

[image: Image 1]

[image: Image 2]

[image: Image 3]

[image: Image 4]

[image: Image 5]

[image: Image 6]

[image: Image 7]

[image: Image 8]

[image: Image 9]

[image: Image 10]

[image: Image 11]

[image: Image 12]

[image: Image 13]

[image: Image 14]

[image: Image 15]

Arthur M. Langer

Analysis and Design

of Next-Generation

Software

Architectures

Generative AI, Cybersecurity, and Cloud

Computing

 Second Edition

Analysis and Design of Next-Generation

Software Architectures

Arthur M. Langer

Analysis and Design

of Next-Generation

Software Architectures

Generative AI, Cybersecurity, and

Cloud Computing

Second Edition

Arthur M. Langer

Center for Technology Management

and Digital Leadership

Northeastern University/Columbia

University

New York, NY, USA

ISBN 978-3-031-76211-6

ISBN 978-3-031-76212-3 (eBook)

https://doi.org/10.1007/978-3-031-76212-3

1st edition: © Springer Nature Switzerland AG 2020

2nd edition: © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland If disposing of this product, please recycle the paper.

Foreword

Why Do We Need a Next Generation of Analysis and Design?

The Early Days of Analysis and Design

When the first analysis and design methodologies were invented in the 80s (SA/

SD in the US, SSADM in the UK and Merise in France), they were intended to support the building of business applications which would last for a long time with minimum cost of maintenance. They were to ensure designs which would cope with the functional (the what) and non-functional (volume and performance) system requirements, which were supposed to stay as stable as possible. Data would be organized to represent required information according to well-defined data models which optimized data access and reduced required storage volumes.

The famous relational data model imposed integrity constraints which were maintained on a permanent basis, and transactions were carefully controlled in order to avoid inconsistency in the event of hardware failure or performance bottleneck.

Analysis and design delivered robust and maintainable applications where consistency and performance were built around invariants identified and defined by the analyst. Analysts expended significant time and effort to build information systems that were resistant to change and for which success was measured by the length of their life cycle, conformance to requirements, and delivery on time and on budget.

 Analysts were creating digital objects in the great engineering tradition of building bridges, cars, or aircrafts. In the world of engineers, investment in time delivers value in creating long-lasting assets. This mentality was replicated in the Business-to-Business world where business processes were stable and where companies pursued long-term objectives that were to be managed through their information systems.

Analysis and Design in the Digital Era

The digital era which started with the advent of Internet brought a whole different perspective on time to the development, adoption, and evolution of IT applications.

v

vi

Foreword

Business-to-consumer applications emerged on PC’s in the 2000’s, and then on smartphones in the 2010’s. Suddenly IT was not constrained to bringing progress through a well-defined set of objectives, as it had been previously for business systems. Instead, it was offering successive waves of innovation to consumers, provided of course that consumers embraced their adoption.

The world of Digital is a Darwinian one where you need to start small, be adopted by consumers, and grow fast, or else be rejected. Perhaps the most significant success stories are epitomized by the rapid success of the GAFA, 1 built around the digital phenomenon of data platforms. Platforms embody one of the most significant business model disruptions of the digital era.

Why are Platforms Different?

Google, Amazon, Uber, Airbnb have all adopted platform principles to support their disruptive business models—models which have led to a new type of market that shares common core characteristics with the payment card ecosystem.

With the advent of payment cards, a new market type emerged which has been termed “multisided” by economists. In the specific case of cards, we have two sides: (1) the consumer who is the cardholder and (2) the merchant who is offering payment services via a point-of-sale terminal capable of reading the card and capturing transaction details.

This economic model was formulated by French economist Jean Tirole, an

invention for which he was awarded the Nobel Prize for economy.

In a nutshell, a multisided market can only really take off once each side reaches a critical size; in the payment card example no one wants to carry a particular card if it is not widely accepted, and no merchant would be willing to invest in a point of sale terminal if there were not many consumers who would use it.

This chicken and egg stalemate can be broken if a market player is able to offer a platform to both sides of the ecosystem with the commitment to pay very little, if anything, for the use of the platform until critical size is reached. It is the platform that is the tool which enables multisided markets.2

In the example of Amazon, the platform is successful for customers because they have a single route to finding just about everything they need; it is successful for merchants because they enjoy access to many more potential customers than they would without having their presence on Amazon. In the Airbnb model, the two sides are consumers and hotels; while with Uber, they are consumers and drivers.

1 Google, Amazon, Facebook, Apple—an acronym used to synonymize the digital giants.

2 H. Tardieu et al Deliberately Digital, Rewriting Enterprise DNA for enduring success, Future of Business and Finance Springer March 2020.

Foreword

vii

It can be difficult to reach critical size on each side of the platform, but once achieved, multisided markets will naturally tend to grow to a monopoly position, driving the need for regulation to maintain competition.

In terms of systems analysis and design, we need to distinguish between building the platform and building applications for the platform.

Building the Platform

The unprecedented challenge of launching a platform is that of being able to effectively deliver services when its number of users is small on each side, and their trading volumes are low. The initial cost to users of participating in the platform needs to reflect low startup value, even though this means that the platform operator might have to run at a loss until user revenues build up. But probably even more challenging is the problem of being able to maintain the same architecture for the platform while the two sides are growing from zero to critical size.

For an engineer it is like building a low-cost bridge which only needs to carry a few trucks at the beginning, but which is then progressively reinforced to carry many more trucks as demand rises. Not an easy task!

Building Applications for Platforms

Relatively few companies will take the risk of building a new platform from scratch, and those that do will tend to be large or rapidly growing. However, many companies will seek to join established multisided markets and will try to design and build applications on and around the supporting platforms to offer new value-add services.

The very nature of platforms in terms of scalability, performance, security, and privacy means that rigid architectural frameworks do not give the necessary freedom to appropriately design new applications. The analysis of the available platform-hosted data combined with the player’s own data and target business model brings the real value-add in shaping new services to offer to consumers.

The Importance of Digital Moments

We have traditionally differentiated between business applications which can cope with a latency of a few seconds or more, and technical applications that require real-time operation with a latency in the low milliseconds range. To guarantee low latency, technical applications require real-time loops that are painstakingly optimized by scrutinizing code to ensure that they deliver low latency response, whatever the circumstances. In business applications, response time for transactions was a focus of attention and was being guaranteed up to a certain number of users and a maximum volume of data.

viii

Foreword

The digital era is bringing a new context where consumers have become very impatient whatever the circumstances: they are not interested by how many users are connected, how much data needs to be accessed, or their network latency (which is most of the time dictated by the Internet where there is no guaranteed performance). The only “must” with digital applications is to offer the appropriate quality of service, user experience or “Digital moments.” These can be very obvious when streaming music or video—constant buffering and interrup-tions due to latency quickly render the experience unacceptable. Understanding Digital Moments in the context of things like ordering a car or reserving a hotel room requires more sophistication; and in the case of navigation operation in cars, it is very complex. The nature of the Digital moment is directly linked to the attention span of the consumer and the decisions they will be required to make. Failure to respect Digital moments is a fundamental reason for users to reject services on offer, and the matter should therefore be at the top of analysts’ and designers’

attention.

Distributed Data

Performance of the Internet, huge volumes of data, network latency, and security have forced analysts and developers to revisit the topic of data localization. The formerly sacrosanct principle of the database community: no redundancy, is now seriously challenged. From simple caching mechanisms used by content distribution networks such as Akamai (which stores copies of data close to where they are the most frequently used), we have progressed to redundancy by design. Instead of hitting the latency constraints of bringing data to processes, we have started to send processes to data (close to the place where it has been collected). We are experiencing edge computing combining with the Internet of things to steadily create a world where most of the data will be stored at the edge and not centrally.

With the relaxation of the “no redundancy” principle comes the counter challenge of data consistency across all locations where data copies are stored.

Requiring full consistency is very inefficient because it requires that every update in a given location be replicated in every other location before proceeding to the next update.

Finally, for operational reasons, data needs to be backed up in such a way it can be recovered in the event of failure. One piece of data can end up getting replicated three times: for caching reasons when it is only accessed in read-only mode; for latency reason when performance at the edge is required; and finally, for back-up recovery. It is little surprise that the volume of data to be stored is doubling every 18 months. It remains to be seen how such data growth will be managed.

Foreword

ix

The Consumer Electronics Attitude and the Weekly (If Not

Daily Sprint)

Consumer electronics has fueled the desire for new devices, even before the previous versions are obsolete. Changing smartphones almost every year while updating operating system releases every two months has almost become the norm. Such programmed obsolescence is part of the dynamic of the business-to-consumer market.

Ongoing adoption and usage of platform services are essential to their success, driving a compelling need for designers to pay critical attention to ongoing user relevance, value, and buy-in. The need for continuous innovation fuels the practice of building platform functionality gradually, at each iteration (called sprints) adding new features and correcting bugs. The most advanced platforms have daily sprints and the question of new feature releases is like taking the bus, if you don’t get on this bus, there be another along in the next 5 min. This offers the ability to incrementally build platform functionality and, in case of problems, to easily go back to the previous release.

UX is the Application

UX design has become a key topic in the digital era. It is intended to enhance user satisfaction with an application by improving its usability, accessibility, and desir-ability. Since adoption and usage of the application is the ultimate yardstick for success and hence survival, a lot of attention should be paid to the user interface.

In the past, the design of the user interface tended to be done after the business process has been defined. It was seen as the way to collect the necessary data and then to present outputs for the user to make decisions.

This sequence has been turned on its head with user interfaces being designed first and then progressively augmented to incorporate business logic. Multiple interface channels including voice, virtual reality, and haptics are now primary drivers of the application, with business logic and processing being seen somewhat as the hidden aspect of the application.

Adhering to API is Not Optional

Applications that offer services within existing platforms need to respect their architectural principles, which are often reflected in a set of mandatory APIs (e.g., AWS offers a little more than 20). These API’s guarantee that when an application is integrated into the platform it will not disturb performance, alter security, or put multitenancy at risk. Failing to respect API protocols will lead to application rejection by the platform operator.

APIs are also critical to gain access to data which has been collected by other sides of the platform. APIs are becoming the lingua franca which (e.g.) allows

x

Foreword

Fintech companies to have access to customer data collected by an incumbent bank, or to reuse automotive data collected via connected cars. Security and privacy issues will lead all players participating in a platform ecosystem to accept the rules and regulations set up by independent third parties responsible for enforcing data regulation compliance.

“We Know More Than We Can Tell”

Michael Polanyi the famous Hungarian-British polymath used this statement to express the important truth that no analyst can entirely capture the knowledge about a given process or decision. Beyond what can be formally captured in business logic algorithms there exist rules and patterns which can only be discovered and incorporated through deep learning. Artificial intelligence is unlikely to ever be as efficient and performant as hand coding, but for simple decision making it can replace manual programming, and for unexpected and non-forecasted situations it can be a good substitute for the last exit error message. Especially in sophisticated situations unknown to the analyst, AI can bring reasonable suggestions for returning back to the basic philosophy of the process.

The Next Paradigms

The book will elaborate on the appropriate methodologies to answer the above challenges.

At this stage, let us introduce some of the new paradigms which have become commonplace in the digital world when applied to the business-to-consumer market and which are gradually penetrating the business application environment.

 Webscale Computing encapsulate a hardware architecture where computing performance and storage capacity can be increased without stopping operations.

 Multitenancy is the ability to host multiple tenants and their users on the same platform without any side effects in terms of performance, security, and operational continuity.

Webscale Computing and Multitenancy are two foundational pillars for cloud computing.

Data distribution is necessary to achieve performance, but it also raises the challenge of updating multiple instantiations of the same data. The approach taken in the digital era is to dispense with permanent data integrity and to settle for eventual consistency. Platform operators will accept working with inconsistent data but will commit that within a reasonable timeframe, it will be able to reestablish consistency. Eventual consistency may not be adequate for some applications, such as managing the booking of airplane seats, but will be good enough for many other applications.

 Agile Development has built the foundations of flexible analysis and design by accepting many changes to an application and implementing them quickly after

Foreword

xi

they have been requested. Agile development requires solid architecture principles to build applications iteratively without compromising performance and maintainability. Applications developed using Agile methodologies need to progress to operations as part of a next scrum. This requires a “Devops” attitude where operation departments are able to accept (e.g.) weekly changes even though they might disrupt the continuity of operations.

Many companies have entered the digital era for analysis and design; it requires a different type of organization which is proving difficult to coexist with the traditional model. The book will detail the what and the how for the next generation of analysis and design.

 Generative AI is offering multiple opportunities to Enterprises; especially Generative AI coding tools are proposing a new way to produce code or to autocomplete it; they also facilitate code reviews to maintain code quality and reliability but also to check compliance with relevant industry-specific regulations.

Hubert Tardieu

Independent Board Member

Gaia-X Association for Data

and Cloud

Bruxelles, Belgium

Acknowledgments

I want to acknowledge the support from my family, DeDe, Michael, Dina, Lauren, Anthony, and Lauren P. And, of course, Cali and Shane Caprio, and Linden Passero Langer.

A special recognition and congratulations to the first graduating class from the new MS in Strategic Technology Leadership program at Northeastern University.

May you all lead the way!

New City, NY, USA

Arthur M. Langer

January 2025

xiii

Contents

1

Introduction .

1

2

Merging Internal Users and Consumer Requirements

23

3

Reviewing the Object Paradigm .

51

4

Distributed Client/Server and Data .

85

5

The Impact of High-Speed Wireless Communication

125

6

The Internet of Things .

137

7

Blockchain Analysis and Design .

151

8

Quantum Computing, AI, ML, and the Cloud .

167

9

Cybersecurity in Analysis and Design .

183

10

Generative AI and Systems Architecture .

205

11

Transforming Legacy Systems .

221

12

Build Versus Buy .

259

13

The Analyst and Project Management in the Next Generation

271

14

Conclusions and the Road Forward .

299

Glossary .

313

Bibliography .

319

xv

[image: Image 16]

Introduction

1

1.1

Traditional Analysis and Design Limitations

Since the beginning of systems development, analysts and designers have essentially adhered to an approach that requires interviewing users, creating logical models, designing them across a network, and developing the product. We have gone through multiple approaches on how to conduct analysis and design, particularly with the coming of client/server systems where we first had to determine what software would reside on the server and what made more sense to stay on the client. A lot of those decisions had to do with systems performance capabilities. When the Internet became the foundation of application communications and functionality, server technology became the preferred method of designing systems because of version controls and distribution across new devices. Unfortunately, these generations led us to create a cyber-Frankenstein monster. Although security in the mainframe system remains fairly strong, the distributed products across the Internet were not designed with enough. Indeed, the consequences of this lack of security have been the dark web and the crisis of cyber exposures throughout the world. Our Frankenstein monster has spawned problems beyond our wildest imaginations, affecting not just our systems, but our moral fabric, our laws, our war strategy, and most of all our privacy. As with the Frankenstein novel, the monster cannot be easily destroyed, if at all—such is our challenge. The bottom line is that our existing systems, based on central databases and client server mentality, cannot protect us and never will.

Thus, this book is about the next generation of systems architecture, which first requires the unraveling of the monster. This means that all existing systems must be replaced with a new architecture that no longer solely depends on user input and must be designed to consider what consumers might want in the future and to always consider security exposure. Next-generation analysis and design is therefore a book that takes on this seemingly overwhelming task of rebuilding

© The Editor(s) (if applicable) and The Author(s), under exclusive license 1

to Springer Nature Switzerland AG 2025

A. M. Langer, Analysis and Design of Next-Generation Software Architectures,

https://doi.org/10.1007/978-3-031-76212-3_1

2

1 Introduction

our legacy applications, integrating our new digital technologies, and establishing a security focus that ensures our networks can fully protect those that use them. The good news is that we are on the horizon of getting the new tools and capabilities for completing this mission, notwithstanding how long it might take.

These capabilities start with the coming of 5G in 2019, which will enable networks to perform at unprecedented speeds. This performance enhancement will drive significant proliferation of Internet of things (IoT) which in turn will require the creation of massive networks. These networks will need maximum security.

To achieve this, our systems will need to move away from the central database client/server paradigm toward a more ledger-based and object-oriented distributed network that is founded on blockchain architecture and cloud interfaces. In order to address the latency exposure of blockchain architecture, some form of quantum computing will be necessary. This book will provide an approach or roadmap to accomplishing this transition, particularly the redesign of existing legacy systems.

1.2

Consumerization of Technology in the Digital Age

When the Internet emerged as a game-changing technology, many felt that this era would be known as the Internet Revolution. As “digital” started to become a common industry cliché, it seemed more certain it might replace the term “Internet.” However, upon further analysis, I believe that this revolution will be known historically as the “Consumer” Revolution. The question is why? It appears that the real effects of the Internet and the coming of digital technologies have created a population of smart consumers, that is, consumers who understand how technology affords them more possibilities to control the supply and demand relationship.

The results should be obvious; consumer preferences are changing at an accelerated rate and causing suppliers to continually provide more options and more sophisticated products and services. As a result, businesses must be more agile and “on demand” in order to respond to what (Langer, 2018) refers to as Responsive Organizational Dynamism (ROD), defined as the measurement of how well organizations respond to change.

This consumerization in the digital era means that analysis and design will need to originate more from a consumer perspective. This means that analysts must expand their requirements—gathering beyond the internal user community that includes a consumer audience that can define their own buying habits. Let’s examine this point further. The most significant shift in creating new software applications will not only be based on current user needs, but future consumer trends. This represents new cycles of demand in the consumer market. The new demand is based on the close relationship between consumer business needs and home use of digital products and services. From a design perspective, business and home requirements must be blended seamlessly—the ultimate representation of digital life in the twenty-first century!

Consumerization of technology requires a much more significant leap in design, however; predictive analytics driven by artificial intelligence (AI) and machine

1.3

The Role of the Evolving Analyst

3

learning (ML) are examples. Indeed, it is AI and ML that will give us the ability to predict future consumer behavior using a more robust and automated paradigm. Thus, systems must be designed to evolve, just like living forms. In other words, applications must contain what I call architectural agility. The first step in architectural agility is to apply digital re-engineering. The world of application development can only be accomplished by creating enormous object libraries that contain functional primitive operations (Langer, 1997). Functional primitive objects are programs that perform the very basic operations, that is, those that provide one simple operation. Basic functional operating programs can be pieced together at execution time to provide more agile applications. These primitive objects coming together at execution allow for easier updating of new features and functions, and these dynamic linkages provide more evolutionary and agile systems. The object paradigm is not new; the difference in architectural agility is that these objects must be decomposed to their simplest functions. Previously the creation of primitives has been limited by execution latency or performance issues. These performance issues have been related to the inability (?) of networks and operating systems to dynamically link primitives to meet performance requirements.

Previous inhibitors to the design of functional primitive objects have been incompatibilities between hardware and software environments, which nonetheless continually evolve to address this problem. I think we would agree that disfunction in architectures still exists. Just ask people who still experience challenges between Microsoft and Apple systems. Certainly, Steve Jobs can be credited with revolutionizing the consumer interface when he designed a new Apple architecture based on the IPOD and phone designs. This design represents devices that perform less specific applications but service a future wireless-based architecture that could perform more on-demand operations to meet consumer needs. Ultimately consumerization of technology treats business applications, personal needs, and everyday life as one integrated set of operations. The Apple architecture then has been at the forefront of an evolutionary platform that can evolve new hardware and software much more quickly and efficiently than prior computer systems. In order to keep up with an accelerating evolving consumer, it is of utmost importance that businesses focus on how they will transform their legacy applications into this agile digital framework.

1.3

The Role of the Evolving Analyst

Building on the previous section, digital re-engineering represents the challenge of transforming legacy architecture to meet more consumer demands. As a result, the process of re-engineering, in general, is no longer limited to just working with traditional internal users, rather it must integrate both communities in any needs assessment. Furthermore, analysis must not only include existing consumer needs, but those that might be the trends of the future! Below are six approaches to this presented in my earlier publication (Langer, 2016):

4

1 Introduction

1. Sales/Marketing: These individuals sell to the company’s buyers. They therefore have a good sense of what customers are looking for, what things they like about the business, and what they dislike. The power of the sales and marketing team is their ability to drive realistic requirements that directly impact revenue opportunities. The limitation of this resource is that it still relies on an internal view of the consumer.

2. Third-party market analysis/Reporting: There are outside resources available that examine and report on market trends within various industry sectors. Such organizations typically have massive databases of information, and with various research and analysis techniques, they can provide multiple views and behavior patterns of the customer base. They can also furnish competitive analysis of where the company sits with respect to alternative choices and why buyers may choose alternative solutions. The shortfall of this approach is that often the data may not be specific enough to show which applications systems might be required to make a competitive advantage for the business.

3. Predictive analytics: This is a hot topic in today’s competitive landscape for businesses. Predictive analytics is the process of feeding off large data sets and predicting future behavior patterns. Predictive analytics approaches are usually handled internally with assistance from third-party products or consulting services. The value of predictive analytics is using data to design systems that can provide what might be future consumer needs. The limitation is one of risk—the risk that the prediction does not occur as planned. The introduction of ChatGPT has sent a clear message that AI is evolving quickly and that its impact on business, society, and politics is still very much unknown.

4. Consumer support departments: Internal teams and external (outsourced managed service) vendors that support consumers have a good read on their

preferences because they speak with them. More specifically, they are responding to questions, handling problems, and getting feedback on what is working.

These support departments typically depend on applications to help the buyer.

As a result, they are an excellent resource for providing up-to-date information not provided by the system about what consumers want as a service or offering. Often, however, consumer support organizations limit their needs to what they experience as opposed to possible future needs resulting from competitive forces.

5. Surveys: Analysts can design surveys (questionnaires) and send them to consumers for feedback. These can be of significant value because questions can target specific application needs. Survey design and administration can be handled by third-party firms, which may have an advantage in that the questions are being forwarded by an independent source that might not identify the company. On the other hand, this might be considered a negative—it all depends on what the analyst is seeking to obtain from the buyer.

6. Focus Groups: Similar to surveys, focus groups are commonly used to understand consumer behavior patterns and preferences. They are often conducted by outside firms. Whereas surveys use quantitative scoring mechanisms to evaluate outcomes and can be inaccurate when consumers misread questions, focus

1.4

Developing Requirements for Future Consumer Needs

5

Surveys

Internal/External

Targeted Consumers

Consumer Support

Departments

Sales/Marketing

Internal Support Groups

Analyst

Staff

Third Party Call Centers

Competitive Analysis

Shared Services

Requirements

Organization

Third Party Studies &

Databases

Focus Groups

Trends

Internal/External

Data Analysis

Consumer Sessions

Predictive Analytics

Fig. 1.1 Sources for the analysis of consumers

groups provide qualitative data and allow analysts to engage with the consumer in a two-way dialogue.

Figure 1.1 reflects a graphical depiction of the sources of the analysis of consumers Table 1.1 further articulates the methods and deliverables that analysts should consider when developing specifications.

1.4

Developing Requirements for Future Consumer

Needs

A transition statement from the techniques discussed above?

Perhaps the biggest challenge of the 6G to IoT evolution will be determining what future consumers might want. The question is how to accomplish this challenge?

The change brought on by digital inventions will be introduced to incredibly large numbers of consumers in an unprecedented short period of time. Let us just take an historical look at the amount of time it took to reach 50 million consumers:

6

1 Introduction

Table 1.1 Analyst methods and deliverables for assessing consumer needs Analyst’s

Methods

Deliverables

sources

Sales/

Interviews

Should be conducted in a similar way to typical end user

marketing

interviews. Work closely with senior sales staff. Set up

interviews with key business stakeholders

Win/loss sales

Review the results of sales efforts. Many firms hold

reviews

formal win/loss review meetings that may convey

important limitations of current applications and system

capabilities

Third-party

Document reports

Obtain summaries of the trends in consumer behavior

databases

reviews

and pinpoint shortfalls that might exist in current

applications and systems

Data analysis

Perform targeted analytics on databases to uncover

trends not readily conveyed in available reports

Predictive analytics

Interrogate data by using analytic formulas that may

enable predictive trends in consumer behavior

Support

Interviews

Interview key support department personnel (internal and

department

third party) to identify possible application deficiencies

Data/reports

Review call logs and recorded calls between consumers

and support personnel to expose possible system

deficiencies

Surveys

Internal and external

Work with internal departments to determine application

questionnaires

issues when they support consumers. Use similar

surveys with select populations of customers to validate

and fine-tune internal survey results

Use similar surveys targeted to consumers who are not

customers and compare results. Differences between

existing customer base and non-customers may expose

new trends in consumer needs

Focus

Hold internal and

Internal focus groups can be facilitated by the analyst.

groups

external sessions

Select specific survey results that had unexpected results

or mixed feedback and review those results with the

focus group attendees. Internal attendees should come

from operations management and sales. External focus

groups should be facilitated by a third-party vendor and

held at independent sites. Discussions with customers

should be compared with internal focus group results.

Consumer focus groups should also be facilitated by a

professional third-party firm

 Source Guide to Software Development: Designing and Managing the Life Cycle (Langer, 2016)

[image: Image 17]

1.5

The New Paradigm: 5G/6G, IoT, Blockchain, Cloud, Cyber, and Quantum

7

From 38 years to 19 days depicts the incredible acceleration that digital technologies have created. Thus, consumers become aware very quickly and how they respond to new offerings is very much unknown. For example, did Steve Jobs really know that the Mac would primarily be used as a desktop publishing computer when it was designed and first introduced to the consumer market? And did we know that the IPad would be so attractive to executives? The answer of course is no, and remember “almost” is equivalent to “no” in this example. Ultimately analysis and design will evolve into more predictive requirements and will therefore have a failure rate! The concept of risk analysis will be discussed further in Chap. 2. Ultimately, analysis and design have transitioned to being more about collecting data than about self-contained application systems. This transformation is fueling the need for this newly constructed systems architecture.

1.5

The New Paradigm: 5G/6G, IoT, Blockchain, Cloud,

Cyber, and Quantum

This section will outline the components of change to the architecture of systems and briefly describe how each component relates to a new and more distributed network of hardware and software components.

1.5.1

5G/6G

While 5G mobile networks and systems have clearly positively affected the next generation in global telecommunications, they more importantly represent a profound evolution of home, machine to machine, and industrial communication capabilities. These new performance capacities have allowed for major advancements in the way we utilize artificial intelligence driven by machine learning and in general how we learn and interact in every part of our lives. 5G was the initiator of the next generation of systems architecture but has not proficiently maximized the impact on commercial system architectural design. This new architecture will be enhanced much more with the coming of 6G now forecasted to have an impact

[image: Image 18]

8

1 Introduction

on industry. While 5G opened the door for AI exploration, 6G, due to be available around 2030, will embed AI as a self-contained service.

The International Telecommunications Union (ITU) reported that as of 2022, there were more than 8.58 billion mobile subscriptions. This compares to a global population of 7.95 billion suggesting that there are now more mobile phones that people! Given that many parts of the world have limited physical network infrastructure, enhanced mobile communications represent the only viable approach to linking networks of data and applications. So, 6G is expected to fuel the new economies of the future and be driven by sophisticated mobile communications.

Ultimately, 6G is the enabler—an enabler that will allow for specialized networks to participate in what I call “global systems integration” of seamless components.

It also represents a scalability of networks that can be dynamically linked and integrated across consumers, communities, corporations, and government entities and driven by embedded AI capabilities. This integration will allow these multiple systems to communicate through a common platform to service all aspects of an individual’s life in an almost real-time reality. Figure 1.2 provides a graphic depiction of the reality made possible by 5G performance improvements.

Figure 1.2 provides a useful context for enhanced analysis and design because it broadens the scope and complexity of consumer needs and integrates them with all aspects of life. Table 1.2 shows the expansion of coverage to obtain maximum requirements for any product.

Ultimately 5G provided a better performance across wireless networks that required a much more complex systems design. This improved performance facilitates far more complex data sets that can be communicated among multiple types of systems. Most important will be enabling mobile devices to utilize these complex data sets across wireless devices. This will in turn drive a whole new economy based on mobility. Mobility will accelerate innovation needs as shown in Fig. 1.3.

Fig. 1.2 5G/6G mobile connectivity ecosystem enablement

[image: Image 19]

1.5

The New Paradigm: 5G/6G, IoT, Blockchain, Cloud, Cyber, and Quantum

9

Table 1.2 Scope of analysis and design requirements under 5G

User/consumer coverage

A&S response

Comments

Business to business (BtoB)

Internal user and security

Current process but lacks

security process

Business to consumer (BtoC)

Internal user and external

Current but not well integrated

consumer and security

in most organizations

Consumer to consumer (CtoC)

Rare except in specific

Needs newer platforms and

trading platforms

mobile to mobile

Business to government

Rare except limited to

Overhaul of government and

information, submission of

business systems

documents, and payments

Individual to government

Rare except limited to

Smart city and compliance

information, submission of

driven

documents, and payments

Individual to consumer (ItoC)

Related to member portals

Limited mostly to Facebook/

LinkedIn

Individual to individual (ItoI)

Knowledge-based portals

Communities of Practice and

portals of knowledge

Fig. 1.3 Innovation

integrated with technology

and market needs

Figure 1.3 shows an interesting cycle of innovations as it relates to the creation of new products and services. This diagram reflects that 5G performance innovations will create new markets—like mobile applications. On the other hand, the wireless market will in turn demand more features and functions in technology, such as in apps, and technology must respond. 5G will therefore drive new and more advanced needs across the new frontier of wireless operations.

One challenge of 5G innovation will be the importance it places on moving and linking legacy applications. That is, how will organizations convert their existing systems to compete with more sophisticated “born-digital” products? Furthermore, 5G increased performance allows application developers to better integrate multiple types of data sets, including the proliferation of pictures, videos, and streaming audio services. We expect the existence of non-text-based data to increase by 45%

from 2015 to 2020 which will result in a forecasted growth in mobile traffic from 55 to 72%!

10

1 Introduction

Connected vehicles are yet another large growth market as industries move quickly toward providing augmented and autonomous driving. A result of the Ericsson Mobility Report (2016) indicated that consumers expect reaction times on their devices to be below 6 seconds, part of the key performance indicators (KPI) of positive consumer experiences. The proceeding chapters will outline how the expanding analysis and design domain must be integrated with the next generation of architecture needed to support 5G’s new offerings to people in every part of their lives.

5G Disappointments

As with most emerging wireless inventions, 5G has met with a number of challenges and disappointments:

1. It is hard to install and deploy. More transmitters were needed to cover the same area as 4G. As one could expect, COVID-19 slowed the proliferation of more transmitters, and this dilemma added more costs to deploy.

2. 5G has shown to be very exposed to hackers, malware, and other third-party breaches. Furthermore, once a breach has occurred, malware has been able to spread throughout a carrier’s infrastructure and network devices.

3. According to a study performed by the Dell’Oro Group, only 39 big mobile operators have deployed the newer “standalone” or SA version of 5G. The 5G

SA version has been coined as the “real” 5G, but its slow deployment among carriers is of concern given that there are over 200 non-standalone networks and over 700 LTE potential networks (Dano, 2003).

4. Overall 5G requires much more infrastructure and signal challenges that have taken longer to address and deploy.

6G Attributes

The objective of 6G is to create what is being defined as a “seamless reality” that depicts the joining of the physical and digital worlds. Specifically, 6G provides a more human friendliness to the end user and addresses important infrastructure features such as:

• Self-contained eco-system of AI.

• Near instant and unrestricted wireless communication.

• Intelligent connected management and control functions.

• Reduced energy footprint.

• Global standards.

• AI as a service.

The objective of 6G is to achieve a merged reality, especially of the future where individuals and groups can meet and interact in new ways of human experiences that include faraway places and among difference cultures. It is set to become the

“holodeck” from the Star Trek movies in that virtual reality will be mixed with real

[image: Image 20]

1.6

Internet of Things (IoT)

11

human interfaces. The hope is that 6G will help establish a more human-friendly and efficient society using advanced communication and software.

1.6

Internet of Things (IoT)

It is best to understand IoT as enabling the provision of outcomes based on the collection of data. The objective for IoT can be thought of as a way to perfect a product faster. This means that new product releases can be achieved and vendors/

businesses can get more immediate feedback and then adjust. It also creates a 24/

7 analysis and design paradigm. Because data updates will be closer to real time, products can meet what consumers prefer—in other words, changes in consumer behavior and needs can be detected and modified in applications. In many ways, IoT creates a super intelligent-monitoring system—a data aggregator combined with behavior activities.

IoT is built as a network stack made up of layers of interactive components.

From a business perspective, IoT possesses six essential analysis and design questions:

1. What software applications will reside on the device?

2. What hardware is best suited across the networks?

3. What data will be refreshed and sit on a device?

4. What are the external system interfaces?

5. What are the security considerations?

6. What are the performance requirements?

Figure 1.4 provides another view of these six questions.

Fig. 1.4 Interactive components of IoT

[image: Image 21]

12

1 Introduction

Fig. 1.5 IoT decomposition

IoT is built on the architecture that allows applications to reside across multiple networks. Exactly where these applications are located is part of the analyst’s challenge. Specifically, IoT devices supported by the increased performance provided by 5G will allow applications to execute on the device itself. This is currently known as edge computing, where devices will contain more software applications and data that can drive performance. Obviously, a program performing locally on a device will outperform downloading the program and data from a remote server. Resident programs and data sets then can be decomposed down to smaller units that can perform the specific functions necessary on an independent and more autonomous device. This ultimately suggests that larger more complex legacy applications need to be re-architected into smaller component programs that can be operated at the collection device as shown in Fig. 1.5.

We can see in Fig. 1.5 that a particular subfunction of the original Legacy A application module is now decomposed to three subfunctions to maximize performance on IoT devices. I must emphasize that the critical increased capabilities to design applications this way emanate from 5G’s ability to transfer local data among nodes back and forth more efficiently. It also increases speed to modify and update mobile programs on the “edge.” An example of an IoT decomposed application might be a subset or lighter version of Microsoft’s Word product. Consider a subset version that might be offered on a device that only allows viewing a Word document but without all the functionality. We already have such subsets on IPad and IPhone products! IoT with the support of 5G will only increase these types of sub-versions because of the ability to move data faster among related devices.

1.7

Cloud

13

1.7

Cloud

Cloud computing and IoT will develop yet another interesting combination of alternatives to where data resides and applications best perform. Obviously, cloud provides more operational performance and storage. Cloud has become the economical alternative to storing local applications and database storage; more importantly it provides access from anywhere. The latter is significant for mobility. There are many arguments about whether cloud storage should be public or private or both, with the issue of cybersecurity and control at the center of the conversation on how organizations will utilize this technology. It appears that the public cloud supported by third-party hosting companies such as Amazon (AWS), Microsoft (Azure), IBM Watson, Google Cloud, Cisco, and Oracle to name a few, will be the predominant suppliers of the technology. Indeed, the cloud is quickly becoming known as “cloud platform as a service.” 5G only enhances the attractiveness of moving to cloud given that the complexity of distributed networks must rely on products and extensive data storage to support AI and ML processing.

The challenge of providing internal supported data centers to support interim processing and data manipulation is likely overwhelming for any organization.

Most of this challenge is cost and ability to operate globally to support more complex supply chains for delivering and modifying product performance. Perhaps autonomous vehicles are the best examples of how 5G, IoT, and cloud must be able to reach almost every remote location thinkable to maximize consumer needs and services. Of course, the use of satellite technology makes most of this possible, but without the ability to add real-time performance and modification of data based on consumer behavior, connectivity has little attractiveness to providing point of contact operations.

From an analysis and design perspective, cloud for a service is all about designing functional primitive applications. These primitive applications are essentially known as application program interfaces or APIs that can be dynamically linked to piece together exceptional and agile applications. The cloud providers will compete based on price of course, but also on which APIs they make available that can easily provide development tools to help achieve quick program development.

All of these cloud providers thus present their own tool kits of how one connects and builds these API products. The challenge for analysts and designers is to work with tool kits that provide maximum transferability as it is likely that large organizations will choose to have multiple external cloud providers.

The prediction of the expansion of IoT development dependent on cloud is significant. According to (Linthicum, 2019), an EDC IoT study states that 55% of IoT developers connect through a cloud interface, 32% connect via a middle tier, and 26% associate cloud with IoT as a fundamental component. These stats will only increase as the IoT market is expected to reach 7.1 trillion dollars by 2020!

14

1 Introduction

1.8

Blockchain

Blockchain represents the next major generation of systems architecture.

Blockchain is really a data structure that builds on the concept of linked list connections. Each link or block contains the same transaction history. Thus, blocks can contain metadata—such as triggers, conditions, and business logic (rules) as well as stored procedures. Blocks can also contain different aspects of data.

The design philosophy behind blockchain is that all blocks or nodes get updated when new transactions are made as data packages that must be accepted by all blocks in the chain. What is also significant about blockchain design is that access is based on key cryptography and digital signatures that will enhance security.

The hope then is that blockchain provides the architecture that can maximize cybersecurity, especially of concern given the proliferation of IoT devices and wireless communication. The challenge with current blockchain architecture is latency consideration for time-sensitive updating requirements, especially relevant for financial institutions.

Blockchain operates by appending new “blocks” to the chain structure. When data is part of any new transaction, it becomes immutable and non-repudiated—

that is, all valid transactions are added in real-time updating. The blockchain has five properties:

1. Immutability: The events of an object cannot be changed, so that an audit trail of transactions is traceable.

2. Non-repudiation: The identity of the author of a transaction is guaranteed among all members of the blockchain.

3. Data Integrity: Because of (1) and (2), data entry, manipulation, and illegal modification are significantly reduced.

4. Transparency: All members or minors of the blockchain are aware of changes 5. Equal rights: The rights can be set to be equal among all minors of the chain.

From the security perspective, blockchain architecture offers the following features:

1. Because user or miner rights are set on the blockchain, authorizations can be controlled. The fact that blockchains are distributed means all members are dynamically informed of any changes.

2. The verification of any new member must be verified and self-contained, so invasions cannot come from outside or external systems. The verifier operates internally within the blockchain as a smart contractor and eliminates what is called “single points of failure” often relevant in decentralized network systems.

Multiple verifiers can be enacted among integrated distributed networks along with arbitration software.

1.9

Cybersecurity

15

There are three current blockchain architectures: Public, consortium/community, and private. Public blockchains are essentially open systems accessible to anyone that has Internet connectivity. Most digital financial currencies use public blockchains because they provide better information transparency and audibil-ity. Unfortunately, the public design sacrifices performance as it heavily relies on more encryption or cryptographic hash algorithms. Private blockchains are internal designs that establish access for a specific group of participants that deal with a particular business need. The consortium/community blockchain is a hybrid or

“semi-private” design. It is similar to a private blockchain but operates across a wider group of independent constituents or organizations. In many ways, a consortium blockchain allows different entities to share common products and services.

In other words, it is a shared interest entity dealing with common needs among independent groups.

The significant aspect of blockchain is that it is a ledger system. This means it keeps information about the transaction—theoretically you could replay all the transactions in a blockchain and should arrive at the same net results or disposition of the data and its related activities. Blocks in the chain store information such as date, time, and amounts of any transaction—like a purchase of goods. Furthermore, blockchain stores information of who is participating in any transaction, so the identity of the individual or entity is recorded and must be known. From a security perspective, blocks in the chain also store unique “hash” codes that act as a key to access certain types of information and perform certain types of transactions.

From an analysis and design perspective, it is important to first select the third-party blockchain product that will be used by the organization. Once this has been assessed, there are myriad decisions on how the blockchain will be configured (data and computation), and how it will operate administratively. Specifically, there are many data and computational decisions that need to be made, such as what will be stored in blocks, what administrative rights will be given to different groups, and what general interfaces will be needed to access various types of cloud stored data. Much of this will be covered in later chapters. Ultimately blockchain represents a new type of distributed application architecture, a new kind of client server model that is more peer-to-peer with embedded data and development applications.

Analysts will need to understand traffic challenges in the network and avoid single points of failure and how to determine API interfaces just to name a few design issues.

1.9

Cybersecurity

Cybersecurity in analysis and design is perhaps the broadest dimension of change in designing hardware and software architectures. Cyber is the only component that is integral in every phase of the next generation. It simply is part of every analysis and design decision. Another way of articulating this point is to accept that cybersecurity must now be part of the analysis and design process! One must design for security to avoid creating Frankenstein 2.0. The first step to integrate

16

1 Introduction

cyber analysis and design is to acknowledge and be aware of its importance. Analysts must navigate each component of this new generation of architecture and understand where exposures exist in their systems. Determining system exposures is now the most important part of analysis given that cyber protection is more a business decision than a design determination. Indeed, most cybersecurity professionals would state that almost any system can be designed to maximize security.

Unfortunately, maximizing security will undoubtedly limit performance that would satisfy many consumer demands. The profession of cyber design then cannot exist without risk. Therefore, most security architectures must be part of any risk conversation. This requires the analyst to interface with the necessary business and risk professionals in the organization. Some risk decisions are limited because of regulatory restrictions and legal constraints such as Europe’s GDPR law. But many decisions must be exposed during the architectural design where someone along the way chooses between capability versus exposure. Cybersecurity is thus a new component of the systems development life cycle (SDLC).

Another part of cyber design includes a number of literacy factors that exist in the internal community of any organization—how (Gurak, 2001) defined cyberlit-eracy as a new Internet consciousness. The fact is that cyber awareness is about the culture of the organization and analysts must gauge the level of cyber sophistication of a population. Indeed, we know today that many breaches occur from careless behaviors of the employees of the organization. As a result, analysis must include a method for measuring the cyber maturity of the organization and then factoring in risk as a fundamental part of designing new architectures and applications.

1.10

Quantum Computing

There is debate and uncertainty as to whether quantum computing could one day replace the silicon chip. Most quantum realities and applications still remain theoretical in nature. The functional component of quantum computers is called a qubit. A qubit is a complex and dimensional bit. Binary computing, of course, is based solely on 0 and 1 sets of bits which perform one calculation at a time. In a qubit, there are multiple 0’s and 1’s that can be performing simultaneous calculations and using multiple available resources to achieve output. Indeed, qubits might utilize atoms, ions, photons, or electrons differently even if the same calculation is repeated. In effect, qubits are like dynamic processing centers that use multiples of available parts to complete a task differently each time. While the resources can uniquely be determined upon each execution, there are mathematic probabilities that can be predicted under specific situations or states at the time a request is made. Obviously then a quantum computer could be a million times more powerful than today’s computer.

1.10

Quantum Computing

17

Generative AI

Generative AI (GenAI) is an application of AI that is programmed to generate text, images, videos, and other data using sophisticated software models that can learn and respond to various user questions or prompts. GenAI uses these models to create new patterns of data that has similar characteristics (Wikipedia, 2024). These “models” are actual products offered by such companies as OpenAI, Anthropic, Microsoft, Google, and Baidu to name a few. GenAI has become more widely used much quicker than original thought particularly in health care, finance, entertainment, art, customer service, and software development and architecture.

Many of the details of the issues discussed thus far are covered in greater detail in forthcoming chapters. A brief description of each chapter follows.

Chapter 2: Merging Internal Users and Consumer Requirements Analysts have traditionally focused on internal user requirements. Internal users were responsible for understanding what the business needed to support its customers. Depending on the business, a customer could be another business (B-to-B) or a consumer (B-to-C). This chapter addresses the need for the analyst to assess business requirements by going beyond the boundaries of the internal organization and learning how to work directly with outside customers and consumers.

The next-generation analyst must take on new challenges by providing ongoing and dynamic needs that mirror the uncertainties of business environments. Therefore, analysts must create more speculative requirements based on market trends.

Chapter Two also addresses the need to integrate artificial intelligence and machine learning in the analysis process.

Chapter 3: Reviewing the Object Paradigm

Much of the development of IoT applications will require a significant proliferation of object-based reusable applications that will be replicated across complex networks and operate in mobile environments. This chapter provides an understanding of how object orientation works, methods of decomposing current larger products into functional primitives, and methods of determining where applications need to reside. This chapter also presents an overview of the tools or core concepts that analysts must use to create specifications, or the logical equivalences of what the system needs to do to provide answers for users. This includes completing the logical architecture of the system. Regardless of whether a package software system is required or the system is to be developed internally, the organization must create logical analysis before it can truly understand the needs of the business and its consumers. Chapter Three seeks to provide analysts with a path to transforming legacy systems into the new mobile-based paradigm of analysis and design.

Chapter 4: Distributed Client/Server and Data

This chapter explains how the back-end database engine is designed. The process of logic data modeling to produce a complete entity relational diagram is covered, as well as methods of transferring data to multiple data storage facilities. Creation of data repositories is also discussed. Chapter Four effectively completes the data

18

1 Introduction

portion of the requirements document. In addition, the practices of normalization and de-normalization are addressed, as well as ways to determine the replication of data across mobile systems.

Chapter 5: The Impact of High-Speed Wireless Communication: 5G to 6G

It is important to understand how 5G wireless affected application analysis and design. In order to assess this, it is necessary to review 5G’s technical impact on performance. This chapter discusses how the market will likely react to increased wireless performance and ways 6G technology can be leveraged by application software developers. I also address how the wireless revolution increases performance in a mobile environment and raises security while lowering latency. Finally, I cover the evolving responsibilities of analysts in 6G architecture.

Chapter 6: The Internet of Things

The Internet of things (IoT) represents the physical devices that will collect data for artificial intelligence and machine learning. Chapter Six shows how IoT represents the physical components that will make a technology feasible by placing intermediate smart hardware in every place imaginable around the globe. This chapter discusses how IoT will increase the uptime and real-time processing as well as its ability to reduce unscheduled network failure. I also provide direction for the analyst with respect to security exposure and working with third-party vendors.

Chapter 7: Blockchain Analysis and Design

This chapter presents an overview of the architecture of blockchain and its role in the mobile networks of the future. It defines each type of blockchain and shows how blockchain maximizes security using a ledger-based design. I also highlight the advantages and disadvantages of blockchain and the way analysis and design should be conducted. Ultimately I demonstrate how blockchain is required for expanding IoT and interfacing with cloud computing.

Chapter 8: Quantum Computing, AI, ML, and the Cloud Chapter Eight defines how quantum computing has the potential to change the processing capabilities of computing overall, especially for ML and AI processing. The advantage of quantum is that it can do many calculations simultaneously and significantly reduce latency. Thus, quantum’s role will be to crunch massive amounts of data to obtain valuable information that can be used to make predictions. This chapter articulates how predictive analytics is quickly becoming automated using advanced AI APIs. These APIs will also be used to support more ML capabilities as the level of data far surpasses a human’s ability to do the analysis manually. I present the different approaches to ML and summarize the advantages and disadvantages of using them. Of course, cloud processing becomes an important part of how best to distribute and process data across large distributed networks that are capturing data from mobile IoT devices.

1.10

Quantum Computing

19

Chapter 9: Cybersecurity in Analysis and Design This chapter shows how cybersecurity architecture requires integration with a firm’s SDLC, particularly within steps that include strategic analysis and design, engineering, and operations in a distributed mobile environment. Mobile-driven applications need to comply with general standards to be useful, especially if they are integrating with legacy applications or part of a complete redesign using cloud.

ISO 9000 is an international concept of standardization of quality that needs to be adopted in this transformation. Chapter 10 covers many issues about cyber risks and the best practices that are currently used to combat the explosion of cyber-related crimes. The General Data Protection Regulation (GDPR) from the European Union is also discussed with recommendations on how the analyst can provide best practices.

Chapter 10: Generative AI and Systems Architecture This chapter provides an historical evolution of generative models and its impact on software analysis and design practices. Using GenAI, analysts can now use advanced methodologies to complement current practices which will improve the completeness and accuracy of requirement specifications. GenAI’s impact on the systems development life cycle will be discussed as well as addressing some of the disadvantages of relying solely on AI. Overall this chapter addresses the current, future, and evolution of GenAI.

Chapter 11: Transforming Legacy Systems

This chapter outlines the process of interfacing new mobile-based systems with preexisting applications called legacies. Issues of product fulfillment, connectivity of legacy databases and processes, and integration of multiple systems architecture are covered. This chapter combines many of the suggested approaches to user interface and application specifications development that are covered in previous chapters. The objective of Chapter Ten is also to set out a detailed pathway to ultimately converting legacy systems.

Chapter 12: Build Versus Buy

The classic question that has challenged business organizations is whether to build applications in-house or to buy them as pre-packaged software. This chapter will provide guidance on the appropriate steps to determine the right choice. Obviously, the decisions can be complex and vary depending on the application, the generic nature of the application itself, and the time requirements to have a functional application to meet business needs. Build decisions are yet more complex in that they can be developed in-house or by an outsource provider. Buying can also come with choices on the amounts of custom modifications that are necessary—

the general rule is that over 20% modifications tend to be a bad choice for the buy equation. Cloud computing is the ultimate server-based paradigm to support IoT and blockchain technologies and I predict that most companies will engage in both development and third-party products.

20

1 Introduction

Chapter 13: The Analyst and Project Management in the Next Generation This chapter provides guidance on system development life cycle methodologies and best practices for project management of the next generation of systems.

Project organization including roles and responsibilities is covered. There are many subcategories of the next generation (5G, IoT, blockchain) that are generic; however, there are certainly many unique aspects to managing these mobile-based systems. Thus, this chapter establishes an understanding of where these unique challenges occur in the life cycle of software development. It also focuses on the ongoing support issues that must be addressed to attain best practices. Chapter Twelve’s focus is to suggest that analysts become involved in project management roles in addition to their responsibilities in the analysis and design of systems.

This chapter also provides the necessary processes, recommended procedures, and reporting techniques that support higher rates of project success. Many projects have suffered because the management was not able to appropriately manage the contracted vendors. Organizations make the mistake of assuming that outsourced development and management is a safeguard for successful project completion.

They must understand that third-party vendors are not a panacea for comfort and that rigorous management processes must be in place in order to ensure a successful project.

Chapter 14: Conclusions and the Road Forward

The conclusion brings closure to the objectives of the book. At the forefront, it summarizes the technical and social architectures necessary to successfully transform into a digital organization. The analyst must sense opportunities, as well as respond to and understand the risk component as part of the analysis and design function. This chapter also defines the different types of generations in organizations and the importance of integrating Baby Boomer, Gen X, and Millennial (Gen Y) populations. Finally, it seeks to emphasize the importance of the analyst, and the myriad of his/her roles and responsibilities that can transform organizations which will be driven by consumers in a mobile and data-centric world.

1.11

Problems and Exercises

1. What are some of the limitations of traditional analysis and design?

2. What is meant by “consumerization of technology”?

3. How has the role of the analyst expanded in the digital era? Provide some examples.

4. Define and describe the components of the “new paradigm.” How does each of these components create more levels of complexity?

5. Discuss what is meant by Mobile Connectivity Architecture. What are the common links?

6. Explain the relationships between the market and advances in technology.

7. What are the six essential analysis and design questions?

References

21

8. How will 6G impact IoT expansion and data collection

9. Explain IoT decomposition.

10. What are the security advantages of blockchain?

11. How might quantum computing change the world?

References

Dano, M. (2003). 5G & Mobile Strategies. Light Reading. January 18, 2023. https://www.lig

htreading.com/mobile-core/standalone-5g-progress-remains-a-disappointment-#:~:text=Sta

ndalone%205G%20progress%20remains%20’a%20disappointment’%20Standalone%205G%

20progress%20remains,39%20operators%20have%20deployed%20it.&text=The%20standal

one%20(SA)%20version%20of,touted%20as%20%22real%22%205G

Ericsson Mobility Report (2016). On the pulse of the networked society. https://www.e-alsace.net/

res/docs/2016/mobility-report/ericsson-mobility-report-feb-2016-interim.pdf

Gurak, L. J. (2001). Cyberliteracy: Navigating the internet with awareness. Yale University Press.

Langer, A. M. (1997). The art of analysis. Springer-Verlag.

Langer, A. M. (2016). Guide to software development: Designing & managing the life cycle (2nd ed.). Springer.

Langer, A. M. (2018). Information technology & organizational learning: Managing behavioral change through technology and education (3rd ed.). CRC Press.

Linthicum, D. (2019). Talking to IoT Talk, TechBeacon. https://techbeacon.com/app-dev-testing/

app-nirvana-when-internet-things-meets-api-economy

[image: Image 22]

Merging Internal Users

and Consumer Requirements

2

This chapter seeks to present analysts with a path to transforming legacy systems into the new mobile-based paradigm of analysis and design. In order to best understand this journey, I must first clearly define what has been accomplished in the past; to do so provides today’s analyst with a better understanding of why applications perform the way they were designed and the reasons why they are not usable as we go forward with the new paradigm of advanced technologies in a mobile-based global economy. Reviewing these methods also allows analysts to continue supporting legacy applications and making enhancements to them until they are completely re-architected (which could take decades). Furthermore, because not all legacy analysis and design techniques should be eliminated, an understanding of past methods permits analysts to expand them to meet the needs of new digital-based technologies.

So, the first part of this chapter will review existing methods and how to expand them for the newer generations of systems. The first aspect of understanding business requirements is the tiers of software development.

2.1

The Tiers of Software Development

As stated, software development continues to evolve, particularly with the proliferation of Internet-based wireless software products. The need to change the life cycle of development certainly changes the way analysis and design are conducted. Unfortunately, many software products are created without thorough analysis and design, because it is easier just to create an “app” and then release it for consumer evaluation. Although significant, these advances in software development are overshadowing the importance of creating a parallel analysis and design paradigm.

© The Editor(s) (if applicable) and The Author(s), under exclusive license 23

to Springer Nature Switzerland AG 2025

A. M. Langer, Analysis and Design of Next-Generation Software Architectures,

https://doi.org/10.1007/978-3-031-76212-3_2

24

2 Merging Internal Users and Consumer Requirements

As the software industry focuses on integrated software solutions through robust mobile-based capabilities, it is important for the analyst to use the appropriate sequence of tiers to arrive at user and consumer requirements. Developers cannot expect good results from taking shortcuts, tempting as they may be. The recommended sequence of tiers is outlined below:

2.1.1

User/Consumer Interface

Notwithstanding the type of software applications being developed, applications cannot be effectively designed without a user/consumer interface. The user/

consumer interface tier acts as the base layer for any application because it drives the requirements of the product. Unfortunately, the user/consumer interface is often bypassed because of pressures to issue product quickly. The traditional SDLC was most effective and often used during three fundamental phases:

1. Requirements analysis.

2. Data modeling.

3. Normalization.

During requirements analysis, the development and design team conducts interviews in order to capture all the business needs as related to the proposed system.

Data modeling involves the design of the logical data model which will eventually be transformed into a physical database. Normalization is conducted to reduce the existence of redundant data. Below is a more specific depiction of the development, testing, and production cycles of the SDLC.

1. Development

The development life cycle consists of all the necessary steps to accomplish the creation of the application. The four components are feasibility, analysis, design, and the actual coding. The feasibility process helps determine whether the application is realistic and has an acceptable return on investment (ROI). ROI usually has complex financial models that calculate whether the investment will provide an acceptable rate of return to the business. ROI should not solely use monetary returns as the only method; there are a number of reasons why companies develop software solutions that are not based on monetary returns (Langer, 2011). Feasibility reports typically contain ranges of best and worst cases. Feasibility also addresses whether the business feels it can deliver on time and on budget.

Analysis is the phase that delivers a logical requirements document. Indeed, the analyst creates the blueprint for programmers and database developers. Analysis, as an architectural responsibility, is very much based on a mathematical progression of predictable steps. These steps are quite iterative in nature, which requires practitioners to understand the gradual nature of completion of this vital step in development. Another aspect of the mathematics of analysis is decomposition.

2.1

The Tiers of Software Development

25

Decomposition as we will see establishes the creation of the smaller components that make up the whole. It is like the components of a human body that when put together make up the actual person that we physically see. Once a system is decomposed, the analyst can be confident that the “parts” that comprise the whole are identified and can be reused throughout the system as necessary. These decomposed parts are called “objects” and comprise the study and application of object-oriented analysis and design. This traditional approach is actually the key to moving forward and providing reusable mobile-based applications. Therefore, the basis of an effective path is whether the legacy system has been decomposed to the object level. Unfortunately, most major legacy systems are not yet in this state. So the first step in a transition is to move them into reusable parts, just like those found in an automobile—tires that can fit many different vehicles.

The design step while less logical is a much more creative phase. Design requires the analyst to make the physical decisions about the system, from what programming language to use, and which vendor database to select (Oracle, Sybase, DB2 for example), to how screens and reports will be identified. The design phase can also include decisions about hardware and network communications, or the topology. Unlike analysis, design requires less of a mathematical and engineering focus, and instead one that actually serves the user or consumer view.

The design is often more iterative, which could require multiple sessions with users and consumers in a trial-and-error approach until the correct user interface and product selection have been completed. We will see that the new paradigm requires much more in design and physical trials than getting it right just in analysis. While this sounds a bit strange, we will see that many applications are developed and tested as well as they can be, but then once put into consumer use, they often need a lot of changes. This is where the consumer interface has significantly changed the way we work on the SDLC.

Actual coding represents another architectural as well as mathematical

approach. However, while early programming languages were very close to the machine, they are now several layers back or what we call abstractions of the actual code that the machine understands. That is, software is the physical abstraction that allows us to talk with the hardware machine. Coding then is the best way to actually develop the structure of the program. Much has been written about coding styles and formats. The best known is called “structured” programming.

Structured programming was originally developed so that programmers would create code that would be cohesive, that is, self-reliant. Self-reliance in coding means that the program is self-contained because all of the logic relating to its tasks is within the program. The opposite of cohesion is coupling. Coupling is the logic of programs that are reliant on each other, meaning that a change to one program necessitates a change in another program. Coupling is viewed as dangerous from a maintenance and quality perspective simply because changes cause problems in other reliant or “coupled” systems. The relationship of coding to analysis can be critical given that the decision on what code will comprise a module may be determined during analysis as opposed to during coding. Today, software programming

26

2 Merging Internal Users and Consumer Requirements

languages allow less “technically” trained people to use them, and this has allowed for a larger and growing number of professionals that are developing products.

2. Testing

Testing can have a number of components. The first form of testing is called program debugging. Debugging is the process where a programmer ensures that the application executes. For this reason, we consider debugging part of the programmer’s responsibility. This is very different than work done by a formal testing or quality assurance group of staff. The challenge is always who does what, and when is a program ready for the quality assurance group to ensure that it delivers the behavior and outputs originated from the requirements document. Programmers should therefore never pass a program to quality assurance that does not execute properly under all conditions.

The formal process should be that a “debugged” program is forwarded to a formal quality assurance group for validation. Most IT organizations have developed formal QA departments that are comprised of non-programmers. These QA groups focus on testing the correctness and accuracy of programs. Quality assurance organizations typically accomplish this by designing what is known as acceptance test planning. Acceptance test plans are designed from the original requirements, which allow quality assurance personnel to develop assurance testing based on the user’s original requirements as opposed to what might have been interpreted. For this reason, acceptance test planning is usually implemented during the analysis and design phases of the life cycle but executed during the testing phase. Acceptance test planning also includes system-type testing activities such as stress and load checking, which ensure that the application can handle larger demands of data, consistent access, or a high number of users on the system simultaneously. It also addresses compatibility testing, such as ensuring that applications operate on particular types of browsers or computer systems. QA of course is an iterative process that can often create iterations of redesign and programming. The acceptance testing has two distinct components: (1) the design of the test plans, and (2) the execution of those acceptance plans. In the “mobile age” of software development, it is necessary for the programming and testing process to happen almost simultaneously. This can take place because of the capacity to make changes more quickly and to identify problems as a result of the decomposition of the smaller program functions.

3. Production

Production is really the “going-live’ phase. Ultimately, production must ensure the successful execution of all aspects of a system. During production, there is the need to establish how problems will be serviced, what support staff will be available, and when and how inquiries will be responded to and scheduled for fixing. This component of production may initiate new development and testing cycles because of redesign needs (or misinterpreted user needs). This means that the original

2.1

The Tiers of Software Development

27

requirements were not properly translated into system realities. However, today’s systems are more like living organisms that are always evolving, always providing new capabilities, always in testing, and always going into product.

There are other aspects of production as a life cycle that have not changed:

• Backup, recovery, and archival.

• Change control.

• Performance fine-tuning and statistics.

• Audit and new requirements.

2.1.2

Tools

Software systems require that analysts have the appropriate tools to do their job, just like an architect. Many new techniques are needed both in the short-term and the long-term of the analyst’s profession. Furthermore, an even more significant challenge is understanding which of the many available tools to use at any given point. Analyst tools are often designed for specialized use rather than for general application, and using the wrong tool can potentially cause significant damage.

Finally, the sequence of use for each specialized tool is also critical to success.

Indeed, the order of operation, as well as the relationship among specialized analysis tools, must be mastered to ensure success. The newer tools discussed herein will obviously need to target the wireless and mobile needs of consumers.

2.1.3

Productivity Through Automation

Having the appropriate tools and knowing how and when to use them is only part of the formula for success. Analysts must also be productive—and productivity can be accomplished only through the use of automation. Automation is implemented using integrated various automated products or what was once defined as computer-aided software engineering or CASE. These products provide the analyst with automated and integrated toolsets that are centralized through a core automated system and repository of data definitions to be used by all products in the info-systems of an enterprise.

2.1.4

Object Orientation

Perhaps the most important tool for the wireless generation of software products is the concept of object orientation (OO). Whether or not software systems are OO compliant, analyzing systems using the object method builds is essential for creating functional primitive objects that can be disseminated across IoT devices.

OO-developed software creates better systems that are more cohesive, reusable, and maintainable. Such code is more maintainable and so is the foundation of

28

2 Merging Internal Users and Consumer Requirements

the development of reusable components that can be integrated across architectures and combined dynamically into larger applications. Without an OO design philosophy, systems tend to have parts in many applications that are re-coded and virtually impossible to maintain. Welcome to the legacy challenge! With the advent of mobile-based architectures, it is vital to convert all legacy software into an object library repository. The question that this book addresses is, how?

2.1.5

Client/Server

In many ways, a large portion of legacy software is still governed by the concept of client/server processing. Client/server design was born out of a master/

slave philosophy, where the server contained the major code and the databases, and the client had local needs, mostly to help with performance. Client/server is now outdated and must be replaced with a network strategy of linked components that might not need a master server, but perhaps a more flattened linkage of parts.

Thus, client/server software development was originally designed to solve a network performance problem, but 5G and future quantum-type hardware will simply continue making that architecture obsolete. While client/server hardware topology is an important issue in itself, it has little to do with the process of deciding how software modules should interact across the network and where such modules should be placed. Such decisions must be driven by issues that arise during the process of analysis. Client/server software processing, in its true implementation, involves the interaction of objects and defining the way they will communicate with each other across IoT devices. The network will simply act as connection points. Thus, analysts must first be versed in the laws governing OO if they are to understand how to design mobile-based IoT solutions.

2.1.6

Internet/Intranet to Mobility

The movement to cyber communication across the Internet with web-based

technologies was initially coined Internet/Intranet processing. It resulted in the introduction of a new breed of software applications. These new applications certainly brought new challenges to analysts and designers. Increasingly, analysts themselves had to work directly with commercial advertisers and marketing departments to create a new “look and feel” that was demanded by consumers using the Internet to access products. These web-based systems inserted the analyst into a new part of the development process, no longer just limited to gathering requirements. The analyst in the wireless IoT era is now the critical integrator to transform the systems. We have seen less and less distribution of development teams, with the coming of cloud companies that can develop object modules more easily and store them for distribution across complex networks that feed IoT devices. In other words, companies will find more and more outsourced solutions to fill their needs.

So, the term Internet/Intranet is no longer relevant—it is now Mobility!

2.2

Establishing Internal User Interfaces

29

Table 2.1 Tiers of analysis and software application development

Tier Analyst application

6

Mobility and IoT

5

Distributed networks—breaking down applications

4

Object orientation—selection of objects and classes

3

CASE—automation and productivity of Tier 2

2

Structured tools—use cases, DFD, PFD, ERD, STD, process specification, data repository 1

User/consumer interface—interviewing skills, marketing, risk analysis

Mobile-based processing requires that analysts master the client/server

paradigm more as a distributed network of parts. Indeed, many professionals will dub mobility development as “client/server grown-up.” This may not be the best definition of architectural agility, but it functionally supports the tier concept of dynamic and connected parts.

So the new tiers of software development that I developed in 2011 are now mobile IoT. I call each of these “tiers” because of their dependence on the previous phase as a building-block and their inevitable dependence on each other. I insist that effective analysts must master these tiers to ensure success at the next phase.

I present these tiers in Table 2.1.

The table graphically shows how each tier must be dependent on the other.

There is a profound message in this diagram which suggests that no tier can be developed or exist without the previous one. To ensure success on a project, everyone involved in the design and development of application software must fully understand the interdependent nature of these tiers. Analysts must be able to convey to their colleagues that to go mobile and IoT, organizations must first have excellent user/consumer interfaces, mastery of a structured toolset, a vehicle for automation so that the process will be productive, an understanding of the concept of objects, and a way to deploy these objects in a distributed outsourced cloud environment.

The following sections provide a step-by-step process of gathering the data that needed to create a traditional requirements document.

2.2

Establishing Internal User Interfaces

The success factors in analysis start with the established interfaces from day one.

What does this mean? You must start the process by meeting with the right people in the organization. In the best projects, the process is as follows:

1. Executive Interface: There should be an executive-level supporter of the project.

Without such a supporter, you risk not being able to keep the project on schedule. Most important, you need a supporter for the political issues that you may

[image: Image 23]

[image: Image 24]

[image: Image 25]

[image: Image 26]

[image: Image 27]

[image: Image 28]

[image: Image 29]

[image: Image 30]

[image: Image 31]

[image: Image 32]

[image: Image 33]

[image: Image 34]

[image: Image 35]

[image: Image 36]

[image: Image 37]

[image: Image 38]

[image: Image 39]

[image: Image 40]

[image: Image 41]

[image: Image 42]

[image: Image 43]

[image: Image 44]

[image: Image 45]

[image: Image 46]

[image: Image 47]

[image: Image 48]

[image: Image 49]

[image: Image 50]

[image: Image 51]

[image: Image 52]

[image: Image 53]

[image: Image 54]

[image: Image 55]

[image: Image 56]

[image: Image 57]

[image: Image 58]

[image: Image 59]

[image: Image 60]

[image: Image 61]

[image: Image 62]

[image: Image 63]

[image: Image 64]

[image: Image 65]

[image: Image 66]

[image: Image 67]

[image: Image 68]

[image: Image 69]

[image: Image 70]

[image: Image 71]

[image: Image 72]

[image: Image 73]

[image: Image 74]

[image: Image 75]

[image: Image 76]

[image: Image 77]

[image: Image 78]

[image: Image 79]

[image: Image 80]

[image: Image 81]

[image: Image 82]

[image: Image 83]

[image: Image 84]

[image: Image 85]

[image: Image 86]

[image: Image 87]

[image: Image 88]

[image: Image 89]

[image: Image 90]

[image: Image 91]

[image: Image 92]

[image: Image 93]

[image: Image 94]

[image: Image 95]

[image: Image 96]

[image: Image 97]

[image: Image 98]

[image: Image 99]

[image: Image 100]

[image: Image 101]

[image: Image 102]

[image: Image 103]

[image: Image 104]

[image: Image 105]

[image: Image 106]

[image: Image 107]

[image: Image 108]

[image: Image 109]

[image: Image 110]

[image: Image 111]

[image: Image 112]

[image: Image 113]

[image: Image 114]

[image: Image 115]

[image: Image 116]

[image: Image 117]

[image: Image 118]

[image: Image 119]

[image: Image 120]

[image: Image 121]

[image: Image 122]

[image: Image 123]

[image: Image 124]

[image: Image 125]

[image: Image 126]

[image: Image 127]

[image: Image 128]

[image: Image 129]

[image: Image 130]

[image: Image 131]

[image: Image 132]

[image: Image 133]

[image: Image 134]

[image: Image 135]

[image: Image 136]

[image: Image 137]

[image: Image 138]

[image: Image 139]

[image: Image 140]

[image: Image 141]

[image: Image 142]

[image: Image 143]

[image: Image 144]

[image: Image 145]

[image: Image 146]

[image: Image 147]

[image: Image 148]

[image: Image 149]

[image: Image 150]

[image: Image 151]

[image: Image 152]

[image: Image 153]

[image: Image 154]

[image: Image 155]

[image: Image 156]

[image: Image 157]

[image: Image 158]

[image: Image 159]

[image: Image 160]

[image: Image 161]

[image: Image 162]

[image: Image 163]

[image: Image 164]

[image: Image 165]

[image: Image 166]

[image: Image 167]

[image: Image 168]

[image: Image 169]

[image: Image 170]

[image: Image 171]

[image: Image 172]

[image: Image 173]

[image: Image 174]

[image: Image 175]

[image: Image 176]

[image: Image 177]

[image: Image 178]

[image: Image 179]

[image: Image 180]

[image: Image 181]

[image: Image 182]

[image: Image 183]

[image: Image 184]

[image: Image 185]

[image: Image 186]

[image: Image 187]

[image: Image 188]

[image: Image 189]

[image: Image 190]

[image: Image 191]

[image: Image 192]

[image: Image 193]

[image: Image 194]

[image: Image 195]

[image: Image 196]

[image: Image 197]

[image: Image 198]

[image: Image 199]

[image: Image 200]

[image: Image 201]

[image: Image 202]

[image: Image 203]

[image: Image 204]

[image: Image 205]

[image: Image 206]

[image: Image 207]

[image: Image 208]

[image: Image 209]

[image: Image 210]

[image: Image 211]

[image: Image 212]

[image: Image 213]

[image: Image 214]

[image: Image 215]

[image: Image 216]

[image: Image 217]

[image: Image 218]

[image: Image 219]

[image: Image 220]

[image: Image 221]

[image: Image 222]

[image: Image 223]

[image: Image 224]

[image: Image 225]

[image: Image 226]

[image: Image 227]

[image: Image 228]

[image: Image 229]

[image: Image 230]

[image: Image 231]

[image: Image 232]

[image: Image 233]

[image: Image 234]

[image: Image 235]

[image: Image 236]

[image: Image 237]

[image: Image 238]

[image: Image 239]

[image: Image 240]

[image: Image 241]

[image: Image 242]

[image: Image 243]

[image: Image 244]

[image: Image 245]

[image: Image 246]

[image: Image 247]

[image: Image 248]

[image: Image 249]

[image: Image 250]

[image: Image 251]

[image: Image 252]

[image: Image 253]

[image: Image 254]

[image: Image 255]

[image: Image 256]

[image: Image 257]

[image: Image 258]

[image: Image 259]

[image: Image 260]

[image: Image 261]

[image: Image 262]

[image: Image 263]

[image: Image 264]

[image: Image 265]

[image: Image 266]

[image: Image 267]

[image: Image 268]

[image: Image 269]

[image: Image 270]

[image: Image 271]

[image: Image 272]

[image: Image 273]

[image: Image 274]

[image: Image 275]

[image: Image 276]

[image: Image 277]

[image: Image 278]

[image: Image 279]

[image: Image 280]

[image: Image 281]

30

2 Merging Internal Users and Consumer Requirements

Executive

Supporter

line

managers

VP Sales

VP Operations

VP Finance

functional users Direct

Franchise

Inventory Control

Order Processing

Accounts Payable

Accounts receivable

Fig. 2.1 Established interface layers

have to handle during the project (discussed in detail later). The executive supporter, sometimes known as a sponsor, should provide a preliminary schedule advising the organization of what is expected and the objectives of the project.

The executive supporter should attach a letter to the preliminary schedule and send it to the project team members. The letter must put the importance of the project into perspective. Therefore, it is strongly recommended that you draft this letter yourself or at least have influence over its content, since doing so can ensure that the message is delivered appropriately. The executive supporter should also establish regular reviews with the analyst and the user community to ensure that objectives are being met.

2. Department Head or Line Manager Interface: If appropriate, the department head should provide guidance about which individuals should represent the department needs. If there are several people involved, the analyst should consider a JAD-like approach. Depending on the size of the organization, the department head might also establish review sessions to ensure compliance.

3. Functional User Interface: Perhaps the most important people are the ones who can provide the step-by-step needs of the system. Figure 2.1 shows a typical organization interface structure.

2.3

Forming an Interview Approach

The primary mission of an analyst or systems designer is to extract the physical requirements of the users and convert each to its logical equivalent. The most critical step in this mission is the actual interview, in which you must establish a rapport with the user(s) that will facilitate your obtaining the information you need. Your approach will dramatically change based on the level and category of the individual being interviewed. Therefore, prior to meeting with any user, it is critical to understand the culture of the company, its past experiences with automation, and most importantly its organizational structure.

The following five-step procedure will help guide you more smoothly through the interview process.

Step 1—Get The Organization Chart:

2.3

Forming an Interview Approach

31

There are few things that are more useful in understanding the chain of command and areas of responsibility. Depending on the size of the enterprise, and the scope of the project, the organization chart should start at the executive supporter level and work down to the operational users.

