

AI for

Robotics

Toward Embodied

and General Intelligence

in the Physical World

―

Alishba Imran

Keerthana Gopalakrishnan

AI for Robotics

Toward Embodied and

General Intelligence in the

Physical World

Alishba Imran

Keerthana Gopalakrishnan

 AI for Robotics: Toward Embodied and General Intelligence in the

 Physical World

Alishba Imran

Keerthana Gopalakrishnan

San Francisco, CA, USA

San Francisco, CA, USA

ISBN-13 (pbk): 979-8-8688-0988-0

ISBN-13 (electronic): 979-8-8688-0989-7

https://doi.org/10.1007/979-8-8688-0989-7

Copyright © 2025 by Alishba Imran, Keerthana Gopalakrishnan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or

part of the material is concerned, specifically the rights of translation, reprinting, reuse of

illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,

and transmission or information storage and retrieval, electronic adaptation, computer software,

or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark

symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,

and images only in an editorial fashion and to the benefit of the trademark owner, with no

intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if

they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of

publication, neither the authors nor the editors nor the publisher can accept any legal

responsibility for any errors or omissions that may be made. The publisher makes no warranty,

express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr

Acquisitions Editor: Celestin Suresh John

Development Editor: Laura Berendson

Coordinating Editor: Kripa Joseph

Copy Editor: Kezia Endsley

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York,

1 New York Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail

orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a

Delaware LLC and the sole member (owner) is Springer Science + Business Media Finance Inc

(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,

paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook

versions and licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book can be

found here: https://www.apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

 Dedicated to my father,

 for his unconditional love and unwavering support

 —Keerthana

 Dedicated to my family and friends who have

 supported me on this journey

 —Alishba

Table of Contents

About the Authors ��xiii About the Technical Reviewers ��xv

Acknowledgments ��xvii

Introduction ���xix

Chapter 1: Introduction to General Purpose Robotics ��������������������������1

A Robot System ���5

Common Types of Robots ��6

Common Concepts in Robot Design ��10

Robotic Manipulators���11

Degrees of Freedom ��12

End Effectors and Workspaces ��13

Kinematics ���13

Deep Learning for Robotics ���15

Deep Learning Frameworks ��19

Robot Learning Frameworks and Objectives ��22

Toward Embodied General Intelligence ���23

Environment Is Deeply Tied to the Definition of Intelligence �������������������������24

Summary���26

References ��28

v

Table of ConTenTs

Chapter 2: Robot Perception: Sensors and Image Processing �����������35

Sensors ���36

Vision Sensors (Cameras) ��37

Depth Sensors ���42

Range Sensors ��45

Inertial Measurement Units (IMUs) ��51

Problems in Perception ���53

Classification ���54

Segmentation ��54

Object Detection ��60

Convolutional Neural Nets Overview ���61

Convolutional Layers ���62

Pooling Layers ���65

Fully Connected Layers ���65

CNNs for Perception ��65

R-CNN ��67

Fast R-CNN ��68

Faster R-CNN ���69

Mask R-CNN ��71

ResNet���72

Skip Connection: The Strength of ResNet ��73

U-Net ���74

EfficientNet ���76

One-Stage Detectors ���77

YOLO ��77

SSD ��78

Model Comparison ��79

vi

Table of ConTenTs

Transformers for Perception ���81

Transformer Introduction ���82

The Transformer ��84

Transformers for Vision ���87

Summary���97

References ��98

Chapter 3: Robot Perception: 3D Data and Sensor Fusion ����������������107

3 D Data Processing ���108

Data Representation ��108

Processing Point Clouds ��110

Research Opportunities ���115

Multimodal Perception and Sensor Fusion ���116

Fusion Strategies ���116

LiDAR-Camera Fusion ��123

Summary���133

References ��134

Chapter 4: Foundation Models in Robotics ���������������������������������������139

Large Foundation Models ��139

Scaling Laws for Language Models ���144

Evaluating Language Models ���148

Language as a Connective Tissue in Robotics ��151

Language for Planning���151

Language for Mapping���160

Language for Reward ��162

Language for Robot Code ��164

vii

Table of ConTenTs

End-to-End Robot Control ���167

End-to-End Robot Control with Autoregressive Transformers ���������������������169

End-to-End Robot Control with Diffusion Models ��176

DDPMs (Denoising Diffusion Probabilistic Models) �������������������������������������180

DDIM (Denoising Diffusion Implicit Models) ��183

Conditioned Generation ���186

Action Diffusion for Robot Control ���188

Combining VLMs and Diffusion Models ���190

Learning from Video Demonstrations ��191

World Modeling Using Video Data ��192

AI Safety for Robotics��194

Summary���198

References ��199

Chapter 5: Simulation ���211

Simulation for Robots ���211

Considerations for Simulation in Robotics���212

Components of a Robot Simulator ��214

The PyBullet Module ��219

MuJoCo ��221

Gazebo ���221

Concepts in Sim2Real ���222

Domain Adaptation ��223

Domain Randomization��224

Guided Domain Randomization ���227

Closing the Sim2Real Gap for RL ��230

CycleGAN ���231

RL-CycleGAN ���233

viii

Table of ConTenTs

Learning from Simulation ���235

Simulation for Bootstrapping RL ��236

Foundation Agents in Simulation ���238

Simulation for Reward Design ���244

Simulation for World Modelling ���246

Simulation for Imitation Learning ��249

Summary���254

Tutorials ���255

References ��258

Chapter 6: Mapping, Localization, and Navigation ���������������������������265

Why Use Deep Learning? ��266

Traditional Methods ���266

Deep Learning Methods ��267

A Hybrid Approach ���267

Typical Mobile Robot Setup ���269

Mapping ��270

Geometric Mapping ���270

Semantic Mapping���277

Localization ���280

2 D-to-2D Localization ��281

2 D-to-3D Localization ��284

3 D-to-3D Localization ��286

Navigation ���287

Navigation and Exploration ��291

Locomotion for Legged Robots ��294

Summary���303

References ��305

ix

Table of ConTenTs

Chapter 7: Reinforcement Learning and Control ������������������������������311

Reinforcement Learning Basics ��314

Solving a Markov Decision Process ���316

Considerations ���316

Model-Free vs Model-Based RL ��318

Model-Free Reinforcement Learning ���320

Model-Based Reinforcement Learning ��327

Offline Reinforcement Learning ��331

Applications and Challenges ���333

Scaling Up RL in the Real World ��334

Reinforcement Learning and Large Language Models ��������������������������������340

Challenges in RL for Robotics ���343

Emerging Trends in RL for Robotics ��344

Conclusions ���345

Summary���346

References ��347

Chapter 8: Self-Driving Vehicles ���353

Economic Opportunity ���353

System Design ��355

End-to-End Self-Driving (E2E) ���357

Perception ���358

Prediction ��362

Planning ��363

Safety ��366

AI Safety and Systems ���366

Safety Considerations ��367

Summary���370

References ��371

x

Table of ConTenTs

Chapter 9: Industrial Robotics ��375

Common Tasks ��376

Pick-and-Place ��376

Peg-in-Hole ���377

Welding ��378

Warehouse Tasks ���379

Common Robots ��380

Standalone Industrial Robots ��380

Collaborative Robots (Cobots) ���381

Mobile Robots ��382

Humanoids ��384

Market Opportunity ���384

System Design for Pick-and-Place Robots ���387

Hardware Components ��387

Software Components ���390

Scaling RL for Robotic Grasping ��393

Safety Considerations ���398

Summary���398

References ��400

Chapter 10: Humanoid Robotics ���405

The Case for Humanoids ���405

Alternative Approaches ���406

Humanoid Markets ��407

How to Build a Humanoid ��410

Hardware ���410

Software ��415

xi

Table of ConTenTs

Conclusion ��421

Summary���422

References ��423

Chapter 11: Data-Driven Robotics in Practice ����������������������������������427

Robot Operations ��427

Data Infrastructure ��429

The Training and Deployment Infrastructure ���431

Robot Data Flywheels ���433

Large-Scale Robotic Data Collection ���434

Recipes for the Future ��438

References ��439

Index ���443

xii

[image: Image 1]

[image: Image 2]

About the Authors

Alishba Imran is a machine learning and

robotics developer specializing in robot

learning for manipulation and perception.

She is currently conducting research in

reinforcement learning and unsupervised

learning with Pieter Abbeel at the Berkeley

AI Research Lab. Her past experience spans

across top robotics companies—she’s worked

on advanced perception systems at Cruise, developed simulation-based

manipulation methods at NVIDIA, and led impactful initiatives to reduce

the cost of prosthetics. At Hanson Robotics—the creators of Sophia the

Robot, the world’s most advanced human-like robot—Alishba co-led

neuro-symbolic AI research and developed low-cost hardware system for

humanoids.

Keerthana Gopalakrishnan is a Senior

Research Scientist at Google DeepMind

working on robot manipulation and the

Gemini project. She was educated at Carnegie

Mellon University and the Indian Institute

of Technology. Her research concerns large

language models for robotic planning, scaling

visual language models for low-level control,

and cross-embodiment robot learning.

xiii

[image: Image 3]

[image: Image 4]

About the Technical Reviewers

Lentin Joseph is the author of ten books in

ROS and the cofounder/CTO of RUNTIME

Robotics from India/Kerala. He is an

accomplished robotics engineer with 14 years

of experience in the field. He specializes in the

Robot Operating System (ROS), contributing

significantly to the development of various

robotics applications and solutions. He holds

a degree in electronics and communication

engineering and an M.Tech in robotics and automation, from which he

graduated with honors. Lentin has authored and reviewed more than ten

books on ROS, including Mastering ROS for Robotics Programming, ROS

 Robotics Projects, and Robot Operating System for Absolute Beginners,

making significant contributions to the robotics community.

LinkedIn profile: https://www.linkedin.com/in/lentinjoseph/

Company website: https://runtimerobotics.com/

Sean Kirmani is a research scientist at

Google DeepMind working on problems in

vision, language, and action. He was also the

technical lead for semantic perception at The

Everyday Robot Project within Google[x]. He

holds degrees in electrical engineering and

computer science from The University of

Texas at Austin, where he worked in several

robotics labs. Sean has co-authored over 20

publications in robotics and AI.

xv

Acknowledgments

We’d like to acknowledge Chris Paxton for his valuable contribution to

the Reinforcement Learning chapter of this book. We’d like to thank the

robotics research community for allowing us to tell the story of this field,

which was collectively built, and for graciously permitting us to feature

their work in this book. We are also grateful for Marco Mascorro and Vivek

Aithal for reviews on earlier versions of this book.

xvii

Introduction

 What This Book Is About

 AI for Robotics is the reimagination of robotics as an artificial intelligence

problem. Modern robotics is steadily transformed by breakthroughs in

AI. This book is your comprehensive guide to framing traditional robotics

problems as AI problems and approaching them with deep learning

techniques. Whether you’re a coder, an enthusiast, or an investor, AI for

 Robotics gives you the blueprint to create generalizable and data-driven

robotic intelligence that learns, evolves, and tackles challenges we once

thought impossible in dynamic, real-world environments.

 Who This Book Is For

This book empowers:

• Software and AI engineers: If you have a background

in machine learning but are new to robotics, this book

bridges the gap, showing you how to build robots that

learn and adapt.

• Robotics and mechanical engineers: Stay ahead of the

curve by learning how to integrate AI and data-driven

approaches into your designs, ensuring your robots are

at the forefront of innovation.

• Investors, executives, and decision-makers: Gain a

clear understanding of the AI-robotics landscape. Make

informed choices about which technologies to bet on.

xix

InTroduCTIon

 No matter your background, if you’re ready to shape the future of

 robotics, this book is your guide.

 The Structure of the Book

This book is structured to gradually build your understanding of the use of

artificial intelligence for robotics, starting with fundamental concepts and

progressing to advanced applications.

• Chapter 1: Introduction to General Purpose Robotics

Provides an overview of the current state and future

directions of robotics, emphasizing the role of machine

learning in enabling more versatile and intelligent

systems.

• Chapter 2: Robot Perception: Sensors and Image

Processing

Covers the basics of how robots perceive their

environment through sensors and image-processing

techniques, focusing on learning representations for

vision tasks.

• Chapter 3: Robot Perception: 3D Data and

Sensor Fusion

Explores how to process and integrate 3D data from

various sensors to create a coherent understanding of

the robot’s surroundings.

• Chapter 4: Foundation Models in Robotics

Discusses the application of large, pretrained models

in robotics, including language models and visual

language models, and how they can be adapted for

robotics.

xx

InTroduCTIon

• Chapter 5: Simulation

Details the use of synthetic data and simulation

environments for training and testing robots, including

simulated-to-real transfer techniques.

• Chapter 6: Mapping, Localization, and Navigation

Focuses on the techniques robots use to map the

surroundings, understand where they are, and navigate

their environments.

• Chapter 7: Reinforcement Learning and Control

Introduces reinforcement learning and control

strategies for teaching robots to self-improve and learn

from trial and error.

• Chapter 8: Self-Driving Vehicles

Explains the design, safety considerations, and

technical challenges involved in building autonomous

vehicles.

• Chapter 9: Industrial Robotics

Covers the application of robotics in industrial settings,

including manufacturing and warehouse automation,

and the integration of machine learning to enhance

these processes.

• Chapter 10: Humanoid Robotics

Delves into the unique challenges and opportunities

in developing humanoid robots, including perception,

hardware, and software design.

xxi

InTroduCTIon

• Chapter 11: Data-Driven Robotics in Practice

Discusses the infrastructure required to support

data-driven robotics, including important

considerations, safety issues, and future directions.

 What You Will Learn

By the end of this book, you’ll gain expertise in the following:

• Applying machine learning to key robotics areas,

including perception, mapping, control, and

decision-making.

• Designing and implementing robotic systems for

diverse industries, including self-driving cars,

manufacturing, and humanoid robots.

• Overcoming the specific hurdles of integrating machine

learning with robotics, understanding the future trends

of robotics, and learning about the ongoing impact of

machine learning.

 What You Need to Know Before You Start

This book requires some Python programming knowledge and familiarity

with libraries like NumPy, PyTorch/Jax, or ROS. A basic understanding of

neural networks and machine learning is also necessary, either through

an introductory course or self-study. If you lack this background, consider

taking Andrew Ng’s ML course or the Deep Learning Specialization on

Coursera.

xxii

InTroduCTIon

 Why We Wrote This Book

The last half decade has shown robotics being disrupted by machine

learning methods and evidence is stronger than ever that the path to

building generally intelligent robots is paved heavily with AI. We believe

that the field of robotics is at a special moment today: one that is ready

to be disrupted by breakthroughs in AI research. Machine learning has

fundamentally transformed how we design and build robots, opening

up a world of possibilities to create intelligent machines that effortlessly

navigate and interact with our complex world.

Innovation at a rapid pace has created a gap in literature, where most

textbooks on robotics taught at schools tread in classical methods and

most ML textbooks rarely address embodied AI, therefore restricting the

knowledge of designing data-driven robotics to privileged conferences,

research labs, and academic papers. We are writing this book to

democratize access to the practice and know-how of modern robotics.

We aim to break down barriers, making the fusion of AI and robotics

comprehensible to a broader audience and inspiring a new generation of

roboticists. We write this book to spark innovation, ignite new ideas, and

invite more people to contribute to this thrilling field.

 It’s time to learn the new robotics, where AI leads the way.

xxiii

CHAPTER 1

Introduction to

General Purpose

Robotics

People have dreamt of making intelligent machines that behave and think

like humans for centuries. From the industrial revolution to Asimov’s

“I, Robot” and the world’s first humanoids built a century ago, robots

have occupied our collective imagination for a long time. Robots have

transcended from being a figment of science fiction to being realized in the

present, with accelerating capabilities.

What led to this transformation? Advances in artificial intelligence

have disrupted various industries in the last decade by unlocking new

capabilities with machine learning. Robotics has escaped its constrained

and narrow applications in well-structured industrial and research

environments and is now integrated into our daily lives. Robots drive

competition through automation in large-scale manufacturing[1], space

and underwater exploration[2], agriculture[3], and healthcare[4], among other industries. In the future, we expect to see robots handling fine-manipulation tasks in industries, performing household chores in homes,

and autonomously operating on public roads and in hospitals.

As the capability has increased in the last few decades, the cost has

decreased. Over the past 30 years, the average cost of robotics has fallen

by half in Consumer Price Index (CPI)-adjusted terms (after accounting

© Alishba Imran, Keerthana Gopalakrishnan 2025

1

A. Imran and K. Gopalakrishnan, AI for Robotics,

https://doi.org/10.1007/979-8-8688-0989-7_1

Chapter 1 IntroduCtIon to General purpose robotICs

for inflation), according to a recent McKinsey & Company report[5]. Costs

have fallen even further in relation to their capabilities due to Moore’s law,

the ubiquity of GPUs, and the falling cost yet rising capacity of batteries

and onboard computers. The widespread adoption of robots is motivated

by increased economic expansion, the rising cost of human labor, the

falling cost of robots, and the increase in their capabilities.

However, as robots move from research labs and constrained industrial

settings to the real world, they face new challenges. Consider, for example,

a household cleaning robot. This robot would have to engage in many

tasks, including cleaning the floors, dusting counters, and washing dishes.

To accomplish this, it must know how to:

–

Traverse indoor environments while perceiving and

avoiding obstacles.

–

Handle fragile, soft, and sometimes heavy objects with

irregular shapes, including objects it may never have

encountered before.

–

Manipulate scenes it may have never experienced

before, since each home looks different, has different

lighting, layouts, and so on.

–

Reason about interactions with household objects,

humans, and pets and past configurations of the space.

The challenge is designing an approach that can adapt to changes

in the real world and the variety of situations it will encounter. Before

the advent of deep learning, a software stack to solve any of these tasks

would be written as a state machine with “hard-wired” motion primitives

resembling traditional controls for that particular task. This approach

cannot handle unseen situations very well, doesn’t scale, and limits the

utility of hard-programmed robots. Additionally, even for simple pick-and-

place, translating the wide repository of human intuitions into transitional

controls is challenging, if not close to impossible.

2

Chapter 1 IntroduCtIon to General purpose robotICs

The breadth and universality of perception, reasoning, and controls

required for general-purpose robotics is best handled by universal

function approximators: neural networks. Instead of hand-coding a control

system, we use machine learning to allow a robot to learn the relevant

features and their relationships from training data.

This approach has yielded results in many other areas. The recent

success of ChatGPT and language models in general has minted

multibillion dollar AI companies. The research behind these products

shows that scaling data, compute, and models programmatically leads to

general capabilities in the language/vision/audio spaces. By converting

data into tokens, similarities between them can be identified, and

those similarities can be transferred to other domains. A wide array of

capabilities have been unlocked as a result:

1. Creation of custom and realistic images[37] and

videos[38] on demand, which promises to transform

the film, marketing, and advertising industries.

2. Language generation, including translations,

creative writing, copywriting, code generation[41],

and transcription[40].

3. Audio generation. Creating on-demand

podcasts[42] and music[43].

4. Multimodal reasoning. Solving mathematics[45],

graduate-level science problems, and law and

medical problems[44].

These capabilities have led to an AI spring, with generative AI

companies raising 25.9 billion dollars in funding in 2023 alone[39]. These

trends, as well as recent breakthroughs in spatial intelligence and robot

foundation models, show that robotics can also be framed and solved

as an AI problem. In an era in which we have generic intelligence, the

ingredients needed to build generally useful robots are mostly present.

3

Chapter 1 IntroduCtIon to General purpose robotICs

The success of AI and the promise of emergent capabilities has led to a

boon in machine learning powered robotics and a rising demand for talent

in the labor market. According to research from Mordor Intelligence[6], the Global Robotics Market was valued at USD 27.73 billion in 2020 and

is expected to reach USD 74.1 billion by 2026, registering a Compound

Annual Growth Rate (CAGR) of 17.45 percent. While this increase mostly

accounts for the boon in industrial robots, the AI robotics market is

expected to grow at a CAGR of 38.6 percent from 6.9 billion USD in 2021

to 35.3 billion USD in 2026 according to this[7] report. To capitalize on

this opportunity, large tech companies, startups, and research labs are

increasingly seek qualified AI and robotics engineers for their robotics

R&D, autonomous cars R&D, and manufacturing divisions. To start

contributing to these companies’ machine learning efforts, you’ll need to

understand:

–

How to formulate a robotics problem in the context of

machine learning

–

Which machine learning methods can be used to solve

different problems in robotics and the tradeoffs

between them

–

At what point in the robotics stack you should use

machine learning

Moravec’s paradox is one of the main challenges of machine learning for

robotics. As Steven Pinker described in 1994[8], “The main lesson of 35 years

of AI research is that the hard problems are easy and the easy problems are

hard.” Artificial intelligence, especially neural nets, is a fairly different form

of intelligence than the human brain and, as such, has different strengths.

Things that may seem very difficult for humans—such as generative imaging,

language compression, and sequential projection like stock analytics—are

quite easy for AI. However, tasks that even a four year old child can do easily

4

Chapter 1 IntroduCtIon to General purpose robotICs

via sensorimotor and perceptual reasoning—such as taking a walk and

lifting a pencil—are much harder. In the history of scientific innovation, all

problems seem hard before they are solved, and the authors of this book are

optimistic that mapping and fixing the real challenges in robotic learning

can put a dent in advancing physical intelligence.

This chapter starts with defining the two premises of this book: robots

and AI. We present general motivations for why one needs to use AI for

robotics and the challenges in doing so. Subsequent chapters map out

key areas in the development of AI for robotics, such as machine learning

perception, language in robotics, training robots in simulations, and

building infrastructures for scalable robot learning. Then we explain

how to practically design and implement these principles in a few select

applications—self-driving cars, industrial robots, and humanoids.

Let’s get into it!

 A Robot System

A robot is defined as an interactive machine that takes in a world model

and outputs actions. Unlike many machine learning applications, a

robot is characterized by agency and a closed loop feedback in a real or

simulated world.

A robot typically senses the world through its suite of sensors,

including cameras, LiDAR, inertial measurement units (IMU), voice

detectors, and/or radars, as a few examples. A robot brain, typically

executing on an onboard microcontroller, processes the inputs from

sensors and calculates actions, which are sent as signals to the robot’s

actuators. These actuators can be direct current motors that cause its joints

to move or compliant materials in the case of soft robotics.

The action space of a robot is determined by its application. For

example, the action space for self-driving cars and navigating robots is

the acceleration and steering angle. A robot arm could be designed as

5

[image: Image 5]

Chapter 1 IntroduCtIon to General purpose robotICs

positions or velocities of the joints on the arm. Additional action spaces for

robots that interact with humans could include natural language via a chat

interface, gestures, and facial expressions.

Figure 1-1 shows a high-level diagram of a robot system.

 Figure 1-1. The main components of a robot: sensors (microphones,

 vision systems like cameras and LiDAR, touch/force sensors, and

 proprioception), which are used to perceive the environment; the

 robot brain where perception data is processed in a continuous

 perception-action loop; and actuators (speakers and rotary/linear

 actuators), which carry out the robot’s actions. This perception-action

 loop is critical for robotic learning

 Common Types of Robots

Robots come in many sizes and shapes. We can segregate them by vertical

(or the sector in which they’re deployed), as shown in Table 1-1 (curated

with assistance from AI).

6

Chapter 1 IntroduCtIon to General purpose robotICs

 Table 1-1. Types of Robots by Vertical

Type

Definition

Examples Industrial

robots

1. Industrial robots robots used in manufacturing

robotic arms, gantry

processes such as assembly,

robots service robots

painting, welding, and packaging

2. service robots

robots that perform tasks

delivery robots, cleaning

to assist humans in various

robots, telepresence

environments such as hospitals, robots

hotels, and restaurants

3. Medical robots robots used in healthcare

da Vinci surgical system,

settings to assist with surgeries, rehabilitation robots,

diagnostics, and patient care

pharmacy automation

systems

4. Military and

robots designed for use in

unmanned aerial vehicles

defense robots military applications, such as

(uaVs), unmanned ground

reconnaissance, surveillance, and vehicles (uGVs), bomb

combat support

disposal robots

5. agricultural

robots used in farming to

autonomous tractors,

robots

automate tasks like planting,

drones for crop

harvesting, and monitoring crop

monitoring, fruit-picking

health

robots

6. domestic

robots designed for use in homes roomba vacuuming

robots

to help with chores and other

robots, lawn-mowing

tasks

robots, personal assistant

robots like Jibo

(continued)

7

Chapter 1 IntroduCtIon to General purpose robotICs

 Table 1-1. (continued)

Type

Definition

Examples Industrial

robots

7. educational

robots used in educational

leGo Mindstorms, social

robots

settings to help teach various

robots like pepper, sphero

subjects or skills

8. research

robots used in scientific

underwater robots, Mars

robots

research, including exploring

rovers, humanoid robots

remote or hazardous

like asIMo

environments and developing

new robotic technologies

9. entertainment robots designed for amusement robotic pets like aibo,

robots

or companionship

interactive toys like Furby,

robots used in theme

parks or movies

10. swarm robots

robots that work together in large swarm robots used in

groups, coordinating their actions research, agriculture,

to complete tasks more efficiently search and rescue, and

environmental monitoring

A second way to split robots is by the nature of their embodiment, as

shown in Table 1-2 (curated with assistance from AI).

8

Chapter 1 IntroduCtIon to General purpose robotICs

 Table 1-2. Types of Robots by Embodiment

Serial Embodiment Explanation

Examples

Num

1

Wheeled

robots using wheels for locomotion,

roomba,

robots

often used on flat surfaces

turtlebot, self-

driving cars like

Waymo and

Cruise

2

tracked

robots utilizing tracks for movement,

Mars rovers,

robots

providing greater traction and stability

bomb disposal

on rough or uneven terrain

robots

3

legged

robots using legs for locomotion,

boston dynamics’

robots

navigating complex environments like

spot, asIMo

stairs and uneven terrain

4

Flying robots robots capable of flight, typically using Quadcopter

rotors or wings, for aerial surveillance,

drones, fixed-

inspection, and photography.

wing uaVs

5

underwater

robots designed for underwater

bluefin robotics

robots

operation, used for exploration,

auV, seabed

inspection, and monitoring tasks

6

snake robots robots with long, flexible bodies, for

CMu’s biorobotics

moving through tight spaces and

lab’s snake

navigating around obstacles

robots, oC

robotics’ snake-

arm robots

(continued)

9

Chapter 1 IntroduCtIon to General purpose robotICs

 Table 1-2. (continued)

Serial Embodiment Explanation

Examples

Num

7

robotic arms robots consisting of a series of joints

KuKa, Fanuc, and

and links, resembling a human arm,

abb robotic arms

used in industrial settings

8

humanoid

robots with human-like forms, used in softbank

robots

research, entertainment, and service

robotics’ pepper,

applications

hanson robotics’

sophia

9

soft robots

robots that mimic locomotion

harvard’s Wyss

mechanisms of deformable matter

Institute’s soft

such as fluids, gels, and elastomers

robots, octobot

for greater flexibility. Commonly used

in biomedical applications such as soft

tools for surgery, rehabilitation devices,

and drug delivery

Despite the variety in robots, they share many similarities that can

be used to build a common framework and science for robotics, which is

extensible with modifications to fit the deployment conditions of a robot.

 Common Concepts in Robot Design

This section explains a few ubiquitous concepts that are used in

robot design.

10

[image: Image 6]

Chapter 1 IntroduCtIon to General purpose robotICs

 Robotic Manipulators

A common form of robots are robotic arms/manipulators. These robots

can be found in the form of industrial robotics arms, assistive robots,

and medical robots, which are used to complete various tasks in their

environment. A robotic arm is a series of joints and links, such as the one

depicted in Figure 1-2. Here, a link connects the joints and is a rigid body.

A joint connects two or more links and allows for relative motion between

the links.

 Figure 1-2. Links and joints in a robot arm/manipulator. (a) A

 seven-link robot arm labeled with its joints. (b) Representation

 of the parent-child relationship between links through a joint. (c)

 Visualization of links connected through joints with rotational

 axes. Used with permission, source: https://robocademy.

 com/2020/04/21/robot-kinematics-in-a-nutshell/ [49]

11

[image: Image 7]

Chapter 1 IntroduCtIon to General purpose robotICs

 Degrees of Freedom

Degrees of freedom (DoF) is a measure of the different components of

motion a robot can undertake. For example, a rigid body in space has

six DoF: translatory motion along the X, Y, and Z axes and rotary motion

about X, Y, and Z axes, as shown in Figure 1-3. Every additional link adds

to the degrees of freedom of a robot and every joint takes away from it by

constraining motion in one or more directions. Each degree of freedom

can be modeled as an independent, bounded variable that a robot brain

needs to predict as an action target to control the robot.

 Figure 1-3. Any rigid body has six degrees of freedom (DoF): three

 translational (surge, sway, heave) and three rotational (roll, pitch,

 yaw). Used with permission, source: https://www.researchgate.

 net/publication/340403456_Efficiency_and_Survivability_

 of_a_Floating_Oscillating_Water_Column_Wave_Energy_

 Converter_Moored_to_the_Seabed_An_Overview_of_the_EsflOWC_

 MaRINET2_Database [50]

12

Chapter 1 IntroduCtIon to General purpose robotICs

 End Effectors and Workspaces

An end effector is a device attached to the end of the arm. A gripper, or

dexterous hand, is the most common type of end effector and is a form

factor that generalizes to a wide variety of tasks. Sometimes robots also

have task specific end effectors like wipers, squeezers, and so on.

The union of the three-dimensional space occupied by a robot is

defined as its workspace. A subset of this space, that which can be reached

by the end effector, is defined as the reachable space of a robot. Reachable

space and workspace bounds drive robot design considerations given that

they drive the utility of a robot and its ability to manipulate objects within

their placement in space.

 Kinematics

A key concept in robot control is robot kinematics. Etymologically, the

term refers to the study of the motion of a body or a system of bodies. In

this case, it is the joint motion of a robot’s joints and links. With respect to

robot control, two types of kinematics are relevant:

1. Forward kinematics: Here, given input joint angles,

we determine the position and orientation of the

end effector when all other joint parameters are

known in a constellation of links and joints.

2. Inverse kinematics: Here, given a specific position

or velocity that an end effector intends to achieve,

we calculate the required motions/orientations of

the previous joints to achieve that motion.

The sequence of links in the robot’s physical body, their properties

(e.g., mass, moment of inertia, length), and the properties of joints

(e.g., constraints imposed, torque of the joint) determine the kinematic

13

[image: Image 8]

[image: Image 9]

Chapter 1 IntroduCtIon to General purpose robotICs

system/chain representing the robot. Figure 1-4 shows a depiction of

the kinematics chain of a typical robot arm. Figure 1-5 represents the

transformation between link i and link i+1.

 Figure 1-4. Kinematic chain of a robot arm showing multiple links

 connected by joints, with joint axes and coordinate frames

 Figure 1-5. The transformation matrix between link 𝑖 and link 𝑖+1

 using yaw, pitch, and roll angles 𝛼, 𝛽, and 𝛾, respectively

14

[image: Image 10]

Chapter 1 IntroduCtIon to General purpose robotICs

 Deep Learning for Robotics

In the last decade, several robotics companies have bloomed and perished

in the market for a variety of reasons[9]. These reasons range from product

market fit to revenue/financing and technological issues.

Despite these failures, the robotics outlook for 2030 remains positive,

partly due to the fact that most breakthroughs in deep learning research

are happening in the current decade and are yet to be productized/

deployed on robots. Improving upon the failures of the last-gen classical

robots and a fundamental rethinking of robot learning paradigms are

both key to bringing to market more powerful and generalizable robots.

Deep learning is a promising prospect[10] toward that goal, as shown in

Figure 1-6.

 Figure 1-6. Robotics market outlook for 2030, projecting a total

 market volume of $160 billion to $260 billion, from BCG. Used with

 permission, source: https://www.bcg.com/publications/2021/

 how-intelligence-and-mobility-will-shape-the-future-of-

 the-robotics-industry [51]

15

Chapter 1 IntroduCtIon to General purpose robotICs

Some of the benefits that deep learning provides include:

• Generalization: Deep networks can learn nonlinear

functions with enough parameters in the model and

robust training methods to avoid overfitting. These

functions are otherwise impossible to model with hand

engineering. This is useful for dealing with diversity in

the real world, such as handling various objects and

scenes, learning inverse dynamics, and planning in

diverse situations.

• Feature learning: Back propagation and carefully

constructed loss functions allow deep neural networks

to learn from data what is important, without the need

for explicitly modeling representations or engineering

features. It also allows networks to learn multiple

representations of similar input data based on the

application requirements. This translates into learning

the correct distributions to generate actions for a

variety of tasks with a single network.

• Parallelism: Real-world robotics requires responding

at very fast inference speeds on the order of 10Hz or

greater. While simpler classical methods are faster

than neural nets, when the decision space becomes

more complex, search/graph based methods become

inefficient from a speed perspective and are not as

friendly toward parallelization. Deep learning allows

for massive parallelization on hardware accelerators

like Tensor Processing Units (TPUs)[46] and Graphics

Processing Units (GPUs)[47], which permit millions

of matrix multiplications per second in an optimized

16

Chapter 1 IntroduCtIon to General purpose robotICs

manner. Network architecture optimizations such as

YOLO[11] and EfficientNet[12], discussed in Chapter 2, provide a tradeoff between accuracy and speed based

on the application.

To deploy deep learning for robotics, a whole host of infrastructure

paradigms are important:

• Compute: The improvements in performance from

deploying larger and larger AI models is powered by

innovations in compute architecture through massive

parallelization on TPUs and GPUs. While the theory of

deep learning has existed since the 1950s, the current

spurt in research and applications was catalyzed

by the availability and lowering cost of GPUs in the

last decade. Additionally, robot onboard compute

capabilities have improved due to platforms like

NVIDIA Jetson[13], which allows for fast real-time

inference on mobile robots. Over-the-air updating

permits the deployment of newer software versions for

on-the-field robots, enabling robot software iterations

to happen at a rapid pace that pure software companies

iterate on.

• Data: Deep learning is famously data hungry and

its use in robotics requires data harvesting. A good

example of this is Tesla’s large array of sensor-mounted

vehicles on the road that gather data on a wide variety

of highly improbable driving scenarios[14]. Scaling also

poses questions with respect to the best architecture

and training methods. A second example of disruption

from large datasets is in visual-language research

where large datasets like ImageNet[15], LAION[16],

17

Chapter 1 IntroduCtIon to General purpose robotICs

and the Internet have enabled the development of

extremely capable neural networks like ChatGPT[17],

ResNets[18], and Stable Diffusion[19]. This is covered

in greater detail in Chapter 2.

• Labeling: Supervised and weakly supervised learning

are among the most performant types of deep learning

out there. Supervised learning, especially for image

data, is made possible by highly streamlined labeling

pipelines that generate human feedback and the

emergence of labeling companies like Scale AI[20].

Weak supervision from text such as language-image

pairs extracted from the Internet also collect very large

scale datasets that train neural networks.

• Simulation: The widespread availability of simulation

engines, such as Gazebo[21], PyBullet[22], and

MuJoCo[48], emulate physics in the real world.

They unlock new functionalities for robots. For

one, simulation allows modeling of and handling

emergency/safety critical scenes that are very unlikely

in the real world. Learning from simulated data also

removes constraints imposed by robot capacity.

Doubling your data, if you only rely on real robots,

means doubling robot hours and robot capacity, which

is costly from a hardware and time perspective, but

creating copies of simulated robots to do the same

is quite cheap. Additionally, R&D requires iterative

development and evaluations and stands to benefit

from faster feedback loops that simulation can provide.

