–3. 
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19.  A. Cayley, “On the colouring of maps”,  Proceedings of the Royal Geo graph i cal Society (New Series) 1 (1879), 259–61 =  Cayley Papers, Volume 11, 7–8. 

20.  A. B. Kempe, [Notes],  Nature 20 (17 July 1879), 275. 
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INTERLUDE A: GRAPH THEORY IN EU ROPE 1

In this chapter, we use the following abbreviation:

 Tait Papers: P. G. Tait,  Scientific Papers, 2 volumes, Cambridge University Press, 1898–1900. 

1.  P. G. Tait, “On the colouring of maps” and “Remarks on the previous communication [by Frederick Guthrie]”,  Proceedings of the Royal Society of Edinburgh 10 (1879–80), 501–3 and 729, and “Note on a theorem in the geometry of position”,  Transactions of the Royal Society of Edinburgh 29 (1878–80), 657–60 =  Tait Papers, Volume 1, 408–11. 
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CHAPTER 2: THE  1900s AND  1910s

In this chapter, we use the following abbreviation:

 Birkhoff Papers: G. D. Birkhoff,  Collected Mathematical Papers, 3 volumes, American Mathematical Society, 1950. 

1.  P. Wernicke, [On the solution of the map- color prob lem],  Bulletin of the American Mathematical Society 4 (1897–98), 5. 

2.  P. Wernicke, “Über den kartographischen Vierfarbensatz”,  Mathematiche Annalen 58 (1904), 413–26. 

3.  S. Mac Lane, “Mathe matics at the University of Chicago: A brief history”,  Century  of  Mathe matics, II, 127–54, on p. 129. 

4.  Steve Batterson, “The vision, insight, and influence of Oswald Veblen”,  Notices of the American Mathematical Society 54 (2007), 606–18. 

5.  Oswald Veblen, “An application of modular equations in analy sis situs”,  Annals of Mathe matics ( 2) 14 (1912–13), 86–94. 

6. For Henri Poincaré’s use of matrices, see his “Second complément à l’Analy sis  Situs”,  Proceedings of the London Mathematical Society 32 (1900), 277–308 =  Oeuvres de Henri Poincaré, Volume 6, Gauthier- Villars (Paris), 338–72. 
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EVERY PLANAR MAP IS FOUR COLORABLE
PART I: DISCHARGING'

BY
K. APPEL AND W. HAKEN

1. Introduction

We begin by describing, in chronological order, the earlier results which led
to the work of this paper. The proof of the Four Color Theorem requires the
results of Sections 2 and 3 of this paper and the reducibility results of Part II.
Sections 4 and 5 will be devoted to an attempt to explain the difficulties of the
Four Color Problem and the unusual nature of the proof.

The first published attempt to prove the Four Color Theorem was made by
A. B. Kempe [19] in 1879. Kempe proved that the problem can be restricted
to the consideration of “normal planar maps” in which all faces are simply

connected polygons, precisely three of which meet at each node. For such maps,
he derived from Euler’s formula, the equation

Kmax

1.1 4p, + 3p3 + 2ps + ps = ’;7 k — 6)p, + 12

where p; is the number of polygons with precisely i neighbors and k_,,, is the
largest value of i which occurs in the map. This equation immediately implies
that every normal planar map contains polygons with fewer than six neighbors.

In order to prove the Four Color Theorem by induction on the number p of
polygons in the map (p = Y p;), Kempe assumed that every normal planar
map with p < r is four colorable and considered a normal planar map M, ,
with r + 1 polygons. He distinguished the four cases that M, ., contained a
polygon P, with two neighbors, or a triangle P;, or a quadrilateral P,, or a
pentagon Ps; at least one of these cases must apply by (1.1). In each case he





index-264_1.png





index-117_1.jpg





index-270_1.jpg





index-122_1.png
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The actual configurations, shown below, cannot be determined by the
methods of the present theory, but must be found, as in all other cases, by
detailed consideration of the groups involved, and this may of course be very
Jaborious, except in simple cases, or where special devices are available.

S Gy e G g By

(1) (2) (3) (4) (5) (6) (7)

In connection with the present example we may note without proof cer-
tain other simple results obtainable.

Thus if in V we substitute 27 + y” for every s,, we obtain the polynomial

@® + o'y + 32%® + 30%y° + Taty* + 3¢%y° + 8a%y® + 2y" + %,
in which the coefficient of #y®* enumerates the distinct configurations pos-
sible with ¢ nodes ® and 8 — ¢ nodes °

The sum of the coefficients in the above expression is 23, which is the
total number of configurations when the numbers of nodes of the two colors
are not specified. This enumeration is also effected by substituting 2 for

every s, in V. Similarly if % colors are available we substitute. & for every s,;

thus with 3 colors there are (1/24) (8% -+ 9.3* + 8.3* - 6.32) = 333 possible
configurations.

If in ¥V we put 1/(1—2a") for every s,, we obtain the infinite series
142+ 40° 4 T2 + R1a* 4 8728 4+ - -,

in which the coefficient of 2* enumerates the distinct configurations obtained
by placing a zero or a positive integer at every vertex of the cube, subject to
the condition that the sum: of the 8 numbers is always ¢. For ¢ =2, the 4
configurations are

A R AV AV v X
NN NN NN

Ifin 7V we put 2 for every s;; and 0 for every Smu.., we enumerate the
configurations in which it is possible to change the color of every node into
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