Step 2—Understand Everyone’s Role in the Organization Chart:

If there are any individuals not involved in the project (who should be, given their position in the organization), first ask why and then make a notation for yourself that they are not to be included. Management may assume an individual or role should not be included and may often overlook their importance. Do not be afraid to ask why a person is not deemed necessary for the analysis of the system, and determine if you are satisfied with the reasons for their exclusion. Remember, you can still control and change the approach at this point, and management will probably respect you for doing so.

Step 3—Assume the Situation is Political:

Be sure you understand the personalities that you will have to deal with. In almost any implementation, politics among people becomes part of the process.

To ignore its existence—and the constraints it is likely to impose—is to invite failure. The question is how to obtain information about internal politics. The best approach is to start as high up in the organization as possible, typically at the executive supporter level. You might be surprised at the amount of information they have. Of course, you should not ask explicitly about the politics, but rather phrase your question as follows: “Can you give me some perspective on potential department and personnel conflicts that may occur during the interview cycle and that I should be aware of?” You may not always get the answer you need, but if you keep asking the question during every interview, you will discover a great deal about the way the organization functions. And remember, only people make projects complex!

Step 4—Obtain Information about User Skill Sets:

To start an interview without knowledge of the user’s technical skills puts the analyst at a huge disadvantage. Having this information will allow you to formulate a plan of questions and to determine the best approach to the interview. If the user has no knowledge, the questions should be tailored to include a minimum of technical content. The following guidelines for preparing for interviews reflect a common-sense approach, yet it is amazing how many analysts fail even to consider such strategies!

1. Gather information before the session to allow the user—as well as yourself—

to be prepared and to give you both a much clearer understanding of what will be covered during the interview.

2. Develop a questionnaire. Technical questions should be phrased differently depending on the level of knowledge possessed by the user.

3. Determine whether the interview will provide enough input to obtain the necessary information. This is not always the case; however, it happens more often than you might think. Understanding user capabilities before the interview may

32

2 Merging Internal Users and Consumer Requirements

change not only the scope of the meeting, but may also suggest who, in addition to the user, may need to be in attendance at the interview.

Step 5: Arrange for a Pre-Meeting with the User:

A pre-meeting may not always be possible, and in any case, it must be a short meeting, perhaps half an hour. The session should be designed to be high-level and provide a general idea of what will be covered during the actual interview.

But more important, it will allow you to get a snap-shot of the user. You might say you are obtaining a “comfort level” (or “discomfort level”) for that user, and such meetings can provide you with an idea of what to expect and how to finalize your approach. What do you look for? Here is some direction:

1. The pre-meeting should give you enough feedback to place or confirm the user’s technical level.

2. Look at everything in the user’s office or their environment. Is it sloppy? Is it tidy and organized? The state of the user’s environment will often be consistent with the way they provide information. The insight you gain from observing the environment should give you guidance about the types of questions to ask this individual.

3. Look for signs of attitude. The user’s level of interest should be evident. Do they view the upcoming session as a waste of time, or are they excited about the meeting?

4. The information gleaned in the pre-meeting can provide you with helpful hints about what to expect from the interview and from the user in general.

2.4

Dealing with Political Factions

The importance of internal politics at the user’s site should never be underestimated. Perhaps the most common question raised by both professionals and student analysts is how to provide quality analysis when office politics get in the way. Here are some guidelines:

1. First, assess whether you are in the No-Win Scenario. Many of us hate to admit that the No-Win Scenario does indeed exist in many environments, but you should be on the lookout for the signs. If your manager will not support you, if the company is underpaying you, if the users hate you, if there are no automated tools to do the analysis, and if upper management does not care, then you are in a difficult position. If you cannot change the situation, you must inform management that the results of your analysis will be significantly impaired by the lack of support and tools to complete the project properly. The techniques offered in this book assume that all parties are interested in providing the best solution possible, not in providing a system that is barely adequate.

2.4

Dealing with Political Factions

33

2. On the other hand, do not be too quick to assume that you are in the No-Win Scenario. Most politically hampered projects need some strategy to get them on course, and most problems can be overcome if you know how to approach them. Here is a typical example of such a problem and some ideas you can apply to solve it:

 Problem:

The users who currently operate the system would not talk to me. They are afraid either that the new system might replace them or that their jobs will significantly change. In short, they fear change.

 Recommended Solution:

Most operational users are managed by a supervisor or “in-charge.” Sometimes even a line manager can be directly responsible for production workers. In any event, you must determine who is responsible and meet with that person. The purpose of the meeting is to gain their support. This support is significant since you might find that the Supervisor was once in operations and will be able to understand the problems you may encounter. If the meeting is successful, the supervisor may be able to offer a strategy. This strategy can vary from a general meeting with the users, to individual discipline, to escalation to upper management. Whatever you do, do not allow such a situation to continue and do not accept abuse; to do so will ultimately reflect on you and your abilities.

Obviously, if the supervisor is also a problem, then you have no choice but to go to upper management. However, this option is not a desirable one from the analyst’s viewpoint. Upper management’s reaction may not be helpful, and it could be damaging. For example, they might be indifferent to your problem and instruct you to deal with it yourself, or they might simply send the Supervisor a letter. In some cases, you may be fortunate and the supervisor’s responsibilities regarding the system will be given to another manager. Consider, though, how unpleasant the consequences may be if you appeal to upper management and get no support: you may be left working with an already-unhelpful supervisor who has been made even more so by your complaint. It is important to remember that once you go to upper management, the line has been drawn.

Supervisors typically are responsible for the day-to-day operation. They usually know more about the entire operation than anyone else, and therefore you are well advised to find a way to get them on your side. A supportive supervisor can be invaluable in helping you overcome problems, as long as you are not shy about suggesting ways to get the users comfortable.

34

2 Merging Internal Users and Consumer Requirements

2.5

Categories and Levels of Internal Users

Establishing user interfaces represent the vehicle to formulate much of the interview approach. It is necessary, however, to go further into the characteristics of the people particularly with respect to the category and level, they have within the organization. Figure 2.1 established the three general categories, called executive, department head or line manager, and functional. It is important to explore their characteristics. So we better understand each category, I have always asked the following question: What would be their interest in the success of the project, that is, what would make them happy with the new system? Let’s apply this question for each user category.

1. Executive users: Individuals at this layer are most interested in the concept of return on investment (ROI). ROI basically focuses on whether an investment will provide a financial return that makes the effort worthwhile to the organization. While there are many comprehensive formulas that are often applied to the study of ROI, our context pertains to the short- and long-term benefits of investing in building new software. There are generally five reasons why executives agree to fund software development. They are listed in order of significance to the investor.

a. Monetary return: Simply put this means that the software will generate dollar revenue. An example might be the Internet software that supports on-line ordering systems such as Amazon has for book shipments. Their system

not only provides the functionality to handle shipments, but provides a web interface that can be directly associated with revenues provided by book orders through the Internet.

b. Increased productivity: Many software systems are unable to demonstrate direct monetary benefits; however, many of them are developed to increase productivity. This means that the system will allow organizations to actually produce and deliver more. Thus, the system allows the organization to derive higher revenues through increased productivity of its resources.

c. Reducing costs: Software projects are approved so that organizations can reduce their existing overhead costs. This typically relates to the replacement of manual activities with computer ones. While reducing costs appears to be similar in nature to increasing productivity, they are often implemented for different reasons. Increased productivity usually relates to organizations that are growing and are looking for ways to improve output because of very high demand. Reducing costs, on the other hand, can represent a defensive measure, where an organization is seeking to find ways to cut costs because of a shrinking market.

d. Competition: Software systems are created because the competition has done so. Therefore, in competitive terms, producing software is a defensive measure against someone else who has demonstrated its value. An example

of this is in the banking sector. Citibank was one of the first banks to introduce automated teller machines (ATM). Other banks soon followed

2.5

Categories and Levels of Internal Users

35

because of the success that Citibank had with proliferating ATMs throughout New York State. This does not imply however that competitive systems are always defense mechanisms, indeed, many commercial web sites are being

introduced based simply on market forecasts of their potential to increase business.

e. For the sake of technology: While not the most popular, some organizations will invest in new systems because they think it is time to do so or they are concerned that their technology is getting old. This way of supporting new systems development is rare, as it suggests spending money without a clear understanding of its benefits.

Therefore, the executive category of users is one that is interested in the value of the investment. These users have a global view of needs as opposed to the details.

In fact, they may know little about how things are really done. The value of the executive interface is to provide the scope and objectives of the project against the perceived value they intend to get from the software. Another popular phrase for this is called the domain of the system. Domain often refers to boundaries. Ultimately, what makes these users happy is a system that delivers what was promised or the expected ROI.

2. Department head or line manager users: These users represent two main areas of user input. First they are responsible for the day-to-day productivity of their respective departments. Thus, they understand the importance of meeting the objectives of the organization as set forth by the executives. Indeed, they often report to the executives. On the other hand, department heads and line managers are also responsible to their staff. They must deal with the functional users and prescribe ways to improve both their output and their job satisfaction. These users perhaps provide what I call the best bang for the buck, a phrase that usually means that for the time, you get the most. One can see that the department heads and line managers are responsible for most of what happens every day in an organization. Another phrase that can be used to describe them is your most valuable players (MVPs). However, beware, MVPs are the hardest to find for the interviews. What makes department heads and line managers happy is the most complex: they want a system that produces the output that they are expected to provide and they need a system that makes keeps their staff happy and productive.

3. Functional users: Also known as the users in the trenches, these people essentially do the operational activities. While they know a lot about their processes, they usually care little about the productivity and expected ROI. I often see these users as people who want little pain, and just want to work the hours they need to. Thus, fancy systems are of little interest to them unless they provide no pain—and no pain derives to a system that makes their job easier.

The next area to understand about users is their level. By level, I mean their understanding of computers. There are three levels of users:

36

2 Merging Internal Users and Consumer Requirements

1. Knowledgeable: The determination of knowledge can be tricky and certainly based on someone’s opinion. I define knowledge in reference to experience. An experienced user can be defined as a person who “has been through it before.”

A user who has been through the development of a new system can therefore be defined as “knowledgeable” within this context.

2. Amateur: The definition of an amateur is based not so much on experience, but rather to the type of experience the user has. Amateurs can be thought of as hobbyists who enjoy working with computers at home, but have no professional experience in developing software in an organization. In this perspective, I believe the meaning of amateur is globally defined as one who does not get paid for the work.

3. Novice: These users have no experience with computers. While there are fewer such users than ten years ago, they still exist. A better way of perceiving a novice user is to relate to my definition of knowledgeable. In this context, a novice user is one that has never been part of the implementation of a new system in a professional environment.

Perhaps the most problematic of the above levels is the amateur. I have found that users who are knowledgeable provide benefit to projects. They, in many ways, act as a checkpoint for the analyst in that they can ask good questions and particularly remember historical problems that actually can help the development process.

Novice users add little value and also add few problems. They tend to do what you ask of them. Amateurs, on the other hand, tend to know enough to be dangerous.

Because they also tend to have a profound interest in the topic, they often go on tangents about the technology as opposed to concentrating on the particulars of the project.

Most important is the mapping of these categories and levels. An analyst might interview a knowledgeable executive, or a novice functional user. Each permutation can affect the way interviews are conducted. For example, an interview with a group of amateurs would focus the analyst on ensuring that the agenda is very specific; otherwise, discussions could easily get off-track. Therefore, the understanding of user levels and categories can only assist in the development of effective interview approaches.

2.6

Requirements Without Users and Without Input

Could it be possible to develop requirements for a system without user input or even consumer opinions? Could this be accomplished?

Perhaps we need to take a step back historically and think about trends that have changed the competitive landscape. Digital transformation may indeed be the most powerful agent of change in the history of business.

We have seen large companies lose their edge. IBM’s fall as the leading technology firm in the 1990s is an excellent example, when Microsoft overtook them into that position. Yet Google was able to take the lead away from Microsoft in the

2.6

Requirements Without Users and Without Input

37

area of consumer computing. And what about the comeback of Apple with its new array of products? The question is: Why and how does this happen so quickly?

Technology continues to generate change, or as it is now referred to as “disruption.” The reality is that it is getting increasingly difficult to predict what consumers want and need—if they even know! The challenge then is how can we forecast the changes that are brought about by technology disruptions? So the digital transformation is more about predicting consumer behavior and providing new products and services, which we hope consumers will use. This is a significant challenge for the analyst of course, given that the profession was built on the notion that good specifications accurately depicted what users wanted. Langer

(1997) originally defined this a the “Concept of the Logical Equivalent.” So we may have created an oxymoron –how do we develop systems that the user cannot specify? Furthermore, specifications that depict consumer behavior are now further complicated by the globalization of business. Which consumer behaviors are we attempting to satisfy and across what cultural norms?

So the reality is that new applications will need to be more generic and be built with a certain amount of risk and uncertainty. That is, business rules may be more questionable, and risks will need to be evaluated and consistent with those practiced by the organization.

Let me state a case for my argument on designing systems for uncertainty and change.

If we look at a successful application in the 1980s with the advent of the personal computer, a standout is the electronic spreadsheet. The electronic spreadsheet was first introduced by a company called Visicorp and was named the VisiCalc.

It was designed for the Apple II and eventually the IBM PC microcomputer. The electronic spreadsheet was not built from actual consumer needs, but rather perceived needs. The electronic spreadsheet was designed as a generic calculator and mathematical worksheet. Visicorp took a risk by providing a product to the market and hoped that market would find it useful. Of course history shows that it was a very good risk. The electronic spreadsheet, which is now dominated by the Microsoft Excel product, has gone through multiple generations. The inventors had a vision and the market then matured its many uses. Thus Visicorp was correct, but not 100% accurate with what consumers would want and continue to need. For example, the additional feature of a database interface; three-dimensional spreadsheets to support budgeting; and forward referencing are all examples of responses from consumers that generated new enhancements to electronic spreadsheets.

Another useful approach to dealing with consumer preferences is Porter’s Five Forces Framework. Porter’s framework consists of the following five components: 1. Competitors: What is the number of competitors in the market and what is the organization’s position within the market?

2. New Entrants: What companies can come into the organization’s space and provide competition?

3. Substitutes: What products or services can replace what you do?

[image: Image 282]

38

2 Merging Internal Users and Consumer Requirements

4. Buyers: What alternatives do buyers have? How close and tight is the relationship between the buyer and seller?

5. Suppliers: What is the number of suppliers that are available which can affect the relationship with the buyer and also determine price levels?

Porter’s framework is graphically depicted in Fig. 2.2 (Table 2.2).

Fig. 2.2 Porter’s five forces framework

Table 2.2 Langer’s analysis consumer methods

Porter’s five force

Cadel et al.’s approach

Langer’s sources of input

Industry competitors

How strong is your market share

Third-party market studies

New entrants

New threats

Third-party market studies

Surveys and focus groups

Suppliers

Price sensitivity and closeness of

Consumer support and end user

relationship

departments

Buyers

Alternative choices and brand

Sales/marketing team

equity

Substitutes

Consumer alternatives

Surveys and focus groups

Sales and marketing team

Third-party studies

2.6

Requirements Without Users and Without Input

39

2.6.1

Concepts of the S-Curve and Digital Transformation

Analysis and Design

Digital transformation will also be associated with the behavior of the S-Curve.

The S-Curve has been a long-standing economic graph that depicts the life cycle of a product or service. The S-Curve is shown in Fig. 2.3.

At the left lower portion of the S-Curve represents a growing market opportunity that is likely volatile and where demand exceeds supply. Therefore, the market opportunity is large with high prices for the product. Thus, businesses attempt to capture as much of the market at this time, which in turn requires risk-taking with associated rewards, especially in increasing market share. The shape of the S-Curve suggests the life of the opportunity.

As the market approaches the middle of the center of the S, demand begins to equal supply, prices start to drop and the market; in general, becomes less volatile and more predictable. The drop in price reflects the presence of more competitors.

As a product or service approaches the top of the S, supply begins to exceed demand. Prices begin to fall and the market is said to have reached maturity.

The uniqueness of the product or service is now approaching commodity status.

Typically, suppliers will attempt to produce new versions to extend the life of the curve as shown Fig. 2.4.

Establishing a new S-Curve then extends the competitive life of the product or service. Once the top of the S-Curve is reached, the product or service has reached the commodity level, where supply is much greater than demand. Here, the product or service has likely reached the end of its useful competitive life and should either be replaced with a new solution or considered for outsourcing to a third-party.

Langer’s driver/supporter depicts the life cycle of any application product as shown in Fig. 2.5:

Fig. 2.3 S-Curve

The S-Curve

[image: Image 283]

40

2 Merging Internal Users and Consumer Requirements

Fig. 2.4 Extended S-curve

Technology

Mini Loop Technology Enhancements

Driver

Evaluation

Driver

Support

Economies

Cycle

Maturation

Status

of Scale

Replacement

or Outsource

Fig. 2.5 Langer’s drive/supporter life cycle

2.7

Analysis and Design and the S-Curve

When designing a new application or system, the status of that product’s S-Curve should be carefully correlated to the source of the requirements. Table 2.3

reflects the corresponding market sources and associated risk factors relating to the dependability of requirements based on the state of the consumer’s market.

2.8

Communities of Practice

Another technique that can be used to obtain more accurate information in the digital economy is called communities of practice (COP). COP has been traditionally used as a method of bringing together people in organizations with similar tal-ents, responsibilities and/or interests. Such communities can be effectively used to

2.8

Communities of Practice

41

Table 2.3 S-Curve, application requirement sources, and risk

S-Curve

Analysis

Risk factor

status

input source

Early

Consumer

High, market volatility, and uncertainty

S-Curve

High

Consumer

Lower, market is less uncertain as product becomes more mature

S-Curve

End users

Medium, business users have experience with consumers and can

provide reasonable requirements

Crest of

End users

Low, business users have more experience as product becomes

the

mature

S-Curve

Consumer

High, might consider new features and functions to keep product

more competitive. Attempt to establish new S-Curve

End of

End user

None, seek to replace product or consider third-party product to

S-Curve

replace what is now a legacy application. Also think of outsourcing

application

obtain valuable information about the way things work and what is required to run business operations. Much of this information is typically implicit knowledge that exists undocumented in the organization. Getting such information strongly correlates to the challenges of obtaining dependable information from the consumer market. I discussed the use of surveys and focus groups earlier in this section, but COP is an alternative approach to bringing together similar types of consumers grouped by their interests and needs. Communities of practice are based on the assumption that learning starts with engagement in social practice and that this practice is the fundamental construct by which individuals learn (Wenger, 1998).

Thus, COPs are formed to get things done by using a shared way of pursuing interests from common users. For analysts, this means another way of obtaining requirements by engaging in, and contributing to, the practices of specific consumer communities. This means that working with COP is another way of developing relations with consumers to better understand their needs. Using this approach inside an organization provides a means of better learning about issues by using a sustained method of remaining interconnected with specific business user groups, which can define what the organization really knows and contributes to the business that is typically not documented. The notion of COP supports the idea that learning is an “inevitable part of participating in social life and practice”

(Elkjaer, 1999: 75). Thus, analysts need to become engaged in learning if they are to truly understand what is needed to develop more effective and accurate software applications. Communities of practice also include assisting members of the community, with the particular focus on improving their skills. This is also known as

“situated learning.” Thus, communities of practice are very much a social learning theory as opposed to one that is based solely on the individual. Communities of practice have been called learning in working where learning is an inevitable part

42

2 Merging Internal Users and Consumer Requirements

of working together in a social setting. Much of this concept implies that learning in some form or other will occur and that it is accomplished within a framework of social participation, not solely or simply in the individual mind. In a world that is changing significantly due to technological innovations, we should recognize the need for organizations, communities, and individuals to embrace the complexities of being interconnected at an accelerated pace.

There is much that is useful in communities of practice theory and that justifies its use in the analysis and design process. While so much of learning technology is event-driven and individually learned, it would be short-sighted to believe that it is the only way learning can occur in an organization. Furthermore, the enormity and complexity of technology requires a community focus. This would be especially useful within the confines of specific departments that are in need of understanding how to deal with technological dynamism. That is, preparation for using new technologies cannot be accomplished by waiting for an event to occur; instead, preparation can be accomplished by creating a community that can assess technologies as a part of the organization’s normal activities. Specifically this means that through the infrastructure of a community, people can determine how they will organize themselves to operate with emerging technologies, what education they will need, and what potential strategic integration they will need to prepare for changes brought on by technology. Action in this context can be viewed as a continuous process, much in the same way that I have presented technology as an ongoing accelerating variable. However, Elkjaer (1999) argues that the continuous process cannot exist without individual interaction. As he states:

“Both individual and collective activities are grounded in the past, the present, and the future. Actions and interactions take place between and among group members and should not be viewed merely as the actions and interactions of individuals” (p. 82).

Based on this perspective, technology can be handled by the actions (community) and consumers (individuals) as shown in Fig. 2.6:

It seems logical that COP can provide the mechanism to assist analysts with an understanding of how business users and consumers behave and interact. Indeed, the analyst can target the behavior of the community and its need to consider what new organizational structures can better support emerging technologies. I have in many ways already established and presented what should be called the

“community of IT analyst practice” and its need to understand how to restructure in order to meet the demands of the digital economy. This new era does not lend itself to traditional approaches to analysis, but rather to a more community-based process that can deal with the realignment of business operations integrated with different consumer relationships.

Essentially, “communities of IT Analyst practice” must allow for the continuous evolution of risk-based analysis and design based on emergent uncertain strategies. Emergent uncertain strategies acknowledge unplanned actions and evolutions in consumer behavior, which have been historically defined as patterns that develop in the absence of intentions (Mintzberg & Waters, 1985). Emergent

[image: Image 284]

2.8

Communities of Practice

43

Fig. 2.6 Community and consumer actions

uncertain strategies can be used to gather groups that can focus on issues not based on previous plans. These strategies can be thought of as creative approaches to pro-active actions. Indeed, a frustrating aspect of digital transformation is its accelerated change. Ideas and concepts borrowed from communities of practice can help businesses deal with the evolutionary aspects of consumer uncertainty.

The relationship then between communities of practice and analysis and design is significant, given that future IT applications will rely heavily on informal inputs.

While there may be attempts to computerize knowledge using predictive analytics software and big data, it will not be able to provide all of the risk-associated behaviors of users and consumers. That is, a “structured” approach to creating predictive behavior reporting is typically difficult to establish and maintain. Ultimately the dynamism from digital transformations creates too many uncertainties to be handled by sophisticated automated applications on how organizations will react to digital change variables. So, COP along with these predictive analytics applications provides a more thorough umbrella of how to deal with the ongoing and unpredictable interactions established by emerging digital technologies.

Support for the above position is found in the fact that technology requires accumulative collective learning that should be tied to social practices; this way, project plans can be based on learning as a participatory act. One of the major advantages of communities of practice is that it can integrate key competencies into the very fabric of the organization (Lesser et al., 2000). IT’s typical disadvantage is that its staff needs to serve multiple organizational structures simultaneously.

This requires that priorities be set by the organization. Unfortunately, it is difficult if not impossible for IT departments to establish such priorities without engaging in communities of practice concepts that allow for a more integrated process of negotiation and determination. Much of the process of COP would be initiated by digital disruptions and result in many behavioral changes—in other words, the process of implementing communities of practice will necessitate changes in the

44

2 Merging Internal Users and Consumer Requirements

analysis and design approach and fundamental organization processes as outlined in this book.

As stated above, communities of practice activities can be very significant in the analysis and design of transitioning requirements from a changing digital culture.

According to Lesser et al. (2000), a knowledge strategy based on communities of practice consists of seven basic steps as shown in Table 2.4.

Lesser et al. (2000) suggests that communities of practice are heavily reliant on innovation. “Some strategies rely more on innovation than others for their success… once dependence on innovation needs have been clarified, you can work to create new knowledge where innovation matters” (8). Indeed, electronic communities of practice are different than physical communities. Digital disruptions provide another dimension to how technology affects organizational learning. It does so by creating new ways in which communities of practice operate. In the complexity of ways that it affects us, technology has a dichotomous relationship with communities of practice. That is, there is a two-sided issue: (1) the need for communities of practice to implement IT projects and integrate them better into Table 2.4 Extended seven steps of community of practice strategy in analysis and design Step

Communities of practice step

Analysis extension

1

Understanding strategic knowledge

Understanding how technology affects

needs: What knowledge is critical to

strategic knowledge and what specific

success

technological knowledge is critical to success

2

Engaging practice domains: Where

Technology identifies groups based on

people form communities of practice

business-related benefits. Requiring domains

to engage in and identify with

to work together toward measurable results

3

Developing communities: How to help Technologies have life cycles that require key communities reach their full

communities to continue. Treating the life

potential

cycle as a supporter for attaining maturation

and full potential

4

Working the boundaries: How to link

Technology life cycles require new boundaries

communities to form broader learning

to be formed. This will link other communities

systems

that were previously outside of discussions and

thus expand input into technology innovations

5

Fostering a sense of belonging: How

The process of integrating communities: IT

to engage people’s identities and sense and other organizational units will create new of belonging

evolving cultures which foster belonging as

well as new social identities

6

Running the business: How to

Digital transformation provides new

integrate communities of practice into

organizational structures that are necessary to

running the business of the

operate communities of practice and to support

organization

new technological innovations

7

Applying, assessing, reflecting,

The active process of dealing with multiple

renewing: How to deploy knowledge

new technologies that accelerates the

strategy through waves of

deployment of knowledge strategy. Emerging

organizational transformation

technologies increase the need for

organizational transformation

2.8

Communities of Practice

45

what consumers want, and (2) the expansion of electronic communities of practice invoked by technology, which can in turn assist expansion of the business consumer base, globally and culturally.

The latter issue establishes the fact that a consumer can now readily be a member of many electronic communities and in many different capacities. Electronic communities are different in that they can have memberships that are short-lived and transient, forming and reforming according to interest, particular tasks, or com-monality of issue. Communities of practice themselves are utilizing technologies to form multiple and simultaneous relationships. Furthermore, the growth of international communities resulting from ever-expanding global economies has created further complexities and dilemmas.

Thus far, I have presented communities of practice as an infrastructure that can foster improved ways to create requirements based on consumer behavior and trends. Most of what I have presented impacts the ways analysis and design needs to be approached in today’s changing world. Communities of practice through the advent of technology innovations have expanded to include electronic communities. While technology can provide organizations with vast electronic libraries that end up as storehouses of information, they are only valuable if they are allowed to be shared within the community. Although IT has led many companies to imagine a new world of leveraged knowledge, communities have discovered that just storing information does not provide for effective and efficient use of knowledge.

As a result, many companies have created these “electronic” communities so that knowledge can be leveraged, especially across cultures and geographic boundaries. These electronic communities are predictably more dynamic as a result of what technology provides to them. Below are examples of what these communities provide to organizations.

• Transcending boundaries and exchanging knowledge with internal and external communities. In this circumstance, communities are not only extending across business units, but into communities among various clients—as we see developing in advanced e-business strategies. Using Internet and Intranets, communities can foster dynamic integration of the client, an important participant in competitive advantage. However, the expansion of an external community, due to emergent electronics, creates yet another need for the implementation of a more dynamic analysis approach to ascertaining requirements.

• Connecting social and workplace communities through sophisticated networks.

This issue links well to the entire expansion of issues surrounding organizational learning, in particular learning organization formation. It enfolds both the process and the social dialectic issues so important to creating well-balanced communities of practice that deal with organizational level and individual development.

• Integrating teleworkers and non-teleworkers, including the study of gender and cultural differences. The growth of distance workers will most likely increase with the maturation of technological connectivity. Video conferencing and improved media interaction through expanded broadband will support

46

2 Merging Internal Users and Consumer Requirements

further developments in virtual workplaces. Gender and culture will continue to become important issues in the expansion of existing models that are currently limited to specific types of workplace issues.

• Assisting in computer-mediated communities. Such mediation allows for the management of interaction among communities, of who mediates their communications criteria, and of who is ultimately responsible for the mediation of issues. Mature communities of practice will pursue self-mediation.

• Creating “flame” communities. A “flame” is defined as a lengthy, often personally insulting, debate in an electronic community, which provides both positive and negative consequences. Difference can be linked to strengthening the identification of common values within a community, but requires organizational maturation that relies more on computerized communication to improve inter-personal and social factors in order to avoid miscommunications (Franco et al.,

2000).

• Storing collective requirements in large-scale libraries and databases. As Ein-stein stated: “Knowledge is experience. Everything else is just information.”

Repositories of information are not knowledge, and they often inhibit organizations from sharing important knowledge building-blocks that affect technical, social, managerial, and personal developments that are critical for learning organizations (McDermott, 2000).

Ultimately, the above communities of practice are forming new social networks, which have established the cornerstone of “global connectivity, virtual communities, and computer-supported cooperative work” (Wellman et al., 2000, p. 179).

These social networks are then creating new sources of trends, changing the very nature of the way organizations deal with and use technology to affect how knowledge develops and is used via communities of practice. It is not, therefore, that communities of practice are new infrastructures or social forces, but rather the difference is in the way they communicate. Digital transformation forces new networks of communication into being and cultural adaptation allows these communities of practice to focus on how they will use new emerging technologies to change their business and social lives.

2.8.1

Model-Driven AI

Model-driven AI captures knowledge and drives decisions via real representations and rules. In a model-driven AI, rules govern the definition of things and how they relate to others. The rules engine consists of defining the data’s relationship to its transaction capabilities. If an animal does not walk on two legs, then it has specific restrictions for those that use four legs, for example. Most model-driven AI is restricted where decision trees can determine specific rules that lead to certain paths of process. A perfect example of this limited type of AI was originally known as “Expert Systems,” where based on rules, specific application paths were

[image: Image 285]

2.9

The Analyst in the Digital Transformation Era

47

Fig. 2.7 Expert system

rule-based decisions

determined. A product that fits Expert Systems is tax returns, which are dictated by decision trees from rule-based decisions, shown in Fig. 2.7.

Once the individual makes a decision on status, the rules change based on the answer. Obviously one can see that the decision trees can become very complex, and may change. Indeed, tax programs have changes every year—so depending on the year selected, the product would perform differently. So the data (s versus m in this case) dictates the execution of the actual programs to be executed each time. If there are changes to the rules, per se, like a new tax law, then by changing the rule file, one can avoid making coding change.

Rule-based inference engine products are part of the AI family, but they do not represent all of them. Those that use mathematical models and regression are beyond the scope of the analyst role.

2.9

The Analyst in the Digital Transformation Era

When we discuss the digital world and its multitude of effects on how business is conducted and how the social world interacts, one must ask how this impacts the profession of analysis and design. This section attempts to address the perceived evolution of the role.

1. The analyst must become more innovative. While the business has the problem of keeping up with changes in their markets, the analyst needs to provide more solutions. Many of these solutions will not be absolute and likely will have short shelf lives. Risk is fundamental. As a result, analysts must truly become “business” analysts by exploring new ideas from the outside and continually considering how to implement the needs of the company’s consumers.

As a result, the business analyst will emerge as an idea broker (Robertson & Robertson, 2012) by constantly pursuing external ideas and transforming them into automated and competitive solutions. These ideas will have a failure rate, which means that companies will need to produce more applications than they will inevitably implement. This will certainly require organizations to spend more on software development.

48

2 Merging Internal Users and Consumer Requirements

2. Quality requirements will be even more complex. In order to keep in equi-librium with the S-Curve, the balance between quality and production will be a constant negotiation. Because applications will have shorter life cycles and due to the pressure to provide competitive solutions, products will must sense market need and respond more quickly. As a result, fixes and enhancements to applications will be become more inherent in the development cycle after products go live in the market. Thus, the object paradigm will become even more fundamental to better software development because it provides more readily tested reusable applications and routines.

3. Dynamic interaction among users and business teams will require the creation of multiple layers of communities of practice. Organizations involved in this dynamic process must have autonomy and purpose (Narayan, 2015).

[Narayan, S. (2015). Agile IT organization design for digital transformation and continuous delivery. Addison-Wesely, New York.

4. Application analysis, design, and development must be treated and managed as a living process; that is, it never ends until the product is obsolete. So products must continually develop to maturity.

5. Organizations should never outsource a new and competitive advantage technology until it reaches commoditization.

2.10

Problems and Exercises

1. What is the relationship between digital transformation and analysis and design?

2. What are the benefits of obtaining an organization chart prior to conducting interviews with users?

3. How does politics affect the role of the analyst and his/her approach to the information-gathering function of the interviews?

4. Why does understanding user skills provide the analyst with an advantage during interviews?

5. What are the six (6) sources of consumer analysis?

6. What is meant by requirements without users and without input?

7. Describe the relationship between technology and changes in the market. How does innovation play a pivotal role?

8. Describe Porter’s Five Forces Framework.

9. Compare Porter’s Five Forces with Langer’s Sources of Consumer Analysis.

10. What is the S-Curve?

11. Explain the effect of digital transformation on the S-Curve.

12. What is an extended S-Curve?

13. How do risk factors relate to digital transformation?

14. How has IoT and wireless affected the Internet era?

15. What is a mini-loop in the context of a technology driver?

16. Explain the organization of a community of practice? Why is it important to the analyst in the digital age?

References

49

17. What is an Expert System? Explain.

18. What is meant by model-driven AI?

References

Elkjaer, B. (1999). In search of a social learning theory. In M. Easterby-Smith, J. Burgoyne, & L.

Araujo (Eds.), Organizational learning and the learning organization. Sage.

Franco, V., Hu, H., Lewenstein, B. V., Piirto, R., Underwood, R., & Vidal, N. K. (2000). Anatomy of a flame: Conflict and community building on the Internet. In E. L. Lesser, M. A. Fontaine, & J. A. Slusher (Eds.), Knowledge and communities (pp. 209–224). Woburn, MA: Butterworth-Heinemann.

Langer, A. M. (1997). The art of analysis. Springer-Verlag.

Langer, A. M. (2011). Information technology and organizational learning: Managing behavioral change through technology and education (2nd ed.). CRC Press.

Lesser, E. L., Fontaine, M. A., & Slusher, J. A. (Eds.). (2000). Knowledge and communities.

Woburn, MA: Butterworth-Heinemann.

McDermott, R. (2000). Why information technology inspired but cannot deliver knowledge management. In E. L. Lesser, M. A. Fontaine, & J. A. Slusher (Eds.), Knowledge and communities (pp. 21–36). Woburn, MA: Butterworth-Heinemann.

Mintzberg, H., & Waters, J. A. (1985). Of strategies, deliberate and emergent. Strategic Management Journal, 6, 257–272.

Narayan, S. (2015). Agile IT organization design for digital transformation and continuous delivery.

New York: Addison-Wesely.

Robertson, S., & Robertson, J. (2012). Mastering the requirements process: Getting requirements right (3rd ed.). Addison-Wesley.

Wellman, B., Salaff, J., Dimitrova, D., Garton, L., Gulia, M., & Haythornthwaite, C. (2000). Computer networks and social networks: Collaborative work, telework, and virtual community. In E.

L. Lesser, M. A. Fontaine, & J. A. Slusher (Eds.), Knowledge and communities (pp. 179–208).

Butterworth-Heinemann.

Wenger, E. (1998). Communities of practice: Learning, meaning and identity. Cambridge University Press.

[image: Image 286]

Reviewing the Object Paradigm

3

This chapter will provide the historical structured analysis and design methodology that led to the object paradigm. At the core of an evolutionary approach are a set of traditional tools that need to be extended to meet the needs of an agile architecture in a mobile IoT market.

3.1

The Concept of the Logical Equivalent

The primary mission of an analyst or systems designer is to extract the physical requirements of the users and convert them to software. All software can trace its roots to a physical act or a physical requirement. A physical act can be defined as something that occurs in human interaction, that is, people create the root requirements of most systems, especially those in business. For example, when Mary tells us that she receives invoices from vendors and pays them thirty days later, she is explaining her physical activities during the process of receiving and paying invoices. When the analyst creates a technical specification which represents Mary’s physical requirements, the specification is designed to allow for the translation of her physical needs into an automated environment. We know that software must operate within the confines of a computer, and such systems must function on the basis of logic. The logical solution does not always treat the process using the same procedures employed in the physical world. In other words, the software system implemented to provide the functions which Mary does physically will probably work differently and more efficiently than Mary herself. Software, therefore, can be thought of as a logical equivalent of the physical world. This abstraction, which I call the concept of the logical equivalent, is a process that analysts must use to create effective requirements of the needs of a system. The

© The Editor(s) (if applicable) and The Author(s), under exclusive license 51

to Springer Nature Switzerland AG 2025

A. M. Langer, Analysis and Design of Next-Generation Software Architectures,

https://doi.org/10.1007/978-3-031-76212-3_3

52

3 Reviewing the Object Paradigm

LE can be compared to a schematic of a plan or a diagram of how a technical device works.

Any success in creating a concise and accurate schematic of software that needs to be developed by a programmer will be directly proportional to how well the analyst masters Langer’s (1997) concept of the logical equivalent. Very often requirements are developed by analysts using various methods that do not always contain a basis for consistency, reconciliation, and maintenance. There is usually far too much prose used as opposed to specific diagramming standards that are employed by engineers. After all, we are engineering a system through the development of software applications. The most critical step in obtaining the LE is the understanding of the process of functional decomposition. Functional decomposition is the process for finding the most basic parts of a system, like defining all the parts of a car so that it can be built. It would be possible not from looking at a picture of the car, but rather at a schematic of all the functionally decomposed parts. Developing and engineering software is no different, and it is essential to create reusable component applications that operate in the IoT environment.

Below is an example of an analogous process using functional decomposition, with its application to the LE:

In obtaining the physical information from the user, there are a number of modeling tools that can be used. Each tool provides a specific function to derive the LE. The word “derive” has special meaning here. It relates to the process of long division, or the process or formula we apply when dividing one number by another. Consider the following example:

256 remainder 4

} Result or Answer

5 1284

} Problem to Solve

10

284

25

} Formula applied to produce result or answer

34

30

4

The above example shows the formula that is applied to a division problem.

We call this formula long division. It provides the answer, and if we change any portion of the problem, we simply re-apply the formula and generate a new result.

Most important, once we have obtained the answer, the value of the formula steps is only one of documentation. That is, if someone questioned the validity of the result, we could show them the formula to prove that the answer was correct (based on the input).

Now let us apply long division to obtaining the LE via functional decomposition. The following is a result of an interview with Joe, a bookkeeper, about his physical procedure for handling bounced checks.

[image: Image 287]

[image: Image 288]

[image: Image 289]

[image: Image 290]

3.1

The Concept of the Logical Equivalent

53

Joe the bookkeeper receives bounced checks from the bank. He fills out a Balance Correction Form and forwards it to the Correction Department so that the outstanding balance can be corrected. Joe sends a bounced check letter to the customer requesting a replacement check plus a $15.00 penalty (this is now included as part of the outstanding balance).

Bounced checks are never re-deposited.

The appropriate modeling tool to use in this situation is a data flow diagram (DFD).

A DFD is a tool that shows how data enters and leaves a particular process. The process we are looking at with Joe is the handling of the bounced check. A DFD

has four possible components:

Process

This denotes the name of the actual function

being performed. A valid process is one in

which data is transformed from one form to

another

Data

This represents data entering or leaving a

Flow

process, external, or data store. The arrow

denotes direction of the flow. A data flow is

sometimes called “data in motion.”

Data

Stored data usually kept in a file. It

Store

represents data that can be accessed from a

specific area. A data store is sometimes

called “data at rest.”

External

A provider or user of the data that is not part

of the system. It therefore represents a

boundary

Now let us draw the LE of Joe’s procedure using DFD tools as shown in Fig. 3.1.

The above DFD shows that bounced checks arrive from the bank, the account master file is updated, the correction department is informed, and customers receive a letter. The bank, correction department, and customers are considered

“outside” the system and are therefore represented logically as externals. This diagram is considered to be at the first level or “Level 1” of functional decomposition.

You will find that all modeling tools employ a method to functionally decompose.

DFDs use a method called “leveling.”

The question is whether we have reached the most basic parts of this process or should we level further. Many analysts suggest that a fully decomposed DFD should have only one data flow input and one data flow output. Our diagram currently has many inputs and outputs and therefore it can be leveled further.

54

3 Reviewing the Object Paradigm

Bank

Correction Department

Bounced Check

P1

Handle Bounced

Correction Form

Checks

Letter

Customer

D

Account File

Fig. 3.1 Data flow diagram for handling bounced checks

The result of functionally decomposing to the second level (Level 2) is shown in Fig. 3.2.

Notice that the functional decomposition shows us that Process 1: Handling Bounced Checks is really made up of two sub-processes called 1.1 Update Balance and 1.2 Send Letter. The box surrounding the two processes within the externals reflects them as components of the previous or parent level. The double-sided arrow in Level 1 is now broken down to two separate arrows going in different directions because it is used to connect Processes 1.1 and 1.2. The new level is more functionally decomposed and a better representation of the LE.

Once again, we must ask ourselves whether Level 2 can be further decomposed.

The answer is yes. Process 1.1 has two outputs to one input. On the other hand, 1. Handle Bounced Checks

Bank

Bounced Check

Correction Department

Correction Form

P1.1

Update Balance

D

Account File

Customer

P1.2

Send Letter

Letter

Fig. 3.2 Level 2 data flow diagram for handling bounced checks

3.1

The Concept of the Logical Equivalent

55

1.1. Update Balance

D

Account File

P1.1.1

Bank

Update Account

Bounced Check

Master

Bounced Check Packet

P1.1.2

Correction Department

Inform Correction

Correction Form

Department

Fig. 3.3 Level 3 data flow diagram for handling bounced checks

Process 1.2 has one input and one output and is therefore complete. 1.2 is said to be at the functional primitive, a DFD that cannot be decomposed further. Therefore, only 1.1 will be decomposed.

Let us decompose 1.1 as depicted in Fig. 3.3.

Process 1.1 is now broken down into two sub-processes: 1.1.1 Update Account Master and 1.1.2 Inform Correction Department. Process 1.1.2 is a functional primitive since it has one input and one output. Process 1.1.1 is also considered a functional primitive because the “bounced check packet” flow is between the two processes and is used to show connectivity only. Functional decomposition is at Level 3 and is now complete.

The result of functional decomposition is the following DFD (Fig. 3.4).

As in long division, only the complete result, represented above, is used as the answer. The preceding steps are formulas that we use to get to the lowest, simplest representation of the logical equivalent. Levels 1, 2, and 3 are used only for documentation of how the final DFD was determined.

The logical equivalent is an excellent method that allows analysts and systems designers to organize information obtained from users and to systematically derive the most fundamental representation of their process. It also alleviates unnecessary pressure to immediately understand the detailed flows and provides documentation of how the final schematic was developed.

56

3 Reviewing the Object Paradigm

D

Account File

P1.1.1

Bank

Bounced Check

Update Account

Master

P

1.2 Send Letter

Letter

Bounced Check Packet

Customer

P1.1.2

Inform Correction

Department

Correction Department

Correction Form

Fig. 3.4 Functionally decomposed Level 3 data flow diagram for handling bounced checks 3.2

Tools of Structured Analysis

Now that we have established the importance and goals of the logical equivalent, we can turn to a discussion of the methods available to assist the analyst. These methods serve as the tools to create the best models in any given situation and thus the most exact logical equivalent. The tools of the analyst are something like those of a surgeon, who uses only the most appropriate instruments during an operation. It is important to understand that the surgeon is sometimes faced with choices about which surgical instruments to use; particularly with new procedures, there is sometimes disagreement among surgeons about which instruments are the most effective. The choice of tools for analysis and data processing is no different; indeed, it can vary more and be more confusing. The medical profession, like many others, is governed by its own ruling bodies. The American Medical Association and the American College of Physicians and Surgeons, as well as state and federal regulators, represent a source of standards for surgeons. Such a controlling body does not exist in the data processing industry, nor does it appear likely that one will arise in the near future. Thus, the industry has tried to standardize among its own leaders. The result of such efforts has usually been that the most dominant companies and organizations create standards to which others are forced to comply.

For example, Microsoft has established itself as an industry leader by virtue of its software domination. Here, Might is Right!

Since there are no real formal standards in the industry, the analysis tools discussed here will be presented on the basis of both their advantages and their shortcomings. It is important then to recognize that no analysis tool (or methodology for that matter) can do the entire job, nor is any perfect at what it does. To determine the appropriate tool, analysts must fully understand the environment, the technical expertise of users, and the time constraints imposed on the project.

By “environment,” we mean the existing system and technology, computer operations, and the logistics—both technically and geographically—of the new system.

3.3

Making Changes and Modifications

57

The treatment of the user interface should remain consistent with the guidelines discussed in Chap. 2.

The problem of time constraints is perhaps the most critical of all. The tools you would ideally like to apply to a project may not fit the time frame allotted. What happens, then, if there is not enough time? The analyst is now faced with selecting a second-choice tool that undoubtedly will not be as effective as the first one would have been. There is also the question of how tools are implemented, that is, can a hybrid of a tool be used when time constraints prevent full implementation of the desired tool?

3.3

Making Changes and Modifications

Within the subject of analysis tools is the component of maintenance modeling, or how to apply modeling tools when making changes or enhancements to an existing product. Maintenance modeling falls into two categories:

1. Pre-Modeled: Where the existing system already has models that can be used to effect the new changes to the software.

2. Legacy System: Where the existing system has never been modeled; any new modeling will therefore be incorporating analysis tools for the first time.

 Pre-modeled:

Simply put, a pre-modeled product is already in a structured format. A structured format is one that employs a specific format and methodology such as the data flow diagram.

The most challenging aspects of changing pre-modeled tools are:

1. Keeping them consistent with their prior versions.

2. Implementing a version control system that provides an audit trail of the analysis changes and how they differ from the previous versions. Many professionals in the industry call this version control; however, care should be taken in specifying whether the version control is used for the maintenance of analysis tools.

Unfortunately, version control can be used in other contexts, most notably in the tracking of program versions and software documentation. For these cases, special products exist in the market which provide special automated “version control” features. We are not concerned here with these products but rather with the procedures and processes that allow us to incorporate changes without losing the prior analysis documentation. This kind of procedure can be considered consistent with the long division example in which each time the values change, we simply re-apply the formula (methodology) to calculate the new answer. Analysis version control must therefore have the ability to take the modifications made to the software and integrate them with all the existing models as necessary.

58

3 Reviewing the Object Paradigm

 Being Consistent:

It is difficult to change modeling methods and/or CASE tools in the middle of the life cycle of a software product. One of our main objectives then is to try avoiding doing so. How? Of course, the simple answer is to select the right tools and CASE

software the first time. However, we all make mistakes, and more importantly, there are new developments in systems architecture that may make a new CASE

product attractive. You would be wise to foresee this possibility and prepare for inconsistent tools implementation. The best offense here is to:

• Ensure that your CASE product has the ability to transport models through an ASCII file or cut/paste method. Many have interfaces via an “export” function.

Here, at least, the analyst can possibly convert the diagrams and data elements to another product.

• Keep a set of diagrams and elements that can be used to establish a link going forward, that is, a set of manual information that can be re-input to another tool. This may be accomplished by simply having printed documentation of the diagrams; however, experience has shown that it is difficult to keep such information up to date. Therefore, the analyst should ensure that there is a procedure for printing the most current diagrams and data elements.

Should the organization decide to use different tools, e.g., process-dependency diagrams instead of data flow diagrams, or a different methodology such as crowsfoot method in entity relational diagramming, then the analyst must implement a certain amount of re-engineering. This means mapping the new modeling tools to the existing ones to ensure consistency and accuracy. This is no easy task, and it is strongly suggested that you document the diagrams so you can reconcile them.

 Version Control:

This book is not intended to focus on the generic aspects of version control; however, structured methods must have an audit trail. When a new process is changed, a directory should be created for the previous version. The directory name typically consists of the version and date such as: xyz1.21295, where xyz is the name of the product or program, 1.2 the version, and 1295 the version date. In this way, previous versions can be easily re-created or viewed. Of course, saving a complete set of each version may not be feasible or may be too expensive (in terms of disk space, etc.). In these situations, it is advisable to back up the previous version in such a manner as to allow for easy restoration. In any case, a process must exist, and it is crucial that there be a procedure to do backups periodically.

[image: Image 291]

3.4

What is Object-Oriented Analysis?

59

3.4

What is Object-Oriented Analysis?

Object-oriented analysis is the key analysis tool in the design of successful mobile applications. It is without question the most important element of creating what may be called the “complete” requirement agile system. There are a number of approaches used by the industry, and perhaps there is a controversy about the best approach and tools for creating mobile-object systems. This chapter will focus on developing the requirements for object systems and the challenges of converting legacy systems. Therefore, many of the terms will be defined based on their fundamental capabilities and how they can be used by a practicing analyst (as opposed to a theorist!).

Object orientation (OO) is based on the concept that every requirement ultimately must belong to an object. It is therefore critical that we first define what is meant by an object. In the context of OO analysis, an object is any cohesive whole made up of two essential components: data and processes.

Traditional analysis approaches were based on the examination of a series of events. We translated these events from the physical world by first interviewing users and then developing what was introduced as the concept of the logical equivalent. Although we are by no means abandoning this necessity, the OO paradigm requires that these events belong to an identifiable object. Let us expand on this difference using the object shown below, an object we commonly call a “car.”

Fig. 3.5.

The above car may represent a certain make and model, but it also contains common components that are contained in all cars (e.g., an engine). If we were to look upon the car as a business entity of an organization, we might find that the following three systems were developed over the years.

Figure 3.6 shows us that the three systems were built over a period of 21 years.

Each system was designed to provide service to a group of users responsible for particular tasks. The diagram shows that the requirements for System 1 were based on the engine and front-end of the car. The users for this project had no interest in or need for any other portions of the car. System 2, on the other hand, focused on the lower center and rear of the car. Notice, however, that System 2 and System 1

have an overlap. This means that there are parts and procedures common to both systems. Finally, System 3 reflects the upper center and rear of the car and has an overlap with System 2. It is also important to note that there are components of the car that have not yet been defined, probably because no user has had a need for Fig. 3.5 Car is an example

of a physical object

[image: Image 292]

60

3 Reviewing the Object Paradigm

Fig. 3.6 This diagram reflects the three systems developed to support the car object them. We can look at the car as an object and Systems 1–3 as the software which has so far been defined about that object. Our observations should also tell us that the entire object is not defined, and more important, that there is probable overlap of data and functionality among the systems that have been developed. This case exemplifies the history of most development systems. It should be clear that the users who stated their requirements never had any understanding that their own situation belonged to a larger composite object. Internal users tend to establish requirements based on their own job functions and their own experiences in those functions. Therefore, the analyst who interviews users about their events is exposed to a number of risks:

• Users tend to identify only what they have experienced, rather than speculating about other events that could occur. This is a significant limitation in the mobile world and in attempting to understand what consumers may want in the future.

We know that such events can take place, although they have not yet occurred (you should recall the discussion of using STDs as a modeling tool to identify unforeseen possibilities). Consider, for example, an analysis situation in which $50,000 must be approved by the firm’s Controller. This event might show only the approval, not the rejection. The user’s response is that the controller, while examining the invoices, has never rejected one and therefore no rejection procedure exists. You might ask why. Well, in this case, the controller was not reviewing the invoices for rejection but rather holding them until he/she was confident that the company’s cash flow could support the issuance of these invoices. Obviously, the controller could decide to reject an invoice. In such a case, the software would require a change to accommodate this new procedure.

From a software perspective, we call this a system enhancement, and it would result in a modification to the existing system.

• Other parts of the company may be affected by the controller’s review of the invoices. Furthermore, are we sure that no one else has automated this process before? One might think such prior automation could never be overlooked, especially in a small company, but when users have different names for the

3.4

What is Object-Oriented Analysis?

61

same thing (remember customer and client!) it is very likely that such oversights will occur. In this example, there were two situations where different systems overlapped in functionality.

• There will be conflicts between the systems with respect to differences in data and process definitions. Worst of all, these discrepancies may not be discovered until years after the system is delivered.

The above example shows us that requirements obtained based on an individual’s events require another level of reconciliation to ensure they are accurate.

Requirements are said to be “complete” when they define the whole object. The more incomplete they are, the more modifications likely will be required later. The more modifications in a system, the higher the likelihood that data and processes across applications may conflict with each other. Ultimately this results in a less dependable, lower quality system. Most of all, event analysis alone is prone to missing events that users have never experienced. This situation is represented in the car example by the portions of the car not included in any of the three systems.

System functions and components may also be missed because users are absent or unavailable at the time of the interviews, or because no one felt the need to automate a certain aspect of the object. In either case, the situation should be clear.

We need to establish objects prior to doing event analysis.

Before we discuss the procedures for identifying an object, it is worth looking at the significant differences between the object approach and earlier approaches. The first major systems were developed in the 1960s and were called batch, meaning that they typically operated on a transaction basis. Transactions were collected and then used to update a master file. Batch systems were very useful in the financial industries, including banks. We might remember having to wait until the morning after a banking transaction to see our account balance because a batch process updated the master account files overnight. These systems were built based on event interviewing, where programmers/analysts met with users and designed the system. Most of these business systems were developed and maintained using COBOL.

In the early seventies, the new buzz word was “on-line, real-time” meaning that many processes could now update data immediately or on a “real-time” basis.

Although systems were modified to provide these services, it is important to understand that they were not re-engineered. That is, the existing systems, which were based on event interviews, were modified, but not redesigned.

In the late 80s and early 90s, the hot term became “client/server.” These systems, which will be discussed later, are based on sophisticated distributed systems concepts. Information and processes are distributed among many local and wide area networks. Many of these client/server systems are re-constructions of the online real-time systems which in turn were developed from the 1960s batch systems.

The point here is that we have been applying new technology to systems that were designed over 30 years ago without considering the obsolescence of the design.

Through these three generations of systems, the analyst has essentially been on the outside looking in (see Fig. 3.7). The completeness of the analysis was

[image: Image 293]

[image: Image 294]

62

3 Reviewing the Object Paradigm

Fig. 3.7 Requirements are

often developed by analysts

from an outside view. The

specifications are therefore

dependent on the

completeness of the user’s

view

dependent upon—and effectively dictated by—the way the inside users defined their business needs.

OO, on the other hand, requires that the analyst have a view from the inside looking out. What we mean here is that the analyst first needs to define the generic aspects of the object and then map the user views to the particular components that exist within the object itself. The diagram below shows a conceptual view of the generic components that could be part of a bank:

Figure 3.8 shows the essential functions of the bank. The analyst is on the inside of the organization when interviewing users and therefore will have the ability to map a particular requirement to one or more of its essential functions. In this approach, any user requirement must fit into at least one of the essential components. If a user has a requirement that is not part of an essential component, then it must be either qualified as missing (and thus added as an essential component) or rejected as inappropriate.

The process of taking user requirements and placing each of their functions into the appropriate essential component can be called mapping. The importance Fig. 3.8 Using the object approach, the analyst interviews users from the inside looking out

3.5

Identifying Objects and Classes

63

of mapping is that functions of requirements are logically placed where they generically belong, rather than according to how they are physically implemented. For example, suppose Joseph, who works for a bank, needed to provide information to a customer about the bank’s investment offerings. Joseph would need to access investment information from the system. If OO methods were used to design the system, all information about banking investments would be grouped together generically. Doing it this way allows authorized personnel to access investment information regardless of what they do in the bank. If event analysis alone was used, Joseph would probably have his own subsystem that defines his particular requirements for accessing investment information. The problem here is twofold: First, the subsystem does not contain all of the functions relating to investments.

Should Joseph need additional information, he may need an enhancement or need to use someone else’s system at the bank. Second, Joseph’s subsystem may define functions that have already been defined elsewhere in another subsystem. The advantage of OO is that it centralizes all of the functions of an essential component and allows these functions to be “reused” by all processes that require its information. The computer industry calls this capability reusable objects.

3.5

Identifying Objects and Classes

The most important challenge of successfully implementing OO is the ability to understand and select objects. We have already used an example which identified a car as an object. This example is what can be called the tangible object, or as the industry calls it, a “physical object.” Unfortunately, there is another type of object called an “abstract” or intangible object. An intangible object is one that you cannot touch or as Grady Booch originally described: “something that may be apprehended intellectually…Something toward which thought or action is directed.” 1 An example of an intangible object is the security component of the essentials of the bank. In many instances, OO analysis will begin with identifying tangible objects which will in turn make it easier to discover the intangible ones.

OO is somewhat consistent with the architecture of process and data in that all objects contain their own data and processes, called attributes and services, respectively. Attributes are effectively a list of data elements which are permanent components of the object. For example, a steering wheel is a data element that is a permanent attribute of the object “car.” The services (or operations), on the other hand, define all of the processes that are permanently part or “owned” by the object. “Starting the car” is a service that is defined within the object car. This service contains the algorithms necessary to start a car. Services are defined and invoked through a method. A method is a process specification for an operation

(service).2 For example, “driving the car” could be a method for the car object.

1 Booch, Grady, Object Solutions: Managing the Object-Oriented Project, p 305.

2 Martin, James, Odell, James, Object Oriented Methods, pg. 158.

64

3 Reviewing the Object Paradigm

The “driving the car” method would invoke a service called “starting the car” as well as other services until the entire method requirement is satisfied. Although a service and method can have a one-to-one relationship, it is more likely that a service will be a subset or be one of the operations that make up a method.

Objects have the ability to inherit attributes and methods from other objects when they are placed within the same class. A class is a group of objects that have similar attributes and methods and typically have been put together to perform a specific task. To further understand these concepts, we will establish the object for

“car” and place it in a class of objects that focuses on the use of transmissions in cars:

Figure 3.9 represents an object class called car transmissions. It has three component objects: cars, automatic trans, and standard trans. The car object is said to be the parent object. Automatic trans and standard trans are object types. Both automatic trans and standard trans will inherit all attributes and services from their parent object cars. Inheritance in object technology means that the children effectively contain all of the capabilities of their parents. Inheritance is implemented as a tree structure3 ; however, instead of information flowing upward (as is the case in tree structures), the data flows downward to the lowest level children. Therefore, an object inheritance diagram is said to be an inverted tree. Because the lowest level of the tree inherits from everyone’s parents, only the lowest level object needs be executed. That is, executing the lowest level will automatically allow the application to inherit all of the parent information and applications as needed. We call the lowest level objects concrete, while all others in the class are called abstract.

Objects within classes can change simply by the addition of a new object. Let us assume that there is another level added to our example. The new level contains objects for the specific types of automatic and standard transmissions of the car: The class in Fig. 3.10 has been modified to include a new concrete layer. Therefore, the automatic trans object and standard trans object are now abstract. The new four concrete objects not only inherit from their respective parent objects, but also from their common grandparent, cars. It is also important to recognize that classes can inherit from other classes. Therefore, the same example could show each object as a class: that is, cars would represent a class of car objects and automatic trans another class of objects. Therefore, the class automatic trans would inherit from the cars class in the same manner described above. We call this “class inheritance.”

I mentioned before that OO objects can be reusable (reusable objects). This is very significant in that it allows a defined object to become part of another class, while still keeping its own original identity and independence. The example below demonstrates how cars can be reused in another class (Fig. 3.11).

3 A data structure containing zero or more nodes that are linked together in a hierarchical fashion. The topmost node is called the root. The root can have zero or more child nodes, connected by links; the root is the parent node to its children. Each child node can in turn have zero or more children of its own. Microsoft Press, Computer Dictionary, Second Edition, pg 397. Citation format?

[image: Image 295]

[image: Image 296]

3.5

Identifying Objects and Classes

65

Fig. 3.9 Class car transmissions

Fig. 3.10 Class car transmission types

Notice that the object car is now part of another class called transportation vehicles. However, car, instead of being an abstract object within its class, has become concrete and thus inherits from its parent, transportation vehicles. The object cars have methods that may execute differently depending on the class it is in. Therefore, cars in the transportation vehicle class might interpret a request

[image: Image 297]

66

3 Reviewing the Object Paradigm

Fig. 3.11 Class transportation vehicles

for “driving the car” as it relates to general transportation vehicles. Specifically, it might invoke a service that shows how to maneuver a car while it is moving.

On the other hand, cars in the transmission class might interpret the same message coming from one of its children objects as meaning how the transmission shifts when a person is driving. This phenomenon is called polymorphism. Polymorphism allows an object to change its behavior within the same methods under different circumstances. What is more important is that polymorphism is dynamic in behavior so its changes in operation are determined when the object is executed or during runtime.

Because objects can be reused, keeping the same version current in every copy of the same object in different classes is important. Fortunately, objects are typically stored in dynamic link libraries (DLL). The significance of a DLL is that it always stores the current version of an object. Because objects are linked dynamically before each execution, you are ensured that the current version is always the one used. The DLL facility therefore avoids the maintenance nightmares of remembering which applications contain the same sub-programs. Legacy systems often need to re-link every copy of the subprogram in each module where a change occurs. This problem continues to haunt the COBOL application community.

Another important feature in object systems is instantiation and persistence.

Instantiation allows multiple executions of the same class to occur independent of another execution. This means that the there are multiple copies of the same class executing concurrently. The significance of these executions is that they are mutually exclusive and can execute different concrete objects within that class. Because of this capability, we say that an object can have multiple instances within each

3.6

Object Modeling

67

executing copy of a class it belongs to. Sometimes, although class executions are finished, a component object continues to operate or persist. Persistence is therefore an object that continues to operate after the class or operation that invoked it has finished. The system must keep track of each of these object instances.

The abilities of objects and classes to have inheritance, polymorphic behavior, instantiation, and persistence are just some of the new mechanisms that developers can take advantage of when building OO systems. 4 Because of this, the analyst must not only understand the OO methodology, but must also apply new approaches and tools that will allow an appropriate schematic to be produced for system developers.

3.6

Object Modeling

Another analysis modeling tool is called a state transition diagram (STD) and it is useful for modeling event-driven and time-dependent systems. A state very closely resembles an object/class and therefore can be used with little modification to depict the flow and relationships of objects. The major difference between an object and a state is that an object is responsible for its own data (which we call an attribute in OO). An object’s attributes are said to be encapsulated behind its methods, that is, a user cannot ask for data directly. The concept of encapsulation is that access to an object is allowed only for a purpose rather than for obtaining specific data elements. It is the responsibility of the method and its component services to determine the appropriate attributes that are required to service the request of the object. An object diagram, regardless of whose methodology is used, is essentially a hybrid of an STD and an entity relational diagram (ERD).

The STD represents the object’s methods and the criteria for moving from one object to another. The ERD, on the other hand, defines the relationship of the attributes between the stored data models. The result is best shown using the order processing example Fig. 3.12.

Figure 3.12 reflects that a customer object submits a purchase order for items to the order object. The relationship between customer and order reflects both STD

and ERD characteristics. The “submits purchase order” specifies the condition to change the state of or move to the order object. The direction arrow also tells us that the order object cannot send a purchase order to the customer object. The crow’s foot cardinality shows us that a customer object must have at least one order to create a relationship with the order object. After an order is processed, it is prepared for shipment. Notice that each order has one related shipment object; 4 This book is not intended to provide all of the specific technical capabilities and definitions that comprise the OO paradigm, but rather its effects on the analyst approach. Not all of the OO issues are analyst responsibilities, and many of them are product-specific. Because OO is still very controversial, OO products are not consistent in their use of OO facilities. For example, C++ allows multiple inheritance, meaning that a child can have many parent objects. This is inconsistent with the definition of a class as a tree structure since children in tree structures can have only one parent.

[image: Image 298]

[image: Image 299]

68

3 Reviewing the Object Paradigm

Fig. 3.12 Object/class

diagram

however, multiple warehouse items can be part of a shipment. The objects depicted above can also represent classes suggesting that they are comprised of many component objects. These component objects might in turn be further decomposed into other primitive objects. This is consistent with the concept of the logical equivalent and with functional decomposition (Fig. 3.13).

It is important that the analyst specify whether classes or objects are depicted in the modeling diagrams. It is not advisable to mix classes and objects at the same Fig. 3.13 Component objects of the Warehouse class

[image: Image 300]

3.7

Relationship to Structured Analysis

69

level. Obviously, the class levels can be effective for user verification, but objects will be inevitably required for final analysis and engineering.

3.7

Relationship to Structured Analysis

Many analysts make the assumption that the traditional structured tools are not required in OO analysis. This simply is not true, as we have shown in the previous examples. To further emphasize the need to continue using structured techniques, we need to understand the underlying benefit of the OO paradigm and how structured tools are necessary to map to the creation of objects and classes. It is easy to say: “find all the objects in the essential components,” but to have a process to do so is another story. Before providing an approach to determine objects, let us first understand the problem.

3.7.1

Application Coupling

Coupling can be defined as the measurement of an application’s dependency on another. Simply put, does a change in an application program necessitate a change to another application program? Many known system malfunctions have resulted from highly coupled systems. The problem, as you might have anticipated, relates back to the analysis function, where decisions could be made as to what services should be joined to form one single application program. Coupling is never something that we want to do, but no system can be made up of just one program. Therefore, coupling is a reality and one that analysts must focus on. Let us elaborate on the coupling problem through the following example (Fig. 3.14).

The two programs A and B are coupled via the passing of the variable Y. Y

is subsequently used in B to calculate R. Should the variable Y change in A, it will not necessitate a change in B. This is considered good coupling. However, let us now examine X. We see that X is defined in both A and B. Although the Fig. 3.14 Application

coupling

[image: Image 301]

70

3 Reviewing the Object Paradigm

Fig. 3.15 Application

coupling using variables X

and Y

value of X does not cause a problem in the current versions of A and B, a subsequent change of X will cause a programmer to remember to change the value in B. This is a maintenance nightmare. In large enterprise level systems, analysts and programmers cannot “remember” where all of these couples have occurred, especially when the original developers are no longer with the organization. The solution to this problem is also to pass X from program A as shown in Fig. 3.15.

We now see that both X and Y are passed and programs A and B are said to have low coupling. In addition, program A is said to be more cohesive.

3.7.2

Application Cohesion

Cohesion is the measurement of how independent a program is on its own processing. That is, a cohesive program contains all of the necessary data and logic to complete its applications without being directly affected by another program; a change in another program should not require a change to a cohesive one. Furthermore, a cohesive program should not cause a change to be made in another program. Therefore, cohesive programs are independent programs that react to messages to determine what they need to do; however, they remain self-contained.

When program A also passed X it became more cohesive because a change in X no longer required a change to be made to another program. In addition, B is more cohesive because it gets the change of X automatically from A. Systems that are designed more cohesively are said to be more maintainable. Their codes can also be reused or retrofitted into other applications as components because they are wholly independent. A cohesive program can be compared to an interchange-able standard part of a car. For example, if a car requires a standard 14-inch tire, typically any tire that meets the specification can be used. The tire, therefore, is not married to the particular car, but rather is a cohesive component for many cars.

Cohesion in many ways is the opposite of coupling. The higher the cohesion, the lower the coupling. Analysts must understand that an extreme of either cohesion or coupling cannot exist. This is shown in Fig. 3.16.

[image: Image 302]

3.7

Relationship to Structured Analysis

71

Fig. 3.16 Coupling and cohesion relationships

Tier

Method

Method Description

1

By Function

Processes are combined into one object / class

based on being a component of the same

function. Examples include: Accounts Receivable,

Sales, and Goods Returned are all part of the

same function. A sale creates a receivable and

goods returned decreases the sale and the

receivable.

2

By Data

Processes are combined based on their use of the

same data and data files. Processes that tend to

use the same data are more cohesive.

3

By Generic Operation

Processes are combined based on their generic

performance. Examples could be “editing” or

“printing.”

4

By Lines of Code

Processes are created after an existing one

reaches a maximum number of lines in the actual

program source code.

Fig. 3.17 Methods of selecting cohesive objects

The graph shows that we can never reach 100% cohesion; that would mean there is only one program in the entire system, a situation that is unlikely. However, it is possible to have a system where a 75% cohesion ratio is obtained.

We now need to relate this discussion to OO. Obviously, OO is based very much on the concept of cohesion. Objects are independent reusable modules that control their own attributes and services. Object coupling is based entirely on message processing via inheritance or collaboration.5 Therefore, once an object is identified, the analyst must define all of its processes in a cohesive manner. Once the cohesive processes are defined, the required attributes of the object are then added to the object. Below is a table which shows how processes can be combined to create the best cohesion (Fig. 3.17).

The tiers above are based on best to worst, where by function is the most desirable and by lines of code is the least desirable. Tiers 1 and 2 will render the best object cohesiveness. This can be seen with the following example:

Figure 3.18 depicts a four-screen system that includes four objects, that is, each screen is a separate object. The transaction processing object has been designed using Tier 2, by same data since it deals only with the transaction file. The object is 5 Collaboration is the interaction between objects and classes where inheritance is not used. Inheritance can operate only in hierarchical structures; however, many object and class configurations can simply “talk” to one another through messaging systems.

[image: Image 303]

72

3 Reviewing the Object Paradigm

Fig. 3.18 Applications with varying types of object cohesion

cohesive because it does not depend on or affect another module in its processing.

It provides all of the methods required for transaction data.

The financials object is an example of Tier 1, by function since a balance sheet is dependent on the income statement and the income statement is dependent on the trial balance. The object therefore is self-contained within all the functions necessary to produce financial information (in this example).

The system editor, on the other hand, as an example of Tier 3, shows that it handles all of the editing (verification of the quality of data) for the system.

Although there appears to be some benefit to having similar code in one object, we can see that it affects many different components. It is therefore considered a highly coupled object and not necessarily the easiest to maintain.

We can conclude that Tiers 1 and 2 provide analysts with the most attractive way for determining an object’s attributes and services. Tiers 3 and 4, although practiced, do not provide any real benefits in OO and should be avoided as much as possible. The question now is what technique do we follow to start providing the services and attributes necessary when developing logical objects?

The structured tools discussed in this chapter provide us with the essential capabilities to work with OO analysis and design. The STD can be used to determine the initial objects and the conditions of how one object couples or relates to another. Once the STD is prepared, it can be matured into the object model discussed earlier in this chapter. The object model can be decomposed to its lowest level; the attributes and services of each object must then be defined. All of the DFD functional primitives can now be mapped to their respective objects as services within their methods. It is also a way of determining whether an object is missing (should there be a DFD that does not have a related object). The analyst should try to combine each DFD using the Tier 1 by function approach. This can sometimes be very difficult depending on the size of the system. If the Tier 1

approach is too difficult, the analyst should try Tier 2 by combining DFDs based on their similar data stores. This is a very effective approach; since Tier 1 implies

[image: Image 304]

3.8

Object-Oriented Databases

73

Fig. 3.19 Relationships

between an object and the

ERD and DFD

Tier 2,6 it is a very productive way to determine how processes should be mapped to their appropriate objects. This does not suggest that the analyst should not try Tier 1 first.

The next activity is to determine the object’s attributes or data elements. The ERD serves as the link between an attribute in an object and its actual storage in a database. It is important to note that the attribute setting in an object may have no resemblance to its setting in the logical and physical data entity. The data entity is focused on the efficient storage of the elements and its integrity, whereas the attribute data in an object is based on its cohesiveness with the object’s services.

The mapping of the object to the DFD and ERD can be best shown graphically in Fig. 3.19.

Thus, the functional primitive DFDs and the ERD resulting from the nor-

malization process provide the vehicles for providing an object’s attributes and services.

3.8

Object-Oriented Databases

There is a movement in the industry to replace the traditional relational database management systems) with the object-oriented database management system

(OODBMS). Object databases differ greatly from the relational model in that the object’s attributes and services are stored together. Therefore, the concept of columns and rows of normalized data becomes extinct. The proponents of OODBMS see a major advantage in that object databases could also keep graphical and multimedia information about the object, something that relational databases cannot do. The answer will come only in time, but it is expected that the relational model will continue to be used for some time. However, most RDBMS products will become more OO. This means they will use the relational engine but employ more OO capabilities, that is, build a relational hybrid model. In either case, analysts should continue to focus on the logical aspects of capturing the requirements.

6 We have found that application programs that have been determined using Tier 1 will always imply Tier 2. That is, applications that are combined based on function typically use the same data.

Although the converse is not necessarily true, we believe it is an excellent approach to backing-in to the functions when they are not intuitively obvious.

[image: Image 305]

74

3 Reviewing the Object Paradigm

Changes in the OO methodologies are expected to continue with the evolution of block chain architectures.

3.9

Designing Distributed Objects Using Use Case

Analysis and Design

Use cases were first proposed in 1986 as a result of the popularity of the object-oriented paradigm. Use case today is widely used in the development of web-based systems and is the appropriate methodology to use for mobile IoT application development. Use case was designed to be very effective when defining current and potential actions of a product. That is, use case can be used to model activities that may never have occurred in a system, but are technically possible. Indeed, many system deficiencies occur because a user tried to perform something for the first time. These types of situations are sometimes referred to as supplementary specifications. In many ways, use case methodology represented the next generation of the state transition diagrams (STD) discussed earlier in this chapter.

3.9.1

Use Case Model

A use case model contains three essential components: use cases, actors, and relationships (Bittner & Spence, 2003).