18

Chapter 1 IntroduCtIon to General purpose robotICs

 Deep Learning Frameworks

In the context of this book, we tend to use artificial intelligence, machine

learning, and deep learning interchangeably to refer to data-driven

methods. However, strictly speaking, the terms have some distinctions[36],

addressed in this section.

Artificial Intelligence (AI) is an overarching term to describe

computational techniques capable of performing tasks with human-level

intelligence. These tasks include problem-solving, understanding natural

language, recognizing patterns, and making decisions based on learnings

from model training. AI is the overarching field that consists of ML and DL,

as shown in Figure 1-7. Artificial intelligence today is further differentiated into Artificial General Intelligence (AGI), which describes a system that

has a wide range of intelligence capabilities useful in everyday life, and

Artificial Super Intelligence (ASI), which describes intelligence that far

exceeds human level capabilities.

Machine Learning (ML) is a subfield of AI focused on learning from

 data. Instead of being explicitly programmed to perform a task, ML models

improve their performance through the data that they are trained on. ML

comprises supervised learning (labeled data), unsupervised learning

(unlabeled data), and reinforcement learning.

Deep learning (DL) is a subset of ML that uses neural networks that

often have many layers (hence deep) and uses large scale data to perform

complex tasks. These networks help understand images and language and

can include more state-of-the-art methods like transformers, GPT, and so

on. DL methods often have more layers and parameters and require more

data and computational resources than “shallow” ML methods.

19

[image: Image 11]

Chapter 1 IntroduCtIon to General purpose robotICs

 Figure 1-7. Artificial intelligence (AI) is the overarching concept that

 includes machine learning (ML) and its subset, deep learning (DL).

 Inspired by [36].

Within deep learning there are four main types of learning systems:

supervised learning[23], unsupervised learning[24], weakly supervised learning[25], and reinforcement learning[26]. In recent years, the lines between these three learning methods have blurred, as combinations or

ideas from them can be utilized in a singular system.

1. Supervised learning uses datasets with labels of the

ground truth that the system should use to predict

labels of previously unseen data. This is used for

classification, where the output typically consists of

discrete classes, or for regression, where predicted

outputs are real numbers.

20

Chapter 1 IntroduCtIon to General purpose robotICs

2. Unsupervised learning methods attempt to learn

useful representations of data without labels.

Examples of unsupervised learning methods

include clustering, principal component analysis,

Gaussian mixture models, auto-encoders, and so

on. Unsupervised learning models are typically

used for clustering, association, and dimensionality

reduction.

3. Weakly supervised learning methods use noisy

labels in a supervised learning setting. They are

used in cases where datasets are expensive to label

and aggregating large datasets with weak labels is

feasible over a smaller dataset with clean labels.

Weakly supervised learning is used to train very

powerful models, including CLIP, DALL-E, and so

on, using Internet-scale data.

4. Reinforcement learning motivates an agent to

learn a policy that maximizes a reward function

through processing sequences of state-action pairs,

observing the achieved rewards, and adapting

predictions until it accurately predicts an optimal

path, or policy, for the agent. Reinforcement

learning provides a framework for robots to

autonomously learn through trial-and-error

interactions and continuously self-improve with

feedback.

These terms are overarching and represent the entire field of AI. The

next section looks at frameworks specifically used in robot learning.

21

Chapter 1 IntroduCtIon to General purpose robotICs

 Robot Learning Frameworks and Objectives

Learning a task from a robotics perspective may be described as

generating the distribution of actions given a specific input world model.

As mentioned, a key manner in which robotics of the present differs from

the past is that we can now design multi-purpose, generalist robots that

can do a variety of tasks. Generality, from a deep learning perspective, can

be framed in three settings:

1. Transfer learning: Given a network trained on task

Ti, can we adapt it to learn task Ti+1?

2. Meta-learning: Given a network that can do task T1,

T2, and Tn-1, can we quickly adapt it to learn task Tn?

3. Multi-task learning: Can we train a network on all

tasks—T1, T2, to Tn—at the same time?

Subsequent chapters address algorithms that explain these learning

paradigms in detail.

For a multitask robot, specifying the objective assume various forms. A

robot brain can be configured to achieve an objective. But the question of

how to convey an objective to a robot remains. This is especially important

for deep learning, which is an objective optimization framework. Ideas

explained in the book to address this question include the following:

• Language conditioning: The practice of specifying

targets for robotics using language as an interface.

Language has been the natural interface for interaction

between humans. The expansion in deep learning

for natural language processing has made language

interfaces to robots and generative a standard.

22

Chapter 1 IntroduCtIon to General purpose robotICs

• Goal conditioning: Goal conditioning often happens

on policies where you can train policies to reach a goal

state, which is provided as input. For example, goal-

conditioned reinforcement learning (GCRL)[27] trains

an agent to achieve different goals under particular

scenarios.

• Self-collision: If the robot is not programmed properly,

the robot can collide with itself. The goal of self-

collision is to make the robot aware of its body to avoid

collision during motion. Another type of collision is

avoiding collisions with the environment. For example,

suppose a robot experiences an unexpected obstacle

while navigating its environment. In that case, it can

use collision avoidance to determine the best action

and path around the object and continue its task.

• Hierarchical robot learning: The goal of hierarchical

learning is to break down larger problems into a

hierarchy of subproblems. This allows higher-level

parent tasks to invoke lower-level child tasks to

complete a task.

 Toward Embodied General Intelligence

Solving artificial general intelligence (AGI) is one of the most heated and

important problems of our generation. Nick Bostrom defines AGI as “an

intellect that is much smarter than the best human brains in practically

every field”[28]. Wikipedia defines it as “the ability of an intelligent agent

to understand or learn any intellectual task that a human being can”[29].

Open Philanthropy describes “transformative AI” with an economic

definition, as something that could increase the Gross World Product ten

times over[30].

23

Chapter 1 IntroduCtIon to General purpose robotICs

But all these specifications mainly focus on digital AI, whose imagined

interfaces to the real world are still human. Transforming any industry

that predates the Internet—such as manufacturing, construction,

driving, logistics, energy, mining, and agriculture—and that encompass

large portions of global GDP would require solving embodied AI, that is

intelligence within an embodiment that has physical reasoning and can

manipulate the physical world. Advancements in compute and data have

made it much easier for anyone to build and test deep learning models

for robotics. But how does one know if an AI is embodied and general?

Steve Wozniak has proposed a coffee test for embodied AGI: a machine

can learn how to make coffee in an unseen human kitchen[31]. This flies

in the face of Moravec’s paradox, because AI today can create high-quality

graphic images and movies, but making a simple cup of coffee in a generic

setting is still impossible. Robotics is hard AI, because it needs to solve

computer vision (for understanding the world), language (for interacting

with humans and communicating), manipulation and navigation (for

acting in the real world), and tool use (for search, embodied reasoning,

etc.). Robotics is the hard and over-encompassing version of AI, one that is

truly packaged to change the world, and one that inhabits and lives among

us, not just behind screens and in data centers. Specific benchmarks for

embodied intelligence to measure and track progress toward solving

robotics is still ongoing.

 Environment Is Deeply Tied to the Definition

of Intelligence

What is the north star for embodied intelligence? There is some

evolutionary evidence that points to how the solution may look.

Lifetime learning over several episodes has encoded data in our

genes, so much that babies understand structured motion and the physics

of the world before they understand and comprehend language. What

24

Chapter 1 IntroduCtIon to General purpose robotICs

is intelligent is deeply tied to what provides a survival advantage in an

environment. For example, aquatic animals have visual systems that

are much better[32] at seeing underwater because they’ve evolved to

accommodate for the refraction by water in a way that humans have not.

Our sensors that attempt to emulate our visual range, and the data we’ve

collected on that basis, including YouTube videos, suffers from being

overfit to our domain of visual capability. In patients who have had their

cataracts removed, allowing them to see for the first time, it was seen that

despite spending an entire life in a 3D world, they lacked understanding

of spatial imagery because their sensors didn’t have that input[33]. In

essence, environment and agent cannot be removed from the definition of

intelligence.

The last decade of AI research has led to the rise of large transformers

that are very good at multi-task speech and vision. A language-first AI

would be susceptible to the failure modes[34] of a blind agent, beyond the

visual context it receives from a training corpus gathered from humans

who can see. It logically extends that a visual language model would

suffer from an inability to approximate actuator parameters inherent to

performing precise control of an embodied agent. Reasoning about the

real world requires not just thinking about methodological spaces and

language, but also being grounded in a real-world context[35].

In a world built by and designed for humans, an intelligence that

is agnostic to sensory-motor dynamics is going to be suboptimal, and

superhuman skills beckon physical agency and universal control. Having

physical embodiment is absolutely indispensable to AGI.

This book explores how to practically reach that goal and build a future

with generally intelligent robots.

25

Chapter 1 IntroduCtIon to General purpose robotICs

 Summary

This chapter covered the following points:

• Recent advancements in AI are moving robots from

controlled research labs into real-world applications,

thus allowing them to adapt and generalize to dynamic,

unpredictable environments. AI allows robots to learn

from data, rather than relying on preprogrammed

rules, making them versatile across various tasks and

industries.

• A robot operates by processing sensor inputs (such as

cameras, LiDAR, and IMUs) into actionable outputs

via a microprocessor or microcontroller, which then

signals actuators (like motors or soft materials) to

execute physical movements. This perception-action

loop is central to a robot’s ability to interact with and

manipulate its environment.

• Robots can be classified based on their applications,

including industrial robots (for assembly, welding,

etc.), service robots (for tasks like cleaning or

telepresence), medical robots (for surgeries and

diagnostics), military and defense robots (for

reconnaissance or bomb disposal), among others. They

can also be categorized by their physical structure,

such as wheeled, legged, flying, or humanoid forms,

depending on their function and environment.

26

Chapter 1 IntroduCtIon to General purpose robotICs

• Key design principles include the use of robotic

manipulators (arms with joints and links), degrees of

freedom (the range of independent movements a robot

can perform), the end effector (the tool at the end of

a robotic arm used for tasks like gripping), workspace

(the area a robot can physically reach), and kinematics

(the study of the motion of joints and links, including

forward and inverse kinematics for planning).

• The demand for robots is rapidly growing due to their

increasing ability to generalize and perform a wide

range of tasks in various industries. The development

of infrastructure, software frameworks, and systems

learning from AI has fueled advancements in the

capabilities and adoption of robots.

• Robots learn to perform tasks through four main types

of machine learning: supervised learning (training

on labeled data), unsupervised learning (discovering

patterns in data without labels), weakly supervised

learning, and reinforcement learning.

• Various frameworks guide robot learning, including

transfer learning, meta-learning, and multi-task

learning.

• The ultimate goal of AI in robotics is to build a generally

intelligent agent in the physical world.

The next chapter discusses sensors, robot perception, and common

neural network and transformer methods that robots use to sense and

understand their environment.

27

Chapter 1 IntroduCtIon to General purpose robotICs

References

[1] Law, Marcus. “Robotics Reshaping Manufacturing and

the Future of Work.” Technology Magazine, 31 May

2024, technologymagazine.com/articles/robotics-

reshaping-manufacturing-and-the-future-of-work.

[2] Ryan, Melissa, and Karl McLetchie. “How Robots Are

Uncovering the Mysteries of the Deep.” Oyla Articles:

 Ocean Exploration Technology, Aug. 2022, oceanexplorer.

noaa.gov/explainers/technology.html.

[3] https://www.agritecture.com/blog/exploring-the-

future-of-agriculture-a-deep-dive-into-robots

[4] https://online-engineering.case.edu/blog/

medical-robots-making-a-difference

[5] Tilley, Jonathan. “Automation, Robotics, and the Factory

of the Future | McKinsey.” McKinsey & Company, 7 Sept.

2017, www.mckinsey.com/capabilities/operations/

our-insights/automation-robotics-and-the-

factory-of-the-future.

[6] www.mordorintelligence.com/industry-reports/

robotics-market.

[7] “Artificial Intelligence (AI) Robots Market Size, Growth,

Trend and Forecast to 2023 | MarketsandMarkets.”

 Markets and Markets, www.marketsandmarkets.com/

Market-Reports/artificial-intelligence-robots-

market-120550497.html.

[8] Pinker, Steven. The Language Instinct: The New Science of

 Language and Mind. London, Penguin Books, 1994.

28

Chapter 1 IntroduCtIon to General purpose robotICs

[9] Casse, Bernard. “Council Post: The Demise of Robotics

Companies: Learning from Past Mistakes.” Forbes, 9 July

2021, www.forbes.com/sites/forbesbusinesscouncil/

2021/07/09/the-demise-of-robotics-companies-

learning-from-past-mistakes/?sh=5b9a1bac2b1d.

[10] Lenz, Ian, et al. “Deep Learning for Detecting Robotic

Grasps.” The International Journal of Robotics Research,

vol. 34, no. 4-5, 16 Mar. 2015, pp. 705–724, https://doi.

org/10.1177/0278364914549607.

[11] Redmon, Joseph, et al. “You only look once: Unified,

real-time object detection.” Proceedings of the

IEEE Conference on Computer Vision and Pattern

Recognition. 2016.

[12] Tan, Mingxing, and Quoc Le. “Efficientnet: Rethinking

model scaling for convolutional neural networks.”

International Conference on Machine Learning.

PMLR, 2019.

[13] https://www.nvidia.com/en-us/autonomous-

machines/embedded-systems/

[14] https://www.tesla.com/en_ca/support/

transitioning-tesla-vision

[15] https://www.image-net.org/

[16] https://laion.ai/

[17] https://openai.com/chatgpt/

[18] He, Kaiming, et al. “Deep residual learning for image

recognition.” Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 2016.

29

Chapter 1 IntroduCtIon to General purpose robotICs

[19] Rombach, Robin, et al. “High-resolution image synthesis

with latent diffusion models.” Proceedings of the IEEE/

CVF Conference on Computer Vision and Pattern

Recognition. 2022.

[20] https://scale.com/data-engine

[21] https://gazebosim.org/home

[22] https://pybullet.org/wordpress/

[23] Ali, Moez. “Supervised Machine Learning.” DataCamp,

Aug. 2022, www.datacamp.com/blog/supervised-

machine-learning.

[24] Pykes, Kurtis. “Introduction to Unsupervised Learning:

Types, Applications and Differences from Supervised

Learning.” DataCamp, Jan. 2024, www.datacamp.com/

blog/introduction-to-unsupervised-learning.

[25] Kanjilal, Joydip. “An Introduction to Weakly Supervised

Learning.” Paperspace Blog, blog.paperspace.com/an-

introduction-to-weakly-supervised-learning/.

[26] https://spinningup.openai.com/en/latest/

[27] Qian, Zhifeng, et al. “Goal-conditioned reinforcement

learning with disentanglement-based reachability

planning.” IEEE Robotics and Automation Letters 8.8

(2023): 4721-4728.

[28] Bostrom, Nick. “How long before superintelligence.”

 International Journal of Futures Studies 2.1 (1998): 1-9.

[29] https://www.scientificamerican.com/article/

what-does-artificial-general-intelligence-

actually-mean/

30

Chapter 1 IntroduCtIon to General purpose robotICs

[30] https://docs.google.com/document/d/1IJ6Sr-gPeX

dSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit?fbclid=

IwAR3W3XVgKok3caD2TY6zSxqFr2CFSmqpOKX-gObOjup-

o5nSJEdWEx2fy3o

[31] https://koopingshung.com/blog/turing-test-is-

obsolete-bring-in-coffee-test/

[32] www.wildlifeonline.me.uk/questions/answer/

how-can-marine-mammals-see-underwater-but-we-

cant#:~:text=Human%20eyes%20have%20evolved%20to

[33] Chatterjee, Rhitu. “Feature: Giving blind people sight

illuminates the brain’s secrets.” Science Magazine (2015).

[34] Yang, Zhengyuan, et al. “An empirical study of gpt-3 for

few-shot knowledge-based vqa.” Proceedings of the AAAI

conference on artificial intelligence. Vol. 36. No. 3. 2022.

[35] Ahn, Michael, et al. “Do As I Can, Not As I Say:

Grounding language in robotic affordances.” arXiv

 preprint arXiv: 2204.01691 (2022).

[36] https://www.intel.com/content/www/us/en/

robotics/artificial-intelligence-robotics.html

[37] Ramesh, Aditya, Mikhail Pavlov, Gabriel Goh, Scott

Gray, Chelsea Voss, Alec Radford, Mark Chen, and

Ilya Sutskever. “Zero-shot text-to-image generation.”

In International conference on machine learning,

pp. 8821-8831. Pmlr, 2021.

[38] Brooks, Peebles, et al., https://openai.com/index/

video-generation-models-as-world-simulators/

31

Chapter 1 IntroduCtIon to General purpose robotICs

[39] https://www.cnbc.com/2024/09/06/ai-craze-

getting-funded-by-tech-giants-distorting-

traditional-vcs.html#:~:text=That%20continues%20

a%20trend%20from,27%25%20so%20far%20this%20year

[40] Radford, A., Kim, J. W., Xu, T., Brockman, G.,

McLeavey, C., & Sutskever, I. (2023, July). “Robust

speech recognition via large-scale weak supervision.”

In International Conference on Machine Learning

(pp. 28492-28518). PMLR.

[41] https://github.com/features/copilot

[42] https://notebooklm.google/

[43] https://google-research.github.io/seanet/

musiclm/examples/

[44] Achiam, Josh, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo

Almeida et al. “Gpt-4 technical report.” arXiv preprint

 arXiv:2303.08774 (2023).

[45] https://www.nytimes.com/2024/07/25/science/ai-

math-alphaproof-deepmind.html

[46] https://cloud.google.com/tpu

[47] https://www.intel.com/content/www/us/en/

products/docs/processors/what-is-a-gpu.html

[48] https://mujoco.org/

[49] Joseph, Lentin. “Robot Kinematics in a Nutshell.”

 ROBOCADEMY, 21 Apr. 2020, robocademy.

com/2020/04/21/robot-kinematics-in-a-nutshell/.

32

Chapter 1 IntroduCtIon to General purpose robotICs

[50] Kisacik, Dogan, et al. “Efficiency and survivability of a

floating oscillating water column wave energy converter

moored to the seabed: an overview of the EsflOWC

MaRINET2 database.” Water 12.4 (2020): 992.

[51] Lässig, Ralph, et al. “Robotics Outlook 2030: How

Intelligence and Mobility Will Shape the Future.” BCG

 Global, 28 June 2021, www.bcg.com/publications/2021/

how-intelligence-and-mobility-will-shape-the-

future-of-the-robotics-industry.

33

CHAPTER 2

Robot Perception:

Sensors and Image

Processing

Humans use five senses to perceive the environment and various cognitive

pathways to process this input. This conglomeration of senses, pathways,

and the brain forms our perception system, which allows us to detect

movement around us, recognize a friend’s face, and detect a familiar scent.

Similarly, robots need to be aware of and understand what is around

them to function in the real world. Perception systems enable robots to

accomplish two objectives: to sense their surrounding environment and to

comprehend and reason about it.

The first objective of the perception system is achieved by the sensing

suite. Sensors act as the eyes and ears of the robot, enabling it to observe

and record the physical world around it. Additionally, they allow robots

to collect useful data that in turn allows them to evolve and adapt in an

environment.

The second objective involves interpreting data from the sensors

and extracting relevant information that can aid in completing a robot’s

objective. Traditionally, this part was done by classical methods that were

narrow and specific to a robot and task, making them difficult to generalize

to changing environments. Machine learning perception systems, on the

© Alishba Imran, Keerthana Gopalakrishnan 2025

35

A. Imran and K. Gopalakrishnan, AI for Robotics,

https://doi.org/10.1007/979-8-8688-0989-7_2

[image: Image 12]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

other hand, are a lot more robust. They improve with data, and they can be

used to map the robot’s surroundings, so it can navigate, detect, and track

objects.

An overview of this general pipeline is shown in Figure 2-1.

 Figure 2-1. A typical robot perception system will include sensors

 that collect data and ML/AI algorithms for interpretation, planning,

 and execution of actions. Used with permission, source: https://www.

 intechopen.com/chapters/62978 [39]

This chapter discusses sensing, explains the types of sensors, and

highlights various ML algorithms commonly used for robotic perception.

 Sensors

Robots use sensors to receive information about their surroundings and

decide how to interact with the world and maneuver around it safely.

Cameras take pictures, LiDARs provide point clouds and accurate depth,

ultrasonic sensors measure proximity (especially of moving objects),

and Inertial Measurement Units (IMUs) give information on orientation

and motion. Robots may use singular sensors for object recognition,

localization and mapping, collision avoidance, and feedback control.

Robots may also use sensor fusion techniques to blend data from various

sensors and get more comprehensive information.

36

Chapter 2 robot perCeption: SenSorS and image proCeSSing

While robotics applications use a variety of sensors, this book only

covers the more popular ones. They fall into four main categories: (1)

monocular vision, mainly cameras, (2) depth sensors, (3) range sensors,

such as LiDARs and ultrasonic sensors, and (4) inertial measurement

units (IMUs).

 Vision Sensors (Cameras)

One of a robot system’s most important sensors is its camera. Light is

captured by the camera sensor, which transforms the light into electrical

signals to produce images. They are made up of a variety of pixels or

photosensitive components. Every pixel records the amount of light that

strikes it.

The two most popular types of image sensors used in robotics are

CMOS (Complementary Metal-Oxide Semiconductor) and CCD (Charge-

Coupled Device). CCD and CMOS image sensors both convert light into

electrons by capturing photons (light particles) with numerous photosites,

which are tiny, light-sensitive regions on the sensor that correspond to

pixels in the final image. When taking a picture, these photosites collect

and store photons as electrical signals. A key aspect that differentiates each

sensor is the way accumulated charge (the electrical charge generated

by the photosites when they capture photons) of each photosite is

transported. CCD sensors transport charges with minimal distortion,

resulting in high-quality, sensitive images but consuming significantly

more power. CMOS sensors are more flexible and less expensive but

tend to be more susceptible to noise and have lower light sensitivity.

The exposure time, ISO sensitivity, and aperture size of camera sensors

are all tunable parameters, allowing them to adapt to different lighting

conditions.

37

Chapter 2 robot perCeption: SenSorS and image proCeSSing

Let’s outline a few key camera concepts:

1. Pixel resolution of camera sensors determines

the degree of detail in the captured images. High-

resolution sensors include more pixels, making

images clearer and with more detail, but they use

more memory and processing power.

2. Channels refer to color channels used in a camera.

A common framework is RGB, where each image

has red, green, and blue channels. Most cameras

use a variety of color filters—typically the Bayer

pattern—on top of the pixels to capture color

information. Due to these filters, each pixel may

capture red, green, or blue light. The camera sensor

generates a full-color image by interpolating the

color values from nearby pixels. So, a camera of

resolution 480,640 with three channels (red, green,

blue) generates an image that can be interpreted as

a matrix of size[480,640, 3].

3. Frame rate refers to the number of images a camera

sensor takes each second. Robotics applications in

high speed or dynamic environments can benefit

from higher frame rates because they provide

real-time perception, thus enabling quicker

reaction times.

4. Post processing. Raw picture data from cameras

may be further processed for noise reduction, white

balance correction, color correction, and feature

extraction. Image processing algorithms may be

then used to improve image quality, find objects,

38

[image: Image 13]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

recognize patterns, and extract depth data. Camera

sensors are frequently fused with other sensors,

such as LiDAR, radar, or IMUs, in a sensor-fusion

strategy to maximize their utility.

Cameras as sensors also have certain limitations:

a. They may struggle in low-light or high-contrast

scenes and need a lot of lighting for the best

outcome.

b. Cameras may struggle to effectively perceive depth

and 3D information without additional sensors.

c. Cameras are also prone to occlusions.

d. Large-scale picture processing can also be

computationally demanding.

 Key Considerations for Cameras

This section discusses tradeoffs for selecting cameras for your robotic

application. As shown in Figure 2-2, three factors mainly determine

camera selection.

 Figure 2-2. The three main components of a camera you need to

 consider when selecting it for a robot application are frames per

 second, resolution, and cost

Autonomous cars, for instance, require cameras that can capture

images at a high frequency due to the speed of the moving car. If a car

is moving at 60 miles per hour and passing another car in the opposite

direction at the same speed, each frame captured represents a significant

range between the two cars. In this scenario, we ideally want to capture

39

Chapter 2 robot perCeption: SenSorS and image proCeSSing

and process as many frames per second (fps) as possible. Typically,

automotive cameras operate at 30 fps, but this can introduce processing

delays for each frame[1]. Therefore, to accurately detect dynamic objects

such as pedestrians and predict their path, multiple passes per frame are

necessary[1]. If we miss one or a few frames because the camera is not fast

enough, the result could be collisions. For instance, an advanced driver-

assistance system (ADAS) today might use a camera with an 8-megapixel

resolution and a frame rate of 60 fps to ensure reliable detection and

understanding of its environment[2].

Cameras used for industrial applications have different specifications.

Picking, packing, and grasping objects do not involve high-speed

movements and don’t necessarily require the high frame rate capture.

Usually, a regular 30 fps camera is sufficient.

High frame rate cameras usually tend to have lower resolution, and

lower resolution can impact precision of detection, especially with far

away objects. Picking cameras both high resolution and high frequency

can increase the cost, mainly because they imply higher bandwidth and

processing power, and may be just as expensive as a 3D LiDAR. Ultimately,

however, the precision requirements and cost constraints of an application

drive camera selection.

 Event-Based Cameras

Another type of camera is an event-based or neuromorphic camera. It

outputs pixel-level changes in brightness. This is in contrast to regular

frame cameras, which transmit entire arrays of information of the single

frame captured by the shutter at a given time. The data format and

output of event-based cameras offer a significant advantage, as the only

transmitted data is the individual pixel information that has changed from

frame to frame. This allows it to capture objects in high-speed motion

with no motion blur. An event camera is shown in Figure 2-3, and the data

output of event cameras is shown in Figure 2-4.

40

[image: Image 14]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

Compared to regular frame cameras, event-based cameras have

some strengths, such as no motion blur, high temporal resolution, and

high dynamic range yet low bandwidth. Event cameras are still a novel

approach for most solutions, and prices are still not as affordable as regular

cameras. However, some applications are very suitable for event-based

cameras:

• Due to the low data rate and sparse information

provided by event-based sensors, they can effectively

track objects with low compute power.

• Frame interpolation, optical flow estimation, and high-

speed recording applications benefit from the high

temporal resolution and better temporal modeling

enabled by event cameras.

 Figure 2-3. A 680 x 480 event camera

41

[image: Image 15]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

 Figure 2-4. Data output of an event-based camera. Used with

 permission, source: https://rpg.ifi.uzh.ch/docs/PAMI17_

 Gallego.pdf [40]

Research from Davide Scaramuzza’s group[3] at The University of

Zurich shows the development of a hybrid event- and frame-based

object detector. This method combines the high temporal resolution

and efficiency of event cameras with the detailed imaging of traditional

sensors, significantly reducing perceptual and computational latency while

maintaining accuracy. Using a 20 Hz RGB camera with an event camera, the

system achieves the same latency as a 5,000 Hz camera with the bandwidth

of a 45 Hz camera. For a more detailed look at the latest research in event-

based vision and camera, we recommend this[3] resource.

 Depth Sensors

Robots also have sensors that measure the depth or distance of objects

in their surroundings, such as time-of-flight cameras and structured

light sensors. These sensors allow robots to comprehend the three-

dimensional structure of their surroundings and carry out tasks like object

reconstruction, scene interpretation, and gesture identification because of

the exact depth information provided by these sensors. Figure 2-5 shows

depth sensors that use time-of-flight (ToF), structured light, and stereo-

vision principles to measure depth information.

42

Chapter 2 robot perCeption: SenSorS and image proCeSSing

• Time-of-flight (ToF) sensors: ToF sensors measure

the time it takes for a light signal to bounce back after

reflecting off of surrounding objects. The light signal

is commonly an infrared (IR) signal. The depth sensor

can calculate the time it takes for the round-trip

journey to determine the distance to objects.

• Structured light sensors: Structured light sensors

project a pattern of light onto the scene, such as a grid

of infrared dots or a collection of structured patterns.

The sensor’s infrared camera then records the distorted

pattern. The depth sensor may determine depth

information based on the distortions generated by

object surfaces by examining the deformation of the

pattern.

• Stereo vision sensors: Similar to human eyes, stereo

vision sensors employ a pair of cameras with a known

baseline separation. The depth sensor may determine

the depth by comparing the disparities or discrepancies

between corresponding pixels in the stereo pictures,

and each camera captures a slightly different view of

the scene. Triangulation techniques are frequently

used to determine depth based on discrepancies

in pixels.

43

[image: Image 16]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

 Figure 2-5. Time-of-flight (ToF), structured light, and stereo

 vision methods for depth measurement. Used with permission by

 Wavelength Opto-Electronic, source: https://wavelength-oe.com/

 articles/optics-for- consumer-electronics/ [41]

The output from depth sensors is a point cloud, a 3D representation

of the scene consisting of a collection of 3D points that represent surfaces

of the scene, or a depth image, representing the distance of each pixel

from the sensor. Many depth sensors such as ToF and structured light will

directly output depth images. In some cases, especially for sensors used

in robotics applications, the output is a point cloud. A specific location in

space and its corresponding color information are represented by each

point in the cloud. An example of the 3D point cloud output produced

from a depth sensor is shown in Figure 2-6.

44

[image: Image 17]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

 Figure 2-6. Example 3D point cloud output from a depth sensor.

 Used with permission, source: https://learnopencv.com/3d-lidar-

 visualization/ [42]

The range, precision, sensitivity to lighting, occlusion issues, and

difficulty photographing translucent or reflecting surfaces are drawbacks

of depth sensors. But in recent years, improvements in depth sensor

technology have improved their performance. For example, they are

combined with other sensors, like cameras or inertial measurement units

(IMUs), to create a more comprehensive perception system.

 Range Sensors

Another important type of sensor in robots are range sensors, such as Light

Detection and Ranging (LiDAR), and ultrasonic sensors, which provide

information about the distance between the robot and objects in its

surroundings. If a range sensor has high fidelity (such as high accuracy and

resolution, typically seen in high- density LiDAR), it is useful as a depth sensor

for accurately measuring distances from the robot in question to other objects.

The following section delves into how LiDAR achieves this feat. Overall, range

sensors help robots navigate and avoid collisions by allowing 3D perception.

45

[image: Image 18]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

 LiDAR

LiDAR (Light Detection and Ranging) sensors emit laser pulses and track

how long it takes for the pulses to reach nearby objects and return to the

sensor. The LiDAR sensor then determines the distances to objects by

calculating the round-trip time, based on the speed of light.

Although some LiDARs also employ visible light, laser pulses primarily

emitted by LiDARs are infrared (IR) light. Depending on the particular

sensor, laser pulses are either released in brief bursts or as continuous

beams. Time-of-flight (ToF) is used here along with high-speed electronics

and exact timing mechanisms to measure the round-trip time of light more

precisely.

An overview of the LiDAR reflection process is shown in Figure 2-7.

 Figure 2-7. Overview of LiDAR sensor. The LiDAR sensor receives

 the laser pulses as they are reflected back when they strike objects.

 A receiver on the LiDAR sensor picks up the returning laser pulses

 and calculates the appropriate time of flight. Used with permission,

 source: https://www.yellowscan.com/knowledge/how- does- lidar-

 work/ [43]

46

Chapter 2 robot perCeption: SenSorS and image proCeSSing

LiDAR sensors provide a point cloud image of the surroundings by

integrating the distance readings from several laser pulses. Each point in

the point cloud represents a distinct position in 3D space, together with the

relevant distance details. Since LiDAR sensors provide point clouds as their

raw data output, additional processing is necessary to build high-resolution

3D maps, eliminate outliers, segment objects, and filter out noise.

A high-density LiDAR is one where more beams are emitted

synchronously. A wide LiDAR is one where the opening angle of the beam

is larger, such that if it is mounted on top of a self-driving car, it can get

coverage even around the car itself. This is useful in situations such as when

riders get on and off, to determine whether the curb is clear, and so on.

Most LiDAR sensors use one of these popular scanning techniques:

• Mechanical scanning: Mechanical scanning LiDARs

employ a spinning mirror or prism that directs laser

pulses in various directions, enabling the LiDAR sensor

to record a 360-degree image of its surroundings.

• Solid-state scanning: Solid-state LiDARs do not use

moving elements, but steer laser pulses at various

angles by using electronically controlled solid-state

emitters and receivers such as phased arrays or optical

phased arrays. Due to the lack of moving parts, they’re

more energy efficient, more durable, and tend to be

smaller. The downside is that there is a lower range and

field of view.

• Hybrid solid-state LiDAR: This technique combines

elements of mechanical and solid-state LiDAR, often

using a rotating mirror to achieve a wider field of view

while employing solid-state components for beam

steering within that field of view. It offers a compromise

between the wide field of view of mechanical LiDARs and

the durability and compact size of solid- state LiDARs.

47

[image: Image 19]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

2D LiDARs operate on a single horizontal plane and emit beams in

a fan-like pattern. They’re very low resolution but are enough in many

simple autonomous robots to do simultaneous localization and mapping,

such as in indoor environments like offices, warehouses, and so on. An

example of a 2D LiDAR can be seen in Figure 2-8. In most scenarios, this

data is combined with a depth sensor like an Intel RealSense to capture

objects, obstacles, and blind spots for the LiDAR.

 Figure 2-8. Setup of an indoor mobile robot with a 2D LiDAR for

 navigation and mapping. The robot has two individually motorized

 wheels and one castor wheel. Its position is tracked as O(x,y) with

 orientation 𝜙, and the 2D LiDAR sensor scans the environment to

 detect obstacles and surroundings. Used with permission, source:

 https://www.mdpi.com/1424-8220/23/5/2534 [44]

Advanced autonomous robots implement 3D LiDARs for the

perception stack due to the benefit of 360-degree coverage and more

precise and larger mapping capabilities. The output from 3D LIDARs is

shown in Figure 2-9.

48

[image: Image 20]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

 Figure 2-9. Output data of a 360 degree, 3D LiDAR. Used with

 permission, source: https://ieeexplore.ieee.org/stamp/stamp.

 jsp?tp=&arnumber=5980322 [45]

LiDAR sensors provide precise 3D perception, long-range sensing,

a 360-degree field of view, resistance to lighting conditions, high data

density, and obstacle detection capabilities in robotics applications.

However, they can be expensive, use a lot of power, have low resolution

for small objects, have problems with shiny or transparent surfaces,

work worse than cameras in bad weather like snow/rain, and need large

computational resources for processing. LiDAR sensors should be carefully

weighed against these advantages and disadvantages to see if they are

appropriate for particular robotic jobs and settings.

 Ultrasonic Sensors

For tasks involving obstacle identification, collision avoidance, presence

detection, distance measuring, and navigation, ultrasonic sensors are

frequently used in robotics. They use sound waves to interact with the

49

[image: Image 21]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

environment. In particular, ultrasonic sensors produce high-frequency

sound waves often inaudible to humans (20 kHz and above). A

piezoelectric transducer built into the sensor transforms electrical energy

into ultrasonic sound waves.

Once the sound waves are created, they spread outward like a cone-

shaped beam. The sound waves go in a straight line until they come into

contact with a surface or object. The object’s surface characteristics cause

the produced sound waves to reflect or bounce back when they collide

with it. The ultrasonic sensor’s receiver detects these reflected sound

waves. The time taken for the sound waves to travel to an object and back

to the sensor is measured and used to determine the distance between the

sensor and the object using the speed of sound in the medium, usually air.

Figure 2-10 shows an overview of this process.