3.9.2

Actors

An actor represents a user of the system. When interfacing with the system, a “user” can be internal (traditional), consumer, or another system. Actors are notated using the symbol in Fig. 3.20.

Fig. 3.20 Use case actor

symbol

[image: Image 306]

[image: Image 307]

3.10

Use Case

75

3.10

Use Case

A use case identifies a particular interface or “use” that an actor does with the system to achieve a need. In many ways, the sum of all use cases represents an inventory of all possible transactions and events that can be accomplished with the system. It, in effect, replicates all possible permutations that can occur. In its most decomposed form, each use case defines one transaction. A use case must result in some form of output. Obviously, use cases may have restrictions; certain possible actor requests may require certain authorizations. A use case is denoted by a sphere symbol as shown in Fig. 3.21 (note its similarity with a DFD process).

Figure 3.22 shows a basic actor/use case diagram.

Note that the use case model in Fig. 3.22 actually contains two transactions. It could be decomposed to two separate use case models as shown in Fig. 3.23.

The third component of the use case modeling is the relationship specified by a data flow line, which often has an arrow to depict directionality. Similar to a DFD, a data flow carries data that will be transformed by the use case process sphere.

Directionality depicts whether the data is being supplied by the actor or is received by the actor from the use case process, or both! These relationship data flows are shown in Figs. 3.22 and 3.23.

While a use case model has three essential symbols, there is another component that is critical. Some analysts call this the description; however, the concept again originated from the DFD in which the actual algorithm inside the process is called a process specification. Process specifications typically contained two forms Fig. 3.21 Use case symbol

Fig. 3.22 Actor/use case

flow

[image: Image 308]

76

3 Reviewing the Object Paradigm

Fig. 3.23 Use case as

functional primitives

of description: (1) the actual algorithm in a form of pseudocode, or (2) pre-post conditions. Both can be used together depending on the complexity of the process. Many analysts define a process specification as everything else about the process not already included in the other modeling tools. Indeed, it must contain the remaining information that normally consists of business rules and application logic. DeMarco suggested that every functional primitive DFD points to a “Minispec” which would contain that process’ application logic.7 We will follow this rule and expand on the importance of writing good application logic even in a use case. There are, of course, different styles and few textbooks that explain the importance to the analyst of understanding how these need to be developed and presented. Like other modeling tools, each process specification style has its good, bad, and ugly.

3.11

Pseudocode

The most detailed and regimented process specification is pseudocode or “structured English.” Its format is designed to require the analysts to have a solid understanding of how to write algorithms. The format is very “COBOL-like”

and was initially designed as a way of writing functional COBOL programming specifications. The rules governing pseudocode are as follows:

• Use the do while with an enddo to show iteration.

• Use if–then-else to show conditions and ensure each if has an end-if.

• Be specific about initializing variables and other detail processing requirements.

7 DeMarco, Tom, Structured Analysis and System Specification, pp. 85–86.

3.11

Pseudocode

77

Pseudocode is designed to give the analyst tremendous control over the design of the code. Take the following example:

“There is a requirement to calculate a 5% bonus for employees who work on the 1st shift and a 10% bonus for workers on the 2nd or 3rd shift. Management is interested in a report listing the number of employees who receive a 10% bonus. The process also produces the bonus checks.”

The pseudocode would be:

Initialize 10% counter = 0

DoWhile more records

Open Employee Master File

If Shift = “1” then

Bonus = Gross_Pay *.05

Else

If Shift = “2” or “3” then

Bonus = Gross_Pay *.10

Add 1 to Counter

Else

Error Condition

Endif

Endif

Enddo

Print Report of 10% Bonus Employees

Print Bonus Checks

End

The above algorithm gives the analyst great control over how the program should be designed. For example, the pseudocode requires that the programmer receive an error condition should a situation occur where a record does not contain a 1st, 2nd, or 3rd shift employee. This might occur should there be a new shift that was not communicated to the information systems department. Many programmers might have omitted the last “If” check as follows:

Initialize 10% counter = 0

Open Employee Master File

DoWhile more records

If Shift = “1” then

Bonus = Gross_Pay *.05

Else

Bonus = Gross_Pay *.10

Add 1 to Counter

Endif

Enddo

78

3 Reviewing the Object Paradigm

Print Report of 10% Bonus Employees

Print Bonus Checks

End

The above algorithm simply assumes that if the employee is not on the first shift, then they must be either a second or third shift employee. Without this being specified by the analyst, the programmer may have omitted this critical logic which could have resulted in a fourth shift worker receiving a 10% bonus! As mentioned earlier, each style of process specification has its advantages and disadvantages—in other words, the good, the bad, and the ugly.

 The Good:

The analyst who uses this approach has practically written the program, and thus, the programmer will have very little to do with figuring out the logic design.

 The Bad:

The algorithm is very detailed and could take a long time for the analyst to develop.

Many professionals raise an interesting point: Do we need analysts to be writing process specifications to this level of detail? In addition, many programmers may be insulted and feel that an analyst does not possess the skill set to design such logic.

 The Ugly:

The analyst spends the time, the programmers are not supportive, and the logic is incorrect. The result here will be “I told you so” remarks from programmers, and hostilities may grow over time.

3.11.1

Case

Case8 is another method of communicating application logic. Although the technique does not require as much technical format as pseudocode, it still requires the analyst to provide a detailed structure to the algorithm. Using the same example as in the pseudocode discussion, we can see the differences in format:

Case 1st Shift

Bonus = Gross_Pay *.05

Case 2nd or 3rd Shift

Bonus = Gross_Pay *.10

Add 1 to 10% Bonus Employees

Case Neither 1st, 2nd or 3rd Shift

8 The case method should not be confused with computer-aided software engineering (CASE) products, which is software used to automate and implement modeling tools and data repositories.

3.12

Pre-post Conditions

79

Error Routine

EndCase

Print Report of 10% Bonus Employees

Print Bonus Checks

End

The above format provides control as it still allows the analyst to specify the need for error checking; however, the exact format and order of the logic are more in the hands of the programmer. Let’s now see the good, bad, and ugly of this approach: The Good:

The analyst has provided a detailed description of the algorithm without having to know the format of logic in programming. Because of this advantage, CASE takes less time than pseudocode.

 The Bad:

Although this may be difficult to imagine, the analyst may miss some of the possible conditions in the algorithm, such as forgetting a shift! This happens because the analyst is just listing conditions as opposed to writing a specification. Without formulating the logic as we did in pseudocode, the likelihood of forgetting or overlooking a condition check is increased.

 The Ugly:

Case logic can be designed without concern for the sequence of the logic, that is, the actual progression of the logic as opposed to just the possibilities. Thus, the logic can become more confusing because it lacks actual progressive structure.

As stated previously, the possibility of missing a condition is greater because the analyst is not actually following the progression of the testing of each condition.

There is thus a higher risk of the specification being incomplete.

3.12

Pre-post Conditions

Pre-post is based on the belief that analysts should not be responsible for the details of the logic, but rather for the overall highlights of what is needed. Therefore, the pre-post method lacks detail and expects that the programmers will provide the necessary details when developing the application software. The method has two components: Pre-conditions and post-conditions. Pre-conditions represent things that are assumed true or that must exist for the algorithm to work. For example, a pre-condition might specify that the user must input the value of the variable X. On the other hand, the post-condition must define the required outputs as well as the relationships between calculated output values and their mathematical components.

Suppose the algorithm calculated an output value called Total_Amount. The post-condition would state that Total_Amount is produced by multiplying quantity times price. Below is the pre-post equivalent of the Bonus algorithm:

80

3 Reviewing the Object Paradigm

Pre-Condition 1:

Access Employee Master file and where 1st shift = “1”

Post-Condition 1:

Bonus is set to Gross_Pay *.05.

Produce Bonus check.

Pre-Condition 2:

Access Employee Master file and where 2nd shift = “2” or 3rd shift =“3”

Post-Condition 2:

Bonus is set to Gross_Pay *.10

Add 1 to 10% Bonus count.

Produce Bonus check and Report of all employees who receive 10%

bonuses.

Pre-Condition 3:

Employee records does not contain a shift code equal to “1,” “2,” or “3”

Post-Condition 3:

Error Message for employees without shifts = “1,” “2,” or “3”

As we can see, the above specification does not show how the actual algorithm should be designed or written. It requires the programmer or development team to find these details and implement the appropriate logic to handle it. Therefore, the analyst has no real input into the way the application will be designed or the way it functions.

 The Good:

The analyst need not have technical knowledge to write an algorithm and does not need to spend an inordinate amount of time developing what is deemed a programming responsibility. Therefore, less technically oriented analysts can be involved in specification development.

 The Bad:

There is no control over the design of the logic, and thus the opportunity for misunderstandings and errors is much greater. The analyst and the project are much more dependent on the talent of the development staff.

 The Ugly:

Perhaps we misunderstand the specification. Since the format of pre-post conditions is less specific, there is more room for ambiguity.

3.13

Matrix

81

3.13

Matrix

A matrix or table approach is one that shows the application logic in tabular form.

Each row reflects a result of a condition, with each column representing the components of the condition to be tested. The best way to explain a matrix specification is to show an example like in Fig. 3.24.

This is a simple example that uses the same algorithm as the other specification styles, but it shows how a matrix can describe the requirements of an application without the use of sentences and pseudocode.

 The Good:

The analyst can use a matrix to show complex conditions in a tabular format.

The tabular format is preferred by many programmers because it is easy to read, organized, and often easy to maintain. Very often the matrix resembles the array and table formats used by many programming languages.

 The Bad:

It is difficult, if not impossible, to show a complete specification in matrices. The above example supports this, in that the remaining logic of the bonus application is not shown. Therefore, the analyst must integrate one of the other specification styles to complete the specification.

 The Ugly:

Matrices are used to describe complex condition levels, where there are many

“If” conditions to be tested. These complex conditions often require much more detailed analysis than shown in a matrix. The problem occurs when the analyst, feeling the matrix may suffice, does not provide enough detail. The result: conditions may be misunderstood by the programmer during development.

 Conclusion:

The question must be asked again: What is a good specification? We will continue to explore this question. In this chapter, we have examined the logic alternatives.

Which logic method is best? It depends! We have seen from the examples that each method has its advantages and shortcomings. The best approach is to be able Bonus Percent

Shi to be tested

5 % Bonus

1st Shi

10% Bonus

2nd Shi

10% Bonus

3rd Shi

Fig. 3.24 Sample matrix specification

82

3 Reviewing the Object Paradigm

to use them all and to select the most appropriate one for the task at hand. To do this effectively means clearly recognizing where each style provides a benefit for the part of the system you are working with, and for the person who will be doing the development work.

3.14

Problems and Exercises

1. What is an object?

2. Describe the relationship between a method and a service.

3. What is a class?

4. How does the object paradigm change the approach of the analyst?

5. Describe the two types of objects and provide examples of each type.

6. What are essential functions?

7. What is an object type and how is it used to develop specific types of classes?

8. What is meant by object and class inheritance?

9. What are the association differences between an ERD and an object diagram?

10. How does functional decomposition operate with respect to classes and objects?

11. What is coupling and cohesion? What is their relationship with each other?

12. How does the concept of cohesion relate the structured approach to the object model?

13. What four methods can be used to design a cohesive object?

14. What are object databases?

15. What is client/server?

16. How do objects relate to client/server design?

17. Why is there a need for a hybrid object in client/server design?

18. What is use case analysis and design?

19. What is meant by distributed objects?

3.15

Mini-project

You have been asked to automate the accounts payable process. During your interviews with users, you identify four major events as follows:

I. Purchase Order Flow

1. The marketing department sends a purchase order (P.O.) form for books to the accounts payable system (APS).

2. APS assigns a P.O. # and sends the P.O.-White copy to the vendor and files the P.O.- Pink copy in a file cabinet in P.O.#.sequence.

II. Invoice Receipt

1. A vendor sends an invoice for payment for books purchased by APS.

2. APS sends invoice to marketing department for authorization.

References

83

3. Marketing either returns invoice to APS approved or back to the vendor if not

4. authorized.

5. If the invoice is returned to APS, it is matched up against the original P.O.-Pink. The PO and vendor invoice are then combined into a packet and prepared for the voucher process.

III. Voucher Initiation

1. APS receives the packet for vouchering. It begins this process by assigning a voucher number.

2. The chief accountant must approve vouchers > $5000.

3. APS prepares another packet from the approved vouchers. This packet

includes the P.O.-Pink, authorized invoice and approved voucher.

IV. Check Preparation

1. Typist receives the approved voucher packet and retrieves a numbered

blank check to pay the vendor.

2. Typist types a two-part check (blue, green) using data from the approved voucher and enters invoice number on the check stub.

3. APS files the approved packet with the check-green in the permanent paid file.

4. The check is either picked up or mailed directly to the vendor.

Assignment:

1. Provide the DFDs for the four events. Each event should be shown as a single DFD on a separate piece of paper.

2. Level each event to its functional primitives.

3. Develop the process specifications for each functional primitive DFD.

References

Bittner, K., & Spence, I. (2003). Use case modeling. Addison-Wesley.

Langer, A. M. (1997). The art of analysis. Springer-Verlag.

[image: Image 309]

Distributed Client/Server and Data

4

4.1

Client/Server and Object-Oriented Analysis

Client/Server provides another level of sophistication in the implementation of systems. The concept of Client/Server is based on distributed processing, where programs and data are placed in the most efficient places. Client/server systems are typically installed on Local Area Networks (LANs) or Wide Area Networks (WANs). LANs can be defined as multiple computers linked together to share processing and data. WANs are linked LANs. For purposes of this book, we will restrict our discussion about Client/Server within the concepts of application development moving to cloud and mobile environments.

Before you can design effective Client/Server applications for mobility, the organization should commit to the object paradigm. Based on an OO implementation, Client/Server essentially requires one more step: the determination of what portions of an object or class should be moved to client only activities, server only activities, or both across vast mobile networks. Many existing client/server applications need to be expanded to operate in a much more distributed design and one that is not hierarchical.

4.2

Definition of Client/Server Applications

We have already stated that Client/Server is a form of distributed processing.

Client/Server applications have three components: a client, a server and a network.

Setting aside the implications of the network for a moment, let us understand what clients and servers do. Although Client/Server applications tend to be seen as either permanent client or permanent server programs, we will see that this is not true in the object paradigm.

A “server” is something that provides information to a requester. There are many Client/Server configurations that have permanent hardware servers. These

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer 85

Nature Switzerland AG 2025

A. M. Langer, Analysis and Design of Next-Generation Software Architectures,

https://doi.org/10.1007/978-3-031-76212-3_4

86

4 Distributed Client/Server and Data

hardware servers typically contain databases and application programs that provide services to requesting network computers (as well as other LANs). This configuration is called “back-end” processing. On the other hand, we have network computers that request the information from servers. We call these computers

“clients” and categorize this type of processing as “front-end.” When we expand these definitions to applications only, we look at the behavior of an object or class and categorize it as client (requesting services), server (providing services), or both (providing and requesting services).

Understanding how objects become either permanent servers or clients is fairly straightforward. For example, the Cars object in the Car Transmission Types class is categorized as a server. If this were the only use of cars, then it would be called a

“dedicated” server object. On the same basis, the Cars object in the Transportation Vehicles class is categorized as a client object. In turn, if it were the only use of the object in a class, it would be defined as a “permanent” client. However, because it exists in more than one class and is polymorphic, the Cars object is really both a client and a server, depending on the placement and behavior of the object. Therefore, when we talk about an object’s Client/Server behavior we must first understand the “instance” it is in and the class it is operating within.

The difficulty in Client/Server is in the further separation of attributes and services for purposes of performance across a network. This means that the server services and attributes components of the Cars object might need to be separated from the client ones and permanently placed on a physical server machine.

The client services and attributes will then be stored on different physical client machine(s). To put this point into perspective, an object may be further functionally decomposed based on processing categorization. Therefore, the analyst must be involved in the design of the network and must understand how the processing will be distributed across the network. Client/Server analysis should employ Rapid Application Development (RAD)1 because both analysis and design are needed during the requirements phase of the system. Once the analyst understands the layout of the network, then further decomposition must be done to produce hybrid objects. These hybrid objects break out into dedicated server and object functions as shown in Fig. 4.1.

Moving to Client/Server is much easier if OO has been completed. Getting the analysis team involved in network design early in the process is much more difficult. The role of the analyst in Client/Server will continue to expand as the distribution of objects in these environments continues to grow and mature.

1 RAD is defined as “an approach to building computer systems which combines the Computer-Assisted Software Engineering (CASE) tools and techniques, user-driven prototyping, and stringent project delivery time limits into a potent, tested, reliable formula for top-notch quality and improvement.” Kerr, James, Hunter, Richard, Inside RAD, pg. 3.).

[image: Image 310]

4.4

Logic Data Modeling

87

Fig. 4.1 Decomposition of

client/server objects to

dedicated client and server

objects

4.3

Introduction to Databases

Chapter 3 focused on application specifications as they relate to process. Using DFDs, PDFs, ERDs, etc., I showed how data elements are defined in the DD. However, the process of completing the DD and building complex relational databases has further steps. This chapter focuses on how to design databases for use with ecommerce Web applications. The completion of the DD and the creation of the database schematic, called the Entity Relational Diagram, provide developers with the data architecture component of the system. We call the process of creating this architecture Logic Data Modeling. The process of logic data modeling not only defines the architecture; it also provides the construct for the actual database, often called the physical database. The physical database differs from its logical counterpart in that it is subject to the rules and formats of the database product that will be used to implement the system. This means that if Oracle is used to implement the logical schema, the database must conform to the specific proprietary formats that Oracle requires. Thus, the logical model provides the first step in planning for the physical implementation. First, I will examine the process of building the appropriate schematic. Even if a packaged software product is selected, chances are it will need to use a database product like Oracle. Thus, many of the analysis and design steps below will be extremely important in determining the best fit for a package.

4.4

Logic Data Modeling

Logic Data Modeling (LDM) is a method that examines a particular data entity and determines what data elements need to be associated with it. There are a number of procedures, some mathematically based, to determine how and what the analyst needs to do. Therefore, LDM only focuses on the stored data with the intent to design what can be defined as the “engine” of the system. Often this “engine” is called the “back end.” The design of the engine must be independent from the process and must be based on the rules of data definition theory. Listed below are

88

4 Distributed Client/Server and Data

the eight suggested steps to build the database blueprint. This blueprint is typically called the schema, which is defined as a logical view of the database.

1. identify data entities

2. select primary and alternate keys

3. determine key business rules

4. apply normalization to 3rd normal form

5. combine user views

6. integrate with existing data models (e.g., legacy interfaces)

7. determine domains and triggering operations

8. de-normalize as appropriate.

Prior to providing concrete examples, it is necessary to define the database terms used in this chapter. Below are the key concepts and definitions:

• Entity: an object of interest about which data can be collected. Larson and Larson (2000) define an entity as “a representation of a real-world person, event, or concept.” For example, in an ecommerce application, customers, products, and suppliers might be entities. The chapter will provide a method of determining entities from the DFD. An entity can have many data elements associated with it, called attributes.

• Attribute: data elements are typically called attributes when they are associated with an entity. These attributes, or cells of an entity, belong to or “depend on”

the entity.

• Key: a key is an attribute of an entity that uniquely identifies a row. A row is defined as a specific record in the database. Therefore, a key is an attribute that has a unique value that no other row or record can have. Typical key attributes are “Social Security Number,” “Order Number,” etc.

• Business Rule: this is a rule that is assumed to be true as defined by the business. Business rules govern the way keys and other processes behave within the database.

• Normalization: a process that eliminates data redundancy and ensures data integrity in a database.

• User View: the definition of the data from the perspective of the user. This means that how a data element is used, its business rules, and whether it is a key or not, depend largely on the user’s definition. It is important that analysts understand that data definitions are not universal.

• Domains: this relates to a set of values or limits of occurrences within a data element or attribute of an entity. An example of a domain would be STATE, where there is a domain of 50 acceptable values (i.e., NY, NJ, CA, etc.).

• Triggers: these are stored procedures or programs that are activated or triggered as a result of an event at the database level. In other words, an event (insert, delete, update) may require that other elements or records be changed. This change would occur by having a program stored by the database product (such as Oracle) automatically execute and update the data.

4.6

Key Attributes

89

• Cardinality: this concept defines the relationship between two entities. This relationship is constructed based on the number of occurrences or associations that one entity has with another. For example, one customer record could have many order records. In this example, both customer and orders are separate entities.

• Legacy Systems: these are existing applications that are in operation. Legacy applications sometimes refer to older and less sophisticated applications that need to be interfaced with newer systems or replaced completely (see Chap. 10).

• Entity Relational Diagram: a schematic of all the entities and their relationships using cardinal format. An entity relational diagram provides the blueprint of the data, or the diagram of the data engine.

4.5

Logic Data Modeling Procedures

The first step in LDM is to select the entities that will be used to start the normalization process. If DFDs have been completed in accordance with the procedures outlined in Chap. 3, then all data stores that represent data files become transformed into data entities. This approach offers the major advantage of modeling process before data. If DFDs or some comparable process tool is not used, then analysts must rely on the information they can obtain from the legacy systems, such as existing data files, screens, and reports. The following example depicts how a data store from a DFD becomes an entity. The data contained in the data store called “Orders” is represented as an actual form containing many data elements (Fig. 4.2). Thus, this example represents a physical form translated into an LE called a data store, which then is transformed again into an entity (Fig. 4.3).

4.6

Key Attributes

The next step in LDM is to select the primary and alternate keys. A primary key is defined as an attribute that will be used to identify a record or occurrence in an entity. The primary key, like any key attribute, contains a unique value.

Often there is more than one attribute in an entity that contains unique values.

We call an attribute that can be a primary key a candidate key attribute. This simply means that this attribute can serve in the role of the primary key. If there is only one candidate, then there is no issue: that candidate becomes the primary key. In the event that there is more than one candidate attribute, then one must be selected as the primary key, and the others will be called alternate or secondary key attributes. These alternate key attributes provide benefit in the physical database only. This means that they can be used to identify records in the database as an alternative should the primary key not be known. Take the following example.

Suppose that an employee entity has two candidate keys: Social-Security-Number and Employee-ID. Employee-ID is selected as the primary key, so Social-Security-Number becomes an alternate key. In the logical entity, Social-Security-Number is

90

4 Distributed Client/Server and Data

John’s Parts, Inc

ORDER

1818 West Way

New York, NY 10027

ORDER NO: 12345

DATE: February 14, 2025

To:

A. Langer & Assoc., Inc.

John St

Third Floor

White Plains, NY, 10963

P.O. NUMBER

DATE SHIPPED

SHIPPED VIA

REQUIRED DATE

TERMS

4R32

3/28/2001

UPS

4/1/2001

30 days

QUANTITY

ITEM

ITEM NAME

UNIT PRICE

AMOUNT

ID

6

31

Wires

6.50

39.00

2

27

Wheel Covers

25.00

50.00

$ 0.00

$ 0.00

$ 0.00

$ 0.00

$ 0.00

SUBTOTAL

$ 89.00

SALES TAX

SHIPPING & HANDLING

$ 5.50

TOTAL DUE

$ 99.50

Fig. 4.2 Sample customer order form

treated as any other non-key attribute; however, in the physical database, it can be used (or indexed) to find a record. This could occur when an employee calls to ask someone in Human Resources about accrued vacation time. The Human Resource staff would ask the employee for their Employee-ID. If the employee did not know his/her Employee-ID, the Human Resource staff could ask them for their Social Security Number and use that information as an alternative way to locate that individual’s information. It is important to note that the search on the primary key will be substantially faster, because primary key searches use a method called direct access, as opposed to index methods, which are significantly slower. This

4.6

Key Attributes

91

Orders

becomes

D

Orders

Fig. 4.3 Transition of the order data store into an entity

raises the question: When there are multiple candidate-key attributes, which key attribute should be selected as the primary key? The answer is the attribute that will be used most often to find the record. This means that Employee-ID was selected as the primary key attribute because the users determined that it was the field most often used to locate employee information. Therefore, ecommerce analysts must ensure that they ask users this question during the interview process. Figure 4.4

provides a graphic depiction of the employee entity showing Employee-ID as the primary key attribute and Social-Security-Number as a non-key attribute.

There is another type of key attribute called Foreign keys. Foreign keys provide a way to link tables and create relationships between them. Since Foreign keys are created during the process of Normalization, I will defer discussion about them to the section on Normalization in this Chapter.

Fig. 4.4 Primary key and

Employee Master

alternate key attributes

Primary Key

Employee-ID [PK1]

Non-Key Attributes

Social-Security-Number

Empl-Name

Empl-Addr-Line1

Empl-Addr-Line2

Empl-Addr-Line3

Empl-City

Empl-State

Empl-Zip

Date-Started

Skill-Set-Code

92

4 Distributed Client/Server and Data

4.7

Normalization

While the next step in LDM is to determine key business rules, it is easier to explain the process of Normalization first. That is, Normalization occurs after Defining Key Business Rules in practice, but not when introducing the topic for educational purposes. Therefore, Key Business Rules will be discussed after Normalization.

Normalization, without question, is the most important aspect of LDM. As mentioned above, Normalization is defined as the elimination of redundancies in an entity and ensures data integrity. It is the latter point that is critical in understanding the value of Normalization in the design of ecommerce database systems. Understanding of the LDM process depends largely on understanding how to implement the Normalization process.

Normalization is constructed in a number of “Normal Forms.” While there are five published Normal Forms, Normal Forms 4 and 5 are difficult to implement and most professionals avoid them. Therefore, this book omits Normal Forms 4

and 5. The three Normal Forms of Normalization are listed below. Note that a Normal Form is notated as “NF.”

1st NF:

No repeating non-key attributes or group of non-key attributes.

2nd NF:

No partial dependencies on a part of a concatenated key attribute.

3rd NF:

No dependencies of a non-key attribute on another non-key attribute.

Each Normal Form is dependent on the one before it, that is, the process of completing Normalization is predicated on the sequential satisfaction of the Normal Form preceding it. Normalization can be best explained by providing a detailed example. Using the Order form provided in Fig. 4.1, we can start the process of Normalization. Figure 4.5 shows the Logical Equivalent of the Order form in entity format. In this example, the primary key is Order-Number (signified by the “PK”

notation), which requires that every order have a unique Order-Number associated with it. It should also be noted that a repeating group made up of five attributes is shown in a separate box. This repeating group of attributes correlates to an area on the Order form, which often is referred to as an order line item. This means that each item associated with the order appears in its own group, namely the item identification, its name, unit price, quantity, and amount. The customer order in Fig. 4.1 shows two items associated with the Order-Number 12345.

The process of determining compliance with Normalization is to evaluate

whether each normal form or NF has been satisfied. This can be accomplished by testing each NF in turn. Thus, the first question to ask is: Are we in 1st NF?

The answer is no because of the existence of the repeating attributes: Item-ID, Item-Name, Quantity, Unit-Price, and Amount, or as specified above an “order line item.” In showing this box, the example exposes the repeating group of items that can be associated with a customer order. Another way of looking at this phenomenon is to see that within the Order, there really is another entity, which has its own key identification. Since there is a repeating group of attributes, there is a 1st

4.7

Normalization

93

Order Date

PO Number

Date Shipped

Customer ID

Shipped VIA

Order# (PK)

Customer Name

Required Date

Entity Orders

Terms

Customer Address

REPEATING ELEMENT GROUP

Subtotal

Item ID

Sales Tax

Item Name

Shipping &

Quantity

Handling

Total Due

Unit Price

Amount

Fig. 4.5 Orders entity and its associated attributes

NF failure. Anytime an NF fails or is violated, it results in the creation of another entity. Whenever there is a 1st NF failure, the new entity will always have as its primary key a concatenated “group” of attributes. This concatenation, or joining of multiple attributes to form a specific value, is composed of the primary key from the original entity (Orders) attached with a new key attribute from the repeating group of elements. The new key must be an attribute that controls the other group of attributes. In this example, the controlling attribute is Item-ID. After the new

“key attribute” is determined, it is concatenated with the original key attribute from the Orders entity. The remaining non-key attributes will be removed from the original entity to become non-key attributes of the new entity. This new entity is shown in Fig. 4.6.

The new entity, called Order Items, has a primary key that reflects the concatenation of the original key Order-Number from the entity Orders, combined with Item-ID, which represents the controlling attribute for the repeating group. All of the other repeating attributes have now been transferred to the new entity. The new

94

4 Distributed Client/Server and Data

Order Date

PO Number

Date Shipped

Customer ID

Shipped VIA

Order# (PK)

Customer Name

Required Date

Entity Orders

Terms

Customer Address

Order # Item ID

Subtotal

(PK)

Item Name

Order Items

Sales Tax

Quantity

Shipping &

Handling

Total Due

Unit Price

Amount

Fig. 4.6 Orders in 1st NF

entity Order Items allows the system to store multiple order line items as required.

The original entity left without this modification would have limited the number of occurrences of items artificially. For example, if the analyst/designer had defaulted to five groups of order line items, the database would always have five occurrences of the five attributes. If most orders, in reality, had fewer than five items, then significant space would be wasted. More significant is the case where the order has more than five items. In this case, a user would need to split the order into two physical orders so that the extra items could be captured. These two issues are the salient benefits of attaining entities in their 1st NF. Therefore, leaving the entity Order as is would in effect create an integrity problem.

Once the changes to the entity Orders have been completed, and the new entity Order Item has been completed, the system is said to be a database in 1st NF. It is important to note that the new primary key of the entity Order Items is the combination of two attributes. While the two attributes maintain their independence

4.7

Normalization

95

as separate fields of data, they are utilized as one combined value for purposes of their role as a key attribute. For example, based on the data in the Order form from Fig. 4.1, the entity Order Items would have two records. The first record would have the primary key of 1,234,531, which would be the concatenation of Order-Number (12,345) with Item-ID (31). The second record would be 1,234,527, which is the same Order-Number, but concatenated with the second Item-ID (27). From an SQL feature perspective, while the key attribute concatenates each attribute into one address, it can be searched as separate fields. So, a user could search for all the items associated with Order 12,345, by simply searching on Order Items that contain an Order-Number = “12,345.” This exemplifies the power of versatility in the relational model. Once 1st NF has been reached, the next test must ensue, that is, testing for compliance with 2nd NF.

Second NF testing applies only to entities that have concatenated keys. Therefore, any entity that is in 1st NF and does not have a concatenated primary key must already be in 2nd NF. In our example, then, the entity “Orders” is already in 2nd NF because it is in 1st NF and does not have a concatenated primary key.

The entity Order Items, however, is in a different category. Order Items has a concatenated primary key attribute and must be tested for compliance with 2nd NF.

Second NF requires the analyst to ensure that every non-key attribute in the entity is totally dependent on all components of the primary key, or all of its concatenated attributes. When we apply the test, we find that the attribute “Item-Name”

is dependent only on the key attribute “Item-ID.” That is, the Order-Number has no effect or control over the name of the item. This condition is considered a 2nd NF failure. Once again, a new entity must be created. The primary key of the new entity is the portion of the concatenated key that controlled the attribute that caused the failure. In other words, Item-ID is the primary key of the new entity, because

“Item-Name” was wholly dependent on the attribute “Item-ID.” It is worthwhile at this time to explain further the concept of attribute dependency. For one attribute to be dependent on another infers that the controlling attribute’s value can change the value of the dependent attribute. Another way of explaining this is to say that the controlling attribute, which must be a key, controls the record. That is, if the Item-ID changes, then we are looking at a different Item Name, because we are looking at a different Item record.

To complete the creation of the new entity, Items, each non-key attribute in the original entity Order Items must be tested for 2nd NF violation. Note that as a result of this testing, “Quantity” and “Amount” stay in the Order Items entity because they are dependent on both Order-Number and Item-ID. That is, the quantity associated with any given Order Items occurrence is dependent not only on the Item itself, but also the particular order it is associated with. We call this being wholly dependent on the concatenated primary key attribute. Thus, the movement of non-key attributes is predicated on the testing of each non-key attribute against the concatenated primary key. The result of this test establishes the three entities shown in Fig. 4.7.

The results of implementing 2nd NF reflect that without it, a new Item (or Item-ID) could not have been added to the database without an order. This obviously

96

4 Distributed Client/Server and Data

Order Date

PO Number

Date Shipped

Customer ID

Shipped VIA

Order# (PK)

Customer Name

Required Date

Entity Orders

Terms

Customer Address

Order # Item ID

Subtotal

(PK)

Quantity

Order Items

Sales Tax

Amount

Shipping &

Handling

Total Due

Item Name

Item ID (PK)

Items Entity

Unit Price

Fig. 4.7 Orders in 2nd NF

would have caused major problems. Indeed, the addition of a new Item would have to precede the creation of that Item with a new Order. Therefore, the new entity represents the creation of a separate Item master file as shown in Fig. 4.7.

Figure 4.7 represents Orders in 2nd NF. Once again, we must apply the next test-3rd NF to complete Normalization. Third NF tests the relationship between two non-key attributes to ensure that there are no dependencies between them.

Indeed, if this dependency were to exist, it would mean that one of the non-key attributes would, in effect, be a key attribute. Should this occur, the controlling non-key attribute would become the primary key of the new entity. Testing this

4.7

Normalization

97

Order Date

PO Number

Date Shipped

Customer ID (FK)

Shipped VIA

Order# (PK)

Subtotal

Required Date

Entity Orders

Terms

Sales Tax

Order # Item ID

Shipping &

(PK)

Quantity

Handling

Order Items

Total Due

Amount

Customer ID (PK)

Item Name

Customers Entity

Item ID (PK)

Items Entity

Unit Price

Customer Name

Customer Address

Fig. 4.8 Orders in preliminary 3rd NF

against the sample entity reflects that Customer-Name and Customer-Address2

are dependent on Customer-ID. Therefore, the entity Orders fails 3rd NF and a new entity must be created. The primary key of the new entity is the non-key attribute that controlled the other non-key attributes, in this case Customer-ID.

The new entity is called Customers, and all of the non-key attributes that depend on Customer-ID are moved to that entity as shown in Fig. 4.8.

What is unique about 3rd NF failures is that the new key attribute remains as a non-key attribute in the original entity (in this case: Orders). The copy of the non-key attribute Customer-ID is called a Foreign key and is created to allow the Order 2 Customer-Address would normally be composed of three address lines and the existence of State, City, and Zip code. It has been omitted from this example for simplicity.

98

4 Distributed Client/Server and Data

entity and the new Customer entity to have a relationship. A relationship between two entities can exist only if there is at least one common keyed attribute between them. Understanding this concept is crucial to what Normalization is intended to accomplish. Looking at Fig. 4.8, one can see that the entity Order and Order Items have a relationship because both entities have a common keyed attribute: Order-ID. The same is true in the creation of the Item entity, which resulted from a 2nd NF failure. The relationship here is between the Order Item entity and the Item entity, where both entities contain the common key attribute Item-ID. Both of these relationships resulted from the propagation of a key attribute from the original entity to the newly formed entity during the normalization process. By propagation, we mean that a pointer, or copy of the key attribute, is placed in the new entity. Propagation is implemented using Foreign keys and is a natural result of the process. Note that the “PK” is followed by an “FK” signifying that the keyed attribute is the result of a propagation of the original key attribute. Such is not the case in 3rd NF. If Customer-ID were to be removed from the Orders entity, then the relationship between Orders and Customers would not exist because there would be no common keyed attribute between the two entities. Therefore, in 3rd NF, it is necessary to force the relationship because a natural propagation has not occurred. This is accomplished by creating a pointer from a non-keyed attribute to the primary keyed copy, in this case Customer-ID. The concept of a pointer is important. Foreign key structures are typically implemented internally in physical databases using indexes. Indexes, or indirect addresses, are a way of maintaining database integrity by ensuring that only one copy of an attribute value is stored.

If two copies of Customer-ID were stored, changing one of them could create an integrity problem between Orders and Customers. The solution is to have the Customer-ID in Orders “point” indirectly to the Customer-ID key attribute in the Customer entity. This ensures that a Customer-ID cannot be added to the Orders entity that does not exist in the Customer master entity.

The question now is whether the entities are in 3rd NF. Upon further review, we see the answer is no! Although it is not intuitively obvious, there are three non-key attributes that are dependent on other non-key attributes. This occurs first in the Order Items entity. The non-key attribute “Amount” is dependent on the non-key attribute “Quantity.” Amount represents the total calculated for each item in the order. It is not only dependent on “Quantity,” but also dependent on “Unit-Price.” This occurs frequently in attributes that are calculations. Such attributes are called derived elements, and they are eliminated from the database. Indeed, if we store Quantity and Unit-Price, “Amount” can be calculated separately as opposed to being stored as a separate attribute. Storing the calculation would also cause integrity problems. For example, what would happen if the quantity or unit price would change? The database would have to recalculate the change and update the Amount attribute. While this can be accomplished, and will be discussed later in this chapter, it can be problematic to maintain in the database and cause performance problems in production ecommerce systems. The Orders entity also contains two derived attributes: Subtotal and Total-Due. Again, both of these attributes are removed. The issue is whether the removal of derived attributes

4.7

Normalization

99

should be seen as a 3rd NF failure. Date (2000) views these failures as outside of 3rd NF, but in my view, they represent indirect dependencies on other non-key attributes and should be included as part of the 3rd NF test. In any case, we all agree that derived elements should be removed in the process of LDM. The 3rd NF LDM is modified to reflect the removal of these three attributes as shown in Fig. 4.9.

Once 3rd NF is reached the analyst should create the Entity Relational Diagram (ERD), which will show the relationships or connections among the entities.

The relationship between entities is established through associations. Associations define the cardinality of the relationship using what is known as the Crow’s Foot Method as shown in Fig. 4.10.

Order Date

PO Number

Date Shipped

Customer ID (FK)

Shipped VIA

Order# (PK)

Subtotal

Required Date

Entity Orders

Terms

Sales Tax

Order # Item ID

Shipping &

(PK)

Quantity

Handling

Order Items

Customer ID (PK)

Item Name

Customers Entity

Item ID (PK)

Items Entity

Unit Price

Customer Name

Customer Address

Fig. 4.9 Orders in second phase of 3rd NF

100

4 Distributed Client/Server and Data

Order

Key Data

items

order# [PK1]

Key Data

Non-Key Data

item_id [PK1]

po_number

Non-Key Data

date_shipped

item_name

shipped_via

unit_price

required_date

terms

sales_tax

shipping_handling

customer_id [FK]

order items

Key Data

order# [PK1] [FK]

item_id [PK2] [FK]

Non-Key Data

quantity

customers

Key Data

customer_id [PK1]

Non-Key Data

customer_name

customer_address

Fig. 4.10 The entities in ERD format using Crow’s feet

The Crow’s Foot Method is only one of many formats. The method contains three key symbols:

denotes the cardinality of many occurrences

denotes zero occurrences

denotes one occurrence

Therefore, the ERD in Fig. 4.10 depicts the relationships of all the entities as follows:

1. One, and only one (signified by the double lines) Order record can have one to many Order Item records. It also shows that any Order in the Order Items entity must exist in the Order entity.

2. One and only one Item record can have zero to many Order Item records. The difference in this relationship and the one established between Orders and Order Items is that Items may not have a relationship with Order Items, signified by the zero in the Crow’s Foot. This would often occur when there is a new item that has not yet received any orders.

3. The Order Items entity has a primary key, which is a concatenation of two other primary keys: Order-ID from the Orders entity, and Item-ID from the Items entity. This type of relationship is said to be an “associative” relationship because the entity has been created as a result of a relational problem.

This relational problem exists because the Order entity has a “many-to-many”

relationship with the Items entity. Thus the 1st NF failure, which created the

4.8

Limitations of Normalization

101

associative entity Order Items, is really the result of a “many-to-many” situation. A many-to-many relationship violates Normalization because it causes significant problems with SQL coding. Therefore, whenever a many-to-many

relationship occurs between two entities, an associative entity is created which will have as its primary key the concatenation of the two primary keys from each entity. Thus, associative entities make many-to-many relationships into two one-to-many relationships so that SQL can work properly during search routines. Associative entities are usually represented with a diamond box.

4. One and only one Customer can have zero-to-many Orders, also showing that a Customer may exist who has never placed an order. As an example, this would be critical if the business were credit cards, where consumers can obtain a credit card even though they have not made a purchase. Note that the Customer-ID is linked with Orders through the use of a non-key foreign key attribute.

4.8

Limitations of Normalization

Although 3rd NF has been attained, there is a major problem with the model. The problem relates to the attribute Unit-Price in the Items entity. Should the Unit-Price of any Item change, then the calculation of historical Order Item purchases would be incorrect. Remember that the attribute “Amount” was eliminated because it was a derived element. This might suggest that Normalization does not work properly! Such is not the case. First, we need to evaluate whether putting “Amount”

back in the ERD would solve the problem. If the Unit-Price were to change, then Amount would need to be recalculated before it was done. While this might seem reasonable, it really does not offer a solution to the problem, just a way around it.

The actual problem has little to do with the attribute “Amount,” but more to do with a missing attribute. The missing attribute is Order-Item-Unit-Price, which would represent the price at the time of the order. Order-Item-Unit-Price is dependent on both the Order and the Item and therefore would become a non-key attribute in the Order Items entity (i.e., it is wholly dependent on the entire concatenated primary key). The only relationship between Unit-Price and Order-Item-Unit-Price is at the time the order is entered into the system. In this situation, an application program would move the value or amount of the Unit-Price attribute into the Order-Item-Unit-Price attribute. Thereafter, there is no relationship between the two attributes.

Because this is a new data element that has been discovered during Normalization, it must be entered into the Data Dictionary. Thus, a limitation of Normalization is that it cannot normalize what it does not have; it can normalize only the attributes that are presented to the formula. However, the limitation of Normalization is also an advantage: the process can help the analyst recognize that a data element is missing. Therefore, Normalization is a “data-based” tool that the analyst can use to reach the Logical Equivalent. Figure 4.11 shows the final ERD with the addition of Order-Item-Unit-Price.

102

4 Distributed Client/Server and Data

Order

Key Data

items

order# [PK1]

Key Data

Non-Key Data

item_id [PK1]

po_number

Non-Key Data

date_shipped

item_name

shipped_via

unit_price

required_date

terms

sales_tax

shipping_handling

customer_id [FK]

order items

Key Data

order# [PK1] [FK]

item_id [PK2] [FK]

Non-Key Data

quantity

order_item_unit_price

customers

Key Data

customer_id [PK1]

Non-Key Data

customer_name

customer_address

Fig. 4.11 Final ERD with Order-Item-Unit-Price

4.9

The Supertype/Subtype Model

A troublesome database issue occurs in the LDM when there are records within an entity that can take on different characteristics or have many “types” of attributes.

“Type” means that a portion of the attributes in a specific record can vary depending on the characteristic or identification of the row within that entity. Another way of defining type is to describe it as a group of attributes within a given record that are different from other records of the same entity depending on the type of record it represents. This type is referred to as a “subtype” of the record. A subtype, therefore, is the portion of the record that deviates from the standard or

“supertype” part of the record. The “supertype” portion is always the same among all the records in the entity. In other words, the “supertype” represents the global part of the attributes in an entity. The diagram in Fig. 4.12 depicts the supertype/

subtype relationship.

The difference between a subtype and an ordinary type identifier (using a foreign key) is the occurrence of at least one non-key attribute that exists only in that subtype record. The major reason to create a supertype/subtype relationship is the occurrence of multiple permutations of these unique attributes that exist in just certain subtype records. Limiting these permutations of attributes within one record format can be problematic. First, it can waste storage, especially if each subtype has significant numbers of unique attributes. Second, it can create significant performance problems particularly with the querying of data. Using Fig. 4.12, we can see two ways to store this data. The first (Fig. 4.13) is a basic representation where all the permutations exist in one entity called “Educators.” The “type” of row is

4.9

The Supertype/Subtype Model

103

Rec#

SS#

Last_Name

First_Name

Middle_Init

Type of Educator

1

045-34-2345

Morrison

Ralph

P

High School

2

986-23-7765

Johnson

Janet

L

Professor

3

213-45-3621

Herman

Dan

R

Dean

Rec#

Grade Level

Master’s Degree Date

Subject

1

10

5/19/89

History

Rec#

Department

School

PhD Subject

2

Science

Engineering

Chemical

Transformaon

Rec#

Schools

Total Students

3

4

5,762

Fig. 4.12 Supertype/subtype relationship

identified by using a foreign key pointer to a validation entity called “Educator Type.”

Although this representation of the data uses only one entity, it wastes storage space because all of the attributes of the entity are never needed by any one “type”

of record. Furthermore, a user must know which attributes need to be entered for a particular type of record. This method of logic data modeling violates the concepts of normalization, and entrusts the integrity of values of elements in an entity to either an application program’s control (stored procedure), or to the memory of the user. Neither of these choices is particularly dependable or has proven to be a reliable method of data integrity.

On the other hand, Fig. 4.14 provides a different solution using the Supertype/

Subtype model.

Educators

Key Data

SS# [PK1]

Non-Key Data

Last_Name

First_Name

Middle_Init

Grade_Level

Educator Type

Masters_Degree_Date

Key Data

Subject

Type_Name [PK1]

Department

School

PhD_Subject

Total_Students

Type_Name [FK]

Fig. 4.13 Educator ERD using foreign key identifier

104

4 Distributed Client/Server and Data

Educator

Key Data

SS# [PK1]

Non-Key Data

Last_Name

First_Name

Middle_Init

High School Teacher

College Professor

Dean

Key Data

Key Data

Key Data

SS# [PK1]

SS# [PK1]

SS# [PK1]

Non-Key Data

Non-Key Data

Non-Key Data

Grade_Level

Department

School

Masters_Degree_Date

School

Total_Students

Subject

PhD_Subject

Fig. 4.14 Educator entity supertype/subtype model

This model constructs a separate entity for each type of educator, linked via a special notation in the relational model, known as the supertype/subtype relation.

The relationship is mutually exclusive, meaning that the supertype entity Educator can have only one of the three subtypes for any given supertype occurrence.

Therefore, the relationship of one record in a supertype must be one-to-one with only one subtype. The supertype/subtype model creates a separate subtype entity to carry only the specific attributes unique to its subtype.

There are two major benefits to this entity structure. First, the construct saves storage because it stores only the attributes it needs in each entity. Second, the subtype information can be directly addressed without accessing its related supertype. This is possible because each subtype entity contains the same primary key as its parent. This capability is significant because a user can automatically obtain the unique information from any subtype without having to search first through the supertype entity. This is particularly beneficial when the number of records in each subtype varies significantly. Suppose, for example, there are 6 million educators in the database. The Educator database would therefore contain 6 million rows. Let’s say that 5 million of the educators are high school teachers, and as such, the High School subtype entity has 5 million records. Eight hundred thousand educators are professors, and the remaining 200,000 educators are deans; therefore, the Professor database and Dean database have 800,000 and 200,000 records, respectively.

Using the supertype/subtype model applications could access each subtype without searching through every record in the database. Furthermore, because access to one subtype does not affect the other, performance is greatly improved.

It is important to note that the Supertype/Subtype model is not limited to mutual exclusivity, that is, it can support multiple subtype permutations. For example, suppose an educator could be a high school teacher, college professor, and a dean

4.9

The Supertype/Subtype Model

105

at the same time, or any permutation of the three types. The sample model would then be modified to show separate one-to-one relationships as opposed to the “T”

relationship shown in Fig. 4.14. The alternative model is represented in Fig. 4.15.

Supertype/Subtypes can cascade, that is, they can continue to iterate or decompose within each subtype. This is represented in Fig. 4.16.

Notice that in the above example the same primary key continues to link the “one-to-one” relationships between the entities. In addition, Fig. 4.16 also shows another possibility in the supertype/subtype model. This possibility reflects that a subtype can exist without containing any non-key attributes. This occurs in the example in the subtype entity Adjunct Prof. The “empty” entity serves only to identify the existence of the subtype, without having a dedicated non-key attribute associated with it. The Adjunct Prof entity, therefore, is created only to allow the other two subtypes (Tenured Prof and Contract Prof) to store their unique attributes. This example shows how supertype/subtype models can be constructed, and how they often have subtypes that are created for the sole purpose of identification.

Cascading subtypes can mix methods, that is, some levels may not be mutually exclusive, while other cascade levels can be mutually exclusive as shown in Fig. 4.17.

There is a controversial issue among database developers. The controversy relates to whether it is necessary to create a special attribute that identifies which entity contains the subtype entry for any given supertype. In other words, how does the database know which subtype has the continuation information? This dilemma is especially relevant when mutually exclusive relationships exist in the supertype/

subtype. The question is ultimately whether the supertype/subtype model needs to contain an identifier attribute that knows which subtype holds the continuation record, or is the issue resolved by the physical database product? Fleming and von Educator

Key Data

SS# [PK1]

Non-Key Data

Last_Name

First_Name

Middle_Init

College Professor

High School Teacher

Dean

Key Data

Key Data

Key Data

SS# [PK1]

SS# [PK1]

SS# [PK1]

Non-Key Data

Non-Key Data

Non-Key Data

Department

Grade_Level

School

School

Masters_Degree_Date

Total_Students

PhD_Subject

Subject

Fig. 4.15 Supertype/subtype model without mutual exclusivity

106

4 Distributed Client/Server and Data

Educator

Key Data

SS# [PK1]

Non-Key Data

Last_Name

First_Name

Middle_Init

College Professor

High School Teacher

Dean

Key Data

Key Data

Key Data

SS# [PK1]

SS# [PK1]

SS# [PK1]

Non-Key Data

Non-Key Data

Non-Key Data

Department

Grade_Level

School

School

Masters_Degree_Date

Total_Students

PhD_Subject

Subject

Tenured Prof

Contract Prof

Adjunct Prof

Key Data

Key Data

Key Data

SS# [PK1]

SS# [PK1]

SS# [PK1]

Non-Key Data

Non-Key Data

Rank

contract_term

Res_Public

Classes

Fig. 4.16 Cascading subtypes

Halle addressed this issue in the Handbook of Database Design, where they suggest that the “attribute is at least partially redundant because its meaning already is conveyed by the existence of category or subtype relationships” (p. 162). Still, the issue of redundancy may vary among physical database products. Therefore, I suggest that the logical model contain a subtype identifier for mutually exclusive supertype/subtype relationships as shown in Fig. 4.18.

Note that the above example has the subtype identifier, Professor Types as a validation entity in 3rd normal form.

Supertype/subtypes must also be normalized following the rules of Normalization. For example, the subtype Educator Types contains elements that are not in 3rd NF. Attributes Grade_Level and Subject in the subtype entity High School Teacher can be validated using a look-up table. Department, School, and PhD_

Subject can also be validated. The resulting 3rd NF ERD is shown in Fig. 4.19.

4.10

Key Business Rules

107

Educator

Key Data

SS# [PK1]

Non-Key Data

Last_Name

First_Name

Middle_Init

High School Teacher

College Professor

Dean

Key Data

Key Data

Key Data

SS# [PK1]

SS# [PK1]

SS# [PK1]

Non-Key Data

Non-Key Data

Non-Key Data

Grade_Level

Department

School

Masters_Degree_Date

School

Total_Students

Subject

PhD_Subject

Tenured Prof

Contract Prof

Adjunct Prof

Key Data

Key Data

Key Data

SS# [PK1]

SS# [PK1]

SS# [PK1]

Non-Key Data

Non-Key Data

Rank

contract_term

Res_Public

Classes

Fig. 4.17 Cascading subtypes with alternating exclusivities

4.10

Key Business Rules

Key business rules are the rules that govern the behavior between entities when a row is inserted or deleted. These business rules are programmed at the database level using stored procedures and triggers (see Step 7: determine domains and triggering operations). These procedures are typically notated as constraints. Constraints enforce the key business rules that will be defined by the analysts and are the basis of what is meant by referential integrity, that is, the integrity based on the relations between tables. The process of insertion and deletion focuses on the relationship between the parent entity and the child entity. A child entity is always the entity that has the Crow’s Foot pointing to it. Based on the ERD in Fig. 4.10

the parent–child entity relationships are as follows:

• Orders entity is the parent of Order Items entity (child).

• Customer entity is the parent of Orders entity (child).

• Items entity is the parent of Order Items entity (child).

108

4 Distributed Client/Server and Data

Educator

Key Data

SS# [PK1]

Non-Key Data

Last_Name

First_Name

Middle_Init

Professor Types

Key Data

Prof_Type_Id [PK1]

Dean

High School Teacher

Key Data

College Professor

Key Data

SS# [PK1]

Key Data

SS# [PK1]

Non-Key Data

SS# [PK1] [FK]

Non-Key Data

School

Non-Key Data

Grade_Level

Total_Students

Department

Masters_Degree_Date

School

Subject

PhD_Subject

Prof_Type_Id [FK]

Tenured Prof

Contract Prof

Adjunct Prof

Key Data

Key Data

Key Data

SS# [PK1] [FK]

SS# [PK1] [FK]

SS# [PK1] [FK]

Non-Key Data

Non-Key Data

Rank

contract_term

Res_Public

Classes

Fig. 4.18 Supertype/subtype with subtype identifier element

When discussing insertion of a row, it is always from the perspective of the child entity. That is, key business rules governing the insertion of a child record concern what should be done when attempting to insert a child record that does not have a corresponding parent record. There are six alternatives:

1. Not Allowed: this means that the constraint is to disallow the transaction. For example, in Fig. 4.11, a user could not insert an Order Item (child) for an Order-Number that did not exist in the Orders entity (parent). Essentially, the integrity of the reference would be upheld, until the Order-Number in the Orders entity was inserted first.

2. Add Parent: this means that if the parent key does not exist, it will be added at the same time. Using Fig. 4.11, this would mean that the user would be prompted to add the Order-Number to the Orders entity before the child Item would be inserted. The difference between Not Allowed and Add Parent is that the user can enter the parent information during the insertion of the child transaction. Using this rule still enforces referential integrity.

4.10

Key Business Rules

109

Educator

Key Data

SS# [PK1]

Subjects

Non-Key Data

Key Data

Last_Name

Subject_Name

First_Name

[PK1]

Middle_Init

Professor Types

Key Data

Dean

Prof_Type_Id [PK1]

Key Data

SS# [PK1] [FK]

High School Teacher

Non-Key Data

Key Data

Total_Students

SS# [PK1] [FK]

School_Name [FK]

Non-Key Data

Masters_Degree_Date

Subject_Name [FK]

Grade_Level_Name [FK]

College Professor

Schools

Departments

Key Data

Key Data

Key Data

SS# [PK1] [FK]

School_Name [PK1]

Dept_Name

Grade_Levels

Non-Key Data

[PK1]

Key Data

Prof_Type_Id [FK]

School_Name [FK]

PhD_Subjects

Grade_Level_

PhD_Subj_Name [FK]

Key Data

Name [PK1]

Dept_Name [FK]

PhD_Subj_Name

[PK1]

Tenured Prof

Contract Prof

Adjunct Prof

Key Data

Key Data

Key Data

SS# [PK1] [FK]

SS# [PK1] [FK]

SS# [PK1] [FK]

Non-Key Data

Non-Key Data

Rank

contract_term

Res_Public

Classes

Fig. 4.19 Supertype/subtype in 3rd NF

3. Default Value: the use of a default value allows a “dummy” row to be inserted into the parent. An example of the use of a default occurs when collection agencies receive payments from an unknown person. The parent entity is “Account” and the child entity is “Payments.” The Account entity would have a key value called “Unapplied” which would be used whenever an unidentified payment was collected. In this scenario, it is appropriate to have the dummy record because the child transaction is really unknown, but at the same time needs to be recorded in the database. It is also useful because the user can quickly get a list of “unapplied” payments and it upholds referential integrity.

110

4 Distributed Client/Server and Data

4. Algorithm: an algorithm is an “intelligent” default value. Using the same example as (3), suppose the user wanted to track unapplied payments by State.

For example, if an unapplied payment were received in New York, the parent (Account entity) would have a record inserted with a value “Unapplied-New York.” Therefore, each State would have its own default. There are also default keys that are based on sophisticated algorithms to ensure that there is an understanding to the selection of the parent’s key attribute value. Again, this selection ensures referential integrity because a record is inserted at both the parent and child entities.

5. Null: assigning a null means that the parent does not exist. Most database products such as Oracle allow such selection, and while it is maintained within the product, it violates referential integrity because the parent is unknown.

6. Don’t Care: this essentially says that the user is willing to accept that referential integrity does not exist in the database. The user will tell you that they never wish to balance the records in the child with those in the parent. While this happens, it should be avoided, because it creates a system without integrity.

When discussing deletion of a row, it is always from the perspective of the parent entity. That is, key business rules governing the deletion of a parent record concern what should be done when attempting to delete a parent record that has corresponding child records. There are similarly six alternatives:

1. Not Allowed: this means that the constraint is to disallow the deletion of the parent record. In other words, if there are children records, the user cannot delete the parent. For example, in Fig. 4.11, a user could not delete an Order (parent) if there were corresponding records in the Order Items entity (child).

This action would require the user first to delete all of the Order Items or children records before allowing the parent Order to be deleted.

2. Delete All: this is also known as cascading, because the system would automatically delete all child associations with the parent entity. Using the same example as (1), the children records in Order Items would automatically be deleted. While this option ensures referential integrity, it can be dangerous because it might delete records that are otherwise important to keep.

3. Default Value: the use of a default value is the same as in insertion, that is, it allows a “dummy” row to be inserted into the parent. This means that the original parent is deleted, and the child records are redirected to some default value row in the parent entity. This is sometimes useful when there are many old parent records, such as old part-numbers, that are cluttering up the parent database. If keeping the child records is still important, they can be redirected to a default parent row, such as “Old Part-Number.”

4. Algorithm: the use of the algorithm is the same as with an insertion. As in the case of (3) above, the default value might be based on the type of product or year it became obsolete.

4.11

Combining User Views

111

5. Null: as in the case of insertion, the assigning of a null means that the parent does not exist. This creates a situation where the child records become

“orphans.” Referential integrity is lost.

6. Don’t Care: same as in insertion. The database allows parent records to be deleted without checking to see if there are corresponding child records in another entity. This also results in losing referential integrity and creates

“orphans.”

In summary, key business rules are concerned with the behavior of primary keys during insert and delete operations. There are six alternative options within each operation (insert and delete). Four of the options uphold referential integrity, which is defined as the dependability of the relationships between items of data. Data integrity is an issue any time there is change to data, which in ecommerce systems will be frequent. Thus, the ecommerce analyst must ensure that once primary keys have been determined, it is of vital importance that users are interviewed regarding their referential integrity needs. Analysts should not make these decisions in a vacuum and need to present the advantages of referential integrity appropriately to users so that they can make intelligent and well-informed decisions.

This discussion of key business rules was predicated on using examples derived from the discussion on Normalization. As discussed earlier in this section, the application of normalization occurs after the determination of key business rules, especially since it may indeed affect the design of the ERD, and in the programming of stored procedures. This will be discussed further in the Determine Domains and Triggering Operations section of this chapter.

4.11

Combining User Views

The application of Normalization focused on breaking up or decomposing entities to include the correct placement of data. Each NF failure resulted in creating a new entity; however, there are situations where certain entities may need to be combined. This section is labeled “Combining User Views” because the meaning of data is strongly dependent on how the user defines a data element. Unfortunately, there are circumstances where data elements are called different things and defined differently by different users in different departments. The word “different” is critical to the example. In cases where we think we have two entities, we may, in fact have only one. Therefore, the process of combining user views typically results in joining two or more entities as opposed to decomposing them as done with Normalization. The best way to understand this concept is to recall the earlier discussion on Logical Equivalents. This interpretation of the Logical Equivalent will focus on the data rather than the process. Suppose there are two entities created from two different departments. The first department defines the elements for an entity called “Clients” as shown in Fig. 4.20.

The second department defines an entity called “Customers” as shown in

Fig. 4.21.

112

4 Distributed Client/Server and Data

Fig. 4.20 The Client Entity

Clients

Key Data

Client_Id [PK1]

Non-Key Data

Client_Name

Client_Address

Client_Age

Client_Quality_Indicator

Fig. 4.21 The customer

Customers

entity

Key Data

Customer_Id [PK1]

Non-Key Data

Customer_Name

Customer_Address

Customer_Buyer_Indicator

Customer_Credit_Rating

Upon a closer analysis and review of the data element definitions, it becomes apparent that the two departments are looking at the same object. Notwithstanding whether the entity is named Client or Customer, these entities must be combined.

The process of combining two or more entities is not as simple as it might sound.

In the two examples, there are data elements that are the same with different names, and there are unique data elements in each entity. Each department is unaware of the other’s view of the same data, and by applying logical equivalencies the following single entity results as shown in Fig. 4.22.

The above example uses names that made it easier for an analyst to know they were the same data elements. In reality, such may not be the case, especially when working with legacy systems. In legacy systems, names and definitions of elements can vary significantly among departments and applications. Furthermore, the data definitions can vary significantly. Suppose Client is defined as VARCHAR2(35) and Customer as VARCHAR2(20). The solution is to take the larger definition.

In still other scenarios, one element could be defined as alphanumeric, and the other numeric. In these circumstances the decisions become more involved with Fig. 4.22 Combined client

Customers

and customer entity

Key Data

Customer_Id [PK1]

Non-Key Data

Customer_Name

Customer_Address

Customer_Buyer_Indicator

Customer_Credit_Rating

Customer_Age

Customer_Quality_Indicator

4.12

Integration with Existing Data Models

113

user conversations. In either situation, it is important that the data elements do get combined and that users agree-to-agree. In cases where user agreement is difficult, then analysts can take advantage of a data dictionary feature called Alias. An Alias is defined as an alternate name for a data element. Multiple Aliases can point to the same data dictionary entry. Therefore, screens can display names that are Aliases for another element. This alternative can solve many problems when using different names is necessary.

Another important issue in combining user views is performance. While analysts should not be overly concerned about performance issues during LDM, they should not be ignored either. Simply put, the fewer entities, the faster the performance; therefore, the least number of entities that can be designed in the ERD the better.

4.12

Integration with Existing Data Models

The purpose of this section is to discuss specific analysis and design issues relating to how to integrate with existing database applications. The connectivity with other database systems is difficult. Indeed, many firms approach the situation by phasing each business area over time into a new re-developed operation. In these circumstances, each phased area needs a “Legacy Link” which allows the “old”

applications to work with the new phased-in software.

Linking entities with existing databases may force ecommerce analysts to

rethink how to preserve integrity while still maintaining the physical link to other corporate data. This occurrence is a certainty with ecommerce systems given that certain portions of the data are used inside and outside the business. The following example shows how this problem occurs:

The analyst is designing a website that utilizes the company’s Orders Master database. The website needs this information to allow customers to see information about their past orders for items so they can match it to a product database supplied by the ecommerce system. This feature is provided to customers to allow them to understand how items have been utilized to make their products. Unfortunately, the master Order Items database holds only orders for the past year and then stores them off-line. There is no desire by the Order department to create a historical tracking system. The ERD in Figure 4.23 shows the relationships with the corporate Order Items database file:

Note that the Order Item Products entity has a one or zero relationship with the Order Item Master entity. This means that there can be an Order Item in the Order Item Product entity that does not exist in the Order Item entity. Not only does this violate Normalization, it also presents a serious integrity problem. For example, if the customer wanted to display information about their products and each component Item, all Items that do not exist in the Order Item entity will display blanks, since there is no corresponding name information in the Order Item file. Obviously, this is a flaw in the database design that needs to be corrected. The remedy is to build a subsystem database that will capture all of the Order items

114

4 Distributed Client/Server and Data

Order

Key Data

items

order# [PK1]

Key Data

Non-Key Data

item_id [PK1]

po_number

Non-Key Data

date_shipped

item_name

shipped_via

unit_price

required_date

terms

sales_tax

shipping_handling

order items

Key Data

order# [PK1] [FK]

item_id [PK2] [FK]

Non-Key Data

quantity

order_item_unit_price

Order Item Product

Key Data

order# [PK1] [FK]

item_id [PK2] [FK]

Product-ID [PK3] [FK]

Customer Product

Key Data

Product-ID [PK1]

Non-Key Data

Product_Name

Fig. 4.23 ERD showing association between web databases and legacy employee master without purging them. This would entail a system that accesses the Order Item database and merges it with the Web version of the file. The merge conversion would compare the two files and update or add new Order Items without deleting the old ones. That is, the master Order Items would be searched daily to pick up new Order Items to add to the Web version. Although this is an extra step, it maintains integrity, Normalization, and most important, the requirement not to modify the original Order Item database. The drawback to this solution is that the Web version may not have up-to-date Order Items information. This will depend on how often records are moved to the Web database. This can be remedied by having a replication feature, where the Web Order Item would be created at the same time as the master version. The ERD would be reconstructed as shown in Fig. 4.24.

In the above diagram the Order Item master and its relation to the Web Order Item entity are shown for informational purposes only. The master Order Item becomes more of an application requirement rather than a permanent part of the ERD. In order to “operationalize” this system, the analyst must first reconstruct

4.13

Determining Domains and Triggering Operations

115

Corporate order items

Key Data

order# [PK1] [FK]

item_id [PK2] [FK]

order items

Key Data

order# [PK1] [FK]

item_id [PK2] [FK]

Non-Key Data

quantity

order_item_unit_price

Order Item Product

Key Data

order# [PK1] [FK]

item_id [PK2] [FK]

Product-ID [PK3] [FK]

Customer Product

Key Data

Product-ID [PK1]

Non-Key Data

Product_Name

Fig. 4.24 ERD reflecting legacy link to the order item entity

the history data from the purged files, or simply offer the historical data as of a certain date.

4.13

Determining Domains and Triggering Operations

The growth of the relational database model has established processes for storing certain application logic at the database level. We have already defined key business rules as the vehicle to create constraints at the key attribute level. However, there are other constraints and procedures that can occur depending on the behavior of non-key attributes. Ultimately, business rules are application logic that

116

4 Distributed Client/Server and Data

is coded in the database language, for example PL_SQL for Oracle. These non-key attribute rules could enforce such actions as: If CITY is entered, the STATE

must also be entered. This type of logic rule used to be enforced at the application level. Unfortunately, using application logic to enforce business rules is inefficient because it requires the code to be replicated in each application program. This process also limits control, in that the relational model allows users to “query” the database directly. Thus, business rules at the database level need to be written only once, and they govern all type of applications, including programs and queries.

As stated earlier, business rules are implemented at the database level via stored procedures. Stored procedures are offered by most database manufacturers, and although they are similar, they are not implemented using the same coding schemes. Therefore, moving stored procedures from one database to another is not trivial. The importance of having portable stored procedures and their relationship to partitioning databases across the Internet, Intranets, and distributed networks is becoming even more complex in mobile-based architecture. It is important to note that distributed network systems are being built under the auspices of client/server computing and may require communication among many different database vendor systems. If business rules are to be implemented at the database level, the compatibility and transportability of such code becomes a challenge. We also see that client/server will be addressed more and more as distributed and although normalization remains important, the expansion of blockchain will require multiple stored data to exist.

Business rule implementations fall into three categories: Keys, Domains and Triggers. Key business rules have already been discussed as part of the normalization process. Domains represent the constraints related to an attribute’s range of values. If an attribute (key or non-key) can have a range of values from one to nine, we say that range is the domain value of the attribute. This is very important information to be included and enforced at the database level through a stored procedure for the same reasons as discussed above. The third and most powerful business rule is Triggers.

Triggers are defined as stored procedures that when activated “trigger” one or a set of other stored procedures to be executed. Triggers act on other entities, although in many database products, triggers are becoming powerful programming tools to provide significant capabilities at the database level rather than at the application level. Triggers resemble batch type files which when invoked execute a “script” or set of logical statements as shown below:

/* Within D. B.. only authorized users can mark */

/* ecommerce corporation as confidential */

if user not in (’L’,’M’) then.

:new.corpConfidential: = ’N’;

end if;

end if;

/* Ensure user has right to make specific users private */

if exec = ’N’ then.

4.14

De-normalization

117

:new.corpexec: = ’N’;

end if;

This trigger was implemented in a contact management ecommerce system.

The trigger is designed to allow corporate information to be marked as confidential only by specific executives. This means that an appointed executive of the corporation can enter information that is private. The second component of the trigger is programmed to automatically ensure that the executive’s contacts are stored as private or confidential. These two stored procedures show how application logic executes via Oracle triggers. It is important to remember that these business rules are enforced by the database regardless of how the information is accessed.

Triggers, however, can cause problems. Because triggers can initiate activity among database files, designers must be careful that they do not impair performance. For example, suppose a trigger is written that affects 15 different database files. Should the trigger be initiated during the processing of other critical applications, it could cause significant degradation in processing, and thus affect critical production systems.

The subject of business rules is very broad yet must be specific to the actual database product to be used. Since analysts may not know which database will ultimately be used, specifications for stored procedures should be developed using the specification formats presented in Chap. 3. This is even more salient in ecommerce systems given the possibility that different databases can be used across the entire system.

4.14

De-normalization

Third NF databases can often have difficulty with performance. Specifically, significant numbers of look-up tables, which are actual 3rd NF failures, create too many index links. As a result, while we have reached the integrity needed, performance becomes an unavoidable dilemma. In fact, the more integrity, the less performance.

There are a number of ways to deal with the downsides of normalized databases.

One is to develop data warehouses and other off-line copies of the database. There are many bad ways to de-normalize. Indeed, any de-normalization hurts integrity.

But there are two types of de-normalization that can be implemented without significantly hurting the integrity of the data.

The first type of de-normalization is to revisit 3rd NF failures to see if all of the validations are necessary. Third NF failures usually create tables that ensure that entered values are validated against a master list. For example, in Fig. 4.10, the Customers entity, created as a result of a 3rd NF failure, provides a validation to all customers associated with an Order. This means that the user cannot assign any customer, but rather only those residents in the Customer entity. The screen to select a Customer would most likely use a “drop-down” menu, which would show all of the valid Customers for selection to the Order. However, there may be look-up tables that are not as critical. For example, zip codes may or may not be validated. Whether zip codes need to be validated depends on how users

118

4 Distributed Client/Server and Data

use them.. If they are just used to record a Customer’s address, then it may not be necessary or worthwhile to have the zip code validated. If, on the other hand, they are used for certain types of geographic analysis or mailing, then indeed, validation is necessary. This process—the process of reviewing the use and need for a validation table—should occur during the interview process. If this step is left out, then there is a high probability that too many non-key attributes will contain validation look-up entities that are unnecessary and hurt performance.

The second type of de-normalization is to add back “derived” attributes. While this is not the preferred method, it can be implemented without sacrificing integrity.

This can be accomplished by creating triggers that automatically launch a stored procedure to recalculate a derived value when a dependent attribute has been altered. For example, if Amount is calculated based on Quantity * Unit-Price, then two triggers must be developed (one for Quantity and one for Unit-Price) which would recalculate Amount if either Quantity or Unit-Price were changed. While this solves the integrity issue, analysts must be cognizant of the performance conflict in case the trigger is initiated during peak processing times. Therefore, there must be a balance between the trigger and when it is allowed to occur.

As stated earlier, denormalization will occur more often because of IoT and blockchain, where portions of data will need to be distributed. I advocate for always starting the design with normalization in mind, and then depending on the network design, allowing duplications based on network performance and characteristics of the interface devices.

4.14.1

Summary

This chapter has provided the logical equivalent to the data component of the ecommerce system. The process of decomposing data is accomplished using LDM, which has eight major steps that must be applied in order to functionally decompose the data. Data Flow Diagrams (DFD) are a powerful tool to use during process analysis because they provide direct input into the LDM method. Specifically, data flows provide data definitions into the Data Dictionary, which is necessary to complete LDM. Furthermore, data stores in the DFD represent the major entities, which is the first step in LDM. The output of LDM is an ERD, which represents the schematic or blueprint of the database. The ERD shows the relationships among entities and the cardinality of those relationships.

The LDM also makes provisions to develop stored procedures, which are

programs developed at the database level. These procedures allow “referential integrity” to be enforced without developing application programs that operate outside the data. Stored procedures can be used to enforce key business rules, domain rules, and triggers. Triggers are batch-oriented programs that automatically execute when a particular condition has occurred at the database level, typically, when an attribute has been altered in some way.

4.14

De-normalization

119

The process of LDM also allows for the de-normalization at the logical design level. This is allowed so that analysts can avoid significant known performance problems before the physical database is completed. De-normalization should occur at the user interface time, as many of the issues will depend on the user’s needs and the expansion of IoT and blockchain. Another important issue is the reduction in natural keys that are being replaced with hash algorithms to protect security.

Using GenAI to Evaluate Data Completeness and Accuracy

GenAI can increase the effectiveness of data modeling using outlier detector algorithms that assist human experts in the quality assessment of various workflows.

By using the aid of GenAI, analysts and designers can improve the completeness and accuracy of data architecture. Ultimately by improving workflows, data analysts and software developers will be more productive at a higher quality.

Indeed, traditional methods and approaches to data quality management

required too much manual data cleansing, verification and human governance.

This process is fraught with intensive resource requirements and too susceptible to human errors (Dhoni, 2023). GenAI will allow for better and more accurate facilities and efficiencies for data gathering and data analytics.