 Figure 2-10. Overview of ultrasonic sensors showing how the

 transmitter emits sound waves that bounce off an obstacle and are

 received by the receiver, with the distance calculated based on the

 time taken for the sound to return. Used with permission, source:

 https://www.cuidevices.com/blog/the-basics-of-ultrasonic-

 sensors [46]

50

Chapter 2 robot perCeption: SenSorS and image proCeSSing

The sensor’s design, the frequency of the sound waves, and the

surrounding environment are only a few of the variables that affect the

range and accuracy of ultrasonic sensors. In general, ultrasonic sensors

have an accuracy range of a few millimeters to a few centimeters and can

detect things within a few centimeters to several meters.

However, there are several restrictions on ultrasonic sensors. For

example, they can have trouble detecting items with uneven surfaces or

ones that are smaller than the sound waves’ wavelength. They can also be

impacted by background noise and echoes, impairing how accurately they

calculate distance. These are important factors to consider when determining

whether ultrasonic sensors are the best for your robotics application.

 Inertial Measurement Units (IMUs)

Another sensor worth noting are the IMUs that give robots basic motion-

measuring capabilities. IMUs record data on acceleration, angular velocity,

and magnetic fields, thereby allowing robots to understand their own

motion and allow feedback to correct their motions.

The three main sensors that make up an IMU are accelerometers,

gyroscopes, and occasionally magnetometers.

• Accelerometers: Accelerometers measure linear

acceleration along three orthogonal axes, often x, y,

and z. They use the inertia principle, which states

that acceleration produces an electrical signal when a

mass is moved. Accelerometers calculate the object’s

acceleration by analyzing the electrical output.

• Gyroscopes: Gyroscopes calculate the rotational

rate or angular velocity around each of the three

axes. To detect orientation changes, they rely on the

angular momentum principles. Gyroscopes track the

Coriolis effect as the item rotates and produce a signal

corresponding to the rotation rate.

51

[image: Image 22]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

• Magnetometers: Magnetometers are not always a part

of an IMU, but they are occasionally integrated to give

information about the object’s orientation with respect

to the Earth’s magnetic field. They can be used to

determine the magnetic field’s strength and direction.

Figure 2-11 shows accelerometers and gyroscopes with the movement

along three axes.

 Figure 2-11. The accelerometer and gyroscope within an Inertial

 Measurement Unit (IMU) detect angular velocity along the X, Y, and

 Z axes, positioned at 90° to each other. Used with permission, source:

 https://towardsdatascience.com/what-is-imu-9565e55b44c , created by Dr Barak Or[47]

IMUs use sensor-fusion techniques to understand the object’s motion

thoroughly. The IMU estimates an object’s position, orientation, velocity,

and acceleration by combining data from accelerometers, gyroscopes, and

magnetometers and frequently utilizing techniques like Kalman filters or

complementary filters.

52

Chapter 2 robot perCeption: SenSorS and image proCeSSing

IMUs are essential for tracking and managing robot movements.

Thanks to IMUs, which continually measure and update orientation,

velocity, and acceleration, robots can retain stability, modify their

movements, and react to outside influences. This data is used for

balancing humanoid robots, operating robotic arms, and enabling quick

navigation in self-driving cars, among other things.

Inertial navigation uses IMUs to determine the position and trajectory

of the robot by integrating the data from accelerometers and gyroscopes

over time. This method is particularly helpful for navigation inside

buildings or in difficult circumstances where other external localization

systems, like GPS, are not available or dependable.

IMUs enable accurate motion tracking and control by providing real-

time, high-frequency data regarding the robot’s orientation, acceleration,

and velocity. However, they are prone to accumulating mistakes over time

due to sensor drift, which can reduce their accuracy. They are similarly

unable to provide information on absolute positions without outside

references. Additionally, magnetic field interference can cause problems

for the magnetometers inside IMUs, reducing their dependability in some

circumstances. In general, IMUs are useful sensors for robotic motion

detection and control, but in applications where high accuracy and absolute

position data are essential, these limitations should be accounted for.

 Problems in Perception

Now that you know the different types of sensors used in robotics and how

they work, you need to understand how sensory data can be useful for

robotics. The most common type of input data that robots use are images from

cameras. Images help robots perceive their environment, such as identifying

objects and their locations, and then carry out tasks accordingly. Common

perception tasks for robotics include classification, semantic segmentation,

instance segmentation, and object detection. These essential tasks are the

foundation for how many robots see, reason, and manipulate objects.

53

Chapter 2 robot perCeption: SenSorS and image proCeSSing

 Classification

For robots to manipulate objects, they need to have a visual understanding

of the object and its surroundings. Image classification allows images to be

labeled based on a fixed set of categories. For example, if a kitchen robot

is tasked with picking up a cup, it must first identify a cup in an image and

differentiate it from other categories of objects such as a glass, plate, or

spoon. The robot does this by taking in an array of pixels (the image) and

assigning a class to it. Say that you have a dataset of N images, each labeled

with one of the K classes. The goal is to use this dataset, pass it through

a model, and learn what every one of the classes looks like. You can then

evaluate how well your model learned the classes of objects by making

predictions on a new set of images.

 Segmentation

Imagine an example of an autonomous vehicle trying to navigate the

road and understand its surroundings on a busy street with pavement, a

car, and a bus in the foreground. In the background, there is a building,

a tree, and the sky. Image segmentation aims to assign each pixel in the

image that the car sees to the object to which it belongs. It can separate the

foreground from the background, identify the precise location of any cars

on the road, identify pedestrians, and mark where the road is.

The pixel-level understanding that image segmentation provides

can help robots understand how they can navigate their environment.

For example, image segmentation can be used to extract an object that

you may be grasping from a bin of objects or discover the safe areas to

drive for a self-driving car. An encoder-decoder structure is often used for

segmentation, as shown in Figure 2-12.

54

[image: Image 23]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

 Figure 2-12. A convolutional encoder-decoder architecture for image

 segmentation. The RGB input image is processed through layers

 of convolution, pooling, and upsampling, followed by a softmax

 function to generate the segmented output. Used with permission,

 source: https://arxiv.org/pdf/1511.00561 [48]

The CNN section dives more into what each of these layers means.

Essentially, the encoder comprises a pre-trained classification network—

which means it was already trained on large quantities of data—commonly

a ResNet, paired with a decoder network. The encoder downsamples the

image to learn a compact representation, and the decoder upsamples this

representation to reconstruct the high-resolution pixel space. Using the

low-resolution spatial tensor generated by the encoder that encapsulates

condensed high-level information, the decoder generates high-resolution

segmented outputs.

Simply stacking the encoder and decoder layers results in a loss of low-

level information that is important for the model to have in later layers. To

make up for the missing information, skip connections are used to allow

the decoder to access the low-level features generated by the encoder

layers. This allows it to capture both low-level and high-level features in

later parts of the model. The primary concept behind skip connections is

that the intermediate outputs from the encoder are merged with the inputs

to the decoder’s intermediate layers at specific points.

There are two major image segmentation types: semantic and

instance. With semantic segmentation, all objects that are of the same

kind (a person) are marked using one class label, while similar objects get

55

[image: Image 24]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

separate labels in instance segmentation (i.e., different people are marked

as separate labels). The difference between these two segmentation types

is shown in Figure 2-13.

 Figure 2-13. Semantic segmentation (left) and instance

 segmentation (right). Used with permission, source: https://www.

 taus.net/resources/blog/introduction-to-image-annotation-

 for-ml-and-ai [49]

 Semantic Segmentation

Semantic segmentation takes in an image and produces a segmentation

map where each pixel is assigned a class label, thereby categorizing objects

into predefined categories. It aggregates multiple objects of the same

category (i.e., different people) into a single entity (humans). For instance,

in an autonomous car’s street scene, segmentation might classify general

categories of objects a car sees, such as pedestrians, bikes, vehicles, and so

on. The output segmentation map matches the input image’s dimensions

(width and height), with channels corresponding to predicted classes.

Each channel has a binary mask that labels pixels by class, identifying

where each class is in the input image.

56

[image: Image 25]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

Once you get the output predictions, how do you know how good the

predictions are? A commonly used metric for segmentation is Intersection

over Union (IoU), which calculates the percentage of overlap in the

predicted image and the ground truth by dividing the number of pixels

that are identical in the target and prediction masks by the total number

of pixels present in either mask[4]. Figure 2-14 shows an example of this calculation.

 Figure 2-14. Example of Intersection over Union (IoU) calculation

 for object detection. (a) IoU is calculated as the ratio of the

 intersection area between the ground truth bounding box and the

 predicted bounding box to their union. (b) Various IoU values are

 shown for different degrees of overlap between the predicted and

 ground truth boxes. Used with permission, source: https://www.

 researchgate.net/publication/335127265_AI-powered_banana_

 diseases_and_pest_detection [50]

 Instance Segmentation

Instance segmentation identifies individual objects within categories of

objects, such as people, cars, houses, and so on. For instance, categories

such as animals might be further segmented into dogs, cats, and birds, and

57

Chapter 2 robot perCeption: SenSorS and image proCeSSing

categories like dogs may be segmented into dog 1, dog 2, and so on. This is

done by clustering pixels that belong to a single instance of a dog against

others. Instance segmentation can be very important for self-driving cars,

where you want to have a detailed understanding of your surroundings,

such as complex streets with many pedestrians and moving objects

like cars.

How do you evaluate predictions you get from an instance

segmentation? One way is by using mean average overlap (mAP)[5]. Before

looking at mAP, it’s useful to explain the concepts of precision and recall.

To grasp precision and recall, it can be helpful to break down the confusion

matrix, as shown in Table 2-1:

• A true positive means that the prediction and target

mask pair has an IoU score greater than some threshold

you’ve set (usually 0.5 or more). This means the

model has successfully predicted the segmentation or

detected the object based on ground truth.

• A true negative occurs when the model does not

predict a label that it shouldn’t (not in ground truth).

• A false positive is when the model predicts an object

that doesn’t exist.

• A false negative is when the model fails to identify an

object that it should have based on the ground truth.

58

[image: Image 26]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

 Table 2-1. Confusion Matrix Illustrating the Differences Between

 Precision and Recall. Used with permission, source: https://

 octave-jkh.medium.com/theory-behind-confusion-matrix-

 bccabd3ad7d7 [51]

 Recall measures the number of objects that were correctly identified

by taking the number of correctly identified objects and dividing by the

number of actual objects. Precision measures how many of the identified

objects were correct by taking the number of correctly predicted objects

and dividing by the total number of predicted objects.

Recall = True positives / # of ground truths

Precision = True positives / # predictions

 Average precision builds on top of these concepts by calculating the

area under a precision-recall curve to evaluate how well a segmentation

or object-detection model performs. As an example, imagine a self-driving

car that is detecting cars on a road. Let’s discuss this in the context of

confidence intervals, where a high confidence interval means that there is

a greater certainty that true values lie in that range. At a higher confidence

interval, a model might detect only a few cars on the road (high precision,

low recall). On the other hand, at a lower confidence interval, more cars

may be detected but many of them could be false positives (not actual

cars), referring to a lower precision but higher recall.

59

Chapter 2 robot perCeption: SenSorS and image proCeSSing

AP helps you understand the tradeoff that exists between precision

and recall in many real-world scenarios. mAP builds on top of average

precision (AP), which represents the area beneath the precision-recall

curve (PR curve). mAP is simply all the AP values averaged over classes/

categories and is useful when you are detecting multiple classes or objects.

Harshit Kumar created a good resource[6] if you are interested in diving

deeper into these metrics and understanding how they are calculated.

 Object Detection

Object detection[7] classifies objects in an image and then specifies

where they are in the image using bounding boxes. Each bounding box

is characterized by a point, width, height, and associated class labels,

sometimes identifying multiple objects within the image. Robots in

industrial settings and self-driving cars have to do various tasks such as

navigating, picking, and placing, based on their ability to recognize objects.

Most commonly, AP and mAP are used as metrics to evaluate different

object-detection models.

For example, take a self-driving car, where you want to detect other

cars on the highway. The output of the model’s prediction is shown in

red boxes in Figure 2-15, whereas the green boxes are the ground truth

detections. Each prediction is evaluated based on the IoU score, which

measures how well the predicted bounding box overlaps with the ground

truth bounding box. These IoU scores help determine true positives, false

positives, and false negatives, which are then used to calculate precision

and recall. By using the precision and recall values at different thresholds,

you can calculate AP and mAP across different classes.

60

[image: Image 27]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

 Figure 2-15. Object detection on cars, showing predicted bounding

 boxes (red) and ground truth bounding boxes (green) with

 Intersection over Union (IoU) scores for each detected car (P1 to P7).

 Used with permission, source: https://www.v7labs.com/blog/mean-

 average-precision#:~:text=let%27s%20dive%20in!-,What%20

 is%20Mean%20Average%20Precision%20(mAP)%3F,values%20

 from%200%20to%201 [5]

 Convolutional Neural Nets Overview

One approach to image classification, segmentation, and object detection

is to use convolutional neural networks (CNNs)[8]. For a deeper dive into

how CNNs work, we recommend going through Stanford’s CS231n[9]

course notes and assignments. This section briefly overviews CNNs before

jumping into how CNNs are used for perception in robotics.

CNNs are deep neural networks that can classify and identify specific

features from data, such as images collected using sensors on robots. Key

parts of a CNN are the convolutional layers, pooling layers, and fully-

connected (FC) layers.

61

[image: Image 28]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

 Convolutional Layers

A convolutional layer extracts image features by applying small filters

(kernels) over smaller regions of the input data. For example, a 3x3 filter

scans over a 32x32x3 input image (height, width, and color channels) and

captures patterns like edges and textures within those small sections. As the

filter moves across the image, it creates a 30x30x1 feature map (assuming

no padding and a stride of 1; we discuss these parameters soon) that learn

features like corners and edges at each spatial location. Figure 2-16 shows a

filter being used on a two-dimensional input to generate a feature map.

 Figure 2-16. A feature map is generated by applying a filter to

 an input 2D image. The filter moves across the image, capturing

 important features like edges and textures at each location to

 produce the final feature map. Used with permission, source article

 “Building a Convolutional Neural Network in PyTorch”: https://

 machinelearningmastery.com/building-a-convolutional-

 neural-network-in-pytorch/ [52]

62

[image: Image 29]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

An image and a filter, both represented as matrices, are essentially

multiplied at corresponding values and then summed to produce an

output. This output, known as a feature map, is then fed into subsequent

layers of the network to help learn features in the input image. Figure 2-17

provides a visual overview of this process.

 Figure 2-17. Example of a convolution operation where a 3x3 filter is

 applied to a 6x6 input image with a stride of 1. Used with permission,

 source: https://www.ijsrp.org/research-paper-1019/

 ijsrp-p9420.pdf [53]

Three parameters determine the size of the feature map:

• Depth: Indicates how many filters are used during the

convolution process.

• Stride: Indicates how many pixels the filter matrix

moves across the input matrix in each step. For

example, a stride of 1 means the filter shifts one pixel at

a time. Larger strides lead to smaller feature maps.

• Padding: Zero-pad the edges of the input matrix so that

the filter can be applied to elements at the border of the

input image and these features can be captured.

63

[image: Image 30]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

You can differ these values in the filter matrix to generate different

feature maps for an input image. By stacking these convolutional layers,

they can detect a variety of visual patterns in a hierarchical way. The

earlier layers create feature maps that identify simple patterns, edges,

and corners. The later layers start to discern more complex objects like

animals, furniture, facial features, and landscapes.

 Introducing Nonlinearity (ReLU)

After every convolution operation, Rectified Linear Unit (ReLU) is used to

increase the nonlinearity in the images. ReLU as a function looks like f(x)

= max(x, 0, such that negative elements are set to 0 and positive elements

stay the same. Broadly speaking, ReLU is used to manage the information

that moves forward through the network. ReLU does this by replacing all

negative pixel values in the feature map with 0. An overview of this process

is shown in Figure 2-18. Other types of nonlinearity that are used as

alternatives for ReLU are Tanh and Sigmoid. In the context of CNNs, ReLU

has been found to perform better in most situations.

 Figure 2-18. Example of the ReLU (Rectified Linear Unit) activation

 function applied to a matrix. Negative values in the input are

 replaced with 0, while positive values remain unchanged. ReLU

 introduces nonlinearity into the model. Used with permission, source:

 https://www.linkedin.com/pulse/cnn- activation- functions-

 global-average-pooling-softmax-n-bhatt/ [54]

64

Chapter 2 robot perCeption: SenSorS and image proCeSSing

 Pooling Layers

The pooling layer is often placed after a convolutional layer, with its

primary role being to reduce the dimensions of the previously created

feature map. Reducing the feature map size cuts down on parameters

and computational needs. The network also becomes more robust to

minor changes in the input image, such as distortions and shifts, because

it extracts the maximum or average values within a specific area. Pooling

can be performed in two primary ways: max pooling, where the largest

element from the feature map section is selected, and average pooling,

which computes the mean of each section of a predetermined size in

the image.

 Fully Connected Layers

The outputs from the final pooling and convolutional layers are

transformed into a flattened vector by unrolling the 3D matrix into a single

dimension. This vector typically encapsulates high-level features of the

input image, which then serve as inputs to the fully connected (FC) layer.

The role of the FC layer is to leverage these features to classify the input

image into various categories, as determined by the training data. FC layers

are generally placed just before the output layer.

 CNNs for Perception

This section explains a simple example of a cleaning robot that uses a

CNN to detect objects on a table and then clean the table. As shown in

Figure 2-19, each object in the image has been located and identified with

a certain level of accuracy.

65

[image: Image 31]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

 Figure 2-19. Example of a CNN detecting various objects on a table.

 Used with permission, source: https://www.ubiqisense.com/news/

 robot-to-clean-canteens [55]

One general way to solve this problem using a CNN is as follows:

1. Take an image of the table with the items we want to

clean/organize using a sensor.

2. Input this image into the CNN.

3. Divide the image into various smaller sections,

known as regions or patches, and treat each region

as a separate image.

4. Pass all the regions to the CNN and classify the

contents of each region into various classes.

66

Chapter 2 robot perCeption: SenSorS and image proCeSSing

5. After assigning each divided region to its respective

class, all these regions can be merged to re-create

the original image, now annotated with the

identified objects.

Although this method might initially seem effective, it faces challenges

due to objects in images having varying aspect ratios and locations. For

instance, some objects might fill most of the image, while others appear as

small parts. This variability means a significant number of regions would

be needed, greatly increasing computational demands. To address this,

region-based CNN (R-CNN)[10] can be used, which employs a proposal

method to select fewer, but more relevant, regions. The next section

explains how R-CNN works to streamline this process.

 R-CNN

Rather than examining many regions, R-CNN[10] suggests potential

regions within an image to determine if they contain objects. This

method uses selective search, which recursively groups similar regions

based on color, texture, and size, or edge boxes, which generate object

bounding boxes based on edges in the image to identify regions of interest

(RoI). Features from each RoI are then extracted using a pre-trained

CNN. Following this, a classifier is used to classify objects for each RoI.

One significant limitation of the R-CNN model is that it’s slow and

computationally intensive. It generates and processes thousands (~2,000)

of distinct regions per image. For applications like a cleaning robot,

having the R-CNN take tens of seconds to analyze a new image would be

impractically slow for real-time implementation.

Thankfully, there’s a model, called Fast R-CNN, that aims to solve some

of the problems with the R-CNN model.

67

Chapter 2 robot perCeption: SenSorS and image proCeSSing

 Fast R-CNN

As mentioned, a key limitation affecting the performance of an R-CNN is

the computation that is done for each region proposal. In many real- world

scenarios, regions often overlap and independently extracting features

for each one can result in redundant computations[11]. For example, in

a robotics application where a robot navigates a cluttered environment,

multiple overlapping regions might contain parts of various objects

like boxes, furniture, people, and so on. Fast R-CNN[12] addresses the

inefficiencies of R-CNN by processing the entire image at once for feature

extraction, instead of handling individual region proposals separately.

Here’s how it works:

• The entire image is input into a CNN, generating

convolutional feature maps. You can pass in a 512x512

image from the robot’s camera, which then produces

feature maps with a lower spatial resolution. These

capture key information from the images, like edges,

patterns, and shapes, that are needed for object

detection or segmentation.

• These maps are used to identify RoIs, which are areas

where objects are likely present. Say the network finds

ROIs that contain different boxes, furniture items, and

so on. Each RoI is then resized through an RoI pooling

layer into a fixed size that can be passed into a fully

connected network. These feature maps are then fed

into a fully connected neural network where the objects

in each RoI are classified and bounding box regression

is used to refine location of the bounding boxes.

68

Chapter 2 robot perCeption: SenSorS and image proCeSSing

• By using the same feature map for all object proposals,

Fast R-CNN significantly improves the efficiency of

object detection, unlike the original R-CNN, which

processes each region independently.

Although Fast R-CNN performs better than R-CNN, it still relies on

selective search to find the RoI, which is a slow and time-consuming

process. A cleaning robot would likely be working with a large dataset and

would need a model that could detect each item on a table very quickly. To

solve this problem, another iteration of R-CNN, called Faster R-CNN[13],

was developed.

 Faster R-CNN

Faster R-CNN[13] improves the speed of object detection compared to

Fast R-CNN. The key feature distinguishing Faster R-CNN from other

models is its inclusion of a Region Proposal Network (RPN). Placed after

the final convolutional layer, the RPN generates object proposals directly,

eliminating the need for selective search. It slides a window, such as a

3x3 convolutional layer, across the feature maps from the CNN, creating k

anchor boxes of varying shapes and sizes at each position. The RPN then

estimates the likelihood of each anchor containing an object and refining

coordinates to better fit the detected object. An overview of how RPN

works is shown in Figure 2-20.

69

[image: Image 32]

[image: Image 33]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

 Figure 2-20. Process for how RPN works. Used with permission,

 source: https://arxiv.org/abs/1506.01497 [13]

Overall, Faster R-CNN is approximately ten times faster than Fast

R-CNN while maintaining similar accuracy on datasets like VOC-2007[14].

This makes Faster R-CNN a preferred algorithm for object detection.

Table 2-2 provides a quick comparison of these versions of R-CNN.

 Table 2-2. Comparison of R-CNN, Fast R-CNN, and Faster R-CNN

 on Speed and Test Time Per Image. Used with permission, source:

 https://cv-tricks.com/object-detection/faster-r-cnn-

 yolo-ssd/ [14]

70

Chapter 2 robot perCeption: SenSorS and image proCeSSing

 Mask R-CNN

Mask R-CNN[15] is an extension of the R-CNN models that allows for pixel-

level classification, making it useful for image-segmentation tasks. While

other R-CNN models—like R-CNN, Fast R-CNN, and Faster R-CNN—are

primarily designed for object detection and bounding box predictions,

Mask R-CNN adds a branch for predicting segmentation masks. This

means it not only detects objects but also provides a detailed pixel-by-pixel

mask for each detected object. It has been applied in various domains,

such as object segmentation, distance measurement for robot grasping,

and vehicle detection in self-driving cars. This could also be useful for the

cleaning robot if you wanted to get more granular and segment out all of

the objects it would be cleaning from the image.

Mask R-CNN extends Faster R-CNN by adding a segmentation branch,

a fully convolutional network that generates a binary mask for each RoI,

which predicts the exact pixels that belong to each object. A CNN is used

for generating feature maps from the input image. The RPN then identifies

RoIs that are most likely to contain objects. RoI Align is used to match the

RoIs from the image with the feature maps. Having precise matching can

ensure the exact location and shape of objects is preserved, which can be

useful for generating segmentation masks. Each ROI is then processed by

three branches. The classification branch identifies the objects in each

RoI. The bounding box regression branch is used to refine the coordinates

of the bounding box. Finally, a mask branch generates a binary mask for

each RoI. An illustration of Mask R-CNN is presented in Figure 2-21.

The loss function used in Mask R-CNN encompasses three elements:

classification loss, which assesses the accuracy of the predictions relative

to the actual class; bounding box loss, which evaluates the model’s

localization accuracy; and mask prediction loss, which is determined by

calculating the binary cross-entropy between the predicted mask and the

ground truth.

71

[image: Image 34]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

 Figure 2-21. Main components of Mask R-CNN. Used with

 permission, source: https://arxiv.org/pdf/1703.06870 [15]

 ResNet

You’ve read about how it’s important to optimize the architecture of

these models to make perception tasks faster to compute. But what about

increasing the accuracy of these models to perform perception tasks

better? For example, if a robot is used in environments like surgeries, it

needs to be able to detect or classify objects with extremely high precision.

A key question in deep learning is focused on understanding whether

simply stacking more layers will improve model performance. The

rationale is that these added layers progressively capture more complex

features. However, it has been observed that beyond a certain network

depth, accuracy plateaus and then quickly deteriorates. Traditional CNN

models have a maximum effective depth, beyond which they suffer from

the vanishing gradient problem—during back-propagation, the gradients

can become exceedingly small due to repeated multiplication, nearly

diminishing them.

72

[image: Image 35]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

Residual Neural Networks (ResNet)[16] were proposed by He et al. in

2015 as a breakthrough that solved the vanishing gradient problem and

allowed people to build larger CNNs that had improved performance

in perception tasks. For this reason, ResNets are used as the backbone

today for many computer vision tasks. They are not only limited to image

classification but can also solve a wide range of problems in image

segmentation and object detection—even in robotics.

 Skip Connection: The Strength of ResNet

A key aspect of ResNets lies in the skip connection, which has become

a fundamental component in many convolutional architectures.

Skip connections offer an alternative route for gradient flow in

backpropagation, enabling the output of a layer to feed into subsequent

layers. This is done through vector addition, where the output of a layer

is added directly to the output of a deeper layer. This addition creates a

shortcut for the gradient during backpropagation, allowing it to bypass

certain layers. By multiplying the gradient by 1 (identity function), the skip

connection ensures that the gradient does not diminish and maintains its

original value. ResNets are constructed by stacking these residual blocks

that incorporate skip connections. Figure 2-22 illustrates a single residual

block with a skip connection.

 Figure 2-22. A residual block. Used with permission, source:

 https://arxiv.org/pdf/1512.03385 [16]

73

Chapter 2 robot perCeption: SenSorS and image proCeSSing

 U-Net

The concept of skip connections has influenced the design of architectures

such as U-Net[17], which was originally developed by Ronneberger et al.

for biomedical image segmentation. U-Nets are now being applied to other

image segmentation tasks, including robotics perception. The architecture

is an encoder-decoder structure with skip connections, known for its

efficiency with fewer training images and highly accurate segmentations.

U-Nets can segment images up to 512x512 pixels using a modern GPU

(according to 2015) in under a second.

As illustrated in Figure 2-23, a distinctive aspect of U-Net is the

replacement of pooling operations with upsampling operators, which

increase the resolution of the output. The encoder uses convolutional and

pooling layers to capture features and reduce the spatial dimensions of

the input image, creating a compressed representation of the input image.

The decoder then uses upsampling operators to increase the resolution of

the output from the encoder, refining the features captured by the encoder

into a high-resolution, segmented output. U-Net also incorporates skip

connections, which directly transfer feature maps from the encoder to the

corresponding layers in the decoder. These skip connections help retain

important spatial information that might otherwise be lost during the

downsampling process.

74

[image: Image 36]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

 Figure 2-23. U-Net architecture. Used with permission, source:

 https://arxiv.org/pdf/1505.04597 [17]

U-Net has been used commonly in segmentation tasks for robotics

given its speed and the ability of the encoder-decoder structure to learn

accurate spatial information. For example, it has been used in research for

robotic instrument segmentation for robotic surgery, lane detection for

self-driving cars, and for robot grasping.

U-Net is notable in that it forms the backbone of several early diffusion

models and even Stable Diffusion. An important property of U-Net is that

the input and output are the same size, meaning the model maintains the

spatial dimensions of the input throughout the network. This design allows

U-Net to learn and encode detailed image features (latent encodings)

within the encoder, which can then be used by some decoder or another

model. Recent architectures use transformers in place of CNNs to make

U-Nets that run faster. Despite the change in modules, the fundamental

concepts of U-Nets transfer.

75

[image: Image 37]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

 EfficientNet

One way that CNNs can be scaled up is by adding more layers. Oftentimes,

you can add more layers such as to ResNet and then manually make

the network deeper and wider, or use higher-resolution images.

EfficientNet[18] uses a compound scaling method that adjusts all three

dimensions simultaneously based on a predefined scaling factor.

By using a user-defined coefficient and fixed scaling constants, this

method ensures that there is proportional growth across all three factors.

For example, if you want to double the computational resources, you

might increase the depth 1.2 times, the width 1.1 times, and the resolution

1.15 times[18]. These empirically determined parameters help improve

the features that CNNs capture by allowing them to learn more complex

patterns (depth), capture more granular details (width), and detect

smaller objects (resolution). Figure 2-24 shows a comparison of the scaling

aspects. They also maintain computational efficiency by holistically

optimizing the use of all available resources and features. This approach

allows EfficientNet to achieve higher accuracy and efficiency, making the

network up to ten times smaller yet faster compared to traditional scaling

methods.

 Figure 2-24. Comparison of scaling methods. Used with permission,

 source: https://arxiv.org/pdf/1905.11946 [18]

76

Chapter 2 robot perCeption: SenSorS and image proCeSSing

 One-Stage Detectors

Many of the object-detection algorithms mentioned so far handle

object detection as a classification problem by first generating object

proposals and then sending these proposals to classification/regression or

segmentation heads. What if there was a way to look at the complete image

all at once rather than looking at only the generated region proposals?

These methods would be able to compute extremely quickly and could be

run real time.

A method called You Only Look Once (YOLO)[19] aims to do

this by making predictions of bounding boxes and class probabilities

simultaneously.

 YOLO

YOLO (You Only Look Once) has been commonly applied in robotics for

object detection applications due to its simplicity and speed. For example,

a more recent version of YOLO, called YOLO v10, achieves an impressive

54.4 percent AP for real-time object detection. YOLO has been used

for identifying objects using mobile robots, robotic grasping, and other

autonomous navigation applications.

YOLO works by dividing the input image into a grid of cells. Each cell in

the grid is responsible for predicting the bounding boxes and determining

the confidence scores for objects within that cell. However, this can result

in multiple overlapping boxes for the same object. YOLO addresses this

issue using Non-Maximal Suppression, which keeps the box with the

highest confidence score and removes the redundant overlapping boxes.

The YOLO architecture is shown in Figure 2-25.

77

[image: Image 38]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

 Figure 2-25. YOLO architecture. Used with permission, source:

 https://arxiv.org/pdf/1506.02640 [19]

 SSD

Similar to YOLO, the single-shot detector (SSD)[20] detects objects in a

single pass using a pretrained base network (like VGG16) followed by

convolutional layers that generate multiple feature maps at different

scales. These maps allow SSD to detect objects of different sizes, where

early layers capture small objects and deeper layers detect larger ones.

SSD uses receptive fields, which are specific regions of the input image

that each feature map covers, to handle objects of different sizes. Similar

to YOLO, SSD applies Non-Maximal Suppression to remove redundant

bounding boxes and keep the most confident predictions.

A visual comparison of the SSD and YOLO architectures is provided in

Figure 2-26.

78

[image: Image 39]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

 Figure 2-26. SSD (top) and YOLO (bottom) architecture. Used with

 permission, source: https://towardsdatascience.com/review-

 ssd-single-shot-detector-object-detection-851a94607d11 [56]

YOLO and SSD are both known to be fast. However, SSD is known

to provide better accuracy for objects of varying sizes because of its

multiscale feature maps and receptive fields. A comparison of the

performance of SSD, YOLO, and Faster R-CNN is shown in Figure 2-27.

 Model Comparison

Choosing the right model is crucial for robotics and depends on the

problem you are trying to solve and how you set it up. The results of Faster

R-CNN, YOLO, and SSD based on mAP and FPS on Pascal VOC2007

are shown[20] in Figure 2-27. The input images from these datasets are tested with different resolutions to compare results. It is important to note

that newer versions of YOLO (YOLO v9, v10), which have an improved

architecture, have much higher mAP and FPS, but we’ve provided results

from this study as a benchmark.

79

[image: Image 40]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

 Figure 2-27. Comparison of Faster R-CNN, YOLO, and SSD based

 on average precision (mAP) and FPS, on the Pascal VOC2007

 dataset. Used with permission, source: https://arxiv.org/

 pdf/1512.02325 [20]

In another example, a paper[21] by Google Research looked at various

object-detection models and the tradeoffs between speed (GPU time) and

accuracy (mAP). They generally found that R-FCN and SSD models are

faster, as they require less GPU time per image, but they tend to have lower

accuracy (mAP). On the other hand, Faster R-CNN models tend to be

slower but achieve higher accuracy. For Faster R-CNN models, the speed

can also be improved by reducing the number of regions proposed during

detection. It’s important to note that different combinations of feature

extractors (e.g., Inception Resnet V2, MobileNet) and architectures (e.g.,

Faster R-CNN, SSD, and so on) result in different performance benefits, as

shown in Figure 2-28. This tradeoff will differ depending on the problem

you are working on and your dataset. This tradeoff is essential to consider,

especially with real-time detection applications in robotics.

80

[image: Image 41]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

 Figure 2-28. Tradeoffs of various object-detection models when

 it comes to GPU time vs mAP. Used with permission, source:

 https://arxiv.org/pdf/1611.10012[57]

 Transformers for Perception

The previous section covered CNN-based vision techniques. However,

in recent times, transformer-based[23] vision techniques have provided

a strong alternative to solving vision problems discussed in this chapter.

Transformers, as opposed to CNNs, rely on self-attention mechanisms to

model global connections among visual elements, thereby improving the

model’s understanding of contextual information. In robotics, applications

like object detection, image segmentation, and visual reasoning—where

global context and fine-grained interactions are essential for precise

decision-making—are ideally suited to transformers.

81

[image: Image 42]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

 Transformer Introduction

To understand how sequence models can be applied to robotics, you first

need to understand attention, which is the neural network element that

explicitly motivates the network to focus on certain parts of the input data

and ignore others. In long sequences, unrolling the net in time means

older inputs are forgotten. Attention provides a direct path to older inputs,

thereby reducing the vanishing/exploding gradient problem.

The attention mechanism was first proposed by Bahdanau et al.

[22] as embedding weights to jointly align and translate during a neural

machine translation task. Prior to the work proposed by Bahdanau et al.

[22], neural translation involved an encoder and decoder setup where

an encoder converted inputs to an embedding representation and a

decoder converted the embedding back into tokens in a target language.

In Bahdanau et al.[22], a simple feedforward network was used to calculate

alignment scores between the input and output tokens. This score was

used to weigh the context vector of the RNN decoder. This would later

become known as additive attention since feedforward applies a linear,

additive function on inputs.

Equation 2-1

In Equation 2-1, a_ij is a learned weight given to the jth input to

calculate the ith output. This mechanism was soft attention. Since then,

several attention mechanisms have been proposed:

• Content-based attention[35]: This method uses the

cosine similarity between the target state and the

source hidden state.

82

Chapter 2 robot perCeption: SenSorS and image proCeSSing

• Additive attention[22]: Using a trainable weight vector,

followed by a tanh activation over the combination

or concatenation of the target state and the source

hidden state.

• General attention[36]: A trainable weight matrix is

applied to the source hidden state and the dot product

is taken with the target state.

• Dot-product attention[36]: The dot product of the

target state and the source hidden state is computed.

• Scaled dot-product attention[23]: Similar to dot-

product attention, but the score is scaled by the square

root of the dimension 𝑛 of the source hidden state.

• Cross-attention[38]: The attention scores are

computed as the dot product between the queries 𝑄

(from one input sequence) and the keys 𝐾 (from a

different input sequence), scaled by the square root

of the dimension of the keys divided by the number

of heads, h. After applying the softmax function to

these scores, they are used to weigh the values 𝑉. This

technique can be used for conditioning on multiple

input streams.