An important component of data completeness is data augmentation that is provided by GenAI. Data augmentation is defined as the ability to artificially generate new data from the existing data repository. This generated data is then used to train new machine learning models to:

• Enhance generalizations based on a broader range of data that humans may not be familiar with or think about. In other words, data connections are expanded.

• Active learning about existing data and forming more powerful labeled data.

Label data is raw data that can be assigned one or more labels of context with other data. Figure 4.25 shows how raw data can be propagated and tagged among many contexts and thus expands ML learning capacities:

Fig. 4.25 Raw data

propagation

120

4 Distributed Client/Server and Data

There are other benefits to GenAI with respect to data quality improvements: 1. Privacy compliance: tagging data with specific metadata that expands definitions of privacy notations.

2. Robust Anomaly Detection: this process detects outliers and identifies deviation in the rest of the data sets.

3. Data Imbalance: identifies if one label is too dominant in the dataset or the existence of too many majority classes or too few minority classes of data.

Existence of imbalance limits the effectiveness of data analysis.

4. Mitigation Bias: automation to determine whether more random sampling is necessary to accomplish equal inclusions of data types.

5. Efficient Data Correction: automation of cleansing of data to improve analysis and ML results.

6. Enhanced Data Diversity: help determine whether more types of data are necessary and what actions are required to improve quality of ML.

7. Increased Model Performance: using Tuning Models (improving parameters) and created Hyper Parameters (learning algorithms) can enhance performance significantly.

Overall GenAI will improve data quality accuracy, consistency, completeness, and overall reliability.

4.15

Problems and Exercises

1. What is Logical Data Modeling trying to accomplish?

2. Define Normalization. What are the three Normal Forms?

3. What does Normalization not do?

4. What is meant by the term “derived” data element?

5. Describe the concept of combining user views. What are the political ramifications of doing this in many organizations?

6. What are Legacy Links? Describe how they can be used to enforce data integrity.

7. Name and define the three types of Business Rules.

8. Why are Stored Procedures in some ways a contradiction to the rule that data and processes need to be separated?

9. What are the disadvantages of database triggers?

10. What is meant by De-Normalization? Is this a responsibility of the analyst?

11. How does GenAI improve Data Completeness and Accuracy and aid manual processes?

12. Name 5 significant developments of 6G

4.17

Mini-project #2

121

4.16

Mini-project #1

The Physician Master File from a DFD contains the following data elements: Data Element

Description

Social Security #

Primary Key

Physician ID

Alternate Key

Last_Name

Last name

First_Name

First name

Mid_Init

Middle initial

Hospital_Resident_ID

Hospital identification

Hospital_Resident_Name

Name of hospital

Hospital_Addr_Line1

Hospital address

Hospital_Addr_Line2

Hospital address

Hospital_Addr_Line3

Hospital address

Hospital_State

Hospital’s state

Hospital_City

Hospital’s city

Hospital_Zip

Hospital’s zip code

Specialty_Type

Physician’s specialty

Specialty_Name

Description of specialty

Specialty_College

College where received degree

Specialty_Degree

Degree name

Date_Graduated

Graduation date for specialty

DOB

Physician’s date of birth

Year_First_Practiced

First year in practice

Year’s_Pract_Exp

Practice experience years

Annual_Earnings

Annual income

Assumptions:

a. A Physician can be associated with many hospitals, but must be associated with at least one.

b. A Physician can have many specialties, or have no specialty.

Assignment: Normalize to 3rd Normal Form.

4.17

Mini-project #2

The following enrollment form has been obtained from Southeast University’s Computer Science program:

122

4 Distributed Client/Server and Data

The students are choosing their courses from the following Course List:

Course #

Course Name

Section #

Section Time

Course Cost

QC2500

Intro to Programming

1

9:00 A.M

800.00

2

10:30 A.M

800.00

3

3:15 P.M

800.00

4

6:00 P.M

800.00

QC2625

Intro to Analysis

1

11:00 P.M

910.00

2

4:00 P.M

910.00

3

5:30 P.M

910.00

QC2790

Intro to Web Design

1

12:45 P.M

725.00

2

2:30 P.M

725.00

3

6:00 P.M

725.00

Assignment: Using the above form, create a normalized ERD. Make sure you are in 3rd Normal Form.

HINT: You should end up with at least four entities, possibly five.

References

123

References

Date, C. J. (2000). An introduction to database systems (7th ed.). Addison-Wesley.

Dhoni. P. S. (2023). Enhancing data quality through Generative AI: An empirical study with data.

(Orchid 009-0006-7143-5353. November 2023).

Larson, J. A. & Larson, C. L. (2000). Data models and modeling techniques. In: S. Purba (Ed.), Data management handbook (3rd ed.). CRC Press LLC.

[image: Image 311]

The Impact of High-Speed Wireless

Communication

5

5.1

The Wireless Revolution

It is important to understand how 5G wireless affected application analysis and design. In order to assess this impact, it is necessary to review 5G’s technical impact on performance. In Chap. 1, I laid the foundation of how the market will likely react to increased wireless performance. In this chapter I will examine how 5G technology can be leveraged by application software developers.

Below is a summary of the 5G performance benefits:

1. One hundred times higher data rates than 4Gs current performance.

2. Much lower latency. A 4K video will load without any buffering time.

3. Improved handling and fixing of bandwidth issues. This will be particularly evident with new emerging technologies such as driverless cars and connected home devices.

4. Extended IoT battery life expecting to last 10 times longer attributable to the lower latency.

5. Improved communication quality in remote areas.

6. Reduced application load time by 1–2s.

In Chap. 3, I provided an architectural approach to creating applications at the functional primitive level to expand reusability in a distributed network. The limitations of 4G latency did not allow for the required deployment to be commercially effective Harris (2019). Edge computing will also offer much improved security which is essential for IoT deployment. Analysts will need to design rapid iterations of products that are based on real-time feedback from users. Thus, to provide timely updates, functional primitive applications will maximize the performance necessary to fulfill these requirements. Remember that functional primitives are very basic functions that come together at execution time to form more complex

© The Editor(s) (if applicable) and The Author(s), under exclusive license 125

to Springer Nature Switzerland AG 2025

A. M. Langer, Analysis and Design of Next-Generation Software Architectures,

https://doi.org/10.1007/978-3-031-76212-3_5

126

5 The Impact of High-Speed Wireless Communication

programs. Therefore, new use cases that can take advantage of 5G performance are:

• Industrial IoT

• Cloud Augmented Reality (AR) and Virtual Reality (VR)

• Remote machinery control

• Connective automotive

• Wireless e-health

• Smart cities.

In summary the wireless revolution is really about increased performance, which changes the landscape of what we can do in a mobile environment that increases security as well as lowers latency.

5.2

Results of 5G on Distributed Processing

The most impact that 5G had on distributed processing was the decentralization of the traditional data center. Decentralization is required to avoid bottlenecks so that the performance promised by 5G can actually be realized.

Edge computing mentioned before and discussed further in this chapter

becomes the major path to figuring out how to establish a distributed network that can be monitored to improve network performance more dynamically. This is accomplished using the Edge by placing the data and program on intermediate local servers. Indeed, according to Gartner (2019), an estimated 10% of enterprise data is processed outside the central server or cloud.

These pressures on performance will result in several new and existing third parties competing to provide the alternative network services to their customers.

Ultimately, it’s about developing a strategy that allows companies to have a roadmap of alternative distributed networks where other paths are available depending on traffic demands. It’s like running a complex railroad system where one can switch tracks depending on part failures, weather issues, and congestion.

The important issue is to have many options available for network administrators to deal with unexpected performance spikes. However, much of this will not be realized until we see 6G in the 2030s.

It’s important to recognize that predictions favor immediate investments in 5G.

The challenge for vendors is to provide the capacity. The hurdle for industries is to establish efficiencies through automation, artificial intelligence, and machine learning. G technology has evolved quickly—a short view of the history of G

provides the exciting potential of this technology:

1G: Mobile voice calls

2G: Mobile voice calls with SMS

3G: Mobile web browsing

4G: Mobile video consumption and higher data speed

5.3

Analysis and Design in a 5G/6G World

127

5G: Technology to serve consumers and digitization of industries

6G: Self-contained eco-system of AI.

5.3

Analysis and Design in a 5G/6G World

Through the new performance improvements, analysts will be able to architect a number of major new design features:

1. 3D reality as part of the user experience.

2. 3D printers will allow for 3D models of objects.

3. Evolution of chatbots will provide for real-time and prompt-based user feedback.

4. Less concern or dependency on specific hardware because cloud data centers will be doing most of the processing.

5. New life for AI and ML because of the massive quantity of data that can be collected and analyzed spontaneously.

However, the analyst also needs to consider new kinds of social experiences embedded in applications like enhanced live-streaming, and AR and VR that will improve the user interaction with the product; often from a marketing and selling perspective. That is, applications can now go beyond just doing calculations and returning values or updating data, rather adding new dimensions of experiences through photos, videos and interactive games (gamification). Many of these 3D

tools will come from internal and external cloud repositories than can be included when building traditional applications. In addition, there are even more indirect effects that 5G has on other technologies:

• Faster Web Development: the downloading of large amounts of data simply allows for the development of more robust and content rich data and applications with much faster loading times.

• Constant Connectivity: reduction in power requirements that result in what is being called “Ambient Computing,” which will maintain ongoing connectivity particularly with sessions connected to internet stations. This will allow AI and ML to track and process data near real-time.

• Improved Augmented Reality (AR) and Virtual Reality (VR): will begin to become part of all user/consumer experiences. Simply put applications with 5G power will be able to contain another dimension of a user experience—integrated with voice, photos, movies as part of an application interface.

• IoT Expansion: more data will be expanded among sensors driving opportunities for smart cities and autonomous vehicles. This will lead the integration of BtoI, ItoI, and BtoC.

• Artificial Intelligence (AI) and Machine Learning (ML): speed allows applications to use AI and ML across complex distributed networks. This will make AI and ML data gathering and analysis an ongoing process.

[image: Image 312]

128

5 The Impact of High-Speed Wireless Communication

• Fixed Wireless: fixed wireless is a new technology that will reduce power consumption and allow for improved interfaces that will eventually replace traditional cable and fiber optics. The result will be Wi-Fi based wireless signals direct to customers. This will inevitably expand Wi-Fi connectivity for customers who were previously unable to get high-speed broadband.

• Edge Computing: dramatic increase in quasi computing centers and devices that will contain distributed databases and replicated application functional primitives.

• Online-Video: Video on-demand will increase and have better integration with outcome- based applications. That is, processes integrated with video experience.

By examining the above 5G indirect impact, the analyst role requires a performance criteria methodology and approach that needs to focus on latency, connectivity, and capacity. This requires additional fields to be added to the Use-Case format as follows:

• Required performance/response time

• Latency limits

• Associated AR and VR integration considerations

• Volume of data per interactions

• AI data gathering criteria

• ML processing needs

• Peak time load stress

• User community

• Robotic interfaces

• Other IoT device interfaces.

While various industries will provide their own performance parameters Fig. 5.1

provides the current generic key element measurements:

It is important to note that while analysts likely will not be directly engaged in setting minimum industry performance requirements, having knowledge of the technical terms and their meanings is important to effectively engage in the 5G

Fig. 5.1 Key elements of 5G technology (Table courtesy of mathworks)

[image: Image 313]

5.3

Analysis and Design in a 5G/6G World

129

Fig. 5.2 6Dof diagram

SDLC. Many experts are now arguing that 5G is the first communication standard that will be defined for computers, that is, machine-to-machine, rather than for people!

Another way to articulate 5G analysis and design is to associate it with the Six Degrees of Freedom (6DoF). 6DoF refers to, “the freedom of movement of a rigid body in three-dimensional space.” This essentially means that the body can move forward/backward, up/down, left/right, and combined with rotation about three perpendicular axes (termed pitch, yaw, and roll). Figure 5.2 shows a 6DoF

diagram.

From an analyst perspective this means that users can view data and applications from a myriad of dimensions and for multiple reasons. Thus, the analyst must shift from a process design approach to one that centralizes design based on repositories of data. Processes will evolve from different user views of the same data, but they will be used for different reasons mandated by the type of outcomes desired. Even more significant is that the requestor may be the same physical user, but not the same logical person. This concept can be related to polymorphism in object design, where objects take on different functionality depending on their data type and class. This design challenge can be related to Fig. 1.2 which defines the different types of user identities. This means that a user of the system may be polymorphic if that person uses data as an individual and a business user, or as a consumer, at different sessions. Figure 5.3 shows a 5G version of 6DoF. Note that the dimensions represent the different types of behavioral views and needs of the same user but in different contexts.

Figure 5.3 represents an accelerated transformation that will require massive collections of data. Multiple functional primitive applications will be dynamically compiled to form specific applications needed by a particular user view.

Many functional primitives will also be available from third party libraries. These applications are typically called functions meaning common routines that can

[image: Image 314]

130

5 The Impact of High-Speed Wireless Communication

Fig. 5.3 5G version of 6DoF

be dynamically linked into more complex applications. One of the analyst’s challenges is to ensure that data element attributes such as field length, and characteristics like alphanumeric or numeric, remain consistent. Depending on the user view, data elements can take on different characteristics, so there needs to be a consensus in design to achieve unified data definitions. However, this can be problematic. In Chap. 4, I covered how data element definitions can have

“alias” definitions. Alias definitions allow multiple definitions of the same element, often under a different identifier. This is similar to having multiple different email addresses that are really the same personal ID.

Another factor that the analysts must address is dealing with different G systems throughout a network. It is likely that many integrated networks will have 4G subsystems because the full migration to 5G may take years to achieve.

Third party vendors have developed intelligent applications that can dynamically ascertain changes in G level at the domain level. It’s like software that examines your computer and determines its operating system and component features.

These “connectivity management” products will assess the G network and provide an ability to execute the compatible version of an application that will work.

Therefore, it will be necessary to have multiple versions of the same functional primitives! This design philosophy is certainly not unique. For example, even today many websites have alternative versions depending on whether a user is accessing the site from a computer or a smart phone.

It is probable that smartphones will eventually become the preferred 5G user device. As a result, software developers will need to maximize 5G smartphone features and functions. Therefore, we will see smartphones equipped with more advanced capacities such as more data storage, executable applications, and interfaces with third party cloud storage. I expect that smartphones will achieve similar processing power as today’s desktop and laptop computers. As one can see, the cloud interface is an important piece of 5G success. Local hard disks, per se will become obsolete because the volume of data needed will make them impractical to

5.4

User-Generated Data and Performance Measurements

131

maintain on local hard drives in favor of cloud-based storage options. Because the consumer market will drive the demand for more powerful smartphones, there will be growing pressure to make applications 5G ready. Many experts predict that 5G

application development will greatly exceed the 4G evolution and occur twice as fast as 4G LTE! The transformation to 5G will, without doubt, force companies to replace their slower and restricted legacy systems. Replacement of legacies should therefore be a high priority for any organization and could be a key for business success or failure. The paths from legacy will be discussed further in Chap. 11.

5.4

User-Generated Data and Performance

Measurements

The creation of new data elements is another unique development that has emanated from the proliferation of social media over the internet and intertwined with the increased capabilities of AI and ML. Facebook, Uber, and Amazon have all used AI and ML to track consumer behaviors and develop statistical data elements that keep constant analysis of their behaviors. Obviously, the proliferation of sensors and other intelligent IoT devices will accelerate the collection and analysis of historical data. There are two new effects of this on data: (1) AI and ML

software will be needed to do the analysis, and (2) new data elements will be created and stored in various databases across the cloud and on the Edge. These new data elements fall into the category of “derived” since they are formed as a result of a computation. A simple example is A + B = C. C is a derived data element (as discussed in Chap. 4) and considered redundant because if you store A and B as elements, you can always just calculate C. As explained in Chap. 4, if you store C, and A or B changes, then C is now incorrect and the database loses its integrity. However, with big data and 5G improvements, recalculations can be done much quicker. Furthermore, because these new types of derived elements are tracking changes in real time, it is necessary to add the redundancies for the sake of accuracy and performance.

The Smartphone as the Key User Interface

Ericsson (2019) recently issued a report that defined what they title, “six calls to action.” This report was created from a consumer survey which collected information about preferences for interacting with cellular operations:

1. Effortless buying experience: there is considerable misalignment between what users buy and what they use. Only three in 10 smartphone users are satisfied with their plans because they feel that their experiences are not simple or effortless.

2. Offer us a sense of unlimited: consumers do not want bill surprises even though 70% are not the heaviest users.

3. Treat gigabytes as currency: consumers want credit for unused gigabytes. In effect, they want credit for unused service.

[image: Image 315]

132

5 The Impact of High-Speed Wireless Communication

4. Offer us more than just data buckets: consumers prefer plans that are personalized and based on their unique needs.

5. Give us more with 5G: 5G appeals to 76% of smartphone users and 44% are willing to pay extra. Consumers expect enhanced abilities beyond speed, coverage, and low prices, and 50% expect enriched services. They also want single fees for 5G or fees by 5G device.

6. Keep network real for us: Consumers want the best wireless network and don’t trust their operators’ claims of performance capabilities.

As the smartphone becomes the gateway to most networks, it is important for organizations to select the best providers. Indeed, we already see that most of the major vendors are expanding their service offerings to include broadband services and cloud access. As they say, he/she who gets the network, will get the data—and it’s all about being the provider of the data!

However, Ericsson’s study exposes more about the user/consumer marketplace.

It further supports the notion that all products and services must align with consumer needs. Given 6DoF any one consumer can take on many different identities.

So, an individual with one smartphone may use the device in all aspects of their life: from personal use to business applications, to consumer interfaces. I recognize that many individuals carry two smartphones to separate business and personal use; frankly there may be a better way to separate and yet integrate the two. However, according to the Ericsson study, smartphone users can be broken down into six different groups based on the types of applications and services that they use, as shown in Fig. 5.4.

These six types can be mapped to Table 1.2 from Chap. 1 (shown again in Table 5.1) reconfigured in Fig. 5.5.

Fig. 5.4 Six user types

5.4

User-Generated Data and Performance Measurements

133

Table 5.1 Scope of analysis and design requirements under 5/6G (from Table 1.2) User/consumer coverage

A&S response

Comments

Business to business (BtoB)

Internal user and security

Current process but lacks

security process

Business to consumer (BtoC)

Internal user and external

Current but not well integrated

consumer and security

in most organizations

Consumer to consumer (CtoC)

Rare except in specific

Needs newer platforms and

trading platforms

mobile to mobile

Business to government

Rare except limited to

Overhaul of government and

information, submission of

business systems

documents, and payments

Individual to government

Rare except limited to

Smart city and compliance

information, submission of

driven

documents, and payments

Individual to consumer (ItoC)

Related to member portals

Limited mostly to Facebook/

LinkedIn

Individual to individual (ItoI)

Knowledge based portals

Communities of practice and

portals of knowledge

Fig. 5.5 Ericsson six user

Ericsson user

User/Consumer Coverage

types and user/consumer

Type

coverage

Power user

BtoB, BtoC, BtoG

Stream videos

ItoC, ItoI

Social media

CtoC, ItoC, ItoI

users

Browser centric

BtoG, ItoG, BtoB

Ulity

ItoC

Light data

ItoC, ItoI, ItoG

Ericsson’s report concluded that the 5G world will make an impact quickly.

Most consumers feel that 5G will be in the mainstream within 4–5 years of its launch in your region. The first phase of 5G will address broadband data needs as consumers race to buy 5G ready smartphones. Smartphones should be capable of downloading gigabytes of data within seconds and this is expected to be ready within 1–2 years. By the end of two years, we expect earphones to provide real-time language translations, the ability to watch events from multiple points using live camera streams, and aspects of virtual reality. Within five years with 6G, there should be mainstream uses of real-time augmented reality (AR), self-driving technology, connected robots, drone delivery, and 3D hologram calling to name just a few!

134

5 The Impact of High-Speed Wireless Communication

5.5

6G Impact and Ubiquitous Operations

As stated earlier. 6G wireless technology, while currently in development will lead a much more significant era in wireless technology and further transform the world as we know it. 6G is scheduled for release somewhere in the early 2030 period, but companies need to start establishing infrastructures to support its launch now. 6G

is expected to be 100 times faster than 5G. This approaches an interaction that can be categorized as instantaneous response time. This accomplishment allows for further commercialization of autonomous vehicles, augmented and virtual reality experiences, and smart cities. Specific capabilities include:

• Integration of everything.

• Intelligent connected management.

• Integrated sensing and communication.

• Scalability and affordability.

• Trustworthy infrastructure.

• AI as a service in a federated network.

• Integration of physical worlds with Internet of Senses (automated decisions with zero touch approach).

• Lower latency.

Overall, the promise of 6G is its impact on a number of commercial industries and cities. Drones will become much more strategic IoT devices, not only for high-precision robotics but for general use as alternatives to satellite networks.

Healthcare will be improved because remote surgeries will be more capable with improved safety. Financial industries will also benefit by having access to higher frequency trading platforms. 6G also brings advancements in IoT devices for smartphone appliances and connected cars that rely on low-latency for efficient use.

5.6

Summary

One can see that there is little time for organizations to start the processes of thinking about how such new capabilities can be implemented in their businesses, in addition to opportunities for new types of products and service offerings. The abundance of different versions of the same application will be stored in multiple tiers of the 5G agile application architecture that I presented in Chap. 1. The reality is how the analyst will provide the necessary requirements documentation that can define these versions and fulfill an ever changing and evolving user base.

It is evident that the challenges of understanding how to design software in the 5G era is complicated. Analysts will need to understand a lot more of the hardware and network implications. The user community is also far more challenging as the smartphone has emerged as the gateway of interaction among a broad range of individual relationships. Performance continues to be central. With AI and ML

References

135

central for competitive advantage, analysts will need to be better versed on how the placement of hardware, software, and infrastructure affect decisions on how much data to place on a device along with distributed processing in a mobile environment. I predict that we will see an emergence of Edge computing along with IoT to deliver these capabilities. Edge will also include cloud technology that will be central to the transformation of the new network era. With the evolution of 6G

numerous sensors will be established across the world that will allow for the updating of the digital world in near real-time. This will allow analysts and designers to rely on actuators in the physical world that will automatically update requirements and code performing what is equated to the digital twins of programming. 6G will provide the intelligence via ongoing connectivity and synchronization of data to support the emergence of GenAI.

5.7

Problems and Exercises

1. Provide three examples of 6G advantages over 5G.

2. What is Edge Computing?

3. What are some of the effects of 5G on analysis and design?

4. What is meant by Ericsson’s six calls to action?

5. Explain what is meant by Six Degrees of Freedom and its association with 5G.

6. 5G may increase the number of new data elements. Explain.

7. What is the relationship between 5G and AI/ML?

8. What are the distinct differences in the 5G revolution as it relates to prior generations?

9. How can the use IoT devices be expanded by 6G wireless communication?

References

Gartner. (2019). https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-

infrastructure-and-operations-leaders/

Harris, R. (2019). IOS magazine. https://appdevelopermagazine.com/the-difference-5g-will-make-

to-your-apps/

[image: Image 316]

The Internet of Things

6

While 5G was the initiator of possibilities to bring forth the next generation of computing, the Internet of Things (IoT) represents the actual devices that will be the vehicle for its success. For it is IoT that represents the physical components that will make a technology feasible by placing intermediate smart hardware in every place imaginable around the globe. The objective then of IoT is to allow 5G to become a reality by reducing its operational costs while increasing network reliability for consumers and businesses. The identity of IoT is to increase the uptime and real time processing of an agile architecture and to eliminate any notion of an unscheduled network failure. Thus, IoT must catch problems before they occur and provide a train that has alternative tracks should a disturbance occur during any operation. Ultimately IoT must ensure no single point of failure in any supply chain process. In order to accomplish this challenge, IoT devices must contain four components:

1. Hardware: Sensors, stress devices, friction measurements, and strain indicators.

2. Applications: Rules engine, modification of software functions, remote cooling or lubrication.

3. Analytics: AI and ML to predict failure based on assumptions and prior historical data. Handling of change capacities to avoid future failures.

4. Network: A large network or system that offers dynamic connections and alternative paths or “tracks.”

IoT must accomplish five key tasks, reactive, preventive, proactive, predictive, and prescriptive. So, any analysist should start this design by ensuring that these five objectives are addressed in every process. IoT then needs multiple use cases and must transform them into a connected system that fully integrates physical devices,

© The Editor(s) (if applicable) and The Author(s), under exclusive license 137

to Springer Nature Switzerland AG 2025

A. M. Langer, Analysis and Design of Next-Generation Software Architectures,

https://doi.org/10.1007/978-3-031-76212-3_6

[image: Image 317]

138

6 The Internet of Things

Fig. 6.1 API data transmission data flow

sensors, data extraction, secured communication, gateways, cloud servers, analytics, and real time dash boards. The following analysis and design considerations and principles must be adhered to:

• Interoperability: all IoT eventually requires sensor machines, equipment and physical sites to communicate with, and the ability to exchange data.

• Information Transparency: IoT must have a continuous bridge between the physical and digital world. In other words, physical processes should be recorded and stored virtually which creates a digital twin.

• Technical Assistance: provide and display data that helps people to make better operational decisions and solve problems better and faster. IoT must especially help people complete laborious tasks to improve productivity as well as safety.

• Decentralized Decisions: Help make decisions and execute requirements

according to IoT’s defined logic.

IoT simulation is a significant part of being able to design complex IoT interface systems. Market products must provide digital prototypes to visualize how to connect devices, Edge and cloud services, web, and mobile applications. All of these components make up the IoT architecture and must interact based on multiple simulation runs. IoT analytics include dashboard and alert systems that are typically dependent on valid data sources. Consequently, IoT analysis and design must use a lean and agile approach. It must incorporate design thinking—that is, people, technology, and business all integrated in product design decisions. IoT

must also be consumer centric and likely will necessitate iterations of how business and consumer exigencies can be integrated into one requirements document.

The relationship between what consumers and businesses need from 5G is consistent with what IoT must deliver, so the objective and relationship between these two forces must be very closely aligned.

IoT requires analysts to become more proficient with device-level application programming interfaces or APIs. These IoT APIs expose data that enable devices to transmit information to applications, so they are the data gateway. The APIs can also act as a way for an application to instruct a device, serving to enact certain functions as shown in Fig. 6.1.

[image: Image 318]

6.2

IoT Functional Blocks

139

Fig. 6.2 API value transmission data flow

Figure 6.1 shows a new data element from the cloud that gets transformed by process A who sends to IoT device B. The transformed data are forwarded by device B to either a direct user or by another device/machine interface. The second example shown in Fig. 6.2 reflects the data as a value used to instruct the IoT device B to do something based on that value—say a “1” value might mean to process a certain way.

Because so many IoT vendors might supply open-source APIs, analysts will need to examine whether they should develop the API as a requirements document or use it from a library source offered by a vendor. There is also a third possibility: use a third-party open source and modify it to work with the specific requirements of the system. In other words, there is no reason to “reinvent the wheel.” There actually is nothing new about this approach in analysis. For example, functional macro libraries of routines have been available in almost every legacy architecture dating back to the mainframe. No one would think of designing a new program to calculate the square root of a number; the code exists in many libraries and it can be embedded easily in another application!

6.1

Logical Design of IoT and Communication Models

According to Mishra (2019), logical design of IoT consists of three terminologies: 1 IoT Functional Blocks

2 IoT Communication Models

3 IoT Communication APIs.

This section will map Mishra’s concept to the role of the analyst.

6.2

IoT Functional Blocks

Functional blocks consist 6 integrated parts: Applications, Management, Services, Communication, Security, and Device as shown in Fig. 6.3.

The analyst must define each of the blocks of a device in Fig. 6.3. First, the analyst has to do the necessary use cases of each block, defining the needed data, applications, and performance requirements. As discussed earlier, many devices like sensors have software that may provide many of the services needed by a developer. However, if such APIs are not available the analyst must provide the

[image: Image 319]

140

6 The Internet of Things

Fig. 6.3 Functional block

architecture. (Source Mishra,

2019)

requirements to be programmed internally. We shall see later in this book that this decision may also come under the auspices of build vs buy, especially if a third-party API is deemed too expensive or does not contain enough of the necessary feature functions to satisfy the requirements. Such a decision may also involve determining which device best fits the needs.

6.3

IoT Communication Alternatives

There are four different types of communication alternative architectures. Multiple alternatives of course can exist across complex network systems that engage various types of IoT devices.

6.3.1

Request-Response Model

This model resembles the traditional client/server architecture discussed in Chap. 4. Although the 5G enhanced agile architecture is more distributed and less hierarchical, the client/server model is still applicable within certain device designs. As shown in Fig. 6.4 the web browser or smartphone will likely be the client in this case and the application on a device will act as the server.

It is also possible for IoT devices to integrate with multiple tiers of client/

server architecture. Figure 6.5 shows an IoT device that exists as a middle tier and provides both client and server activities depending on the requestor. In this example the dedicated server would be a cloud database likely residing on a separate physical hardware server.

6.3.2

Publish-Subscribe Model

The publish-subscribe model involves three components: Publishers, Brokers, and Consumers. A Publisher sends out data to intermediates called Brokers. Brokers

[image: Image 320]

[image: Image 321]

6.3

IoT Communication Alternatives

141

Fig. 6.4 Request-response model. (Source Mishra, 2019)

Fig. 6.5 IoT device as a

client and server. (Source

Mishra, 2019)

then can make the data available to a specific Consumer as the ultimate client or subscriber of the information as shown in Fig. 6.6.

Obviously, the Publisher-Subscribe model is common among data providers

who work through intermediate organizations that then have some membership of users they manage.

6.3.3

Push-Pull Model

This model eliminates the intermediary broker and thus consumers are getting data access directly from the Publisher (Fig. 6.7). However, the Publisher does not know who is accessing the information. The broker is somewhat replaced by a queue, where data is stored and made available. The publisher updates the queue at various intervals. In this design the publisher has no need for a broker since there is no interest to know the consumer. This model does alleviate the dilemma of consumers who need more timely data from the publisher. Simply put, the queue defines what is available to the consumer at any given time. The analyst will need to address the update frequency during the requirements gathering phase of the SDLC.

[image: Image 322]

[image: Image 323]

142

6 The Internet of Things

Fig. 6.6 Publisher-subscribe model. (Source Mishra, 2019)

Fig. 6.7 Push–pull model. (Source Mishra, 2019)

6.3.4

Exclusive Pair Model

This model is bi-directional or full duplex with an ongoing open two-way communication between a client and server (Fig. 6.8). The server is aware of all connections from clients. The connections remain open until a client sends a message to close the connection. The analyst needs to provide definitions of the messages and how the client and the server respond, that is, what the messages carry and the processes they enact based on the message value.

[image: Image 324]

[image: Image 325]

6.4

IoT as an Inversion of Traditional Analysis and Design

143

Fig. 6.8 Exclusive pair communication model. (Source Mishra, 2019) 6.4

IoT as an Inversion of Traditional Analysis

and Design

As previously discussed throughout this book, digital transformation’s major impact on analysis and design is the shift from designing systems that are product-focused on performing specific user needs to one that is based more on what consumers want! Bernardi et al., (2017) states “the global economy is rapidly shifting from an economy of products to a “what if” economy” (p. 6). The authors define this shift as an “inversion paradigm” that transforms systems thinking from a product-first to a needs-first perspective. So the question that needs to be asked is, “How can technology help us reimagine and fill a need?”.

While many IT professionals have historically supported this perspective, especially with agile and object design, it is the proliferation of IoT supported by 5G performance improvements that has made the world of possibilities feasible.

In other words, IoT is at the center of the next wave of digital disruption and transformation as shown in Fig. 6.9.

Fig. 6.9 IoT at the center

144

6 The Internet of Things

Now that I have laid the foundation and architectural models for IoT, it is critical to focus on the new roles and responsibilities of the analyst in the IoT world. This will require further transformation from a product/user perspective to one that is more functional and predictive. This is particularly evident in IoT because a device can perform many functions and cater to various consumer and machine requests.

Indeed, IoT analysts must design smart objects that can integrate what is real and digital can co-exist (Bernardi et al., 2017).

6.5

Sensors, Actuators, and Computation

The IoT digital devices contain three major components and functions: sensors, actuators, and computation.

6.5.1

Sensors

Analysts must provide or identify APIs in a sensor that can measure the physical world and logically convert the information into digital data. Sensors essentially capture information, do some types of measurement, record activity, and then perform applications that transform the data.

6.5.2

Actuators

Actuators actually do the reverse function of a sensor, that is, they use digital logic on the sensor and send messages to a physical device. An example would be to send a message to shut down a device like an oven. Analysts must define the algorithms which provide a change in a state on a device and its response to the change. The response would typically be a machine-to-machine or machine-to-consumer message.

6.5.3

Computation

Computation represents the computer logic that determines the behavior between sensors and actuators. This logic results from a device sensing a situation and then applying an algorithm that instructs the sensor to send a message to the actuator to perform a function. It’s like the instruction that results from pressing the ignition button on your car. The sensor receives a message and then checks the system to see if the engine in the car can be safely engaged. The analyst would need to provide the data flow (Fig. 6.10) and also define the logic of the steps to take before engaging the engine. This logic likely would check the automatic transmission to ensure it is in the “Park” state before allowing the engine to be started. This algorithm would be part of the process specification of a use case.

[image: Image 326]

6.5

Sensors, Actuators, and Computation

145

Fig. 6.10 Data flow diagram represented the computation to start a car engine 6.5.4

Connectivity

The analyst must also provide definitions for IoT devices that are always connected. Such devices are always operating and initiate messages when a state changes. For example, if the temperature drops below 50% it might require the sensor to send a message to the heat device to start the heat unit. Of course, the internet provides the digital highway that allows these types of activities to occur over distances. Once again, we see how state transition diagrams can be an effective flow tool for defining logic for constant operating IoT devices.

6.5.5

Composability

Another interesting capability with IoT devices is their ability to communicate with each other directly through the internet. Device to Device connectivity allows users to monitor their own systems and use a monitoring device to directly tell another device to do something. Smartphones are great examples of a monitoring device. Installing software to monitor the temperature in your house remotely is another example. Composability also allows users to mix multiple monitoring communications without asking for the developer or company to make a modification. Your smartphone device can communicate with multiple other devices, and in cases with open source it can combine commands—increase temperature, lower lights, and put on music for instance.

The analysis of connectivity and composability are dependent on two types of architectures, mediation and API:

6.5.6

Mediation

While having devices talk to other devices seems attractive, this does have disadvantages. Having separate machine-to-machine (M2M) capabilities can cause conflict among devices and can affect the overall performance in the network.

Therefore, having a “mediator” device residing in the cloud is actually a preferable solution. The mediator approach is similar to a star topology where the mediator is in the center and each device is a “spoke” as shown in Fig. 6.11.

Another benefit of a mediator is the simplification it brings when adding new devices or updating existing ones. This allows the mediator to act as a centralized hub that can coordinate all new software updates by tracking all devices across

[image: Image 327]

146

6 The Internet of Things

Fig. 6.11 IoT star topology

using a mediator

the network. The analyst may need to design a mediator or obtain a third-party product.

6.5.7

Suitable APIs

The design of the API is significant as it is the controlling software that holds the architecture of IoT together. The analyst should consider accumulating all the features and functions needed and then designing an inventory of APIs which would be stored in the mediator. The mediator, in effect, becomes the shopping outlet of all applications needed across the network. The other advantage of this design approach relates to the need to add new applications to the system. The mediator can simply be updated and used to distribute the new program to the relevant devices.

6.6

Recruitability

The idea of “recruitability” is closely aligned with reusability and polymorphism.

Simply put it allows devices to be used for different applications. For example, a device that turns on an engine in a car could be “recruited” by another operation that initiates different types of operations which replicate the logic of turning on an engine. This supports functional decomposition, object-oriented analysis, and common API libraries. This also requires documentation of the functional primitive in the form of a process specification. Furthermore, the documentation should also include the routine abilities to be reused in other contexts. Finally, there are instances where a group of primitives can be combined to create functional and reusable sensors, actuators, and communication devices. This is a tradeoff decision as it establishes devices with very focused capabilities but with higher reusability.

6.8

Immersion

147

6.7

A Word About IoT Security and Privacy

The analyst must of course be concerned with the security and privacy of any IoT

device used on the network. The analyst in these circumstances must consider all the possible functions of the device and determine its level of security exposure. I will cover much more on this topic in Chap. 9.

6.8

Immersion

Immersion is a device’s ability to be shared. Indeed, devices can share their processes with other requestors if they are available. Thus, immersion is a form of recruitment and is very useful when the original intended device is too distant in the network or is malfunctioning. The most important factor in immersion is the ability to discover available resources or devices. This can be associated with a smartphone when you “pair” it using Bluetooth technology. The analyst needs to define the context of a device’s requests so that a receiving device can determine its ability to be recruited. This involves some level of intelligent messaging capability among a family of devices that can be joined under a common communication protocol.

Given the power of immersion the analyst must address several complexities: Discoverability: not all devices can be accessed without considering certain levels of authorization. These are called static devices which essentially require both linked devices going through acceptance setup or what is typically known as a handshake. These handshakes ordinarily have two pieces: compatibility of the sharing and identification check. Dynamic devices, on the other hand, can be linked automatically without agreement. Security in these devices, however, can require some levels of authorization to gain access.

 Context: this requires definitions of “what else” a device needs to communicate.

For example, if a car device is linked to a toll booth it might also want to communicate more things about the environment, like direction, speed, license plate, time of day, date, etc.

 Orchestration: this is typically a program that tracks all activity among the devices connected to the system. In many ways, orchestration can be compared to mediation in that it is a central repository of behavior among the devices.

 Recruitment of Non-Digital Objects: not all objects are digital-based. As a result, non-digital objects like food need an indirect method to track and communicate with them. Typical indirect objects include RFID tagging, barcodes, and digital watermarks (that uses shades of color).

 Predictive Maintenance: another unique feature of smart IoT devices is their ability to self-test and communicate conditions that require levels of maintenance. Using the network, devices can provide valuable feedback regarding their operating status so that various kinds of maintenance can be accomplished in a timely manner. These preventive maintenance capabilities all need to be

148

6 The Internet of Things

part of the process specification which links hardware behavior and conditions with software intelligence.

It should be obvious that the IoT analyst must be fully equipped to deal with the myriad of details that are not only limited to traditional software design, but deeply extended to include behaviors of intelligent hardware devices.

6.9

The IoT SDLC

Many and certainly all existing organizations will need to determine how best to move forward in assimilating IoT. This will, in addition to many organizational changes, require an SDLC that addresses many of the needs discussed in this chapter. Thus, the need to modify or establish a lifecycle that managers and staff can follow.

1. Go through Object-Orientation and create functional primitives to API specifications.

2. Move or create Process Specifications.

3. Identify new and existing data elements.

4. Update (2) and (3) with any new functions based on existing and/or possible consumer experiences.

5. Design API equivalents.

6. Add available third-party APIs.

7. Map to IoT devices.

8. Select IoT configurations and interfaces based on type of device (sensor, actuator, computation).

9. Determine AI and ML functions.

10. Select type of I/O device communication functions.

11. Design communication APIs or use third-party libraries.

12. Add/modify data element definitions to be added to data dictionary including dependencies.

13. Consider connections to non-digital products using indirect connections (RFID).

14. Determine needed API and data on the Fog or Edge.

6.10

Transitioning to IoT

The way most businesses will ultimately implement IoT is through what Sinclair

(2017) coined the “IoT Business Model Continuum.” This model suggests that most companies cannot just overhaul their entire systems, rather they must start with their core and established business model and add the value of IoT over a period as shown in Fig. 6.12. The continuum eventually leads to the most important objective: business outcomes. The Fig. 6.9 example defines maximum business

[image: Image 328]

6.11

Summary

149

Fig. 6.12 Example of IoT business model continuum. (Source Sinclair, 2017) outcomes as the highest “per surgical profit” attainable. It accomplishes these maximized business outcomes by a gradual movement to efficiency by improving product-service, then service in general, to service-outcomes, before finally reaching per unit profits.

6.11

Summary

The challenge with Sinclair’s model is that time may not be as available as companies think. We have experienced what digital disruption can do in an accelerated timeframe. Companies in the past that have delayed efforts to go digital have failed. The list is getting long in fact: Toys-R-Us, Nokia, and Sears certainly come to mind. CEOs and Boards must pay attention to what has occurred in the retail industry, which historically has spent only 2% of their gross revenues on information technology. What is even more serious is what recently happened at GE.

GE invested in a division of the company called GE-Digital which was designed to provide new types of digital services to its customers. Their initial effort failed because the established business units used the new digital division to support its legacy needs. The bottom line is that GE never generated the forecasted revenues from new business. The message here is to be careful with the existing and dominant core businesses; it appears historically such units tend to unconsciously do everything they can to preserve the old way of doing things! Remember that many people feel that the majority of IoT products will be developed without a plan!

Next we need to understand Blockchain data analysis and design and its

contribution to cybersecurity!

150

6 The Internet of Things

References

Bernardi, L., Sarma, S., & Traub, K. R. (2017). The inversion factor: How to thrive in the IoT

 economy. MIT Press.

Mishra, H. (2019). Logical design of IoT | IoT communication models & APIs. https://iotbyhvm.

ooo/logical-design-of-iot/

Sinclair, B. (2017). IoT Inc: How your company can use the internet of things to win in the outcome economy. McGraw Hill Education.

[image: Image 329]

Blockchain Analysis and Design

7

7.1

Understanding Blockchain Architecture

Blockchain technology represents an interesting architectural invention that will primarily address the challenges of cybersecurity on the internet. As I previously discussed, the existing central database architectures cannot provide the security necessary to launch IoT systems. Blockchain is defined as a “ledger-based” system, in that it is designed to track all transactions and update all members of the chain.

In actuality, the block chain design evolved from what started as a linked list data structure. Essentially, a linked list originally was designed as a data structure that linked to another data element by storing information about where a value was stored in memory. It is a pointer system that shows prior (previous) links and forward links as shown in Fig. 7.1.

The problem addressed by linked list data structures was its ability to store related data or values without requiring the physical storage to be sequential.

In other words, by having these “links” related file elements could be stored in different parts of storage and on different physical devices as shown in Fig. 7.2.

The importance of the linked list data structure is that it allows a logical file of information to be stored physically in different locations. But to the user it is invisible and allows the system to maximize the data storage. However, common with any data structure strategy, there is always a downside. The allocation of a logical file across multiple physical devices diminishes performance. Large logical files that are distributed across many devices or even fragmented on the same disk will have significant reductions in performance.

Blockchain evolved the linked list model for similar yet different objectives.

The linked data structures shown in Fig. 7.1 are now more complex and defined as “blocks” of information. The architecture allows for new blocks to be added dynamically and simultaneously updates each block when changes are made. A block, rather than representing a data element, actually represents an account or user. So, each individual has their own block in the chain. Depending on the design

© The Editor(s) (if applicable) and The Author(s), under exclusive license 151

to Springer Nature Switzerland AG 2025

A. M. Langer, Analysis and Design of Next-Generation Software Architectures,

https://doi.org/10.1007/978-3-031-76212-3_7

[image: Image 330]

[image: Image 331]

152

7 Blockchain Analysis and Design

Fig. 7.1 Linked list data structure

Fig. 7.2 Linked list storage across physical storage devices

of the blockchain (or the blockchain product) users may have equal or unequal rights on how they access and update the other blocks in the chain. All blocks contain information like the date, time, and amount of a transaction. In effect, the blockchain architecture acts as a modified linked list designed to keep track of transactions as opposed to linked? or linking? data elements. For this reason, this blockchain is a perfect solution for house-keeping and is often referred to as a ledger-based technology.

7.1

Understanding Blockchain Architecture

153

The word ledger really emanated from the accounting profession, where ledgers were created to keep track of detailed transactions often known as debits and credits. At any given time, the accountant needed only add or subtract all the transaction amount entries to calculate the balance of any ledger account. The important feature of a ledger, however, is its audit-trail feature that ensures knowledge of every transaction that makes up the balance. It acts like a running total at all times. What is also essential to a ledger is its ability to recalculate the balance each time so that a given balance can be tested for accuracy. Furthermore, the source date of every transaction in a ledger is documented. In blockchain, the ledger is the account; every account has a unique ledger in the chain. Another important factor in any ledger is that the modification of any transaction is not allowed. For example, when you need to adjust an accounting entry, you don’t directly modify the original transaction or entry, rather one enters an “adjusting”

entry that modifies the balance. Thus, in a ledger you can only create a transaction or read it, but you cannot modify or delete! Blockchain follows this rule and this is why it provides two significant benefits: (1) a complete audit trail of all behavior in the block, and (2) you cannot reverse or modify a transaction which really restricts hackers. So, every blockchain entry is documented and a block stores the associated authorization and date/time of each transaction.

In the blockchain, a user ledger is identified through a “hash” code key. The hash code is a random-based calculated number that is extremely difficult to decipher, so it adds a strong security to the chain. Each member of the blockchain has access to all the blocks and keeps a separate copy of the blockchain on their resident network system. This means that when a block is updated or a new block is added, each copy must be updated, which of course brings back the challenge of latency in performance. However, because there is no central controlling copy of the blockchain, it is challenging for a hacker to manipulate every copy. This is where blockchain adds hope to establish an internet architecture that can protect users.

The blockchain protocol is built on the concept of “consensus.” Due to latency issues, the consensus protocol will always assume that the longest chain in a blockchain version represents the one that users trust most. So, in complex and large blockchains where updating is constantly occurring, the longest is typically the one that is most current at any instance. Of course, the importance of consensus is directly related to the size and the amounts of new blocks coming into the chain. Blockchains are also both private and public. From a public perspective anyone can view the contents of the blockchain but cannot access accounts without a private key which allows a user to transfer an item to the block. Another important factor to note is that the blockchain infrastructure provides trust (better known as access to the block) but not trust between blocks or users directly as this maximizes the security benefit of blockchain. There are various types of trust which mean, how do I know you are the real authorized person accessing the block? There are six common proofs that are implemented in any blockchain product:

154

7 Blockchain Analysis and Design

1. Proof of Work: avoids a hacker because the network machines are required to prove their work relationship which involves complex algorithms not available to hackers. Further, the network machines must have specific configurations and space to be able to complete the algorithm. Proof of Work tends to be the most attractive to developers.

2. Proof of Stake: requires the user to prove ownership of a specific amount of money. This approach is more common in Bitcoin blockchain given the trading of cryptocurrency. Simply put the owner must prove they have the money they are attempting to trade.

3. Proof of Hold: the user has more rights based on the amount of time of possession of the coin.

4. Delegated Proof of Stake (DPOS): this allows users known as delegates who want to produce new blocks on the network. Delegates are allocated blocks based on the highest number of votes they receive from other delegates. DPOS

is relevant when access to the blockchain is valued by having multiple blocks or accounts.

5. Proof of Capacity: this is an algorithm that requires users to solve challenges in the form of a puzzle. The more storage the requestor has allows them to solve the puzzle quicker. The puzzle is created by the service provider.

6. Proof of Elapsed Time: users are randomly assigned a wait time. Those that have shorter wait times get access first.

As one can see these proofs for access are very effective on keeping out hackers as opposed to whether one has rights as a user. This is why blockchain is so attractive as a solution particularly for IoT applications.

7.2

Forecasted Growth of Blockchain

The growth of blockchain technology is predicted to grow enormously. Deloitte in 2019 surveyed 1000 companies in seven countries and found that 34% already had blockchain in production with another 40% planning to invest 5 million in the year 2020! Much of this explosion of interest can be attributed to three factors: 1. The launch of Bitcoin in 2009 was the first successful blockchain implementation;

2. The coming of 5G that addresses the latency criticisms of blockchain architecture; and

3. The need for a cybersecurity infrastructure that allows IoT to be protected.

There are certainly particular industries that are earlier adopters of blockchain, specifically banks, healthcare, property record keeping, smart contracts, and voting to name just a few.

7.4

Analysis and Design of Blockchain

155

7.3

Advantages and Disadvantages of Blockchain

Although blockchain represents a decentralized solution that favors IoT devices, there are specific advantages and disadvantages to consider:

Positives

• Accuracy in verification

• Elimination of 3rd party verifiers lowering cost

• Security via decentralization

• Transparency

• IoT and 5G capabilities

• Scalability

• Auditability and traceability

• Better access to data.

Negatives

• Increased costs for technology

• Latency and performance issues still exist

• Attraction to hackers

• Short history of results.

As one can see above there are disadvantages, yet there appear to be more positives and hope that blockchain can evolve into the next generation of a new architectural design.

7.4

Analysis and Design of Blockchain

Many of the blockchain decisions have been focused in two areas: (1) the requirements analysis to determine the feasibility of a blockchain implementation, and (2) the architectural infrastructure decisions on the rules and governance of the blockchain itself. While I will provide various examples of these two issues, the important objective of this section is to define what responsibilities an analyst has in this process as it relates to the SDLC.

Overall, when assessing blockchain, use cases are the preferred method for setting up and selecting the right blockchain design. Use cases for blockchain must first focus on specific features and functions that are common to an industry. Along with that specific industry comes possible processing regulations as well as technical requirements including such things like smart contracts, cryptocurrencies and legal constraints. All of these must be part of the analysis function. Further, data requirements and speed of response times are critical technical issues that drive the feasibility of a blockchain solution and its selection. So, it’s not just feasibility, it’s the overall construct of the blockchain itself, although in the financial industry one can see why block chain, while attractive, is of concern when it comes to

156

7 Blockchain Analysis and Design

Table 7.1 Generic blockchain business process requirement definitions Generic requirement

Description

Data storage

In block/out of block

Mode location

Where are spokes in the network mobile. loT etc.

Network bandwidth

G power (5G. 4G etc.)

Type of blockchain

Public, private, hybrid, consortium

 Industry

Customer experience factors

User friendliness, robustness, accessibility

Overall goal of the system

Paragraph of objectives

Actors

Human and machine to machine

Authority level

Trusted, decentralized

External system interfaces

Other networks

Data structures

External interfaces

Internal functions

Modifiers

Tests

Security assessment

External subsystem

User stories, inserting new blocks, acceptance tests of the

system, user interlace

Precondition

Requirements to become an actor

the latency issue of performance capacity and scalability. In addition, the analyst must address the size of transactions and the storage needs within a block in the chain. Table 7.1 provides a list of the generic types of things that analysts should be prepared to capture and document:

Essentially blockchain in analysis and design resembles the licensing of a transaction processor. It’s almost like selecting a type of engine for a car. Engines have varying capabilities and limitations depending on the type of car you wish to own and how you want to drive the car. Things like gas mileage, pickup, durability, dependability, and the way the engine shifts, etc. In order to install the blockchain engine you must also understand the best way to install the product. Installation again would need to reflect industry requirements, performance preferences and regulatory limitations. The settings needed are part of the selection considerations for the ultimate blockchain vendor and product you choose to license. Each vendor, as with all third-party vendors, has advantages and disadvantages in the product they license. Of course, each vendor believes they offer the best product, but there are also blockchains that might be better for a particular industry like Bitcoin in the financial markets.

[image: Image 332]

[image: Image 333]

7.4

Analysis and Design of Blockchain

157

There are hundreds of industry and technology Use Case prototypes that can assist analysts to install and set up the blockchain once the product has been selected. It might even be part of driving the decision; let’s say the vendor did not support a feature that is required by your industry. An example of a roadmap for design is Yrjola (2019) use case for a citizens Broadband Radio Service Spectrum. His model also provides a flow diagram of interfaces, a life cycle flow of a transaction, and a decision diagram for setting up the blockchain as shown in Fig. 7.3.

Fig. 7.3 Yrjola broadband radio service spectrum blockchain

[image: Image 334]

[image: Image 335]

158

7 Blockchain Analysis and Design

Fig. 7.3 (continued)

Another suggested approach to determining needs is to design process flows—

sort of a data flow/flowchart of the sequence of events that occur when a user gets on the system and the decision trees that define the flow. Xu et al., (2017) provide a sample design process that demonstrates how analysts can document requirements and the logic flow in Fig. 7.4 inevitably logic flows also uncover data element needs.

[image: Image 336]

7.4

Analysis and Design of Blockchain

159

Fig. 7.4 Xu et al. design process for blockchain-based systems

Blockchain design can also make use of traditional analysis tools covered earlier in this book. Various agile analysis tools can be incorporated in creating a design document for a blockchain smart contract system created by Marchesi et al.,

(2018). Their approach can be used as a guideline for a generic blockchain SDLC.

In their solution the authors use the UML methodology, but analysts can choose any of the structured analysis approaches.

Step 1: State the goal of the system in the form of a few paragraphs.

Step 2: Identify the actors (both human and machine) that ultimately represent the boundaries of inputs and outputs.

Step 3: Create a development process diagram as shown in Fig. 7.5.

Step 4: Develop the system requirements using high-level user stories with both prose writing and a use case diagram as shown in Fig. 7.6.

Step 5: Translate the user stories into object-class diagrams as shown in Fig. 7.7

which shows the entities, data structures, and operations.

[image: Image 337]

160

7 Blockchain Analysis and Design

Fig. 7.5 Sample development process for a smart contract system

Step 6: Develop State Transition Diagram showing possible states and what flows can cause a change in state. The example in Fig. 7.8 reflects a UML style state chart.

Step 7: Create process specifications of functions from user stories as shown in Table 7.2.

[image: Image 338]

7.5

Summary

161

Fig. 7.6 User story flow diagram

The Marchesi et al. sample depicts how requirements documents might appear in the SDLC for a typical smart contract blockchain. While there can be many variances, it is important to recognize how traditional analysis tools can be embedded in the block chain engine that will be inserted into the various other processes and data interfaces of the larger applications needed in any complex system.

7.5

Summary

Blockchain represents an essential architectural component to make IoT a feasible and secure engine that can be incorporated into complex systems. Essentially the blockchain will serve as the validation and recording of transactions using an accounting ledger-based system that guards against hackers. Without this engine system IoT cannot achieve widespread use across various industries and specific technologies. While we are still in the embryonic stages of blockchain development, it is predicted that there will be a plethora of third-party blockchain products that will provide the architecture for specific industry-related product processing.

However, it is important to recognize that the latency issue is still very much a challenge. The philosophy of the blockchain architecture in terms of its update process very much resembles the old IBM token-ring structure. As a recollection

[image: Image 339]

162

7 Blockchain Analysis and Design

Fig. 7.7 Object-class diagrams derived from user stories

of that network design, IBM’s computer nodes each had to be updated in a circular ring that got updated sequentially. The problem then was that the network design was too slow to achieve itself as a feasible solution to networked personal computers. Figure 7.9 depicts the IBM token ring structure. The blockchain architecture replaces the personal computers with blocks. While updating blocks is faster than token ring network structure, it still will be challenged in scaling, especially in a mobile network system. While 5G will make blockchain more feasible, scalability across large mobile networks may still hinder widespread use. The next chapter will address some of the potential solutions that can ultimately increase processing power to support more scalable blockchain development.

[image: Image 340]

7.6

Problems and Exercises

163

Fig. 7.8 State diagram derived from object-class flow

7.6

Problems and Exercises

1. Explain the relationship between Blockchain architecture and Linked Lists.

2. What is meant by a hash code?

3. Compare the positives and negatives of blockchain.

4. What are the two main objectives of blockchain analysis and design?

5. How do use cases relate to blockchain analysis?

6. What is the relationship between a use case diagram, prose writing, and a minispec?

7. What is the relationship between a minispec and pseudocode?

8. How can user stories be used to complete the requirements of the blockchain modeling tools?

9. What is the relationship between a state transition diagram and blockchain?

Why is it important?

10. Why is blockchain architecture so important in the design of mobile-based IoT systems?

164

7 Blockchain Analysis and Design

Table 7.2 Process specifications of functions from user stories

Function

Modifiers, parameters

Action-notes

Constructor

String nameFirm string nameAdmin

Create the VotingManagement

|(string nameSh, address addrSh, unit 16

contract, inputting the name of

noShares)|

the firm, the administrator’s

name and, for each shareholder;

name, address and number of

shares. Add a new shareholder,

giving his name, address and

number of shares

AddShareholder OnlyOwner string nameSh address

Add a new shareholder, giving

addrSh unlt16 noShares

his name, address and number of

shares

Delete

OnlyOwner address addrSh

Delete the given shareholder,

sharehold

giving his address. Can be done

only if the shareholder has no

active participation in an

assembly

EditSharehoider OnlyOwner address addrSh string

Update the given shareholder,

nameSh unit16 noShares

giving his address (that cannot be

changed), name and number of

shares. Can be done only if the

shareholder has no active

participation in an assembly

Change

OnlyOwner address newOwner string

Give the address and the name of

administrator

nameAdmin

the new administrator

Convene

OnlyOwner

Convene an assembly, giving

assembly

start and end date and time of the

assembly, a short description, the

minimum percentage of shares

needed for its validity, and the

maximum number of delegations

that can be given to a single

shareholder. No existing

assembly can overlap with the

new one

AddVoting

OnlyOwner

Add a call for voting to the given

assembly, specifying the name of

the voting, the two options that

should be chosen, the minimum

percentage of voting shares, and

of votes needed to have a valid

vote The assembly must not have

already started

(continued)

References

165

Table 7.2 (continued)

Function

Modifiers, parameters

Action-notes

Participate

OnlyShareholder

Register the participation of the

sender to the given assembly,

provided that the start date and

time of the assembly has not yet

passed, and that the sender has

not already delegated another

Shareholder, or already registered

Delegate

OnlyShareholder

Delegate the participation to a

given assembly to another

shareholder, provided that the

start date and time of the

assembly has not yet passed, that

the sender has not already

registered his participation or

delegated another Shareholder,

that the delegated Shareholder

has registered to the Assembly,

and has not yet reached the

maximum number of delegations

CastVote

OnlyShareholder

Cast a vote for one of the choices

of a given voting, provided that

the sender is participating to the

assembly of the voting, that this

assembly has started and has not

yet expired, and that the vote has

not already cast

VerifyValidity

OnlyOwnetOrSharehclder

Read the total number of shares

view

that participated to a given

assembly, and check if the

minimum number has been

reached. The assembly must have

expired

ReadResults

OnlyOwnerOrShareholdcr

Read the voting results (choice 1,

view

choice 2 or no choice), given an

assembly, and the name of a

voting. The assembly must have

expired

DeleteContract

OnlyOwner

Permanently delete the contract

References

Marchesi, M., Marchesi, L., & Tonelli, R. (2018). An agile software engineering method to design blockchain applications. Preliminary version accepted at the software engineering conference.

October 12–13, 2018.

166

7 Blockchain Analysis and Design

Xu, X., Weber, I., Staples, M., Zhu, L., Bosch, J., Bass, L., Pautasso, C., & Rimba, P. (2017). A taxonomy of blockchain-based systems for architecture design. IEEE International Conference on Software Architecture.

Yrjola, S. (2019). Citizens broadband radio servic: WinnComm 2019. Technical Presentation Abstracts.

[image: Image 341]

Quantum Computing, AI, ML,

and the Cloud

8

As discussed in Chap. 1, quantum computing while not yet scalable has the potential to change the processing capabilities of computing especially for ML and AI processing. Without getting into the detailed hardware technicalities, the essential advantage of quantum is that it can evaluate many potential answers simultaneously (superposition) that results in improving calculation speeds immensely.

Traditional computers behave in a sequential manner, but quantum allows multiple calculations to take place simultaneously and yet be related to the same problem. It’s like having dimensions of processing but somehow offering one solution. Because of this advantage, there are also disadvantages. Specifically, quantum provides value for certain types of computational problems. Where such computational algorithms are not to the advantage of quantum, there is no performance improvement from traditional binary-based computers. The true benefit then of quantum computing is dealing with uncertainty problems. These are also known as “quantum algorithms” which can solve difficult equations in many different ways. For example, the successful quantum algorithm called factorization created by Peter Shore of AT&T Bell Laboratories proved that quantum could factor large numbers into their prime factors in seconds compared to a classical computer that could almost take forever. These types of benefits tend to favor performance improvements in ML and AI which require large data crunching to solve or analyze complex data sets. One can see then that quantum is a very attractive alternative to speeding up computations that can provide incredible results for predictive analytic issues. Picture the value that quantum brings when analyzing causes of disease or maximizing optimizations across sectors and use cases for smart cities, traffic systems, lights, meters, utilities, and buildings all at the same time. Quantum allows for these simultaneous computations to take place and yet maintain a relationship with each other (called entanglement). Traditional computers would need to analyze each computation sequentially, ultimately limiting scalability.

© The Editor(s) (if applicable) and The Author(s), under exclusive license 167

to Springer Nature Switzerland AG 2025

A. M. Langer, Analysis and Design of Next-Generation Software Architectures,

https://doi.org/10.1007/978-3-031-76212-3_8

168

8 Quantum Computing, AI, ML, and the Cloud

8.1

Data Sets

With enormous processing speed potential, quantum computing allows for quicker analysis and better integration of distributed large data sets of information. This is accomplished using extensive search and determinations of the patterns that exist in data that otherwise could not be established for impact on business applications. Furthermore, quantum computers expand the potential to examine large databases that could be distributed across multiple network and machine platforms.

Finally, data sets, databases, and other data structures can all be investigated to render correlations that provide valuable probabilities. As quantum evolves it can dramatically alter hardware architectures, and accelerate the proliferation of IoT

devices that may indeed result in changing the way companies use their data for competitive advantage.

8.2

IoT and Quantum

Economist’s Business Insider Intelligence (2018) has forecast that by 2023 consumers, companies, and governments will install 40 billion IoT devices globally.

The result of these installations will generate massive data on a daily basis. The challenge for any analyst will be to understand how to approach the processing this data to ultimately generate useful information and knowledge. I have already established the importance of IoT security. Think further of this importance as these IoT

devices begin to generate what will likely be very sensitive information. Therefore, for IoT to reach its potential, the confidentiality of consumer data must be protected and even guaranteed. Another interesting advantage of a quantum machine is its potential to generate secured systems using cryptography from quantum fed algorithms that require very large machines. These machines, as I have previously mentioned, are typically not available to hackers. In theory, however, quantum cryptography should be able to generate keys that are totally random, unique, and incapable of being replicated. And with the speed of quantum calculations, a unique long key can be generated per transaction.

8.3

AI, ML, and Predictive Analytics

Having established that quantum’s role is to help crunch massive amounts of data, the next challenge is to determine how to collect the data, store it, and what algorithms will be needed to obtain valuable information that can be used to make predictions. One must accept the fact that voluminous data certainly is beyond a human capacity to derive meaningful predictive data, not to mention how long it might take to even if an individual could process the data!

In the past, obtaining data and analyzing it to make predictions required trained personnel in areas such as mathematics, statistics, and computer science. However, today there are now advanced APIs that can be obtained which allow non-technical

8.3

AI, ML, and Predictive Analytics

169

people to get results. So, again the analyst needs to start thinking of the data, especially identifying what that data does and where it should reside!

The strategy relating to predictive analytics is quickly becoming more focused on the ML component of AI. The reason for this development is simple: most organizations likely do not know or understand the data they possess. Yes, they might know the business elements they store, but ML provides a whole new opportunity.

For example, most business environments are broken down into functional units or divisions. Individuals that operate within these divisions are often siloed in such a way that they know their own data, but little about the data in other divisions that contain important related data that can provide value not only for their division, but for the business overall. Thus, they do not know what to search for, because they know little of the opportunity. Furthermore, there is massive information that tends not to get stored in a way that allows for easy understanding of value. Transaction data updates databases which in turn gather the information for reporting and analysis. This is particularly true for different types of transactional data that comes from consumers as well as data that results from their behaviors. Anyone who has spent time on Amazon or other consumer sites has experienced the application offering the consumer other opportunities based on their search behavior on the retail website. These behaviors are stored in the form of transactions and then fed into data sets that can be analyzed by machine-driven algorithms.

With any new software opportunities comes dangers, and such is true with ML.

Below are some of the setbacks that can occur:

1. Lack of transactions or examples that can render dependable and generalizable results to draw conclusions.

2. Similar inputs can sometimes render different outputs. To have effective predictions there must be a clear relationship between inputs and outputs.

3. Mistakes in categorization of data is a killer. We have all seen the problems when a data element is not defined appropriately.

4. Incorrect or inappropriate example used. These are cases where certain factors are not considered. We see this occur when certain factors affect consumer habits that were not considered in the use case.

5. Challenge of tagging data and then classifying all of its relationships 6. Implementing Natural Language Processing where inputs are purely textual and outputs are often categorical. This challenge is how to take textual input and determine an output value such as positive or negative.

There are two types of ML algorithms:

1. Training: learning a model from examples. This algorithm is also known as a learning algorithm because it examines sets of inputs and outputs and creates a new model based on the datasets.

2. Prediction: takes an existing model with a new input and returns an output value as shown in Fig. 8.1:

[image: Image 342]

[image: Image 343]

170

8 Quantum Computing, AI, ML, and the Cloud

Fig. 8.1 Example of training to prediction algorithms

Fig. 8.2 Updating legacy data element using ML training and prediction algorithms What occurs in Fig. 8.1 is a simple way of predicting a value that might be missing from a dataset or database. This can often occur from converted data from a legacy or earlier version of application data. By examining the new application data, ML

can establish a model that might predict what that missing element would have been in the old system as shown in Figure 8.2:

Figure 8.2 shows that the legacy system did not store or capture a student’s graduation rate. In the new or replacement system, a data element was added to capture the student’s graduation rate. When the legacy records are converted ML

could use a training algorithm to review the relationship between GPA Score and Graduation Rate to see if there is a correlation among the records in the new system. Should that correlation have predictability and the data set in the new system is large enough, then the prediction algorithm could derive a graduation rate from the student’s GPA Score in the old system and calculate a Graduation Rate. We can see from this example that training algorithms can indirectly be used to create the prediction module in a sequence. The size of the data set that would likely be deemed appropriate is based on forms of statistics theory.

8.5

Analysis ML Use Cases

171

8.4

ML in a Service Environment

ML can be designed as a service in the cloud. In this design an ML program and data sets can be stored on a separate and powerful server (preferably a quantum processor!) that could provide the necessary performance needed to deliver results quickly. This type of network architecture can be developed using three types of ML APIs according to Dorard (2014) as follows:

1. Specialized Prediction: these APIs do very specific tasks like determining the speaking language embedded in a text. Specialized prediction APIs may often be available from third party libraries. Because these APIs are specific but common, they tend to be easier to implement.

2. Generic Predictor: this API represents the training to predictor algorithm example shown in Fig. 8.2. So, there are two algorithms needed in the generic predictor, one to create a training model based on previous data and one that utilizes the training model to deal with new input. Generic predictor APIs are particularly effective for regression problems (algorithms that predict a real value).

3. Algorithm APIs: these APIs, while similar to Generic Predictors, are much more focused on a specific problem, so the parameter must be very specific. Indeed, think of algorithm APIs as specialty problem solvers. Should a specialized algorithm API not be available, then a generic API can be used by adding training data.

8.5

Analysis ML Use Cases

An analyst can participate in ML design by providing types of use cases for developers. Dorard (2014) provides a format to follow:

• WHO: who does the example concern?

• DESCRIPTION: what is the context, and what are we trying to do?

• QUESTIONS ASKED: how would you write the questions that the predictive model should give answers to in plain English?

• TYPE OF ML PROBLEM: classification or regression?

• INPUT: what are we doing predictions on?

• FEATURES: which aspects of the inputs are we considering, and what kind of information do we have in their representation?

• OUTPUT: what does the predictive model return?

• DATA COLLECTION: how are example input–output pairs obtained to train

the predictive model?

• HOW PREDICTIONS ARE USED: when are predictions being made, and what

do we do once we have them?

172

8 Quantum Computing, AI, ML, and the Cloud

As one can see the analyst provides a guideline of questions to be answered as opposed to the answers to these questions. Clearly ML design then requires subject matter experts to answer these questions, or a consumer/user community that can define the output needs with certainty.

This example using Dorard’s Pricing Optimization shows the use case with actual answers to the questions:

• WHO: Shops, stores, and sellers

• DESCRIPTION: We are introducing a new product within our existing category of products that are already being sold, and we want to predict how we should price this new product; the product could be, for example, a bottle of wine in a wine shop. Or a new house for sales.

• QUESTIONS ASKED: “What should the price of this new product be in this given (and fixed) category?”

• TYPE OF ML PROBLEM: Regression

• INPUT: Product

• FEATURES: Information about the product, specific to its category. In the wine bottle example, this could be the region or origin, the type of grapes, or the rating from a wine magazine. In the house example, this could be the number of bedrooms, bathrooms, the surface, the year it was built, or the type of house. We can also include a text description, and, when relevant, the cost to manufacture the product and the number of sales (total or per period of time).

• OUTPUT: Price.

• DATA COLLECTION: Every time a product of the same category was sold, we log the price at which it went. Note that the same product might be sold several times (or not) and at the same or different prices, which affects the number of training data points.

• HOW PREDICTIONS ARE USED: We set the price of the product to the value given the predictive model (no need to add a margin, this is already incorporated by the nature of the training data). Note that if the number of sales is one of the features, we need to do a manual estimation of this for the new product before we can make a prediction on it. Besides, since prices are likely to change over time, it is important to frequently update the predictive model with new data.

8.6

Data Preparation

One can see that the most important aspect of ML is the quality of the data.

To no one’s surprise it’s also the most challenging problem to solve in business.

Many traditional companies likely have proliferations of data across multiple systems from the start of business computing in the early 1960’s. Notwithstanding what companies have compiled in central systems, the amount of local data stored across local area network systems from the 1980s is significant. There is also a plethora of databases stored on PCs from desktop products like Excel, Fox-pro, and Access to name just a few. In addition, there is rich data that is stored

8.7

Cloud

173

in text-based files. While the challenge seems overwhelming, progress has been made with the development of sophisticated natural language products that can specifically extract useful data from unformatted data. My point however is that analysts need to shift their focus more to analysis of data than process. With the proliferation of IoT the issue of cleansing data for ML is more important than process analysis. Do not misunderstand my argument here. I am not advocating that process analysis is no longer necessary or important, rather that data quality needs more attention than before. So, from an analyst perspective the data process should focus on the following steps:

1. Locate where data resides across the enterprise.

2. Understand the differing formats of the data sets and/or type of files systems where the data is stored.

3. Determine the meaning of each data element that comprises a file record.

4. Identify text-based files and see if natural language processes can aid in defining the data need by ML algorithms.

5. Extract the data elements that are needed for ML from various data sets.

6. Do a quality review based on the results of test runs on the extracted data.

7. Automate the extract programs and implement an ML API.

Another aspect of data extraction is to decide whether to place the data in a central repository cloud system. This objective always sounds doable on paper, but turns out to be an overwhelming task and often fails to achieve its objectives for a number of reasons. So, for now the all-powerful central database will be left for discussion in later chapters. The argument to merge everything has far more benefits and disadvantages beyond creating ML solutions.

8.7

Cloud

With the advent of 5G, IoT, blockchain, and potentially quantum, the cloud is assuredly a critical part of the quest to obtain better speed, centralization, and security in a digital world. The challenge is how best to design the cloud architecture, that is, whether to have a private or public cloud or some combination. Further, once the infrastructure is designed there needs to be a determination of how applications and data sets are deployed. Obviously, there would be great advantage to have the cloud resident on a quantum computer to support ML and AI processing and improved cryptology.

There is no question that cloud is a sophisticated service-oriented architecture.

While many analysts and designers understand the concept of cloud, many do not know how to maximize the configuration. Specifically, cloud should not be designed as a client/server hierarchical and closely coupled system. Cloud must be distributed, especially to support the new requirements of IoT. Therefore, cloud architecture must parallel IoT needs and provide independent applications in the form of functional primitives which will perform services independent of any given

[image: Image 344]

174

8 Quantum Computing, AI, ML, and the Cloud

Fig. 8.3 Comparison of client/server and cloud architectures

system. Figure 8.3 depicts the difference between a client/server design and a cloud distributed model.

The process of transforming existing systems to a cloud environment will be discussed in Chap. 10; however, a preview of this issue is provided here for better context. The first step in the transformation from legacy to cloud migration is to “decouple” the data from the legacy application system. Applications that own their own data will not work well in a private or public cloud system. Once this separation is completed, analysts need to determine where to place applications and data on the network cloud systems. It is easier to replicate applications in multiple places across the network but it is more complicated with data. Having both distributed may provide significant performance advantages particularly when it is time to determine how much data should reside on devices on the Edge.

Obviously, distribution of data sets will be very fundamental for a blockchain architecture than for a more traditional client/server layout. Another issue is that data distribution often relates to sensitivity and policy decisions. Many companies may be sensitive to having their data reside on a public cloud for instance. In most cases performance is the significant decision maker which is still affected by the number of read and write functions to and from databases that programs will perform during processing. Although many developers can use caching systems to improve performance, some hardware latency will influence design decisions. Of course, having a quantum computer may greatly assist the latency issues depending on the type of processing being performed on the server. Overall, the mission for the analyst is to minimize input/output requests of all application programs.

Always remember that the slowest operation on a computer remains the communication interaction among hardware devices. This design methodology is often known as designing for performance. In fact, studies have shown that overloading application server input-output functions can deplete performance by over 80%!

[image: Image 345]

8.8

Cloud Architectures

175

To address the latency potential, the analyst should configure monitoring tools that can be used to alter load balances during peak processing.

Certainly, another variable in performance decisions is the role of security protection and its role in cloud analysis and design. I have already established that the world is moving to mobility, and cloud is a key part of a successful wireless infrastructure. However, we know with more mobility there is higher cyber exposure. Therefore, cloud applications should make use of “identity and access management.” Completing design with security in mind is critical to secure systems and is often very dependent on industry risk protocols such as healthcare’s

“Health Insurance Portability and Accounting Act” or HIPAA compliance.

8.8

Cloud Architectures

Part of a successful mobile infrastructure is designing the right cloud architecture which depends on the business needs, the technology service requirements, and the available technological capabilities like quantum. As you can imagine depending on these variables, there are different cloud models. According to excerpts from Architecting Cloud Computing Solutions there are three models to consider: baseline, complex, and hybrid.

8.8.1

Baseline

Baseline cloud computing is considered a foundational start as a beginner’s cloud architecture. Baseline is a tiered and layered architecture with most having three basic tiers: web server, application layer, and database layer. Every tier has some amount of data storage that can vary based on the design requirements. Most cloud designs have some aspects of three tiers a shown in Fig. 8.4: Within the baseline architecture there are various configurations:

Fig. 8.4 Three tier baseline

cloud architecture

[image: Image 346]

176

8 Quantum Computing, AI, ML, and the Cloud

 Single Server

This design is hosted by a single server which could be virtual or physical and contains the three layers described above. This architecture is not recommended due to its security risks because one layer can compromise another. Because this design is inadequate for mobile deployments, it is usually limited to work as an internal development machine.

 Single Site

This architecture has the same design as a single server except that each layer has its own computer instance and thus improves security, although all resources are still located on the same computer. There are two types of single-site architectures: non-redundant and redundant. Non-redundant architectures are essentially designed to save costs and resources but suffer from “single point of failure.”

Once again, while this option has multiple instances it is not recommended for production. Figure 8.5 reflects this design:

Redundant architecture on the other hand provides backup for failover and recovery protection. Thus, redundant design offers duplicate components that eliminate the single point of failure as shown in Fig. 8.6:

Obviously, redundant architecture is designed more for production systems

because there are multiple processing decision capabilities that avoid single point of failure.

Fig. 8.5 Non-redundant

three-tier architecture

[image: Image 347]

8.10

Global Server Load Balancing (GSLB)

177

Fig. 8.6 Redundant three-tier architecture

8.8.2

Complex Cloud Architectures

The complex cloud architecture addresses issues of redundancy, resiliency, and disaster recovery. At the core of complex cloud is the ability to monitor and adjust flow of traffic among multiple sites and to alternate balances appropriately based on usage. There are various types of complex cloud architectural designs: 8.9

Multi-data Center Architecture

A data center architecture allows analysts to determine the amount of redundant infrastructure needed to support single-site and multi-site designs. The major questions for the analyst to answer are:

• How is traffic sent to one location or the other?

• Is one site active and the other backup or are both active?

• How is fail-back to the primary site handled should a failure occur?

• What changes in resiliency plans are necessary?

• How is data synchronization handled before and after failover?

8.10

Global Server Load Balancing (GSLB)

This architecture allows for the manipulation of DNS (Domain Name Server) information. The DNS is the internet’s version of a phonebook or address of the machine. Global server load balancing or GSLB enables pre-planned actions to occur in the event of a failure. While this design is effective, it is expensive and

[image: Image 348]

178

8 Quantum Computing, AI, ML, and the Cloud

Fig. 8.7 GSLB architecture

typically requires human interface. It is usually offered as a public cloud option for a fee. Figure 8.7 shows the GSLB configuration:

8.11

Database Resiliency

This design offers what is called active-to-active database configuration with a bi-directional replication capability. This helps keep data synchronized on both database servers. While this design adds more complexity it also provides greater levels of redundancy and resiliency. Figure 8.8 shows the design: Another option on databases is to add caching capabilities which hold data in high-speed memory. The caching option works on algorithms that bet that certain data will be requested again. If that bet works it can significantly speed up data access. The idea behind caching is that an application may engage in multiple input and output operations for a period of time with the same records. Figure 8.9

shows the addition of caching memory:

[image: Image 349]

[image: Image 350]

8.11

Database Resiliency

179

Fig. 8.8 Database resiliency architecture

Fig. 8.9 Caching database cloud design

[image: Image 351]

180

8 Quantum Computing, AI, ML, and the Cloud

Fig. 8.10 Hybrid cloud architecture

8.12

Hybrid Cloud Architecture

Hybrid cloud is a solution that combines a private cloud with one or more public cloud services. Hybrid cloud provides greater flexibility because you can alter workloads among multiple cloud infrastructures. It also allows organizations to examine cost alternatives.

A hybrid cloud can certainly minimize exposure to a site failure because there are multiple failover options. It’s clear in many ways that the hybrid option is attractive for the IoT/Blockchain mobile operations because of the redundancy and multi-location load balances that it can offer. What is always true with sophisticated architectures is the higher costs, although using third party operators for competitive choices is part of the decision-making process. Beyond cost and failover is flexibility. Hybrid clouds allow owners to have that protection in a private cloud while offering the ability to extend onto a public cloud for more capacity as needed. The model is depicted in Fig. 8.10.

8.13

Cloud, Edge, and Fog

As IoT devices become widespread, organizations will need to store more data on devices, also known as the Edge. The edge devices and other network machines will have to interface with a more centralized cloud operation which has recently been coined Fog computing. The objective is to maximize performance and ensure options for scalability especially during peak demands. Many organizations are

References

181

considering collocating their IT infrastructure with other data centers to conserve costs. It is important to note that while Edge and the Cloud represent current alternatives, the potential rise of quantum computing definitely offers an attractive addition to finding ways to store and analyze the incredible explosion of valuable consumer data.

8.14

Problems and Exercises

1. Define and describe quantum computing.

2. What are the advantages of quantum architecture?

3. How does quantum architecture relate to AI and ML? Be specific.

4. What is the relationship between quantum and hash keys?

5. What is a data set? Describe the different types of sets.

6. Why is predictive analytics so dependent on AI and ML?

7. How do APIs increase performance of predictive analytics?

8. What are some of the disadvantages of ML?

9. What is Natural Language Processing and its relation to data sets?

10. Define two types of ML algorithms.

11. What are the challenges when updating data elements from legacy data?

12. What dilemma does ML create for database normalization?

13. What is Cloud? Why is it so essential for mobile-based architectures?

14. Compare client/server and cloud architectures.

15. Why is hybrid cloud architecture so attractive?

16. What is Fog?

References

Dorard, L. (2014). Bootstrapping machine learning: Exploit the value of your data. Create smarter apps and businesses.

[image: Image 352]

Cybersecurity in Analysis and Design

9

9.1

Introduction

The overall challenge in building more resilient applications that are better equipped to protect against threats is a decision that must address exposure coupled with risk. The general consensus is that no system can be 100% protected and that this requires important decisions when analysts are designing applications and systems. Indeed, security access is not just limited to getting into the system, rather on the individual application level as well. How then do analysts participate in the process of designing secure applications through good design? We know that many cybersecurity architectures are designed from the office of the chief information security officer or CISO, a new and emerging role in organizations. The CISO

role, often independent of the CIO (chief information officer) became significant as a result of the early threats from the internet, the 9/11 attacks and most recently the abundant number of system compromises experienced by companies such as JP Morgan Chase, SONY, Home Depot and Target to name just a few.

The challenge of cybersecurity reaches well beyond just architecture. It must address third-party vendor products that are part of the supply-chain of automation used by firms, not to mention access to legacy applications that likely do not have the necessary securities built into the architecture of these older, less resilient technologies. This challenge has established the need for an enterprise cybersecurity solution that addresses the need of the entire organization. This approach would then target third–party vendor design and compliance. Thus, cybersecurity architecture requires integration with a firm’s Software Development Life Cycle (SDLC), particularly within steps that include strategic design, engineering, and operations. The objective is to use a framework that works with all of these components.

© The Editor(s) (if applicable) and The Author(s), under exclusive license 183

to Springer Nature Switzerland AG 2025

A. M. Langer, Analysis and Design of Next-Generation Software Architectures,

https://doi.org/10.1007/978-3-031-76212-3_9

184

9 Cybersecurity in Analysis and Design

9.2

Cybersecurity Risk in the S-Curve

In Chap. 2, I discussed the importance of the S-Curve and its relationship to the risk in accuracy when determining requirements sources. The S-Curve also needs to be considered in the design of the cybersecurity architecture. When designing against cybersecurity attacks, as stated above, there is no 100% protection assurance. Thus, risks must be factored into the decision-making process. A number of security experts often ask business executives the question, “how much security do you want, and what are you willing to spend to achieve that security?”.

Certainly, we see a much higher tolerance for increased cost given the recent significance of companies that have been compromised. This section provides guidance on how to determine appropriate security risks based on where the product exists on the S-Curve.

Security risk is typically discussed in the form of threats. Threats can be categorized as presented by (Schoenfield, 2015):

1. Threat Agent: where is the threat coming from and who is making the attack?

2. Threat Goals: what does the agent hope to gain?

3. Threat Capability: what threat methodology or type is the agent possibly going to use?

4. Threat Work Factor: how much effort is the agent willing to put in to get into the system?

5. Threat Risk Tolerance: what legal chances is the agent willing to take to achieve their goals?

Table 9.1 is a guideline:

The threat and its associated risks and work factors will provide important input to the security design especially at the application design level. Such application securities in design typically include:

1. The user interface (sign in screen, access to specific parts of the application).

2. Command-line interface (interactivity) in on-line systems.

3. Inter-application communications. How data and password information are passed and stored among applications across systems.

Table 9.1 Threat analysis

Threat agent

Goals

Risk tolerance

Work factor

Methods

Cyber criminals

Financial

Low

Low to medium

Known and proven

 Source Schoenfield (2015)

[image: Image 353]

9.3

Decomposition in Cybersecurity Analysis

185

9.3

Decomposition in Cybersecurity Analysis

Flow diagrams and database normalization are not the only application for functional decomposition. The concept of decomposition is very relevant to the architecture of systems that guard against attacks. Simply put, integrating security at the functional decomposed levels of applications can improve protection.

Though security at this level does not negate threat exposure, it will reduce risk.

Figure 9.1 shows a scheme of how security is implemented at all levels during the decomposition process.

Figure 9.1 demonstrates how analysts need to ensure that various security routines exist at multiple layers including the front-end interface, applications, and databases. The reason for this level of security is to provide the maximum amount of resistance to the ways threats enter a system. Indeed, once a virus enters it can find its way through many parts of the system—that is, entry points serve as gateways into the environment. Some of these points of potential entry could require special third-party applications, but these decisions should be discussed with the cybersecurity team. The analyst must continue to stay focused on the logical view of the system.

Fig. 9.1 Cybersecurity and decomposition

186

9 Cybersecurity in Analysis and Design

At each decomposed level, the analyst should consider the specific checklist of threat potentials. The number of security interfaces at each level as well as the extent of the security needed will depend on the amount of risk and associated costs to implement. Important considerations prior to determining the levels of security are always the impact they might have on the user interface and on overall performance of the system.

9.4

Risk Responsibility

Schoenfield (2015) suggests that someone in the organization is assigned the role of the “risk owner.” There may be many risk owners and as a result this role could have complex effects on the way systems are designed. For example, the top risk owner in most organizations today is associated with the CISO, or cybersecurity information systems officer. However, many firms also employ a CRO or chief risk officer. This role’s responsibilities vary.

But risk analysis at the application design level requires different governance.

Application security risk requires involvement from the business and the consumer and should be integrated within the risk standards of the firm. Specifically, multiple levels of security often require users to re-enter secure information. While this may maximize safety, it can negatively impact the user experience and the robustness of the system interface in general. Performance can obviously also be sacrificed given the multiple layers of validation. There is no quick answer to this dilemma other than the reality that more security checkpoints will reduce user and consumer satisfaction unless cybersecurity algorithms become more invisible and sophisticated. However, even this approach would likely reduce protection.

Design is a challenge not only for every analyst, but the IT team, business users, and now the consumer must all take part in decisions on how much security is required—especially in the 5G and IoT era.

As my Columbia University colleague Steven Bellovin states in his book,

“Thinking Security,” security is about a mindset. To me, this mindset concerns how we establish security cultures that enable the analyst to define organizational security as it relates to new and existing systems. If we get the analyst position to participate in setting security goals in our applications, some key questions according to (Bellovin, 2015) are:

1. What are the economics to protect systems?

2. What is the best protection you can get for the amount of money you want to spend?

3. Can you save more lives by spending that money?

4. What should you protect?

5. Can you estimate what it will take to protect your assets?

6. Should you protect the network or the host?

7. Is your Cloud secure enough?

8. Do you guess at the likelihood and cost of a penetration?

9.5

Developing a System of Procedures

187

9. How do you evaluate your assets?

10. Are you thinking like the enemy?

The key to analysis and design in cybersecurity is recognizing that it is dynamic; attackers are adaptive and somewhat unpredictable. This dynamism requires constant architectural change accompanied with increased complexity of how systems become compromised. Thus, analysts must be involved in the conceptual model, which includes business definitions, business processes, and enterprise standards.

However, the analysts must also be engaged with the logical design, which comprises two sub-models:

1. Logical Architecture: depicts the relationships of different data domains and functionalities required to manage each type of information in the system.

2. Component Model: reflects each of the sub-models and applications that provide various functions in the system. The component model may also include third-part vendor products that interface with the system. The component model coincides in many ways with the process of decomposition.

In summary, the analysis and design interface with cybersecurity is complex. It must utilize the high-level and decomposed diagrams and pictures that reference the specific hardware and software that comprise the needs for security. Security is relative, and thus analysts must be closely aligned with the CISO, executive management, and network architects to keep current with the threats and fixes when systems get compromised.

9.5

Developing a System of Procedures

Perhaps one of the most significant challenges in analysis today is its role in the software life cycle. There has been much criticism of the lack of discipline applied to software development projects and personnel in general, and we continue to be an industry that has a poor reputation for delivering quality products on schedule.

This is even more evident with the exposures to cybersecurity attacks as articulated above. Although many organizations have procedures, few really follow them and fewer still have any means of measuring the quality and productivity of software development. A system of procedures should first be developed prior to implementing a life cycle that can ensure its adherence to these procedures. These procedures also need to be measured on an ongoing basis. This book restricts its focus to the set of procedures that should be employed in the analysis and design functions.

The process of developing measurable procedures in an organization must start with the people who will be part of its implementation. Standard procedures should not be created by upper management, as the steps will be viewed as a control mechanism instead of a quality implementation. How then do we get the implementers to create the standards? When examining this question, one must look at

188

9 Cybersecurity in Analysis and Design

other professions and see how they implement their standards. The first main difference between computer professionals and members of many other professions is they lack a governing standards board like the American Medical Association (AMA) or the American Institute of Certified Public Accountants (AICPA).

Unfortunately, as mentioned in previous chapters, it seems unlikely that any such governing board will exist in the near future. Looking more closely at this issue, however, we need to examine the ultimate value of a governing board. A standards board represents the moral and professional responsibilities of their trade.

Accountants, attorneys, and doctors look upon themselves as professionals who have such responsibilities. This is not to imply that governing boards can resolve every problem, but at least they can help. With or without the existence of a standards board, analysts within an organization must develop the belief that they belong to a profession. Once this identification occurs, analysts can create the procedures necessary to ensure the quality of their own profession. There simply are not many analysts who view themselves as part of a profession.

If analysts can create this level of self-actualization, then the group can begin the process of developing quality procedures that can be measured for future improvement. The standard procedures should be governed by the group itself and the processes integrated into the software life cycle of the organization. In fact, analysts should encourage other departments to follow the same procedures for implementing their respective quality procedures.

9.6

IoT and Security

IoT and security are still in search of a good relationship. Specific challenges surround the security of pairing devices, encryption of links, registration and authentication of the device, updating of secrets, keys, and sensitive information in general. Thus, IoT with all of its advantages creates a unique set of challenges for security. While cybersecurity issues may vary in different geographies and industries, IoT’s most significant security exposure relates to its decentralized architecture. Furthermore, since IoT is device-based, many of the cyber issues are in the hands of third-party vendors who build and support these devices. The result is that IoT is forcing companies to develop new security strategies. This security challenge is yet another activity for the analyst.

Unfortunately, there are no standards for securing IoT. This is especially disturbing given that public and private clouds operate over different sectors and countries. Certainly, another area of concern is how to tie in IoT security with legacy systems. A number of organizations have considered “retrofitting” which integrates old systems with new mobile-based architecture. Indeed, retrofitting is attractive given the alternative costs to build new systems. But keeping the old systems ultimately increases security exposure so companies need to assess the risks and explore all options.

9.7

Cybersecurity and Analyst Roles and Responsibilities

189

However, one benefit of IoT decentralization is that it creates more loosely coupled systems that because of their independence reduce the likelihood of complete system failures. So, organizations within an IoT environment may only be faced with partial failures. Further, because of the redundancy that is built into IoT

and blockchain architecture, analysts may actually have more alternative failover capabilities. This is also evident in Chap. 8 where I provided a number of cloud architectures, many of which are built to support partial failovers that are not just focused on system failures from power or hardware failures, but also against cybersecurity attacks.

But cyber is not limited to a case of shutdown, it’s also about protecting data, particularly the data of consumers. In addition, various government lead laws like GDPR (General Data Protection Regulation)1 governed by the European Union (EU), have stiff penalties for systems that are breached.

9.7

Cybersecurity and Analyst Roles and Responsibilities

Operationally analysts need to consider taking on the following roles and areas of responsibility:

1. Apply service-oriented security architecture principles to meet the organization’s confidentiality and integrity.

2. Ensure all security procedures are documented and updated properly and regularly.

3. Confirm that software patches and fixes are accomplished for both internal and external systems.

4. Ensure that all cyber products have identified risk acceptance levels.

5. Implement security countermeasures.

6. Perform testing on developed applications.

7. Conduct security reviews and identify gaps.

8. Make recommendations for better cyber design of systems.

9. Advise on disaster recovery, contingency, and continuity of operations.

10. Ensure every system has minimum security for all of its applications.

11. Participate in cyber recommendations based on the possibility of threats and vulnerabilities.

In order to accomplish these roles and responsibilities, analysts will need the following skills:

• Knowledge of networking, protocols, and security methodologies.

1 GDPR is a regulation in EU law on data protection and privacy for all individual citizens of the EU and European Economic Area (EEA). It also addresses the transfer of personal data outside the EU and EEA areas (Wikipedia, 2019).

190

9 Cybersecurity in Analysis and Design

• Knowledge of risk management both at the enterprise level as well as

understanding different approaches to assessing and mitigating different risks.

• Knowledge of cyber laws, regulations, policies, and ethics (GDPR).

• Capabilities to apply cybersecurity and privacy concepts.

• Knowledge of current cyber threats and reported vulnerabilities.

• Understanding of potential operational effects from cyber problems.

• Understanding of algorithms employed in cyber systems including IoT,

blockchain, and cloud systems.

• Expertise in systems security testing and acceptance test planning.

• Knowledge of counter measurement for identified security risks.

• Knowledge of embedded systems.

• Awareness of network design processes including IoT interfaces, blockchain architecture and third-party products.

• Ability to use network tools to identify vulnerabilities.

• Ability to apply cybersecurity and privacy principles to organizational requirements that relate to such areas as confidentiality, integrity, availability, authentication, and non-repudiation.

• Establish categories of the possible types of cyber-attacks and participate in the development of company-wide policies on cyber risk.

It should be obvious from the above tasks and responsibilities that the analysts have a lot of work to do! It should also be evident that this is not one person with capabilities in all the cyber areas. Thus, what I am really emphasizing is the need for a new organizational structure that has a team of analysts with specialized responsibilities similar to any other professional department. I will provide a more complete organization chart in Chap. 14 (see Fig. 14.2).

9.8

Generative AI (GenAI) in Cybersecurity

According to (2023), “ChatGPT and Large Learning Models (LLMs) are in the early stages of how GenAI will shape many business processes. Security and risk management leaders, specifically chief information security officers (CISOs) and their teams need to secure how their organization builds and consumes GenAI, and navigate its impact on cybersecurity.”

According to the authors, there are four different areas that will affect CISO’s and their teams:

1. “Defend” with GenAI

2. “Attacked by” GenAI

3. Secure enterprise initiatives to “build” GenAI applications.

4. Manage and monitor how the organization “consumes” GenAI.

According to Cisco’s Splunk in their report, “State of the Security 2024: The Race to Harness AI,” security teams face new opportunities and challenges due to the

[image: Image 354]

9.8

Generative AI (GenAI) in Cybersecurity

191

rise of Generative AI. It is expected that GenAI will transform the cybersecurity industry in new and unexpected ways.

Some key findings in the report are:

• 91% of security teams use GenAI but 65% state they do not fully understand its implications.

• 48% have experienced cyber extortion making it more common than ran-

somware.

• 86% state that the current geopolitical climate is contributing to the increased targets.

• 76% say that recent compliance mandates that increase personal liability makes cybersecurity a less attractive field.

According to (Choudhury, 2024), there are eight ways GenAI can enhance cybersecurity strategy. The hope is that GenAI will positively provide ways to better respond to threats, predict potential risks, and perhaps establish a more secure digital infrastructure.

Forecasts suggest that the size of GenAI in the security sector is expected to be 2.6M USD by 2032 increasing at a remarkable rate of 17.9% from 2023 (see Fig. 9.2).

Using LLM’s, cybersecurity professionals can extract information for GenAI that can dramatically improve the protection of their systems, specifically exposing information regarding vulnerabilities, attack patterns, and potential attack signs. By analyzing log files and network traffic, GenAI can automate the incidence response Fig. 9.2 Generative AI in security market. Source 8 ways generative AI can enhance cybersecurity. Turing. https://www.turing.com/resources/generative-ai-enhances-cybersecurity

192

9 Cybersecurity in Analysis and Design

time. The cost of data breaches can be significant, estimated by IBM’s “Cost of data Breach 2023 Report, showed that companies that leverage AI automation saved close to 1.8M USD and were able to identify breaches in less than 100 days without automation. Below are the eight ways of positive impacts of GenAI on cybersecurity:

1. Adaptive Threat Detection: GenAI can analyze historical data and determine significant patterns and anomalies that can be used to predict new and/or evolving threats in real time. This means automatic adapting to changing attack tactics and providing defense mechanisms. Ultimately, this enables cyber personnel to stay ahead of malicious intruders and automate defensive actions like denial of service, alerting security personnel, and moving traffic to alternative networks.

2. Predictive Analytics: GenAI is expected to substantially enhance predictive cyber analysis by reviewing large databases, finding patterns in the data, and formulating patterns that can forecast future outcomes. This includes analyzing past attack patterns and known vulnerabilities thus providing organizations with knowledge that allows them to take preventive security measures.

These measures, due to the high-speed automation capabilities of GenAI, can be accomplished almost instantaneously. This equips cyber staff with better decision-making capabilities and the ability to formulate risk mitigation strategies based on real-time analysis.

3. Malware Generation and Analysis: Researchers can use GenAI to create malware that can be compared against other malware activities as a testing facility.

Specifically, a sandbox is a mimic of an end-user operating environment that allows cyber behavior to run code, review its behavior, and determine levels of required safety measures. The purpose of the sandbox is to help prevent threats in the network by using a test system to inspect untested or untrusted code.

GenAI-generated malware is also an effective method to train cyber teams by creating various test cases, scenarios, and possible situations that could occur.

4. Enhanced Biometrics: GenAI can generate synthetic but very realistic facial recognition patterns and fingerprint templates. The facial recognition capabilities can mimic human faces which can be used to test and mature facial recognition systems. The major challenge for these systems is to distinguish between real faces and fraudulent faces using photos and masks. Therefore, GenAI can provide cyber professionals with a higher degree of identity security.

5. Automated Security: GenAI can automatically apply corrections in the form of patches. These “generated” patches first examine the code for vulnerabilities and then fix it via a software patch. In addition, GenAI can also test the patch in a sandbox-controlled environment. This testing approach is automated so that multiple scenarios can tested that limit exposure when placed into production.

6. Anomaly Detection: GenAI can continually monitor network traffic system logs, and have specific user activities that identify suspicious behavior that might pose security exposures and threats. For example, if GenAI observes sudden anomalies or spikes in data activity, it can act in multiple ways to trigger alerts or initiating types of shutdown processes. This approach minimizes the ability

9.10

Charlotte AI

193

for data breaches that can often be actively executing in a system for long periods before being discovered.

7. Phishing Detection and Prevention: GenAI can analyze email content, sender behavior, and other patterns typically associated with phishing transactions.

Specifically, GenAI can automatically intercept suspicious phishing attempts and trigger alert warnings to the receiver or actually quarantine the message for review by the user.

8. Threat Simulation and Training: GenAI can simulate many cyber threats in a controlled environment. These simulations can be used to train cybersecurity personnel and incidence response teams. GenAI can constantly modify simulations to keep cyber teams up to date, achieve best practices, and measuring performance. Most important, GenAI can quickly create new training scenarios based on the discovery of emerging types of threats.

9.9

Summary

One can conclude that GenAI provide a transformative weapon to discover

and thwart sophisticated and emerging threats via simulating effective defensive strategies.

Unfortunately, as of 2023 only 28% of organizations are deploying GenAI in their daily cybersecurity organizations. It is expected that investments in GenAI will continue to grow over the next decade.

9.10

Charlotte AI

Charlotte AI is an interactive AI assistant from a company called Crowdstrike that assists security analysts to work more efficiently and make faster decisions. Specifically, the product is a multi-tiered AI architecture that can understand security analyst’s questions and provide fast and accurate answers. Charlotte AI automates workflows and generates summaries for reporting, automates criteria of incidents and identifies critical vulnerabilities on internet-facing hosts.

Ultimately, Charlotte AI’s processing abilities reduces the level of expertise required by cyber staff to make timely and accurate decisions. Even skilled analysts will gain incremental speed across their workflows, particularly when required to make real-time responses. From an architectural perspective, Charlotte AI is an example of an “AI Agent” application that can provide answers to user questions and respond with structured responses that that gives advice or suggested actions.

The intellectual center of Charlotte AI or brain is driven by LLM technology. The operating software in Charlotte AI is made up of multiple AI Agents that work together like object modules which come together at execution time. In the case of Charlotte AI, the combined execution AI Agents can provide support for workflows, summaries of threat intelligence, and writing queries, all of which support incident investigation activities.

[image: Image 355]

194

9 Cybersecurity in Analysis and Design

Fig. 9.3 Source

Crowdstrike.

https://www.crowdstrike.com/en-us/blog/charlotte-ai-multi-app

roach/#:~:text=With%20a%20simple%20question%2C%20users,telemetry%20of%20the%20F

alcon%20platform.

Charlotte AI’s AI Agents structure its answers using the following linear sequence:

 Step 1 Understand the Question: This step involves interactive software that translates user conversations and extracts key referenced words like “threat,”

“vulnerability,” etc. and maps them to the correct conversational categories.

 Step 2 Route Subtasks to AI Agents: Based on the interpretations from the key words, Charlotte AI activates specific AI Agent modules to deal with the request.

 Step 3a: Scan for Answers: This step deals with questions that requires additional data from other AI Agents. Charlotte AI provides the necessary API calls to achieve these module interactions.

 Step 3b: Plan Responses for Questions: The step may be necessary if the results of 3a do not generate acceptable or limited answers. In these situations, Charlotte AI provides additional sources by issuing queries to other libraries to achieve more accurate results.

 Step 4: Validate the Plan and Retrieved Data: The runtime agent in Charlotte AI executes the API calls. The output is reviewed by a specialized “Validation”

AI Agent that determines whether the answers are accurate or if they require further information. The Validation AI Agent may need to issue a warning to user if the answer is incomplete.

 Step 5: Generate an Answer: The final answer is sent to the user by generating a summary of the information and suggestions.

Figure 9.3 provides a flow diagram of the steps outlined above.

9.11

Summary

Charlotte AI acts as a buffer that insulates the user from receiving raw LLM

answers that likely will require further validation and editing. As such Charlotte AI is an intermediate product that can be retrofitted with multiple AI systems and

9.13

Why ISO 9000?

195

products to decipher questions in a way that makes it easier to use GenAI in a quality and productive way.

9.12

ISO 9000 as a Reference for Cyber Standards

Although not typically required, many firms have elected to employ ISO 9000

as a more formal vehicle to implement the development of measurable procedures. ISO 9000 stands for the International Organization for Standardization, an organization formed in 1947 and based in Geneva, which currently has 91 member countries associated with it. ISO 9000 was founded to establish international quality assurance standards focused on processes rather than on products.

9.13

Why ISO 9000?

ISO 9000 offers a method of establishing agreed-upon quality levels through standard procedures in the production of goods and services. Many international companies require that their vendors be ISO 9000 compliant through the certification process. Certification requires an audit by an independent firm that specializes in ISO 9000 compliance. The certification is good for three years. Apart from the issue of certification, the benefits of ISO 9000 are in its basis for building a quality program through employee empowerment. It also achieves and sustains specific quality levels and provides consistency in its application. ISO 9000 has a number of sub-components. ISO 9001, 9002, 9003 codify the software development process. In particular 9001 affects the role of the analyst by requiring standards for design specifications and defines 20 different categories of systems. Essentially ISO 9000 requires three basic things:

1. Say What You Do.

2. Do What You Say.

3. Prove it.

This means that the analyst will need to completely document what should occur during the requirements process to ensure quality. After these procedures are documented the analyst needs to start implementing based on the standards developed and agreed upon by the organization. The process must be self-documenting, that is, it must contain various control points that can prove at any time that a quality step in the process was not only completed but done within the quality standard established by the organization. It is important to recognize that ISO 9000 does not establish what the standard should be but rather simply that the organization can comply with whatever standards it chooses to employ. This freedom is what makes ISO 9000 so attractive. Even if the organization does not opt to go through with the audit, it can still establish an honorable quality infrastructure that:

196

9 Cybersecurity in Analysis and Design

• creates an environment of professional involvement, commitment and accountability.

• allows for professional freedom to document the realities of the process itself within reasonable quality measurements.

• pushes down the responsibilities of quality to the implementer as opposed to the executive.

• identifies where the analyst fits in the scope of the software life cycle.

• locates existing procedural flaws.

• eliminates duplication of efforts.

• closes the gap between required procedures and actual practices.

• complements the other quality programs that might exist.

• requires that the individuals participating in the process be qualified within their defined job descriptions.

9.14

How to Incorporate ISO 9000 into Existing Security

and Software Life Cycles

A specific component of ISO 9000 is 9001 which focuses on the considerations of risk related to data availability and cybersecurity. There are also related standards such as ISO 27001 which addresses risk identification and mitigation processes.

This includes the legal, physical, and technical controls needed in a risk information process. The question now is how to incorporate an ISO 9001-type process for the analyst function and incorporate it into the existing cybersecurity life cycle.

Listed below are the essential 9 steps to follow:

1. Create and document all the quality procedures for the analyst.

2. Follow these processes throughout the organization and see how they enter and leave the analyst function.

3. Maintain records that support the procedures.

4. Ensure that all professionals understand and endorse the quality policy.

5. Verify that there are no missing processes.

6. Changes or modifications to the procedures must be systematically reviewed and controlled.

7. Have control over all documentation within the process.

8. Ensure that analysts are trained and that records are kept about their training.

9. Ensure that constant review is carried out by the organization or through third party audits.

Another component of ISO 9000 is ISO 27032 that provides guidelines for cyber managers on:

• Data and privacy from threats

• Maintaining a cyber program

• Developing best practices

9.14

How to Incorporate ISO 9000 into Existing Security and Software …

197

Fig. 9.4 Sample work flow

Assign Analyst

diagram

(MG0010)

Develop Business

User Approval

Spec (AN0050)

Discuss Specs

Approve

Acceptance Test

Plan (AN0160)

• Improving security systems and business continuity

• Building confidence of stakeholders

• Response and recovery from incidents.

In order for ISO 9000, 9001 and other cyber related guidelines to be implemented, it is recommended that the analyst initially provide a work flow diagram of the quality process as shown in Fig. 9.4:

Figure 9.4 reflects some of the steps in a quality process for an analyst. Note that certain steps reflect that there is an actual form that needs to be completed in order to confirm the step’s completion as shown in Figures 9.5, 9.6 and 9.7

The above forms represent the confirmation of the activities in the quality work flow process outlined by the analyst. At any time during the life cycle, an event can be confirmed by looking at the completed form.

In order to comply with the documentation standards, each form should contain an instruction sheet (as shown below). This sheet will ensure that users have the appropriate instructions. Confirmation documents can be implemented in different ways. Obviously if forms are processed manually, the documentation will contain the actual storage of working papers by project. Such working papers are typically filed in a documentation storage room similar to a library where the original contents are secure and controlled. Access to the documentation is allowed, but must be authorized and recorded. Sometimes forms are put together using a word-processing package such as Microsoft Word. The blank forms are stored on

198

9 Cybersecurity in Analysis and Design

 Project Status Report

 Period Ending: / / :

Date:

Project:

Analyst:

Date Delivered To Users:

Previous Objecves:

Previous

Act Compleon

Objecve

Target Date

Date or Status

New Project Objecves:

Objecve

Target Date

__

Start Complete

Financial Performance: Budget Actual % Remaining

\AN0010 Rev. 3/21/19

Fig. 9.5 ISO 9001 project status report

a central library so that master documents can be accessed by the analyst via a network. Once the forms are completed, they can be stored in a project directory. The most sophisticated method of implementing ISO 9000 is to use a Lotus Notes-type electronic filing system. Here, forms are filled out and passed to the appropriate individuals automatically. The confirmation documents then become an inherent part of the original work flow. In any event, these types of forms implementation affect only automation, not the concept of ISO 9000 as a whole as shown in Fig. 9.8.

9.15

Interfacing IT Personnel

199

 Analysis Acknowledgment

User: __

Date:

Analyst:

Date of Request

Project #

Confirmaon Type

Cost

Expected

Expected

Deliverable / Comments

Y/N

Days

Delivery

Requirements Definion

Conceptual Detail Design:

Development:

System Tested Enhancements

User Accepted Enhancements

\an0050 Rev. 3/21/19

Fig. 9.6 ISO 9000 analysis acknowledgment

 Quality Assurance

 Acceptance Test Plan

Purpose:

Test Plan #:

Product:

Number:

Vendor:

Date:

QA Technician:

Page: 1 of

Test

Condion Being Tested

Expected Results

Actual Results

Comply

Comments

No.

Y/N

1

2

3

Fig. 9.7 Quality assurance test plan

9.15

Interfacing IT Personnel

We mentioned earlier that ISO 9000 requires qualified personnel. This means that the organization must provide detailed information about the skill set requirements for each job function. Most organizations typically have job descriptions that are not very detailed and tend to be vague with respect to the specific requirements of the job. In addition, job descriptions rarely provide information that can be used to measure true performance. Questions such as “How many lines of code should

200

9 Cybersecurity in Analysis and Design

Name:

Date Issued: 3/8/19

Confirmaon/Service

Acknowledgment

Supersedes:

Form Instrucons

Revision: 1.00

The purpose of this form is to track the status of various services such as

Requirements Definion, Conceptual Detail Design, Development, Cyber System

Tested Enhancements and User Accepted Enhancements.

The appropriate project # must be aached. The type form must be checked for

each type of Confirmaon.

\an0050i Rev 3/8/11

Fig. 9.8 An ISO 9000 form instruction page

a programmer generate per day?” cannot be measured effectively. There is also a question about whether lines of code should be the basis of measurement at all. A solution to this dilemma is to create a Job Description Matrix which provides the specific details of each job responsibility along with the necessary measurement criteria for performance as depicted in Fig. 9.9.

The document above is a matrix of responsibilities for an analyst. Note that the analyst has a number of efficiency requirements within the managing engagements (projects) responsibility. Efficiency here means that the analyst must perform the task at a certain indicated level to be considered productive at that task. To a degree, efficiency typically establishes the time constraints to deliver the task.

[image: Image 356]

9.16

Committing to ISO 9000

201

Fig. 9.9 Job description matrix

Measurement defines the method used to determine whether the efficiency was met. Reports are simply the vehicle in which the analyst proves that the task was completed and on what basis.

The Job Description Matrix represents a subset of the entire job description that strictly focuses on the procedural and process aspects of the individual’s position. It not only satisfies ISO 9000, but represents a healthier way of measuring individual performance in an IS environment. Most individuals should know exactly their performance at any time during the review period. Furthermore, the matrix is an easy tool to use for updating new or changed performance tasks.

9.16

Committing to ISO 9000

We have outlined the sequential steps to implement an ISO 9000 organization.

Unfortunately, the outline does not ensure success, and often just following the suggested steps leads to another software life cycle that nobody really adheres to.

In order to be successful, a more strategic commitment must be made. Let’s outline these guidelines for the analyst functions:

202

9 Cybersecurity in Analysis and Design

• A team of analysts should meet to form the governing body that will establish the procedures to follow to reach an ISO 9000 level (this does not necessarily require that certification be accomplished.)

• The ISO 9000 team should develop a budget of the milestones to be reached and the time commitments that are required. It is advisable that the budget be forecasted like a project, probably using a Gantt chart to develop the milestones and timeframes.

• The ISO 9000 team should then communicate their objectives to the remaining analysts in the organization and coordinate a review session so that the entire organization can understand the benefits, constraints and scope of the activity.

It is also an opportunity to allow everyone to voice their opinions about how to complete the project. Therefore, the meeting should result in the final schedule for completing the ISO 9000 objective.

• The ISO 9000 team should inform the other IS groups of its objectives, although analysts should be careful not to provoke a political confrontation with other parts of the IS staff. The communication should be limited to helping other departments understand how these analyst quality standards will interface with the entire software life cycle.

• The work flows for the analyst tasks must be completed in accordance with the schedule such that everyone can agree to the confirmation steps necessary to validate each task. It is important that the ISO 9000 processes allow for a percentage of success. This means that not every process must be successful 100% of the time, but rather can be acceptable within some fault tolerance level. For example, suppose that the analyst must have a follow-up meeting with the users within 48 h after a previous step has been completed. It may not be realistic to meet this goal every time such a meeting is necessary. After all, the analyst cannot always force users to attend meetings in a timely way.

Therefore, the ISO 9000 step may view this task as successful if it occurs within the 48 h 80% of the time, that is, within a 20% fault tolerance.

• All task steps must have verification. This will require that standard forms be developed to confirm completion. While we have shown samples of these forms earlier, the ISO 9000 team should beware of producing an unwieldy process involving too many forms. Many software life cycles have suffered the consequences of establishing too many check points. Remember, ISO 9000 is a professional’s standard and should cater to the needs of well-trained professionals. Therefore, the ISO 9000 team should review the initial confirmation forms and begin the process of combining them into a smaller subset. That is, the final forms should be designed to be as generic as possible by confirming multiple tasks. For example, form AN0010 (Fig. 10.3) represents a generic project status report that was used to confirm various types of information attributable to different tasks.

• There should be meetings held with the analysis group that focus on the alternatives for automating the confirmation forms as outlined earlier in this chapter. It is advisable that this topic be confirmed by the group since their full cooperation is needed for the success of the program.

9.17

Problems and Exercises

203

• Allow time for changing the procedures and the forms. Your first effort will not be the final one; therefore, the ISO 9000 team must plan to meet and review the changes necessary to make it work. Analysts should be aware that the opportunity for change always exists as long as it conforms to the essential objectives of ISO 9000.

• The ISO 9000 project should be at least a one-year plan, from inception of the schedule to actual fulfillment of the processes. In fact, an organization must demonstrate ISO 9000 for at least 18 months prior to being eligible for certification.

• The ISO 9000 group needs to be prepared and authorized to make changes to the job description of the analyst. This may require the submission of requests and authorizations to the executive management team or the human resources department. It is important not to overlook this step since an inability to change the organization structure could hinder the success of the ISO 9000

implementation.

As we can see from the above steps, establishing an ISO 9000 group is a significant commitment. However, its benefits can include a professional organization that controls its own quality standards. These standards can be changed on an ongoing basis to ensure compliance with the business objectives and requirements of the enterprise. Certification, while not the focus of our discussion, is clearly another level to achieve. Most companies that pursue certification do so for marketing advantage or are required to obtain it by their customers. Implementing ISO 9000

should not require that the entire company conform at once; in fact, it is almost an advantage to implement it in a phased approach, department by department.

The potential benefits of ISO 9000 concepts may fill the void in many of the IS

organizations which lack clearly defined quality standards.

9.17

Problems and Exercises

1. Why is the CISO role so important in mobile systems?

2. Why is the s-curve important when determining cybersecurity risk?

3. What is threat analysis?

4. Explain the relationship between cybersecurity and decomposition.

5. What is risk responsibility?

6. What is GDPR and its importance in data protection?

7. Explain the relationship between IoT and cybersecurity.

8. List and define five roles and responsibilities of the cybersecurity risk analyst.

9. Provide the key issues when designing systems to deal with cybersecurity attacks.

10. How does the analyst role change when being engaged with cybersecurity design?

11. How does GenAI affect cybersecurity operations?

12. What role does Charlotte AI serve for GenAI users?

204

9 Cybersecurity in Analysis and Design

13. Explain why ISO 9000 represents a system of procedures.

14. What are the three fundamental things that ISO 9000 tries to establish?

15. What are the overall benefits of ISO 9000?

16. How is ISO 9000 incorporated into the life cycle?

17. What is ISO 27001 and 27032?

18. Why are work flows the most critical aspect of developing the ISO 9000

model?

19. Why are forms used in ISO 9000?

20. How are personnel affected by ISO 9000?

21. What is a Job Description Matrix?

22. What steps are necessary for an organization to adopt ISO 9000?

23. Does ISO 9000 need to be implemented in all areas of the business? Explain.

References

Bellovin, S. M. (2015). To appear. Thinking security: Stopping next year’s hackers. Addison-Wesley, Boston, 2015.

Choudhury, A. (2024). 8 ways generative AI can enhance cybersecurity. Turing. https://www.tur

ing.com/resources/generative-ai-enhances-cybersecurity.

D’Hoinne, J., Liyan, A., & Firstbrook, P. (2023). 4 ways generative AI will impact CISOs and their staffs. Gartner magic quadrant. June 29, 2023. https://www.netskope.com/lp-4-ways-gen

erative-ai-will-impact-cisos-and-their-teams-sem?utm_source=google&utm_medium=paidse

arch&utm_campaign=NA-Tier%202&utm_agn=&utm_content=702946877003&utm_term=

generative%20ai%20for%20cyber%20security&campaignid=21389081485&agroupid=166

477119551&utm_audience=kwd-2090278158223&matchtype=e&network=g&device=c&

utm_placement=&gad_source=1&gbraid=0AAAAADqg7hPlZRRu0R0-rqLEUJCz04bVZ&

gclid=Cj0KCQjwmt24BhDPARIsAJFYKk191wen4LOWSaH9JDn7G6CVlDXOxWT3qs0N

d51X0OpseXPsmx5ZT8UaAjKbEALw_wcB

Schoenfield, B. S. E. (2015). Securing systems: Applied security architecture and threat models.

CRC Press.

Wikipedia (2019)

[image: Image 357]

Generative AI and Systems

Architecture

10

10.1

Introduction

GenAI has had a huge impact on the design, engineering, and research and development groups allowing for many choices, such as structure, materials, and optimal production techniques. An example might be generating recommendation to improve past architectures, optimization of design for cost savings, improved load bearing, better security, and general performance improvements in design and coding.

10.2

Evolution of Generative Models

GenAI has its roots dating back to the breaking of the Enigma Code during WW

II by Alan Turing in 1937. While his achievement is not directly related to GenAI, it did establish that machines could perform complex reasoning and thus laid the foundations for advancements in AI (Singh, 2024). Figure 10.1 displays the evolution of AI and GenAI.

In 1950, Frank Rosenblatt introduced the “Perceptron,” which was defined as an artificial neuron that mimics brain neuron functions. Rosenblatt’s theory became the basis of the field of Deep Learning Neural Networks in Data Science. In 1961, the ELIZA Chatbot was introduced which was capable of simulation conversation by using pattern matching and mimicking of human conversations (Singh, 2024).

However, it was not until the 1990s that AI reestablished progress. The revi-talization can be attributed to the increased availability of data (aka, Big Data) and the launch of the internet. Simply put the combinations of the internet, data, and advanced computation made machine learning algorithms and neural networks more accessible. Notwithstanding these advancements, GenAI applications did not become popular until 2022 with the launch of ChatGPT.

The specific milestones of GenAI are listed below:

© The Editor(s) (if applicable) and The Author(s), under exclusive license 205

to Springer Nature Switzerland AG 2025

A. M. Langer, Analysis and Design of Next-Generation Software Architectures,

https://doi.org/10.1007/978-3-031-76212-3_10

[image: Image 358]

206

10 Generative AI and Systems Architecture

Fig. 10.1 Source Singh (2024)

1970–1980s

Expert Systems and rule-based logic represent the early versions of

Natural Language Processing.

1990s

Machine Learning becomes relevant and establishes the start of

GenAI models.

2000s

Emergence of Deep Learning which provided more powerful

algorithms for learning from data.

2010s

Further advances in Deep learning and the introduction of Genera-

tive Adversarial Networks (GANS) by Ian Goodfellow.

2020s

Role out of Generative applications in the areas of text and images.

The launch of OpenAI, ChatGPT, and GenAI applications across

multiple industries.

10.3

Generative AI Architecture

At the core of AI architecture is machine learning that will be able to create various solutions. A fascinating feature of GenAI is its ability to integrate with enterprise applications. In this area GenAI can improve operational effectiveness and innovation. This includes revolutionary code production that will in turn influence product designs and engineering. Below are some of the architectural impacts of GenAI:

• Code Generation: AI’s coding abilities will enable complimentary features for corporate applications. For example, Microsoft’s Github has released CoPilot which can function as an assistant for developers during coding activities.

CoPilot goes beyond just new code production; it can also discover problems and bugs and even correct them automatically. In other words, CoPilot is not designed to replace programmers but rather support them! Thus, AI code generation will serve as a “digital collaborator” by automating basic coding functions and allowing developers to apply more focus on human creative solutions.

• Enterprise Content Management: GenAI is now providing input for content creation and design. The solutions offered for authors include developing new content, GUI design, and creating advanced quality materials.

• Marketing Interface Products: GenAI can deliver more diverse answers and general interactions to consumers thus reducing the need for human interface. This allows for automated product recommendations that provide deeper insights

10.4

GenAI Reference Architecture

207

into consumer preferences. The results of using GenAI are expected to establish new architectures that produce better products for targeted markets and offer advanced customer service capabilities. GenAI platforms are expected to customize consumer products that should result in better customer loyalty for all market sizes and segments.

• Product Design and Engineering: GenAI architecture will enable manufacturers to have more alternatives of structure, materials, and production techniques they use for their product lines. This can be accomplished during the design level where every alternative can be automatically examined for cost, load bearing, and weight. Many of these designs will be created from new data created by GenAI from large repositories of data. These repositories will be the result of the proliferation of IoT devices which will do the data capture. This data will then be analyzed by digital twin software for interpretation across multiple markets and locations.

10.4

GenAI Reference Architecture

GenAI will inevitably redefine “Agile” development as we know it. AI, with its inventory of application agents, IoT devices and Clouds on the “Edge” will allow dynamic functioning solutions. As a result, it is expected that development will require far less studies, research, and planning. GenAI will undoubtably provide more options and prototyping much earlier in the development cycle. The GenAI Reference Architecture by Aranjani (2024) sets forth a type of blueprint to how large language models (LLM) models can be architected. LLMs are defined as specialized AI systems that can comprehend and then generate human language.

LLMs accomplish this via the collection of massive amounts of text. Figure 10.2

shows Aranjani’s technical blueprint components.

Below is a definition and description of each component of the Reference Architecture.

 UI/IX: Also known as Conversational UI, provides the interfaces for natural language processing to allow for human related interfaces or dialogue systems. UI/

IX typically has a personalization capability that interfaces with individual user preferences and requirements. The goal of UI/IX is to create intuitive and user-friendly human-AI interactions. The challenge of UI/IX is to provide a balanced interface that enables AI functionality and ease of use.

 Prompt Engineering: GenAI requires sophisticated prompting templates. The more precise the prompts, the more accurate the results, that is, prompts allow models to generate the intended responses. Best practices in prompt design include: 1. Clarity and direction of the prompt design.

2. Content of the question for the intended audience or domain.

3. Simple step-by-step supporting instructions.

4. Provide examples for uses of similar requests used by the prompt.

[image: Image 359]

208

10 Generative AI and Systems Architecture

Fig. 10.2 Patterns and technical blueprint for building GenAI solutions (Aranjani, 2024) 5. Chain-of-Thought instructions that display multiple short questions that lead to more precise answers.

6. Outline-of-Thought that provides standard framing of prompt sections, e.g., Introduction, main-points, etc.

7. Tree-of-Thought which consists of top-down questions that branch to other questions based on prompt responses.

8. React-Framework that examines queries and generates automated prompts

based on responses.

9. DSPy Engineering Templating which creates algorithms that assist in building prompts. DSPy acts similar to a preprocessor that takes high-level input and creates prompts for usage.

10. Interactive Testing and Refinement involves the testing of prompts for accuracy and adjusting models to improve results.

 Retrieve, Augment, Generate (RAG): Ability to integrate relevant data to augment prompts before generating results. Inputs include unstructured data, SQL access, and use of graphs.

 Serve: Using APIs to generate interface links with other application agents and end users.

 Adapt: The modularization of AI components to improve adaptability with other application agents or reuse as object modules at execution time.

 Prepare and Tune Modules: This involves data cleaning. Integrating, and improving engineering tasks via data pipelines. Tuning applications include:

10.4

GenAI Reference Architecture

209

• Data privacy and security.

• Data balancing via augmentation.

• Synthetic data generation or creation of artificial data that mimics real-world data.

• Exploration of rare or dangerous scenarios that minimizes Black Swan events that cannot be determined from existing data sets.

• Cost and time efficiency in processing and execution time.

• Customization and control sets that create sub data to meet special requirements.

• Ethical considerations that review usage of data that evaluate ethical principles vs strategic advantages for the business.

 Ground: this component provides constant updates to the data and AI models. Also known as “feedback loops” where the application continually monitors activities to ensure validity and accuracy of data and logic.

 Multi Agent Systems (MAS): these systems provide connectivity across multiple applications that can be integrated to solve complex problems. MAS are most effective when dealing with cross system domains like robotics, autonomous vehicles, and smart grids.

 Govern: these are the checks and balances necessary to ensure AI systems do not violate ethical principles and regulations. This includes management of compliance issues like transparency, accountability, and fairness. Compliance management is also required to adhere to legal and regulatory requirements.

 MLOps: this feature enables deployment of AI modules with automated updates, corrections, and new versions—essentially connecting ML pipelines.

This GenAI reference architecture example shows the typical required capabilities to achieve an AI maturity spectrum. These systems entail complex components that can interface solutions for multiple types of projects, professions, and industries. The expectation is that there will be many third-party products available in the market that will allow integrations across different GenAI systems. Overtime, as in other industries, it is likely that many features and functions in these products will become standard or commodity opensource applications. Another related component is AIOps which relates more to the interface across IT structures and is often confused with MLOps. Figure 10.3 represents an AIOps platform.

The important difference is that AIOps uses different functions of AI and automation to streamline the administration of the IT domain and its infrastructures whereas MLOps operates and connects ML applications and pipelines.

The common use cases of AIOps according to Prayaga (2024) are: 1. Identifying problems based on anomalies or deviations from normal data behavior.

2. Forecasting methods to prevent outages or to improve operational readiness.

[image: Image 360]

210

10 Generative AI and Systems Architecture

Fig. 10.3 AIOps platform. Source Gartner. https://cloudfabrix.com/blog/aiops/what-is-aiops-top-

10-common-use-cases/

3. Grouping alerts, events, and logs based on common symptoms or text

descriptions.

4. Analyzing events that can be correlated to reduce noise in IT data and develop preventive actions.

5. Determining application or server health based on sensors or telemetry data.

6. Identifying correlated symptoms for faster root cause inference.

7. Finding similar incidents to accelerate resolutions.

8. Using named entity recognition automatically to identify and classify important information in text.

9. Predicting incident assignments based on their attributes.

10. Providing incident classifications using NLP and third-party products like OpenAI.

10.5

Impact of GenAI on Software Design

Requirements has never been a trivial task in the Software Development Life Cycle (SDLC). The process has historically haunted by vague and poorly defined input from users and consumers. There are particular challenges for projects that do not have access to user input and/or product owners. GenAI can be used to add scientific input that can lead to better design and more evolutionary software products.

10.6

ChatGPT and the SDLC

211

By evolution, I refer to Chap. 1, where are presented the challenges of developing software requirements for future consumer needs. I explain that applications and products in the digital economy require analysts and designers to be more predictive, that is, need to have tools and capabilities to predict user needs. Indeed, we are at the end of the era of user led requirements input. As Henry Ford once stated, “If I listened to my customers, I would have invented a faster horse!” The reality is that GenAI using advanced data science and ChatGPT will be a critical path to help forecast future user and consumer needs.

PWC (2024) recently released 10 use cases that have achieved software design success using GenAI technologies:

1. Automatic Generation of Product Features: depending on the quality of inputs, GenAI can generate new feature and function templates.

2. Fast and Consistent Solutioning in System Design: This will help software teams to reuse application components.

3. Fast and Accurate User Stories: Decomposition of complex requirements into user scenarios and generation of acceptance criteria.

4. Generate Wireframes: take input from desired features and context to create wireframes that will accelerate development into visual diagrams.

5. More Test Cases: By analyzing acceptance criteria, test cases can automatically be generated for a wider range of scenarios.

6. Synthesis of Data to Close Gaps: By combining data from multiple domains, GenAI can establish more cohesive pictures of its meaning. This improves design requirements and reducing time.

7. Generation of Test Scripts: Combining known and uncertainties GenAI can generate user acceptance testing scripts.

8. Rapid and Granular Troubleshooting: Comparing intended and actual results to facilitate root cause analysis. This capability can also be used to upgrade software library versions and re-platform software (getting to operate on the Cloud).

9. Complete and Review Code: Augmentation of human coding via code refactoring by improving the code’s design, structure, and implementation without changing its functionality.

10. Automatic Documentation: Generate new release notes and user guides.

10.6

ChatGPT and the SDLC

ChatGPT (Generative Pre-Trained Transformer) is an advanced Chatbot that can accelerate certain stages of the SDLC. Specifically, ChatGPT can make significant contributions to gathering requirements, design and testing, and application developer productivity to name just a few.

212

10 Generative AI and Systems Architecture

Generally, the SDLC typically consists seven phases:

1. Planning.

2. Requirements Analysis.

3. Design.

4. Coding.

5. Testing.

6. Deployment.

7. Maintenance.

There are a number of use cases where ChatGPT can transform the speed and accuracy of the SDLC:

1. Code Completion and Optimization: ChatGPT can provide suggestions of coding “snippets” (reusable source code, machine code, or text) based on user input, particularly useful for repetitive tasks. This feature provides significant efficiency for the development of object routines relevant for modular software platform design. Examples include:

• Auto Complete: code completers can be used to automatically save programmer development time by determining the remaining parts of the code or

instruction. This is similar when a user types in the beginning of a word and the software automatically completes the rest of the word or sentence.

• Predictive Coding: this is the actual prediction of lines of code necessary to completing the algorithm or routine.

• Programming Language Translation: enabling the automatic translation from one programming language to another, e.g., Python to Javascript.

• Code Optimization: suggestions to improve or modify programming code to improve performance, efficiency, readability, or maintainability of the software.

2. Documentation: While documentation is regarded as a critical task, it is often the least implemented and accurate component of the SDLC. The problem is the time consumption of the task. However, ChatGPT is very effective at writing documentation and maintaining the necessary consistency in format for its audiences. Furthermore, ChatGPT can automatically generate the code document while simultaneously saving enormous time and human labor. ChatGPT

has been dependable to generate valid descriptions, parameters, and return types based on the inputs from snippets or API endpoints (Lawrence, 2023). ChatGPT can even auto generate user guides that includes step-by-step statements to perform specific actions.

3. Bug Detection and Test Automation

ChatGPT can identify bugs in code and flag potential logic deficiencies in many stages of the SDLC. Obviously, identifying such issues early in the SDLC

can avoid delays in project completion and in the efficient use of development resources. Bug detection includes fixing syntax errors, null references, and other

10.7

Advantages and Disadvantages of GenAI

213

common coding errors. ChatGPT can also be used to enforce IP protection and data security standard routines.

Testing is another critical and difficult task in the SDLC. Developing manual test cases and scripts is extremely time consuming and tedious. ChatGPT

provides the ability to input test scenarios and requirements to produce test cases and scripts that run automatically. Finally, CHatGPT can generate test data against a wide-range of input values and variables.

4. Natural Language Processing (NLP)

ChatGPT goes beyond just speeding up SDLC processes like testing, doc-

umentation, and bug detection. Using NLP, ChatGPT can actually create new product features and functions. NLP can perform these tasks by leveraging human text and conversations to determine “data intent.” Ultimately ChatGPT

can:

• assist NLP interpretation of software,

• develop responses via chatbots and customer service systems,

• translate between languages,

• transcribe speech into text, and

• create domain-specific content (Lawrence, 2023).

Although ChatGPT has had a short history, it promises to provide enormous support across a myriad of operations and research in business and society. As we see further breakthroughs, ChatGPT will become even more powerful and relevant to more applications. It is important to not; however, that ChatGPT should not be seen as a replacement of human involvement, but rather as an assistant in a bot!

10.7

Advantages and Disadvantages of GenAI

More specifically GenAI promotes reinvention of product esthetics that can result in distinctive and friendly designs in areas such as automotive, aircraft, manufacturing, life sciences, healthcare, and consumer products. Furthermore, it improves overall product quality, sustainability, and improved consumer experiences based on collected data from various sources. However, there are challenges: security, data privacy and computational resources to name a few (Wadhwani, 2024): 1. Misuse/Harm: There is always risk when generating what is called “deep fakes”

or biased data. There needs to be facilities that provide regular review and moderation.

2. Hijacking: This involves the modification of models for destructive purposes by third parties or internal individuals. Strong security systems must be developed that have ongoing updates to combat compromised data.

3. Biases Correction and Mistakes: Software applications must in place to detect and correct logic problems.

4. Data Privacy: Procedures must be integrated to ensure that all data is protected and kept confidential.

214

10 Generative AI and Systems Architecture

5. Data Governance/Compliance: All GenAI products must adhere to data privacy rules such as GDPR and CCPA.

6. Data Breaches: This involves the protection against unauthorized access by individuals and outside systems.

7. Infrastructure Investments: GenAI is hungry for power, speed, and storage facilities that are huge capital expenditures.

8. Optimization: Data repositories tend to get larger over time and require regular fine-tuning or pruning.

9. Hybrid and Edge Computing: This requires distributed data and applications that are operating on remote clouds and IoT devices that require sophisticated applications that aggregate the data as well as additional hardware costs.

10.8

Future Evolution of GenAI in Analysis and Design

The explosion of GenAI is only at the beginning of a long S-Curve of new capabilities, features, functions, and applications. GenAI is expected to further per-sonalize learning experiences based on individual needs particularly for medicine and new forms of art and expression. Ultimately, the future appears to establish a world where technology and imagination jointly create new possibilities of the future (Langer, 2022). More specifically Wadhwani (2024) forecasts four major evolutions of GenAI:

1. Specializations: As in many maturing professions, GenAI will emerge into specific applications such as financial fraud, detection, customer services, and medical evaluations that will require very specific focus, training, and credentials.

2. Acceptance Across Industries: Using GenAI to support diagnostics will become fundamental in industries like healthcare, education, and manufacturing. However, all industries will eventually succumb AI disruption.

3. Real-Time Agility and Flexibility: Think of a world where data will continue to update AI systems instantaneously thus allowing businesses to predict and adjust to changing consumer demands.

4. Intel and Democratization: GenAI will promote sustainability by offering AI as a commodity to everyone, allowing for a new competitive landscape globally. This new competition will be driven by open and creative new ideas and imaginations as opposed to those that are based on IP, supply chains and infrastructure.

10.9

Considerations for Forming a GenAI Strategy

According to Likens and Wakefield (2023) organizations should address six key priorities to improve the chances of success with implementing GenAI.

10.9

Considerations for Forming a GenAI Strategy

215

 Priority 1: Manage the AI Risk/Reward Tug-of-War: Many companies are struggling between executive and managers that strive to use the potential of GenAI for competitive advantage and the concerns raised by technical, legal, and operating personnel regarding mitigating risks. This dilemma requires adopting AI in a responsible way meaning moving forward carefully with everyone’s concerns being heard. Furthermore, any initiatives should be reviewed and approved by the Board, especially those relating to the risks. A number of leaders promote the idea of a “middle-of-the-pack strategy-not too much in front on the bleeding edge, but not too far behind that you fall hopelessly behind.

 Priority 2: Align your Generative AI Strategy with Your Digital Strategy (or Vice Versa): The introduction of GenAI has for most organizations inserted itself into the organization’s digital transformation efforts. It is recommended that you align the GenAI strategy with the digital approach and make the necessary modifications to the plan.

 Priority 3: Experiment with an Eye for Scaling: The ability to scale GenAI is critical to reap the expected benefits from the investment. While creating pilot projects to evaluate GenAI make sense, they may slow things down. However, experimentation is critical for success with GenAI because of the myriad of ways it can be deployed in an organization. The general recommendation is to select use cases that can clearly demonstrate competitive advantage and avoid “pilot purgatory.”

It is critical for these use cases to be short term projects so the benefits can be assessed timely.

 Priority 4: Develop a Productivity Plan: Another area of assessing GenAI value is gaining efficiencies in operations and material productivity gains in three areas: 1. Reinvent GenAI to improve quality, volume and speed in production related areas. Demonstrating that GenAI can produce more output with the same or less level of input.

2. Keep output constant but reduce labor to cut costs.

3. Pursue a combination of (1) and (2).

 Priority 5: Put People at the Heart of your Generative AI Strategy: Considering the impact of GenAI on your workforce can make or break the success of your investment. Surveys have suggested that less than 30% of employees believe that AI will create new jobs or skill development opportunities for them. Previous studies have shown that workers are more likely to adopt what they can co-create, thus staff need to be engaged in the AI strategy. Unfortunately, while companies are investing in AI, most workers are not clear on its impact on their jobs and careers. Likens and Wakefield (2023) suggest companies:

1. Engage their people early and often. Continually communicate how AI fits in with the company’s goals.

216

10 Generative AI and Systems Architecture

2. Provide customized training and upskilling at various worker levels and departments. Ascertain employee current skills and knowledge and provide training pathways.

3. Promote a growth mindset by creating a workplace where learning new things is encouraged and provides career rewards.

4. Advocate and enable AI use and experimentations. Provide guidelines and policies on AI practices.

5. Measure impact buy implementing key performance indicators and assess

results.

 Priority 6: Work with your Ecosystem to Unlock even Bigger Benefits: Ensure that the AI initiative contains a solid support group of dependable suppliers, service providers, customers, and critical strategic alliances.

The report suggests that GenAI is a general-purpose technology and should have the ability to contribute to an enormous range of business initiatives and applications.

10.10

Evolution of Social Architecture

The previous section advocates the need for any GenAI strategy to include the existing workforce. Indeed, the GenAI Systems Architecture made up of hardware devices and software applications must also include a Social Architecture to be successful. This Social Architecture represents the human component that can operate and support the physical infrastructure. The term Social Architecture was first introduced by Prahalad and Krishnan (2008) (also see Chap. 14).

Essentially, they defined Social Architecture as the institutional culture required to support the Technical Architecture (Hardware and Software). This institutional culture includes not only the operational behaviors, but also the organization’s structural design. Prahalad and Krishnan’s concept evolved during the explosion of “digital” companies that were able to outperform classic brick and mortar legacy organizations. Many scholars researched what made these digital companies more effective and found that structure was a factor, but the culture of the operations and thinking were far more relevant to the success of these companies. Langer (2022)

called this new culture of operations and thinking “Data-Centricity,” defined as the ability to use data as the central driver of operations. Simply put, digital companies have people that use data more often and more effectively to run the business.

It appears that GenAI is the next phase of data-centricity. Workers must become more functional when using ChatGPT to effectively integrate it in the operations of their companies transferring the expertise offered by data scientists which is being replaced by ML! Thus, workers of tomorrow must be able to use GenAi to create the new ideas and imaginations to drive global economic success (Langer, 2022).

The forecast is supported by Mckinsey’s 2020 rubric titled “AutoML Changes the Mix of Talent Needed” shown in Fig. 10.4.

[image: Image 361]

10.10

Evolution of Social Architecture

217

Fig. 10.4 Source

https://www.mckinsey.com/business-functions/mckinsey-analytics/our-ins

ights/rethinking-ai-talent-strategy-as-automated-machine-learning-comes-of-age.

August

14,

2020

One can see that this chart shows to reduction in technical data science expertise being replaced by automated ML. In 2024 we now call AutoML Generative AI! The result is the prediction that organizations will need less data scientists and more GenAI workers that have the expertise to use GenAI in every aspect of the operations of the business. The assumption is that business domain knowledge must include AI proficiency. Thus, GenAI must become part of the Social Architecture culture and a new generation of Langer’s data-centricity.

The current challenge for many companies is to define the actual AI-related skill-sets for business domain personnel. That is, what AI technology capabilities should business managers and staff possess? Some of these considerations are listed below:

 Business Applications

• Machine learning and data science statistics.

• Data cleaning and administration.

• Subject matter expertise.

• Story-telling and visualization.

218

10 Generative AI and Systems Architecture

 Deployment

• User experience expertise.

• User interface design.

• Understanding of logic programming.

• User training.

• Change management.

According to Hürtgen et al., (2020), organizations should consider the following steps to upskill domain expertise of their staff:

1. Train business experts on AutoML/ChatGPT.

2. Education should include using tools and understanding the fundamentals of data science.

3. All training courses should include exercises, use cases, life cycles, executing tasks, and on-the-job coaching.

10.11

Conclusions

While GenAi has a short history, it has gained a lot of attention from all types of organizations. However, GenAI also has significant potential impacts on our social, political, and legal systems. As breakthroughs continue, particularly in the area of neural networks and generative adversarial networks (GANSs) it will be crucial that having the capable infrastructure to support these innovations.

This chapter has focused on explaining the components of GenAI and its impact on the SDLC and operating support systems necessary to implement and secure its ability to function. Further, these new systems must be designed to scale to support the expected improvements and capabilities of AI-driven languages.

The key takeaways of this chapter are:

• AI covers many methods/algorithms and applications. The best applications are integrated across multiple functions of the business.

• Focus on three main categories where AI can impact business strategy:

– Internal challenges.

– Market opportunities.

– Enhancing existing products and services.

• GenAI can do many tasks using internal data and still keep it protected

• AI/ML projects have a different IT SDLC but still needs to be integrated with traditional legacy processes.

• Start experimenting with AI. Getting started does not need to be expensive.

• There is a learning curve and it will likely require some new talent integrated with existing staff.

References

219

10.12

Problems and Exercises

1. What is the importance of Rosenblatt’s “Perceptron?”

2. What is Deep learning and its relationship to AI?

3. What is meant by Reference Architecture?

4. What is the Generative Adversarial Networks (GANS) role in Generative AI?

5. What is the difference between MLOPs and AIOPs?

6. Provide 5 use cases that have achieved software design success?

7. What is Natural language Processing?

8. What are the seven phases of the traditional SDLC?

9. What are the Six Priorities of forming a GenAI Strategy?

References

Aranjani, A. (2024, April 28). The GenAI reference architecture. Medium. https://dr-arsanjani.med

ium.com/the-genai-reference-architecture-605929ab6b5a

Hürtgen, H., Kerkhoff, S. J., Lubatschowski, J., & Möller, M. (2020). Rethinking AI talent strategy as automated machine learning comes of age. QuantumBlack. McKinsey & Company. https://www.mckinsey.com/business-functions/mckinsey-analytics/our-ins

ights/rethinking-ai-talent-strategy-as-automated-machine-learning-comes-of-age. August 14, 2020

Langer, A. M. (2022). Fantasy and adult development. Journal of Aesthetic Education, 56(4).

Lawrence, A. (2023, March 15). How to use ChatGPT for software development (with prompts).

https://kms-technology.com/emerging-technologies/ai/chatgpt-software-development.html

Likens, S., & Wakefield, N. (2023, December 7). Do you have a “early days generative AI strategy?” Strategy+Business, PWC Publication. https://www.pwc.com/gx/en/issues/technology/

early-days-generative-ai-strategy.html

Prahalad, C. K., & Krishnan, M. S. (2008). The new age of innovation: Driving cocreated value through global networks. McGraw-Hill.

Prayaga, T. (2024, January 25). What is AIOps and what are top 10 AIOPs use cases. CloudFabrics.

https://cloudfabrix.com/blog/aiops/what-is-aiops-top-10-common-use-cases/

Singh, V. (2024, June 6). Evolution of Generative AI: A timeline of breakthrough innovations.

Brilworks. https://www.brilworks.com/blog/evolution-of-generative-ai/

Wadhwani, K. (2024). A complete guide to generative AI architecture. https://www.solulab.com/

generative-ai-architecture/#:~:text=Generative%20AI%20architecture%20enables%20desi

gn,%2C%20load%20bearing%2C%20and%20weight

[image: Image 362]

Transforming Legacy Systems

11

11.1

Introduction

A legacy system is an existing application system in operation. While this is an accurate definition, there is a perception that legacy systems is old and antiquated applications operating on mainframe computers. Indeed, Brodie and Stonebraker

(1995) state that, “a legacy information system is any information system that significantly resists modification and evolution” (p. 3). They define typical legacy systems as:

• Large applications with millions of lines of code.

• Usually more than 10 years old.

• Written in legacy languages like COBOL.

• They are built around a legacy database service (such as IBM’s IMS) and some do not use a database management system. Instead, they use older flat-file systems such as ISAM and VSAM.

• The applications are very autonomous. Legacy applications tend to operate independently from other applications, which mean that there is very limited interface among application programs. When interfaces among applications are available, they are usually based on export and import models of data and these interfaces lack data consistency.

While many legacy systems do fit these scenarios, many do not. Those that do not can however be considered legacies under my original definition, that is, any application in operation. What this simply means is that there are what I call “generations” of legacy systems that can exist in any organization. Thus, the definitions of what constitutes a legacy system are much broader than Brodie and Stonebraker’s descriptions. The more important issue to address is the relationship of legacy systems with packaged software systems especially given the explosion of independent APIs from the evolving IoT devices, blockchain products, and Cloud

© The Editor(s) (if applicable) and The Author(s), under exclusive license 221

to Springer Nature Switzerland AG 2025

A. M. Langer, Analysis and Design of Next-Generation Software Architectures,

https://doi.org/10.1007/978-3-031-76212-3_11

222

11 Transforming Legacy Systems

computing. Packaged software systems that are typically supported by third-party vendors encompass both internal and external applications. Thus, existing internal production systems, including third-party outsourced products, must be part of any application strategy. Furthermore, there are many legacy systems that perform external functions as well, albeit not directly in an Internet interface.

This chapter defines the types of legacy systems that exist and provides guidelines on how to approach their integration with packaged software applications and transformation into the new architectures that support IoT. The project manager or analyst must determine whether a legacy system should be replaced, enhanced, or remain as is. This chapter also provides the procedures for dealing with each of these three choices and their effects on the overall architecture of the decision whether to make or buy a system. However, this chapter suggests that all traditional legacy systems at some point need to be redeveloped to support mobility and maximize cyber protection.

11.2

Types of Legacy Systems

The types of legacy systems tend to mirror the life cycle of software development.

Software development is usually defined within a framework called “generations.”

Most professionals agree that there are five generations of programming languages: 1. First Generation: The first generation was known as machine language.

Machine language is considered a low-level language because it uses binary symbols to communicate instructions to the hardware. These binary symbols form a one-to-one relationship between a machine language command and

a machine activity. That is, one machine language command performs one

machine instruction. It is rare that any legacy systems have first-generation software.

2. Second Generation: This generation was comprised of assembler programming languages. Assembler languages are proprietary software that translates a higher-level coding scheme into more than one machine language instruction. Therefore, it was necessary to design an assembler, which would translate the symbolic codes into machine instructions. Mainframe shops still may have a considerable amount of assembly code that exists, particularly with applications that perform intricate algorithms and calculations.