• Flash attention[37]: For Flash attention, tiling breaks

the large attention matrix into smaller blocks that fit

within fast memory (SRAM). Each block is processed

independently, keeping intermediate data local to

avoid frequent reads/writes to slower memory (HBM).

This reduces memory overhead and speeds up

computation, while making sure the correct softmax

output is computed across the sequence.

83

Chapter 2 robot perCeption: SenSorS and image proCeSSing

 The Transformer

An important neural network architecture that bases itself on the ability

to utilize attention over long sequences is the transformer. Introduced in

Vaswani et al.[23], titled “Attention Is All You Need,” transformers have

changed the terrain of deep learning by providing better than human

performance in speech and vision. The best language models in the world,

including GPT-3[24] and PaLM[25], are transformers.

Outside of being applied to tasks such as machine translation, text

generation, and language understanding, transformers can be utilized

for object detection and tracking in robotic vision systems. Using self-

attention mechanisms, transformers can capture global dependencies

and spatial relationships between different regions, leading to improved

object recognition and tracking capabilities. Other use cases in robotics

include path planning and navigation tasks in robotics where transformers

can be used to capture long-range dependencies and use contextual

information, improving the robot’s ability to navigate complex and

dynamic environments.

Vaswani et al.[23] categorizes an attention network generically as

mapping a set of queries and key-value pairs to outputs where they are

all vectors. Figure 2-29 shows that the output is a weighted sum of all the

values, and the weight is calculated as a dot product of the query and key

vectors.

84

[image: Image 43]

[image: Image 44]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

 Figure 2-29. Scaled dot product attention and multi-head attention.

 Used with permission, source: https://papers.nips.cc/paper_

 files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-

 Abstract.html [23]

In scaled dot product attention, the attention is calculated using

Equation 2-2:

Equation 2-2

where Q is a query, K is the key, V are value vectors, and d_k is the

dimension of the key vector. Compared to additive attention introduced in

Bahdanau et al.[22], dot product attention is faster to compute and space-

efficient. In scaled dot product attention, the 1/ sqrt(d_k) keeps the input

value of the softmax value normalized, since for large values of d_k, the dot

product is pushed to areas where the softmax function has small gradients.

The original transformer paper uses both scaled dot product attention

and multi-head attention. Multi-head attention is used to project query,

key values into multiple heads/representation subspaces to apply

scaled dot product attention over them. In multi-headed attention, you

85

[image: Image 45]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

parallelize by first projecting values, keys, and queries to the d_v, d_k, and

d_q dimensional arrays, respectively, then applying scaled dot product

attention, as shown in Equation 2-3. This allows the model to attend to

different information from different embedding subspaces jointly.

Equation 2-3

The transformer (as shown in Figure 2-30) employs multi-headed

attention with an encoder-decoder setup in three places:

1. In the encoder as self-attention where the keys,

values, and queries come from the encoder, such

that the encoder can attend to all its positions.

2. Between the encoder and decoder, where keys and

values come from the encoder and queries come

from the previous output of the decoder.

3. In the decoder as self-attention, where the keys,

values, and queries come from the decoder, such

that the decoder can attend to all its positions.

86

[image: Image 46]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

 Figure 2-30. The transformer. Used with permission, source:

 https://papers.nips.cc/paper_files/paper/2017/hash/3f5

 ee243547dee91fbd053c1c4a845aa-Abstract.html [23]

 Transformers for Vision

This section looks at methods that allow you to apply transformers to

perception problems mentioned in this chapter, namely classification,

detection, segmentation, and captioning.

 Image Classification with Vision Transformer (ViT)

One of the first applications of transformers to computer vision that could

be applied for robotic perception was published by Dosovitskiy et al.[26] in

the form of the vision transformer (ViT). By utilizing its ability to interpret

visual data and capture contextual relationships, the vision transformer

87

[image: Image 47]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

(ViT) can be used for image classification. The ViT is useful when you need

a thorough grasp of the environment because of its attention mechanism,

which enables it to model long-range dependencies and capture fine-

grained information. A robot’s perception abilities can be improved

by modifying the ViT architecture and training it on domain-specific

data. This allows the robot to move around, interact, and make better

judgements based on visual input.

The ViT tokenizes an image into patches. Then, it feeds it into a

transformer as if the patches were sequences with a position embedding

corresponding to the patch’s position in the picture. The architecture of

this is shown in Figure 2-31. This architecture, in essence, unifies natural

language research and computer vision research, because you can now

treat images as language by tokenizing an image into a sequence of patch

tokens, just like how a sentence/document is a sequence of language

tokens. Prior to this paper, convolutional neural nets dominated vision

processing and transformers dominated language processing, but ViT set

the foundations for transformers dominating vision and eventually visual-

language or multimodal processing.

 Figure 2-31. Vision transformer architecture. Used with permission,

 source: https://arxiv.org/abs/2010.11929 [26]

88

Chapter 2 robot perCeption: SenSorS and image proCeSSing

While breaking a picture up into multiple patches seems

counterintuitive to the purpose of retaining geometric correlation

across patches, it was found that when the model is pretrained on a very

large dataset (> 100M images) and then fine-tuned to a classification

task, it learned the relationships between the position embeddings

and could extract features across patches. With smaller dataset sizes, a

ResNet-based model was still dominant given that convolution neural

nets preserve inductive biases about translational equivariance and

locality. A closer inspection found that the initial layers learn to attend to

features in the patches, preserving its low dimensional structure. Once

position embedding is added, there are similarities in the embeddings

between close patches and those in the same row/column, meaning that

the network learns the larger geometrical context of the image. From

that perspective, the attention distance of the ViT is comparable to the

receptive field of ResNets.

The ViT handles images of higher resolution by increasing the

sequence length and 2D interpolation of pretrained position embeddings

corresponding to the new patch positions.

The paper also found that ViTs outperform ResNets on compute

vs performance, requiring two to four times less memory for the same

performance. Interestingly, the model didn’t saturate, indicating the

possibility of higher performance via scaling.

 Scaling Vision Transformers

Although ViTs are state of the art for many computer vision tasks, scaling

them like regular dense transformers had proven to be infeasible due to

training instabilities. The paper, “Scaling Vision Transformers to 22 Billion

Parameters, ”[27] dives into why the traditional method of training ViTs

produces instability during scaling and how to modify the architecture

to prevent it. As a result of these investigations and modifications, they

introduce the ViT 22B model, composed of 22 billion parameters, which

89

[image: Image 48]

[image: Image 49]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

at the time was 5.5x larger than the previous vision backbone ViT-e of four

billion parameters. ViT 22B deeply inspired PaLM-e[28], which combines

ViT and a large language model to create an early multimodal robot

foundation model. Chapter 4 discusses this more in depth.

The authors apply three main modifications to traditional ViT to

enable scaling:

1. Parallel layers: ViT 22B applies attention and MLP

blocks in parallel, rather than sequentially as in

a traditional transformer. This enables grouping

some operations such as parallelization of linear

projections of the MLP and attention blocks. This

technique results in a 15 percent increase in speed

during training without affecting performance.

2. QK normalization: At around 8B parameters, it

was noticed that attention logits become really

large values and exhibit very low entropy, leading

to a divergence in training loss that makes training

unstable. Applying a LayerNorm to queries and

keys before scaled dot product attention fixes this

issue, as shown in Figure 2-32. Attention weights

are then calculated as

where X is input, and W^Q and W^K correspond to

query and key weight matrices, respectively.

90

[image: Image 50]

[image: Image 51]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

3. Omitting bias terms: Removing the bias from QKV

projections and LayerNorms was first found useful

in the PaLM 540B paper[25] and was repeated in the

ViT-22B paper as well, since it improves accelerator

utilization without compromising performance.

Contrary to PaLM 540B, ViT 22B preserves bias

terms in MLP dense layers because it was found to

not harm utilization.

 Figure 2-32. Improvement in training metrics due to query/

 key normalization (green curve). Used with permission, source:

 https://arxiv.org/pdf/2302.05442[27]

 Figure 2-33. Parallel ViT-22B layer with QK normalization. Used

 with permission, source: https://arxiv.org/pdf/2302.05442 [27]

91

Chapter 2 robot perCeption: SenSorS and image proCeSSing

Figure 2-33 shows the modified ViT encoder with the modifications

applied in ViT-22B. It is trained on an extended JFT dataset comprising

around 4B images. The practical implementation of ViT 22B was done

on JAX with model and data parallelism; it incorporates measures to

optimize for throughput by improving computation (per device) and

communication (between devices). ViT 22B approaches SoTA results on

several perception tasks, including classification, semantic segmentation,

and monocular depth estimation.

 Learning Joint Image-Language Features

Applying language with computer vision such as using CLIP, introduced

by Radford et al.[29], allows you to use a ViT-like transformer to get richer

visual features. The idea of CLIP is to jointly learn embeddings from a large

corpus of image-text pairs in order to use zero-shot image classification.

Instead of training an image encoder and classifier, you jointly train an

image encoder and text encoder, which are fed batches of (image, text)

pairs with a label indicating whether they match. There are a few strong

reasons for doing this.

It removes the requirement of labeling the data in the format intended

for classification tasks. Even ImageNet only labels 1,000 classes, which

is far fewer than object descriptors required for generalized vision.

Compared to it, natural language supervision trains on descriptive text,

without explicit and formatted labeling. This enables training from the

large number of image/text descriptions on the Internet, compared to

previous benchmarks, as well learning attributes of the image such as

object types, aesthetics, style, and other features that people are likely to

write online about.

Contrastive objectives are also found to be better than predictive

objectives at learning representations. In a contrastive setting, the model

is trained to predict which text is paired with which image rather than

predicting the exact words of that text. This is because the jointly trained

92

[image: Image 52]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

image encoder learns the representations required to describe the same

image in many ways rather than using a singular label. An overview of

CLIP is shown in Figure 2-34.

 Figure 2-34. Summary of CLIP. Used with permission, source:

 https://arxiv.org/pdf/2103.00020v1 [29]

The image encoder backbone could be a standard ResNet or the vision

transformer and the text encoder could be another text transformer such

as in Vaswani et al.[23]

Robotic perception can be improved by richer image understanding

made possible by CLIP features. Language allows more flexible querying of

objects than is allowed by pure classification/detection methods. CLIP’s skill

in correlating image and text features can help robots make inferences based

on language instruction from a human to relevant object/image features in

the environment to complete challenging visual language tasks. Chapter 4

discusses the applications of language in robotics in better depth.

 Open Vocabulary Object Detection with Transformers

While the original ViT models perform detection on ImageNet

benchmarks[30], OWL-ViT[31] combines the techniques of ViT and CLIP

to perform open vocabulary object detection. They train a large CLIP

network on billions of Internet-scale, paired image-text data and fine tune

it to a smaller detection dataset with millions of examples.

93

Chapter 2 robot perCeption: SenSorS and image proCeSSing

How does OWL-ViT modify CLIP?

1. OWL-ViT removes the token pooling and projection

layer of CLIP and instead projects the output token

embeddings to get per object detection labels. For

each object query, a probability of how much the

query relates to the image and a bounding box is

predicted. At this point, closed class object detection

becomes a special case, where every class label is

applied as a query to every image.

2. While early fusion is generally useful to extract the

right image features, early fusion can make things

slower in OWL-ViT, since you would need to parse

through the entire image for every query. Instead,

the queries are independently passed through a text

encoder, allowing the use of thousands of queries

per image and boosting inference efficiency.

3. Since language and image are fused late, you could

also perform object detection conditioned on image

embeddings instead of text embeddings, enabling

image-conditioned object detection.

4. The model is trained using focal sigmoid cross-

entropy loss, which fits datasets with a large number

of classes, where labels are disjoint and each image

has several examples of positive (present) and

negative (absent) labels.

OWL-ViT gets really good performance on open vocabulary object

detection, by a large margin from prior work. It also shows zero-shot

object detection, signaling the transfer of knowledge and representations

94

[image: Image 53]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

from Internet-scale data to object detection tasks. OWL-ViT is fast enough

to run open vocabulary detection within 100ms, which means it can be

widely used as an auto-labeling system. Figure 2-35 shows the process of

pretraining an image and text encoder using CLIP and the OWL-VIT used

for open-vocabulary detection.

 Figure 2-35. Left: CLIP pretraining. Right: OWL-VIT for detection. Used

 with permission, source: https://arxiv.org/pdf/2205.06230[58]

 Promptable Open Vocabulary Segmentation

Transformers have also been applied to solve the image segmentation

problem with a method called Segment Anything Model

(SAM)[32]developed by Meta Research in 2023. They followed this up

with Segment Anything 2[33] in 2024, which applies segmentation across

video frames. SAM defines promptable segmentation as the task of

generating a valid segmentation mask for any prompt specifying textual

or spatial information to look for in an image, in a manner that is flexible,

ambiguity-aware, and in real time. SAM was trained on 11 million images

and 1.1 billion segmentation masks[34], becoming an extremely valuable

foundation model in computer vision.

95

[image: Image 54]

Chapter 2 robot perCeption: SenSorS and image proCeSSing

SAM has three main components:

1. An

image encoder that encodes an input image

into an embedding to extract high level features and

semantic representation, in this case a ViT

2. A

prompt encoder to encode different types of

prompts (sparse and dense) into embedding vectors

3. A

mask decoder that uses the image and prompt

embeddings to predict segmentation masks. It updates

these embeddings using self-attention and cross-

attention between the prompt and image embeddings

Figure 2-36 shows an overview of how these three components interact

in the Segment Anything framework. SAM has an end-to-end latency of

50ms from input to mask generation and is very fast.

 Figure 2-36. The Segment Anything processing pipeline. Used with

 permission, source: https://arxiv.org/pdf/2304.02643 [32]

To extend SAM to video segmentation, SAM2 introduces a memory

attention, a memory encoder, and a memory bank. SAM2 extends

segmentation in the temporal dimension by allowing a prompt on one

or more images of a video, and expecting a segmented output across

frames. The prompt could be a click, a text description, and so on. The

image encoder in SAM2 produces one embedding per frame of video. The

memory attention conditions the output segmentation mask prediction

on past images, past predictions, and any new prompts by applying self-

attention on current images and cross-attention to memories of frames

96

Chapter 2 robot perCeption: SenSorS and image proCeSSing

and past predictions. The memory encoder generates memories by

downsampling the output. The memory bank is a first-in, first-out (FIFO)

queue that stores as spatial feature maps M memories for frames and N

memories for prompted frames as well as object pointers for the target

object to be segmented as vector embedding.

SAM2 is trained jointly on image and video data with interactive

prompting and shows remarkable performance for zero-shot open

vocabulary segmentation in videos.

 Summary

The chapter covered the following concepts:

• Robots use various sensors to perceive their

environment, including vision sensors like cameras

for capturing images, depth sensors for measuring

distance, range sensors like LiDAR and ultrasonic

sensors for navigation, and IMUs to track motion and

orientation.

• Robots perform tasks like classification, semantic

segmentation, instance segmentation, and object

detection. These tasks help robots navigate, manipulate

objects, and interpret environments.

• CNNs can be used to process images through layers

like convolutional layers, ReLU, and pooling layers. The

chapter discussed different models, including R-CNN,

Fast/Faster R-CNN, YOLO, and SSD, including how

such models balance speed and accuracy for tasks like

object detection and segmentation, each with tradeoffs

in performance.

97

Chapter 2 robot perCeption: SenSorS and image proCeSSing

• Transformers treat images as sequences, allowing them

to capture global context and dependencies within

an image. Models like vision transformers (ViT) and

detection transformers (DETR) can be used for object

detection and segmentation, and they outperform

traditional CNNs in certain scenarios. The chapter also

explored how transformers can be scaled efficiently,

and how methods like ViT (for classification), CLIP

(for joint image-text understanding), and SAM (for

segmentation) can be useful in robotics.

This chapter focused mainly on 2D image-processing techniques.

The next chapter discusses 3D image-processing methods, multimodal

perception, and sensor fusion.

References

[1] Johannesson, Pär-Olof. “What’s the Difference between

Frame- and Event-Based Lidar?” Electronic Design,

20 Jan. 2021, www.electronicdesign.com/markets/

automotive/article/21152870/terranet- whats- the-

difference-between-frame-and-event-based-lidar.

[2] https://www.micron.com/about/blog/storage/ssd/

adas-camera- requirements-driving-memory-needs

[3] rpg.ifi.uzh.ch/research_dvs.html

[4] Rosebrock, Adrian. “Intersection over Union (IOU)

for Object Detection.” PyImageSearch, 7 Nov. 2016,

pyimagesearch.com/2016/11/07/intersection-over-

union-iou-for-object-detection/.

98

Chapter 2 robot perCeption: SenSorS and image proCeSSing

[5] Shah, Deval. “Mean Average Precision (MAP) Explained:

Everything You Need to Know.” V7 Labs, 7 Mar. 2022,

www.v7labs.com/blog/mean-average-precision.

[6] Kumar, Harshit. “Evaluation Metrics for Object Detection

and Segmentation: mAP.” Harshit Kumar, 20 Sept. 2019,

kharshit.github.io/blog/2019/09/20/evaluation-

metrics-for-object-detection-and-segmentation.

[7] teamraft.com/2020/05/01/object-detection-in-a-

nutshell/

[8] Kollu, SaiSumanth. “Introductory Note on Deep

Learning.” Analytics Vidhya, 28 Nov 2022, www.

analyticsvidhya.com/blog/2022/01/introductory-

note-on-deep-learning/?utm_source=related_

WP&utm_medium=www.analyticsvidhya.com/

blog/2021/06/deep-dive-into- time-series-data-

with-single-neuron/.

[9] “CS231n Convolutional Neural Networks for Visual

Recognition.” cs231n.github.io/.

[10] Girshick, Ross, et al. “Rich feature hierarchies for

accurate object detection and semantic segmentation.”

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 2014.

[11] d2l.ai/chapter_computer-vision/rcnn.html.

[12] Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE

International Conference on Computer Vision. 2015.

[13] Ren, Shaoqing, et al. “Faster R-CNN: Towards real-

time object detection with region proposal networks.”

IEEE Transactions on Pattern Analysis and Machine

Intelligence 39.6 (2016): 1137-1149.

99

Chapter 2 robot perCeption: SenSorS and image proCeSSing

[14] Sachan, Ankit. “Zero to Hero: Guide to Object Detection

Using Deep Learning: Faster R-CNN,Yolo,SSD.” CV

Tricks, cv-tricks.com/object-detection/faster-r-

cnn-yolo-ssd/.

[15] He, Kaiming, et al. “Mask r-cnn.” Proceedings of the IEEE

International Conference on Computer Vision. 2017.

[16] He, Kaiming, et al. “Deep residual learning for image

recognition.” Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 2016.

[17] Ronneberger, Olaf, Philipp Fischer, and Thomas

Brox. “U-net: Convolutional networks for biomedical

image segmentation.” Medical image computing and

computer-assisted intervention–MICCAI 2015: 18th

international conference, Munich, Germany, October

5-9, 2015, proceedings, part III 18. Springer International

Publishing, 2015.

[18] Tan, Mingxing, and Quoc Le. “EfficientNet: Rethinking

model scaling for convolutional neural networks.”

International Conference on Machine Learning.

PMLR, 2019.

[19] Redmon, Joseph, et al. “You only look once: Unified,

real-time object detection.” Proceedings of the

IEEE Conference on Computer Vision and Pattern

Recognition. 2016.

[20] Liu, Wei, et al. “Ssd: Single shot multibox detector.”

Computer Vision–ECCV 2016: 14th European

Conference, Amsterdam, The Netherlands, October

11–14, 2016, Proceedings, Part I 14. Springer

International Publishing, 2016.

100

Chapter 2 robot perCeption: SenSorS and image proCeSSing

[21] Kim, Jeong-ah, Ju-Yeong Sung, and Se-ho Park.

“Comparison of Faster-RCNN, YOLO, and SSD for real-

time vehicle type recognition.” 2020 IEEE International

Conference on Consumer Electronics-Asia (ICCE-Asia).

IEEE, 2020.

[22] Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua

Bengio. “Neural machine translation by jointly

learning to align and translate.” arXiv preprint

 arXiv:1409.0473 (2014).

[23] Vaswani, Ashish. “Attention is all you need.” arXiv

 preprint arXiv:1706.03762 (2017).

[24] Brown, Tom B. “Language models are few-shot learners.”

 arXiv preprint ArXiv:2005.14165 (2020).

[25] Chowdhery, Aakanksha, et al. “Palm: Scaling language

modeling with pathways.” Journal of Machine Learning

 Research 24.240 (2023): 1-113.

[26] Dosovitskiy, Alexey, et al. “An image is worth 16x16

words: Transformers for image recognition at scale.”

 arXiv preprint arXiv:2010.11929 (2020).

[27] Dehghani, Mostafa, et al. “Scaling vision transformers

to 22 billion parameters.” International Conference on

Machine Learning. PMLR, 2023.

[28] Driess, Danny, et al. “Palm-e: An embodied multimodal

language model.” arXiv preprint arXiv:2303.03378 (2023).

[29] Radford, Alec, et al. “Learning transferable visual models

from natural language supervision.” International

Conference on Machine Learning. PMLR, 2021.

[30] https://paperswithcode.com/sota/image-

classification-on-imagenet

101

Chapter 2 robot perCeption: SenSorS and image proCeSSing

[31] Minderer, Matthias, et al. “Simple open-vocabulary

object detection.” European Conference on Computer

Vision. Cham: Springer Nature Switzerland, 2022.

[32] Kirillov, Alexander, et al. “Segment anything.”

Proceedings of the IEEE/CVF International Conference

on Computer Vision. 2023.

[33] Ravi, Nikhila, et al. “Sam 2: Segment anything in images

and videos.” arXiv preprint arXiv: 2408.00714 (2024).

[34] Buhl, Nikolaj. “Meta AI’s Segment Anything Model

(Sam) Explained: The Ultimate Guide.” Encord, 6 Apr.

2023, encord.com/blog/segment-anything-model-

explained/.

[35] Graves, Alex. “Neural Turing Machines.” arXiv preprint

 arXiv:1410.5401 (2014).

[36] Luong, Minh-Thang. “Effective approaches to attention-

based neural machine translation.” arXiv preprint

 arXiv:1508.04025 (2015).

[37] Dao, Tri, et al. “Flashattention: Fast and memory-

efficient exact attention with io-awareness.” Advances

 in Neural Information Processing Systems 35 (2022):

16344-16359.

[38] Lin, Hezheng, et al. “Cat: Cross attention in vision

transformer.” 2022 IEEE International Conference on

Multimedia and Expo (ICME). IEEE, 2022.

[39] Premebida, Cristiano, Rares Ambrus, and Zoltan-

Csaba Marton. “Intelligent robotic perception systems.”

 Applications of Mobile Robots (2018): 111-127.

102

Chapter 2 robot perCeption: SenSorS and image proCeSSing

[40] Gallego, Guillermo, et al. “Event-based, 6-DOF

camera tracking from photometric depth maps.”

IEEE Transactions on Pattern Analysis and Machine

Intelligence 40.10 (2017): 2402-2412.

[41] Ng, Bryan, et al. “Understanding the Role of Optics

for Consumer Electronics in 2024.” Wavelength Opto-

Electronic Singapore, 27 Nov. 2023, wavelength-oe.com/

articles/optics-for-consumer-electronics/.

[42] Durai, Pranav. “3D LiDAR Visualization: Case Study on

2D KITTI Depth Frames.” Learnopencv.com, 5 Dec. 2023,

learnopencv.com/3d- lidar- visualization/.

[43] “What is LiDAR and how does it work ?” YellowScan, 25

Aug 2023, www.yellowscan.com/knowledge/how-does-

lidar-work/.

[44] Bouazizi, Mondher, Alejandro Lorite Mora, and Tomoaki

Ohtsuki. “A 2D-Lidar-equipped unmanned robot-based

approach for indoor human activity detection.” Sensors

23.5 (2023): 2534.

[45] Pandey, Gaurav, et al. “Visually bootstrapped generalized

ICP.” 2011 IEEE International Conference on Robotics

and Automation. IEEE, 2011.

[46] Smoot, Jeff. “The Basics of Ultrasonic Sensors.” Same Sky,

Apr. 2021, www.sameskydevices.com/blog/the-basics-

of-ultrasonic-sensors.

[47] Or, Barak. “What Is IMU?” Medium, 31 Jul 2021,

towardsdatascience.com/what-is-imu-9565e55b44c.

103

Chapter 2 robot perCeption: SenSorS and image proCeSSing

[48] Badrinarayanan, Vijay, Alex Kendall, and Roberto

Cipolla. “SegNet: A deep convolutional encoder-decoder

architecture for image segmentation.” IEEE Transactions

on Pattern Analysis and Machine Intelligence 39.12

(2017): 2481-2495.

[49] Sayedi, Husna. “Introduction to Image Annotation for

ML and AI.” Taus.net, 19 April 2021, www.taus.net/

resources/blog/introduction-to- image-annotation-

for-ml-and-ai.

[50] Selvaraj, Michael Gomez, et al. “AI-powered banana

diseases and pest detection.” Plant Methods 15

(2019): 1-11.

[51] Keells, John. “Theory behind Confusion Matrix -

OCTAVE - John Keells Group - Medium.” Medium, 26

Nov. 2023, octave-jkh.medium.com/theory-behind-

confusion-matrix-bccabd3ad7d7.

[52] Tam, Adrian. “Building a Convolutional Neural Network

in PyTorch” MachineLearningMastery.com, 8 April

2023, machinelearningmastery.com/building-a-

convolutional-neural-network-in-pytorch/.

[53] Tammina, Srikanth. “Transfer learning using vgg-16

with deep convolutional neural network for classifying

images.” International Journal of Scientific and Research

Publications (IJSRP) 9.10 (2019): 143-150.

[54] Bhatt, Anil. “CNN - Activation Functions, Global Average

Pooling, Softmax, Negative Likelihood Loss” Linkedin.

com, 19 Mar. 2020, www.linkedin.com/pulse/cnn-

activation-functions-global-average-pooling-

softmax-n-bhatt/.

104

Chapter 2 robot perCeption: SenSorS and image proCeSSing

[55] “IoT Sensors Enable Robot to Clean through Object

Detection.” Ubiqisense.com, 26 Jan 2021, www.

ubiqisense.com/news/robot-to- clean-canteens.

[56] Tsang, Sik-Ho. “Review: SSD — Single Shot Detector

(Object Detection).” Medium, Towards Data

Science, 3 Nov. 2018, towardsdatascience.com/

review-ssd-single-shot-detector-object-

detection-851a94607d11.

[57] Huang, Jonathan, et al. “Speed/accuracy trade-offs for

modern convolutional object detectors.” Proceedings

of the IEEE conference on computer vision and pattern

recognition. 2017.

[58] Minderer, Matthias, et al. “Simple open-vocabulary

object detection with vision transformers. ArXiv

abs/2205.06230 (2022).” (2022).

105

CHAPTER 3

Robot Perception:

3D Data and Sensor

Fusion

3D sensor data collected from LiDAR or depth cameras is critical for real-

world robotic perception, as it allows robots to perceive the three-

dimensional structure of objects around them. 3D sensor data is often

collected and used by industrial and consumer robots, but one of the most

relevant applications is in the development of autonomous vehicles. The

key force behind autonomous vehicles is 3D sensor data collected from

LiDAR or depth cameras. From 3D sensor data, autonomous vehicles

can accurately perceive the three-dimensional structure of objects,

pedestrians, and other vehicles around them. This information enables

robust object detection, precise localization, and reliable path planning,

leading to improved safety, situational awareness, and more efficient

decision-making in real-time driving scenarios. Some autonomous vehicle

companies also rely on 3D data processing to create detailed maps, aiding

in navigation and ensuring smooth and reliable autonomous driving

experiences.

Overall, 3D data processing is extremely important for robotic

perception, mapping, and navigation. By processing 3D sensor data, such

as point clouds and depth maps, robots can perceive their surroundings in

© Alishba Imran, Keerthana Gopalakrishnan 2025

107

A. Imran and K. Gopalakrishnan, AI for Robotics,

https://doi.org/10.1007/979-8-8688-0989-7_3

Chapter 3 robot perCeption: 3D Data anD SenSor FuSion

three dimensions, detect obstacles, and plan collision-free paths to reach

their destinations. This chapter addresses methods to process data with

depth perception such as 3D maps as well as sensor fusion. It also covers

techniques used to compress data from multimodal sensors such as radar,

LiDAR, and cameras.

 3D Data Processing

To understand 3D data processing, you first need to study how 3D data

is represented in the framework of machine learning. Then you can

understand the methods and learn from the data representations that the

model generates.

 Data Representation

3D data, typically from a LiDAR, which is a stereo vision camera with depth

or infrared sensor, is generally represented in the form of point clouds,

voxels, or meshes.

Let’s consider each of these terms.

• A point cloud is a set of point coordinates in space,

generally represented as a cartesian (x, y, z). A multiple

return LiDAR sensor can provide a point cloud.

• A voxel or a volumetric pixel is a 3D pixel. It is again

represented as a pixelized (x, y, z) point where the

coordinates are limited by resolution of the voxel grid.

A sparse voxel is a memory efficient representation

where only cells containing information are stored.

Octrees are a variant of sparse voxels where adjacent

cells that are identical are aggregated, allowing for data

compression.

108

[image: Image 55]

Chapter 3 robot perCeption: 3D Data anD SenSor FuSion

• A mesh is a polygon representation of 3D data where

the data is represented as a composition of polygon

surfaces, generally triangles.

A depth map is typically the output of a stereo vision camera where, for

every (x,y) pixel, there’s a depth (z). Note that this is a 2.5D representation,

as you cannot have multiple values of depth for the same pixel.

Parametric modeling refers to representing objects in terms of surfaces

and volumes that share parameters, such that interlinked attributes

change together. An example is a CAD model of an object, where height

and width can change with scale. The difference between a 3D mesh image

and a voxelized image is shown in Figure 3-1.

 Figure 3-1. 3D mesh and voxel representation of a human face.

 Used with permission, source: https://link.springer.com/

 article/10.1007/s11042-020-08688-x [29]

With voxels, the size of the dataset increases cubically with space,

while the data stays ordered. With point clouds, you can represent varied

spatial density and resolutions effectively, but a point set is permutation-

invariant and models that use them need to factor that property.

109

[image: Image 56]

Chapter 3 robot perCeption: 3D Data anD SenSor FuSion

For the purpose of robotics, this chapter focuses on processing point

clouds, since, following the advent of LiDARs, they have been more widely

adopted in research and industry.

 Processing Point Clouds

Point clouds are fundamentally irregular in representation. They are also

permutation-invariant, meaning changing the order of the points does

not change the dataset. In the past, point clouds were processed after their

voxelization, such as with VoxNet[1] and 3D ShapeNet[2]. However, this increases memory usage and introduces quantization artifacts, such as

removing information in high point density clusters.

PointNet[3], shown in Figure 3-2, is a pioneering architecture for object classification and segmentation on point clouds. The network takes a set

of n unordered points and converts them to transform invariant feature

vectors using multilayer perceptrons.

 Figure 3-2. PointNet architecture. Used with permission, source:

 https://arxiv.org/abs/1612.00593 [3]

The inputs are aligned to a canonical space by calculating an affine

transformation using a T-net, which is a mini-network resembling the

bigger network, shown in Figure 3-2, that contains point-independent

feature extraction, max pooling, and fully connected layers. The feature

110

Chapter 3 robot perCeption: 3D Data anD SenSor FuSion

vectors are concatenated to original points and these joint point features

are aggregated using multiple MLP[4] and max pooling layers[5] to output per point scores. At the time of its release, PointNet was the state of the art

in semantic segmentation for point clouds. However, since max pooling

is an aggregation and doesn’t preserve local structures, PointNet is not

robust with fine grained patterns and highly complex scenes.

The drawback concerning local structures was improved upon by

PointNet++[6], shown in Figure 3-3. PointNet++ attempts to solve this issue by first partitioning the set of points into overlapping local regions

using a Euclidean distance metric for 3D space. Then, instead of using

a single max pooling operator on the entire point cloud, PointNet++

builds a hierarchical grouping of these points, extracts local features

using PointNet, and processes them in hierarchical groups to get higher

level features in an iterative fashion. Essentially, they recursively apply

PointNet on a nested partition of the input set. The overlapping partitions

are generated by defining balls in the input space with varying sizes and

centers, and the centroids of these clusters/balls are generated using the

farthest point sampling (FPS) algorithm[7]. In comparison to volumetric

CNNs[8], which always have the same receptive field, applying PointNet

to these Euclidean kernels of varying sizes adapts to the variation of

point cloud density and variation in feature scales. This is achieved

during training by random input dropout such that the network learns to

adaptively combine features extracted from multiscale neighborhoods

based on input data.

111

[image: Image 57]

[image: Image 58]

Chapter 3 robot perCeption: 3D Data anD SenSor FuSion

 Figure 3-3. PointNet++ architecture. Used with permission, source:

 https://arxiv.org/pdf/1706.02413 [6]

The interpolation operation shown in the segmentation head of the

network in Figure 3-3 is achieved by interpolating features at point j using

an inverse distance weighted averaging over k nearest neighbors (see

Equation 3-1).

Equation 3-1, source: https://arxiv.org/pdf/1706.02413[6]

These are then concatenated with skip level point features from

the abstraction layer and passed through unit PointNets (close to 1*1

convolution). These are then propagated back until the original point set is

labeled.

However, PointNet++ still has room to improve. Feature extraction

using PointNet that uses max pooling loses spatial information.

PointCNN[9], shown in Figure 3-5, aims to use the ability of traditional CNNs to capture local and hierarchical features with increasing receptive

fields on point clouds. One way to apply CNNs on point clouds is by

voxelizing the data and then applying CNNs on the voxels. However, this

112

[image: Image 59]

[image: Image 60]

Chapter 3 robot perCeption: 3D Data anD SenSor FuSion

is not an efficient representation of data and voxel CNNs take up too

much memory due to dimensionality. PointCNN solves this problem by

introducing an 𝑋-conv operator that transforms the point cloud into a

latent and canonical space. The algorithm for this is shown in Figure 3-4.

 Figure 3-4. 𝑋-conv algorithm. Used with permission, source:

 https://arxiv.org/pdf/1801.07791 [9]

If there are N points in the point set, the 𝑋-conv operation samples K

neighborhood points for every point in input set, which constitutes its local

neighborhood. Each local neighborhood is brought to its own coordinate

system. The 𝑋-conv operation is completely differentiable and converts

the points to a feature space that is deeper, with smaller spatial resolution.

 Figure 3-5. Point CNN architecture for classification (a and b) and

 for segmentation (c). Used with permission, source: https://arxiv.

 org/pdf/1801.07791 [9]

113

[image: Image 61]

Chapter 3 robot perCeption: 3D Data anD SenSor FuSion

Each 𝑋-conv layer reduces the number of points with increasing

receptive fields, with the final point seeing all the points. For detection,

the final 𝑋-conv layer is paired with a fully connected layer and loss

function to train the network. For segmentation, 𝑋-conv is applied in a

fashion similar to the U-Net, where there are successive d-conv operations

until the original points have propagated features. PointCNN is found to

perform better than PointNet++ in several classification tasks.

Dynamic Graph CNN (DGCNN)[10], shown in Figure 3-6, is an

algorithm that aims to improve upon the fact that PointNets cannot

capture features at local scale due to permutation invariance of points. It

does so by introducing an edge convolution operation.