3. Third Generation: These languages continued the growth of high-level symbolic languages that had translators into machine code. Examples of third-generation languages are COBOL, FORTRAN, BASIC, RPG, and C. These languages

use more English-like commands and have a higher ratio of machine lan-

guage produced from one instruction. Third-generation languages tend to be more specialized. For example, FORTRAN is better suited for mathematical

and scientific calculations. Therefore, many insurance companies have FOR-

TRAN because of the high concentration on actuarial mathematic calculations.

11.3

Third-Generation Language Legacy System Integration

223

COBOL, on the other hand, was designed as the business language and has special features to allow it to manipulate file and database information. There are more COBOL applications that exist than any other programming language.

Most mainframe legacy systems still have COBOL applications. RPG is yet

another specialized language that was designed for use on IBM’s mid-range machines. These machines include the System 36, System 38, and AS/400

computers.

4. Fourth Generation (4GL): These programming languages are less procedural than third-generation languages. In addition, the symbols are more English-like and emphasize more about desired output results than how the programming statements need to be written. As a result of this feature, many fewer technical programmers have learned how to program using 4GLs. The most powerful

features of 4GLs include query of databases, code generation, and graphic screen generation abilities. Such languages include Visual Basic, C++, Visual Basic, Powerbuilder, Delphi, and many others. Furthermore, 4GL languages

also include what is known as query languages because they contain English-like questions that are used to directly produce results by directly accessing relational databases. The most popular 4GL query language is Structured Query Language (SQL).

5. Fifth-Generation: These programming languages combine what is known as rule-based code generation, component management, and visual programming

techniques. The rule-based code generation became popular in the late 1980s with the creation of artificial intelligence software. This software uses an approach called knowledge-based programming, which means that the developer does not tell the computer how to solve problems, but rather the problem (Stair & Reynolds, 1999). The program figures out how to solve the problem. While knowledge-based programming has become popular in specialized

applications, such as in the medical industry, it has not been as popular in business.

Most legacy applications will either be third- or fourth-generation language systems, therefore, analysts need to have a process and methodology to determine how to transform and re-architect these applications.

11.3

Third-Generation Language Legacy System

Integration

As previously discussed, most third-generation language legacy systems were developed using COBOL. COBOL was developed to provide a method of forcing programmers to self-document their code so that other programmers could maintain it. Unfortunately, COBOL requires what is known as a File Description Table (FD). The FD defines the record layout for every file used by the COBOL

program. In other words, every file is described within the program and must match the format of the actual physical data file. This means that any change to

224

11 Transforming Legacy Systems

a file structure must be synchronized with every COBOL program that uses that data file. Thus, COBOL is somewhat eclectic: there is no real separation of the data description and the program logic. In COBOL programs, then a change in data format could necessitate a change in the program code. That is why COBOL

programs suffer from large degrees of coupling of code. Coupling is defined as the reliance of one piece of the code on another.

COBOL programs may or may not use a relational database as their source of data. I earlier defined two other common formats called ISAM and VSAM, which are flat-file formats, meaning that all data elements are contained in one record as opposed to multiple files as is the case in the relational database model. However, many COBOL legacy systems have been converted to work with relational databases such as IBM’s DB2. In this situation the FD tables interface with the database’s file manager so that the two entities can communicate with each other.

Figure 11.1 depicts the interface between program and database.

Notwithstanding whether the COBOL legacy is using a database interface or flat-files the analyst needs to determine whether to replace the application, enhance it, or leave it as is.

11.4

Replacing Third-Generation Legacy Systems

When replacing third-generation legacies, analysts must focus on both the data and processes. Because of the age of these systems, it is likely that there will be little documentation available, and the amount available will most likely be outdated.

Indeed, the lack of proper documentation is the major reason why legacy systems are slow to be replaced: rewriting code without documentation can be an overwhelming and time-consuming task. Unfortunately, all things must eventually be replaced. Delaying replacement leads to legacy systems that keep businesses from remaining competitive. The following sections provide a step-by-step approach to COBOL-based legacies.

11.5

Approaches to Logic Reconstruction

The best way to reconstruct the logic in COBOL applications is to separate the data from the processes. This can be accomplished by creating data flow diagrams (DFD) for each program. Having a DFD will result in defining all of the inputs and outputs of the application. This is accomplished by following the tasks below: 1. Print the source code (actual COBOL written code) from each application. Each application will contain a “FD” section that defines all of the inputs and outputs of the program. These will represent the data stores of the data flow diagrams (Fig. 11.2).

11.5

Approaches to Logic Reconstruction

225

Employee Payroll File Description Table in COBOL Program

DATA DIVISION.

FILE SECTION.

FD

PAYROLL-FILE

LABEL RECORDS ARE OMITTED.

01

PAYROLL-RECORD.

05

I-PAYROLL-NUMBER

PIC X(5).

05

I-NAME

PIC X(20).

05

I-HOURS-WORKED

PIC 99V9.

05

FILLER

PIC XXX.

05

I-PAYRATE

PIC 99V999.

05

I-DEPENDENTS

PIC 99.

05

FILLER

PIC X(20).

Employee Payroll Entity

Payroll-Number (PK)

L-Name

F-Name

Hours-Worked

PayRate

Dependents

Fig. 11.1 COBOL file description interface with database manager

2. DFDs should be decomposed so that they are at the functional primitive level (one-in and one-out, preferred). This provides functional decomposition for the old application and sets the framing for how it will be decomposed into an object-oriented solution.

3. By reviewing the code, write the process specifications for each functional primitive.

4. Follow the steps as outlined in Chap. 3 to determine which functional primitive DFDs become methods of a particular class.

5. Capture all of the data elements or attributes required by each functional primitive DFD. These attributes are added to the data dictionary (DD).

226

11 Transforming Legacy Systems

FD

REPORT-FILE

LABEL RECORDS ARE OMITTED.

01

REPORT-RECORD.

05

O-PAYROLL-NUMBER

PIC X(5).

05

FILLER

PIC XX.

05

O-NAME

PIC X(20).

05

FILLER

PIC XX.

05

O-HOURS-WORKED

PIC 99.9.

05

FILLER

PIC XX.

05

O-PAYRATE

PIC 99.999.

05

FILLER

PIC XX.

05

O-DEPENDENTS

PIC 99.

05

FILLER

PIC XX.

05

O-GROSS-PAY

PIC 999.99.

05

FILLER

PIC XX.

05

O-TAX

PIC 999.99.

05

FILLER

PIC XX.

05

O-NET-PAY

PIC 999.99.

Fig. 11.2 COBOL file description tables

6. Take each major data store and create an entity. Do normalization and Logic Data Modeling in accordance with the procedures in Chap. 4, combining these elements with the packaged software system as appropriate.

7. Data stores that represent reports should be compared against sample outputs.

These reports will need to be redeveloped using a report-writer such as Crystal’s report-writer or a data warehouse product.

8. Examine all existing data files and/or databases in the legacy system. Compare these elements against those discovered during the logic reconstruction.

In third-generation products, there will be many data elements or fields that are redundant or used as logic “flags.” Logic flags consist of fields used to store a value that depicts a certain state of the data. For example, suppose a record has been updated by a particular program. One method of knowing that this occurred is to have the application program set a certain field with a code that identifies that it has been updated. This method would not be necessary in a relational database product because file managers automatically keep logs on the last time a record has been updated. This example illustrates how different third-generation legacy technology differs from more contemporary technologies.

There is no question that replacing third-generation legacies is time-consuming.

However, the procedures outlined above will prove to be accurate and effective. In many situations, users will decide that it makes sense to re-examine their legacy processes, especially when the decision has been made to rewrite applications for integration with IoT and blockchain systems. We call this business process reengineering. Business process reengineering is therefore synonymous with enhancing the legacy system.

11.7

Data Element Enhancements

227

11.6

Enhancing Third-Generation Legacy Systems

Business process reengineering (BPR) is one of the more popular methodologies used to enhance third-generation applications. A more formal definition of BPR

is “a requirement to study fundamental business processes, independent of organization units and information systems support, to determine if the underlying business processes can be significantly streamlined and improved.” 1 BPR is not just rebuilding the existing applications for the sake of applying new technology to older systems, but also allows for the application of new procedures designed around the Object Oriented systems paradigm. In this scenario, however, BPR is used to enhance existing applications without rewriting them in another generation language. Instead, the analyst needs to make changes to the system that will make it function more like an object component even though it is written in a third-generation language. In order to accomplish this task, it is necessary for the analyst to create the essential components of the legacy operation. Essential components represent the core business requirements of a unit. Another way of defining core business requirements is to view essential components as the reasons why the unit exists—what does it do—and for what reasons. For example, Fig. 11.3 depicts the essential components of a bank.

Once the essential components have been created then the legacy applications need to be placed in the appropriate component so that it can be linked with its related packaged software applications or decomposed into primitive APIs.

The first step to applying successful BPR to legacy applications is to develop an approach to defining the existing system and extracting its data elements and applications. Once again, this is similar to the process described above when replacing third-generation legacy applications in that the data needs to be captured into the data repository and the applications need to be defined and compared to a new model based on essential components.

11.7

Data Element Enhancements

The analyst will need to design conversion programs that will access the data files that are not in relational database format and place them in a data repository. The ultimate focus is to replace all of the existing data files in the legacy with relational databases that can be linked with packaged software databases. This methodology differs from replacing legacies. In replacement engineering, data files are integrated directly into a packaged software system. This means that the legacy data will often be used to enhance the packaged software databases or be integrated with various cloud database products. However, the process of enhancing legacy 1 Whitten, Jeffrey, Bentley, Lonnie, Barlow, Victor, Systems Analysis & Design Methods, Third Edition, p. 238.

[image: Image 363]

228

11 Transforming Legacy Systems

ESSENTIAL Users

COMPONENTS of a BANK

Provide Security

Pay Interest

Pay Bills

Convenience

Investment

Essential components represent the

Users provide

Analyst performs

fundamental functions performed

requirements for

interviews and

by the business as defined by

the ecommerce

matches user

executive management. Essentials

system based on

events to specific

are the “reasons” for the business.

interaction with

essential

analyst. This is

components.

accomplished via

interviews and

user sessions

Fig. 11.3 Essential components of a bank

systems means that the legacy data will remain separate but converted into the relational or object database model. For legacies that already have relational databases, there is no restructuring required beyond setting up links with the packaged software database. Figure 11.4 reflects the difference between replacing legacy data and enhancing it. Notwithstanding these steps, once these data elements are determined, the analyst should follow the steps to consider what elements should be considered for replication on IoT and blockchain architectures.

Another interesting difference between the two approaches is that enhanced legacies will likely have intentional data redundancy. This means that the same element may indeed exist in multiple databases, which is necessary for the new distributed systems supported by IoT and blockchain. Duplicate elements may take on different formats. The most obvious is where a data element has aliases, meaning that an element has many different names, but the same attributes. Another type is the same element name, but with different attributes. The third type, and the most challenging, is the duplicate elements that have different names and different

[image: Image 364]

11.7

Data Element Enhancements

229

Fig. 11.4 Replacing versus

enhancing legacy data

attributes. While duplicate data elements may exist in enhanced legacy applications that are integrated with the packaged software product, it is still important to identify duplicate data relationships. This can be accomplished by documenting data relationships in a CASE tool and in the database’s physical data dictionary where aliases can exist.

11.7.1

Application Enhancements

BPR typically involves a methodology called Business Area Analysis (BAA). The purpose of BAA is to:

• Establish the various legacy business areas that will be linked with new architectures and/or packaged software systems.

• Re-engineer the new and old requirements of each business area.

• Develop requirements that provide an OO perspective of each legacy business area, meaning that there is no need to map its requirements to the existing physical organization structure.

• Define the links that create relationships among all the legacy business areas and the packaged software business areas.

This is accomplished by mapping business areas to specific essential components.

Applications designed for the packaged software system must also be mapped to an essential component. Once this has occurred, the legacy applications and packaged software applications must be designed to share common processes and databases as shown in Fig. 11.5.

Once the legacy and packaged software applications have been placed in their appropriate essential component they will need to be linked, that is communicate with each other to complete the integration of the internal IoT and external systems. Linking occurs in two ways: parameter messaging and database. Parameter messaging requires that the legacy programs be modified to receive data in the form of parameters. This allows the application system to deliver information directly to the legacy program. Conversely, the legacy program may need to

[image: Image 365]

230

11 Transforming Legacy Systems

ESSENTIAL

New User Requirements

COMPONENTS of a BANK

Provide Security

Pay Interest

Pay Bills

Convenience

Investment

Bank Essential Business Areas

Provide Security

Pay Interest

Pay Bills

Convenience

Investment

Users provide

Analyst performs

Essential components

requirements for

interviews and

represent the fundamental

the ecommerce

matches user

functions performed by the

system based on

events to specific

business as defined by

interaction with

essential

executive management.

analyst. This is

components.

Essentials are the “reasons”

accomplished via

for the business.

interviews and

consumer

sessions

Fig. 11.5 BPR legacy modeling using essential components

return information back to the packaged software system. Therefore, legacy applications need to be enhanced so they can actually format and send a data message to the packaged software system. A database interface is essentially the same concept except that it occurs differently. Instead of the application sending the data directly to another program, it forwards it as a record in a database file. The legacy

11.7

Data Element Enhancements

231

program that returns the data also needs to be modified to forward messages to a likely cloud database.

There are advantages and disadvantages of using either method. First, parameters use little overhead and are easy to program. They do not provide reusable data, that is, once a message has been received it is no longer available to another program. Parameters are also limited in size. Databases, on the other hand, allow programs to send the information to multiple destinations because it can be read many times. Unfortunately, it is difficult to control what applications or queries can access the data, which does raise questions about how secure the data is. Furthermore, applications must remember to delete a record in the database if it is no longer required. Figure 11.6 reflects the two methods of transferring data between legacy systems and packaged software applications.

Fig. 11.6 Linking data

Legacy Link Using a Parameter

between legacy and packaged

software systems

Data as a

Parameter

Legacy

New Applications

Applications

Legacy Link using a Database

Legacy

Link

Databases

Legacy

New Applications

Applications

232

11 Transforming Legacy Systems

Processes or

Business

Funcon

Process

Validate

Shipping

Commission

Data Subject

Orders

Products

or Enty

Customers

R

R,U

Orders

C, U

U

R

Items

R

C,U,D

 R

 R

Inventory

R,U

C,U

U

Expense Secon

Market Person

R

U

Fig. 11.7 Sample CRUD diagram

Once the legacy and the new applications have all been mapped to the essential components, analysts can use a CRUD diagram to assist them in reconciling whether all of the data and processes have been found. The importance of the CRUD diagram is that it ensures that it ensures: (Fig. 11.7):

• An essential component has complete control over its data.

• All of the entities are accessible by at least one process.

• Processes are accessing data.

While CRUD is not 100% accurate, it certainly uncovers potential problems as shown above. Even if BPR is not used, the CRUD diagram is an excellent tool to use to determine the processes and data needed for an essential component or an object. Once the CRUD diagram is finalized, the objects and classes would then be created as shown in Fig. 11.8; some of these objects are still in the form of a third-generation COBOL program while others might be in an API-based packaged software format. It is important to note; however, the “U” and the “D”

are not allowed in a blockchain application, because ledger systems do not allow modification of existing transactions!

11.8 “Leaving As Is”—Third-Generation Legacy Systems

233

Bank Essential Business Areas

Provide Security

Pay Interest

Pay Bills

Convenience

Investment

Purchase

Sell Investment

Investment

Investment

Interest

Data

Data

Data

Methods

Methods

Methods

Component Objects

Fig. 11.8 Essential component object diagrams

11.8

“Leaving As Is”—Third-Generation Legacy Systems

Moving to an object-oriented and API paradigm from a third-generation product like COBOL may not be feasible. The language design of third-generation procedural programs may result in conceptual gaps between procedural and object-oriented philosophies. For example, distributed object-oriented programs require more detailed technical infrastructure knowledge and graphics manipulation than was required in older legacy systems. Native object-oriented features such as inheritance, polymorphism, and encapsulation do not apply in traditional third-generation procedural design. It is difficult, if not impossible to introduce new object concepts and philosophies during a direct COBOL to JAVA API migration.

If the translation is attempted without significant restructuring (as discussed earlier in this chapter), then the resulting product will likely contain slower code that is more difficult to maintain.

There can also be a cultural divide that occurs. Veteran COBOL programmers and newer JAVA API developers do not understand each other’s technologies. This scenario will often create bias during any conversion effort. Additionally, COBOL

programmers learning new technology can experience self-specified threats to their

[image: Image 366]

234

11 Transforming Legacy Systems

Fig. 11.9 “As Is” legacy links

cultural status. Furthermore, COBOL and RPG applications have benefited from more lengthy testing, debugging, and overall refinement than newer programming generations. While JAVA is more dynamic, it is less stable, and the procedure of debugging and fixing problems is very different than for COBOL or RPG. Therefore, the analyst will leave the legacy “as is,” and create only packaged software links for passing information that is required between the two systems. While this is similar to the “linking” proposed for enhancing legacy systems, it is different because legacy programs are not enhanced, except for the external links needed to pass information. This is graphically shown in Fig. 11.9.

Using parameters or databases to link connecting information is still relevant, but analysts must be cognizant that legacy data formats will not be changed. This means that the legacy applications will continue to use their original file formats.

Another concept used to describe “links” is called “bridges.” The word suggests that the link serves to connect a gap between the packaged software system and the legacy applications. Bridging can also imply temporary link. Very often “as is” can be seen as a temporary condition because legacy conversions cannot occur all at once, so they are typically planned in phases. However, while parts of the system are being converted, some portions may need temporary bridges until it is time to actually enhance them. One can visualize this as a temporary “road block”

or detour that occurs when there is construction on a highway.

11.9

Fourth-Generation Language Legacy System

Integration

Integrating fourth-generation legacy systems with packaged software technology is much easier than third-generation languages. The reasons are two-fold. First, most fourth-generation implementations are already using a relational database, so conversion of data to the packaged software system is less complex. Second, fourth-generation language applications typically use SQL-based code, so conversion to an object-oriented system is also less involved.

11.11

Approaches to Logic Reconstruction

235

11.10

Replacing Fourth-Generation Legacy Systems

As stated above, replacement of fourth-generation language systems is less complex than third-generation languages with respect to the packaged software conversion. As with any system replacement, separating data and process is the suggested approach. Fortunately, in fourth-generation language systems, process and data are likely to already be separate, because of the nature of their architecture. Specifically, fourth-generation languages typically use relational databases, which architecturally separate data and process. Therefore, replacing the legacy is more about examining the existing processes and determining where the applications need to be re-engineered.

11.11

Approaches to Logic Reconstruction

The best approach to logic analysis is to print out the source code of the programs.

If the source is written in SQL, then the analyst should search for all SELECT

statements. SQL SELECT FROM statements define the databases that the program is using as shown in Fig. 11.10.

As in third-generation languages logic reconstruction, the analyst should

produce a DFD for every program as follows:

1. SELECT statements define all inputs and outputs that a program uses. Each SLELECT statement file will be represented by a DFD data store. Reviewing the logic of the application program will reveal whether the data is being created, read, updated, or deleted (CRUD).

2. DFDs should be decomposed to the functional primitive level so that the framework to an object-oriented system is established.

3. For each DFD copy the relevant SQL code, making modifications where

necessary to provide more object-oriented functionality to the program. This means that the decomposition of the code will likely require that some new logic be added to transform it to a method. This is shown in Fig. 11.11.

4. Examine existing system objects and determine if functional primitive DFDs belong to an existing class as a new method, or whether they truly represent a new object in the packaged software system.

5. Capture all of the data elements required by the new methods and add them to their respective object. Ensure that the packaged software DD is updated appropriately.

Select IdNo, Last-Name, First-Name

from employee

where IDNo = “054475643”

Fig. 11.10 SELECT statements in a fourth-generation language application

236

11 Transforming Legacy Systems

Functional Primitive DFD

Object

Method1

Method2

SQL Code

SQL Code

Functional Primitive DFD

Fig. 11.11 SQL code transition to object method

6. Determine whether any new objects need to become a reusable component in the TP monitor (middleware), a reusable component in the client application, or a stored procedure at the database level.

7. Examine the legacy databases and do logic data modeling to place the entities in third-normal form (3NF).

8. Combine and integrate data elements with packaged software databases,

ensuring that each data field from the legacy system is properly matched with packaged software data elements. New elements must be added to the appropriate entity or require that new entities be created for them.

9. Link new entities with existing models using third-normal form referential integrity rules.

10. Determine which data elements are redundant, such as calculations. These data elements will be removed; however, logic to their calculations may need to be added as a method as shown in Fig. 11.12.

11.12

Enhancing Fourth-Generation Legacy Systems

237

Legacy Data

Process Specification

Total-Amount

Calculate Total-Amount = Quamtity * Price

Fig. 11.12 Transition of redundant data elements to process specifications 11.12

Enhancing Fourth-Generation Legacy Systems

Enhancing fourth-generation language legacy systems is really the process of converting them to an object-oriented client/server system. Business process reengineering (BPR) is also used on fourth-generation language legacy systems to accomplish this transition. The process, as one might expect, is much easier than for third-generation languages; however, the process of determining essential components is the same in both types of systems. Once essential components are established, the existing applications need to be decomposed and realigned as appropriate. This is accomplished by using BAA, as it was used for third-generation legacy applications. The fact that fourth-generation languages are less procedural than third-generation languages greatly assists this transition. Fourth-generation language systems, by simply looking at the SQL SELECT statements, can identify which data files are used by the application. Using logic modularity rules, an analyst can establish cohesive classes based on applications that use the same data. This can be accomplished without using DFDs, although reengineering using DFDs is always a more thorough method for analysts to follow.

Linkage of fourth-generation language legacy and packaged software applications needs to be accomplished after application reengineering is completed. As with third-generation language systems, this can either be accomplished using a data parameter or the creation of a special database. However, with fourth-generation languages, it is likely that application integration will occur using databases, since both systems use them in their native architectures. An analyst will most likely find that application communication with fourth-generation languages will not always require separate databases to be designed solely for the purpose of system linkage. The more attractive solution to integration is to identify the data elements that are common between the two systems so they can be shared in a central database available to all applications as shown in Fig. 11.13.

The use of CRUD in fourth-generation languages is used less, but is certainly applicable and should be implemented by the analyst if he/she feels that the code is too procedural. In other words, the code architecture resembles third-generation as opposed to fourth-generation.

238

11 Transforming Legacy Systems

Relational

Database

Customer-No

Legacy

New System

4GL

Fig. 11.13 Fourth-generation language legacy shared database architecture 11.13

“Leaving As Is”—Fourth-Generation Legacy Systems

The process of limiting integration to just the sharing of data is similar to the design architecture that I used for third-generation language systems. Indeed, the architecture of linking separate and distinct software systems can only be accomplished by sharing common data. Once again, this data can be shared either using a data parameter or data file.

Because many fourth-generation language systems utilize the same architec-

ture as a packaged software system (three-tier client/server using Windows NTor UNIX/LINUX), it is sometimes advantageous to make use of certain operating system-level communication facilities. For example, UNIX allows applications to pass data using an operating system facility called a “pipe.” A pipe resembles a parameter, in that it allows an application to pass a message or data to another application without creating an actual new data structure, like a database. Furthermore, a pipe uses an access method called “FIFO” (first-in, first-out), which is the same access criteria used by parameters. FIFO also requires that once the data is read, it cannot be read again. The major advantage of using a pipe is that the message/data can be stored long after the application that created the message has terminated in memory. Thus, linkage of information among IoT, packaged software, and fourth-generation language applications can be accomplished in RAM

at execution time, which is called “intra-application communication.” This capability reduces overhead as well as the need for separate modules to be designed that would just handle data communication as shown in Fig. 11.14.

11.14

Hybrid Methods: The Gateway Approach

239

UNIX Pipe

Application A

Application B

Fig. 11.14 Intra-application communication using a UNIX pipe

11.14

Hybrid Methods: The Gateway Approach

Thus far in this chapter, I have focused on the interface between a specific type of legacy and IoT, blockchain, and/or packaged software systems. Each type was defined with respect to its “generation” type. In reality, however, legacy systems are not that self-defined. Many large organizations have “legacy layers,” meaning that multiple generations exist throughout the enterprise. In this case, attempting to integrate each generation with a central packaged software system is difficult and time-consuming. Indeed, migrating and integrating legacy systems are difficult enough. In these complex models, another method used for migration of legacy applications is a “hybrid” approach called “Gateway.” The gateway approach means that there will be a software module that mediates requests between the packaged software system and the legacy applications. In many ways, a gateway performs similar tasks as a TP system. Thus, the gateway acts as a broker between applications. Specifically, gateways:

• Separate yet integrate components from different generation languages. They allow for the linkages among multiple generation language systems.

• Translate requests and data between multiple components.

• Coordinate between multiple components to ensure update consistency. This means that the gateway will ensure that redundant data elements are synchronized.

Typical gateway architectures would be designed as shown in Fig. 11.15.

The most beneficial role of the gateway is that it allows for the phasing of legacy components. The infrastructure provides for an incremental approach to conversion by establishing a consistent update process for both data and applications.

[image: Image 367]

240

11 Transforming Legacy Systems

Fig. 11.15 Gateway

architecture for legacy

integration

11.15

Incremental Application Integration

A gateway establishes a transparency for graphical user interfaces (GUI), character-based interfaces, and automated interfaces (batch updates) to appear the same to the packaged software system. Hence, the gateway insulates the legacy system so that its interface with the packaged software systems seems seamless. This is accomplished through an interface that translates requests for process functions and routes them to their appropriate application, regardless of the generation of the software and its particular phase in the packaged software migration.

Figure 11.16 depicts the process functions of the gateway system.

The most salient benefit of the gateway approach is its consistency with the object-oriented paradigm and the concept of application reusability. Specifically, it allows any module to behave “like” a reusable component notwithstanding its technical design. Under this architectural philosophy, a particular program, let’s say, a third-generation language system, may eventually be replaced and placed into the gateway, with temporary bridges built until the overall migration is completed.

This procedure also supports a more “global” view of the enterprise as opposed to just focusing on a particular subsystem. Figure 11.17 depicts the concept of process integration using the gateway architecture.

11.16

Incremental Data Integration

241

Global Packaged System Interface

for

Viewing Order Status

Gateway

System 2

System 1

GUI Legacy

Character-Based Legacy

Sysytem

Sysytem

for

for

Viewing Order

Viewing Order Status

Status

Fig. 11.16 Application functions of legacy gateways

11.16

Incremental Data Integration

Incremental data integration focuses on the challenge of keeping multiple sets of data coordinated throughout a packaged software system.

The two primary issues relating to data integration focus on queries and updates.

Queries involve the access of complete information about a data set (collection of related data elements) across multiple systems. Much of the query challenges can be addressed by using a data warehouse or data mining architecture. The gateway would serve as the infrastructure that would determine how many copies of the data exist and its location.

The more difficult and more important concept of data integration is the ability of the gateway to coordinate multiple updates across databases and flat-file systems. This means that the changing of a data element in one component would

“trigger” an automatic update to the other components. There are four scenarios that could exist regarding the different definitions of data elements:

242

11 Transforming Legacy Systems

Global Object Component

for

Creating, Reading, Updating, and Deleting Orders (CRUD)

Gateway

Order

Object

 Methods

Create Order

Display Order

Update Order

Delete Order

Legacy

Legacy

Application

Application

Enter New Orders

Delete Orders

Legacy

Legacy

Application

Application

Display Orders

Update Orders

Fig. 11.17 Process integration and migration using gateway architecture 1. The data elements in each system have the same name. This at least allows analysts to identify how many copies of the element exist in the system.

2. The data elements do not match up by name. This requires that the analyst design a “mapping” algorithm that tracks the corresponding name of each alias.

3. Data elements match by name but not by attribute. In this case, the analyst must propagate updates to the data element by tracking the different attribute definitions it has across systems. These differences can vary dramatically. The most obvious is element length. If the length of the data element is shorter than the one that has been updated then there is the problem of field truncation. This means that either the beginning value or ending value of the string will be lost when the value is propagated to the system with the shorter length definition.

On the other hand, if the target is longer, then the process must populate either the beginning or end of the string so that the element has a complete value.

This is graphically depicted in Fig. 11.18.

11.16

Incremental Data Integration

243

Legacy Data Element: Last Name

Field Length: 17 characters

Johnsonhousesmith

Data Element: Last Name

Field Length: 15 characters

Truncation occurs from Left Significant Characters

hnsonhousesmith

Data Element: Last Name

Field Length: 15 characters

Truncation occurs from Right Significant Characters

johnsonhousesmi

Fig. 11.18 Propagating data elements with different field lengths

Furthermore, the same data element might have different data types, meaning that one is alphanumeric and the other numeric. In this case, analysts need to know that certain values (e.g., a leading zero) will not be stored in the same way depending on their data type classification.

4. There is not a one-to-one relationship among data elements. This suggests that a data element in one system may be based on the results of a calculation (a derived data element). This would require a more in-depth analysis and mapping often solved by creating a stored procedure that replicates the business rule to calculate the data element’s value. So, in this case, there might be simple copies of the element moved from one system to another, as well as one data element value that needs to first be calculated and then propagated across multiple systems. For example, if the data element “Total-Amount” is entered in one system but calculated as Quantity times Price in another, the propagation of the values is very complex. First, the analyst must know whether the calculated value is performed first before the resultant value, in this case, Total-Amount is reentered in another system. If this is true, then the propagation is much easier; once the calculation is made then the result is copied to the

“entered” element. The converse is much more complex. If the Total-Amount was entered, but the values of Quantity and Price were not, then it would be very difficult to propagate until both Quantity and Price were entered. The example is further complicated if adjustments are made to the Quantity, Price, or Total-Amount. For any change, the systems would need to automatically be “triggered” to recalculate the values to ensure they are in synchronization.

Figure 11.19 graphically shows this process.

244

11 Transforming Legacy Systems

Fig. 11.19 Propagation of

System Calculates Total Amount as

calculated data elements

Quantity * Price and does not Store Total

Amount as an Element

Quantity

Price

Program "Triggers" stored

procedure to update Derived

Data Eleemnt stored in

Legacy System

Legacy Data Element Total-Amount

Total-Amount

11.17

Converting Legacy Character-Based Screens

It would be naïve to assume that most legacy systems do not have character-based screens. Character-based screens are those that do not make use of the GUI.

While most character-based screens in existence emanate from third-generation language mainframe implementations there are also many early fourth-generation language systems that preceded the GUI paradigm. Unfortunately, character-based screens often do not map easily to their GUI counterparts. The analyst must be especially careful not to attempt to simply duplicate the screens in the legacy software. Figure 11.20 shows a typical character-based legacy screen. Note that there can be up to four Contract/POs as shown in the upper right-hand corner. The user is required to enter each Contract/PO on a separate screen.

On the other hand, the replacement GUI screen in Fig. 11.21 takes advantage of the view bar that allows for scrolling in a window. Therefore, the GUI version requires only one physical screen, as opposed to four.

11.18

The Challenge with Encoded Legacy Screen Values

In most legacy character-based screens, a common practice was used to create codes that represented another, more meaningful data value. For example, numeric codes (1, 2, 3, 4, etc.) might be used to represent product colors such as blue, green, dark red, etc. Legacy applications used codes because they reduced the number of characters needed to type in the value on a screen. The technology to implement common GUI features such as drop-down menus and pop-up windows was not

available. Indeed, many people used codes just from habit or had to use them

[image: Image 368]

11.18

The Challenge with Encoded Legacy Screen Values

245

Bill of Lading Container Screen 1 of 4

B/L:____ SCAC: _____ VESSEL: __________ Total: _____

VOYAGE: _________ CTN: _____

PO Informaon

Contract/PO: _________

Tot Unit: _________

Item: _________

GWT: _________

Style: _________

CBM: _________

Stat: _________

O/F Chrg: _________

Orig Country: _________

Con Rate: _________

Acvies

Acvity

Descr

Date

Locaon

Fig. 11.20 Character-based user screen

Fig. 11.21 Transformed character-based to GUI screen

246

11 Transforming Legacy Systems

Character-Based Entry of Color

with Encoded-Value Color Code

Color-Code

 Display Color-Name

GUI Screen Equivalent

Color-Name

Fig. 11.22 Encoded value GUI screen transition

in order to implement computer systems. When transitioning to a GUI system, especially on the Web, it is wise to phase out any data elements that are in an encoded form unless the codes are user-defined and are meaningful within the industry or business area. This essentially means that certain codes, like State (NY, CT, CA, etc.) are industry standards that are required by the business, as opposed to those created to aid in the implementation of software—like color codes. In the later case, the color name itself is unique and would be stored in an entity with just its descriptive name, as opposed to a code, which then identifies the actual description. Figure 11.22 shows the character-based and GUI screen transition.

Changing character-based screens that contain encoded values has a trickle-down effect on the data dictionary and then on logic data modeling. First, the elimination of a coded value inevitably deletes a data element from the data dictionary. Second, codes are often key attributes, which become primary keys of entities. The elimination of the code, therefore, will eliminate the primary key of the entity. The new primary key will likely be the element name. These changes must then be made to the entity relational diagram (ERD) and placed in production (see Fig. 11.23).

Third, the elimination of codes affects previous stored procedures that use queries against the coded values. Therefore, analysts must be sure to re-engineer all queries that use the codes. This transition will add tremendous value since encoded elements typically add unnecessary overhead and time delays to queries.

Finally, the elimination of encoded values will free up considerable space and index overhead. This will result in an increase in performance of the legacy system.

11.19

Legacy Migration Methodology

247

Legacy Representation of Color Entity with

Sample Value Listing

Encoded Value

Color-Code

Color Code

Name

Color Name

01

Red

02

Blue

03

Lavender

Legacy Representation of Color Entity

without Encoded Value

Sample Value Listing

Color-Name

Color Name

Red

Blue

Lavender

Fig. 11.23 Transition to encoded databases

11.19

Legacy Migration Methodology

As stated earlier, all legacy systems inevitably must reach the end of their original life cycle. Therefore, notwithstanding whether certain components will remain “as is” or enhanced, eventually IT management must plan for migration to another system. The issue that this section addresses is how to establish a migration life cycle that takes into consideration an incremental approach to replacement of various legacy components within an enterprise computer system. The previous sections provided a framework of what can be done with legacy systems and their integration with other systems. This section provides a step-by-step template of procedures to follow that can assist the analysts on the schedule of legacy migration including temporary and permanent integration. This approach is an incremental one, so analysts can use it as a checklist of the progression they have made in the legacy migration life cycle. In all there are 12 steps as follows: 1. Analyze the existing legacy systems.

2. Decompose legacy systems to determine schedules of migration and linkage strategies.

3. Design “As Is” links.

4. Design legacy enhancements.

5. Design legacy replacements.

6. Design and integrate new databases.

7. Determine new infrastructure and environment, including gateways.

8. Implement enhancements.

9. Implement links.

248

11 Transforming Legacy Systems

10. Migrate legacy databases.

11. Migrate replacement legacy applications.

12. Incrementally cutover to new systems.

The above steps are graphically depicted in Fig. 11.24.

Note that there are two streams of steps, that is, steps 3–5 and 8–10 that can occur in parallel. These steps encompass the three types of legacy migration choices that can be made: replacement, enhancement, and “as is.” While this life cycle seems simple, in reality it is a significant challenge for most migrations to plan, manage, and modify these steps and their interactions. Indeed, creating a migration plan and adequately coordinating the incremental and parallel steps is a difficult project. The subsequent sections will provide more details for each of these 12 steps.

Step 1: Analyze the Existing Legacy Systems

It is obviously important that analysts fully understand all of the existing legacy components that exist in the system. The objective is to provide the requirements of each system and how they relate to the system. Analysts must remember that little to no documentation will be available to fully represent the architecture of the legacy system. However, analysts should compile as much information that is available including but not limited to:

• User and programming documentation.

• Existing users, software developers, and managers.

• Required inputs and outputs and known services of the legacy system.

• Any historical perspective on the history of the system itself.

Regardless of what existing information and documentation is available, certain aspects of reverse engineering must be used. Various Computer-Aided Software Engineering (CASE) tools should be used that allow analysts to create a repository of data and certain levels of code analysis, particularly for third-generation language migrations. The analyst should create DFDs and PFDs for process analysis and logic data modeling (LDM) and entity relational diagramming (ERD) for representation of the data. The analyst should also determine which legacy components are decomposable and non-decomposable. Inevitably, regardless of whether the decision is to replace immediately, enhance, or leave “as is,” ultimately little of the existing code will survive the ultimate migration of a legacy system (Brodie & Stonebraker, 1995).

Step 2: Decompose Legacy Systems to Determine Schedules of Migration and Linkage Strategies

The gradual migration of legacy systems is most easily accomplished when analysts utilize decomposition engineering. Previous chapters have outlined the process of functional decomposition, which is based on the breaking down of a system into its functional components. Decomposition, which results in components

11.19

Legacy Migration Methodology

249

Fig. 11.24 Legacy migration

Legacy Migration Life Cycle

life cycle

1

2

3

4

5

6

7

8

9

10

11

12

250

11 Transforming Legacy Systems

also, allows for reusability of code. Since the fundamental premises of a package system are reusability, the process of decomposition is a mandatory part of the life cycle of any legacy migration. Thus, analysts should decompose all DFDs to functional primitives. Process analysis continues with the writing of process specifications for each functional primitive. These functional primitives will either be rewritten from the existing code or documentation or recreated from analyzing the functionality of the program. Analysts need to remove all dependency logic that links modules from the legacy code because it represents coupling among the programs. Module dependencies can typically be identified by finding procedure calls from within the legacy code. Ultimately, each of these process specifications will become methods. Eventually all methods will be mapped to classes and identify the attributes that each class needs. While this sounds simple, there will be a number of processes for which decomposition will be problematic. This will typically occur for legacy code that is too eclectic and needs to simply be re-engineered. In these cases, analysts may want to interview users to understand the functionality that is required, as opposed to relying solely on the written legacy code.

From a data perspective, entity relational diagrams (ERDs) need to undergo normalization. Remember that the DD and ERD produced in Step 1 is a mirror of the existing system, which most likely will not be in third-normal form. Thus this step will result in the propagation of new entities and even new data elements.

Furthermore, data redundancies will be discovered as well as derived elements that should be removed from the logic model. However, while these steps are taking place, analysts need to be cognizant that the process of normalization represents the total new blueprint of how the data should have been originally engineered.

The actual removal of elements or reconstruction of the physical database needs to be a phased-plan in accordance with the overall legacy migration effort. Thus, Step 2 provides the decomposed framework, but not the schedule of implementation.

Finally, analysts must always be aware of the challenges of decomposition, particularly over-decomposition, meaning that too many classes have been formed that will ultimately hurt system performance. There needs to be a mix of decomposed levels, which will serve as the basis of the new migration architecture.

Step 3: Design “As Is” Links

This step involves determining and designing what components will remain

untouched except for linkages that are necessary with other package software components. These modules are determined not to be part of the initial migration plans; however, they need to function within the packaged software system infrastructure and are therefore part of its architecture. Part of the decision needs to include how data will be migrated into the packaged software framework. In most cases, “as is” components continue to use their legacy data sources. Consideration must be given to how legacy data will be communicated to other components in the packaged software system. Analysts need to consider either a parameter-based communication system or a centrally shared database repository as outlined earlier.

Step 4: Design Legacy Enhancements

11.19

Legacy Migration Methodology

251

This step determines which modules will be enhanced. BPR (business process reengineering) will be used to design new features and functions in each business area. Analysts should identify essential components and determine what changes need to be employed to make the existing system behave more like an object-oriented system. Common processes and databases also need to be mapped so that shared resources can be designed between legacy and packaged software systems. New linkages will also be needed and the analyst must determine whether to use parameters or databases or both to implement the communication among application systems.

User screens may also need to be updated as necessary, especially to remove encoded values or moving certain character-based screens to GUI. Many of the enhancements to a legacy application are implemented based on the analysis performed in Step 1. Any modifications will need to eventually operate on newer platforms once the total migration of legacy systems is completed. Analysts need to be cognizant that additional requirements mean increasing risk, which should be avoided when possible. However, during enhancement consideration, it is almost impossible to ignore new requirements. Therefore, analysts need to focus on risk assessment as part of the life cycle of legacy migration.

Step 5: Design Legacy Replacements

Analysts must focus on how to reconstruct logic in a later generation of software architecture. Therefore, it is important to understand the differences in generation language design. This chapter provided two types of legacy software systems: third- and fourth-generation languages. Third-generation languages were depicted as being more procedural and more difficult to convert.

Analysts must design the target applications so they will operate in accordance with the business rules and processes that will be supported in the new systems environment. Because of this integration, most replacement legacy migrations require significant reengineering activities. These activities necessitate the inclusion of new business rules that may have evolved since the legacy system was placed in production. Furthermore, new business rules can be created simply by the requirement of being a packaged software system.

Another important component of legacy migration is screen design. When

replacing legacy systems, analysts must view the migration as assimilation, that is, the old system is becoming part of the new one. As a result, all existing packaged software screens need to be reviewed so that designers can determine whether they need to be modified to adopt some of the legacy functionality. This is not to suggest that all of the legacy systems screens will be absorbed into the existing packaged software system. Rather, there will be a combination of new and absorbed functionality added to the target environment.

Step 6: Design and Integrate New Databases

From an enterprise perspective, analysts must gather all of the permutations of legacy systems that exist and seek to provide a plan on how to integrate the data into one source. For “as is” solutions, legacy data files will most likely remain

252

11 Transforming Legacy Systems

separate from the packaged software system until the complete legacy is migrated.

However, the process of enhancing and replacing legacy data should have the objective of creating one central database source that will serve the entire packaged software enterprise system. Indeed, a central data source reduces data redundancy and significantly increases data integrity.

The process of data integration can only be accomplished by “combining user views” which is the process of matching up the multiple data element definitions that overlap and identifying data redundancies and alternative definitions. This can only be completed by creating a repository of data elements and by representing the data graphically using an ERD. Once each system is represented in this fashion then the analyst must perform logic data modeling as prescribed in Chap. 9. The result will be the creation of one central database system cluster that can provide the type of integration necessary for successful packaged software implementations.

While this is the goal for all analysts, the road to successful implementation is challenging. First, the process of normalization will require that some data elements be deleted (e.g., encoded values) while others will need to be added. Second, full data integration cannot be attained until all replacement screens are complete.

Third, applications must be redesigned so that the centrality of the data source is assumed to exist. Since this process may be very time-consuming, it may not be feasible to attempt a full database migration at one time. Therefore, the legacy data may need to be logically partitioned to facilitate incremental database migration.

Thus, there will be legacy data subsets that are created to remain independent of the central database until some later migration phase is deemed feasible. Of course, this strategy requires the design of temporary “bridges” that allow the entire packaged software system to appear cohesive to users.

Another important factor in planning data migration is to determine how much is really known about the legacy data itself. The less knowledge available, the longer the period where legacy data and packaged software data need to run separately and in parallel.

Step 7: Determine New Infrastructure and Environment, Including Gateways

Prior to the migration of any system, the necessary hardware and software infrastructure must be planned and installed. A common error in legacy migration is not factoring the time and effort to provide this infrastructure. Furthermore, this process, which may create a new network environment, needs to determine the placement of software in a three-tier client/server platform. This means that further decomposition may be required of all processes, especially object classes. You may recall in Chap. 8 that classes may undergo further decomposition depending on the need to distribute application across the network.

Another important factor is performance. In many instances, it is difficult for network engineers to predict performance in large application system environments. It may be necessary to plan for several benchmarks in performance early in the design phase. Benchmarking is the process of setting up an environment that

11.19

Legacy Migration Methodology

253

replicates a production network so that modifications can be made, if necessary, to the design of the system to increase performance.

Another decision that must be made at this juncture is whether a gateway infrastructure will be created to mediate legacy layers. This decision, of course, is highly dependent on the migration life cycle; the more legacy layers that will be phased in over time, the higher the chances that a gateway processor for data and applications will be necessary. The decision to go with a gateway is significant, not only from the perspective of software design, but network infrastructure as well.

Constructing a gateway can be very costly. It involves writing the system from scratch or tailoring a commercial product to meet the migration requirements. It is also costly because of the amount of additional hardware necessary to optimize the performance of the gateway servers. However, the benefits of a gateway are real, as it could provide a dependable structure to slowly migrate all components in the new systems environment.

Step 8: Implement Enhancements

This step requires a schedule of when legacy enhancements will be implemented and become part of the production system. Many analysts suggest that the simplest modules go into production first so that any unexpected problems can be dealt with quickly and efficiently. Furthermore, simple modules tend to have small consequences should there be a problem in processing or performance. There are some other aspects of coordination, however. For example, enhancements that feed off of the same data or use the same subsystems should obviously be implemented at one time.

Another factor in the decision of which enhanced components go first relates to the effects they have on other subsystems. This means that the priority may indeed be influenced by what systems need or are dependent upon from other systems. Another issue could be the nature of the legacy links. Should a link be very complex or dependent on other subsystem enhancements, its schedule could be affected. Finally, the nature of the enhancements has much to do with the decision as opposed to just the application’s complexity. There may be simple enhancements that are crucial for the packaged software system and vice versa.

Step 9: Implement Links

As I alluded to in Step 8, the determination of legacy links greatly affects the scheduling of the migration cycle. Once the determination is made in Step 8, the related legacy links must be put in place. This could also mean that the gateway, if designed, must also be in operation since many links might be filtered through the gateway infrastructure. So, the implementation of legacy links relates to both hardware and software. Notwithstanding whether a gateway is in place, database links often require separate servers. In many cases because these “servers” interface with the Internet, there is a need to install firewalls to ensure security protection.

From a software perspective, legacy links can almost be treated like conversion programs. There needs to be substantial testing done to ensure they work properly. Once legacy links are in production, like data conversions, they tend to

254

11 Transforming Legacy Systems

keep working. It is also important to ensure that legacy links are documented.

Indeed, any link will eventually be changed based on the incremental migration schedule. Remember that most legacy links are accomplished by building temporary “bridges.” The concept of temporary can be dangerous, in that many of these links, over time, tend to be more permanent. That is, their temporary life can sometimes extend beyond the predicted life of a permanent component. The message here should be that legacy links, while they are a temporary solution, should be designed under the same intensity and adherence to quality as any other software development component.

Step 10: Migrate Legacy Databases

The migration of data is so complex that it should be handled as a separate and distinct step in the migration life cycle. Data affects everything in the system, and often if it is not migrated properly it can cause immense problems. First, the analyst must decide on the phasing of data based on the schedule of application migration. Hopefully, the process of data migration should be done parallel to Steps 8 and 9.

The most challenging aspect of data migration is the physical steps in the process. Migrating new entities and schema changes is complex. For example, changes to databases require that the tables be “dropped” meaning that they are taken off-line. Data dictionaries need to be updated, and changes to stored procedures and triggers are extremely time-consuming. Most problematic is the process of quality assurance. While some testing can be done in a controlled environment, most of the final testing must be done once the system is actually in production. Therefore, the coordination with users to test the system early is critical. Furthermore, there must be backup procedures in case the database migration does not work properly.

This means that there is an alternate fail-safe plan to reinstall the old system should major problems arise. Finally, a programming team should be ready to deal with any problems that arise that do not warrant reinstalling the old version. This might include the discovery of application “bugs” that can be fixed within a reasonable period and are not deemed critical to operations (which means there is usually a

“work-around” for the problem). Analysts must understand that this process must be followed each time a new database migration takes place!

Database migration is even more complex when there is a gateway. The reason is that the gateway, from an incremental perspective, contains more and more database responsibilities each time there is a migration. Therefore, for every migration, the amount of data that can be potentially affected grows larger. In addition, the amount of data that becomes integrated usually grows exponentially, so the planning and conversion process becomes a critical path to successful migration life cycles. Since the migration of legacy databases becomes so much more difficult as the project progresses, the end of the life cycle becomes even more challenging to reach. That is why many migrations have never been completed!

Step 11: Migrate Replacement Legacy Applications

11.20

Legacy and Generative AI

255

Once the database migration is completed, then the remainder of the legacy applications can be migrated to the new system. These applications are usually the replacement components, which have been re-engineered in the object-oriented paradigm. These programs, then, have been designed to operate against the target databases with the new functionality required for the packaged software system.

Since replacement applications usually do not create links, there is typically little effect on gateway operations. What is more challenging is the quality assurance process. Users need to be aware that the code is relatively new and will contain problems regardless of the degree of pre-production testing that has been performed. In any event, programmers, database administrators, and quality assurance personnel should be on-call for weeks after system cutover.

Step 12: Incrementally Cutover to New Systems

As discussed above, testing and application turnover are two areas that frequently are overlooked. Because projects typically run over budget and schedule, the final procedures like testing and verification are usually shortened. The results of this decision can be devastating to successful legacy migrations. Because of the size and complexity of many packaged software systems, to go “cold turkey”

is unrealistic and irresponsible. Therefore, an analyst should consider providing test scenarios that offer more confidence that the system is ready to be cut over.

This approach is called “acceptance testing” and requires that users be involved in the determination of what tests must be performed before the system is ready to go live. Thus, acceptance test plans can be defined as the set of tests which will establish that the software can be used in production. Acceptance tests need to be established early in the product life cycle and should begin during the analysis phase. It is only logical then that the development of acceptance test plans should involve analysts. As with requirements development, the analyst must participate with the user community. Only users can make the final decision about the content and scope of the test plans. The design and development of acceptance test plans should not be confused with the testing phase of the software development life cycle.

Another perspective on acceptance testing is that it becomes a formal checklist that defines the minimal criteria for incrementally migrating systems. However, one must work with the understanding that no new product will ever be fault-free.

The permutations of testing everything would make the timetable for completion unacceptable and cost prohibitive. Therefore, the acceptance test plan is a strategy to get the most important components tested completely enough for production.

Figure 11.25 represents a sample acceptance test plan.

11.20

Legacy and Generative AI

Upgrading and linking to legacy systems have historically been a nightmare experience. GenAI may indeed be a new way to accelerate the legacy modernization process. GenAI can be particularly effective for identifying gaps by fully

256

11 Transforming Legacy Systems

 Quality Assurance

 Acceptance Test Plan

Product: Contact - Using Enter Key

Number:

Vendor:

Test Plan #: 1G

Date:

QA Technician:

Test

Condion Being Tested

Expected Results

Actual Results

Comply

Comments

No.

Y/N

1

Enter LAST NAME for a new

Should accept and

contact, press enter key. Repeat

prompt for COMPANY

and enter FIRST NAME, press

SITE

enter key

2

Select COMPANY Site from picklist Should accept and

prompt for next field

3

Enter LAST NAME and FIRST

Should accept and

NAME for a CONTACT that is

prompt for COMPANY

already in the System.

SITE

Fig. 11.25 Acceptance test plan

understanding the existing system and significantly reducing reverse engineering timelines.

The reasons for the difficulty in legacy modernization projects are associated with four major challenges:

1. Poor documentation.

2. Loss of internal knowledge due to staff turnover.

3. Limited knowledge and documentation related to historical application updates and logic patches.

4. Lack of skilled staff that understand old programming languages like Cobol.

The first objective in legacy modernization should be to determine “what is?” Because GenAI offers capabilities that can automate code comprehension, dynamic refactoring, and testing logic, it is an effective tool for legacy modernization. Furthermore, it can be particularly effective in formulating migration plans that can mimic downtime and avoid project disruptions. According to Zyana

(2024), there are five key areas of GenAI impact on legacy modernization as shown in Fig. 11.26.

1. Automated Code Analysis: GenAI can analyze legacy code and provide recommendations on structure, logic, and dependent links (referencing to other modules and routines). Using GenAI automation, organizations can get a clearer schematic of the challenges and identification of areas that require improvement of fixing.

[image: Image 369]

11.20

Legacy and Generative AI

257

Fig. 11.26 Five components

of legacy modernization.

 Source Zyana (2024)

2. Dynamic Refactoring: This refers to the process of making changes to software where the focus is the quality of the code or its internal structure as opposed to altering functionality. The importance of quality in this case relates to the maintainability of the code and its ability to be transferred to other programming systems and coding languages. GenAI via automation addresses many

pitfalls that come with completing this endeavor manually.

3. Migration Strategy Development: GenAI has the ability to recommend multiple paths to legacy migrations by creating different scenarios and their related risks and pitfalls. GenAI can also provide suggestions on risk mitigation and resource optimization (allocation of staff resources) as part of the overall migration analysis.

4. Automated Testing and Validation: GenAI can automate the testing and QA process which is a huge manual undertaking during legacy migrations. This feature will reduce time and cost and most important greatly enhance the quality and coverage of the testing function. Overall GenAI will improve validity of the conversion plan prior to cutover to a new system.

5. Enhanced Security Measures: Most legacy systems were designed based on a perimeter security architecture. This means that intrusions are defended based on guarding entrance into the system. Unfortunately, todays’ architectures require much more sophisticated security structures that protect systems at the application level. GenAI can identify flaws and recommend fixes. In addition, GenAI can analyze legacy code and to ensure compliance and adherence to industry regulations.

There is no question that GenAI will play a huge part of linking to and transforming from legacy systems. The need to retire legacy systems are becoming more and more a challenge for organizations given the impacts of high-speed wireless,

258

11 Transforming Legacy Systems

blockchain, and IoT devices that will continue to dramatically increase data aggregations. This data will be used for competitive advantage in a global market. As this occurs at an accelerated rate, legacy systems will become more obsolete and subject to data security exposures.

11.21

Problems and Exercises

1. What is a legacy? Explain.

2. Describe the five generation languages. What increases with each generation?

3. What are essential components?

4. What does the object-oriented paradigm mean?

5. How does object orientation relate to business area analysis?

6. What is a legacy link?

7. Explain the notion of logic reconstruction.

8. What is dynamic reconstruction and how does GenAI provide value in this process?

9. What is a UNIX pipe?

10. Explain how legacy integration operates through gateway architecture.

11. What is propagation?

12. What are the essential differences between character-based screens and GUI?

13. What is an encoded value?

14. What is the relationship between an object and an API?

15. What are the restrictions of CRUD in blockchain architecture? Why is this difference so important in a ledger-based system?

References

Brodie, M. L., & Stonebreaker, M. (1995). Migrating legacy systems: Gateway interfaces and the incremental approach. Morgan Kaufmann Publisher Inc.

Stair, R. M., & Reynolds, C. W. (1999). Principles of information systems (4th ed.). Course Technology.

Zyana, Z. (2024, September 27). The future of legacy system modernization and migration.

 AILogic.

https://medium.com/ailogic/genai-the-future-of-legacy-system-modernization-and-

migration-b0a1004784d5#:~:text=GenAI%20offers%20unprecedented%20capabilities%20i

n,that%20minimize%20downtime%20and%20disruption

[image: Image 370]

Build Versus Buy

12

12.1

Overview

This chapter addresses a difficult and controversial decision that is made every time an organization seeks a software solution to meet its needs: do we make it to our specific needs, or do we buy something that is made to order but may not do everything we want? Often the build decision is called the “make” alternative and suggests that the product will be made in-house versus the buy concept that can be referred to as outsourcing. I do not believe these simple labels are accurate or appropriate. Whether something is built or bought has little to do with whether the process is outsourced, so we need to be careful in the way we label these two alternatives.

Inman et al. (2011) suggests that Build and Buy decisions need to be made at both the strategic and operational levels. Burt et al. (2003) provided some direction on the strategic reasons for buying and tied it into a definition of outsourcing, providing three concrete categories of reasons NOT to outsource:

1. The item is critical to the success of the overall product and is perceived so by the company’s clientele.

2. The item requires specialized design and skills, and such skills are limited in the organization.

3. The item fits into the firm’s core competencies but needs to be developed in future.

Historically, most organizations selected the buy option because their assumption was that it lowered costs. Indeed, over 70% of product ownership usually occurs after implementation. So where is this cost? It occurs in maintenance, where in-house teams must continually alter and develop. The off-the-shelf concept tends to keep costs lower because in theory the sum of all the clients will create better

© The Editor(s) (if applicable) and The Author(s), under exclusive license 259

to Springer Nature Switzerland AG 2025

A. M. Langer, Analysis and Design of Next-Generation Software Architectures,

https://doi.org/10.1007/978-3-031-76212-3_12

260

12 Build Versus Buy

software for all. Others suggest that a company should always first seek a package because of common business challenges including:

• Cost.

• Time to market.

• Political situation in the environment.

• Architectural differences.

• Skill sets of existing staff.

However, The Gartner Group in 2003 published a report that suggested this trend was changing and that there were a growing number of firms that were returning to building applications internally. Gartner cited the following reasons for the change of heart:

• Rising competitive advantages of using emerging technologies.

• Increased availability of talented software developers.

• Poor reputation of prior uses of package software—that it is not agile enough and difficult for departments to use.

• Increased needs to adapt to unique and changing business needs.

Ledeen’s (2011) and Moore’s (2002) analysis of how to approach make versus buy is quite useful. He established a step-by-step criterion to help organizations to make the best decision. This criterion included the following:

• Core versus context.

• Coverage.

• Direction.

• TCO.

• Scale.

• Timing.

• Standards.

12.2

Core Versus Context

This decision point relates to the strategic importance of the application. The more strategic the application, the more likely the organization develops software internally (also see Langer, 2011). The concept is simple: if the application relates to basic functions in accounting, HR, or payroll, then it is not core. However, software used by WalMart, although accounting related, is used as a supply chain management that drives every aspect of their competitive advantage as a company. The result of course is that Walmart developed their supply chain as a core and unique application. Moore’s chart below (Table 12.1) provides an interesting matrix of how core can be determined.

12.5

Total Cost of Ownership (TCO)

261

Table 12.1 Build versus buy

Core

Context

chart

Engage

Disengage

Mission critical (control)

MAKE

OUTSOURCE

Supporting (entrust)

PARTNER

CONTRACT

The chart above reflects that Mission Critical application should be developed in-house with Context oriented applications that may be modified to meet package requirements.

12.3

Coverage

The coverage assesses the extent of the match of the packaged product with the business requirements. The general rule is that a package should have at least 80%

of the features and functions needed by the organization. However, Ledeen states that this could be a trap, suggesting that a package’s capabilities outside of the immediate needs of the business are equally as important. This is relevant, given that business needs are continually evolving. Organizations must be cognizant of having applications that can not only handle what is, but what may be future needs of the business. In addition, a certain feature in a packaged solution may actually offer a better business alternative than currently used by the business—so it’s a complex issue as they say.

12.4

Direction

The keywords relating to direction are flexibility, maintainability, and extendibil-ity of the software throughout its life. Ultimately, direction relates to how much control the organization has over the product, especially those products that may need to change—that is, the volatility of what the software does. For example, if the product is a basic accounting system, it is likely not to change substantially over its life. However, if it is a healthcare product that is regulated by government requirements in a highly fragile market, then direction is a key decision factor.

Much of this relates to the design and architecture of the product itself. Can it be easily modified? What is the extent of changes that can be controlled via user input? All of these factors are significant to whether a package is the wise choice.

12.5

Total Cost of Ownership (TCO)

The TCO represents the entire cost. Components of this cost include license fees for the product, maintenance, product customizations, and support. The major variable in TCO is custom modifications. Vendors will often provide an estimate but managers need to be careful of “scope-creep” where original requirements for

262

12 Build Versus Buy

customizations become greatly expanded during the design phase of the project. A good approach that can help this decision is to determine the number of features and functions in the package that the organization does not need. A packaged solution that has many features and functions that are not needed might suggest that the application is not a great match and is likely designed for a different audience.

It is important to note that many application packages were developed first as a custom application for a specific client and then tailored for others. This process was a typical evolution of how many software packages evolved in the market.

Therefore, understanding the history of how the application package was developed might provide a hint as to the TOC and the fit in general—the two tend to go together.

12.6

Scale

The size of the package is a factor, especially when it has many modules. This is very relevant in large Enterprise Resource Planning (ERP) products where a high degree of scaled interoperability is important. These modular products also allow clients to purchase business components at later periods and easily retrofit them. However, if it is not the intention of the organization to scale, then a large integrated package may be overkill.

12.7

Timing

There are many who would believe that a packaged solution will be faster to implement—but be careful-often this is not the case. Packaged solutions may add steps to the SDLC and as a result could actually prolong the timing of going Live on the product. Ledeen suggests that while COTS provides greater predictability it could be a reflection on the limits of flexibility and imposed restrictions. In either case, I would strongly recommend that the decision whether to have a make versus buy not be solely based on speed to completion—the organization may be in for a big surprise. The more an organization can accept the base package the faster the implementation will be, for sure. However, accepting the package as is does not necessarily mean that it is the best thing for the business.

12.8

Standards

Ledeen defines standards as the consistency across systems of the way things get done. I see this issue more in terms of consistency of architecture of the organization. This means that the hardware platforms and software architecture (middleware, office products, etc.) should be consistent for packaged software to maximize its benefits. If this is not the case, that is, where you have multiple architectures across the organization, then the value of a package becomes less evident.

12.9

Other Evaluation Criteria

263

This is especially true if the package requires a specific architecture for all of the systems. This is why open systems are so attractive to organizations. Unfortunately in multinational firms, having many architectures is not unusual. Much of this may have occurred due to corporate acquisitions of other firms—when you acquire a new business, you often acquire a new systems architecture—both hardware and software!

12.9

Other Evaluation Criteria

The above issues are important but there are other contextual things to consider when making the decision:

• Complexity of Product: The more intricate the software application, the harder for COTS to work. Complex products also tend to shorten the life cycle and have more evolving needs.

• State of the Art: Users who seek packaged solutions often require the lat-est and greatest up-to-date product. They may be disappointed to learn that package software has some unique limitations in this area. First, vendors of packages have user bases to take care of—who ultimately have older versions and hardware that they must support. This results in difficulties with downward compatibilities of their user base. Just look at Microsoft’s problems when they upgrade operating systems and software. IBM used to issue “no support” edicts to its customers who failed to upgrade their products over time. The better vendors force their users to upgrade but it is always messy.

• Maintenance: COTS often involves product upgrades and new maintenance releases. Sometimes maintenance releases include bug fixes and workarounds for packaged discovered problems. Maintenance can also be very tricky—how do organizations load new versions from the vendors when there are customizations, for example? It gets to be a challenge especially when the updates are regulatory in nature. COTS that have customizations inevitably need to go through a retrofit, where the customized portions have to be “re-customized” to deal with packaged software upgrades. This certainly adds to the cost equation over the life of the package.

While the above suggestions offer guides on what to think about and measure, the process is still complex without a real scientific methodology to determine ultimately whether to make or buy or both. However, Langer (2011) provides yet another concept called driver/supporter theory in which “buy” decisions would only be made for applications that were considered “Supporters.” Fig. 12.1 depicts a supporter item as something that has reached the stage of commodity notated in the circle labeled as “Economies of Scale.”

The diagram shows that all technology needs start out as drivers but eventually become supporters, thus losing their uniqueness in the marketplace. It is as if you were creating a strategic advantage by implementing a new email system—this

[image: Image 371]

264

12 Build Versus Buy

Fig. 12.1 Langer’s driver/supporter life cycle

would not really provide the organization with a competitive advantage—rather as an enabler to compete—a very different concept. The point I am making here is that a new email system would likely be “bought” and possibly implemented using an outsource vendor. In accordance with Burt et al. then this would be a case for buying as opposed to making.

12.10

Drivers and Supporters

I think this concept of driver/supporter is essential to understanding make/buy decisions. This section provides further details on this theory and practice as a vehicle for better determination of make versus buy.

To summarize driver/supporter, there are essentially two types of generic functions performed by departments in organizations: Driver functions and supporter functions. These functions relate to the essential behavior and nature of what a department contributes to the goals of the organization. I first encountered the concept of drivers and supporters at Coopers & Lybrand, which was at that time a Big 81 accounting firm. I studied the formulation of driver versus supporter as it related to the role of our EDP (Electronic Data Processing) department. The firm was attempting to categorize the EDP department as either a driver or supporter.

Drivers are defined as those units that engaged in front-line or direct revenue-generating activities. Supporters are units that did not generate obvious direct revenues but, rather, were designed to support front-line activities. For example, operations such as internal accounting, purchasing, or office management were all classified as supporter departments. Supporter departments, due to their very nature, were evaluated on their effectiveness and efficiency or economies of scale.

In contrast, driver organizations are expected to generate direct revenues and other ROI values for the firm. What was also interesting to me at the time was that drivers were expected to be more daring—since they must inevitably generate returns for the business. As such, drivers engage in what Bradley and Nolan (1998)

coined “sense and respond” behaviors and activities. Let me explain.

12.10

Drivers and Supporters

265

Marketing departments often generate new business by investing or “sensing”

an opportunity, quickly—because of competitive forces in the marketplace. Thus, they must sense an opportunity and be allowed to respond to it in timely fashion. The process of sensing opportunity and responding with competitive products or services is a stage in the cycle that organizations need to support. Failures in the cycles of sense and respond are expected. Take, for example, the launching of new fall television shows. Each of the major stations goes through a process of “sensing” what shows might be interesting to the viewing audience. They “respond” after research and review with a number of new shows. Inevitably, only a few of these selected shows are actually successful; some fail almost immediately. While relatively few shows succeed, the process is acceptable and is seen by management as the consequence of an appropriate set of steps for competing effectively—even though the percentage of successful new shows is very low.

Therefore, it is safe to say that driver organizations are expected to engage in high-risk-oriented operations, of which many will fail for the sake of creating ultimately successful products or services.

The preceding example raises two questions: (1) How does “sense and respond”

relate to the world of information technology, and (2) why is it important? Information technology is unique in that it is both a driver and a supporter. The latter is being the generally accepted norm in most firms. Indeed, most IT functions are established to support a myriad of internal functions such as:

• Accounting and finance.

• Data Center infrastructure (email, desktop, etc.).

• Enterprise-level application (ERP).

• Customer support (CRM).

• Web and e-commerce activities.

As one would expect, these IT functions are viewed as overhead related, as somewhat of a commodity, and, thus, constantly managed on an economy-of-scale basis—that is, how can we make this operation more efficient, with a particular focus on cost containment?

So, what then are IT driver functions? By definition, they are those that engage in direct revenues and identifiable return on investment (ROI). How do we define such functions in IT, as most activities are sheltered under the umbrella of marketing organization domains? (Excluding, of course, software application development firms that engage in marketing for their actual application products.) I define IT driver functions as those projects that, if delivered, would change the relationship between the organization and its customers, that is, those activities that directly affect the classic definition of a market: forces of supply and demand, which are governed by the customer (demand) and the vendor (supplier) relationship.

The conclusion of this section, therefore, is that no driver application product should be implemented using complete outsourcing, rather made in-house and owned by the firm. This does not, however, suggest that certain services and

266

12 Build Versus Buy

components be subcontracted out as long as the ownership remains within the company.

12.11

The Supporter Side of Buying

Based on the definition of a driver, the supporter side may indeed represent the need to buy a packaged solution. Since supporter functions are “operational” by definition, they are considered to be a commodity and thus able to be implemented using more standardized application software. Thus, all of the advantages of using packaged software apply. In addition, there should be less need for customization.

For example, think of the choice to build an email system—you would only build it in house if you required unique capabilities that provided a competitive advantage.

That is, the email system would be a driver application because it would change the relationship between the buyer and seller. This is exactly the situation that occurred with Walmart, where what would ordinarily have been considered a commodity accounting system became an application of great strategic advantage. On the other hand, an email system that could provide such advantage would be unlikely for most organizations, and therefore they would seek a product that does what most organizations need in any email system—as a supporter solution.

12.12

Open-Source Paradigm

Open-source software can be defined as free source code developed among a community that believes strongly in a free software movement. Initial examples of successful open-source products are Linux and Netscape Communicator.

The open-source movement is supported under the auspices of the Open-Source Initiative (OSI) that was formed in 1998 to provide guidance and standards of application.

As I previously mentioned, the evolution of open source as an alternative to developing software has grown enormously in the software industry. Open source can also represent an option with make versus buy. Choices of whether to make or buy do not necessarily need to be binary; that is, one or the other, but rather could end up as a hybrid decision. For example, an organization can develop its own application using open source within its application development strategy or it can license a third-party product that also contains open source. Finally, packages may be licensed that can be bridged or integrated with various open-source modules.

In any case, open source broadens the range of choices when determining the best application solution.

Open-source users must, however, agree to the following conditions of use as well as providing conditions of use to others:

• Free distribution.

• Inclusion of source code.

12.13

Cloud Computing Options

267

• License must allow modifications and derived works.

• Allowed redistribution of modifications under the same license of the original software. License may require the derived work to carry a different name or version to protect the integrity of the original author.

• No discriminations against any specific groups or fields of endeavors.

• License cannot be restrictive to any software and be technology platform neutral.

To a certain extent open source provides organizations with the option to use package software that is free to modify and then to offer their changes back to those that need it in the user base—so it can be a forum where organizations can share needs. The negative aspect to sharing is if the modification contains proprietary algorithms that represent a competitive advantage for the firm. The software must also be hardware neutral which presents challenges for those applications that run on proprietary systems. Still, open-source applications are growing in popularity, especially as a cloud computing option.

Furthermore, open source might present some unexpected legal issues particularly as it relates to ownership of the software. Suppose you use an open-source routine or module in your proprietary application and then the company is acquired by another entity. The question then is who owns the product? Legally the portion that is open source cannot be owned, which creates a dilemma that was likely not foreseen by the organization’s IT management. This dilemma is particularly relevant to vendor software products.

12.13

Cloud Computing Options

As I have discussed in previous chapters, cloud computing is the ultimate server-based paradigm to support IoT and blockchain technologies. Simply put, the host (cloud) has all of the hardware, software, services, and databases to support your business or enterprise. The organization essentially has the terminals and printers to do the work. Figure 12.2 depicts a cloud high-level configuration: Beyond the connectivity, cloud is really about reduction of cost and perhaps using products that are shared by others like IoT devices. This does not mean that cloud products cannot have proprietary applications, rather that they have the ability to mix and match what is available in the cloud to meet specific needs of the organization. Because many of these applications can be shared in the cloud, the cost of ownership is very much lowered. Perhaps the largest benefit for using a cloud is in the savings for infrastructure and operations staff who would otherwise need to support the operation internally. We also know from Chap. 8 that cloud has a number of basic and complex configurations. It is worth reviewing these models to help determine the make versus buy decision.

268

12 Build Versus Buy

CLOUD

Fig. 12.2 Cloud configuration

12.14

Deployment Models

There are essentially five different deployable models for cloud computing: 1. Public/External: This is the basic model that allows users to access a network via the Internet and typically pay on a usage or application access basis. It resembles the 1970 concept of timesharing. Clearly might be easier to buy.

2. Private/Internal: A private cloud in many ways resembles an Intranet concept in that it is an internally developed shared service for the organization. As in an Intranet, a private cloud requires organizations to design the network and support it as if it were Public –of course with less complexity. Likely a build choice.

3. Community: This configuration represents a group of organizations that share resources. In effect it is a restricted public cloud—only certain organizations can use it. Community clouds are attractive for specific industries that have similar needs or associations. Could be both depending on the size of the shared community.

4. Hybrid: A hybrid cloud really relates to providing specific administrative IT

functions like backup, performance, and security for both public and private cloud deployments. So, it is more a utility type of cloud service often provided

12.14

Deployment Models

269

Hybrid

Private

Private

Internal

External

CLOUD

On Premises

Off Premises

Fig. 12.3 Cloud deployment types (Source Wikipedia)

by internal IT services or vendors like Oracle, etc. Likely both with the private being developed and the public outsourced.

5. Combined: This is the application of multiple types of clouds that allow organizations to enjoy the best provisions clouds offer to each business. By definition it can be either depending on the circumstances.

Figure 12.3 depicts the graphical representations of these cloud-type deployments.

Obviously, cloud computing has its drawbacks—it is essentially outsourcing major parts of your operation to a third party—for which there is always risk, so these should be measured as follows:

• Security: While all third parties promise security, history has shown that they can be pierced from the outside. So, security remains a concern for private and important data. For example, having healthcare information and other personal information in a cloud could be very dangerous.

• Governmental and Political Issues: If stored data is kept in other locations under the auspices and control of other countries, it could be restricted, taken, or kept from those that need it. The data could also be compromised because of different legal systems and changes in government policies. We see such problems in multinational firms quite often.

• Downtime: How much can any vendor guarantee ongoing service without outage and to what extent can clouds have failover abilities and at what cost?

• Conversions: If you should need to move from one cloud provider to another, what are the risks and problems with moving applications and what compatibility problems will occur especially with data conversion?

270

12 Build Versus Buy

12.15

Summary

This chapter examined the complexities of whether to make or buy an application solution. Hybrid solutions, which involve both a third-party package and internally developed applications, are very realistic alternatives. The evolution of open source and cloud computing offer attractive opportunities to design and create hybrid systems that provide broader alternatives than historically were available.

Furthermore, the concept of driver/supporter provides a more scientific way of determining whether to make or buy software solutions which are consistent with IoT and blockchain architectures to support mobile environments.