 Figure 3-6. DGCNN for classification (top path) and segmentation

 (bottom path). Used with permission, source: https://arxiv.org/

 pdf/1801.07829 [10]

DGCNN constructs a local neighborhood graph of k nearest points and

updates the graph at each layer by adding convolution-like operations on

edges, thus connecting pairs of points in a neighborhood. The neighbors

change in each layer and the graph is recomputed, hence it is dynamic.

The edgeconv operation takes an n*f tensor (where n is the number

of points and f is input feature size to that layer), applies a multilayer

perceptron, and calculates edge features for each point. For classification,

114

Chapter 3 robot perCeption: 3D Data anD SenSor FuSion

the last edgeconv layer is aggregated to get a global 1D descriptor, which

is used to arrive at a class label for the point set. For segmentation, the 1D

descriptor is concatenated with edge features from each edgeconv layer to

provide global and local features for each point. This allows it to arrive at

per point segmentation output scores.

DGCNN performs close to PointCNN on classification and

segmentation tasks (+-3%). However, the fixed size of edge features can

limit its performance at different scales and resolutions. Given that input

features contribute differently to the nodes, attention mechanisms could

further improve performance by looking at the relevant features when

variable sized input is involved.

 Research Opportunities

1. Exploiting context: Most point cloud based models

treat points at a local scale as independent in order

to maintain permutation invariance. But this means

they’re unable to extract finer features and exploit

the relationship between a point and its neighbors.

2. Real-time performance: Despite the abundance of

models for point clouds, most robotic systems have

onboard compute and need to respond quickly. This

calls for lighter models with lower inference time.

3. The pitfall of supervised learning: Most existing

point cloud models utilize supervised learning,

which is not robust to unseen scenarios and

requires large amounts of data to train and

generalize. Weakly supervised or unsupervised

frameworks can improve these limitations.

115

Chapter 3 robot perCeption: 3D Data anD SenSor FuSion

 Multimodal Perception and Sensor Fusion

The goal of multimodal perception is to use a combination of different

sensing modalities to get a robot to accomplish a task. Sensor fusion

is combining input from more than one sensor to gain a deeper

understanding of the surrounding environment. Multi-modal sensor input

can also make perception more robust in the case of failure modes in any

of the sensors—this is an important safety mechanism. Sensor fusion is

often used in applications like self-driving cars to fuse some combination

of LiDARs, radars, and cameras to exploit their various strengths and

improve performance of the overall combined system. For example,

LiDARs have good depth perception but don’t provide color information.

While cameras don’t provide information about an object’s depth, they can

provide color information. Radars, on the other hand, provide direct speed

measurements of obstacles and complement LiDAR and cameras.

The utility and specifics of sensor fusion is ultimately warranted by the cost

and precision required by a robot application. One downside of multisensor

perception is the added system complexity of synchronizing information

and inputs of sensor fusion. For sensor fusion to work, the sensors need to be

calibrated, registered with respect to the other, and need to use a common

time reference. Given various sensing modalities, you need a way to fuse them

to achieve an accurate 3D representation of the world for the robot to act in.

The following sections cover some common strategies to accomplish this.

 Fusion Strategies

Recent advances in deep learning have led to two main sensor fusion

strategies:

1. Late fusion: Processes each sensing modality

independently until the very end. For example, it

will fuse bounding boxes from LiDAR and from the

camera that were processed separately.

116

[image: Image 62]

Chapter 3 robot perCeption: 3D Data anD SenSor FuSion

2. Early fusion: Leverages recent advances in deep

learning to fuse the raw sensor reading in the early

stages. For example, it will fuse pixels and point

clouds directly.

This section focuses on integrating LiDAR and camera data to leverage

the camera’s high resolution and its ability to classify objects, along with

LiDAR’s capability to measure distances and perceive the world in 3D. You

can see how both of these work together by looking at fusing point clouds

and pixels in the early fusion mode and fusing bounding boxes in the late

fusion mode.

To illustrate the advantages of sensor fusion, different sensors and

their main uses in autonomous vehicles are shown in Figure 3-7.

 Figure 3-7. Overview of sensor fusion in autonomous vehicles,

 combining data from long-range and short-range RADAR, LiDAR,

 vision cameras, thermal imagers, GPS, and other sensors. Used

 with permission, source: https://semiengineering.com/a-dsp-

 for-implementing-high-performance-sensor-fusion-on-an-

 embedded-budget/ by Synopsys[30]

117

[image: Image 63]

Chapter 3 robot perCeption: 3D Data anD SenSor FuSion

 Fusing Raw Data: Early Fusion

In early fusion, raw data like point clouds from LiDAR and camera images

are fused together directly[11]. The goal is to create a 2D projection of the

3D point cloud within the camera frame, where each point’s location is

now directly comparable to objects and features in the 2D camera image.

This three-step process is shown in Figure 3-8.

 Figure 3-8. Pipeline for early sensor fusion. Used with permission,

 source: https://www.thinkautonomous.ai/blog/lidar-and-

 camera-sensor-fusion-in-self-driving-cars/ by Think Autonomous[11]

 Step 1: Projection of Point Cloud

The first step translates the 3D point clouds captured by the LiDAR into

a format that can be used given the 2D data type for the camera. This

involves a few steps:

• Convert each 3D point from the LiDAR data into

homogeneous coordinates. This involves converting

the standard Euclidean coordinates (x, y, z) and adding

an additional dimension, making the point (x, y, z, w).

118

Chapter 3 robot perCeption: 3D Data anD SenSor FuSion

Specifically, each point in the LiDAR’s 3D point cloud

(x, y, z) is converted to homogeneous coordinates

(x, y, z, 1).This extra coordinate allows for different

transformations using matrix multiplication and

simplifies aligning 3D data with 2D data.

• A transformation matrix (including rotation and

translation) aligns the LiDAR coordinate system

with the camera coordinate system. This is useful

for extrinsic (relative to the LiDAR, the position/

orientation of the camera) camera calibration.

• Another transformation matrix projects the 3D points

onto the 2D image plane of the camera. This matrix

accounts for intrinsic (camera-specific properties like

focal length and optical center) calibration. This data

is useful to accurately translate and rotate the LiDAR

points to align them with the camera’s point of view.

• After projection, the points are transformed back from

homogeneous to standard Euclidean coordinates. 2D

points can now be directly compared with objects and

features in the 2D camera image.

If interested, this course[12] talks more about what homogeneous

coordinates are and how these specific projections and rotations are done.

The result from this step is shown in Figure 3-9.

119

[image: Image 64]

Chapter 3 robot perCeption: 3D Data anD SenSor FuSion

 Figure 3-9. Going from a 3D point cloud to a point cloud

 projection in 2D. Used with permission, source: https://www.

 thinkautonomous.ai/blog/lidar-and-camera-sensor-fusion-in-

 self-driving-cars/ by Think Autonomous[11]

 Step 2: Object Detection

Now that the projected point cloud image is aligned with the image,

various models such as YOLOv4[13] can be used to do object detection.

You can learn more about how these object-detection models work in

Chapter 2.

 Step 3: Region of Interest (RoI) Matching

Once the objects are detected in the camera image using 2D bounding

boxes, the next step is to match the 3D points from the LiDAR data with

these detected objects. This process is called Region of Interest (RoI)

matching.

• The 3D points from the LiDAR, which were projected

onto the 2D image plane in the previous steps, are now

compared against the 2D bounding boxes generated by

the object detection model.

• For each 2D bounding box, each 3D point is associated

with a detected object.

120

[image: Image 65]

Chapter 3 robot perCeption: 3D Data anD SenSor FuSion

• Once the points are associated with specific objects,

each 3D point is labeled according to the detected

object it belongs to. For example, points in a bounding

box for a car are labeled as part of that car.

 Fusing Outputs: Late Fusion

In late fusion, the data from different sensors is processed separately

before combining the results[11]. With this approach, independent object

detections are done on each sensor’s data, resulting in either 2D or 3D

bounding boxes, which are then fused. An overview of how the process

works in 3D is shown in Figure 3-10.

 Figure 3-10. Late fusion pipeline using a 3D point cloud and

 2D image as input. Used with permission, source: https://www.

 thinkautonomous.ai/blog/lidar-and-camera-sensor-fusion-in-

 self-driving-cars/ by Think Autonomous[11]

 Steps 1 and 2: LiDAR 3D Object Detection and Camera 3D

Object Detection

There are many LiDAR deep learning models that can be used for 3D

object detection, such as PointNet[3], PointNet++[6], VoxelNet[14], and SECOND (a spatially sparse convolutional network)[15], some of which

121

Chapter 3 robot perCeption: 3D Data anD SenSor FuSion

are covered in this chapter. These models generate 3D bounding boxes

for objects that are detected and include their positions, dimensions,

and orientations within the LiDAR’s coordinate system. For 3D camera

detection, some object detection methods used in 2D can be altered so

that they work with 3D data, such as adding a depth estimation network to

YOLO[16]. It’s important to note that the bounding boxes are generated as

(x, y, z length, width, height, rotation) within the coordinate system of your

data (LiDAR or camera).

From here, the 3D bounding boxes from one coordinate system are

converted to the other. For example, the bounding boxes can be converted

from a LiDAR coordinate system to the camera coordinate system. This

allows both sets of the bounding boxes to be aligned in the same frame of

reference.

 Step 3: IOU Matching

The next step is to match these bounding boxes to identify the same

objects detected by both sensors. This process involves matching in space

or in time.

• Matching in space: For each pair of 3D bounding

boxes in LiDAR and camera data, the IOU score is

computed. An IOU score above a certain threshold

indicates that the bounding boxes likely correspond to

the same object.

• Matching in time: This extends the matching process

over time. Using techniques like the Kalman Filter[17]

and the Hungarian Algorithm[18], objects can be

tracked across different frames. If a bounding box from

one frame overlaps with one in a subsequent frame

(based on IOU), the object is considered the same.

122

Chapter 3 robot perCeption: 3D Data anD SenSor FuSion

• The Kalman Filter operates by first predicting a

vehicle’s future position using prior knowledge and

kinematic equations, then measuring the actual

position with sensor data to compare against the

prediction, and finally updating the prediction to

improve accuracy based on the new information.

This helps provide a refined estimation of the object’s

trajectory. We won’t be focusing too much on classical

methods for sensor fusion, but if interested you can

learn more about Kalman filters here[19].

Some information from this section was referenced from[11] and we

recommend it as a good source.

 LiDAR-Camera Fusion

Now that you understand the main frameworks for sensor fusion, let’s dive

into deep learning models that are deployed for LiDAR-camera fusion[25]

[20][21].

 Proposal-level Fusion Methods

Combining LiDAR and camera, proposal-level fusion is where “proposals”

or ROIs are generated from one type of sensor data and then refined and

augmented using data from another sensor.

The overall pipeline for proposal-level fusion methods is:

• Initial guesses or proposals are provided for where

objects might be located. For example, a 2D CNN can

be used to generate 2D bounding boxes around where

objects might be located.

123

[image: Image 66]

Chapter 3 robot perCeption: 3D Data anD SenSor FuSion

• 2D proposals can be expanded to 3D proposals using

the projection matrix of the camera. This is called a 3D

frustum, representing the volume that goes from the

2D bounding box space to the 3D space that the 2D

bounding box might occupy.

• Data from LiDAR can be integrated into these 3D

proposals by seeing which point clouds fall within

each frustum, essentially allowing you to add depth

information to the initial 2D proposals.

• Within each frustum, the combined data is used

to further refine the detection and classification of

objects. Finally, the exact position, dimensions, and

orientation of the objects within the 3D space are

determined to estimate precise 3D bounding boxes for

the detected objects.

Frustum PointNets[22] use RGB-D data for 3D object detection. This

starts by using a 2D CNN to detect objects in the camera image, generating

2D bounding boxes. These 2D bounding boxes are projected into 3D

space, creating frustums. The points within the frustums create a frustum

point cloud. A detailed depiction of the Frustum PointNet is shown in

Figure 3-11.

 Figure 3-11. Main components of Frustum PointNet. Used with

 permission, source: https://arxiv.org/pdf/1711.08488 [22]

124

[image: Image 67]

Chapter 3 robot perCeption: 3D Data anD SenSor FuSion

LiDAR points within each frustum are extracted and processed by

a network to classify whether each point belongs to the object or the

background. A T-Net then refines these points by shifting their centroid

to align it more closely with the object’s true center. Another network

estimates the precise 3D bounding box, including the object’s position,

dimensions, and orientation.

These steps and their results are illustrated in Figure 3-12, showing

how these transformations are applied to derive the final object detection

and positioning in 3D space.

 Figure 3-12. Transformations in Frustum PointNets. Default camera

 coordinate system(a). Frustum coordinate system is obtained after

 rotating the frustum to center the view (b). 3D mask coordinate aligns

 the mask point’s centroid at the origin (c). 3D object coordinate is

 predicted using T-Net (d). Used with permission, source: https://

 arxiv.org/pdf/1711.08488 [22]

By generating initial proposals with one sensor and refining them with

another, proposal-level fusion has better accuracy and reliability of object

detection and classification, which can be especially important in complex

environments like those encountered by self-driving cars.

125

Chapter 3 robot perCeption: 3D Data anD SenSor FuSion

 Point-level Fusion Methods

On the other hand, point-level fusion techniques augment the LiDAR

point cloud data with the camera features.

The overall steps for point-level fusion methods include:

• Sensor calibration, which includes determining the

internal parameters (focal length, optical center,

etc.) and external parameters (relative position and

orientation between the camera and LiDAR). This can

help align the camera and LiDAR to be in a similar

coordinate system.

• A CNN can be used to extract main features from the

camera data.

• Each LiDAR point is projected onto the camera image

plane using the calibration parameters. This helps map

each LiDAR point to each camera point.

• The LiDAR points can be combined with their

corresponding camera features and methods, such

as PointNet++ and VoxelNet, and can be used to

perform tasks like object detection, segmentation, and

classification.

In some cases, point-level fusion offers a more detailed and accurate

representation because it combines visual features with each LiDAR point.

This can help improve the model’s ability to detect and classify objects.

 Input-Level Fusion: PointPainting and PointAugmenting

PointPainting[23] is an example of a point-level fusion method that

consists of three main stages:

126

[image: Image 68]

Chapter 3 robot perCeption: 3D Data anD SenSor FuSion

• Initially, images are segmented, providing you with a

segmentation mask that scores each pixel by categories.

• LiDAR points are mapped to their corresponding

locations in the segmentation mask, and each point is

assigned the semantic scores from the image, adding

contextual visual information.

• The final stage utilizes the point clouds with the

additional semantic information to identify and

localize objects in 3D space. This final point cloud,

which now contains both geometric and semantic

information, can be used for more accurate detection

of objects than just LiDAR or camera data detection.

An illustration of this process can be viewed in Figure 3-13, which

showcases how PointPainting integrates image and LiDAR data to increase

accuracy when doing object detection for autonomous driving systems.

 Figure 3-13. Overview of PointPainting and its three main stages: (1)

 An image-based semantic segmentation network, (2) PointPainting

 (fusion), (3) A LiDAR-based object detector. Used with permission,

 source: https://arxiv.org/pdf/1911.10150 [23]

127

[image: Image 69]

Chapter 3 robot perCeption: 3D Data anD SenSor FuSion

PointAugmenting[24] builds on the PointPainting method, but instead

of using simple categorical scores from the segmentation mask, features

extracted by a CNN are mapped onto the LiDAR points. This is called a

cross-modal fusion strategy. It combines visual features with depth data,

which can improve the accuracy of 3D object detection.

PointAugmenting is shown in Figure 3-14, which illustrates how this

technique combines and utilizes data from LiDAR and camera sensors to

improve detection in autonomous vehicles.

 Figure 3-14. Overview of PointAugmenting. Used with permission,

 source: https://openaccess.thecvf.com/content/CVPR2021/

 papers/Wang_PointAugmenting_Cross-Modal_Augmentation_

 for_3D_Object_Detection_CVPR_2021_paper.pdf [24]

 Feature-level Fusion: DeepFusion

An effective mechanism for aligning camera and LiDAR features is a

critical component that is missing from existing work like PointPainting

and PointAugmenting. As shown in Figure 3-15, DeepFusion[25] is a

model that does fusion at the feature level, meaning it combines features

extracted from both LiDAR and camera data, with the goal of improving

the alignment to increase performance on downstream tasks.

128

[image: Image 70]

Chapter 3 robot perCeption: 3D Data anD SenSor FuSion

 Figure 3-15. Overview of DeepFusion (b). Used with permission,

 source: https://arxiv.org/pdf/2203.08195 [25]

A key component of DeepFusion is Inverse Augmentation (InverseAug)

[26], which reverses the augmentations applied during training before

the data fusion step. The main idea is that when the LiDAR point cloud is

rotated or transformed during training, it becomes difficult to match 3D

points with their correct 2D locations in the camera image. InverseAug

solves this by storing the applied transformations and reversing them

129

[image: Image 71]

[image: Image 72]

Chapter 3 robot perCeption: 3D Data anD SenSor FuSion

before combining the data, as shown in Figure 3-16. This ensures that the

3D points return to their original positions, making it easier to map them

to the 2D camera view. This process is illustrated in Figure 3-17, showing

alignments both with and without the application of InverseAug.

 Figure 3-16. Overview of the InverseAug method. The original

 LiDAR point cloud (a). After applying augmentation to LiDAR points

 (b). Key points in the original 3D coordinate system (c). Projected

 points in the 2D coordinate system (d). Used with permission, source:

 https://arxiv.org/pdf/2203.08195 [25]

 Figure 3-17. Alignment without InverseAug (a). Alignment with

 InverseAug (b). Used with permission, source: https://arxiv.org/

 pdf/2203.08195 [25]

To further improve the precision of alignment between different types

of data, DeepFusion introduces a method called Learnable Alignment

(LearnableAlign), as illustrated in Figure 3-18. This is mainly a cross-

modality attention mechanism. This mechanism processes the features

from LiDAR data (each voxel) and the corresponding camera data. It

then calculates an output that is a weighted sum of the camera features,

130

[image: Image 73]

Chapter 3 robot perCeption: 3D Data anD SenSor FuSion

meaning that it gives more importance to the most relevant camera

features. By focusing on the most relevant features from the LiDAR and

camera data through weighted attention, LearnableAlign ensures that the

feature alignment is more precise, which helps improve the accuracy of

object detection and classification tasks.

 Figure 3-18. Process of Learnable Alignment in DeepFusion where

 LiDAR and camera features are aligned. Used with permission,

 source: https://arxiv.org/pdf/2203.08195 [25]

Putting this all together, DeepFusion[25] improves object detection

by combining LiDAR and camera data. First, it transforms LiDAR points

into useful features and extracts features from camera images using

ResNet. These features are then aligned and fused using InverseAug, which

reverses transformations for better alignment, and LearnableAlign, which

uses an attention mechanism to focus on the most relevant features. The

fused data is processed by a 3D detection model, including the backbone

and detection head of the PointPillars system, to produce the final

detection results. The entire workflow of this process, from initial data

input to the production of detection outputs, is shown in Figure 3-19.

131

[image: Image 74]

[image: Image 75]

Chapter 3 robot perCeption: 3D Data anD SenSor FuSion

 Figure 3-19. High-level overview of the workflow for

 DeepFusion. Used with permission, source: https://arxiv.org/

 pdf/2203.08195 [25]

 BEVFusion

Building on the idea of multisensor fusion, BEVFusion[27][28] takes a

different approach to 3D perception tasks. It converts the input from both

sensors into features and transforms them into a bird’s-eye view (BEV)

space, which is a top-down perspective of the environment. This unified

view makes it easier to integrate the data. A BEV encoder then processes

these combined features, which are used by specialized task-specific

components to perform various 3D perception tasks, such as object

detection and tracking, as illustrated in Figure 3-20.

 Figure 3-20. BEVFusion process of extracting features from various

 inputs and turning them into a shared BEV space. Used with

 permission, source: https://arxiv.org/pdf/2205.13542 [27]

132

Chapter 3 robot perCeption: 3D Data anD SenSor FuSion

If you want to learn more about this approach, we recommend

reading the original paper[27]. However, the main benefit of BEV is that it

provides a consistent and unified top-down perspective that simplifies the

fusion of the LiDAR and camera data. Since the data is in a shared space,

there is improved spatial alignment that can improve the accuracy of 3D

perception tasks.

Overall, sensor fusion can combine data from many sensors, such

as cameras and LiDAR, to leverage their complementary strengths. This

integration can improve the performance of common robotic perception

tasks such as detection, segmentation, and tracking.

 Summary

In this chapter you learned:

• How 3D data can be represented as voxels (3D pixels

in a grid), point clouds (sets of 3D points), and meshes

(polygonal surfaces). Point clouds can be processed

using methods like PointNet, PointNet++, PointCNN,

and Dynamic Graph CNN (DGCNN).

• Two main fusion strategies exist: early fusion

(combining raw sensor data like point clouds and

images directly) and late fusion (combining processed

data such as bounding boxes from different sensors).

• LiDAR-camera fusion methods combine data from

LiDARs and cameras. Techniques like Frustum

PointNets, along with point-level fusion methods

such as PointPainting and PointAugmenting,

improve detection by projecting LiDAR points onto

camera images

133

Chapter 3 robot perCeption: 3D Data anD SenSor FuSion

• Feature-level fusion approaches like DeepFusion

align camera and LiDAR features using techniques

such as InverseAug and LearnableAlign. Additionally,

BEVFusion converts sensor data into a unified

bird’s-eye view (BEV), therefore improving 3D object

detection and tracking.

The next chapter discusses how large language models (LLMs) are

applied to robotic planning, control, and mapping, including the use of

foundation models, multimodal approaches, and end-to-end robot control

methods and diffusion models.

References

[1] Maturana, Daniel, and Sebastian Scherer. “VoxNet: A

3D Convolutional Neural Network for Real-Time Object

Recognition.” 2015 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS). IEEE, 2015.

[2] Chang, Angel X., et al. “ShapeNet: An Information-

Rich 3D Model Repository.” arXiv preprint

 arXiv:1512.03012 (2015).

[3] Qi, Charles R., et al. “PointNet: Deep learning on point

sets for 3D classification and segmentation.” Proceedings

of the IEEE Conference on computer Vision and Pattern

Recognition. 2017.

[4] Bento, Carolina. “Multilayer Perceptron Explained

with a Real-Life Example and Python Code: Sentiment

Analysis.” Medium, 21 Sept. 2021, towardsdatascience.

com/multilayer-perceptron-explained-with-a-real-

life-example-and-python-code-sentiment-analysis-

cb408ee93141.

134

Chapter 3 robot perCeption: 3D Data anD SenSor FuSion

[5] https://machinelearningmastery.com/pooling-

layers-for-convolutional-neural-networks/

[6] Qi, Charles Ruizhongtai, et al. “PointNet++: Deep

hierarchical feature learning on point sets in a metric

space.” Advances in Neural Information Processing

 Systems 30 (2017).

[7] Hu, Jordan. “Farthest Point Sampling in 3D Object

Detection.” Jordan Hu, 20 Sept. 2020, jskhu.github.

io/fps/3d/object/detection/2020/09/20/farthest-

point-sampling.html.

[8] Qi, Charles R., et al. “Volumetric and multi-view CNNs

for object classification on 3D data.” Proceedings of

the IEEE Conference on Computer Vision and Pattern

Recognition. 2016.

[9] Li, Yangyan, et al. “PointCNN: Convolution on

x-transformed points.” Advances in Neural Information

 Processing Systems 31 (2018).

[10] Wang, Yue, et al. “Dynamic graph CNN for learning on

point clouds.” ACM Transactions on Graphics (tog) 38.5

(2019): 1-12.

[11] “LiDAR and Camera Sensor Fusion in Self-Driving Cars.”

 Think Autonomous, 14 May 2021, www.thinkautonomous.

ai/blog/lidar-and-camera-sensor-fusion-in-self-

driving-cars/.

[12] https://courses.thinkautonomous.ai/stereo-vision

[13] Bochkovskiy, Alexey, Chien-Yao Wang, and Hong-Yuan

Mark Liao. “Yolov4: Optimal speed and accuracy of

object detection.” arXiv preprint arXiv: 2004.10934 (2020).

135

Chapter 3 robot perCeption: 3D Data anD SenSor FuSion

[14] Zhou, Yin, and Oncel Tuzel. “VoxelNet: End-to-end

learning for point cloud based 3D object detection.”

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 2018.

[15] Yan, Yan, Yuxing Mao, and Bo Li. “Second: Sparsely

embedded convolutional detection.” Sensors 18.10

(2018): 3337.

[16] Redmon, Joseph, et al. “You only look once: Unified,

real-time object detection.” Proceedings of the

IEEE Conference on Computer Vision and Pattern

Recognition. 2016.

[17] https://thekalmanfilter.com/kalman-filter-

explained-simply/

[18] https://www.thinkautonomous.ai/blog/hungarian-

algorithm/

[19] https://www.udacity.com/course/sensor-fusion-

engineer-nanodegree--nd313

[20] https://medium.com/@mohit_gaikwad/deepfusion-

lidar-camera-deep-fusion-for-multi-modal-3d-

object-detection-c7db1e25670d

[21] Liu, H., Wu, C. & Wang, H. Real time object

detection using LiDAR and camera fusion for

autonomous driving. Sci Rep 13, 8056 (2023).

https://doi.org/10.1038/s41598-023-35170-z

[22] Qi, Charles R., et al. “Frustum Pointnets for 3D Object

Detection from rgb-d Data.” Proceedings of the

IEEE Conference on Computer Vision and Pattern

Recognition. 2018.

136

Chapter 3 robot perCeption: 3D Data anD SenSor FuSion

[23] Vora, Sourabh, et al. “PointPainting: Sequential fusion for 3D

object detection.” Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition. 2020.

[24] Wang, Chunwei, et al. “PointAugmenting: Cross-modal

augmentation for 3D object detection.” Proceedings

of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition. 2021.

[25] Li, Yingwei, et al. “DeepFusion: LiDAR-camera deep

fusion for multi-modal 3D object detection.” Proceedings

of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition. 2022.

[26] “LiDAR-Camera Deep Fusion for Multi-Modal 3D

Detection.” Google Research, 12 April 2022, research.

google/blog/lidar-camera-deep-fusion-for-multi-

modal-3d-detection/?hl=ru&m=1.

[27] Liu, Zhijian, et al. “BEVFusion: Multi-task multi-sensor

fusion with unified bird’s-eye view representation.”

2023 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, 2023.

[28] D, Eric. “BEVFusion - Eric D - Medium.” Medium, 16 June

2023, medium.com/@yunding.eric/bevfusion-b9397afa0401.

[29] Sharma, Sahil, and Vijay Kumar. “Voxel-based 3D face

reconstruction and its application to face recognition

using sequential deep learning.” Multimedia Tools and

 Applications 79.25 (2020): 17303-17330.

[30] Willems, Markus. “A DSP for Implementing High-

Performance Sensor Fusion on an Embedded

Budget.” Semiconductor Engineering, 11 Nov. 2021,

 semiengineering.com/a-dsp-for-implementing-high-

performance-sensor-fusion-on-an-embedded-budget/.

137

CHAPTER 4

Foundation Models

in Robotics

Foundation models developed for language research are now boldly

taking on many fields, including robotics. Many of these advancements are

fueled by making information look like language, i.e., making information

resemble sequences of tokens. You learned in Chapter 2 how vision

research is now fully dominated by transformers[43] by tokenizing the

inputs (the images and outputs) to look like tokens. Foundation models

and their rise in robotics naturally grew as an outcome of using language

in robotics.

This chapter first explains, very briefly, how large foundation models

are trained. Then it delves into how language became increasingly used as

a connective tissue in robotics and how that research evolved into end-to-

end robot control with large transformers. Finally, the chapter covers the

rise of diffusion models and their applications in robot control.

 Large Foundation Models

Language research has been leading the way in machine learning for

the last decade. Several recent language models based on large-scale

transformers have made the news, including GPT-4[1], Gemini[2], and

© Alishba Imran, Keerthana Gopalakrishnan 2025

139

A. Imran and K. Gopalakrishnan, AI for Robotics,

https://doi.org/10.1007/979-8-8688-0989-7_4

Chapter 4 Foundation Models in robotiCs

Llama[3]. They’re products of a long line of research starting from Bert[4], earlier GPTs[5][6][7], PaLM[8], and more. This section discusses how large multimodal models are trained with Llama[9] as an example.

Developing a large multimodal model involves two main steps:

1. Pretraining: In this stage the model is trained on

vast amounts of multilingual data from the Internet.

In the case of Llama 3[10], a 405 B model was

trained on 15.6 T tokens, with a token vocabulary of

128K, where 28K vocab tokens support non-English

languages. Llama transformer uses grouped query

attention[11] and key value caches[12] to improve

inference speed (refer to the resources to learn more

about these topics).

2. Post-training: In this stage, the model is improved

on instruction following by using a smaller set of

high-quality data coming from human annotations

and synthetic data.

Llama 3 uses a compositional approach to multimodality and has

separate vision and speech encoders.

1. Image encoder and adapters: An image encoder

is trained on a large corpus of image text pairs,

akin to CLIP[13], covered in Chapter 2, to generate

representations that are aware of visual content and

its language representations. Two separate adapters

are trained for images and videos on image-text and

video-text pairs respectively, during the training of

which the pretrained language model is kept frozen,

while the weights of the pretrained image encoder

are edited. These adapters use cross-attention to

feed pretrained image encoder representations into

the pretrained language model.

140

Chapter 4 Foundation Models in robotiCs

2. Speech encoder and image adapter: Akin to the

image setting, a separate speech encoder is trained

and a speech adapter is trained with cross-attention

to align the embeddings of the pretrained speech

encoder and the large, pretrained language model.

Pretraining has three major components:

1. Web data curation: Involves creating a large high-

quality dataset while applying techniques for

 deduplication, removal of personally identifiable

information and adult content via both heuristic

and learned filtering.

2. Data mix determination: Scaling law experiments

are done to predict the performance of a large

model by interpolating the performances of

several smaller models in order to arrive at an

optimal data mix, and to understand how different

datasets contribute/affect the large model mixture.

Ultimately, they arrive at 50 percent general

knowledge tokens, 25 percent math and reasoning

tokens, 17 percent code tokens, and 8 percent

multilingual data.

3. Initial pretraining: Llama pretraining uses a cosine

learning rate schedule with decay and warm up,

and starts with a smaller batch size and sequence

length, which is gradually increased as pretraining

progresses.

4. Long context pretraining: Pretraining on long

contexts is introduced during the final stages of

pretraining, since compute in self-attention layers

grows quadratically with context length. Supported

141

Chapter 4 Foundation Models in robotiCs

context length is increased in increments, with

adaptation to increased context lengths measured

by recovery of performance on shorter context

lengths and needle-in-a-haystack[14] tests for the

increased context length.

5. Annealing: Training on small quantities of very

high-quality math and code data was found

to improve reasoning across the board for

smaller models.

Post-training has two major components: a reward model and a

language model. It uses supervised fine-tuning and direct preference

optimization (DPO)[15]. An example of a post-training strategy is shown

in Figure 4-1. First a preference dataset is constructed by prompting the

model and generating outputs that are then annotated by humans in order

of their preference. Human annotators can also edit the chosen output,

and a ranking mechanism (edited ➤ chosen ➤ rejected) is used to rank

preferences.

1. Supervised fine-tuning (SFT): During this stage,

a reward model is trained on preferences. This

reward model is then used at scale by prompting the

pretrained language model and rejecting outputs

based on reward to create a rejection-sampled dataset

of LLM outputs. Additional synthetic data is generated

for code and math by deploying various strategies:

a. Training a code expert by branching the

pretraining run and training it on high-quality

code tokens. The intuition here is that continued

pretraining on domain-specific data improves

performance in that domain. This expert is then

used to create high-quality generations that

comprise a dataset.

142

Chapter 4 Foundation Models in robotiCs

b. Code interpreters and linting is used to improve

the quality of synthetic generations. Self-

correction via chain-of-thought reasoning

is used to further improve the quality of the

dataset.

The pretrained language model is then fine-tuned on high-quality

datasets acquired via synthetic generation and rejection sampling with a

learned reward model.

2. Direct preference optimization (DPO): While

prior methods in language model instruction

tuning used reinforcement learning on human

feedback (RLHF)[16], DPO is increasingly popular

now because it is simpler. By not learning an

intermediate reward model, and it bypasses some

of the instabilities in training actor-critic RL models.

Chapter 7 covers RLHF in detail. DPO instead

directly optimizes for a reward constrained by KL

divergence by directly increasing the relative log

likelihood of a preferred response over nonpreferred

ones. The KL divergence measure in DPO balances

the tradeoff between maximizing rewards by

preference alignment with minimizing the

divergence from the base pretrained model.

143

[image: Image 76]

Chapter 4 Foundation Models in robotiCs

 Figure 4-1. LLM post-training strategy. Used with permission,

 source: https://arxiv.org/pdf/2407.21783 [10]

Llama3 is adapted for tool use by having a chat format where each

message has a header specifying a source and a destination for a message.

Each message also has a termination token specifying when to alternate

between AI and human.

 Scaling Laws for Language Models

Scaling laws for language models predict what performance or test

loss one may achieve while scaling data, compute, or model parameter

size. Since large model training runs are very expensive, understanding

scaling behaviors helps forecast the capabilities of language models and

make the right tradeoffs while investing into large model training runs.

Note that almost all neural scaling laws are empirically determined and

approximated via interpolation.

Kaplan et al.[17] came up with the first neural scaling laws for large

language models by running lots of smaller models and interpolating their

behavior. They considered three aspects of scale: the number of model

parameters N, the dataset size D, and the amount of compute used C. They

found that model loss has a power law relationship with each of the three

factors when unconstrained by the others. This indicates that there is an

144

[image: Image 77]

[image: Image 78]

[image: Image 79]

[image: Image 80]

Chapter 4 Foundation Models in robotiCs

efficient frontier that balances model size, dataset size, and compute to

achieve the best possible performance with a given amount of resources.

They also found that larger models are more sample-efficient than smaller

models and that training to convergence is suboptimal. The results are

shown in Figure 4-2.

 Figure 4-2. Test loss as a function of compute, dataset size, and

 model size. Used with permission, source: https://arxiv.org/

 abs/2001.08361 [17]

Hoffman et al.[18], two years later, introduced Chinchilla optimal

scaling laws. They tried to answer the question, given a fixed FLOPs[19]

budget, what is the tradeoff between model size and dataset size?

They tried two approaches:

1. Fix the model size and train with different dataset

sizes to plot the loss.

2. Fix the model size and train for different FLOP

counts to plot the loss.

145

[image: Image 81]

[image: Image 82]

Chapter 4 Foundation Models in robotiCs

Based on the results of the two approaches, they fitted a parametric

equation (Equation 4-1) for the data. The proposed fit is:

Equation 4-1

Then they estimated these parameters by minimizing the Huber loss

between predicted log loss and observed log loss. A later study by Epoch

AI that attempted to replicate the results from Hoffman et al.[20] came

up with corrected versions of estimates for these parameters, as shown in

Table 4-1.

 Table 4-1. Lost Function Estimates from Epoch AI

 Chinchilla Replication Attempt and Chinchilla’s Original

 Estimates. Numbers in Brackets Are Standard Deviation.

 Used with Permission, Source https://arxiv.org/

 pdf/2404.10102v1 [20]

-

Based on this, nearly optimal allocation of compute can be mapped to

N and D separately, as follows:

146

[image: Image 83]

[image: Image 84]

Chapter 4 Foundation Models in robotiCs

Equation 4-2

The results from Chinchilla indicate that many of the frontier models

trained at the time, such as GPT3, were undertrained on data, so the

optimal model would be much smaller (15B from 175B) in parameter

count. It also follows from the results that, for a fixed compute budget,

scaling data is far more effective than scaling model parameters.