12.16

Problems and Exercises

1. Explain what is meant about core versus content.

2. Why is TOC so important?

3. Describe Langer’s theory of driver/supporter.

4. What is the relationship between driver/supporter and make versus buy?

5. Define open source. How can open source change the decision process on make versus buy?

6. What is cloud computing? Explain the different types of clouds.

References

Bradley, S. P., & Nolan, R. L. (1998). Sense and respond: Capturing value in the network era.

Harvard Business School Press.

Burt, D. N., Dobler, D. W., & Starling, S. L. (2003). World class supply management: The key to supply chain management (7th ed.). McGraw-Hill/Irwin.

Inman, R. A., Sale, R. S., Green, K. W., & Whitten, D. (2011). Agile manufacturing: Relation to JIT, operational performance and firm performance. Journal of Operations Management, 29, 343–355.

Langer, A. M. (2011). Information technology and organizational learning: Managing behavioral change through technology and education (2nd ed.). CRC Press.

Ledeen, K.S. (2011). Make v. buy: A decision paradigm for information technology applications.

Cambridge: Nevo Press.

Moore, G. (2002). Living in the fault line: Managing for shareholder value in any economy. New York: HarperCollins.

[image: Image 372]

The Analyst and Project

Management in the Next Generation

13

13.1

Introduction

This chapter provides guidance on system development life cycle methodologies and best practices for project management of the next generation of systems.

Project organization including roles and responsibilities are covered. There are many aspects of the next generation (5G/6G, IoT, blockchain) that are generic; however, there are certainly many unique aspects when managing these mobile-based systems. Thus, this chapter provides an understanding of where these unique challenges occur in the life cycle of software development. It also focuses on the ongoing support issues that must be addressed to attain best practices.

A project manager who comes from a traditional software development back-ground and understands the phases of software development will perhaps do fine in overseeing the progress of packaged software projects. Indeed, traditional project managers will focus on budget, the schedule, the resources, and the project plan.

Unfortunately, packaged software systems, because of their widespread involvement with many parts of the business, need to go beyond just watching and managing the software development process. That is, the project management of IoT requires much more integration with the internal and consumer communities.

It must combine traditional development with business creation, and because of the pre-existing nature of the package, it also delves into the internal organizations’ structure and requires their participation in every phase of the development and implementation cycle. It is for these reasons that I advocate that the traditional analyst consider transitioning their skills to include project management. The reasons for my position relate mostly to the addition of the consumer interface. Most traditional project managers are from the software development side, whereas the new generation of development discussed in this book is more about establishing consumer perspectives. Listed below are some of the unique components of mobile development projects.

© The Editor(s) (if applicable) and The Author(s), under exclusive license 271

to Springer Nature Switzerland AG 2025

A. M. Langer, Analysis and Design of Next-Generation Software Architectures,

https://doi.org/10.1007/978-3-031-76212-3_13

272

13 The Analyst and Project Management in the Next Generation

1. Project Managers as Complex Managers: Packaged software projects require multiple interfaces that are outside the traditional user community. They can include interfacing with writers, editors, marketing personnel, customers, and consumers, all who might be stakeholders in the success of the system.

2. Shorter and Dynamic Development Schedules: Due to the dynamic nature of packaged systems, the development is less linear. Because there is less experience and more stakeholders, there is a tendency to underestimate the time and cost to complete.

3. New Untested Technologies: There is so much new technology offered particularly for Web developers that there is a practice of using new versions of development software that has not matured. The method of obtaining new software is easily distributed over the Web, so it is relatively easy to try new versions as soon as they become available. We are also in the world of DevOps which supports the corrections of applications after their release—it’s fixing and ongoing development on the fly!

4. Degree of Scope Changes: Mobile applications, because of their involvement with many aspects of the consumer, tend to be much more prone to scope creep because of the predictive nature of the requirements. Project managers need to work closely with internal users, customers, and consumers to advise them of the impact of changes on the schedule and the cost of the project.

Unfortunately, scope changes that are influenced by changes in market trends may not be avoidable. Thus, part of a good strategy is to manage scope changes rather than attempt to stop them—which might not be realistic.

5. Costing Packaged Systems is Difficult: The software industry has always had difficulties in knowing how to cost a project. Third-party systems are even more difficult because of the number of variables, unknowns, and use of new technologies and procedures. Blockchain products, IoT and cloud will likely be dominated by various outsource and vendor packages.

6. Lack of Standards: The software industry continues to be a profession that does not have a governing body. Thus, it is impossible to have real enforced standards as other professions enjoy. While there are suggestions and best practices, many of them are unproven and not kept current with new developments. Because of the lack of successful packaged software projects, there are few success stories to create new and better best practices.

7. Less Specialized Roles and Responsibilities: The software development team tends to have staff members that have varying responsibilities. Unlike traditional software projects, separation of roles and responsibilities is more difficult when operating in a mobile environment. For example, defining the exact role of an analyst can be very tricky; for example, are analysts programmers, database developers, or content designers? The reality is that all of these roles can be part of a developer’s responsibility.

8. Who Bears the Cost? There is general uncertainty as to who should bear the cost of the packaged system. This refers to the internal organization of stakeholders who need to agree on the funding. This becomes even more complex

13.1

Introduction

273

when there are delays and cost overruns, because the constituents cannot easily agree on who is at fault and therefore who should bear the burden of the additional costs.

9. Project Management Responsibilities are Very Broad: Mobile architectures have broader management responsibilities and need to go beyond those of the traditional IT project manager. Working with third-party interfaces requires management services outside the traditional software staff. As discussed in Chap. 1 analysts need to interact more with external users as well as with non-traditional members of the development team such as content managers

and social media staff. Therefore, there are many more obstacles that can cause project managers to fail at their jobs.

10. The Product Never Ends: The nature of how applications are built today and deployed suggests that they are living systems. This means that they have a long-life cycle made up of ongoing maintenance and enhancements. So, the traditional begin and end project does not apply to a packaged software project that inherently must be implemented in ongoing phases.

Figure 13.1 summarizes these differences between traditional and packaged software projects.

The questions that need to be answered are not limited to what the process and responsibilities should be, but also who should do them? It is my position that a business analyst takes the responsibility of managing the process from inception to completion. The duties and responsibilities of a business analyst are excellent prerequisites for understanding the intricacies of project management. Their roles as analysts require them to have relationships with the organization and an understanding of the politics and culture that drives the business. I am not suggesting that every analyst should become a project manager, but rather that one of the analysts Packaged Software Projects

Traditional Projects

Project managers are not always trained

Different

client managers

Development project schedules tend to be

Similar

short

New and untested third-party software are Usually never

often implemented

Changes in scope occur during

Similar

implementation

Pricing model does not really exist

Different

Standards for package production do not

Similar

exist

Team roles are less specialized

Different

Users have difficulty bearing the costs of

Different

development, especially during planning

Project manager responsibilities are broad

Different

Fig. 13.1 Next-generation software and traditional projects compared

274

13 The Analyst and Project Management in the Next Generation

should also be the project manager. In order to determine the right fit, it is important to define the skill sets that are required for successful project management.

These are summarized below:

• Software experience.

• Understanding of budgeting, scheduling, and resource allocation.

• Excellent written and verbal communication skills.

• Ability to hold and lead meeting discussions.

• Detailed oriented yet globally motivated (can see the difference between the forest and the trees).

• Pragmatic.

• A sense of humor that comes across as a natural personal trait as opposed to an acted one.

• Ability to be calm and level-headed during crisis.

• Experience with Web technologies, multimedia, and software engineering.

Unfortunately, it is difficult to find the project manager that has all of these traits. In many cases, it is wise to promote from within and develop the expertise internally.

This is especially effective because an internal individual is a known quantity, and most likely already fits into the culture of the organization. Most important is that the individual is accepted in the culture. On the downside, it takes time to develop internal talent, and sometimes this trained talent leaves the company once they have received their training. There is a benefit to bringing in someone from the outside because they can have a fresh view of the project and offer more objective input on what needs to be done to get the project finished on time.

13.2

Defining the Project

The first step for the project manager is to develop a mission statement for the project. A mission statement helps managers and users/consumers to focus on three core tasks:

1. Identify the projects’ objectives.

2. Identify the users and consumers.

3. Determine the scope of the project.

13.3

Identify Objectives

Project objectives are defined as the results that must be attained during the project.

According to Lewis (1995), project objectives must be specific, measurable, attainable, realistic, and time-limited. The most difficult of these objectives tends to be

“measurable” and “attainable.” Ultimately, objectives state the desired outcomes and focus on how the organization will know when it is reached? Objectives are

13.4

Identify Users

275

typically devised by the project’s stakeholders. These individuals are usually executives and managers that have the most to gain from the successful implementation of the packaged software system. Unfortunately, while this sounds good, it is difficult to implement. In reality, it is difficult for executives to articulate what they are looking for. Indeed, the packaged software paradigm has simply forced many executives to create products because they think it is a competitive advantage for their companies to have one. This, in essence, means that executives might be driven by the fear that they must do something, or something is better than nothing.

Packaged software objectives evolve and cause many iterative events to occur, especially in the early phases of the project. Good and effective objectives tend to be short sentences that are written down. Using this format, objectives can be used by project managers to effectively avoid scope creep. The objectives should be distributed to all stakeholders and project members so that everyone understands them.

13.4

Identify Users

Chapter 2 covered the significance of users and their importance to the success of any project. In the chapter, I defined three types of users: internal, customers, and consumers. It is important for project managers to understand the value of the input from each of these users. Indeed, the content of the Web site will ultimately be determined by the users who access the site. However, managers and developers often disagree on how much input is needed from users. This is further complicated when managing packaged software projects because of the diversity of the users and the complexity of decisions that must be made. Furthermore, there is always limited time, so packaged software project managers need to be as productive as possible with how user input is obtained, the types of interviewing that is done, and the method of measuring the value of the user’s input.

Since the only way to measure a site’s success is to determine whether the objectives have been met, the philosophy of who gets interviewed and how much value their input has should be mapped to the original objectives set forth by management. Thus, besides the internal users, the real obstacle for project managers is to identify which users know best what they want from the packaged software system. Besides one-on-one interviews, the project manager can also obtain information from two other sources: market research and focus groups.

There are many firms that provide market research services. Such firms have databases of researched information relating to user preferences and behaviors.

They also collect information about packaged solutions and what users expect from them. Every packaged software system should have a budget using a market research firm so that they can obtain an objective and independent opinion about user preferences, particularly within a certain market segment. Conducting a focus group is a cheaper yet effective way to get objective input from users. It is particularly useful when attempting to assess consumer preferences. Focus groups

276

13 The Analyst and Project Management in the Next Generation

involve the selection of sample consumers that the project manager feels represents the typical user. The sessions are filmed behind a mirror, and users respond to questions about their preferences when using a packaged software system. The focus group typically needs a moderator who controls the meeting agenda and ensures that all of the research questions are answered by the participants. During all sessions, it is important that the project manager ensure that the objectives of the packaged software system can be clearly defined to the audience. The objectives should be in writing and reviewed before the start and end of each session.

In addition, the objectives should be written on a whiteboard or flip chart so participants can be reminded of the scope of the project should certain users start discussions on tangent subjects.

13.5

Determining the Scope of the Project

The scope of the project relates to the time and budget of when it needs to be completed. Because there is always a limited amount of time and money to create product, the scope of the project must be negotiated against what can be done with what users want done. Thus, scope is the domain of functions and features that will be included in the packaged software system based on a specific time commitment and cost outlay. The best approach to formulating a scope statement is to first create a work breakdown structure that contains the mission statement, lists the objectives, and formulates the tasks and subtasks to complete each objective.

Thus, a work breakdown structure is really a form of functional decomposition of the tasks necessary to meet the objectives. Once stakeholders and the project manager agree on the objectives and what tasks will be done to attain them, then the scope of the project is complete. Figure 13.2 depicts a sample work breakdown structure.

Once tasks and subtasks have been determined, the packaged software project manager needs to determine the time and cost of completing each component.

Thus, the work breakdown structure will eventually contain the costs for each task within each objective for the entire project as proposed. Management and the project manager can then begin the process of negotiating what can be completed on time and on budget by removing subtasks or tasks as appropriate.

Another valuable approach to building packaged software projects is phasing deliverables. Because packaged software projects tend never to be finished, it might be advisable to deliver some portion of the system first and then add-on functionality in subsequent releases of the system. Obviously, this might not always be feasible; there are third-party software systems that cannot be phased, that is, they are all or nothing at all. However, I believe that all projects can have some level of phased development and that such development in the long run benefits the entire scope of the project. Indeed, first releases of a packaged solution typically need revision anyway, and the second phase or version might be a better time to add certain features and functions.

13.6

Managing Scope

277

Mission

Objective A

Objective B

Objective C

Objective D

Task

Task

Task

Task

Task

Task

Task

SubTask

SubTask

SubTask

SubTask

SubTask

SubTask

SubTask

SubTask

SubTask

SubTask

SubTask

SubTask

SubTask

SubTask

SubTask

Fig. 13.2 Sample work breakdown structure

I stated that the final work breakdown schedule represents the scope of the project. Typically, the packaged software project manager will finalize the scope statement by preparing a document that includes the work breakdown structure and articulates how this structure will be formulated into deliverables for the project.

In many ways, the scope document acts as a management report and reiterates the mission and objectives of the project along with the project plan. Figure 13.3

shows a typical project plan developed in Microsoft Project.

13.6

Managing Scope

A project plan can sometimes be referred to as a work breakdown schedule or WBS. As shown in Fig. 13.3, it depicts every step in the project and can enforce dependencies within tasks and subtasks. This is important, because changes to the plan may affect other tasks. A WBS product like Microsoft’s Project provides an automated way of tracking changes and determining their effect on the entire project. A popular method of tracking changes is called “critical path analysis.”

Critical path analysis involves the monitoring of tasks that can have an effect on the entire scope of the project, meaning it can change the timeframe and cost of delivery. A critical path is defined as a task that if delayed will cause a delay in the entire project. A task that can delay the project is then called a critical task.

[image: Image 373]

278

13 The Analyst and Project Management in the Next Generation

plan

roject p

are

softw

Third-party

. 13.3 igF

[image: Image 374]

13.7

The Budget

279

Fig. 13.4 Critical and non-critical tasks using Microsoft project

The importance of managing critical tasks is crucial for successful management of packaged software projects. Project managers are often faced with the reality that some task has slipped behind schedule. When faced with this dilemma, the project manager needs to decide whether dedicating more resources to the task might get it back on schedule. However, the first thing that the project manager needs to assess is whether the task can affect the critical path. If the answer is yes, then the project manager must attempt to use other resources to avoid a scope delay. If the task is not critical, then the delay may be acceptable without needing to change the project plan. Figure 13.4 shows a critical task and a non-critical task.

13.7

The Budget

Budgeting is one of the most important responsibilities of a project manager. The budget effectively prices the tasks that must be delivered and rolls them up to the project cost level. It is important to recognize that all budgets are estimates.

Therefore, they are never 100% accurate—if they were, they would not be budgets.

The concept behind budgeting is that some tasks will be over-budget and others will be under-budget resulting in an offset that essentially balances out to the assumptions outlined in the original plan. Budgets are typically built on expense categories. Figure 13.5 shows the common budget categories that projects should be tracking.

280

13 The Analyst and Project Management in the Next Generation

Project Budget Sample

12/12/2010

Descripon

Low

High

Comments

 Hardware

Servers

$

150,000

200,000

Workstaons

400,000

600,000

Modems

25,000

30,000

Scanners

5,000

20,000

Total Hardware

580,000

850,000

 Soware

Base Product

250,000

350,000 Cost of vendor base product soware

Database

100,000

250,000 Database vendor soware license

Office Automaon

40,000

100,000 Forms eliminaon and e-mail intranet

CAD/CAM-Scanning

40,000

100,000 Scanning soware

Media Producon

90,000

150,000

Modificaon costs to vendors product to meet

Soware Modificaons

75,000

125,000 needs

Total Soware

595,000

1,075,000

 Services

Network and Soware

Design

5,000

8,500 Analysis & design of system

Specialists that may be

Consultants

240,000

285,000 needed

Scanning Documents

125,000

135,000 Service to put all plans in system

Conversion of Data

120,000

130,000

Installaon

45,000

87,000 low: 300x150 high 300x250 plus servers

Training

25,000

85,000 Train the trainer all train everyone

Total Services

560,000

730,500

Total

$

1,735,000

2,655,500

Fig. 13.5 Sample e-business project budget expense categories

As stated above, a project budget is a set of assumptions. Typical budget assumptions are:

• All content will be provided in machine-readable form.

• The content manager will approve content design within 24 h.

• The web design team will present two alternate design schemas.

• Graphics for the website are finalized and ready for integration.

It is not a bad idea for the project manager to create a budget document that includes a list of the assumptions because it allows the manager to track whether incorrect assumptions caused delays in the scope of the project. Unfortunately, there are also hidden costs that tend not to be included in project budgets. The following is a list of common hidden costs that are missed by the project manager:

13.8

The Project Team

281

• Meetings.

• Phone calls.

• Research.

• Development of documents and status reports.

• Project administration.

• Review sessions.

• Presentations to management.

As previously discussed, some project managers add a 10–15% cushion to their budgets to absorb common hidden costs. While I do not support cushions, it is acceptable if actually listed as a budget item, as opposed to a cushion on each budget line item.

13.8

The Project Team

The project team is unique from other traditional project organizations. Most of the significant differences are attributable to the addition of the packaged software responsibilities. Today, the roles and responsibilities for developing and supporting packaged software teams are far more complex and specialized. The project team has evolved because business managers understand the importance of technology in transforming the way business is done. On the other hand, there are certainly traditional roles and responsibilities that have not changed and are generalizable across any software development project.

While the structure of project teams can vary depending on the type of project, the size of the system, and the time to complete, typical organizations contain the following roles and responsibilities:

• Project Manager: The project manager is responsible for the scope of work, developing the project plan, scheduling, allocating resources, budgeting, managing the team, interfacing with users, and reporting to management on progress.

The project manager also deals with politics and other business issues, which include but are not limited to contract negotiations, licensing of third-party products, and staff hiring. In some instances, the project manager is responsible for handling customer and consumer needs as it relates to the design and development of the packaged software system. Perhaps the most important responsibility of the packaged software project manager is to know at all times what has been done and what needs to be done.

• Account Manager: The account manager is usually a senior manager who is responsible for a number of projects. Account managers also serve clients in a number of ways, from selling new product to providing client support. In many ways, the account manager is the representative of the client’s needs to the internal development team. Account managers can be called upon to obtain information from customers about their needs and their feedback on how the system supports their needs.

282

13 The Analyst and Project Management in the Next Generation

• Technical Manager: This individual is the senior technologist of the project.

He/she is usually from the development team and is the most experienced developer. The technical manager is responsible for ensuring that the correct technology is being used and deployed properly. This individual manages the programmers, database developers, and other system integrators. The technical manger provides feedback on the development status of each task and reports to the project manager.

• Programmer: A programmer may be needed to do certain custom modifications if not outsourced. He/she is responsible for coding applications for the project. These applications are coded to spec and can include a myriad of technologies including but not limited to server scripts, database applications, applets, and ActiveX controls. Development languages used on third-party software projects vary, but the Web uses such languages as Java, JavaScript, Visual Basic, VBScript, SQL, and C/C++. The technical manager usually manages this individual; however, large projects may employ multiple levels of programmers.

In certain situations, junior programmers report to senior developers who act as mentors to them.

• Business Analyst: This individual is responsible for gathering all of the user requirements and designing the logic models and architecture of the system, which include process models, data models, transactions system design, and process specifications. Ultimately the business analyst is responsible for site architecture, navigation, search and data retrieval, and interaction design. This role is sometimes called an Information Architect.

• Designer: Designers create the look and feel of the screens. They use various tools to design template content and overall screen structure. Screen designers report to the project manager who sets the overall project philosophy.

• Database Administrator (DBA): The DBA is responsible for all physical database design and development. This individual must also fine-tune the

database to ensure efficient operation. Other responsibilities include data partitioning, data warehouse setup, data replication, and report generation.

• Network Engineers: These individuals are responsible for designing network configurations that support the packaged software system. Sometimes a network engineer is also a security specialist who is responsible for registering domain names, setting up email servers and chat rooms.

• Security Expert: While this might be the network specialist, larger packaged software projects employ a dedicated security expert who works with encryption formulas, integrates with content systems, and focuses on securing online transactions. This individual can also advise the project manager on strategies to implement certain component applications.

• Quality Assurance Specialist: This individual is responsible for creating test scripts to ensure that the packaged software system operates within spec. The purpose of the test plans, sometimes called acceptance test plans, is to provide the minimal set of tests that must be passed for the site to go into production.

The reporting structure for quality assurance personnel varies. Some believe that it is part of the development team and therefore should report to the

13.8

The Project Team

283

Type of Project Activity

Staff Organization

Marketing and Media

Account executive, project manager,

creative manager, designer, copywriter,

production artist, quality assurance

specialist

Project transactions

Project manager, technical manager,

analyst, creative manager, database

administrator, tester

Input/Output data

Project manager, technical manager,

creative manager, database administrator,

analyst, Web production specialist, quality

assurance specialist

Mobile

Project manager, technical manager,

creative manager, network engineer,

internet production specialist, quality

assurance specialist

Fig. 13.6 Project team roles and responsibilities’ matrix

technical manager while others believe that it needs to report directly to the project manager. There are still others that believe that the quality assurance staff should report to the chief information officer (CIO). The reporting structure is dependent on how highly the department values the independence of the testing function.

• Tester: A tester is simply a person who carries out the test plans developed by the quality assurance staff. These people typically report to quality assurance staff; however, sometimes testers are users who are working with the account manager to assist in the testing of the product. These testers are in a sense a beta test user (beta test means that the software is tested in a live environment).

While this is an exhaustive list of potential positions to have on a project, it is unlikely that every one of these positions will exist in any given third-party software project. In reality, it is more important that the functionality of each of these positions is carried out, regardless of who takes on the responsibility. In order to provide better insight to the roles and responsibilities of each position, Figure 13.6

reflects a comparison matrix that compares roles with responsibilities.

Figure 13.7 identifies the necessary skills of each of the critical members of the project team.

284

13 The Analyst and Project Management in the Next Generation

Skill Set

Description

Project Management

Ability to communicate with staff,

executives, and users. Keep project on

schedule.

Architecture

Ability to design the user interface and

interact with technical development

personnel

Graphic Design

Ability to transform requirements into

visual solutions

Graphic Production

Ability to develop efficient graphics for

Web browser use

Content Development

Ability to design and develop text and

interactive content

Programming

Ability to use HTML, Python, Javascript,

etc.

Fig. 13.7 Necessary project skill sets

13.9

Project Team Dynamics

It is not unusual for third-party software development projects to operate from multiple sites with multiple interfaces. This may require much more organization and communication among the members of the team.

13.10

Set Rules and Guidelines for Communication

When project members are separated by locations or even by work schedules it is very important that everyone know what their roles are, and what everybody else’s responsibilities are to each other. Project managers should establish guidelines on communication and require each member to provide short statuses on where they are in the project. While this might seem like a bother to team members, I have found that it provides immense value to the project manager because it forces each person to discipline themselves and report on where they are in their respective worlds. Furthermore, it forces project staff to articulate in writing what they have accomplished, what is outstanding, and what they plan to get done. Figure 13.8

shows a sample status report that tracks previous objectives with current objectives.

It should not take more than 15 min to complete.

13.11

Review Sites

285

XYZ CORP

 Project Plan

 Project Status Report

Date 2/15/19

Vendor: XSP

Consultant:

Art Langer

New Project Objecves:

Objecve

Target Date

Get specificaon on hardware cerficaon machines from XSP

2/05/19

Get room to do interviews and reviews

2/10/19

Ensure that accounng features are integrated in specs

2/10/19

Art to interview Joe

2/03/19

Check ability of MAS to create output files for display on Web

2/06/19

Idenfy and meet with brokers as part of interviews

2/03/19

Get prices for Scanning of floor plans for Web browsing

2/10/19

Aendees

A. Langer & Assoc.

Art Langer

XSP

Previous Objecves:

Previous

Objecve

Target Date

Status

Send out Soware Proposals

1/23/19

Done

Send out Hardware Bids and check labor rates

1/25/19

2/6/19

Get XSP to modify detail design contract to include specifics

on deliverables.

1/23/19

Done, waing approval

Speak with

product consultant and contract with him

for data and layouts

1/25/19

2/3/19

Finalize Network Design Requirements Document

1/23/19

2/3/19

Fig. 13.8 Sample project status report

13.11

Review Sites

Project managers should create extranets that allow project staff to view the work of the project team. This also allows work to be approved virtually over the Web.

Furthermore, status reports and general announcements can be viewed by authorized members of the project team, as well as by stakeholders and users. Often extranet documents can be coupled with regular conference call sessions where project members can openly discuss reports, web design samples, and determine new milestones as appropriate. Unfortunately, managing an extranet review site

286

13 The Analyst and Project Management in the Next Generation

requires overhead and someone who can do the work. This simply means that someone on the project’s staff or some assigned administrative person needs to take on the responsibility. There is also the challenge of dealing with staff who do not comply with procedures or need to be reminded about delivering their status reports on a regular basis. While this is unfortunate, it is a reality. However, it also tells the project manager who needs to be watched more closely than other team members.

13.12

Working with User Resources

Users are an interesting yet challenging resource. While they are clearly needed to perform reviews and quality assurance, they are not officially assigned to the project and are therefore not under the control of the project manager. Unfortunately, this can cause problems if a user is not responsive to the needs of the project team. This can be very damaging because the staff will be dependent on receiving timely feedback from these resources. Lack of responsiveness from a user can also alienate them from the project team. Indeed, there is nothing more damaging than a user that shows disinterest in the project that is being designed to serve them. Therefore, the packaged software project manager needs to be careful on what commitments are made when a user resource is made available to them.

Obviously, the project manager would want the individual to report directly to him/

her and be a full-time resource. This could also be wishful thinking. It certainly can be dangerous to turn down the help. While this may appear to be a catch-22, it can be managed. First, the packaged software project manager should establish the need for user assistance early in the project and include it in the requirements documentation (it should be part of the assumptions section). Second, the project manager may need to limit the amount of work assigned to the user if they indeed are just part-time resources.

13.13

Outsourcing

As discussed in earlier chapters, not all packaged projects can be completed using internal staff. In fact, most are not. Using outsourced resources makes sense for many projects, especially those that might need very unique and qualified personnel that is not on staff or not deemed worthy of full-time employment. There may also be a lack of talent, which is the usual reason why consultants are hired in the first place. Sometimes, outsourced relationships are managed as strategic partnerships, which means that an outside business provides specific services for the firm on a regular basis. Project strategic partnerships can be made in many different areas or phases of the project. Outsource firms can provide video or

13.14

Planning and Process Development

287

audio engineers as needed, or network support personnel to assist in installing the packaged solution. On the other hand, the entire project should not be outsourced because there may be a false sense of comfort that the firm’s personnel need not be involved in the responsibility. I believe in the long run this is a mistake. Remember that outsourced firms have their own destiny and growth to manage.

13.14

Planning and Process Development

In order to operationalize the project plan and to meet the budget, it is necessary to develop a phased implementation guide that helps members of the team understand where they are in the process. Unfortunately, the project task plan is much too detailed to use, so it is a good idea for the project manager to develop a higher-level document that can be used during the development project. Such a plan typically contains four phases: (1) strategy, (2) design, (3) development, and (4) testing. Figure 13.9 reflects the major software phases and includes the activities and output of each phase.

 Strategy: This phase requires that the stakeholders, account executives, users, and the project manager all meet to agree on the objectives, requirements, key milestones, and needs of the target audience. The activities in this phase comprise the goals and objectives, feedback from users, research from outside sources, and the project proposal document. The culmination of these steps Planning

Process Development

Strategy

Analysis and Design

Development

Testing

-Goals & Objectives

-Concept Development

-JAD & Focus Groups

-Design

-Research

-Content Planning

-Project Proposal

-Technical Design

-Testing & Prototype

 -Creative Document

 -Functional Specs

 -Acceptance Test Plan

 -User Documentation

 -Project Plan

 -Training

 -Prototype

Fig. 13.9 Packaged software development phases

288

13 The Analyst and Project Management in the Next Generation

should be summarized in a document to be used by the project team. This document is sometimes referred to as a creative brief. The creative brief is really a summary of the original proposal in template form and created so that project team members can quickly refer to it and obtain the information they need.

Figure 13.10 depicts a creative brief template.

Creative briefs allow the project manager to conduct effective brainstorming sessions with staff. The document acts as an agenda, and also a checkpoint to ensure that discussions are not going beyond the objectives of the project and that the products are designed in accordance with the target audience’s needs.

 Creative Brief Template

XYZ, INC

Dates:

Dept:

User:

Target Audiences:

Project Scope

Objectives:

Image: (Explain the image that the system must convey to users)

Current Brand: (Explain the current brand and image of the business to its users) User Experience: (Explain the most important thing that users should experience from using the system)

\minutes Copyright © 1995-2019 A.

Langer & Assoc., Inc

Fig. 13.10 Sample creative brief

13.14

Planning and Process Development

289

 Design: Design represents the second major phase. It is comprised all the tasks that participate in the design of the user interface, the analysis and design of technical specifications, and the overall architecture of the packaged software system. The results of the design phase are the functional specifications, detailed project plan timeline and budget, and Web site and report prototypes.

The design phase typically requires stakeholders and other users to review and sign-off on the specification document before the project can proceed. Of course, the approval process of the design document can be done in phases, that is, portions of the document can be approved so that the implementation can go forward on some limited basis. During the process of designing the packaged system, it is important that the project team have access to the content of all screens and programs. This is especially important for large projects where there can be more than one design group creating content. As stated in the previous chapter, content development is an iterative process; therefore, the team members need to constantly have access to the current site architecture and schematic designs. That is why it is so important to have the technical specifications in a CASE tool and content system so that all members can have instant access to the current state of the project.

 Development: This phase includes all of the activities that are involved with actually building the site. The challenge for project managers is to control changes made to the original specifications. This typically occurs after the first prototype reviews where users begin to change or enhance their original requirements. While it is not impossible to change specifications, it is certainly dangerous and can be a major cause of scope creep.

 Testing: During this phase developers and users are testing the site and reporting errors. Errors are tricky issues; they must be classified in particular areas and levels of severity. For example, some errors cause an application to abort, which would be considered a critical error. Others might be aesthetic in nature and can be scheduled for fixing but are not severe enough to hold up going live. Still other errors are not really errors, but rather deficiencies in design. This means that the program is performing to the specification but not in the way the user really expects. All of these issues need to be part of an overall test plan, which identifies what types of errors are critical and how they affect the development process. Figure 13.11 shows a typical test plan.

290

13 The Analyst and Project Management in the Next Generation

Test Plan #: 1G

Product: Contact - Using Enter Key

Page: 1 of 4

Number:

Date:

 Quality Assurance

 Acceptance Test Plan

Purpose: To ensure that Contact screens

Vendor:

operate properly when supplying new good

data. This plan entry mode with nothing

QA Technician:

on the screen.

Test

Condion Being Tested

Expected Results

Actual Results

Comply

Comments

No.

Y/N

1

Enter LAST NAME for a new

Should accept and

contact, press enter key. Repeat

prompt for COMPANY

and enter FIRST NAME, press

SITE

enter key

2

Select COMPANY Site from picklist Should accept and

prompt for next field

3

Enter LAST NAME and FIRST

Should accept and

NAME for a CONTACT that is

prompt for COMPANY

already in the System.

SITE

Fig. 13.11 QA test plan

13.15

Technical Planning

Technical planning is the process where the project team develops a working strategy for how they will use the features of the packaged system. These features include all of the components of development including database, programming, transaction systems, multimedia, and scripting. Technical planning is simple in concept; how do all of the technology pieces come together, how do they interface, and what is the schedule of implementation? Because of the object-oriented methods that are employed by packaged software systems, it is easy to have components developed in separate teams of programmers. However, there comes a time when all components must come together and interface with each other. When the components interface correctly the system works. Project managers never quite know if interfaces will work until they are actually tested. The concept of “working” means many things in software development. The obvious definition is that the program performs its tasks correctly and to specification. There is another part of what

“working” means. This relates to performance of the application. While an application might calculate the correct output, it may not do so efficiently. Application performance problems tend to first show up during component interface testing.

Fortunately, this is at a time where applications can be fine-tuned before they go into production. Unfortunately, many interface-oriented performance problems first appear in the production system because the testing environment was not a true representation of the live system. Therefore, it is important for project managers to

13.16

Defining Technical Development Requirements

291

ensure that the test system correctly matches the live environment. Indeed, many performance problems occur because of the unexpected stress load on the system.

Notwithstanding when an application performance problem is discovered, the main challenge is to fix the problem. Sometimes performance interface problems can be a serious problem especially if the solution requires a redesign of the application architecture or substantial changes to the network infrastructure. Any serious problems of this caliber could cause serious setbacks to the project schedule and its cost. In many ways, the planning and decision-making regarding how applications are designed, which program languages should be used, and what network platforms to choose are crucial steps for the project team to make. The project manager must attempt to surround him-/herself with the best knowledge available.

This knowledge base of people might not exist in the organization. Therefore, the project manager might need to seek guidance from third-party consultants who can act as specialists during these critical decision times.

13.16

Defining Technical Development Requirements

A large part of whether systems are implemented properly has to do with how well the detailed technical requirements are prepared. The technical project team needs to define the technical requirements to implement the logical specifications.

Remember that logical specifications do not necessarily specify what hardware or software to use. Thus, the technical team must evaluate the logical specification and make recommendations on how the actual technical specifications are to be built. The project manager can be more effective if they ask some key questions:

• Are we thinking of using technologies that we have not used before? Using unknown technologies can be very dangerous. An unknown technology is

not only a new product; it is a product that the development team has never used. Because of the extent of new developments in technology, dealing with unknown hardware and software needs to be addressed and risks assessed by the project manager.

• What benefits will be derived from new technologies? Implementing new technologies for the sake of new technologies is not a good reason to implement unknowns. This concept gets back to the old cliché: “if it’s not broken don’t fix it!”

• What type of coding is being done? This relates to whether program code is being developed from scratch or via modified software packages. Each has its advantages and disadvantages. Writing code from scratch takes longer, but provides the architecture that best fits the design. Package software is faster to develop, but may not fit well with the overall needs of the company. The rule of thumb is never to modify packages by more than 20% of their total code. When this percent is exceeded the benefit realized form the package is so minimum that developers might as well start from scratch.

292

13 The Analyst and Project Management in the Next Generation

• Will there be access to production-like testing environments? This was covered earlier. Project managers must ensure that the proper testing facilities are available to mirror the production environment.

13.17

Maintenance

Packaged software projects should never be implemented without considering how to preserve maintainability. Maintainability is a universal concept that relates to what defines a quality product. Products that work is one thing, those that work and are also maintainable are essential. In packaged software systems, product that cannot be maintained easily is problematic. I have previously discussed the power of content management systems and CASE software as vehicles to support maintenance of packaged software systems. There are other best practices that need to be performed during the planning stage. First, the manner in which code will be developed and the standards to be upheld needs to be agreed upon and put in writing. Technical managers should also define how they intend to enforce these standards. Documentation of code should also be addressed in the documents. Furthermore, there needs to be agreement on the database design as well. This involves getting the Database administrators to agree on limits to de-normalization, naming standards, and the methods of coding stored procedures and database triggers.

Another important component of maintenance quality is planning for growth.

The issue of growth relates more to network infrastructure than software development. First, the project manager needs to address issues of hardware scalability.

This relates to the capacity of the network before the hardware architecture needs to be changed to accommodate new applications. Second, database servers must be configured with real-time backup architecture (no single point of failure concepts) and data warehouses need to be designed to perform at peak times.

13.18

Project Management and Communication

Successful project managers communicate well, not only with their staffs, but with vendors, management, and users. Indeed, sometimes communications skills are more important than technical ones. Obviously, a complete project manager has both. However, the advent of packaged software systems has placed even more emphasis on the importance of communication within the project team. There are many reasons why poor communications occur during project life cycles. According to Burdman (1999), there are 11 leading causes for communication problems on a project team.

1. People Come from Different Disciplines: Communication is difficult enough among those that work together every day. The influx of many different disciplines to a packaged software project creates more challenges because staffs are not as familiar with each other. Remember that relationships are very

13.18

Project Management and Communication

293

important for team interaction. Many teams need to spend time just getting acclimated to each other’s business styles.

2. Lack of Mutual Understanding of the Technology: Project members do not have consistent understandings of the technology. For example, some staff might use the word “table” to define a logical database entity, while others call it a file. The best solution to this problem is to distribute a list of common technology definitions to all project participants.

3. Personalities: This occurs in all projects. Some people have conflicting personalities and do not naturally get along.

4. Hidden Agenda: There are often political agendas that team members have.

They are sometimes difficult to assess, but they definitely cause problems with communication among project staff. These individuals are set in their ways and have questionable dedication to the success of the project, that is, they have a more important political agenda.

5. Ineffective Meetings: Meetings for the sake of meetings is no reason to meet.

Sometimes too many meetings can be counterproductive to getting things

done. It can sometimes be a false solution to other problems that exist in the project team. Some meetings are necessary but run too long, and participants begin to lose focus on the agenda. Project managers need to be cognizant of the time allotments they make to meetings and to respect those timeframes.

6. Proximity: The demographics of where project team members reside are obviously a factor in hindering communications among the team members. While this is a disadvantage, teleconferencing and video conferencing are all possible antidotes for managing communication projects at a distance. Communication can be further hindered because of long distances between staff especially when there are time zone changes. In these situations, even conferencing is not feasible. Usually, the best way of communicating is through email and extranets.

7. Assumptions: Team members can often make assumptions about things that can cause communication breakdowns. Usually, assumptions create problems

because things that are believed to be true are not written down.

8. Poor Infrastructure and Support: The severity of this problem is often overlooked. It includes the frustrations of having computer troubles, email incompatibilities, and other hardware failures that contribute to communications’ problems. The best approach to avoiding these frustrations is for the project manager to be very aggressive on having them fixed timely and properly.

9. Being an Expert: Every project has one or two “know-it-allers” who attempt to dominate meetings and want to orchestrate their point of view on the rest of the staff. These individuals spend so much time telling others what to do that they forget what they have to do to make the project successful. Project managers should be very aggressive with this type of participants by making it clear what everyone’s role is, including the project manager’s responsibilities!

294

13 The Analyst and Project Management in the Next Generation

10. Fear: Fear is a very large barrier with certain staff. These staff members become overwhelmed with the size, complexity, and length of packaged software project, and it can cause them to lose their perspective and creativity.

Project managers need to intervene and provide assistance to those members who struggle with a packaged software system.

11. Lack of Good Communications Structure: Good communications systems fit in with the culture of the organization and are realistic in what they might accomplish. Many communications problems exist simply because the infrastructure does not relate to the needs of the staff.

13.19

Summary

This chapter attempted to provide a project manager with a perspective on the salient issues that can help them be successful. This chapter was not intended to provide a complete step-by-step approach to managing complex projects. I included this chapter because I believe that many analysts can also serve as excellent project managers. Indeed, the important issues discussed in this chapter relate to many of the skills that analysts must have to perform their responsibilities as software engineers. These include:

• Communications Skills: Analysts have significant experience in working with users to obtain input so they can develop system requirements properly.

• Meeting Management: JAD sessions are more complex meetings than typical project meetings. Analysts that have also been JAD facilitators are very well trained on how to control meetings.

• Politically Astute: Analysts are experienced with working with people who have hidden agendas and are driven by politics.

• Technically Proficient: Analysts are educated in logic modeling and are familiar with many of the technical issues that come up during the project life cycle.

• Project Planning: Analysts are used to developing project plans and managing deliverables; each analysis and design task can be seen as a mini-project.

• Documentation: Analysts are supporters of good documentation and understand the value of having maintainable processes.

• Executive Presence: Analysts work with executive users and understand how to interact with them.

• Quality Assurance: Analysts are familiar with quality assurance test plans and testing methodologies. They are often involved with test plan development.

13.20

GenAI Effects on Project Management

GenAI can significantly streamline project workflows by automating routine tasks such as data entry, scheduling, and report generation. This results in accelerating project timeliness and enabling teams to meet project goals faster. GenAI also

13.20

GenAI Effects on Project Management

295

helps project managers with communication, collaborative leadership, and other power skills by supporting them in negotiating chains of stakeholders, institutions, and processes.

Capterra’s (2024) survey revealed that 93% of project managers saw a positive return on investment from AI tools in 2023 and that only 8% of companies had not planned to adopt AI technologies.

According to the Project Management Institute’s (PMI) annual Global Survey in 2024. AI in project management is increasing:

• Twenty-one % already use AI.

• Eighty-two % of senior management believe AI as a positive impact on project performance.

According to Mathew (2024), GenAI in project management is the integration of AI to enhance efficiency, decision-making, and overall project success. Project managers can use GenAI to analyze data, identify patterns in the data, and obtain insights to better perform their jobs. Specifically, GenAIs have the ability to predict trends by analyzing historical data and providing professionals with advice. Examples include information about potential risks, accurate estimations for project timelines, and how best to use staff resources. The objective is to make project managers more proactive and complete projects on time and on budget. GenAI can accomplish these objectives using the following categories:

1. Intelligent Automation: GenAI can automate tasks such as scheduling meetings, updating project timelines, and generating various reports. This greatly reduces operational overhead and allows project managers to spend more time on planning and management.

2. Communication and Collaboration: GenAI can better predict potential bottlenecks by recommending alternative communication options after analyzing

multiple channels that are available at any given time. Chatbots can also be used to support automated communications with the project team, users, and clients.

3. Personalized Recommendations and Learning Opportunities: GenAI can examine past performances and assess areas for improvement for a project manager to consider. This can include references to training materials, books, and educational programs –all tailored for the individual, industry, and type of project.

4. Increase Creativity and Innovation: GenAI allows project managers to think outside the box and explore possibilities outside the socio-political company environment in a personal and confidential way. Project managers can also use GenAI interactively using general natural language responses to queries and requests initiated by other project staff and management.

5. Real-Time Project Reporting: GenAI can make reporting more effective by issuing real-time summaries of the status of project components, measure progress, forecast actual or potential problems, and produce up-to-date performance.

296

13 The Analyst and Project Management in the Next Generation

6. Augmentation: GenAI can help project managers to improve capabilities and offer new ideas that can benefit the project in multiple ways such as financial performance, use of resources, staff retention, customer satisfaction, etc. These benefits ultimately provide more support for complex decision-making by the project manager.

13.21

Challenges and Considerations of Using Generative

AI in Project Management

Fatina (2024) AI in project management has many benefits there are several challenges to be considered to support its effective use. She offered nine considerations to address:

1. Data Privacy: Dealing with vast amounts of data requires security. Project managers must also ensure that their projects comply with global data protection regulations such as GDPR, HIPPA, etc.

2. Need for Robust Training Data: Users need to be trained on how to use the GenAI infrastructure and work with third-party supporting products. Training programs need to emphasize potential risks, probability of expected results, and address the cultural effects on staff when shifting to an automated AI environment.

3. Managing the Human–Machine Interface: Integrating GenAI tools with existing systems is complicated especially because of changes in workflow processes.

Tools need to be accessible, user friendly, and culturally integrated with all levels of project participants.

4. Subjectivity of Relevance for Human Beings: LLM models incorporated in GenAI are trained from massive data sets that are not always relevant and useful to certain users. Project managers need to aware of what might be limitations of the data sets as it relates to the population of users.

5. Bias Arising from Reinforcement Learning from Human Feedback: LLMs continue to learn based on human feedback. Unfortunately, that feedback may be biased (whether intentional or unintentional). Project managers need to be cognizant that data, over time, may become too biased limiting its effectiveness and accuracy. This can occur when project deliverables might be based on different or changing user base.

6. Prompt Leaking: This occurs when GenAI provides prompts or instructions to users that can be exploited by outside attackers who are attempting to gain access to sensitive data.

7. Prompt Injection: This occurs when attackers get access to Prompt and can inject malicious code that can result in harmful content.

8. Jailbreaks: These are harmful tricks crafted against a Prompt or by exploiting an LLM’s code.

References

297

9. Inference Costs: This relates to costs associated with overhead and processing time to execute LLMs to generate text. Increasing costs can be associated with the size of the code, complexity of the task, and the hardware infrastructure required to run the application and process the data.

There are also ethical considerations with using GenAI in project management

• Management of Bias: Assessing and correcting data bias is an ongoing responsibility of the organization to prevent discriminatory practices.

• Ensuring Transparency: All AI-driven decisions in project management must be documented and transparent. Obviously, this goes beyond just ensuring trust; there are outside audit, compliance, and regulation considerations.

13.22

Conclusion

GenAI will continue to contribute significantly to project management by offering new tools that allow for more efficient and accurate oversight and problem-solving.

GenAI will also help ensure that projects are completed with better outcomes.

13.23

Problems and Exercises

1. Describe five unique aspects of packaged software projects.

2. Compare packaged products with traditional ones.

3. What is a Mission Statement for a project? How should a project manager define the project mission?

4. Explain how the scope of a project is determined and how it is controlled.

5. What are the key categories of a project budget?

6. What are the roles and responsibilities of the project team? Who determines the members?

7. Explain the components of a project status report? How often should the report be issued and to whom?

8. What is a creative brief? What are the key components?

9. What are the important aspects of project management communication?

10. Why are packaged software decisions so important for IoT and blockchain applications?

11. What are five concerns about using GenAI in project management?

12. What is meant by Bias in GenAI?

References

Burdman, J. (1999). Collaborative web development. Addison-Wesley.

Fatina, F. (2024, May 16). AI project management: Insights into Generative AI’s growing influence. Datasciencedojo. https://datasciencedojo.com/blog/generative-ai-project-management/

298

13 The Analyst and Project Management in the Next Generation

Mathew, A. (2024, April 30). How does GenAI in project management work and what are its benefits. Medium. https://medium.com/@annamathew03/how-does-gen-ai-in-project-management-

work-and-what-are-its-benefits-f7f9ced7d8bd

Lewis, M. (1995). Project management: 25 popular project management methodologies. New York: Amazon Digital Services LLC.

[image: Image 375]

Conclusions and the Road Forward

14

The purpose of this book was to provide a roadmap for the reader on the processes and considerations for building new computer architectures to support the emerging consumer market. Many of us believe that the advent of 5G will be a major technical development that will dramatically accelerate the way businesses and individuals use and depend on digital technologies. The book has integrated two essential challenges to designing and developing these new systems: the technical components that comprise the physical machines and devices; and the various approaches to migrating the vast number of legacy systems that run the day-to-day organizations throughout the world.

The legacy challenge seems overwhelming and I believe that many organizations will fail to understand the urgency of why they need to move quickly to digital. They likely will fail to embrace 5G and IoT in a timely manner and as a result I expect further business failures in the future. Indeed, it seems every few months another business giant announces performance shortfalls. I mentioned in Chap. 6 the GE Digital division underperformance. The results of this failure have devastated GE’s market cap and for the first time they have fallen from the Dow 500, the last of the original companies that started on the Index! There are others, most recently Toy-R-Us, which seemed to have a good private equity partner but could not get its organization to embrace a digital culture fast enough. Although expectations were positive, they inevitably closed. I also expect many other businesses to consider merging especially in the higher education marketplace where we have already seen twenty college closures as online education begins to make an impact on what was once thought of as an untouchable business. Another critical dilemma is the reality of the required investment that is needed to transform to digital. I expect the costs to be substantial and I predict that many companies may need to raise cash from private equity partners to appropriately move into the digital age.

© The Editor(s) (if applicable) and The Author(s), under exclusive license 299

to Springer Nature Switzerland AG 2025

A. M. Langer, Analysis and Design of Next-Generation Software Architectures,

https://doi.org/10.1007/978-3-031-76212-3_14

[image: Image 376]

300

14 Conclusions and the Road Forward

Fig. 14.1 Prahalad and Krishnan’s New House of Innovation

Perhaps the most significant message is the need to evolve an organization’s culture. It’s one thing to have the technology infrastructure, it’s another to have the right people. We see many companies struggling to find the appropriate technical talent, and even more cannot get their existing staffs to embrace digital.

Prahalad and Krishnan (2008) foresaw this development over ten years ago when they created the “New House of Innovation” shown in Fig. 14.1.

This model understood that the consumerization of technology established the requirements for organizations to develop “flexible and resilient business processes and focused analytics” (p. 6). The key of this need, according to the authors, is based on two key “pillars” defined as N = 1 and R = G. It means that every business must serve each consumer as a unique individual (N = 1). R = G states that resources must be global in order to accomplish N = 1. So the House of Innovation defines consumerization of IT based on an organization’s ability to satisfy a customer’s needs by providing global service offerings. Therefore, to successfully compete in the digital world businesses must provide agile services 24/7, 365 to their consumers! If a consumer needs service at off-peak times, organizations will likely need to provide support using global resources to survive. For example, a consumer needing support at midnight in New York might be serviced by someone in India—it’s an “on-demand,” model that can be compared to the Burger King slogan, “have it your way!” The point is that consumers want it on demand. So, Burger King would have to provide hamburgers at midnight and offer an unlimited

14 Conclusions and the Road Forward

301

number of choices. Not an easy challenge, but this is the reality of what consumerization of technology means. My message is the need to treat every consumer as a unique person and to deliver services seamlessly. To accomplish this objective, the analyst needs to provide software to support agility—the type of agility that is now available because of 5G speed, IoT devices, and blockchain architecture. This book has also advocated the expansion of the analyst’s role to help manage the cultural shift necessary to become a digital company. Indeed, a digital entity needs to assimilate new types of employees that can integrate with the legacy staff. Snow, Fjeldstad and Langer (2017) posited that digital organizations were necessary to support the new technologies and that such organizations needed to be designed for self-authorization rather than the traditional hierarchical methods that project control and coordination. They concluded that successful organizations need workplaces that parallel digital uncertainties and recommend structures that are “highly engaged and productive” (p. 11).

The analyst can help achieve this agile and digital culture by ensuring that applications cater to the following four fundamentals:

1. Speed is more important than cost.

2. The organization must be empowered to respond to consumer and market needs (N = 1).

3. Applications must work on all devices while conforming to standardization or internal controls.

4. The digital architecture must be designed to maximize consumer options and on-demand responsiveness to users.

In addition, the new digital paradigm discussed in this book must deal with the following realities:

• The expansion of smartphones, social networks, and other consumer tech-

nologies are creating the need to change cultures, attitudes, and workplace practices.

• Features to deal with vulnerable technology and information—particularly

security and reliability.

• Increasing pressure for quality and efficiency—while keeping costs low.

• Rise of data-driven decision making for critical systems.

• New approaches to innovation—rethinking how to provide and control new

products and services.

• Consideration for disruptive disasters that are caused by man-made catastrophes and wars.

302

14 Conclusions and the Road Forward

14.1

Sense and Response and the End of Planning

The reality of living in the present, not the future, is simply uncertainty. How can we architect applications and networks that can scale and deal with this uncertainty? It was Accenture in 2012 who first published the report, “Reimagining Enterprise IT for an Uncertain Future” that emphasized the inability to do traditional planning because of the rise of data-driven decision-making for critical systems design. The report also called for new approaches to innovation; the rethinking of how to design new products and services that could be delivered to the consumer at lower costs. Bradley and Nolan brilliantly published their book in 1998 Sense and Respond and predicted the shifts in consumer behavior that became a reality twenty years later. They posited that organizations needed to sense opportunities and respond with strategies as opposed attempting to predict the future using budgets.

Today we see the theory of quantum physics being mapped to computing systems. The hope is that new architectures will be able to utilize resources differently in each instance as opposed to the way a binary system does sequential calculations. This means that applications may be able to do complex calculations incredibly faster. This will provide the backbone systems to support a whole new transition of human behavior—behavior that changes how we function in a digital-driven world. So, what do we do with the notion of budgets, and how far forward can we really budget the future? In other parts of my work I have emphasized that all budgets need to be adjustable during the year, and multi-year budgets appear to be an exercise of false hopes. The larger challenge is to somehow marry human behavior with systems architecture. I discussed this idea in the book referencing The Inversion Factor (2017), which suggested the importance of the shift from product to function. Cusumano et al. (2019) present the concept of a business as a platform. They define platforms as bringing “together individuals and organizations so they can innovate or interact in ways not otherwise possible, with the potential for nonlinear increases in utility and value” (p. 13). Simply put, the better platform will beat the best product.

14.2

The Role of Artificial Intelligence and Machine Learning

303

14.2

The Role of Artificial Intelligence and Machine

Learning

As stated in the book, The AI Advantage (Davenport, 2018), “in the short run AI will provide evolutionary benefits; in the long run, it is likely to be revolutionary (p. 7). Ultimately, I believe that applications will be easier to use and will support better decision making. ML, on the other hand, will make the larger impact over the next decade. In 2017 Deloitte surveyed 250 people that they deemed competent cognitive managers and found that 58% of them were already utilizing ML in their business practices. I have no doubt, as I have advocated in this book, that IoT will serve to accelerate higher percentages of ML use globally. The reasons are quite simple; the physical mind can no longer handle the size of data sets that will be accumulated by collection devices. Humans will have to rely more on intelligent machines to give them results.

Historically, aggressive adopters of new technologies are tech-based vendors who see opportunities early in the marketplace. As such, the traditional firms are laggards as it takes them more time to get over the risk factors, a sort of watch and wait syndrome, and then begin to think about ways to transform their enterprises.

Such is the same with digital disruption, as we see a slow adoption of AI and ML

in most organizations. Unlike historical revolutions, this concerns me because of the acceleration of change produced by new technologies. Being a laggard during this period could ensure failure. The reader should recall the concept of a shrinking s-curve that requires organizations to act faster if they are to compete in a global economy that is being swamped by new startups every day.

However, there are real advantages that large companies have if they embrace AI and ML, because they have lots of historical data and may have the financial reserves to support a firm-wide integration. Most companies according to Davenport (2018) see AI affecting three fundamental business activities: 1. Automating repetitive work processes via automation.

2. Obtaining better perspectives and understanding by examining structured data using ML.

3. Getting a better understanding of customer and employee behavior via chatbots and ML.

Ultimately the entire AI and ML phenomena will require companies to become more “cognitive” and accepting that the “inversion factor” must be key to their survival, or as Gupta (2018) states “define your business around your customers, not your products or competitors” (p. 17). The analyst must be a key operator in this effort. Although there is no question that c-level executives must initiate the effort and formulate the strategies, the management and implementation of these efforts is far more critical to overall adoption. Success cannot be attained without individuals that have a core understanding of computer architecture, and project management.

304

14 Conclusions and the Road Forward

In the last few years, the development of new AI capabilities has accelerated.

Generation AI or GenAi have evolved much faster than expected. The impact of ChatGPT and sophisticated chatbots are already being used throughout businesses, educational institutions, research, politics, and our legal systems. The entire aspect of how individuals will operate in an AI dominated world is very much unknown.

It is more important than ever for leaders to understand the good, the bad, and the potential ugliness of AI unchecked in our society.

14.3

Blockchain

As I explained in the book, blockchain is central to implementing the next generation of technology. 5G was the initiator, and IoT the aggregator from a physical perspective. 6G promises to bring the importance of blockchain to the forefront.

Indeed, a 6G world will create an environment of real-time reality and built in sophisticated AI that will have the ability to merge text, pictures, statistics. But nothing really can operate safely without a more security-focused processor. While blockchain is still in its infancy, it remains our best option. All of the criticisms are real, especially as it relates to latency. I predict a plethora of new blockchain products in the market, likely all to be very specialized within a particular industry. Without doubt we will see new blockchain products offered by third-party vendors that will integrate legacy systems similar to the way we combined object and relational databases. Further, vendors will develop applications that will link their cloud products with existing legacy applications and offer software migration products. I expect this integration and migration to be at the forefront for CIOs over the next 15 years. Most concerning is the future of the mainframe, which never seems to meet its s-curve end. The good news is that it remains one of the most secure systems, the bad is that there are diminishing staff available. Mainframes are also very expensive to operate and require large facilities. The bottom line is that companies who rely on mainframe processing need to consider an alternative hardware platform if they are to remain competitive.

14.4

Cloud and More Cloud

While blockchain appears to be the new processing engine, cloud is the future data repository. The two must interact in a very complex way. Indeed, blockchain architecture wants to replicate data and store it, and cloud wants to somehow still maintain central control. On the other hand, cloud also represents some combination of the two since we can execute applications from the cloud in addition to data storage. So, what cloud really does is to provide a more cost-effective way to expand applications across the internet. I have covered many cloud models and choices, all of which have advantages and disadvantages, but inevitably cloud will mature into a major hosting facility that allows global businesses to thrive throughout the world, assuming of course that security can be assured.

14.6

The Human Factor of the Next Generation of the Digital Organization

305

14.5

Quantum Computing

I wanted quantum computing to be part of this book because I believe it has the potential to succeed. Many of us in the industry recognize that silicon needs to be replaced if we are to take advantage of the sophisticated applications that are available but too slow to implement. That is, software has outpaced the evolution of hardware. This means that further advancements will be limited if we cannot increase processing speed. Unfortunately, quantum is not yet available or feasible.

We will have to see what the next generation of hardware architecture provides to support more blockchain products and sophisticated hashing algorithms to secure an abundance of data produced by IoT and used for AI and ML.

14.6

The Human Factor of the Next Generation

of the Digital Organization

I have published and presented about how organizations will operate in the digital age. We have many names that define this challenge—how to be agile, are you a digital-born company or a west-coast culture. Over the next five years many companies will be faced with the dilemma of how to integrate executives from the baby-boomer era; with Gen-X line –managers who supervise the day-to-day operations; and with millennials or Gen Y operating staff.

The current prediction is that 76 million Baby Boomers (born 1946–1964) and Gen X workers (born 1965–1984) will be retiring over the next ten years. The question for many corporate talent executives is how to manage this transition.

Baby Boomers still inhabit most executive positions in the world. The average age of CEOs is 56 and 65% of all corporate leaders are Baby Boomers. Organizations over the next five years will need to produce career paths that will be attractive to Millennials. Therefore, Baby Boomers and Gen X’s need to:

• acknowledge some of their preconceived perceptions of current work ethics that are simply not relevant in today’s complex environments.

• allow millennials to be promoted to satisfy their ambitions and temper their sense of entitlement.

• be more open to more flexible work hours, offer telecommuting, and develop a stronger focus on social responsibility.

• support more advanced uses of digital capabilities at work, including those used in the millennial personal world.

• train more senior staff to help millennials to better understand why there are organizational constraints at work.

• provide more professional reviews and feedback.

• implement programs that improve the verbal communication skills of mil-

lennials who seem more comfortable with nonverbal text-based methods of

communication.

306

14 Conclusions and the Road Forward

• implement more continual learning and rotational programs that support a vertical growth path for younger employees.

• explain the legacy systems and give millennials an opportunity to participate in transforming strategies.

In summary, it is up to the Baby Boomer and Gen X leaders to evolve their styles of management to attract Millennials in traditional companies. The difficulty of attracting new talent in these companies has become a major challenge in the last five years. The challenge to accomplish this objective is not trivial given the wide variances on how these three generations think, plan, take risks and most important, learn.

14.7

Transforming to a Digital Enterprise

Zogby completed an interactive poll of 4811 people on perceptions of different generations. Forty-two percent of the respondents stated that the Baby Boomers legacy would be remembered for their focus on consumerism and self-indulgence.

Gen Y, on the other hand, are reported to be more self-interested, entitled narcis-sists who want to spend all their time posting “selfies” to Facebook. Other facts offer another perception of these two generations as shown in Table 14.1.

Research completed by Ernst and Young (2014) offers additional comparisons among the three generations as follows:

1. Gen Y individuals are moving into management positions faster due to retire-ments, lack of corporate succession planning, and their natural ability to use technology at work. Table 14.2 shows percentage comparisons between 2008

and 2013.

The acceleration of growth to management positions among Gen Yers can be further illuminated in Table 14.3 by comparing the prior five-year period from 2003

to 2007:

Table 14.1 Baby Boomers versus Millennials

Baby Boomers

Gen Y

Married later and less children

Not as aligned to political parties

Spend lavishly

More civically engaged

More active and selfless

Socially active

Fought against social injustice, supported civil

Cheerfully optimistic

rights, and defied the Vietnam War

Had more access to higher education

More concerned with quality of life than

material gain

 Source Langer (2018)

14.7

Transforming to a Digital Enterprise

307

Table 14.2 Management

Baby Boomer (ages 49–67)

19%

roles 2008–2013

Gen X (ages 33–48)

38%

Gen Y (18–32)

87%

Table 14.3 Management

Baby Boomer (ages 49–67)

23%

roles 2003–2007

Gen X (ages 33–48)

30%

Gen Y (18–32)

12%

2. While responders of the survey felt Gen X was better equipped to manage than Gen Y, the number of Gen Y managers has doubled. Another interesting result of the research related to expectations from employers that Gen Z population is graduating from higher education and entering the workforce. We know that Millennial managers expect: (1) an opportunity to have a mentor; (2) receive sponsorship, (3) have more career-related experiences, and (4) receive training to build their professional skills.

3. Seventy-five percent of respondents that identified themselves as managers agree that managing the multiple generations is a significant challenge. This was attributed to different work expectations and the lack of comfort with younger employees managing older employees.

Table 14.4 provides additional differences among the three generations.

The message in this section is that the architectural transformation from 5-G to blockchain and cloud, while essential, is not enough without the assimilation of new cultures and should not be underestimated as a critical issue in any corporate digital strategy especially with the acceleration of a real-time world with the arrival of 6G.

14.7.1

Gen Z Profiles

As stated above Gen Z are now entering the workforce. Gen Z grew up in the shadow of the Great Recession of 2008 and saw their parents struggle with rising consumer debt. There is still much to know about how they will impact the workforce, but below are some of their known behaviors and preferences.

• Fifty-seven percent (57%) would rather save money than spend it

• Possessions are a burden and fleeting

• Access > ownership

• Highly suspicious of consumerism

• Fifty-one percent (51%) look to the social stance of brands in their decision to buy/boycott

308

14 Conclusions and the Road Forward

Table 14.4 Baby Boomer, Gen X and Millennial compared

Baby Boomers

Gen X

Millennials (Gen Y)

Seek employment in large

Established companies no

Seek multiple experiences

established companies that

longer a guarantee for

with heavy emphasis on social

provide dependable

lifetime employment. Many

good and global experiences.

employment

jobs begin to go offshore

Re-evaluation of offshoring

strategies

Process of promotion is well

Process of promotion still

Less patience with hierarchical

defined, hierarchical and

hierarchical, but based more

promotion policies. More

structured eventually leading

on skills and individual

reliance on predictive analytics

to promotion and higher

accomplishments. Master’s

as the basis for

earnings—concept of waiting

degree now preferred for

decision-making

your turn

many promotions

Undergraduate degree

Undergraduate degree

More focus on specific skills.

preferred but not mandatory

required for most

Multiple strategies developed

professional job opportunities on how to meet shortages of

talent. Higher education

expensive and concerns

increase about the value of

graduate knowledge and

abilities

Plan career preferably with

Employees begin to change

Emergence of a “GIG”

one company and retire.

jobs more often given growth economy and the rise of

Acceptance of a gradual

in the technology industry

multiple employment

process of growth that was

and opportunities to increase

relationships

slow to change. Successful

compensation and accelerate

employees assimilated into

promotion by switching jobs

existing organizational

structures by following the

rules

Entrepreneurism was seen as

Corporate executive

Entrepreneurism promoted in

an external option for those

compensation dramatically

higher education as the basis

individuals desiring wealth

increases no longer requiring

for economic growth given the

and independence and willing

starting businesses as the

loss of jobs in the US

to take risks

basis for wealth

 Source Langer (2018)

• Prefer online shopping

• Want material purchases to be special

Furthermore, Gen Z will be the first majority minority population in the US, and multiculturalism continues to grow in many western countries in Europe, South America, Middle East, and Africa. Indeed, it is expected that only forty-eight percent (48%) of Americans will identify as white by 2026. Globally, Gen Zers are more comfortable in environments of all colors and sexual orientations.

309

It is most important to recognize that Gen Z is the most educated workforce on using AI in their work. The following generation known as Alpha represent children born between 2010 and 2020 and are children of the Millennial generation and first group solely born in the twenty-first Century. This generation will be more AI sophisticated than any other!

14.8

Security Is a Central Problem

While there are a number of initiatives to increase monitoring of potential threats to security, there should be more efforts to integrate quality assessments of how systems need to be redesigned or substantially improved. This is similar to how the traditional analyst engaged in the design of acceptance test plans. In essence design aspirations and performance requirements must be balanced against security exposure. In this book I have articulated the historical error of not considering enough of the security exposure as we leaped forward with the internet. Looking back, what was needed seems so obvious. Now we must take a step back and rethink how we balance all of the new capabilities of IoT and big data with the protection of the consumer. I do not believe that GDPR is the ultimate solution.

Below are some of the evolving challenges that analysts need to consider:

• Learning how to articulate the need to insert security during design with senior and operating managers. Ultimately business leaders need to recognize that security may indeed limit wanted features and functions.

• How to work with internal users to roll out new and scalable security-minded cultures.

• Assisting in developing procedures for dealing with a compromised application and replacement with alternative processes.

Let’s examine these three issues further. When speaking with senior managers, analysts need to relate to business objectives and avoid too much technical jargon.

Analysts also need to explain how third-party vendors will be managed to ensure that there are proper controls over security exposure. Analysts should also apply benchmarks of what competitors are doing to convince their managers to adhere to best security design practices. Peer pressure is often an effective practice to push change.

In reference to security cultures, it’s important to explain the risks associated with poor internal staff practices. Indeed, many compromises have been linked to careless work behaviors of staff. Analysts should consider discussing additional security steps in the SDLC. Such steps should include documentation of how security considerations have been addressed during analysis and design. Analysts need, however, to ensure that the security implications are weighed against their effects on business operations and competitive advantage.

[image: Image 377]

310

14 Conclusions and the Road Forward

14.9

The Role of the Analyst

This book has presented several aspects of how digital disruption is driving the need for a new generation of computer architecture. The chapters integrated the technical design ramifications of building these new architectures and ways to transition existing legacy systems. I have also advocated that the digital era will require major changes in organization design including new roles and responsibilities. Most important I have defined the expanding role for those professionals that will be engaged in the actual analysis, design, and management of these new systems. Figure 14.2 provides a diagram of the complex functions that need to be performed by managers and analysts.

Figure 14.2 suggests that it is unlikely that one individual could take on all of these duties. I believe these new responsibilities will result in the creation of a new organization focused on all of these aspects. I have referred to these staff members as “analysts” throughout the book. Whether this is their inevitable title, I believe the existing business and systems analysts are the likely individuals to Fig. 14.2 Analyst responsibilities for mobile-based systems

References

311

take on these roles and to build the new organization. Ultimately the name of the position is less important than having the staff that can carry out the necessary requirements to build and support these new mobile systems. I think it is essential that organizations give high priority to these functions in order to successfully transition their firms to meet the demands of tomorrow’s consumers.

Problems and Exercises

1. Explain the New House of Innovation and its relevance in supporting consumer-based mobile systems.

2. What is meant by the “social architecture” of a firm and its relationship to organizational culture?

3. What is meant by N = 1 and R = G?

4. How does “sense and response” challenge the notion of planning and prediction?

5. What is the concept of a digital organization? What are the behaviors of such organizations?

6. Compare Baby Boomers, Gen X, and Gen Y staff and discuss the importance of their synergy.

7. What are the unique attributes of Gen Z workers and how will they embrace AI?

8. How will GenAI accelerate change along the path of N = 1 and R = G?

9. What are the crucial new roles and responsibilities for the analyst of the future?

Explain.

References

Cusumano, M. A., Gawer, A., & Yoffie, D. B. (2019). Business of platforms: Strategy in the age of digital competition, innovation, and power. Harper Collins Publishers.

Davenport, T. H. (2018). The AI advantage: How to put the artificial intelligence revolution to work.

MIT Press.

Ernst and Young. (2014). Gen Y managers perceived as entitled, need polish. https://www.cnbc.

com/100997634

Gupta, S. (2018). Driving digital strategy: A guide to reimagining your business. Harvard Business Review Press.

Langer, A. M. (2018). Information technology & organizational learning: Managing behavioral change through technology and education (3rd ed.). CRC Press.

Prahalad, C. K., & Krishnan, M. S. (2008). The new age of innovation: Driving cocreated value through global networks. McGraw-Hill.

Snow, C. C., Fjeldstad, O. D., & Langer, A. M. (2017). Designing the digital organization. Journal of Organization Design, 1–13.

Glossary

5G The fifth-generation cellular network technology. The industry association 3GPP defines any system using “5G NR” (5G New Radio) software as “5G,”

a definition that came into general use by late 2019 (Wikipedia).

6G The sixth generation of wireless technology and the successor to 5G. It is expected to be 100 times faster than 5G with speeds that could allow people to download movies in seconds.

Acceptance Test Plans Set of tests that if passed will establish that the software can be used in production.

Actuator An attribute that uniquely identifies a row or occurrence in an entity.

An alternate key cannot be the primary key.

Application Program Interface (API) An interface or communication protocol between a client and a server intended to simplify the building of client-side software. It has been described as a “contract” between the client and the server, such that if the client makes a request in a specific format, it will always get a response in a specific format or initiate a defined action (Wikipedia).

Artificial Intelligence (AI) The intelligence demonstrated by machines, in contrast to the natural intelligence displayed by humans (Wikipedia).

Attribute A component of an entity or object. An attribute may or may not be an elementary data element.

AutoML Software application that provides the capability to produce machine language for non-technical individuals.

Blockchain It is a growing list of records called blocks, that are linked using cryptology. Each block contains a cryptographic hash of the previous block, a timestamp, and transaction data (Wikipedia).

Business Process Re-engineering (BPR) A method to redesign existing applications.

© The Editor(s) (if applicable) and The Author(s), under exclusive license 313

to Springer Nature Switzerland AG 2025

A. M. Langer, Analysis and Design of Next-Generation Software Architectures,

https://doi.org/10.1007/978-3-031-76212-3

314

Glossary

Business Specification A document which reflects the overall requirements of a process or system written in a prose format. The focus of the business specification is to provide the user with enough information so they can authorize the development of the technical requirements.

Computer-Aided Software Engineering (CASE) Products which are used to automate and implement modeling tools and data repositories.

Case A format for developing application logic in a process specification.

Charlotte AI It is an interactive AI assistant from a company called Crowdstrike that assists security analysts to work more efficiently and make faster decisions.

ChatGPT (Generative Pre-trained Transformer) It is an advanced Chatbot that can make significant contributions to gathering requirements, design and testing, and application developer productivity to name just a few.

Client An application that requests services from applications.

Cloud Computing An on-demand availability of computer system resources, especially data storage and computing power, without direct active management by the user. The term is generally used to describe data centers available to many users over the Internet. Large clouds, predominant today, often have functions distributed over multiple locations from central servers. If the connection to the user is relatively close, it may be designated an edge server (Wikipedia).

Crows Foot A method of showing the relationship or association between two entities.

CRUD Diagram An association matrix that matches the types of data access between entities and processes. CRUD represents Create, Read, Update, and Delete.

Cybersecurity The protection of computer systems from the theft of or damage to their hardware, software, or electronic data, as well as from the disruption or misdirection of the services they provide. The field is becoming more important due to increased reliance on the accuracy of computer systems, the Internet and wireless network standards such as Bluetooth and Wi-Fi, and due to the growth of “smart” devices, including smartphones, televisions, and the various devices that constitute the “Internet of things.”

Data Dictionary (DD) A dictionary that defines data. A component of the data repository.

Data Flow Component of a data flow diagram that represents data entering or leaving a process, external or data store.

Data Flow Diagram (DFD) A tool that shows how data enters and leaves a process. A data flow diagram has four possible components: data flow, data store, external, and process.

Data Repository A robust data dictionary that contains information relating to data element behavior.

Data Store Component of a data flow diagram that represents data that can be accessed from a particular area or file. A data store is sometimes called “data-at-rest.”

Glossary

315

Data Warehousing A de-normalized database created to focus on decision support activities. Data warehouse hold historical information and cannot be used to update data.

Edge Computing Software and data that are distributed across IoT devices and multiclouds.

Elementary Data Element A functionally decomposed data element.

Entity An object of interest about which data can be collected. Entities can consume a number of attributes.

Entity Relational Diagram (ERD) A diagram that depicts the relationships among the stored data.

Equal Rights The rights can be set to be equal among all minors of the chain.

External Component of a data flow diagram which represents a provider or user of data that is not part of the system. Externals are therefore boundaries of the system.

Facilitator An impartial individual responsible for controlling the flow of user feedback sessions.

Functional Decomposition The process for finding the most basic parts of a system.

Functional Overview Subset view of a specification. The subset usually covers a particular function of the system.

Functional Primitive A functionally decomposed data flow diagram.

Gantt Chart Tool that depicts progress of tasks against time. The Chart was developed by Henry L. Gantt in 1917.