Muennighoff et al.[21] tried to predict scaling laws in data-constrained

regimes and concluded that repeating data up to four epochs yields no

difference in loss, and that to optimize performance while repeating data,

training smaller models for longer is preferred. This is shown in Figure 4-3.

 Figure 4-3. Top: LLM loss trained on repeated data diminishes

 predictably. Bottom: How data-constrained scaling laws diverge from

 unconstrained optimal scaling: increasing distance of contours show

 diminishing gains from repeating data. Used with permission, source:

 https://arxiv.org/pdf/2305.16264 [21]

147

Chapter 4 Foundation Models in robotiCs

Recent research from Sorscher et al.[22] showed that the power law

relationship between training loss and dataset token size could be broken

by ranking the examples from hard to easy on a high-quality metric and

then pruning the easy examples out of the dataset. They posit that such

pruning can even lead to an exponential relationship.

 Evaluating Language Models

Now that you understand how language models are trained and scaled, you’ll

learn how they are evaluated. Language model research predominantly uses

benchmarks to evaluate performance. The following are a few widely used

benchmarks, sorted by category and what they are testing for:

1. General Benchmarks

• MMLU[23] (Massive Multitask Language

 Understanding): Evaluates understanding and

reasoning across 57 academic disciplines with

14,000+ multiple-choice questions.

• MMLU-Pro[24] : A more challenging version of

MMLU with harder reasoning tasks.

• AGIEval[25]: Assesses general intelligence of AI

models across various tasks.

2. Math and Reasoning

• GSM8K[26]: Tests grade-school math problem-

solving with 8,000 step-by-step reasoning tasks.

• MATH[27]: Evaluates high school and competition-

level math problem-solving abilities.

• ARC-C [28] (AI2 Reasoning Challenge - Challenge

 Set): Assesses complex reasoning and problem-

solving skills.

148

Chapter 4 Foundation Models in robotiCs

3. Common Sense Understanding

• CommonSenseQA[29], OpenBookQA[30], PiQA[31], SiQA[32]: Evaluates common sense reasoning and

logical understanding in everyday scenarios.

• CommonSenseQA[29]: A benchmark for evaluating

common sense reasoning, testing models on

multiple-choice questions.

• OpenBookQA[30]: Tests open book question

answering with a focus on science questions

requiring additional knowledge beyond the text.

• Pi QA[31] : Evaluates physical common sense reasoning by requiring the choice of the most

plausible completion for a given scenario.

• SocialIQA (SiQA)[32]: Focuses on common sense

reasoning about social situations and human

interactions.

4. Code

• HumanEval[33] , MBPP[34] (Multi-Task Benchmark for Programming Problems): Assesses coding

proficiency and problem-solving in programming

contexts.

5. Reading Comprehension

• SQuAD[35] (Stanford Question Answering Dataset):

Tests reading comprehension and information

extraction from Wikipedia articles.

• QuAC[36] (Question Answering in Context):

Evaluates contextual understanding and coherence

in conversational question answering.

149

Chapter 4 Foundation Models in robotiCs

• RACE[37] (Reading Comprehension from

 Examinations): Assesses reading comprehension

using middle and high school English exam

questions.

6. Long Context Benchmarks

• Needle-in-a-Haystack[38] : Tests document

comprehension with a focus on finding relevant

information in long texts.

• ZeroSCROLLS[39]: Assesses the ability of models

to perform various NLP tasks using minimal data

annotations.

• InfiniteBench[40] : Focuses on long document

understanding and reasoning tasks, including

summarization and question answering.

7. Tool Use Benchmark

• API-Bank[41], API-Bench[42] : Evaluates the ability to interact with and utilize various external APIs

effectively.

In addition to these, they’re also evaluated on AP tests, GMAT, GRE,

bar, and medical exams and various other specialized tests.

This section discussed how language models are trained, how they

scale, and on what they are evaluated. The next section explains how

language models are used in robotics. You learn that almost all robotics

data can be modeled as tokens and sequences and processed like language

for various downstream use cases.

150

Chapter 4 Foundation Models in robotiCs

 Language as a Connective Tissue

in Robotics

Language has long been used as a medium of communication among

humans, so much so that a large part of the wealth of human knowledge

and experience is encoded in language. Language is also fairly flexible and

fluid, allowing for communication of a wide range of topics to a certain

degree of precision. The rise of transformers[43] led to breakthroughs

in language understanding, language generation, and reasoning with

language. In recent years, language in robotics has become an interesting

and promising new research area, allowing robots greater generalization

with a language-predicated understanding of world context. Language

models have provided a method for simple and extensible multimodal

fusion of modalities, including vision and action.

Language-conditioned robotics is the idea of specifying robot goals in

natural language and measuring success against correct achievement of

those goals. Language conditioning can be used for planning (“how would

you bring me a coke from the fridge”), control (“pick up the coke can”),

mapping (“where is the coke can”), and navigation (“go to the coke can”).

This section explains that almost all robotics data can be modeled as

tokens and sequences and processed like language in a similar fashion for

various downstream use cases.

 Language for Planning

When humans interface with robots in natural language, a typical

instruction could be “bring me a drink from the fridge,” which consists

of multiple steps such as “go to the fridge,” “open the fridge door,” “pick

up the drink,” “close the fridge,” “go to the human,” and “place the drink

down.” This requires a robot to perform embodied reasoning in an unseen

151

Chapter 4 Foundation Models in robotiCs

environment. If we ask a language model, say, “how do you clean up a

spill,” it may provide steps that are inaccessible to a robot. For example,

it could say “find a vacuum cleaner” as one of the steps, but if a vacuum

cleaner is not present in the scene, this would be an incorrect plan. A

second mode of failure could be when the LLM suggests a plan that is

feasible but that is not part of the robot’s skillset, e.g., “use a vacuum

cleaner,” when a vacuum cleaner is present but the robot hasn’t been

trained to use one. One of the challenges of robot-human interaction

is that robots have a finite set of skills that they’re trained on and the

vocabulary of task instructions conveyed to them needs to be limited by

their skillset.

The property that refers to how feasible and successful a task could

be in a particular scenario is formally referred to as affordance, usually

expressed as a float value between 0.0 and 1.0, where 0.0 means highly

impossible and 1.0 is possible and highly likely to succeed.

There are two classes of planning approaches:

1. In-context learning: Here a language model is

shown examples of robot plans in context via

prompting and asked to generate new plans. The

language model is not specifically fine-tuned for

robot learning. An example of an in-context learning

algorithm is SayCan/Inner Monologue, explained in

this next section.

2. Fine-tuned/learned planning models: Here, a

general-purpose language/multimodal language

model is specifically trained/fine-tuned for the

purpose of robot planning. Roboplan and PaLM-E

are examples of this.

152

[image: Image 85]

Chapter 4 Foundation Models in robotiCs

 Open Loop SayCan

SayCan[44] is an algorithm that integrates language for robotic planning.

An overview of SayCan is shown in Figure 4-4.

 Figure 4-4. SayCan combines probabilities from a LLM to determine

 which skill is useful for a given instruction with probabilities from a

 value function (VF) that assesses the feasibility of executing the skill.

 Used with permission, source: https://say-can.github.io/assets/

 palm_saycan.pdf [45]

The main idea is as follows:

• A language model is used to break down high-level

task instructions into skill primitives that a trained

manipulation policy can then execute. The LLM

models the probability that a high-level task instruction

is achieved by compositionality of skill primitives.

• To ground the language model in the skill space of the

robot, a second affordance model is independently

learned. The affordance model learns the probability

153

[image: Image 86]

[image: Image 87]

Chapter 4 Foundation Models in robotiCs

of success of a skill primitive given the current state of

the robot and environment. Value functions are a close

approximation of such an affordance model and can be

trained using reinforcement learning.

• The two probabilities are multiplied for each skill

primitive and the one with the maximum value is

picked for execution, as shown here.

Another interesting observation from this work is that simply updating

the underlying language model makes a robot better at planning. As shown

in Figure 4-5, PaLM-SayCan has been shown to have increasing planning

accuracy when scaling the language models.

 Figure 4-5. SayCan planning performance with model size.

 Used with permission, source: https://x.com/hausman_k/

 status/1559558929297727489 [96]

154

Chapter 4 Foundation Models in robotiCs

 Closed Loop Planning

One of the problems with SayCan-style language predicated planning is

that if any of the intermediate steps fails, the whole process execution fails.

The algorithm is not interactively replanning or taking feedback from the

environment. Inner Monologue[46] poses an improvement over SayCan by

closing the feedback loop from the environment to the language model. It

considers three types of feedback:

1. Success detection: A binary classification, in

language form, of whether the task is successful or

not at a given timestep.

2. Passive scene description: Feedback from the

scene queried through external object detectors/

scene descriptors. They’re primarily of two types:

a. Object feedback: Textual output of object

locations from object detectors

b. Scene feedback: Task progress scene description

in text form

3. Active scene description: The language model

interactively asks questions about the scene/

task, which are answered by a visual question

answering model.

Figure 4-6 shows Inner Monologue in different scenarios.

155

[image: Image 88]

Chapter 4 Foundation Models in robotiCs

 Figure 4-6. Example of Inner Monologue planning in robot

 manipulation tasks showing simulated and real-world scenarios for

 tabletop rearrangement and kitchen mobile manipulation. Used with

 permission, source: https://arxiv.org/pdf/2207.05608 [46]

Inner Monologue reports a higher performance rate over SayCan and a

few emergent capabilities, such as robot reacting to intermediary feedback

from humans, replanning under infeasibility, and better interactive scene

understanding demonstrated through question-answering.

 Multimodal Planning

In addition to language feedback, multimodal models specifically fine-

tuned for robotic planning have two advantages:

1. More precise than open loop planning in grounded,

unseen environments

2. Ability to still remember larger context from

Internet-scale knowledge

156

[image: Image 89]

Chapter 4 Foundation Models in robotiCs

3. Visual feedback and states in the loop yield a model

that can see and think simultaneously

One of the prominent works in multimodal planning is PaLM-e[47]

(see Figure 4-7), also called Embodied PaLM.

 Figure 4-7. Overview of PaLM-E used for various tasks, such

 as mobile manipulation, visual Q&A, and task and motion

 planning. Used with permission, source: https://arxiv.org/

 pdf/2303.03378 [47]

PaLM-e encodes continuous inputs into a decoder-only LLM (e.g.,

PaLM). To encode the image, it uses the ViT 22B[48] and feeds image

tokens concatenated with language. The inputs to PaLM are multimodal

sentences that interleave continuous inputs with text. An example of such

a multimodal sentence from the paper is “Q: What happened between

 and ?” (represents an embedding of an image).

PaLM-e then outputs text autoregressively. The outputs could be answers

to questions, or a sequence of decisions/plans executed by a lower-level

policy. One impressive result of the PaLM-e paper is that fine-tuning on

robot text/plans doesn’t significantly decrease performance in generic

language skills, paving the way for one model for all high-level/low-level

tasks in the future.

157

Chapter 4 Foundation Models in robotiCs

 Planning via Multimodal Dialogue

A second approach to language-based planning is via visual question

answering using multimodal models. RoboVQA[76] is an example of such

a framework, using learned/fine-tuned models. This involves showing a

model the last few seconds of a sensor feed and asking questions such as:

1. “The high-level goal is to stack the cups. What

should the robot do next? So far we executed 1.

Stack blue cup on red cup 2.”.

2. “What just happened?”

3. In this context, generative affordance is a type

of question that generates possible tasks, such

as “What tasks can the robot do now?” and

discriminative affordance is a type of question that

classifies a proposed task into feasible or not. For

example, “Is it possible to pick up a cup now?”

The output of the multimodal model is used for robot execution.

 Challenges

Despite the rise of large language models and computation and planning

via language, several problems remain to be solved with respect to LLM

robotic planning:

1. There are fundamental failure modes when

language models cannot see and do not have an

understanding of physics. One way to bridge this

gap is to use a VLM[49] in the loop or, as in PaLM-E,

use a connected vision model. Both approaches are

susceptible to fragility. In the former approach, the

understanding of object relations is constrained

158

Chapter 4 Foundation Models in robotiCs

by the VLM’s ability to describe, which can miss

several things For example, if a VLM finds a phone

and a person, a robot may plan to pick up the phone

even if the phone is being held by the person, thus

ignoring object relations. Object detection methods

have their own failures that overall bring down

planning accuracy.

2. A second failure mode is failure in understanding

physics. For example, LLMs might not know

how much an object weighs, whether it is safe to

handle, how to approach the target object based

on surrounding obstacles, and so on. Endowing

language models with physics understanding[50] is

an ongoing area of work.

3. A third failure mode is embodiment-specific

planning. A specific robot may have certain

strengths and weaknesses that need to be factored

in with regards to its planning. This could include

payload, number of arms, reachable height, blind

spots of sensor suite, and so on. While affordance

functions learned via RL can get some idea of

expected reward, coverage over state action space

may not be enough for thorough consideration of

embodiment attributes.

4. Planning in an unseen environment is very hard

for LLMs that suffer from hallucinations, faulty

reasoning, and so on.

159

Chapter 4 Foundation Models in robotiCs

 Language for Mapping

In addition to high-level planning, language can be used for mapping and

localization. Earlier in this chapter, you learned that through affordance

functions, which map the environment and potential interactions

robots can have with objects, large language models can be used for

robotic planning, such as in SayCan. One of the drawbacks of SayCan

is that it is unable to reason over what a robot can do in a scene beyond

what the robot can see. This is important because many indoor mobile

manipulation tasks involve knowing where objects are even if they are not

visible in the image.

NLMap-SayCan[51] aims to address this issue by proposing potential

objects and generating plans to execute on actions even when those

objects are not directly visible. As a recap, SayCan takes in an instruction

through an LLM to generate and score possible actions from a predefined

list, then uses value functions to select the most feasible action based on

the current state of the environment. In contrast, NLMap[51] creates a map

of the environment and uses the value functions to evaluate the feasibility

of the actions. This ensures that the selected action is relevant to the

instruction but also feasible within the context of the environment.

Figure 4-8 shows the main differences between SayCan and NLMap-

SayCan. Overall, NLMap addresses SayCan’s limitation in planning with a

stronger contextual understanding through include maps.

160

[image: Image 90]

Chapter 4 Foundation Models in robotiCs

 Figure 4-8. Comparison of SayCan and NLMap-SayCan. NLMap-

 SayCan generates relevant objects dynamically using an LLM and

 queries the NLMap for object locations. This allows for more flexible

 and context-specific task planning. Used with permission, source:

 https://arxiv.org/pdf/2209.09874 [51]

NLMap starts with an instruction, such as “pick up the coke bottle,”

and by allowing the robot to explore, collects RGB-D images. Then ROIs

are generated from these images to determine where the objects are. 3D

information about the scene is learned through a VLM, which creates a

detailed scene map. The LLM then proposes relevant objects based on the

instructions, such as “coke” and “bottle,” and the VLM checks the scene

map to determine if and where these objects are, scoring how likely they

are to be found in different places in the scene. Scene objects are then

updated to match the most relevant ones and LLM plans how to execute

the task. This process is shown in Figure 4-9.

161

[image: Image 91]

Chapter 4 Foundation Models in robotiCs

 Figure 4-9. NLMap-SayCan generates relevant objects based on an

 instruction, then queries NLMap to filter the object list and find their

 locations. The system creates executable options and uses LLM-based

 planning to guide the robot through the task step-by-step. Used with

 permission, source: https://nlmap-saycan.github.io/ [51]

This approach does have a few limitations worth mentioning that

were highlighted in the paper: it struggles with understanding how objects

relate to each other within the environment and handling changing

scenes. It’s also important to note that the accuracy of object proposals

relies on the performance of the LLM. Although these limitations exist,

NLMap-SayCan is still a leap forward in more robust robotic planning.

 Language for Reward

Once planning is complete, the robot must execute the planned actions,

which involves accurately doing robotic control and motion. LLM training

data often lacks information about physical actions and embodiment,

making it harder to use LLMs for direct robotic control and motion, as

these scenarios fall outside their typical training distribution.

162

Chapter 4 Foundation Models in robotiCs

What if a robot could learn to execute the tasks more accurately by

having an internal framework of what’s “wrong” and what’s “good”? This

is exactly what reward functions can do for LLMs and control policies, by

providing a robot with feedback to guide the robot’s actions and improve

its accuracy. “Language to Rewards for Robotic Skill Synthesis (L2R)”[52]

is a paper that uses reward functions to determine controls for a robot to

execute different tasks in its environment.

L2R works as follows:

• It takes in a user instruction, which in the case of

Figure 4-10 is: “Make robot dog stand up on two feet.”

• The bulk of the work is done by the Reward Translator,

which breaks down the high-level command into

more detailed and specific actions that the robot can

execute. Within this component, the Motion Descriptor

translates the user’s instruction into a detailed motion

description. For instance, it could say something like,

“Both front feet should be lifted to 0.7 meters high.”

• The motion description is passed to the Reward

Coder, which converts the description into actionable

reward functions for the robot’s control system using a

predefined API that the robot is set up to understand.

• These reward functions are sent to the Motion

Controller, which is responsible for executing the

actions using the reward functions to control the

robot’s movements and improve on them.

163

[image: Image 92]

Chapter 4 Foundation Models in robotiCs

 Figure 4-10. Depiction of L2R, with motion descriptor and

 reward coder. Used with permission, source: https://arxiv.org/

 pdf/2306.08647 [52]

A key limitation to this approach is that it requires a predefined

template that can be used for the robot to understand the motion

descriptions. This can make it difficult to generalize across different robots

and modalities.

 Language for Robot Code

A key theme in methods like L2R is developing a “standardized” way for

robots to understand the motion descriptions necessary to complete tasks.

Given that robots can be programmed and controlled, can we leverage

LLMs to improve their ability to execute these tasks more effectively by

writing code?

Code as Policies[53] is a method that aims to do this by using LLMs to

translate natural language commands into executable robot policy code.

When a user provides an instruction, such as “put these fruits in a line,”

the LLM processes this input and generates corresponding code that

includes a perception APIs to identify relevant objects in the environment

164

[image: Image 93]

Chapter 4 Foundation Models in robotiCs

and control APIs to manipulate these objects. This code includes specific

functions that identify these objects and execute the required actions by

moving, arranging, or manipulating them. An example of code that could

be generated by Code as Policies is shown in Figure 4-11. The interesting

aspect of Code as Policies is that it relies solely on prompt engineering

with a pretrained LLM without specific task training, meaning it could

theoretically generalize to tasks involving objects and actions that fall

within the distribution of the pretrained LLM. By generating and adjusting

code from examples, robots can learn various tasks and follow new

instructions in everyday language.

 Figure 4-11. Example of input instructions formatted as comments

 (green). The instructions are interpreted by an LLM, generating valid

 Python code (highlighted) to complete tasks such as stacking blocks in

 an empty bowl. Used with permission, source: https://arxiv.org/

 pdf/2209.07753 [53]

To generate these policies, a language model is prompted with a few

examples. An LLM then autoregressively and hierarchically creates them

by combining well-known functions or invoking other programs to define

functions that are not clearly defined already. As a framework, this is

particularly interesting for robots because collecting large amounts of task-

specific data is challenging, and using already trained large models allows

for a more efficient solution. Visit [54] to learn more.

165

Chapter 4 Foundation Models in robotiCs

Recent research has shown that robot code generation can be

improved in more ways as LLM research matured:

1. Robot code generation can be multimodal

conditioned by using VLMs, which are good at code

generation, and feeding them images from the

robot’s camera directly, rather than feeding natural

language description of images into an LLM. This

allowed reasoning to be more natively multimodal

than in Code as Policies.

2. Feeding a VLM highly descriptive definitions of

robot APIs and using long context models that are

good at chain-of-thought reasoning improves code

generation by large margins and can invoke unseen

behaviors zero-shot without any training data.

3. Showing examples of correct code generation also

improves the likelihood of being correct.

These and a few other tricks on how to prompt a robot can be further

studied here[55]. An example is shown in Figure 4-12.

166

[image: Image 94]

Chapter 4 Foundation Models in robotiCs

 Figure 4-12. An example code gen input and output from “How

 to Prompt your Robot.” Used with permission, source https://

 openreview.net/pdf?id=T8AiZj1QdN [55]

The success of code generation for zero-shot control signals that

there’s a lot more opportunity in extracting movements from the world

knowledge contained in LLMs via code, and make it a learnable recipe for

scaling robot learning. One potential opposition to this idea is the notion

that, although some methods have very good zero-shot performance, they

may not be enough to scale with learning resembling a method that has

the potential to reach 100 percent success. Improving zero-shot methods

via feedback is a common post-training strategy in LLM research, so it may

quite be possible that Code as Policies can be framed into a continuously

improving recipe, if it is also adapted to gather new skills, unknown to an

LLM via demonstrations.

 End-to-End Robot Control

An important concept in robotics is generalization: can a model perform

a new task that it was not trained on? The importance of this concept

emerges from the fact that generally intelligent robots have to be successful

167

Chapter 4 Foundation Models in robotiCs

across a wide range of deployment environments and tasks, but it would

be hard to represent this diversity in training sets. So methods that

can generalize to new situations, via learning better representations or

reasoning about the semantics of tasks, stand to gain.

In this current moment of robotics research, there are multiple axes of

generalization:

1. Object generalization: Can a model handle unseen

objects?

2. Environment generalization: Can a model act in

unseen environments?

3. Motion generalization: Can a model create new

motions?

4. Perspective generalization: Can models transfer

from third person to egocentric perspectives and

vice versa? Does the pose of the camera matter?

5. Embodiment generalization: Can data on one type

of robot body be used to improve skills on a different

type of robot body?

Additionally, robot control models may be measured on symbolic

understanding, reasoning, longer horizon planning, human recognition,

physical safety, and so on.

End-to-end robot control encompasses the problem of learning low-

level control in a way where gradients flow all the way from control outputs

to robot inputs[56]. In conventional usage, this means learning actions

directly from using camera images and other observations as input. How

do we develop methods that can control robots end-to-end? Can we

connect these models to the large trend of scaling and large models in AI?

How do we measure and improve them on axes of generalization?

168

Chapter 4 Foundation Models in robotiCs

 End-to-End Robot Control

with Autoregressive Transformers

Until as recently as 2022, scaling large multitask reinforcement learning

models was considered the key to solving robotics, but since then the

wave has shifted toward large imitation learned models, mainly because

imitation pretraining started to perform better than RL methods on

multitask benchmarks. Robotics Transformer 1 (RT-1)[57], shown

in Figure 4-13, was created in this era, and it was an early large-scale

imitation learned multitask model. It is trained on a large corpus of

real-world robot data covering a diverse range of tasks and is an early

foundation model. RT-1 works as follows:

• A user instruction in text and a series of images

(history) captured by the robot are the inputs to the

RT-1 model. Text is encoded by a frozen text tokenizer

and then images and text are jointly fused by a FiLM-

efficient net[58][59]. Early fusion of vision and language

tokens proved very important in extracting the right

context from images.

• These visual language tokens are then compressed

by a TokenLearner[60], which uses attention to focus

on the most relevant parts of the images and text.

TokenLearner compresses the total amount of tokens,

and makes inference three times faster.

• These tokens are then processed by a transformer,

which uses self-attention to understand the

relationship between objects in the images and the

commands in the text[43]. It then outputs actions: a

single control parameter for every degree of freedom.

In case of a cartesian end effector control, that becomes

169

[image: Image 95]

Chapter 4 Foundation Models in robotiCs

a gripper 3D position, 3D rotation, base movements,

and so on. Actions that are continuous values are

tokenized by mapping them to a discrete uniform

distribution, and then predicting the bucket number

corresponding to the float action.

• The model is trained with cross-entropy loss, and the

training data (action outputs and image/text inputs) is

collected by humans teleoperating the robot.

 Figure 4-13. RT-1 processes images and natural language

 instructions to control a robot’s actions. Used with permission, source:

 https://arxiv.org/pdf/2212.06817 [57]

RT-1 performs closed-loop control and executes actions until it either

produces a termination action or reaches a predetermined number of

time steps. This work shows that given enough domain data, a transformer

based model can fit to it to create a large multitask transformer for robot

control. The work also showed that simulation data, when added in the

right mix, can improve performance, as you saw with synthetic data in

LLM domain. RT-1 also showed signs of transfer between robots that later

emerged to be a wider area of research, as is covered later in this chapter.

One drawback of RT1 is that it was tested mainly on gross

manipulation—pick and place—and this makes it harder to know if it can

work for highly dexterous tasks. Dexterous tasks are manipulation tasks

that require fine motor control and coordination similar to human hands

170

[image: Image 96]

Chapter 4 Foundation Models in robotiCs

manipulating objects in their environment. Within robotics, this means

dealing with objects of different texture, sizes, and shapes. A second

drawback is that while it showed impressive generalization in domain, its

ability to generalize outside of domain—with entirely new objects and with

reasoning—was limited.

Another model, very similar to RT-1, that is widely used today is ACT

(Action Chunking Transformer)[61]. ACT is an encoder-decoder model

that introduces a concept called “action chunking.” Action chunking refers

to the method of modelling k steps into the future. At any given point in

time, you get an observation but predict k actions, effectively reducing

the horizon of the task by k fold. This outperforms single-step policies

in situations where there are temporally correlated confounders, such

as when there’s a pause in demonstration and the next action is not just

a function of state but also of timestep. As long as these confounders

fall inside the length of the chunk, an action chunking policy can

recover. In practice, chunk length corresponds to 1s of horizon into the

future. That is, if your control is running at 30hz, a single observation,

instead of predicting one action as in RT1, would predict 32 actions, or 1

second horizons. In practice, training on chunks also employs temporal

ensembling, along with chunking. As shown in Figure 4-14 on the

right, this means that instead of training on disjoint chunks, chunks for

observations overlap, allowing for very dense modeling.

 Figure 4-14. Action chunking encoder-decoder transformer

 architecture on top; chunking with temporal ensembling on

 bottom. Used with permission, source: https://arxiv.org/

 pdf/2304.13705 [61]

171

[image: Image 97]

Chapter 4 Foundation Models in robotiCs

RT-2[62] is a method built on top of RT-1 that uses the semantic

information that pretrained vision-language models have to generate low-

level robot actions.

RT-2 uses visual question answering (VQA) data, where there are

images paired with questions and answers describing the context within

the images, and robot action data, which pairs images and text instructions

with robot actions that need to be executed to successfully complete that

task. The model first uses a pretrained VLM trained on Internet-scale data,

then co-trains it with robot action and Internet-scale data to get a vision-

language-action (VLA) model for the robot control. This training recipe is

depicted in Figure 4-15.

 Figure 4-15. RT-2 represents robot actions as text tokens, trained

 together with large-scale vision-language datasets. Used with

 permission, source: https://arxiv.org/pdf/2307.15818 [62]

Inference starts with a user query, such as “What should the robot do

to pick up the apple?” This query and images of the scene where the user

wants the task executed are processed by a ViT and a LLM. The ViT extracts

visual features from the images and the LLM understands the language

part of the query. These combined features generate a sequence of actions

represented as specific translations and rotations for the robot to do.

The results of the paper denote that co-training on Internet and robot

datasets jointly in this fashion allows robots to understand concepts only

seen in the Internet and practically use them in real-world situations.

172

[image: Image 98]

Chapter 4 Foundation Models in robotiCs

For example, the robots are able to identify celebrities (“move can to

Taylor Swift”), do simple math (“move coke can to the sum of 1 + 2”) and

understand symbols (“move coke can to Google”). It even understands

other relative concepts, such as “pick up the object with different color,”

“put strawberry into the correct bowl,” and so on, that require one to

reason among the options in the scene, when the question is asked in

natural language. The work notices that Internet-scale pretraining leads

to much better representations than previously possible. Some of these

results are shown in Figure 4-16.

 Figure 4-16. Evaluation results from RT2. Robots understand

 concepts from the Internet such as Google, letters, colors, Taylor

 Swift, and so on. Used with permission, source: https://arxiv.org/

 pdf/2307.15818 [62]

173

[image: Image 99]

Chapter 4 Foundation Models in robotiCs

A bonus of training on multimodal data is that the model, with a small

amount of fine-tuning on robot plans with language and images, can also

do high-level planning, as exhibited by the SayCan model. This indicates a

future opportunity to unify high-level planning and low-level control into a

single robot brain that’s capable of both.

While RT1 and RT2 showed ways to model in-domain robot data,

and model joint large-scale Internet and robot data respectively, each

robot still had different action spaces, and it was unclear if learned

representations transferred across robots. The Open X embodiment[63]

effort initiated by Google DeepMind studied the problem of cross-

embodied robot learning—can we build a singular brain to control many

different robot embodiments? In order to study this problem, a huge

dataset representing data across many different robot embodiments was

collected, with labs across the world participating in this study. The dataset

contained more than a million robot episodes from more than 34 research

labs, representing 22+ different robot embodiments. Figure 4-17 shows

details of the dataset. It is open source and can be accessed here[64].

 Figure 4-17. Distribution of data in the Open X embodiment

 dataset. Used with permission, source https://arxiv.org/

 pdf/2310.08864 [63]

174

[image: Image 100]

Chapter 4 Foundation Models in robotiCs

In order to train a model that can control multiple embodiments, two

candidates were considered: RT1 and RT2. The versions of the model

trained on cross-embodied data are respectively known as RT1-X[63] and

RT2-X[63]. Only single arm robots were considered for this study and all

datasets were transformed into cartesian position control parameters as

learning targets, as in RT1 and RT2.

–

Evaluations found that models trained on all robot data

were able to beat individual models trained by each lab

on their own data. In other words, generalist models

performed better than specialists, as shown in

Figure 4-18.

–

The study also found that Internet co-trained data

improved performance over training on robot data

from scratch and that co-training with Internet data

and robot data mixed in batches is better than fine-

tuning on robot data followed by pretraining on

Internet data. The former helped learn better joint

representations between robot and Internet scale data,

and to retain Internet concepts after several epochs of

training.

 Figure 4-18. Evaluation of RTX models. Used with permission,

 source: https://arxiv.org/pdf/2310.08864 [63]

175

Chapter 4 Foundation Models in robotiCs

RTX provides evidence to support the idea that a singular brain for

many robots may be possible in the future, and that robots are not too

different from each other. They may be only as different as say English

and Chinese and many common synergies could be exploited. It also

presents a way to collect data differently: if you can collect your data on a

scalable cheaper embodiment and then transfer that to a more expensive

embodiment that’s harder to deploy, you improve the efficiency of

operations and the ability to scale by a lot. This idea was further explored

in work like CrossFormer[80], which expands cross-embodiment to

navigation robots, bimanual robots, and even drones. Cross-embodied

learning is now a key research area in robotics, with many upcoming

developments.

 End-to-End Robot Control with Diffusion Models

Recently, diffusion models have become very popular in the field of robot

learning due to their ability to model multimodality well[65]. They also

scale easily, and are better suited to deal with noisy datasets, especially

when generating high-dimensional data that is extremely multimodal.

For example, say your dataset has two trajectories for the same state:

one with the robot going in clockwise circles and another with it going

in counterclockwise circles. An autoregressive transformer is generally

trained to predict the average of the two trajectories, since it uses a

cross-entropy objective on the mean of the loss. This approach can yield

nonsensical results in this situation. Diffusion, on the other hand, tends to

fall back to one or more modes of the data and follow it consistently. This

property can be extremely useful when there are distinct strategies, such

as in manipulation. Another aspect where it becomes useful is when you

need generated trajectories to be highly precise and have high fidelity.

Denoising steps in diffusion allows correcting to get very fine trajectories

needed for highly dexterous motions, when autoregressive models output

an action, but cannot refine it to remove suboptimality.

176

[image: Image 101]

Chapter 4 Foundation Models in robotiCs

This section explains how diffusion models work fundamentally and

how diffusion can be applied in robotics.

 Forward Diffusion Process

Diffusion models learn to generate data by reversing an iterative noising

process. In the forward diffusion process, noise is added to data in small

steps. In the reverse process, the model learns to remove this noise step

by step.

Forward diffusion starts with an initial image that is sampled from a

data distribution. At each time step t, noise is progressively added to the

image until it resembles pure Gaussian noise. This process is described by

a Markov chain, where each x(t) is a noisy version of x(t-1). Equation 4-3

shows how to generate the noisy image at time step t. The noisy image at

some step is created by taking the original image, scaling it down (using

square root of α), and then adding random noise. The random noise is

added such that its variance is controlled by (1-α), making sure the added

noise fits a normal distribution.

Equation 4-3

 Reverse Diffusion Process

In the reverse process, you start with a pure noise sample. At every step,

a trained neural network is used to predict the previous, less noisy image

from the current noise sample. This prediction has two components: the

expected value of the previous image and the uncertainty or variance of

this prediction. The neural network takes the current noisy image, the time

steps as inputs, and produces the expected value (mean) and variance

for the previous step. This noise is then subtracted from the noisy image

177

[image: Image 102]

Chapter 4 Foundation Models in robotiCs

to get a clearer image. The process is repeated iteratively, allowing the

network to gradually remove noise from the image step-by-step, shown in

Equation 4-4.

Equation 4-4

The goal of the training process is to make the reverse process as

accurate as possible by minimizing the difference between the predicted

distribution (reverse) and the true posterior distribution (calculated from

the forward process), such that the output of the reverse process looks like

the target output distribution seen during training. One way to do this is

using KL divergence, which measures how one probability distribution

differs from another. In the context of diffusion, the divergence measures

the difference between the network’s prediction of noise to be subtracted

and the true noise added during the forward process. By reducing the

KL divergence between these two, the neural network can be improved

to make predictions more accurate and closer to the true noise that was

added during the forward process, and thereby retrieving out of pure noise

an image that resembles the training distribution.

An overview of this process is shown in Figure 4-19.

178

[image: Image 103]

Chapter 4 Foundation Models in robotiCs

 Figure 4-19. Illustration of the diffusion model’s forward and

 reverse processes. In the forward process, noise is added step-by-step

 to an image until it becomes random noise. The reverse process,

 approximated by a neural network, predicts the denoised image at

 each step. Used with permission, source: https://roysubhradip.

 hashnode.dev/a-beginners-guide-to-diffusion-models-

 understanding-the-basics-and-beyond [97]

Putting this together, the core steps for diffusion training are:

• Load some dataset, preprocess images (augmentations,

normalization), and use a data loader for loading data

in batches.

• As described in Chapter 2, a U-Net model[66] can be

used for image generation. Custom U-Net models can

be created by specifying input/output channels and

structuring downsampling and upsampling blocks.

179

Chapter 4 Foundation Models in robotiCs

• A noise scheduler can be used to define how

(intensity and frequency) noise is added to the image

progressively over multiple timesteps. This is important

to ensure that noise is added in a controlled and

gradual manner, which can help stabilize training.

• For each epoch, add noise to the current timestep. The

model predicts the noise that was added and the loss

is calculated as the Mean Squared Error between the

predicted and actual noise. The model parameters

are updated using backprop and these metrics (loss,

learning rate, etc.) are logged.

On the inference side:

• You load the trained U-Net model and noise scheduler.

• Starting with a batch of noisy images (random

noise), the model is used to predict the noise in the

current image.

• The predicted noise is removed from the noisy image to

get a less noisy image.

• This process is repeated for all timesteps to gradually

remove noise from the image.

We recommend checking out HuggingFace docs as a way to get started

implementing these steps[67].

 DDPMs (Denoising Diffusion

Probabilistic Models)

DDPM[72] was one of the first papers that showed how diffusion models

could be used to generate images. The two main algorithms in the paper

are for training and sampling, as shown in Figure 4-20.