Generative AI (GenAI) It is an application of AI that is programmed to generate text, images, videos, and other data using sophisticated software models that can learn and respond to various user questions or prompts.

Immutability The events of an object in a blockchain cannot be changed, so that an audit trail of transactions is traceable.

Internet of Things (IoT) Is a system of interrelated computing devices, mechan-ical and digital machines, objects, animals, or people that are provided with unique identifiers (UIDs) and the ability to transfer data over a network without requiring human-to-human or human-to-computer interaction (Wikipedia).

ISO 9000 International Organization for Standardization, quality standard 9000.

Job Description Matrix The portion of an individual’s job description that strictly focuses on the procedural and process aspects of the individual’s position.

Key An attribute of an entity or database that uniquely identifies a row, occurrence, or record.

Key Business Rules Business rules of key attributes that are enforced at the database level (as opposed to the application level).

Large Language Models (LLMs) Use deep learning models that are pre-trained on large data sets.

Legacy System An existing automated system.

Leveling Functional decomposition of a data flow diagram. Each decomposition is called a “level.”

316

Glossary

Logical Data Modeling (LDM) A set of procedures that examines an entity to ensure that its component attributes should reside in that entity, rather than being stored in another or new entity.

Logical Equivalent An abstraction of the translation from physical requirements to software.

Long Division An abstraction of the relationship of arithmetic formulas to functional decomposition.

Machine Learning (ML) The scientific study of algorithms and statistical models that computer systems use to perform a specific task without using explicit instructions, relying on patterns and inference instead (Wikipedia).

MLOps This feature enables deployment of AI modules with automated updates, corrections, and new versions—essentially connecting ML pipelines.

Multiagent Systems (MASs) These systems provide connectivity across multiple applications that can be integrated to solve complex problems.

Predictive Analytics Encompasses a variety of statistical techniques from data mining, predictive modeling, and machine learning, that analyze current and historical facts to make predictions about future or otherwise unknown events (Wikipedia).

Metadata Data about the data being sent or received in a client/server network.

Natural Language Processing A branch of AI that uses machine learning to enable computers to understand and manipulate human language.

Non-repudiation The identity of the author of a transaction is guaranteed among all members of the blockchain.

Normalization The elimination of redundancies from an entity.

Open Systems Standards in applications software that allow such software to run across multiple operating system environments.

Pre-post Conditions A format for developing application logic in a process specification.

Primary Key A key attribute that will be used to identify connections to a particular entity. Normalization requires that every entity contain a primary key.

Primary keys can be formed by the concatenation of many attributes.

Process A function in a data flow diagram in which data is transformed from one form to another.

Process Specification A document that contains all of the algorithms and information necessary to develop the logic of a process. Process specifications can be comprised of the business and programming requirement documents. Process specifications are sometimes called “minispecs.”

Program or Technical Specification A technical algorithm of the requirements of a process or system.

Prototype A sample of a system that does not actually fully operate. Most software prototypes are visual depictions of screens and reports. Prototypes can vary in capability, with some prototypes having limited functional interfaces.

Pseudocode A generic or structured English representation of how real programming code must execute. Pseudocode is a method used in the development of process specifications.

Glossary

317

Quantum Computing The study of a still-hypothetical model of computation.

Whereas traditional models of computing such as the Turing machine or Lambda calculus rely on “classical” representations of computational memory, a quantum computation could transform the memory into a quantum superposition of possible classical states. A quantum computer is a device that could perform such computation (Wikipedia).

Reverse Engineering The process of analyzing existing applications and database code to create higher-level representations of the code.

Robust Software that operates intuitively and can handle unexpected events.

Sensor A device, module, machine, or subsystem whose purpose is to detect events or changes in its environment and send the information to other electronics, frequently a computer processor. A sensor is always used with other electronics (Wikipedia).

Server An application that provides information to a requesting application.

Spiral Life Cycle Life cycle that focuses on the development of cohesive objects and classes. The spiral life cycle reflects a much larger allocation of time spent on design than the waterfall approach.

State Transition Diagram (STD) A modeling tool that depicts time-dependent and event-driven behavior.

Transparency All members or minors of the blockchain are aware of changes.

Waterfall System Development Life Cycle A life cycle that is based on phased dependent steps to complete the implementation of a system. Each step is dependent on the completion of the previous step.

Bibliography

Aldrich, H. (2001). Organizations evolving. Sage.

Allen, F., & Percival, J. (2000). Financial strategies and venture capital. In G. S. Day & P. J.

Schoemaker (Eds.), Wharton on managing emerging technologies (pp. 289–306). Wiley.

Allen, F., & Percival, J. (2003). Financial strategies and venture capital. In L. M. Applegate, R. D.

Austin, & F. W. McFarlan (Eds.), Corporate information strategy and management (2nd ed.).

McGraw-Hill.

Allen, T. J., & Morton, M. S. (1994). Information technology and the corporation. Oxford University Press.

Applegate, L. M., McFarlan, F. W., & McKenney, J. L. (1999). Corporate information systems management: The challenges of managing in an information age. McGraw-Hill.

Applegate, L. M., Austin, R. D., & McFarlan, F. W. (2003). Corporate information strategy and management (2nd ed.). McGraw-Hill.

Argyris, C. (1993). Knowledge for action: A guide to overcoming barriers to organizational change.

Jossey-Bass.

Argyris, C., & Schön, D. A. (1996). Organizational learning II. Addison-Wesley.

Argyris, C., Putnam, R., & Smith, D. (1985). Action science. Jossey-Bass.

Arnett, R. C. (1992). Dialogue education: Conversation about ideas and between persons. Southern Illinois University Press.

Bal, S. N. (2013). Mobile web–enterprise application advantages. International Journal of Computer Science and Mobile Computing, 2(2), 36–40.

Batten, J. D. (2002). Tough-minded management (3rd ed.). Resource Publications.

Bazarova, N. N., & Walther, J. B. (2009). Virtual groups: (Mis)attribution of blame in distributed work. In P. Lutgen-Sandvik & B. Davenport Sypher (Eds.), Destructive organizational communication: Processes, consequences, and constructive ways of organizing (pp. 252–266).

Routledge.

Bazarova, N. N., & Walther, J. B. (2009). Attribution of blame in virtual groups. In P. Lutgen-Sandvik & B. Davenport-Sypher (Eds.), The destructive side of organizational communication: Processes, consequences, and constructive ways of organizing (pp. 252–266). Routledge/LEA.

Beinhocker, E. D., & Kaplan, S. (2002). Tired of strategic planning? McKinsey Quarterly, 2, 48–57.

Bensaou, M., & Earl, M. J. (1998). The right mind-set for managing information technology. In J.

E. Garten (Ed.), World view: Global strategies for the new economy (pp. 109–125). Harvard University Press.

Benson, J. K. (1975). The interorganizational network as a political economy. Administrative Science Quarterly, 20, 229–249.

Berman, K., & Knight, J. (2008). Finance intelligence for IT professionals. Harvard Business Press.

© The Editor(s) (if applicable) and The Author(s), under exclusive license 319

to Springer Nature Switzerland AG 2025

A. M. Langer, Analysis and Design of Next-Generation Software Architectures,

https://doi.org/10.1007/978-3-031-76212-3

320

Bibliography

Bertels, T., & Savage, C. M. (1998). Tough questions on knowledge management. In G. V. Krogh, J. Roos, & D. Kleine (Eds.), Knowing in firms: Understanding managing and measuring knowledge (pp. 7–25). Sage.

Blackstaff, M. (1999). Finance for technology decision makers: A practical handbook for buyers, sellers and managers. Springer-Verlag.

Boland, R. J., Tenkasi, R. V., & Te’eni, D. (1994). Designing information technology to support distributed cognition. Organization Science, 5, 456–475.

Bolman, L. G., & Deal, T. E. (1997). Reframing organizations: Artistry, choice, and leadership (2nd ed.). Jossey-Bass.

Bolman, L., & Deal, T. (2003). Reframing organizations: Artistry, choice, and leadership (3rd ed.).

Jossey-Bass.

Booch, G., Object solutions. In Managing the object-oriented project (p. 305).

Brown, J. S., & Duguid, P. (1991). Organizational learning and communities of practice. Organization Science, 2, 40–57.

Brynjolfsson, E., & McAfee, A. (2012). Big data: The management revolution. Harvard Business Review, 90(10), 60–68.

Brynjolfsson, E., & McAfee, A. (2011). Race against the machine. Digital Frontier Press.

Burke, W. W. (2002). Organization change: Theory and practice. Sage Publications.

Burke, W. W. (1982). Organization development: Principles and practices. Little Brown.

Burns, C. (2009). Automated talent management. Information Management. http://www.inform

ation-management.com/news/technology_development_talent_management-10016009-1.html

Bysinger, B., & Knight, K. (1997). Investing in information technology: A decision-making guide for business and technical managers. Wiley.

Cadle, J., Paul, D., & Turner, P. (2014). Business analysis techniques: 99 essential tools for success (2nd ed.). Chartered Institute for IT.

Carr, N. G. (2005). Does IT matter? Information technology and the corrosion of competitive advantage. Harvard Business School.

Carr, N. (2003). IT doesn’t matter. Harvard Business Review, 81(5), 41–49.

Cash, J. I., & Pearlson, K. E. (2004, October 18). The future CIO. Information Week. Available at

http://www.informationweek.com/story/showArticle.jhtml?articleID=49901186

Cassidy, A. (1998). A practical guide to information strategic planning. St. Lucie Press.

Charan, R. (2006). Sharpening your business acumen strategy & business. Booz & Co.

Chesbrough, H. (2003). Open innovation: The new imperative for creating and profiting from technology. Harvard Business School.

Chesbrough, H. (2006). Open business models: How to thrive in the new innovation landscape.

Harvard Business School.

Chesbrough, H. (2011). Open services innovation: Rethinking your business to grow and compete in a new era. Jossey-Bass.

Cillers, P. (2005). Knowing complex systems. In K. A. Richardson (Ed.), Managing organizational complexity: Philosophy, theory, and application (pp. 7–19). Information Age.

Cohen, A. R., & Bradford, D. L. (2005). Influence without authority (2nd ed.). Wiley.

Cole, R. E. (1985). The macropolitics of organizational change. Administrative Science Quarterly, 30, 560–585.

Collis, D. J. (1994). Research note—How valuable are organizational capabilities? Strategic Management Journal, 15, 143–152.

Conger, J. (2003). Exerting influence without authority. In L. Keller Johnson (Ed.), Harvard business update. Harvard Business Press.

Cortada, J. W. (1997). Best practices in information technology: How corporations get the most value from exploiting their digital investments. Prentice Hall.

Croon Fors, A., & Stolterman, E. (2004). Information technology and the good life. In T. Kaplan et al. (Eds.), Information systems research. Relevant theory and informed practice.

Cross, T., & Thomas, R. J. (2009). Driving results through social networks. How top organizations leverage networks for performance and growth. Jossey-Bass.

Bibliography

321

Cusumano, M. A., Gawer, A., & Yoffie, D. B. (2019). Business of platforms: Strategy in the age of digital competition, innovation, and power. Harper Collins Publishers.

Cyert, R. M., & March, J. G. (1963). The behavioral theory of the firm. Prentice-Hall.

Davenport, T. H. (2018). The AI advantage: How to put the artificial intelligence revolution to work.

MIT Press.

Deluca, J. (1999). Political Savvy: Systematic approaches to leadership behind-the-scenes. EBG.

DeMarco, T. (1979). Structured analysis and system specification. Prentice Hall.

Dewey, J. (1933). How we think. Health.

Dodgson, M. (1993). Organizational learning: A review of some literatures. Organizational Studies, 14(3), 375–394.

Dragoon, A. (2002). This changes everything. Retrieved December 15, 2003, from http://www.dar

winmag.com

Earl, M. J. (1996). Business process engineering: A phenomenon of organizational dimension. In M. J. Earl (Ed.), Information management: The organizational dimension (pp. 53–76). Oxford University Press.

Earl, M. J. (1996b). Information management: The organizational dimension. Oxford University Press.

Earl, M. J., Sampler, J. L., & Short, J. E. (1995). Strategies for business process reengineering: Evidence from field studies. Journal of Management Information Systems, 12, 31–56.

Easterby-Smith, M., Araujo, L., & Burgoyne, J. (1999). Organizational learning and the learning organization: Developments in theory and practice. Sage.

Edwards, C., Ward, J., & Bytheway, A. (1996). The essence of information systems (2nd ed.).

Prentice Hall.

Eichinger, R. W., & Lombardo, M. M. Education competencies: Dealing with ambiguity. In Microsoft in Education|Training. Microsoft Web.

Eisenhardt, K. M., & Bourgeois, L. J. (1988). Politics of strategic decision making in high-velocity environments: Toward a midrange theory. Academy of Management Journal, 31(4), 737–770.

Fahey, L., & Randall, R. M. (1998a). Integrating strategy and scenarios. In L. Fahey & R. M.

Randall (Eds.), Learning from the future (Chap. 2). Wiley.

Fahey, L., & Randall, R. M. (1998b). What is scenario learning? In L. Fahey & R. M. Randall (Eds.), Learning from the future (Chap. 1). Wiley.

Ferrell, O. C., & Gardiner, G. (1991). Pursuit of ethics. Smith Collins.

Fineman, S. (1996). Emotion and subtexts in corporate greening. Organization Studies, 17, 479–

500.

Fisher, D., Rooke, D., & Torbert, B. (1993). Personal and organizational transformations through action inquiry. Edge/Work Press.

Fleming, C., & von Halle, B. (1989). Handbook of relational database design. Addison-Wesley.

Foster, R. N., & Kaplan, S. (2001). Creative destruction: Why companies that are built to last underperform the market—And how to successfully transform them. Currency.

Friedman, T. L. (2007). The world is flat. Picador/Farrar, Straus and Giroux.

Gardner, C. (2000). The valuation of information technology. Wiley.

Garvin, D. A. (1993). Building a learning organization. Harvard Business Review, 71(4), 78–84.

Garvin, D. A. (2000). Learning in action: A guide to putting the learning organization to work.

Harvard Business School Press.

Gavitte, G., & Rivikin, J. W. (2005). How strategists really think: Tapping the power of analogy.

 Harvard Business Review, 54–63.

Gephardt, M. A., & Marsick, V. J. (2003). Introduction to special issue on action research: Building the capacity for learning and change. Human Resource Planning, 26, 2.

Glasmeier, A. (1997). The Japanese small business sector (Final report to the Tissot Economic Foundation, Le Locle, Switzerland, Working Paper 16). Graduate Program of Community and Regional Planning, University of Texas.

Goonatilake, S., & Teleaven, P. (1995). Intelligent systems for finance and business. Wiley.

Govindarajan, V., & Trimble, C. (2004). Strategic innovation and the science of learning. MIT

 Sloan Management Review, 45(2), 67–75.

322

Bibliography

Grant, D., Keenoy, T., & Oswick, C. (1996). Discourse and organization. Sage Publications.

Grant, D., Keenoy, T., & Oswick, C. (Eds.). (1998). Discourse and organization. Sage.

Grant, R. M. (1996). Prospering in a dynamically-competitive environment—Organizational capability as knowledge integration. Organization Science, 7(4), 375–387.

Gregoire, J. (2002, March 1). The state of the CIO 2002: The CIO title, what’s it really mean? CIO.

Available at http://www.cio.com/article/30904/The_State_of_the_CIO_2002_The_CIO_Title_

What_s_It_Really_Mean_

Gupta, S. (2018). Driving digital strategy: A guide to reimagining your business. Harvard Business Review Press.

Habermas, J. (1998). The inclusion of the other: Studies in political theory. MIT Press.

Halifax, J. (1999). Learning as initiation: Not-knowing, bearing witness, and healing. In S. Glazier (Ed.), The heart of learning: Spirituality in education (pp. 173–181). Penguin Putnam.

Hardy, C., Lawrence, T. B., & Philips, N. (1998). Talk and action: Conversations and narrative in interorganizational collaboration. In D. Grant, T. Keenoy, & C. Oswick (Eds.), Discourse and organization (pp. 65–83). Sage.

Heath, D. H. (1968). Growing up in college: Liberal education and maturity. Jossey-Bass.

Hoffman, A. (2008, May 19). The social media gender gap. Business Week. Available at http://

www.businessweek.com/technology/content/may2008/tc20080516_580743.htm

Hogbin, G., & Thomas, D. (1994). Investing in information technology: Managing the decision-making process. McGraw-Hill.

Huber, G. P. (1991). Organizational learning: The contributing processes and the literature. Organization Science, 2, 99–115.

Hullfish, H. G., & Smith, P. G. (1978). Reflective thinking: The method of education. Greenwood Press.

Huysman, M. (1999). Balancing biases: A critical review of the literature on organizational learning. In M. Easterby-Smith, J. Burgoyne, & L. Araujo (Eds.), Organizational learning and the learning organization (pp. 59–74). Sage.

IBM, & Said School of Business, Oxford University. (2012). Analytics: The real-world use of big data in financial services. Retrieved September 30, 2015, http://www-935.ibm.com/services/

multimedia/Analytics_The_real_world_use_of_big_data_in_Financial_services_Mai_2013.

pdf

IEEE Access Journal. (2019). https://ieeeaccess.ieee.org/special-sections-closed/modelling-ana

lysis-design-5g-ultra-dense-networks/

Illbury, C., & Sunter, C. (2001). The mind of a fox (pp. 36–43). Human & Rousseau/Tafelberg.

Johansen, R., Saveri, A., & Schmid, G. (1995). Forces for organizational change: 21st century organizations: Reconciling control and empowerment. Institute for the Future, 6(1), 1–9.

Jones, M. (1975). Organizational learning: Collective mind and cognitivist metaphor? Accounting Management and Information Technology, 5(1), 61–77.

Kanevsky, V., & Housel, T. (1998). The learning-knowledge-value cycle. In G. V. Krogh, J.

Roos, & D. Kleine (Eds.), Knowing in firms: Understanding, managing and measuring knowledge (pp. 240–252). Sage.

Kaplan, R. S., & Norton, D. P. (2001). The strategy-focused organization. Harvard University Press.

Kegan, R. (1994). In over our heads: The mental demands of modern life. Harvard University Press.

Kegan, R. (1998, October). Adult development and transformative learning. Lecture presented at the Workplace Learning Institute, Teachers College, New York.

Kerr, J. & Hunter, R. Inside RAD (p. 3).

Knefelkamp, L. L. (1999). Introduction. In W. G. Perry (Ed.), Forms of ethical and intellectual development in the college years: A scheme. Jossey-Bass. Koch, C. (1999, February 15). Staying alive. CIO Magazine, 38–45.

Kolb, A. Y., & Kolb, D. A. (2005). Learning styles and learning spaces: Enhancing experiential learning in higher education. Academy of Management Learning and Education, 4(2), 193–212.

Kolb, D. (1984a). Experiential learning: Experience as the source of learning and development.

Prentice-Hall.

Kolb, D. (1984b). Experiential learning as the science of learning and development. Prentice Hall.

Bibliography

323

Kolb, D. (1999). The Kolb learning style inventory. HayResources Direct.

Kulkki, S., & Kosonen, M. (2001). How Tacit knowledge explains organizational renewal and growth: The case at Nokia. In I. Nonaka & D. Teece (Eds.), Managing industrial knowledge: Creation, transfer and utilization (pp. 244–269). Sage.

Laney, D. (2012). The importance of Big Data: A definition. Gartner. Retrieved June 21, 2012.

Langer, A. M. (2001a). Fixing bad habits: Integrating technology personnel in the workplace using reflective practice. Reflective Practice, 2(1), 100–111.

Langer, A. M. (2001b). Analysis and design of information systems. Springer-Verlag.

Langer, A. M. (2001c). Fixing bad habits: Integrating technology personnel in the workplace using reflective practice. Reflective Practice, 2(1), 100–111.

Langer, A. M. (2002a). Reflecting on practice: Using learning journals in higher and continuing education. Teaching in Higher Education, 7, 337–351.

Langer, A. M. (2002b). Applied ecommerce: Analysis and engineering of ecommerce systems.

Wiley.

Langer, A. M. (2002c). Reflecting on practice: Using learning journals in higher and continuing education. Teaching in Higher Education, 7, 337–351.

Langer, A. M. (2003). Forms of workplace literacy using reflection-with action methods: A scheme for inner-city adults. Reflective Practice, 4, 317–336.

Langer, A. M. (2004). IT and organizational learning: Managing change through technology and education. Routledge.

Langer, A. M. (2005a). Responsive organizational dynamism: Managing technology life cycles using reflective practice. Current Issues in Technology Management, 9(2), 1–8.

Langer, A. M. (2005b). Information technology and organizational learning: Managing behavioral change through technology and education (1st ed., p. 2005). Taylor & Francis.

Langer, A. M. (2007). Analysis and design of information systems (3rd ed.). Springer-Verlag.

Langer, A. M. (2008). Analysis and design of information systems (3rd ed.). Springer-Verlag.

Laudon, K. C., & Laudon, J. P. (1998). Management information systems: New approaches to organization and technology. Prentice Hall.

Leavy, B. (1998). The concept of learning in the strategy field. Management Learning, 29, 447–

466.

Ledeen, K. S. (2011). Make v. Buy: A decision paradigm for information technology applications.

Nevo Press.

Levine, R., Locke, C., Searls, D., & Weinberger, D. (2000). The cluetrain manifesto. Perseus Books.

Liebowitz, J., & Khosrowpour, M. (1997). Cases on information technology management in modern organizations. Idea Group Publishing.

Lientz, B. P., & Larssen, L. (2004). Manage IT as a business: How to achieve alignment and add value to the company. Elsevier Butterworth-Heinemann.

Lientz, B. P., & Rea, K. P. (2004). Breakthrough IT change management: How to get enduring change results. Elsevier Butterworth-Heinemann.

Lipman-Blumen, J. (1996). The connective edge: Leading in an independent world. Jossey-Bass.

Lipnack, J., & Stamps, J. (2000). Virtual teams (2nd edn.). Wiley.

Lounamaa, P. H., & March, J. G. (1987). Adaptive coordination of a learning team. Management Science, 33, 107–123.

Lovallo, D. P., & Mendonca, L. T. (2007). Strategy’s strategist: An interview with Richard Rumelt.

 The McKinsey Quarterly. www.mckinseyquarterly.com/Strategys_strategist_An_interview_

with_Richard_Rumelt_2039

Lucas, H. C. (1999). Information technology and the productivity paradox. Oxford University Press.

Lucas, H. C. (2005). Information technology: Strategic decision making for managers. Wiley.

Mackenzie, K. D. (1994). The science of an organization. Part I: A new model of organizational learning. Human Systems Management, 13, 249–258.

MacMillan, I. C. (1978). Strategy formulation: Political concepts. West.

March, J. G. (1991). Exploration and exploitation in organizational learning. Organization Science, 2, 71–87.

324

Bibliography

Marchand, D. A. (2000). Competing with information: A manager’s guide to creating business value with information content. Wiley.

Marshak, R. J. (1998). A discourse on discourse: Redeeming the meaning of talk. In D. Grant, T.

Keenoy, & C. Oswick (Eds.), Discourse and organization (pp. 65–83). Sage.

Marsick, V. J. (1998, October). Individual strategies for organizational learning. Lecture presented at the Workplace Learning Institute, Teachers College, New York.

Marsick, V. J., & Watkins, K. E. (1990). Informal and incidental learning in the workplace.

Routledge.

Martin, J., Odell, J. Object oriented methods (p. 158).

McCarthy, B. (1999). Learning type measure. Excel.

McCarthy, E. (1997). The financial advisor’s analytical toolbox. McGraw-Hill.

McDowell, R., & Simon, W. L. (2004). In search of business value: Ensuring a return of your technology investment. SelectBooks Inc.

McGraw, K. (2009). Improving project success rates with better leadership: Project Smart. www.

projectsmart.co.uk/improving-project-success-rateswith-better-leadership.html

Mezirow, J. (1990). Fostering critical reflection in adulthood: A guide to transformative and emancipatory learning. Jossey-Bass.

Microsoft Press. Computer dictionary (2nd edn., p. 397).

Miles, R. E., & Snow, C. C. (1978). Organizational strategy, structure, and process. McGraw-Hill.

Milliken, C. (2002). A CRM success story. Computerworld. www.computerworld.com/s/article/

75730?A_CRM_success-story

Miner, A. S., & Haunschild, P. R. (1995). Population and learning. In B. Staw & L. L. Cummings (Eds.), Research in organizational behavior (pp. 115–166). JAI Press.

Mintzberg, H. (1987). Crafting strategy. Harvard Business Review, 65(4), 72.

Moon, J. A. (1999). Reflection in learning and professional development: Theory and practice.

Kogan Page.

Mossman, A., & Stewart, R. (1988). Self-managed learning in organizations. In M. Pedler, J.

Burgoyne, & T. Boydell (Eds.), Applying self-development in organizations (pp. 38–57).

Prentice-Hall.

Mumford, A. (1988). Learning to learn and management self-development. In M. Pedler, J. Burgoyne, & T. Boydell (Eds.), Applying self-development in organizations (pp. 23–37). Prentice-Hall.

Murphy, T. (2002). Achieving business value from technology: A practical guide for today’s executive. Wiley.

Nahapiet, J., & Ghoshal, S. (1998). Social capital, intellectual capital, and the organizational advantage. Academy of Management Review, 23, 242–266.

Nicolaides, A., & Yorks, L. (2008). An epistemology of learning through (Vol. 10, No. 1, pp. 50–

61).

Nielsen Norman Group. (2015). User experience for mobile applications and websites. Retrieved September 30, 2015, from http://www.nngroup.com/reports/mobile-website-and-application-

usability/

Nonaka, I. (1994). A dynamic theory of knowledge creation. Organization Science, 5(1), 14–37.

Nonaka, I., & Takeuchi, H. (1995). The knowledge-creating company: How Japanese companies create the dynamics of innovation. Oxford University Press.

O’Sullivan, E. (2001). Transformative learning: Educational vision for the 21st century. Zed Books.

Olson, G. M., & Olson, J. S. (2000). Distance matters. Human–Computer Interactions, 15(1), 139–

178.

Olve, N., Petri, C., Roy, J., & Roy, S. (2003). Making scorecards actionable: Balancing strategy and control. Wiley.

Palmer, I., & Hardy, C. (2000). Thinking about management: Implications of organizational debates for practice. Sage.

Peddibhotla, N. B., & Subramani, M. R. (2008). Managing knowledge in virtual communities within organizations. In I. Becerra-Fernandez & D. Leidner (Eds.), Knowledge management: An evolutionary view. Sharp.

Bibliography

325

Pedler, M., Burgoyne, J., & Boydell, T. (Eds.). (1988). Applying self-development in organizations.

Prentice-Hall.

Penton, H. (2011). Material from conversation and presentation at a Saudi Business School.

Peters, T. J., & Waterman, R. H. (1982). In search of excellence: Lessons from America’s best-run companies. Warner Books.

Pettigrew, A. M. (1985). The awaking giant: Continuity and change in ICI. Basil Blackwell.

Pettigrew, A. M. (1973). The politics of organizational decision-making. Tavistock.

Pfeffer, J. (1994). Managing with power: Politics and influence in organizations. Harvard Business School Press.

Pietersen, W. (2002). Reinventing strategy: Using strategic learning to create and sustain breakthrough performance. Wiley.

Pietersen, W. (2010). Strategic learning. Wiley.

Poe, V. (1996). Building a data warehouse for decision support. Prentice-Hall.

Porter, M. (1996). What is strategy? Harvard Business Review, 74(6), 61–78.

Prange, C. (1999). Organizational learning—Desperately seeking theory. In M. Easterby-Smith, J.

Burgoyne, & L. Araujo (Eds.), Organizational learning and the learning organization (pp. 23–

43). Sage.

Prince, G. M. (1970). The practice of creativity. Collier Books.

Probst, G., & Büchel, B. (1996). Organizational learning: The competitive advantage of the future.

Prentice-Hall.

Probst, G., Büchel, B., & Raub, S. (1998). Knowledge as a strategic resource. In G. V. Krogh, J. Roos, & D. Kleine (Eds.), Knowing in firms: Understanding, managing and measuring knowledge (pp. 240–252). Sage.

Rapp, W. V. (2002). Information technology strategies: How leading firms use IT to gain an advantage. Oxford University Press.

Remenyi, D., Sherwood-Smith, L., & White, T. (1997). Achieving maximum value from information systems: A process approach. Wiley.

Reynolds, G. (2007). Ethics in information technology (2nd ed.). Thomson.

Richardson, K. A., & Tait, A. (2010). The death of the expert? In A. Tait & K. A. Richardson (Eds.), Complexity and knowledge management: Understanding the role of knowledge in the management of social networks (pp. 23–39). Information Age.

Rooke, D., & Torbert, W. R. (2005). The seven transformations of leadership. Harvard Business Review, 83(4), 66–77.

Ryan, R., & Raducha-Grace, T. (2010). The business of IT: How to improve service and lower cost.

IBM Press.

Sabherwal, R., & Becerra-Fernandez, I. (2005). Integrating specific knowledge: Insights from the Kennedy Space Center. IEEE Transactions on Engineering Management, 52(3), 301–315.

Sampler, J. L. (1996). Exploring the relationship between information technology and organizational structure. In M. J. Earl (Ed.), Information management: The organizational dimension (pp. 5–22). Oxford University Press.

Sanders, N. R. (2014). Big data driven supply chain management: A framework for implementing analytics and turning information into intelligence. Pearson Education, Inc.

Schectman, J. (2012, June 7). New EU privacy rules put CIOs in compliance roles. Wall Street CIO

 Journal.

Schein, E. H. (1992). Organizational culture and leadership (2nd ed.). Jossey-Bass.

Schein, E. H. (1994). The role of the CEO in the management of change: The case of information technology. In T. J. Allen & M. S. Morton (Eds.), Information technology and the corporation (pp. 325–345). Oxford University Press.

Schlossberg, N. R. (1989). Marginality and mattering: Key issues in building community. New Directions for Student Services, 48, 5–15.

Schön, D. (1983). The reflective practitioner: How professionals think in action. Basic Books.

Senge, P. M. (1990). The fifth discipline: The art and practice of the learning organization. Currency Doubleday.

326

Bibliography

Shaw, P. (2002). Changing the conversation in organizations: A complexity approach to change.

Routledge.

Siebel, T. M. (1999). Cyber rules: Strategies for excelling at e-business. Doubleday.

Snow, C. C., Fjeldstad, O. D., & Langer, A. M. (2017). Designing the digital organization. Journal of Organization Design, 1–13.

Speser, P. L. (2006). The art and science of technology transfer. Wiley.

Splunk Inc. (2024). The state of security: The race to harness AI. Cisco Corp. https://www.splunk.

com/en_us/form/state-of-security.html

Stenzel, J. (2007). CIO best practices: Enabling strategic value with information.

Stern, L. W., & Reve, T. (1980). Distribution channels as political economies: A framework for analysis. Journal of Marketing, 44, 52–64.

Stolterman, E., & Fors, A. C. (2004). Information technology and the good life. Information Systems Research: Relevant Theory and Informed Practice, 143, 687–692.

Storey, J. (1985). Management control as a bridging concept. Journal of Management Studies, 22, 269–291.

Swieringa, J., & Wierdsma, A. (1992). Becoming a learning organization, beyond the learning curve. Addison-Wesley.

Szulanski, G., & Amin, K. (2000). Disciplined imagination: Strategy making in uncertain environments. In G. S. Day & P. J. Schoemaker (Eds.), Wharton on managing emerging technologies (pp. 187–205). Wiley.

Tayntor, C. B. (2006). Successful packaged software implementation. Auerbach Publications.

 Technology. Wiley.

Teece, D. J. (2001a). Strategies for managing knowledge assets: The role of firm structure and industrial context. In I. Nonaka & D. Teece (Eds.), Managing industrial knowledge: Creation, transfer and utilization (pp. 125–144). Sage.

Teece, D. J. (2001). I. Nonaka & D. Teece (Eds). Strategies for managing knowledge assets: The role of firm structure and industrial context. Sage Publications. Knowledge and Process Management, 10(4), 125.

Teece, D. J. (2011). Strategies for managing knowledge assets: The role of firm structure and industrial context. In I. Nonaka & D. Teece (Eds.), Managing industrial knowledge: Creation, transfer and utilization (pp. 125–144). Sage.

Teigland, R. (2000). Communities of practice at an Internet firm: Netovation vs. in-time performance. In E. L. Lesser, M. A. Fontaine, & J. A. Slusher (Eds.), Knowledge and communities (pp. 151–178). Butterworth-Heinemann.

The Economist. (2018). The race is on to dominate quantum computing. https://www.economist.

com/business/2018/08/18/the-race-is-on-to-dominate-quantum-computing

Friedman, T. L., & Mandelbaum, M. (2012). That used to be us. Picador.

Tichy, N. M., Tushman, M. L., & Fombrum, C. (1979). Social network analysis for organizations.

 Academy of Management Review, 4, 507–519.

Torbert, B. (2004). Action inquiry: The secrets of timely and transforming leadership. Berrett-Koehler.

Tufte, E. R., & Graves-Morris, P. R. (1983). The visual display of quantitative information (Vol. 2, No. 9). Graphics Press.

Tushman, M. L., & Anderson, P. (1986). Technological discontinuities and organizational environments. Administrative Science Quarterly, 31, 439–465.

Tushman, M. L., & Anderson, P. (1997). Managing strategic innovation and change. Oxford University Press.

Van Houten, D. R. (1987). The political economy and technical control of work humanization in Sweden during the 1970s and 1980s. Work and Occupations, 14, 483–513.

Vince, R. (2002). Organizing reflection. Management Learning, 33(1), 63–78.

Von Stamm, B. (2003). Managing innovation, design & creativity. John-Wiley & Sons.

Wallemacq, A., & Sims, D. (1998). The struggle with sense. In D. Grant, T. Keenoy, & C. Oswick (Eds.), Discourse and organization (pp. 65–83). Sage.

Bibliography

327

Walsh, J. P. (1995). Managerial and organizational cognition: Notes from a trip down memory lane.

 Organizational Science, 6, 280–321.

Wamsley, G. L., & Zald, M. N. (1976). The political economy of public organization. Indiana University Press.

Watkins, K. E., & Marsick, V. J. (1993). Sculpting the learning organization: Lessons in the art and science of systemic change. Jossey-Bass.

Watson, T. J. (1995). Rhetoric, discourse and argument in organizational sense making: A reflexive tale. Organization Studies, 16, 805–821.

Weill, P., & Ross, J. W. (2004). IT governance. Harvard Business School.

Wenger, E. (2000). Communities of practice: The key to knowledge strategy. In E. L. Lesser, M.

A. Fontaine, & J. A. Slusher (Eds.), Knowledge and communities (pp. 3–20). Butterworth-Heinemann.

West, G. W. (1996). Group learning in the workplace. In S. Imel (Ed.), Learning in groups: Exploring fundamental principles, new uses, and emerging opportunities. New directions for adult and continuing education (pp. 51–60). Jossey-Bass.

Whitten, J., Bentley, L., & Barlow, V. Systems analysis & design methods (3rd edn., p. 238).

 Wideman comparative glossary of common project management terms, v2.1. Copyright R. Max Wideman, May 2001.

Willcocks, L. P., & Lacity, M. C. (1998). Strategic sourcing of information systems: Perspectives and practices. Wiley.

Wikipedia (2019).

Yorks, L. (2004). Toward a political economy model for comparative analysis of the role of strategic human resource development leadership. Human Resource Development Review, 3, 189–208.

Yorks, L., & Marsick, V. J. (2000). Organizational learning and transformation. In J. Mezirow (Ed.), Learning as transformation: Critical perspectives on a theory in progress. Jossey-Bass.

Yorks, L., & Nicolaides, A. (2012). A conceptual model for developing mindsets for strategic insight under conditions of complexity and high uncertainty. Human Resource Development Review, 11, 182–202.

Yorks, L., & Whitsett, D. A. (1989). Scenarios of change: Advocacy and the diffusion of job redesign in organizations. Praeger.

Yourdon, E. (1989). Modern structured analysis. Prentice Hall.

Yourdon, E. (1998). Rise and resurrection of the American programmer (pp. 253–284). Prentice Hall.

Zald, M. N. (1970a). Political economy: A framework for comparative analysis. In M. N. Zald (Ed.), Power in organizations (pp. 221–261). Vanderbilt University Press.

Zald, M. N. (1970b). Organizational change: The political economy of the YMCA. University of Chicago Press.

Document Outline

	 Foreword

	Why Do We Need a Next Generation of Analysis and Design?

	The Early Days of Analysis and Design

	Analysis and Design in the Digital Era

	Why are Platforms Different?

	Building the Platform

	Building Applications for Platforms

	The Importance of Digital Moments

	Distributed Data

	The Consumer Electronics Attitude and the Weekly (If Not Daily Sprint)

	UX is the Application

	Adhering to API is Not Optional

	“We Know More Than We Can Tell”

	The Next Paradigms

	 Acknowledgments

	 Contents

	1 Introduction

	1.1 Traditional Analysis and Design Limitations

	1.2 Consumerization of Technology in the Digital Age

	1.3 The Role of the Evolving Analyst

	1.4 Developing Requirements for Future Consumer Needs

	1.5 The New Paradigm: 5G/6G, IoT, Blockchain, Cloud, Cyber, and Quantum

	1.5.1 5G/6G

	1.6 Internet of Things (IoT)

	1.7 Cloud

	1.8 Blockchain

	1.9 Cybersecurity

	1.10 Quantum Computing

	1.11 Problems and Exercises

	References

	2 Merging Internal Users and Consumer Requirements

	2.1 The Tiers of Software Development

	2.1.1 User/Consumer Interface

	2.1.2 Tools

	2.1.3 Productivity Through Automation

	2.1.4 Object Orientation

	2.1.5 Client/Server

	2.1.6 Internet/Intranet to Mobility

	2.2 Establishing Internal User Interfaces

	2.3 Forming an Interview Approach

	2.4 Dealing with Political Factions

	2.5 Categories and Levels of Internal Users

	2.6 Requirements Without Users and Without Input

	2.6.1 Concepts of the S-Curve and Digital Transformation Analysis and Design

	2.7 Analysis and Design and the S-Curve

	2.8 Communities of Practice

	2.8.1 Model-Driven AI

	2.9 The Analyst in the Digital Transformation Era

	2.10 Problems and Exercises

	References

	3 Reviewing the Object Paradigm

	3.1 The Concept of the Logical Equivalent

	3.2 Tools of Structured Analysis

	3.3 Making Changes and Modifications

	3.4 What is Object-Oriented Analysis?

	3.5 Identifying Objects and Classes

	3.6 Object Modeling

	3.7 Relationship to Structured Analysis

	3.7.1 Application Coupling

	3.7.2 Application Cohesion

	3.8 Object-Oriented Databases

	3.9 Designing Distributed Objects Using Use Case Analysis and Design

	3.9.1 Use Case Model

	3.9.2 Actors

	3.10 Use Case

	3.11 Pseudocode

	3.11.1 Case

	3.12 Pre-post Conditions

	3.13 Matrix

	3.14 Problems and Exercises

	3.15 Mini-project

	References

	4 Distributed Client/Server and Data

	4.1 Client/Server and Object-Oriented Analysis

	4.2 Definition of Client/Server Applications

	4.3 Introduction to Databases

	4.4 Logic Data Modeling

	4.5 Logic Data Modeling Procedures

	4.6 Key Attributes

	4.7 Normalization

	4.8 Limitations of Normalization

	4.9 The Supertype/Subtype Model

	4.10 Key Business Rules

	4.11 Combining User Views

	4.12 Integration with Existing Data Models

	4.13 Determining Domains and Triggering Operations

	4.14 De-normalization

	4.14.1 Summary

	4.15 Problems and Exercises

	4.16 Mini-project #1

	4.17 Mini-project #2

	References

	5 The Impact of High-Speed Wireless Communication

	5.1 The Wireless Revolution

	5.2 Results of 5G on Distributed Processing

	5.3 Analysis and Design in a 5G/6G World

	5.4 User-Generated Data and Performance Measurements

	5.5 6G Impact and Ubiquitous Operations

	5.6 Summary

	5.7 Problems and Exercises

	References

	6 The Internet of Things

	6.1 Logical Design of IoT and Communication Models

	6.2 IoT Functional Blocks

	6.3 IoT Communication Alternatives

	6.3.1 Request-Response Model

	6.3.2 Publish-Subscribe Model

	6.3.3 Push-Pull Model

	6.3.4 Exclusive Pair Model

	6.4 IoT as an Inversion of Traditional Analysis and Design

	6.5 Sensors, Actuators, and Computation

	6.5.1 Sensors

	6.5.2 Actuators

	6.5.3 Computation

	6.5.4 Connectivity

	6.5.5 Composability

	6.5.6 Mediation

	6.5.7 Suitable APIs

	6.6 Recruitability

	6.7 A Word About IoT Security and Privacy

	6.8 Immersion

	6.9 The IoT SDLC

	6.10 Transitioning to IoT

	6.11 Summary

	References

	7 Blockchain Analysis and Design

	7.1 Understanding Blockchain Architecture

	7.2 Forecasted Growth of Blockchain

	7.3 Advantages and Disadvantages of Blockchain

	7.4 Analysis and Design of Blockchain

	7.5 Summary

	7.6 Problems and Exercises

	References

	8 Quantum Computing, AI, ML, and the Cloud

	8.1 Data Sets

	8.2 IoT and Quantum

	8.3 AI, ML, and Predictive Analytics

	8.4 ML in a Service Environment

	8.5 Analysis ML Use Cases

	8.6 Data Preparation

	8.7 Cloud

	8.8 Cloud Architectures

	8.8.1 Baseline

	8.8.2 Complex Cloud Architectures

	8.9 Multi-data Center Architecture

	8.10 Global Server Load Balancing (GSLB)

	8.11 Database Resiliency

	8.12 Hybrid Cloud Architecture

	8.13 Cloud, Edge, and Fog

	8.14 Problems and Exercises

	References

	9 Cybersecurity in Analysis and Design

	9.1 Introduction

	9.2 Cybersecurity Risk in the S-Curve

	9.3 Decomposition in Cybersecurity Analysis

	9.4 Risk Responsibility

	9.5 Developing a System of Procedures

	9.6 IoT and Security

	9.7 Cybersecurity and Analyst Roles and Responsibilities

	9.8 Generative AI (GenAI) in Cybersecurity

	9.9 Summary

	9.10 Charlotte AI

	9.11 Summary

	9.12 ISO 9000 as a Reference for Cyber Standards

	9.13 Why ISO 9000?

	9.14 How to Incorporate ISO 9000 into Existing Security and Software Life Cycles

	9.15 Interfacing IT Personnel

	9.16 Committing to ISO 9000

	9.17 Problems and Exercises

	References

	10 Generative AI and Systems Architecture

	10.1 Introduction

	10.2 Evolution of Generative Models

	10.3 Generative AI Architecture

	10.4 GenAI Reference Architecture

	10.5 Impact of GenAI on Software Design

	10.6 ChatGPT and the SDLC

	10.7 Advantages and Disadvantages of GenAI

	10.8 Future Evolution of GenAI in Analysis and Design

	10.9 Considerations for Forming a GenAI Strategy

	10.10 Evolution of Social Architecture

	10.11 Conclusions

	10.12 Problems and Exercises

	References

	11 Transforming Legacy Systems

	11.1 Introduction

	11.2 Types of Legacy Systems

	11.3 Third-Generation Language Legacy System Integration

	11.4 Replacing Third-Generation Legacy Systems

	11.5 Approaches to Logic Reconstruction

	11.6 Enhancing Third-Generation Legacy Systems

	11.7 Data Element Enhancements

	11.7.1 Application Enhancements

	11.8 “Leaving As Is”—Third-Generation Legacy Systems

	11.9 Fourth-Generation Language Legacy System Integration

	11.10 Replacing Fourth-Generation Legacy Systems

	11.11 Approaches to Logic Reconstruction

	11.12 Enhancing Fourth-Generation Legacy Systems

	11.13 “Leaving As Is”—Fourth-Generation Legacy Systems

	11.14 Hybrid Methods: The Gateway Approach

	11.15 Incremental Application Integration

	11.16 Incremental Data Integration

	11.17 Converting Legacy Character-Based Screens

	11.18 The Challenge with Encoded Legacy Screen Values

	11.19 Legacy Migration Methodology

	11.20 Legacy and Generative AI

	11.21 Problems and Exercises

	References

	12 Build Versus Buy

	12.1 Overview

	12.2 Core Versus Context

	12.3 Coverage

	12.4 Direction

	12.5 Total Cost of Ownership (TCO)

	12.6 Scale

	12.7 Timing

	12.8 Standards

	12.9 Other Evaluation Criteria

	12.10 Drivers and Supporters

	12.11 The Supporter Side of Buying

	12.12 Open-Source Paradigm

	12.13 Cloud Computing Options

	12.14 Deployment Models

	12.15 Summary

	12.16 Problems and Exercises

	References

	13 The Analyst and Project Management in the Next Generation

	13.1 Introduction

	13.2 Defining the Project

	13.3 Identify Objectives

	13.4 Identify Users

	13.5 Determining the Scope of the Project

	13.6 Managing Scope

	13.7 The Budget

	13.8 The Project Team

	13.9 Project Team Dynamics

	13.10 Set Rules and Guidelines for Communication

	13.11 Review Sites

	13.12 Working with User Resources

	13.13 Outsourcing

	13.14 Planning and Process Development

	13.15 Technical Planning

	13.16 Defining Technical Development Requirements

	13.17 Maintenance

	13.18 Project Management and Communication

	13.19 Summary

	13.20 GenAI Effects on Project Management

	13.21 Challenges and Considerations of Using Generative AI in Project Management

	13.22 Conclusion

	13.23 Problems and Exercises

	References

	14 Conclusions and the Road Forward

	14.1 Sense and Response and the End of Planning

	14.2 The Role of Artificial Intelligence and Machine Learning

	14.3 Blockchain

	14.4 Cloud and More Cloud

	14.5 Quantum Computing

	14.6 The Human Factor of the Next Generation of the Digital Organization

	14.7 Transforming to a Digital Enterprise

	14.7.1 Gen Z Profiles

	14.8 Security Is a Central Problem

	14.9 The Role of the Analyst

	References

	 Glossary

	Bibliography

index-1_10.jpg

index-1_9.png

index-1_12.jpg

index-1_11.jpg

index-1_14.png

index-1_13.png

index-42_8.png

index-42_7.png

index-42_10.png

index-42_9.png

index-42_12.png

index-42_11.png

index-42_14.png

index-42_13.png

index-42_5.png

index-42_4.png

index-42_6.png

index-22_1.png
Technology

INNOVATION

index-25_1.jpg
Legacy A

Network I
_—
Rearchitecture Data
m _ eroenee
Network Il Functlon 3 + Data

Central

Databases

index-24_1.jpg
External

Software

Infrastructure
Analytics
Data services

Aggregation | Applications

—» | Cybersecurity | «—»
Data

Hardware

Business systems Network

loT products

Components: Physical devices, sensors, data extraction, secured
communications, gateways, cloud, servers, analytics, dashboards

index-42_1.png
] I]
I |

index-35_1.png

index-42_3.png

index-42_2.png

index-14_1.png

index-1_15.jpg

index-21_1.jpg
Common Links

Individual i Individual - Individual
Home/Personal Individual - Consumer :
Life Interactions Work Interactions Knowledge/Education

Work interactions
Frionds
Family Homelwork

infrastructure

Porsonal contacts Knowledge of new
Home infrastructure g""' Sots for business products/services
Calondar personal ompany scheduling Real estate interests

Calendar business
Education porsonal Etirnlprivond] Travel

Buying needs

sl Emorging Markets

Ubiquitous data

Security
Nows

Notification

Network capacity

Low latency

Mobile-to-mobile communication
Cyber control

Architecture integration

index-20_1.jpg
38 years

6 months

19 days

index-42_28.png

index-42_27.png

index-42_30.png

index-42_29.png

index-42_32.png

index-42_31.png

index-42_34.png

index-42_33.png

index-42_36.png

index-42_35.png

index-42_26.png

index-42_17.png

index-42_19.png

index-42_18.png

index-42_21.png

index-42_20.png

index-42_23.png

index-42_22.png

index-42_25.png

index-42_24.png

index-42_16.png

index-42_15.png

index-42_48.png

index-42_47.png

index-42_50.png

index-42_49.png

index-42_52.png

index-42_51.png

index-42_54.png

index-42_53.png

index-42_56.png

index-42_55.png

index-42_37.png

index-42_39.png

index-42_38.png

index-42_41.png

index-42_40.png

index-42_43.png

index-42_42.png

index-42_45.png

index-42_44.png

index-42_46.png

index-42_68.png

index-42_67.png

index-42_70.png

index-42_69.png

index-42_72.png

index-42_71.png

index-42_74.png

index-42_73.png

index-42_76.png

index-42_75.png

index-42_57.png

index-42_59.png

index-42_58.png

index-42_61.png

index-42_60.png

index-42_63.png

index-42_62.png

index-42_65.png

index-42_64.png

index-42_66.png

index-42_175.png

index-42_174.png

index-42_176.png

index-42_171.png

index-42_170.png

index-42_173.png

index-42_172.png

index-42_167.png

index-42_169.png

index-42_168.png

index-42_164.png

index-42_163.png

index-42_166.png

index-42_165.png

index-42_160.png

index-42_159.png

index-42_162.png

index-42_161.png

cover_image.jpg
@
Analy51s and

7 Design of Next- 9
Generation
Software
Architectures

index-42_158.png

index-42_157.png

index-42_153.png

index-76_2.png
“Driving the ear”
“Parking the car™
“Stopping the car”

Automatic trans Standard trans

A
Serv

tributes.
ices
Speod:
Roverse-snitt

Dodge standard trans Automatic trans.

Toyota auto trans Buick auto trans
= =
EE—
= =

Attributes.

Services

Attributes.

Services

Nissan-standarc-shiftmethod

Dodge-standsrd-method

index-42_152.png

index-76_1.jpg
Cars

Attributes

Steer wheel
Transmission
Dashboard
Lights
Engine type

Services

“Driving the car”
“Parking the car”
“Stopping the car”

Automatic trans Standard trans

Attributes Attributes
Services Services

Speeds
Reverse-shift

index-42_155.png

index-79_1.jpg
Submits PO

Prepared

Selected items

/1N
Warehouse

index-42_154.png

index-77_1.jpg
Bicycles

Attributes

Spood gears
Brako typo

Bike height

Services

Transportation vehicles

Attributes.

mww«-
Vieight

Planes
Attributes Atiutes
“Boat length™ “Engine type™
“Boal type” Passengers

Services.

“Docking procedure”

Services

Atiributes.

“Driving the car™
“Parking the car”
“Stopping the car™

index-42_149.png

index-71_1.jpg
System 2: December 91

index-42_148.png

index-70_1.jpg

index-42_151.png

index-73_2.jpg
Essential Components
of a Bank

Provide security

Pay interest
Pay bills

index-42_150.png

index-73_1.jpg
Client/Server of the late
80’s and early 90’s

On-line, real-time of the
70’s and 80’s

Batch systems of
the 60’s

index-42_156.png

index-42_147.png

index-64_4.png

index-64_3.png

index-42_142.png

index-59_1.jpg
Singli/ \Married

Tax alternatives Tax alternatives

based on a based on married

single person

Single tax
options

Filing
separate

Filing
joint

index-42_141.png

index-55_1.jpg
Communities of
Practice: Social actions
of how to deal with

technology

Allows groups to engage in

discourse and examine the

ongoing effectson the department/unit,
including short/long-term requirements,
skills transfer and development,
organizational issues,

relationships with other departments
and consumers.

Consumer-based
preferences

The consumer interacts with others
and determines new methods

of utilizing technology

within his/her specific business

and social objectives

index-42_144.png

index-64_1.png

index-42_143.png

index-62_1.png

index-42_138.png

index-42_259.png

index-42_137.png

index-42_258.png

index-42_140.png

index-52_1.jpg

index-42_139.png

index-50_1.png
CONSUMER
SUPPORT DEPT.

SUPPLIERS

NEW
ENTRANTS

|

INDUSTRY
COMPETITORS
(SALES &
MARKETING)

| |

SUBTITUTES

NEW PRODUCTS
OR SERVICES

SALES &
MARKETING

BUYERS

index-42_146.png

index-42_145.png

index-64_2.png

index-42_257.png

index-42_131.png

index-42_252.png

index-42_130.png

index-42_251.png

index-42_133.png

index-42_254.png

index-42_132.png

index-42_253.png

index-42_127.png

index-42_248.png

index-42_247.png

index-42_129.png

index-42_250.png

index-42_128.png

index-42_249.png

index-42_135.png

index-42_256.png

index-42_134.png

index-42_255.png

index-42_136.png

index-1_1.jpg

index-1_3.jpg

index-1_2.jpg

index-1_5.jpg

index-1_4.jpg

index-1_7.png

index-1_6.png

index-1_8.jpg

index-42_120.png

index-42_241.png

index-42_119.png

index-42_240.png

index-42_122.png

index-42_243.png

index-42_121.png

index-42_242.png

index-42_237.png

index-42_118.png

index-42_239.png

index-42_117.png

index-42_238.png

index-42_124.png

index-42_245.png

index-42_123.png

index-42_244.png

index-42_126.png

index-42_125.png

index-42_246.png

index-284_1.jpg
' TE oL 21022928b99 dziniq hete noitsw@d amsk AzsT| al
TiM[2 Ll

FREMOF pdT TH\&8 i3 2ysb 02 129{019 s18wito2 bopsiasd r

FREMOT pdT TH&8 i3 2ysb 02 29iivisoA Is19n9d N

FHSQ8 maM | MH\é8 ind 2ysb ST pninnsi9 €

*Nes ind *Més8 ind ysb I 3q022 sfelurmo pnitseM Isitinl b

TPOM8 bsW *ME8 ind 2ysb &€ noitaslse 10bnsV e

TNSr8 ind FRFM\8udT eysb S pninnslq B @

9 "MYN8bsW IMENg ndv 2ysb € 10bnsV bspexos9 pninneld Y

Y IN8M8udT IM8M8udT | ysb I prifssm 10bnsV Yo 2sniM 8

8 IMSS\8 naM | *Mers ind 2ysb S pnitedVl 1obnsV e

FRYS\esuT FFPBS\8boW 2ysh S 1nemisqed or

‘TWS\8bsW | “F\BO8 bsW | ysb I pnites pinneld E=| o

*neeind FMes\8 nov 2ysb e 212U diiw awsi visin| E=|l st

SEtnere il FH\2\e navl 2ysb OF 2noilsditiosqe 2esnicu8 er

E€F FNOS\esuT [FMeNe naVl 2ysb S 2192U rltiw 2pnitesvl A

FRTS\esuT “MES® A 2ysb € 2noifsaitiosqe esilsnii E= er

FMaS\e moM | FMBS\8bsW | 2ysb bS € 1nemsqed ar

FNOE\8 suT “M\BS\8 bsW 2yeb & pnitseVl pninnslq E=| v

rNSMe navl | FM\eS\8 ndvl ayeb I 2182V rtiw 2wsi visinl E 8r

‘\W\ebsW [MM\&e nav 2ysb € 2noilsaitiosqe 2esnizu8 E er

FRere noM FHene noM yeb t 2192 rlfiw 2pnites E®| oS
NS\ navl | *HESe ind 2yeb S 2noi1s2i tiosqe sxilsnid R s
EEE—— FREFOF udT | FNEN8 naM 2ysb A oamuood 2inemeriupefl Juo bned S
*Moge inA *H\8S\e bsW 2ysb € 229q2 918919 E5| €S
€S FNA\OF urdT [FMEOF naVl 2ysb & I 1990 192U ritiwwsivaf 5N

FREMOF udT FRNOFOF ndVl 2ysb & S 1990 192U ritiwwaiveA || ES

*Here ind FMeng novl 2ysb @ normuo00 ssilsnid E as

index-42_109.png

index-42_230.png

index-277_1.png

index-42_108.png

index-42_229.png

index-305_1.png

index-42_111.png

index-42_232.png

index-285_1.jpg
/& Microsoft Project - CORCDET2 MEIE
&) Fle Edt View Inset Fomat Tooks Window Help

n|2R| SlR(¥] slsel< o =# aiel B x| e S$x
alo)e|=Fe| [Tk SJpe]][s z|u|[E=[=
—

Design Activities -
[Jui2z,’7]

Duration

20d
109d
30d
10d

Scanning
Install Floor Plans
Floor Plan Clean-up

Applications
Internet
Office Automation
(| 20 |E-Mail Training sd Fri 919
[21 | Development 100d Thur21
| 22 |Product Testing 30d Thu1dg
[23 |Product Training 30d Tue2
| 24| Documentation 30d Tue2 i i i i
25 |Install offices 104 Mon 2§ | =
¥

KN 3 Kl L]

| Ready II ['ExT |[eaes] | [NuM [serl [ovR

index-42_110.png

index-42_231.png

index-263_1.jpg
GenAl's Impact on Legacy System Modernization

Enhanced
Security Automated Code
Measures Analysis

Automated
Testing and
Validation

Dynamic
Refactoring

Migration Strategy
Development

index-270_1.jpg
Technology

Driver —
Mini Loop Technology
Enhancements

Evaluation Driver Support Economies
Cycle Maturation Status of Scale

index-42_107.png

index-42_228.png

index-265_1.png

index-42_227.png

index-42_116.png

index-316_1.jpg
Feasibility

Culture
transformation

Buy vs. build

2

Internal
user

Cloud design

Requirement
analysis

Analyst
responsiblilities

performance
requirement

loT
considerations

Blockchain

analysis

Security
analysis

index-42_113.png

index-42_234.png

index-306_1.jpg
Flexible and resilient

business processes
and focused analytics

index-42_112.png

index-42_233.png

index-42_115.png

index-42_236.png

index-42_114.png

index-42_235.png

index-227_1.png

index-42_219.png

index-42_98.png

index-224_1.jpg
AutoML changes the mix of talent needed.

M Data-science expertise [l Business-domain knowledge

Data- []

science Business ___ Data . UEE ~Modelin ~ Evaluation ~Deployment

workflow understanding understanding preparation 9 ploy

Effort e o e o o o o o e o e o

- fF 17 fF fF 1T MM

Effort e o e o

tomorrow ' ' ' '
Heavily affected by AutoML

McKinsey

& Company

index-42_218.png

index-42_97.png

index-235_1.jpg
Relational
databases

Legacy Cloud
applications applications

index-42_100.png

index-42_221.png

index-234_1.png

index-42_220.png

index-42_99.png

index-217_1.jpg
AlOps Platform Enabling Continuous Insights Across IT Operations
Monitoring (ITOM)

Real-Time
and Events Incidents,
Historical Metrics Traces, Dependencies
D Topology and Changes
ata N
&
& ®
s : g) i
Historical Analysis 50 o$ AlOps Task Automation
Anomaly Detection §_ Change Risk Analysis

Machine Learning
Big Data

SD Agent

Performance Analysis
Performance Analysis

Correlation and
Contextualization

Knowledge Management

Platform

Scripts

Act Run Books
(Automatio™

Source: Gartner
ID: 378587

index-42_217.png

index-215_1.jpg
GenAl Reference Architecture: Patterns & Technical Blueprint for Building GenAl Solutions

UIX Prompt >
Search Enterprise [Re-] Engineer a
Data, Build pomPt that
i produces the
Conversational desired output
Agents, from the Model
Rich Developer & || using basic to adv
Workplace prompting
Experience techniques:
Prompt
best-practices,
ICL, CoT, XoT,
ReAct, DSPy, NeXT,
etc.
Safe, vetted, Secure
Grounded
j Data
Code <:|
Models

9]e2g ‘UONUBYBI-0.97 ‘B|qisuodsay ‘AoeAlld ‘A3INdag

RAG

Retrieve

additional data
to augment
the prompt

[ﬁvwmmm"’]
Vector DB

Serve
Generate the O »
output & 338
- e 3
coordinate 2z
- m
Agents 3 o g
el | 2
rMadel carden | || ©
- egist j ;

Adapt
Extensions,
Distillation,

Function

Calling,

Connectors

saL

> Evaluation &

Multi-Agent Systems

Observability

Govern
Responsible
Al Layer:
Unbiased
Safety Checks
Recitation Checks

Ground

Search &
provide
citations

Enterprise
Integration

MLOps: Orchestration

predictive & gen Al

create a pipeline that integrates & monitors data,

Prep &
'Tune, Eval

Prepare the
data for the ML
tuning;
synthetic data
generation

Tune and
customize
models for your
specific
industry
domain

rModel Garden]

Run : Al Hypercomputer : TPU/ GPU , Compute

index-42_106.png

index-42_105.png

index-42_226.png

index-240_1.jpg
Legacy Cloud, loT
system A3 system

index-42_102.png

index-42_223.png

index-236_1.png
1

index-42_101.png

index-42_222.png

index-251_1.jpg
&Y C:\My Documents\kids\Blcont™1 - Developer/2000 W S
k] File Edit Tools View Format Arrange Window Help =12 %]

Canvas: [CANVAS1 x| Block: [BLOCK2 ~ Ed @] dEE BEE ‘

NextB/L PrevB/L Next Cont B/L Container Save Clear -EJ

Date Vessel: Voyage:
B/L [] Container: SCAC: ETD: ETA:
FRT Type Transmode: Totals

Sorvica Cotrer Lading Port: CTNS: CBM:
Size: Discharge Port: GWT: (R

Tot Cons Orig
Contract/PO Item Style# Stat CTN Unt GWT CBM O/F Chrg Rate Country

I T . B/

«| of
Mod: [TEM_ENT File: C:\My Documents\kids\Blcont™1 <Ins>
gRStart| €92 | LEv el el S @@ 206 AM

index-42_104.png

index-42_225.png

index-246_1.jpg
loT/blockchain Legacy user
system screens

Gateway y

index-42_103.png

index-42_224.png

index-188_1.png
Datacenter 1 Datacenter 2

Application 1
Server array

- AR

Master

database
CloudY

Cloud X

index-42_208.png

index-42_87.png

index-187_2.png
database

storage

index-42_207.png

index-192_1.jpg
SECURITY
LEVEL 2 !

¥

SERVER

CUSTOMER
DATA

APPLICATION
LEVEL

SECURITY
LEVEL 2 !

PROFILES

1.0
i

index-42_210.png

index-42_89.png

index-190_1.png

index-42_209.png

index-42_88.png

index-187_1.png
Datacenter 1 Datacenter 2

Application 2

Slave
database -

Cloud
storage

Cloud

index-42_216.png

index-42_95.png

index-213_1.jpg
Evolution of Generative Al

Generative Transformer
Turing Test Neural Network Adversarial Networks Architecture ChatGPT

Proposed Winter Begi . Introduced Introduced Introduced
1956 inter Begins) 1:4 9000 ntroduce 2015 Introduce 2020 ntroduce conal
. » . % . % .5 . 5 .5 . 5 . P . JITL
Begins
1950 Al Term 1970 Deep Learning 2014 Diffusion Model 2017 GPT3 2022

Coined Golden Age Introduced Introduced
Standard

index-42_215.png

index-42_94.png

index-42_96.png

index-201_1.jpg
From Question to Answer with Charlotte Al:
A Multi-Al Agent Architecture

Al AGENT:
ing for

Al AGENT:

Al AGET“:.‘ AlAGENT:
Entity Enrichment Answer Routing

index-42_212.png

index-42_91.png

index-198_1.jpg
i i H Network Securi
Generative Al in Security Market " Ae "I‘f°’t. e°:"‘y .
Size, by Security Type, 2022-2032 (USD Million) W Application Security
3000 M Cloud Security

Other Security Types 2,654

2500 20208 |

=
2000 1872 |
1620 -

=
1500 1238 1374 j
1,071 = |
891 =
1000 726 =
533 628 = =
il
]

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

R o17.9% [nle i $2,654M ¥ VaretResen

WIDE RANGE OF GLOBAL MAR

index-42_211.png

index-42_90.png

index-212_1.png

index-42_214.png

index-42_93.png

index-208_1.jpg
File Edit View Insert Format Tools Data Window Help

mEFEEREREER

SSATPROJ.WK1
of e |r]

e m
Responsibilit
m

Technical Project Planz are completed
3ad finakized within 2 weeks of Kick-Off

Requirements Definition Docement Do«mu i3 delirered within timeframe Cod-mam Letter ¢ Serv Ackd
©a or before des date and zigned ¢ Statuz Report (MGO0
Conceprual Detail Dezign Document Document iz defivered within timeframe Coafirmation Letter ! Serv Acki
©a or before dee date and signed Project Statuz Report (MGOO

D | Davelopment System Document iz deliverad within timeframe Coafirmation Letter ! Sm Ack
©on of before des date nd zigned

QA|System Tested Enhancements Do(umnl i3 delivered within timeframe

index-42_213.png

index-42_92.png

index-171_1.jpg
&—

Not participating Participating

(Assembly not started) delegates | delegates (Assembly not started) | get delegation

Delegating

(Assembiy not started) get delegation

Delegated No more

delegations (Assembly not started and Max No. delegations)

get delegation

index-42_197.png

index-170_1.jpg

index-178_1.jpg
| Newmodel

Training Predict
algorithm algorithm

index-42_199.png

index-42_78.png

index-175_1.png

index-42_198.png

index-42_77.png

index-186_1.jpg
Server array

Cloud
storage

index-42_205.png

index-42_84.png

index-185_1.png
Cloud

Application 1

Application 2

Replication

Cloud
storage

index-42_204.png

index-42_83.png

index-42_86.png

index-42_206.png

index-42_85.png

index-182_1.jpg
General AP1 Function 1
database AP1 Function 2

Server center
Product app. & data

Client/server

index-42_201.png

index-42_80.png

index-178_2.jpg
Legacy on old database record

New or replacement database record

index-42_200.png

index-42_79.png

index-184_1.jpg
Load balancer
Application

Database

Cloud
Backups

index-42_203.png

index-42_82.png

index-183_1.jpg
Web server

Application

Backups

Cloud storage

Cloud

index-42_202.png

index-42_81.png

index-159_1.png

index-160_2.jpg
Forward address
R “ oF nu“

index-42_188.png

index-160_1.jpg
Forward
“

Prior link Forward
Prior Forward

X Forward address is
Plor address 3 nu" end Of Chaln

index-42_187.png

index-168_1.jpg
3. Define system USs, UC
and class UML Diagram

4. Divide the system

6. Design the external system:
6.1 Redefine actors and USs
6.2 Design the architecture

5.3 Define the messages 6.3 Design the Ul
5.4 Define the data structure 6.4 Design modules, messages, DB structure

6.5 Define the modifiers and functions 6.5 Define the detailed interfaces
5.6 Security assessment 6.6 Security assessment

7.2 Write and test the code:
7.1 Write and test the SC code - Wob thor

- DB tier
« Client tier

8. integrate, test and deploy
the dApp system

index-42_194.png

index-167_1.jpg
Need multiple blockchains?

. |

! 1 pLaSnoneltn a

! |

i i on) e esin
" " suonenBijuod (an

i : upeuoo0Ia uBteep 22u0
! |

H |

H |

! 1

! |

index-42_193.png

index-42_196.png

index-169_1.jpg
Create the system

Verify the validity
of an assembly

Verify the result of
avoting

Update the
shareholders

Administrator

Convene in an
assembly

Shareholder
Participate to an

assembly

Call for a voting

Delegate
participation

Change
administrator

Cast a vote

index-42_195.png

index-165_2.jpg
FCC databases

Informing Incumbent detection
incumbent (ESC)

Domain proxy

Network management
system (NMS) (opt)

CBSD sensing (opt)

Tier 2/3
CBSD

Tier 213
CBSD

m m [u] Operator 1 User 1 User 2 User n
g g g domain domain domain domain

index-42_190.png

index-165_1.jpg
Use case

SAS-SAS data
exchange

SAS marketplace

Sensing as a
service

Element tracking
Neutral hosting
Operator roaming

CBSD
measurements

FCC database

ESC sensing

Shared write

Absence of trust

Disintermediation

Interaction

Confidentiality

Hybrid

Hybrid

Hybrid

Hybrid

Hybrid

Hybrid

Private

Private

Private

index-42_189.png

index-166_2.jpg
Database?

Shared write access?

Absence of trust?

Disintermediation?

Transaction interaction?

Control of functionality?

Confidentiality?

yes
no
yes
20 Centralized
databases
yes

Consensus process?

no
Intra firm

private

public Inter firm

Public Private
blockchain blockchain

Hybrid

blockchain

index-42_192.png

index-166_1.jpg
Transaction request

Validation using public
and private keys, and
transaction forward to
miners

Group of miners
validate the transaction
and build blocks.

Cryptographic
signatures of the whole
new chain, previous
actions, and the new
block of events create
a proof

The transactions with
their cryptographic
proofs are stored in the
blockchain

index-42_191.png

index-42_186.png

index-149_1.png
client Request Server
m——— receives reqests

send from clients,
request processes ‘ Resources

reqests, looks

Response upifetches
resources,

&) prepares
response and
sends response
to clients

to server

Request-Response Communication Model

index-42_177.png

index-148_1.jpg
Application

Management Security

Communication

index-153_1.png
Press Slgnal Engine
Activate dlgltal signal Engine engager |————p
Start Start In park

index-42_183.png

index-151_2.jpg
Cloud Analytics + data

N

loT

/ Device \

Mobile devices Consumer/user

Network/gateways + internet

Cyber Function Dryer

Time/energy = f {ventilation, temperature, clothes, weight, energy pricing}

index-42_182.png

index-157_1.jpg
Aligned with customer value

Increased accuracy

Reduced cost

Better performance

Added features

Product

Postoperative
recommendations

Smart services

Predictive
maintenance

-
_Trainer at $49/year

Product-service

Per operation Relapse rate Per surgical profit

reduction
Per hour of use Humaﬂr,\,rsaol‘i'rc/eA Per income
_savings
Per volume collected Maintenance cost Cost/capacity
saving

Free for data Weight loss based Better health as
measured by exam
and biased tests

Service Service-outcome QOutcome Time

index-42_185.png

index-154_1.jpg
Mediator

index-42_184.png

index-150_1.jpg
Sends
messages
to topics

index-42_179.png

index-149_2.jpg
Server

Central/cloud
database

loT device
client/server

Browser or
smartphone

Client/server

Client

index-42_178.png

index-151_1.jpg
Request to Setup connection
Response accepting the request
Message from Clientto Server

Message from Server to Client
— e
Connection close request

Connection Close Response
—_—

index-42_181.png

index-150_2.jpg
e s ot
P from queues
queues

- e ESE

index-42_180.png

index-147_1.jpg
Change in
operation or state

Application

Data value
instructor

index-95_1.png

index-141_1.jpg
Smartphone users can be segmented into six different groups based on the types
of apps and services they use on their phones and how often they use them:

1. Power users 2. Video-centric 3.
users
Use wide range Stream videos
of apps and on for over three
average consume hours a day

two times more
mobile data than
light users

Towards a 5G consumer future January 2018

Social media-
centric users

Access social
media apps

and instant
messaging apps
at least 10-20
times a day

4. Browser-
centric users

Browse the

internet at least
weekly and rely
less on apps for
internet access

5. Utility
users

Woeekly users of
utility applications
such as banking
and mobile
payments

6. Light data
users

Browse the
internet only on
a weekly basis
or less often

index-139_1.jpg
CtoC

ItoB BtoC

Ito G -—‘

Bto G

BtoB : Itol
ItoC

index-146_1.jpg
Cloud database

User or machine
interface

Application
transmission

Data element

index-145_1.png

index-134_1.png

index-97_1.jpg
Client/Server hybrid object

Jecomposition

Server attributes Client attributes

Server services Client services

index-138_1.jpg
Up

Back hell Left

Right : 4 Forward

Down

index-137_1.png
Connection density 100 x vs. current 46 LTE

> 90% improvement over LTE

index-87_1.jpg
RS

Bank deposit Teller

depositor
% Automated > %
> deposit
Bank ATM

depositor

index-86_2.jpg
-k

Depositor deposit Teller

\O_,i&

Automated
deposit

index-84_1.png
Object /

N P

index-83_1.jpg
Main menu

Transaction processing
System editor
Financials

Transaction processing System editor Financials

Add transactions
2. Delete transactions
3. Update transactions
4. Print transactions

Edit transactions
2. Edit printer functions
3. Edit customer master
4. Edit trial balance

1. Trial balance
2. Income statement
3. Balance sheet

index-86_1.jpg

index-85_1.jpg

index-80_1.jpg
A
X=10
Y=20

Z = 2(X+Y)

B
X=10
L =50
R = 3(X+Y+L)

index-79_2.jpg
Warehouse Class

N Order

\l/

Packaging

Completed
package

Quality
assurance

index-82_1.jpg
100% coupling €¢+———————@—@0——>» 100% cohesion
50% 75%

index-81_1.jpg
A
X=10
Y=20

Z = 2(X+Y)

B
L=50
R = 3(X+Y+L)