180

Chapter 4 Foundation Models in robotiCs

The training stage aims to teach the model to predict noise added to

images at various timesteps. These steps are done per epoch:

• Sample a batch of images from some data distribution

(dataset of images). Sample a timestep t uniformly for

each image in the batch. This will determine when

in the diffusion process we add noise to the image.

Each timestep is modeled individually, compared

to modeling the entire diffusion process with one

function. This improves training stability and speed, as

the model only needs to predict noise for timestep t, as

t is sampled uniformly.

• Generate random noise from a standard normal

distribution. Each image up to timestep t in the batch

is noised using an equation that combines the original

image with sampled noise.

• The model predicts the noise given the noisy image and

timestep t. Mean Squared Error (MSE) loss is computed

between the predicted noise and the actual noise

added at timestep t.

The goal of the sampling stage is to generate a new image by iteratively

denoising a noisy image. The main steps for sampling are:

• Start by sampling a noisy image from a standard

normal distribution. The image is currently at the final

timestep T.

• Iteratively from t = T to 1, if t > 1, then sample noise

from a standard normal distribution which will be

used in the next timestep. If t = 1, then there’s no

noise needed since you are at the final denoising step.

This noise will be used in the last stochastic part for

computing the denoised image at each timestep.

181

[image: Image 104]

Chapter 4 Foundation Models in robotiCs

• The goal is to estimate the denoised image at the

previous timestep (t-1) given the current noisy image

and the model’s prediction of the noise. The trained

model predicts the noise in the current image at t and

then the prediction is used to remove the noise and

move it to t-1.

• Computing the denoised image has two main parts

to it. The first part is the deterministic part where the

predicted noise is subtracted from the current noise.

The stochastic part adds a controlled amount of noise

back into the image using a scaling factor. This helps

ensure there is variation and the model is not overly

deterministic.

 Figure 4-20. DDPM training and sampling algorithms. Used with

 permission, source: https://arxiv.org/abs/2006.11239 [72]

For an example of how DDPM is implemented, we recommend this

tutorial[73].

The main issue with the original DDPM was its poor log-likelihood

score. This meant that while it could generate high-quality images, it

did not accurately fit the data distribution of real images. The improved

DDPM[89] introduced some variations to address this:

182

[image: Image 105]

Chapter 4 Foundation Models in robotiCs

• Variance prediction: Instead of using a fixed variance,

the improved DDPM learns the variance of the noise

distribution, which helps improve log-likelihood and

model stability. This is done by interpolating variance

between an upper bound and a lower bound.

• Learning rate scheduling: The original linear

scheduling of noise was replaced with a cosine

interpolation, which led to better control over noise

addition and removal.

• Increased timesteps: The number of timesteps in the

diffusion process was increased from 1,000 to 4,000,

which improved sample quality. However, this did

increase the time and compute required for training

and sampling.

 DDIM (Denoising Diffusion Implicit Models)

In the DDPM approach, the model is predicting noise that was added to a

clean image to produce a noisy image. This is done gradually and can be

over many steps. Instead of predicting noise added to the image at each

step like DDPMs do, DDIMs[74] predict the noise so that when the noise

and clean image are mixed, they make xt. This allows the model to get

closer to the final clean image in fewer steps.

The process is controlled by σ, which determines how much noise is

added at each step. If it is 0, then the process is deterministic. The model

then predicts what the clean image looks like from the noisy image. This

prediction is given by Equation 4-5, which subtracts the noise from the

noisy image and then scales it:

Equation 4-5

183

[image: Image 106]

Chapter 4 Foundation Models in robotiCs

To generate the image at step t-1 from the image at step t, an equation

(Equation 4-6) is used, which combines the predicted clean image and

some noise to step back from xt to xt-1. The predicted clean image is

scaled to fit the previous timestep. Some noise is added back and scaled

back to fit the previous timestep. A bit of noise, which is controlled by σt,

is also added to ensure there is some variability and the process isn’t fully

deterministic.

Equation 4-6

There is also a case of Equation 4-6 where σt is set to 0 so no noise

is added and the process is more deterministic. The model and training

objectives used are the same as DDPMs, but the idea is that the technique

allows for fewer and larger steps to be taken.

 Stable Diffusion

The diffusion process described so far works directly in the raw image pixel

space. This can be time intensive for very large images (lots of pixels to

denoise) and can suffer from modeling fine details in images incorrectly.

Stable diffusion[68] is a popular method that tackles both these problems

by compressing the image into a latent space before applying the diffusion

model. Stable diffusion took the world by storm with its very remarkable

and realistic AI generated output.

During the stable diffusion training phase, you take an image and

pass it through a Variational Autoencoder (VAE)[69], which compresses

it into a latent vector. The encoder helps reduce the image into a lower-

dimensional representation while preserving important features—think

of this as a semantic compression. This vector is then used as the starting

point of the diffusion process and noise is added to the latent vector at

each timestep to make it nosier. The resultant noisy vector becomes the

184

[image: Image 107]

Chapter 4 Foundation Models in robotiCs

starting point of the reverse diffusion process, where a U-Net is used to

predict and remove noise at each step. This U-Net has text-conditioning,

which means that it also uses text embeddings from a user’s input query

(during inference) or captioning (in training datasets) to guide the image

generation. The denoised latent vector is passed through a decoder, which

reconstructs the original image—think of this as decompression. Overall,

the goal of this approach is to make sure a high-quality image is output

that matches the user’s input at inference time by reconstructing this from

the conditioned latent vector. Because the diffusion process operates on

the latent encoding instead of the original image, it’s fast enough to be

used in products. You can see these steps in Figure 4-21.

 Figure 4-21. Stable diffusion generates an image by iteratively

 denoising a latent image representation, conditioned on text

 embeddings produced by a CLIP model. U-Net refines the noisy

 latents over multiple iterations, and the final latent representation

 is decoded by a VAE into the output image. Used with permission,

 source: https://towardsdatascience.com/stable-diffusion-

 using-hugging-face-501d8dbdd8 [98]

185

[image: Image 108]

[image: Image 109]

Chapter 4 Foundation Models in robotiCs

 Conditioned Generation

You have seen in stable diffusion how a user input query or caption is used

to guide the generated image via conditioning. This section digs deeper

into conditioning for diffusion.

There are two variants of conditioning popularly used: classifier

guidance[70] and classifier-free[71]. The main difference between the two is that in the case of classifier guidance, a separate classifier needs to be trained,

whereas classifier-free guidance does not need an external classifier network.

 Classifier-Guided Diffusion

The goal in classifier-guided diffusion is to generate images that lie within

a certain class or have certain attributes. This is accomplished by training

a separate classifier network on the labels of the same dataset that the

diffusion network is trained on. Then, the classifier network is used to

guide the image-generation process by using the Bayes rule to combine

the probability of the image and the class (see Equation 4-7):

Equation 4-7

The image generation is updated based on the combination of

the gradients of the log probabilities of the image and the class (see

Equation 4-8).

Equation 4-8

Combining the signal’s sub-times requires a linear parameter called

guidance scale, 𝛄. A higher guidance means images pay more attention to

class and are less diverse, and a lower guidance means that images are less

class specific but are more diverse.

186

[image: Image 110]

[image: Image 111]

Chapter 4 Foundation Models in robotiCs

 Classifier-Free Guidance

The main idea in classifier-free guidance is to train the diffusion model

to understand class labels directly without needing a separate classifier,

that is, your classifier is the model itself. The model is trained to generate

images with and without specific class information, by dropping in

labels 20-30 percent of the time during training. During denoising,

two predictions are made—one with the label as conditioning and one

without. The probabilities of the conditional generation and unconditional

generation are combined while applying a weight to balance the

importance of class guidance, 𝛄. Once this combined gradient equation is

expanded and simplified, you get Equation 4-9:

Equation 4-9

Where 𝛄 = w/(1-w). As in classifier-guided generation, higher 𝛄 implies

more attention to class labels at the cost of diversity.

Classifier-free guidance is simpler while providing more control and

fidelity over generation. It also avoids any adversarial generation prompted

by a separate classifier network.

 Text-Conditioned Guidance

Text-conditioned guidance is used in many generative AI products that

generate images/videos that a user is specifically asking for. To this end, a

text prompt that describes the output image is converted into embeddings

with a text encoder. The text embeddings are integrated into the U-Net

model using cross-attention (see Equation 4-10):

Equation 4-10

187

[image: Image 112]

Chapter 4 Foundation Models in robotiCs

Equation 4-11 represents the model’s prediction at step t, using the

image and the text embeddings. During image generation, the model uses

the text embeddings to guide each step:

Equation 4-11

The gradient will adjust the image based on the text description, just

like the guidance discussed previously. Overall, a text description is used

to guide the model in generating images that match the description.

 Action Diffusion for Robot Control

Diffusion Policy[75] is a method that, instead of directly deciding the

robot’s actions, uses conditional denoising diffusion to generate the best

actions to take. Diffusion policy can sample from a very high dimensional

output space. The iterative refinement in diffusion also allows for more

flexible and adaptable actions. Some other common policies used for

actions include:

• Explicit policy: This directly maps visual inputs

to robot actions and can have different action

representations, like regression, mixture of Gaussians,

and so on. One limitation of this policy is that directly

outputting actions can be less flexible and harder to

train for more complex behaviors because there is a

direct learned mapping from input to output.

• Implicit policy: These methods use an energy function

to implicitly define the policy, where the policy learns

an energy function conditioned on both actions and

observations. One limitation of this method is that

188

[image: Image 113]

Chapter 4 Foundation Models in robotiCs

optimization during inference can be computationally

intensive when it comes to solving the minimum

energy configuration.

Instead of directly outputting actions, in diffusion policy, the policy

infers the action-score gradient based on visual observations. The process

starts with a sequence of images as input, which are encoded to extract

relevant features. The diffusion policy takes these observations and

generates a sequence of actions over some time horizon. This can be seen

as initial noisy actions given as a rough guess, which is refined over K

iterations. As shown in Figure 4-22, the model refines noise into actions

using a gradient field in diffusion policy.

 Figure 4-22. The difference between explicit, implicit and diffusion

 policy. Used with permission, source: https://arxiv.org/

 pdf/2303.04137 [75]

As shown in Figure 4-23, the general steps are that the robot gets a

sequence of images from the environment, which are encoded. The policy

uses the encoded observations to generate a sequence of actions, which

are refined iteratively. Based on new observations, these actions are

refined to guide the robot’s movement. The specific policy implementation

uses two approaches: a) CNN-based, which uses convolutional layers

and FiLM[58] to condition each layer with some observation features

and refine actions and b) transformer-based, which uses cross-attention

to integrate observations and actions while leveraging strengths of

transformers to handle sequential data. For more details, we recommend

checking out the paper[75].

189

[image: Image 114]

Chapter 4 Foundation Models in robotiCs

 Figure 4-23. Overview of diffusion policy pipeline outputting the

 action sequence for the robot to perform. Used with permission,

 source: https://arxiv.org/pdf/2303.04137 [75]

Since this work, there have been other variants of diffusion policies for

robot control, such as Aloha Unleashed[94], where a transformer decoder

iteratively refines actions from noise, while taking in an embedding of

observations and diffusion timestep as input, via cross-attention. Diffusion

models provide an alternative to autoregressive models for control of

robots, and they can model high-fidelity actions, due to outputting float

actions directly instead of outputting tokens. In practice, they can also

model multimodality and noisy datasets much better, as discussed earlier

in this chapter.

Combining VLMs and Diffusion Models

Recently, we have seen architectures that combine VLAs and diffusion

models as a system 1 / system 2 model and trained jointly. Pi0[99], Groot

N1[100] and Gemini Robotics[101] are some of these variants. Combining

a large VLM with diffusion allows exploiting the generality and capacity of

a VLA while retaining the smooth behaviours of diffusion. In Groot N1, the

input to the diffusion model is the output of one of the final layers of the

VLM. During inference time, the models may be split, with the large model

living in cloud and the smaller model on robot as in [101].

190

Chapter 4 Foundation Models in robotiCs

 Learning from Video Demonstrations

A key paradigm in robot learning is learning from video demonstrations

(LfV)[90]. The biggest challenge to learning from video demonstrations

is that they do not have action labels, which makes it harder to convert

video data into actionable robotic data. A second challenge is that

most _Internet-scale video data has a distribution shift relative to robot

deployment, but in instances this may be an advantage as the diversity

of video data allows for generalization to wide variety of scenes the robot

hasn’t seen before. A third challenge, or opportunity, is that well curated,

open source video datasets with language annotations that can be used for

robotics are still relatively limited or small in size.

The first challenge may be overcome in the following ways:

1. Inferring motion from video: Adding proxy action

labels to video data, via using optimal flow. Such

as by annotating hand positions, or inferring hand

positions via monocular/stereo tracking.

2. High-level language as actions: Annotations

using captioning models, language description

of motions, can be derived. While this type of

information is useful for learning semantics,

language lacks the fidelity required for precise

control.

3. Learning latent actions from video: Usually an

auto-encoder compresses and decompresses the

video, and then uses the learned compressions as a

latent variable.

191

Chapter 4 Foundation Models in robotiCs

 World Modeling Using Video Data

A world model is an internal representation of the world: the physics of

the world, how objects interact and their dynamics, and what a robot may

possess to anticipate outcomes for its own or another dynamic agents’

actions. One way to look at it is that it is an internal simulation.

A common way of creating a world model is by learning good latent

representations of observations. Videos provide a very rich opportunity to

create extensive world models. Usually, an encoder network encodes video

into a latent representation, and then a dynamics model predicts the next

latent state and the rewards, using current state and embedded actions as

input. A reconstruction loss is typically used to train them. In a video, the

dataset presents future states, thus providing a useful training signal. A

world model thus learned can then be fine-tuned to learn general action

dynamics based on specific robot embodiments.

Once you create this world model, you can use it for a variety of

downstream robotic applications.

 Reasoning from Video

Video language planning[95] is an example of this method. It reasons

about the world and creates plans in multimodal video and text, akin to

PaLM-e, discussed earlier, but with a temporal component. Internet-scale

video data with language annotations holds a ton of contextual knowledge,

presenting an opportunity for acquiring generalization. Robots can learn

low-level actions from their current “robot dataset” while gaining high-

level task understanding from the video dataset through visual cues and

steps needed to complete tasks.

 Actions from Video by Fine-Tuning World Models

Structured World Models for Intentionality, or SWIM[78], is a work that

helps robots learn manipulation tasks by first creating a world model

192

Chapter 4 Foundation Models in robotiCs

from human videos and then fine-tuning it on robot data. SWIM trains

both a world model (which predicts how the environment changes when

actions are taken) and an affordance model (which learns where and

how to interact with objects, i.e. grasping) using human video data. This

affordance model is used to guide the behavior of a robot collecting data in

the real world, and the data from the robot is used to fine-tune the world

model, thus embodying it in an unsupervised manner.

One can argue that today’s foundation models already have an implicit

world model from being trained on the Internet and a wide variety of data.

Therefore, fine-tuning them on actions is an expression of transferring

their world model understanding to the concept of actions and movement.

Results from RT2 discussed earlier in this chapter provide evidence to

some of these claims.

 Action Models by Conditioning

on Video Representations

Video-conditioned policy learning uses the idea that a robot can observe

a human (or robot) performing a task and infer actions the needed to

complete the task in its own environment. This is useful, as it allows non-

experts to specify tasks for robots in an intuitive way without needing

complex reward function design or explicit goal definitions. For example,

you can just show a robot how to do a task, then that video is the input to

policy. Vid2Robot is an example of this type of method[77]. In addition to

directly prompting with the video, users can also extract high-level task

representations from video via large-scale pretraining, and then use it for

downstream policy learning, thus conditioning a policy on embeddings

extracted from videos. For example, Time-Contrastive Networks (TCN)[81]

extracts visual features like hand-object interactions and spatial relations

from multi-view videos and Contrastive Video Representation Learning

(CVRL)[82] learns spatiotemporal representations from video data.

193

Chapter 4 Foundation Models in robotiCs

 Action Models from Thinking in Video

An interesting approach toward action prediction we want to highlight is

Policy-as-Video[79]. It models the world in images. It introduces Unified

Predictive Decision Process (UPDP) as an alternative to MDP that uses

images for representing environments instead of numerical states. The

video generator predicts trajectories of images showing how the robot

should progress from its initial state to achieve the goal described by

the text. Once the video is generated, an inverse dynamics model (IDM)

extracts the corresponding actions (e.g., motor commands) from the

predicted frames. Diffusion models are used to generate the video

sequences in UPDP and they progressively denoise the images toward the

end goal. A key feature of UPDP is that it separates the planning process

(video generation) from the execution (action extraction), which can make

this method more flexible to different robots and environments.

 AI Safety for Robotics

As we trust AI models to perform actions in the physical world

autonomously, we need to be aware of the security risks that stem from

these applications.

A practical study of security risks show that physical, network, and

software attacks are probable scenarios[86]. Physical attacks on robots, like

tampering with hardware or feeding them false sensor data (sensor spoofing)

can directly alter robot behavior, causing them to crash or fail. Attacks on the

perception layer (sensors such as IMU, GPS, LiDAR, camera, etc.) can disrupt

the robot’s ability to understand its environment and this can further impact

its navigation and control abilities. On the hardware side, hacking actuators

and control systems can directly lead to dangerous behavior. Network

attacks, like Denial-of-Service (DoS), can overload the robot’s network and

cause slowdown or system failures. Software-level attacks, such as injecting

malicious code, can alter a robot’s actions and lead to harmful actions.

194

Chapter 4 Foundation Models in robotiCs

To protect robots from various security threats, some defense strategies

include:

1. Anomaly detection systems that monitor sensor

data for irregularities and then trigger failsafe modes

when issues are detected.

2. Filtering and sensor fusion can mitigate spoofing

and jamming by cross-referencing multiple data

sources (e.g., GPS, LiDAR) to verify if data is

consistent.

3. Data sanitization and validation can help ensure

that inputs are checked for malicious content before

processing.

4. Cryptographic integrity checks and secure firmware

updates protect against data tampering and

unauthorized code execution.

5. Failsafe mechanisms and secure update protocols

can be useful for robots to revert to safe states and

receive only verified updates.

For more details on attacks and potential defense mechanisms, we

recommend reading [87].

While these threats are more practical, there is also a longer range and

philosophical resistance to autonomy. As AI becomes more intelligent

and more integrated into everyday life, their situational awareness could

improve, making them able to deceive humans, persuade us to execute

harmful behavior, spread misinformation, and so on. There are several

organizations working on addressing longer-term existential threats to

humanity from AI. This is in sharp contrast to folks working on AI ethics,

who focus on nearer-term risks from AI such as deep fakes, bias in AI

outputs, privacy concerns, and so on.

195

Chapter 4 Foundation Models in robotiCs

Anthropic’s core AI safety principles[88] is an industry-defining

standard for designing safer AI systems. These are some of the ways we

might use these principles to improve AI-driven robotics systems:

• Mechanistic interpretability focuses on

understanding the internal decision-making processes

of AI models (their interpretability). In robotics, this

means being able to detect if a robot might misinterpret

a situation before potentially making any harmful

actions. An area of AI safety research is reverse-

engineering models and building tools for model

interpretability so engineers can detect whether the

robot may have unintended behaviors, like moving into

a dangerous area or misidentifying an object. A recent

advance in interpretability is the study from OpenAI

that showed that a smaller model can be explained

with a larger model[91]. In the study, GPT-4 generates

explanations for the role of neurons in GPT-2, and

then the neuron is simulated to score the explanation,

providing a way for scalable interpretability. There

remains the question though whether all neurons could

be interpretable, if they do not have clean and human

understandable semantic explanations for their role.

• Red teaming is a technique where AI models are

stress-tested with difficult or adversarial conditions

prior to their deployment to identify and correct

vulnerabilities before applying them in the real world.

Stress-testing AI models in an environment that is

controlled can help identify and fix any failure points.

In the context of robotics, for example, robots could

encounter scenarios where their sensors are fed

misleading information, which could lead to dangerous

actions, such as crashing or navigating incorrectly.

196

Chapter 4 Foundation Models in robotiCs

By deliberately placing robots in these controlled

adversarial conditions, engineers can detect and

mitigate failure points when under attack from physical

or cyber threats, like sensor spoofing.

• Alignment refers to the problem of enabling AI systems to

follow human values and adhere to human preferences.

As discussed earlier in this chapter, the post-training

phase is mainly used to improve the alignment of models,

along with their instruction following abilities. In many

situations, especially in robots being deployed in real-

time, it is not practical for humans to provide constant,

real-time supervision. Developing techniques that allow

robotic systems to self-monitor and correct their own

behaviors without human supervision will be important.

Constitutional AI[92] and RLAIF[93] are two works that

advance this. RLAIF provides a way to scale human

feedback by training a model from human preferences

that can provide feedback without the bottleneck

of human involvement and act as a critic during

training large networks. Constitutional AI introduces a

constitution or value system, which is used by language

models to reason about their responses and edit them to

align them to the constitution during post-training.

• Robots must be able to operate in various

environments without reprogramming. Building

generalization into model training, by training on

varying conditions and environments and testing on

these, can be critical. If a robot was trained in a specific

factory, it may have unintended behavior without

reprogramming in a new environment. Ensuring and

testing for generalization can be helpful not only for

performance but also for safety in robotics.

197

Chapter 4 Foundation Models in robotiCs

For more aspects of practical safety during deployment, refer to

Chapter 11.

 Summary

In summary, this chapter covered the following points:

• How robotic planning, control, and mapping can be

framed as a language problem and various ways of

solving it with LLMs using open loop and closed loop

techniques.

• Large foundation models are pretrained on a large

corpus of data and later refined using supervised fine-

tuning (SFT) or direct preference optimization (DPO).

Scaling laws help guide their development by predicting

performance improvements as models grow in size, data,

or compute. Benchmarks like MMLU and HumanEval

evaluate language models’ performance across tasks.

• Models like SayCan break down high-level instructions

for a robot to execute and PaLM-e incorporates

multimodal inputs (text, vision) for planning. These

models help robots understand tasks in context,

generate actions, and adjust.

• Methods like NLMap-SayCan allow robots to build a

map of their surroundings and plan based on unseen

objects. Code as Policies allows LLMs to translate

natural language instructions into executable code for

robots using pretrained models and examples to guide

task execution.

198

Chapter 4 Foundation Models in robotiCs

• Models like RT-1, RT-2, and RT-X use transformers to

directly control robot actions from visual and textual

inputs, allowing multitask and real-world control

across different robots and tasks.

• Diffusion-based policies offer flexibility in generating

high-dimensional action sequences through iterative

refinement.

• Robots can learn tasks by observing video

demonstrations, extracting high-level task

representations, and applying those tasks to their

own actions, bridging the gap between human

demonstrations and robot tasks.

• AI-driven robots face practical security risks, such as

physical tampering, network attacks, and software

vulnerabilities, while also posing long-term risks

related to autonomy and generalization. Robust safety

mechanisms, anomaly detection, and interpretability

are crucial for safe robotic operations.

The next chapter discusses how simulation can be used in robotics,

common simulators, their tradeoffs and benefits, and methods like

domain randomization and domain adaptation, which are used to address

the Sim2Real gap. The next chapter also discusses common learning

methods using simulators for RL and IL.

References

[1] Achiam, Josh, et al. “Gpt-4 technical report.” arXiv

 preprint arXiv: 2303.08774 (2023).

[2] Team, Gemini, et al. “Gemini: A family of highly

capable multimodal models.” arXiv preprint

 arXiv: 2312.11805 (2023).

199

Chapter 4 Foundation Models in robotiCs

[3] Touvron, Hugo, et al. “Llama: Open and efficient

foundation language models.” arXiv preprint

 arXiv:2302.13971 (2023).

[4] Devlin, Jacob. “Bert: Pretraining of deep bidirectional

transformers for language understanding.” arXiv preprint

 arXiv:1810.04805 (2018).

[5] Brown, Tom B. “Language models are few-shot learners.”

 arXiv preprint ArXiv: 2005.14165 (2020).

[6] Radford, Alec, et al. “Language models are unsupervised

multitask learners.” OpenAI blog 1.8 (2019): 9.

[7] Radford, Alec, et al. “Improving language understanding

by generative pre-training.” (2018).

[8] Chowdhery, Aakanksha, et al. “Palm: Scaling language

modeling with pathways.” Journal of Machine Learning

 Research 24.240 (2023): 1-113.

[9] Touvron, Hugo, et al. “Llama: Open and efficient

foundation language models.” arXiv preprint

 arXiv: 2302.13971 (2023).

[10] Dubey, Abhimanyu, et al. “The llama 3 herd of models.”

 arXiv preprint arXiv:2407.21783 (2024).

[11] Ainslie, Joshua, et al. “GQA: Training generalized multi-

query transformer models from multi-head checkpoints.”

 arXiv preprint arXiv: 2305.13245 (2023).

[12] Lages, João. “Transformers KV Caching Explained - João

Lages.” Medium, Medium, 8 Oct. 2023, medium.com/@

joaolages/kv-caching-explained-276520203249.

200

Chapter 4 Foundation Models in robotiCs

[13] Radford, Alec, et al. “Learning transferable visual models

from natural language supervision.” International

Conference on Machine Learning. PMLR, 2021.

[14] https://opencompass.readthedocs.io/en/latest/

advanced_guides/needleinahaystack_eval.html

[15] Rafailov, Rafael, et al. “Direct preference optimization:

Your language model is secretly a reward model.”

 Advances in Neural Information Processing Systems

36 (2024).

[16] Ouyang, Long, et al. “Training language models to follow

instructions with human feedback.” Advances in Neural

 Information Processing Systems 35 (2022): 27730-27744.

[17] Kaplan, Jared, et al. “Scaling laws for neural language

models.” arXiv preprint arXiv: 2001.08361 (2020).

[18] Hoffmann, Jordan, et al. “Training compute-

optimal large language models.” arXiv preprint

 arXiv:2203.15556 (2022).

[19] Bahdanau, Dzmitry. “The Flops Calculus of Language

Model Training.” Medium, 9 Jan. 2022, medium.com/@

dzmitrybahdanau/the-flops-calculus-of-language-

model-training-3b19c1f025e4.

[20] Besiroglu, Tamay, et al. “Chinchilla Scaling: A replication

attempt.” arXiv preprint arXiv: 2404.10102 (2024).

[21] Muennighoff, Niklas, et al. “Scaling data-constrained

language models.” Advances in Neural Information

 Processing Systems 36 (2024).

[22] Sorscher, Ben, et al. “Beyond neural scaling laws: beating

power law scaling via data pruning.” Advances in Neural

 Information Processing Systems 35 (2022): 19523-19536.

201

Chapter 4 Foundation Models in robotiCs

[23] Hendrycks, Dan, et al. “Measuring massive

multitask language understanding.” arXiv preprint

 arXiv: 2009.03300 (2020).

[24] Wang, Yubo, et al. “MMLU-Pro: A more robust and

challenging multi-task language understanding

benchmark.” arXiv preprint arXiv: 2406.01574 (2024).

[25] Zhong, Wanjun, et al. “Agieval: A human-centric

benchmark for evaluating foundation models.” arXiv

 preprint arXiv: 2304.06364 (2023).

[26] Cobbe, Karl, et al. “Training verifiers to solve math word

problems.” arXiv preprint arXiv: 2110.14168 (2021).

[27] Hendrycks, Dan, et al. “Measuring mathematical

problem solving with the math dataset.” arXiv preprint

 arXiv:2103.03874 (2021).

[28] Clark, Peter, et al. “Think you have solved question

answering? try Arc, the AI2 reasoning challenge.” arXiv

 preprint arXiv: 1803.05457 (2018).

[29] Talmor, Alon, et al. “Common sense QA: A question

answering challenge targeting commonsense

knowledge.” arXiv preprint arXiv: 1811.00937 (2018).

[30] Mihaylov, Todor, et al. “Can a suit of armor conduct

electricity? A new dataset for open book question

answering.” arXiv preprint arXiv: 1809.02789 (2018).

[31] Bisk, Yonatan, et al. “PiQA: Reasoning about physical

common sense in natural language.” Proceedings of the

AAAI Conference on Artificial Intelligence. Vol. 34. No.

05. 2020.

202

Chapter 4 Foundation Models in robotiCs

[32] Sap, Maarten, et al. “SocialIQA: Common sense

reasoning about social interactions.” arXiv preprint

 arXiv:1904.09728 (2019).

[33] Chen, Mark, et al. “Evaluating large language models

trained on code.” arXiv preprint arXiv:2107.03374 (2021).

[34] Austin, Jacob, et al. “Program synthesis

with large language models.” arXiv preprint

 arXiv: 2108.07732 (2021).

[35] Rajpurkar, Pranav, et al. “Squad: 100,000+ questions

for machine comprehension of text.” arXiv preprint

 arXiv:1606.05250 (2016).

[36] Choi, Eunsol, et al. “QuAC: Question answering in

context.” arXiv preprint arXiv:1808.07036 (2018).

[37] Lai, Guokun, et al. “Race: Large-scale reading

comprehension dataset from examinations.” arXiv

 preprint arXiv:1704.04683 (2017).

[38] Li, Mo, et al. “NeedleBench: Can LLMs Do Retrieval and

Reasoning in 1 Million Context Window?.” arXiv preprint

 arXiv:2407.11963 (2024).

[39] Shaham, Uri, et al. “ZeroSCROLLS: A zero-shot

benchmark for long text understanding.” arXiv preprint

 arXiv: 2305.14196 (2023).

[40] Zhang, Xinrong, et al. “$\infty $ Bench: Extending Long

Context Evaluation Beyond 100K Tokens.” arXiv preprint

arXiv:2402.13718 (2024).

[41] Li, Minghao, et al. “API-bank: A comprehensive

benchmark for tool-augmented LLMs.” arXiv preprint

 arXiv: 2304.08244 (2023).

203

Chapter 4 Foundation Models in robotiCs

[42] Peng, Yun, et al. “Revisiting, benchmarking and

exploring API recommendation: How far are we?.” IEEE

Transactions on Software Engineering 49.4 (2022):

1876-1897.

[43] Vaswani, Ashish. “Attention is all you need.” arXiv

 preprint arXiv:1706.03762 (2017).

[44] Ahn, Michael, et al. “Do as I can, not As I say: Grounding

language in robotic affordances.” arXiv preprint

 arXiv:2204.01691 (2022).

[45] https://sites.research.google/palm-saycan

[46] Huang, Wenlong, et al. “Inner monologue: Embodied

reasoning through planning with language models.”

 arXiv preprint arXiv:2207.05608 (2022).

[47] Driess, Danny, et al. “Palm-E: An embodied multimodal

language model.” arXiv preprint arXiv: 2303.03378 (2023).

[48] Dehghani, Mostafa, et al. “Scaling vision transformers

to 22 billion parameters.” International Conference on

Machine Learning. PMLR, 2023.

[49] Noyan, Merve and Edward Beeching. “Vision Language

Models Explained.” Hugging Face – The AI Community

 Building the Future, 11 Apr. 2024, huggingface.co/

blog/vlms.

[50] Gao, Jensen, et al. “Physically grounded vision-

language models for robotic manipulation.” 2024 IEEE

International Conference on Robotics and Automation

(ICRA). IEEE, 2024.

204

Chapter 4 Foundation Models in robotiCs

[51] Chen, Boyuan, et al. “Open-vocabulary queryable scene

representations for real world planning.” 2023 IEEE

International Conference on Robotics and Automation

(ICRA). IEEE, 2023.

[52] Yu, Wenhao, et al. “Language to rewards for robotic skill

synthesis.” arXiv preprint arXiv: 2306.08647 (2023).

[53] Liang, Jacky, et al. “Code as Policies: Language model

programs for embodied control.” 2023 IEEE International

Conference on Robotics and Automation (ICRA).

IEEE, 2023.

[54] https://code-as-policies.github.io

[55] Arenas, Montserrat Gonzalez, et al. “How to prompt

your robot: A promptbook for manipulation skills with

Code as Policies.” 2024 IEEE International Conference on

Robotics and Automation (ICRA). IEEE, 2024.

[56] Levine, Sergey, et al. “End-to-end training of deep

visuomotor policies.” Journal of Machine Learning

 Research 17.39 (2016): 1-40.

[57] Brohan, Anthony, et al. “Rt-1: Robotics transformer

for real-world control at scale.” arXiv preprint

 arXiv:2212.06817 (2022).

[58] Perez, Ethan, et al. “Film: Visual reasoning with a general

conditioning layer.” Proceedings of the AAAI conference

on artificial intelligence. Vol. 32. No. 1. 2018.

[59] Tan, Mingxing, and Quoc Le. “EfficientNet: Rethinking

model scaling for convolutional neural networks.”

International Conference on Machine Learning.

PMLR, 2019.

205

Chapter 4 Foundation Models in robotiCs

[60] Ryoo, Michael S., et al. “TokenLearner: What can 8

learned tokens do for images and videos?.” arXiv preprint

 arXiv: 2106.11297 (2021).

[61] Zhao, Tony Z., et al. “Learning fine-grained bimanual

manipulation with low-cost hardware.” arXiv preprint

 arXiv:2304.13705 (2023).

[62] Brohan, Anthony, et al. “Rt-2: Vision-language-action

models transfer web knowledge to robotic control.” arXiv

 preprint arXiv: 2307.15818 (2023).

[63] Padalkar, Abhishek, et al. “Open x-Embodiment: Robotic

learning datasets and rt-x models.” arXiv preprint

 arXiv: 2310.08864 (2023).

[64] https://docs.google.com/spreadsheets/d/1rP

BD77tk60AEIGZrGSODwyyzs5FgCU9Uz3h-3_t2A9g/

edit?gid=0#gid=0

[65] https://github.com/mbreuss/diffusion-literature-

for-robotics

[66] Ronneberger, Olaf, Philipp Fischer, and Thomas

Brox. “U-net: Convolutional networks for biomedical

image segmentation.” Medical image computing and

computer-assisted intervention–MICCAI 2015: 18th

international conference, Munich, Germany, October

5-9, 2015, proceedings, part III 18. Springer International

Publishing, 2015.

[67] https://huggingface.co/docs/diffusers/en/

tutorials/basic_training

[68] Esser, Patrick, et al. “Scaling rectified flow transformers

for high-resolution image synthesis.” Forty-first

International Conference on Machine Learning. 2024.

206

Chapter 4 Foundation Models in robotiCs

[69] Kingma, D. P. “Auto-Encoding Variational Bayes.” arXiv

 preprint arXiv:1312.6114 (2013).

[70] Dhariwal, Prafulla, and Alexander Nichol. “Diffusion

models beat GANs on image synthesis.” Advances in Neural

 Information Processing Systems 34 (2021): 8780-8794.

[71] Ho, Jonathan, and Tim Salimans. “Classifier-

free diffusion guidance.” arXiv preprint

 arXiv: 2207.12598 (2022).

[72] Ho, Jonathan, Ajay Jain, and Pieter Abbeel. “Denoising

diffusion probabilistic models.” Advances in Neural

 Information Processing Systems 33 (2020): 6840-6851.

[73] Nain, Aakash Kumar. “Keras Documentation: Denoising

Diffusion Probabilistic Model.” Keras, 7 Dec. 2022,

keras.io/examples/generative/ddpm/.

[74] Song, Jiaming, Chenlin Meng, and Stefano Ermon.

“Denoising diffusion implicit models.” arXiv preprint

 arXiv: 2010.02502 (2020).

[75] Chi, Cheng, et al. “Diffusion policy: Visuomotor

policy learning via action diffusion.” arXiv preprint

 arXiv: 2303.04137 (2023).

[76] Sermanet, Pierre, et al. “RobovQA: Multimodal long-

horizon reasoning for robotics.” 2024 IEEE International

Conference on Robotics and Automation (ICRA).

IEEE, 2024.

[77] Jain, V., Attarian, M., Joshi, N.J., Wahid, A., Driess, D.,

Vuong, Q., Sanketi, P.R., Sermanet, P., Welker, S., Chan,

C. and Gilitschenski, I., 2024. Vid2robot: End-to-end

video-conditioned policy learning with cross-attention

transformers. arXiv preprint arXiv:2403.12943.

207

Chapter 4 Foundation Models in robotiCs

[78] Mendonca, Russell, Shikhar Bahl, and Deepak Pathak.

“Structured world models from human videos.” arXiv

 preprint arXiv: 2308.10901 (2023).

[79] Du, Yilun, et al. “Learning universal policies via

text-guided video generation.” Advances in Neural

 Information Processing Systems 36 (2024).

[80] Doshi, Ria, Homer Walke, Oier Mees, Sudeep Dasari, and

Sergey Levine. “Scaling cross-embodied learning: One

policy for manipulation, navigation, locomotion and

aviation.” arXiv preprint arXiv:2408.11812 (2024).

[81] Sermanet, Pierre, et al. “Time-contrastive networks: Self-

supervised learning from video.” 2018 IEEE International

Conference on Robotics and Automation (ICRA).

IEEE, 2018.

[82] Qian, Rui, et al. “Spatiotemporal contrastive video

representation learning.” Proceedings of the IEEE/

CVF Conference on Computer Vision and Pattern

Recognition. 2021.

[83] Jiang, Yunfan, et al. “Vima: General robot manipulation

with multimodal prompts.” arXiv preprint

 arXiv:2210.03094 2.3 (2022): 6.

[84] Mees, Oier, Lukas Hermann, and Wolfram Burgard.

“What matters in language conditioned robotic imitation

learning over unstructured data.” IEEE Robotics and

 Automation Letters 7.4 (2022): 11205-11212.

[85] Do, Thanh-Toan, Anh Nguyen, and Ian Reid.

“AffordanceNet: An end-to-end deep learning approach

for object affordance detection.” 2018 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, 2018.

208

Chapter 4 Foundation Models in robotiCs

[86] Botta, Alessio, et al. “Cyber security of robots: A

comprehensive survey.” Intelligent Systems with

 Applications 18 (2023): 200237.

[87] Neupane, Subash, et al. “Security Considerations in AI-

Robotics: A Survey of Current Methods, Challenges, and

Opportunities.” IEEE Access (2024).

[88] https://www.anthropic.com/news/core-views-on-

ai-safety

[89] Nichol, Alexander Quinn, and Prafulla Dhariwal.

“Improved denoising diffusion probabilistic models.”

International Conference on Machine Learning.

PMLR, 2021.

[90] McCarthy, R., Tan, D.C., Schmidt, D., Acero, F., Herr,

N., Du, Y., Thuruthel, T.G. and Li, Z., 2024. Towards

Generalist Robot Learning from Internet Video: A Survey.

 arXiv preprint arXiv:2404.19664.

[91] https://openaipublic.blob.core.windows.net/

neuron-explainer/paper/index.html

[92] Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J.,

Jones, A., Chen, A., Goldie, A., Mirhoseini, A., McKinnon,

C. and Chen, C., 2022. “Constitutional AI: Harmlessness

from AI feedback.” arXiv preprint arXiv:2212.08073.

[93] Lee, Harrison, Samrat Phatale, Hassan Mansoor,

Thomas Mesnard, Johan Ferret, Kellie Lu, Colton

Bishop et al. “RLAIF: Scaling reinforcement learning

from human feedback with AI feedback.” arXiv preprint

 arXiv: 2309.00267 (2023).

209

Chapter 4 Foundation Models in robotiCs

[94] Zhao, T.Z., Tompson, J., Driess, D., Florence, P.,

Ghasemipour, K., Finn, C. and Wahid, A., 2024. “Aloha

unleashed: A simple recipe for robot dexterity.” arXiv

 preprint arXiv:2410.13126.

[95] Du, Yilun, Mengjiao Yang, Pete Florence, Fei Xia,

Ayzaan Wahid, Brian Ichter, Pierre Sermanet,

et al. “Video language planning.” arXiv preprint

 arXiv:2310.10625 (2023).

[96] Hausman, Karol. “X.com.” X (Formerly Twitter), 2024, x.

com/hausman_k/status/1559558929297727489.

[97] Roy, Subhradip. “A Beginner’s Guide to Diffusion Models:

Understanding the Basics and Beyond.” Subhradip

Roy’s Blog, 4 Mar. 2023, roysubhradip.hashnode.

dev/a-beginners-guide-to-diffusion-models-

understanding-the-basics-and-beyond.

[98] Agrawal, Aayush. “Stable Diffusion Using Hugging

Face.” Medium, 9 Nov. 2022, towardsdatascience.com/

stable-diffusion-using-hugging-face-501d8dbdd8.

[99] Black, Kevin, Noah Brown, Danny Driess, Adnan Esmail,

Michael Equi, Chelsea Finn, Niccolo Fusai et al. “$\pi_0

$: A Vision-Language-Action Flow Model for General

Robot Control.” arXiv preprint arXiv:2410.24164 (2024).

[100] Bjorck, Johan, Fernando Castañeda, Nikita

Cherniadev, Xingye Da, Runyu Ding, Linxi Fan, Yu

Fang et al. “GR00T N1: An Open Foundation Model

for Generalist Humanoid Robots.” arXiv preprint

arXiv:2503.14734 (2025).

[101] https://storage.googleapis.com/deepmind-media/

gemini-robotics/gemini_robotics_report.pdf.

210

CHAPTER 5

Simulation

 Simulation for Robots

Obtaining real-world data to train robot models can be costly and time-

consuming. Many models require trillions of trajectories to learn all

scenarios in which a robot can operate and every potential combination of

actions it can perform. This could take decades to collect, a ton of capital

to deploy, and is harder to scale due to having hardware in the loop.

To address this issue, several researchers and companies have

implemented simulation technologies that aim to create synthetic data

that closely resembles the real world. One example of such an engine is

NVIDIA’s Isaac Sim[1], which generates synthetic data for lifelike graphics.

Including simulation data in robotics training pipelines has various

benefits. Simulators provide a controlled environment in which robots can

learn and execute their actions without the dangers involved with real-

world testing. Simulation data covering diverse scenes allows models to

generalize more effectively to new scenarios. See Figure 5-1. However, it is

essential that simulated data adequately represents real-world dynamics

and bridges the “simulated-to-real” (Sim2Real) gap, which is the gap that

explains that models trained in simulation may not perform as well in the

real world.

© Alishba Imran, Keerthana Gopalakrishnan 2025

211

A. Imran and K. Gopalakrishnan, AI for Robotics,

https://doi.org/10.1007/979-8-8688-0989-7_5

[image: Image 115]

Chapter 5 Simulation

 Figure 5-1. Simulated robotic grasping environment in PyBullet.

 Used with permission, source: https://towardsdatascience.com/

 sample-efficient-robot-training-on-pybullet-simulation-

 with-sac-algorithm-71d5d1d4587f [56]

 Considerations for Simulation in Robotics

Before you learn how these simulation engines work and can be used for

robotics, it’s important to consider the benefits and limitations of using

simulations in your applications.

Benefits of simulation include:

• Scaling faster with diversity: A key advantage of using

simulation is that you can use generative AI to produce

highly diverse scenes in simulation, which can then be

212

Chapter 5 Simulation

used to train models. This is cost effective and can scale

better than setting up those scenes in the real world

and collecting them with robots.

• Faster iteration cycles: Simulated environments allow

for easier development and testing of novel algorithms,

leading to faster engineering iterations. In comparison,

these iteration cycles on a physical robot in the real

world may take incredibly long or may be incredibly

expensive.

• Safety critical feature testing: Many safety features

that are critical in dangerous situations are harder to

test in the real world. These are better tested thoroughly

in simulation, where you can easily and safely simulate

dangerous agent behaviors, crashes, and so on, without

causing actual danger. This is especially useful for

safety critical applications like self-driving or

surgical robots.

• Reproducibility and comparison for

experimentation: It is often challenging to reproduce

a certain result in the real world since real-world

results and data can be noisy or constantly changing.

Simulated environments are designed to be

controllable and reproducible and thus reliable, which

allows them to also be used to compare algorithms in

identical experiments. Simulated environments can

also be used to create clean data to ablate for highly

specific experiments.

213

Chapter 5 Simulation

A few limitations of using simulators include these:

• World modeling: Learning only in toy environments

can lead to toy intelligence. Ultimately, the models may

fail to learn real-world dynamics, and this knowledge

may fail to transfer to real physical robots.

• Sim2Real gap: A gap still exists where the performance

of a robot trained in simulation may not exactly

translate to the real world. This is due to physics,

dynamics, and external factors that are not fully

captured in a virtual environment but are present in

physical environments.

Although there are many benefits to simulated data, the main

limitation is that there can be discrepancies between the real world and

the simulated world. A combination of simulation and real-world data

for training and careful domain adaptation/randomization strategies are

frequently needed to close this gap. Later in this chapter, we expand on

these strategies.

 Components of a Robot Simulator

This section discusses the commonly used robot simulators—how they

work and their benefits and tradeoffs.

A rigid body physics engine simulates a variety of interactions, such

as collisions and contact forces. A rigid body is defined as a solid item that

does not alter its form as it interacts with the environment. It has mass,

location, velocity, volume, and shape. This allows it to rotate around its

center of mass, as shown in Figure 5-2, which represents the average

position of the object’s mass. When a rigid body rotates, it has three

angular properties: angular velocity (how fast it spins), torque (the force

214

[image: Image 116]

Chapter 5 Simulation

that causes it to rotate), and moment of inertia (the resistance to altering

rotation). When you apply force to a spot on a rigid body, torque is created,

causing it to rotate. Torque calculation is simple in two dimensions and

requires quaternions and a 3x3 matrix in three dimensions. Integrals can

help find the center of mass and the moment of inertia because the object

is continuous (not made of separate particles).

 Figure 5-2. The position and rotation of a rigid body at any

 given time is defined as an offset from the initial state. Used with

 permission, source: https://www.toptal.com/game/video-game-

 physics-part-i-an-introduction-to-rigid-body-dynamics [25]

Soft body simulation, on the other hand, deals with objects that may

deform when forces are applied, which means that the soft body changes

shape. Often, more advanced simulation approaches are required to

account for interior forces and deformations. Bending, stretching, and

compressing are modeled using techniques such as spring-mass models or

finite element approaches, making soft body simulations computationally

costly but necessary for robotic simulators.

215

Chapter 5 Simulation

Most robot simulators frequently include the following features:

1. Physics engine: A physics engine is used to

simulate physical dynamics of a robot, including

rigid dynamics, soft body modeling, and fluid

dynamics. Rigid body dynamics often focuses on

collision detection and modeling, friction, and

other interactive dynamics. Soft body modeling

focuses on the behavior of deformable objects like

tissue, cloth, or flexible materials. Fluid dynamics is

used to simulate the behavior of liquids and gasses,

which is especially important in situations involving

aerodynamics (drones, planes, moving parts) and

underwater robots.

a. Simulating physics includes solving equations that

model the motion of rigid bodies and other forces

that may act on a robot body.

b. For soft body simulation, finite element[2] or mass-

spring methods[3] are often used for understanding

internal forces and for modeling how deformations

occur in materials.

c. Fluid dynamics use various computational fluid

dynamics (CFD)[4] methods, which solve Navier-

Stokes equations[5] under the hood to simulate the

flow of liquids and gasses.

2. Modeling robots: Simulators use standardized

formats like URDF (Unified Robot Description

Format)[6] to describe and load robot kinematics.

This is usually done by parsing XML-based files

describing joints (such as the weight, dimensions of

a link, and its center of gravity) and transformations

216

Chapter 5 Simulation

between joints. They usually also include

support for sensors such as cameras and LiDAR,

and they map camera intrinsics and extrinsics

(transformations of the camera with respect to the

robot). Once you have the full specification of a

robot and its sensor, you can construct images from

the point of view of the sensors and simulate motion

by applying forces or specifying positions for end

effectors and then calculating the position of all

joints using forward or inverse kinematics.

3. Modeling environments: Simulators usually have

libraries that enable you to configure the scenes

and environment. Adding objects, changing their

locations, and adding terrains and surfaces, for

example. In addition to objects and surfaces, they

also allow you to simulate weather (e.g., sunshine),

lighting (indoor/outdoor) and shadows, and other

conditions, like humidity/temperature, and so

on. In addition to static objects, simulators can

also generate dynamic agents such as humans

by using humanoid models to imitate realistic

human movements. Once a user configures the

environment and settings, the physics engine then

models them, and a graphics library renders them

onscreen.

4. Interacting with users: To interface with the user,

simulation engines provide APIs that allow users

to write code to control the environment and the

robot and to run specific models/policies or specific

high-level goals. In addition to APIs, simulators also

have GUIs for users to interact with the simulator.

217

Chapter 5 Simulation

Most simulators have built-in trajectory planning

algorithms, such as A*[7], Dijkstra’s[8], or model

predictive control (MPC)[54] for path planning. We

cover model predictive control in detail later in this

chapter.

5. Visualization and rendering: The scenes

themselves are rendered using graphics libraries

like OpenGL[9] so that robot movements and

interactions can be seen onscreen in real time.

Most simulators also integrate with middleware

frameworks such as Robot Operating System

(ROS)[10]. ROS is a distributed framework for

publishing and subscribing to information, enabling

sensors/joints/programs within a robot to operate

at different frequencies (such as when a camera

updates at 30fps, but an IMU updates at 100 Hz) and

still communicate with each other. Many simulators

allow you to publish information out of and in to the

simulator as ROS messages or other commonly used

communication protocols.

Now that you understand the key components of robot simulators, take

a look at how they interact to mimic real-world object behavior[25][26]: 1. It begins with a mathematical model that represents

the system’s current state, such as the object’s

positions and speeds.

2. The engine uses equations to predict how these

states will change over time depending on forces,

object shapes, and movements.

218

Chapter 5 Simulation

3. The engine uses numerical methods to solve these

equations. Runge- Kutta is a widely used technique

that estimates varying positions and velocities step

by step.

4. When objects collide, the engine identifies the

collision and adjusts the objects’ speeds and

directions to reflect the impact correctly.

5. There are many performance and reliability

optimization tasks involved, such as rendering

objects onscreen, managing user inputs, and

ensuring that everything runs in real time.

Now let’s look at some popular simulators used by robotics researchers

and developers and their specific properties.

 The PyBullet Module

The Python module PyBullet[11] uses the Bullet physics engine to simulate

physical interactions and robot motion. An important notable application

of PyBullet was the QT-Opt system[12], an algorithm that we explore in

detail in the learning section of this chapter, where Bullet helped mimic

a grasping environment in order to train a robotic arm on a large corpus

of grasping tasks. PyBullet allows you to import robot models in multiple

formats:

1. SDFormat (Simulation Description Format)[13]

2. Unified Robotics Description Format (URDF)[6]

3. MJCF[14]

PyBullet supports contact, collision, friction, and rigid-body

dynamics for existing robot models or the robots imported by users.

PyBullet is commonly used to simulate various robotic tasks, like robotic

219

[image: Image 117]

Chapter 5 Simulation

manipulation tasks. Pictures of some of the supported robots are shown in

Figure 5-3. For advanced motion planning, you can integrate PyBullet with

external libraries, such as the Open Motion Planning Library (OMPL)[15],

which is widely used in robotics. There is a tutorial on getting started with

PyBullet at the end of this chapter.

 Figure 5-3. A variety of robots supported by PyBullet simulation.

 These include legged robots like Boston Dynamics’ Atlas, quadrupeds,

 wheeled robots, robotic arms, and manipulators. Used with

 permission, source: https://github.com/erwincoumans/pybullet_

 robots [57]

220

Chapter 5 Simulation

 MuJoCo

MuJoCo (Multi-Joint Dynamics with Contact)[16] is a platform owned and

open-sourced by DeepMind[17] that was developed for robotics. MuJoCo

focuses on traditional robotics applications, including multiple link arms,

grasping, and bipedal walking. It has garnered a lot of popularity because

of its speed, precision in highly accurate physics, and user-friendly

robotics design. It supports friction, contact, and rigid-body dynamics,

and can accommodate more flexible bodies. As an example, the shadow

hand[18] from Open AI, which was one of the first times a robotic hand

could manipulate its environment with high dexterity, was built using

the MuJoCo physics engine. We recommend going through MuJoCo’s

documentation[19] to get started with it.

 Gazebo

Another popular robotics simulation platform is Gazebo[20]. It is often

utilized for mobile manipulation, robotic grasping, and off-road mobility,

as well as for more conventional robotics applications. We recommend

going through Gazebo’s documentation[21] to get started with it.

Specifically, here is a tutorial[22] we recommend for using a simple

Gazebo environment.

Gazebo’s middleware interface with The Robot Operating System

(ROS)[23] allows it to be used in combination with existing robotics stacks

used in industrial robots. In contrast, PyBullet and MuJoCo provide more

integration with DL and RL frameworks, as well as gym environments,

making it more favorable for these use cases. The simulator you choose

may be determined by a variety of criteria, including the features you

require, speed, and application. A more comprehensive comparison of

various simulators is shown in Figure 5-4.

221

[image: Image 118]

Chapter 5 Simulation

 Figure 5-4. Comparison of robotics simulation platforms based

 on various features, such as sensor support (RGBD, LiDAR, force

 sensors), actuator types, multi-body import, and soft-body contacts.

 This table shows the strengths and limitations of each simulator,

 including PyBullet, MuJoCo, Gazebo, and others. Used with

 permission, source https://ieeexplore.ieee.org/stamp/stamp.js

 p?tp=&arnumber=9386154 [58]

Overall, Gazebo offers extensive ROS integration and the ability to

simulate different environments. PyBullet integrates well with machine

learning frameworks and MuJoCo outperforms simulation speed and

accuracy[24].

 Concepts in Sim2Real

Sim2Real refers to strategies that utilize simulation to learn policies to act

in the real world. They may or may not also utilize real-world data. In this

part, we look at some of the most frequent strategies utilized in Sim2Real.

Many of these principles may be discussed in the context of reinforcement

learning (RL), but they may also be applied to more general tasks, such as

object identification, real-world control, and so on. In the context of RL

222

[image: Image 119]

Chapter 5 Simulation

specifically, the goal is to train an RL agent in a simulation environment

and deploy/test it in the real world using techniques like domain

adaptation or domain randomization.

 Domain Adaptation

The primary principle behind domain adaptation (DA)[27][28][29] is to use data from one area (source) to improve a model’s performance in

another area (target) when there is less data. To accomplish this, you want

to make the data from both sources appear more similar. To understand

what source domain and target domain mean, consider the Markov

decision process (MDP)[30]. An MDP is a model of decision-making in

which an agent makes decisions in a succession of steps. At each step, the

agent performs an action that changes the current scenario (state) to a new

scenario (next state) with varying probability. The agent is rewarded for the

actions it takes. RL seeks to identify the most effective technique (policy)

that maximizes the total rewards over time. MDP is represented with states

(S), actions (A), transitions (P) that happen with a certain probability, and

rewards (R):

Equation 5-1

A Markov Decision Process is Markovian, which means that the state

is fully observable and the information of how it got to the state is not

relevant in deciding any aspect of the future.

The source domain is the environment to which you have complete

access (in this case, the simulator), and the target domain is the actual

physical world. The source domain in RL tasks and the target domain

are designed as custom MDPs. Their states can be very different, while

actions, transitions, and rewards have similarity, as you want actions from

simulation to translate to the real world.

223

Chapter 5 Simulation

There are several common domain adaptation techniques[27][29], which ultimately intend to make source data look like target data:

• One method uses statistical techniques to assess and

correct disparities between features from several

sources. This can be done by aligning the mean and

variances of features or minimizing the distance

between distributions of the domains in a high-

dimensional space.

• Another method trains a model to recognize which

source the features come from before adjusting them

to be more alike. Here, you can use a domain classifier

to distinguish between features of each domain, which

can be trained adversarially to make the classification

difficult.

• Finally, a technique will identify shared characteristics

by learning to reproduce the original data using these

shared features, ensuring that essential information

is captured from both sources. An encoder-decoder

structure can be used, where the encoder maps the

data from both domains to a latent space and the

decoder is used to reconstruct the input data based on

this shared representation.

We recommend [29] as a source to learn more.

 Domain Randomization

Domain randomization[31] is a strategy for increasing model robustness

by exposing the model to a wide range of simulated situations. The

purpose of randomizing the simulation is to make the model responsive

224

[image: Image 120]

Chapter 5 Simulation

to real-world fluctuations and situations that may arise. In this way, the

model learns to deal with a wide range of circumstances, making it more

successful when applied to real-world data.

In Figure 5-5, the diagram depicts domain randomization by

demonstrating how simulated data is randomized to replicate the

distribution of real-world data. It shows two tasks—Rope shaping and

Assembling—trained in both standard and randomized simulation

environments. Domain randomization adds visual and physical

variability to help models generalize better to real-world robot testing.

In contrast, domain adaptation aligns features from the source

(simulation) and target (real) domains to create a shared feature space for

reinforcement learning.

 Figure 5-5. Example of domain randomization: Visuomotor

 manipulation policies are trained in simulation (top row) with

 domain randomization using varied textures, lighting, object colors,

 and camera settings (middle row). These policies transfer directly

 to real-world tasks (bottom row). Used with permission, source:

 https://arxiv.org/pdf/2307.15320 [59]

225

Chapter 5 Simulation

Domain randomization has three primary training approaches[28]:

• Static randomization, which introduces random

changes to the training environment at the beginning

and maintains these variations throughout the training

process. This is often done through varying light

conditions, textures, and placement. These changes are

then set throughout the training process of the model.

This strategy is straightforward and quick, but it may

not be as useful in real-world situations because it may

not capture the full range of variations encountered by

a robot.

• Adaptive randomization modifies these random

modifications during training based on the model’s

learning progress. For example, the environment might

have smaller variations at the start of the training but

as the model improves, more complex changes might

be introduced to ensure that the model is learning.

This approach might result in improved performance

but requires substantial real-world data to guide the

adjustments.

• Adversarial randomization adds adversarial

disturbances during training by using a different model

to generate challenging scenarios, thus making the

training environment more difficult for the “main”

model. This helps the model grow more robust, but it

needs to be carefully calibrated to prevent making the

tasks overly difficult and worsen learning.

We recommend [28] as a source where we gathered ideas for this

section.

226

Chapter 5 Simulation

Another way of exposing the model to different scenarios during

training is through Uniform Domain Randomization (UDR)[32], which

is the process of randomly modifying the training environment’s

properties at every step. These variations can include aspects in lightning,

textures, and placement, so that the model does not overfit on a specific

environment[32]. This implies that the model is continually exposed

to new scenarios, making it more adaptive and powerful in the face of

variations between training and real-world contexts. However, uniform

sampling assumes that all changes in the training environment are equally

important, which is incorrect because certain scenarios are more difficult

to learn than others and require more focus during the training process.

 Guided Domain Randomization

GDR (Guided Domain Randomization)[32] was proposed to solve some of

these issues with a more directed sampling technique. This section covers

two GDR methods: Active Domain Randomization and Automatic Domain

Randomization.

 Active Domain Randomization

Instead of simply randomizing environment settings uniformly, Active

Domain Randomization (ADR), which was presented in Mehta et al.,

2020[33], focuses on identifying and training the model in the most

difficult settings it encounters. This technique involves constructing

diverse and complex simulated situations, evaluating which ones are the

most difficult for the model, and then focusing training on these difficult

scenarios.

A simulator is specifically used to generate a variety of simulated

environments with varied parameters. The model’s policy is then tested

in these simulated environments. A discriminator assesses the level

of difficulty of these environments by comparing them to a reference

227

[image: Image 121]

Chapter 5 Simulation

environment; it provides a reward accordingly. The reference environment

could be chosen based on typical conditions that the model is expected to

encounter. The Stein Variational Policy Gradient (SVPG)[34] then uses this

reward to update the model’s parameters by directing the model to spend

more time training in difficult scenarios. This is achieved by iteratively

adjusting the policy’s parameters to maximize the expected reward. The

main steps of how active domain randomization works are shown in

Figure 5-6.

 Figure 5-6. ADR framework uses a simulator to generate

 randomized environments for training an agent policy. A

 discriminator distinguishes between reference and randomized

 environments, generating a reward signal used to train SVPG

 particles. These particles explore difficult environment parameters

 to improve the policy’s robustness. Used with permission, source:

 https://arxiv.org/abs/1904.04762 [33]

228

Chapter 5 Simulation

The focus of active domain randomization is to dynamically adapt

the training process based on difficulty. On the other hand, Automatic

Domain Randomization provides a more systematic approach to domain

randomization.

 Automatic Domain Randomization

The relatively straightforward GDR technique Automatic Domain

Randomization was introduced by Open AI in 2018[35], and it was

successful in helping a real robotic hand solve a Rubik’s Cube[36].

Automatic Domain Randomization begins by training a policy in an

environment with default parameters. It goes through several training

episodes in which it randomly decides whether to put lower or higher

constraints on parameters to create variability. The policy interacts with

the environment, and its performance is evaluated. If the policy performs

consistently well, the parameters’ limits are gradually increased, making

the environment more difficult. If performance decreases, the boundaries

are tightened to make the environment easier. This iterative process

teaches the policy how to handle a wide range of scenarios based on direct

feedback.

For more details on the algorithmic design, we recommend

reading[35].

229

Chapter 5 Simulation

 Closing the Sim2Real Gap for RL

RL-CycleGAN[37] is an important method that aims to close the Sim2Real

gap for RL and was tested for vision-based robotic grasping tasks. At a high

level, RL-CycleGAN combines RL with CycleGAN[38] (which we explain

in more detail later) to transfer knowledge from simulated to real-world

environments. The main components of RL-CycleGAN are:

• Sim2Real generator: This component converts images

from the simulator to look closer to real-world images.

The generator takes an image from the simulator

and translates it into an image that has the texture,

lightning, and noise characteristics of real-

world images.

• Real2Sim generator: To ensure that the transformation

between two domains (simulated and real images) is

consistent, the real images are converted to simulated

ones and back again. This means that when an

image is converted from simulated to real and back

to simulated, it should closely resemble the original

simulated image.

The RL learns by interacting with the environment and getting some

sort of reward as feedback. For example, a robot might get a positive

reward for successfully picking up an object and a negative reward for

dropping it. Overall, the agent’s goal is to maximize its cumulative reward

by learning the best actions to take in different states. In the case of

CycleGAN, the RL agent is trained using images converted by the Sim2Real

generator (see Figure 5-7). Ideally, these images look as real as possible,

so that the agent learns to effectively perform tasks outside the simulator.

Once the RL agent is well-trained in the simulated environment with

Sim2Real images, it is deployed and tested in the real world.

230

[image: Image 122]

Chapter 5 Simulation

 Figure 5-7. RL-CycleGAN trains a CycleGAN to map simulator

 images to realistic images and vice versa. The RL model is transferred

 to a real robot for testing and task execution. Used with permission,

 source: https://arxiv.org/pdf/2006.09001 [37]

 CycleGAN

To fully understand how CycleGAN[38] can be used for RL-based

robotic grasping tasks, it can be helpful to understand the architecture

and key losses. CycleGAN itself is a type of Generative Adversarial

Network (GAN)[39] used to learn mapping between two image domains

(simulated and real images) without paired examples. It is made up of

two generators—the Sim2Real generator and the Real2Sim generator. The

Sim2Real generator maps images from the simulated domain to the real

domain. The Real2Sim generator maps images from the real domain back

to the simulated domain. There is a discriminator for each image domain

type: one discriminator will distinguish between real images from the real-

world domain and fake images generated by the Sim2Real generator from

simulated images, while the other discriminator distinguishes simulated

images from the simulated domain and fake images generated by the

Real2Sim generator from the real images.

Three main losses are used in CycleGAN—adversarial loss, cycle

consistency loss, and final total loss.

231

[image: Image 123]

[image: Image 124]

Chapter 5 Simulation

The adversarial loss is used to make the generated images look as

realistic as possible. There are two discriminators: one for real images and

one for simulated images. Each generator (Sim2real and Real2Sim) tries to

fool its corresponding discriminator by generating images that look real.

The discriminators, in turn, try to correctly identify real and fake images.

The generators aim to minimize the adversarial loss by producing highly

realistic images, while the discriminators aim to maximize it by accurately

identifying fake images. The first term in each loss function measures

how well the discriminator identifies real images and the second term

measures how well it identifies fake images produced by the generators.

Equation 5-2

The cycle consistency loss ensures that the transformation between

simulated and real images is consistent and reversible. The cycle

consistency loss function ensures that when an image is transformed from

one domain to another and back again, it remains similar to the original.

It does this by penalizing the model if the twice-transformed image differs

significantly from the original. Overall, this encourages the model to

preserve important features during the transformations.

Equation 5-3

The final total loss function combines the adversarial losses for both

generators and discriminators with the cycle consistency loss. This ensures

that the generated images are realistic and the transformation between

domains are consistent.

232

[image: Image 125]

Chapter 5 Simulation

Equation 5-4

 RL-CycleGAN

The main components of RL-CycleGAN include:

• GAN, which transforms images between the simulated

and real domains. This includes the Sim2Real GAN,

which converts simulated images to look realistic, and

the Real2Sim GAN, which converts real images back

into simulated.

• Cycle consistency ensures that when an image is

transformed from simulated to real and back to

simulated (or vice versa), it retains the essential

features.

• Two Q-networks are trained: one on simulated images

to help the robot interact with objects in the simulated

environment and one on real images to help the robot

interact with objects in the real world.

• There is an RL scene consistency component that

ensures that robot actions are consistent across

simulated and real environments. For example, if the

robot learns how to grasp an object in simulation, it

should be able to apply the same grasping technique

in the real world. As well, this ensures that q-values

for similar scenes (whether in real or sim) are similar.

This is done because the RL-scene consistency loss

penalizes differences in q-values for corresponding

scenes across different transformations (e.g., sim-to-

real-to-sim, real-to-sim-to-real).

233

[image: Image 126]

Chapter 5 Simulation

Figure 5-8 shows how these components fit together.

 Figure 5-8. RL-CycleGAN combines a CycleGAN with RL scene

 consistency. Used with permission, source: https://arxiv.org/

 pdf/2006.09001 [37]

The training of RL-CycleGAN combines several objectives:

• Realistic Image Generation (L_GAN): Ensures that the

images generated by the GANs look realistic.

• Cycle Consistency (L_cycle): Ensures that the

image transformed from simulated to real and back

to simulated (or real to simulated and back to real)

remains consistent with the original image.

234

Chapter 5 Simulation

• RL-Scene Consistency (L_RL-scene): Ensures that

similar scenes have similar q-values.

• Traditional RL Loss (L_RL): Trains the q-networks

using standard RL loss; the model learns the q-values

based on the actions and rewards.

The distinction between style and semantics is important in this

context. Style refers to visual aspects such as lighting and textures, which

should ideally not impact the robot’s performance. For example, a

change in the lightning of the environment should not change how the

robot grasps an object. Semantics, on the other hand, refers to features

like positions and what objects are. These impact how a robot performs

its tasks. For example, knowing the exact position and identity of an

object is crucial for a robot to grasp an object. RL-CycleGAN focuses on

preserving semantics while transforming images between simulated

and real environments. This is important, as semantics for the task

should be maintained while visuals aspects (style) can change during the

transformation.

 Learning from Simulation

Now that you understand how domain randomization can improve

training models from simulation and translate them more effectively to the

real world, this section explores a few key examples of how simulation has

been used in robotics.

Specifically, robots can be trained to handle complex and dynamic

environments using reinforcement learning, but the high cost of data

acquisition is a significant limitation. Many methods have been developed

to address this by combining real-world and simulation data for model

development and training.

235

[image: Image 127]

Chapter 5 Simulation

 Simulation for Bootstrapping RL

QT-Opt[12] trains a Q-function with tens of thousands of real-world and

simulated grasps. In this case, a Q-function is the expected future rewards

for taking a given action in a given state. This approach can generalize

grasping to 96 percent grip success on unseen objects, representing a

substantial improvement over existing approaches.

QT-Opt starts with a large collection of offline data consisting of

580,000 recorded grasps, which includes state-action-reward tuples. This

data is stored in replay buffers, where it is supplemented with data from

online real robot interactions. The Bellman Updater samples transitions

from these replay buffers to generate training examples and refines the

model’s value estimates using the Bellman equation[40]. This equation

updates the Q-values, which represent the expected rewards for each state-

action pair, based on both immediate and future rewards. The training

workers then use these examples to update the Q-function parameters. To

select the best grasping action, QT-Opt uses the Cross Entropy Method[41],

which identifies the action that maximizes the model’s estimated value

(Q). Finally, the robot uses the trained model to perform grasping tasks in

the real world. This process is shown in Figure 5-9.

 Figure 5-9. Pipeline for QT-Opt. Used with permission, source:

 https://arxiv.org/pdf/1806.10293 [12]

236

[image: Image 128]

Chapter 5 Simulation

Alongside using real data, an important component of this model

is training it on a diverse set of objects using simulation data from the

Bullet Physics simulator. The same model, training method, and control

were used to train in real and simulation. This ensures that the learned

policy can generalize and the robot can execute grasping in varying

environments. The simulation setup is shown in Figure 5-10.

 Figure 5-10. QT-Opt robot manipulation set up in simulation. Used

 with permission, source: https://arxiv.org/pdf/1806.10293 [12]

Through simulation, they were able to quickly run a large-scale

experiment with up to 1,000 virtual robots operating simultaneously.

These experiments used real-world policies learned from real-world data,

finding real-world learning more challenging with more data needed and

longer training time for the performance to be as effective as simulation.

Overall, this experiment highlighted the importance of using both

simulation and real-world data for testing and training robot models.

237

Chapter 5 Simulation

 Foundation Agents in Simulation

Over the past few years, a key direction in machine learning has been

developing foundation models trained on a large corpus of data that can

be generalized to many tasks. Foundation models are frequently used in

simulations to allow robots to accomplish a wider range of activities and

better understand their environment. Large language models can generate

action plans, but many robots still need help acquiring and updating

knowledge over long periods.

In order to drive exploration and generalize to a wider range of abilities

in a Minecraft simulation environment, Voyager[42] tries to address this

issue by using LLMs for agents like robots. This is an example of how

learning in simulation may be helpful for exploring a wide range of tasks

and contexts and evaluate tasks at a larger scale. Voyager has a loop where,

based on the player’s inventory, what’s located nearby, health, hunger,

and the environment (biome and time of day), the agent in simulation

suggests the next best action. But its exploration, learning, and memory

are managed via the three following components:

• Automatic curriculum: New tasks for the agent to

complete are generated by GPT-4[43], by analyzing

state information. The model’s reasoning explains

why the suggested task is beneficial, and from this

list, a specific task is queued for the player to execute.

Since the curriculum or tasks an agent improves

on is determined by an LLM, it is programmatically

generated. Examples of tasks generated by the agent

are shown in Figure 5-11.

238

[image: Image 129]

Chapter 5 Simulation

 Figure 5-11. Example of tasks that automatic curriculum has

 proposed. Used with permission, source: https://arxiv.org/

 pdf/2305.16291 [42]

• Skill library: In order to accumulate and build on

the skills gathered in simulation, agents have a skill

library. When an agent performs a task, by generating

code, this task and the program generated are stored

in a dictionary called the skill library. The keys of the

dictionary are embeddings of the skill description

and the value corresponding is the program itself.

New skills are added to the dictionary when the

corresponding tasks are encountered, post their

execution. Older skills are retrieved via querying and

updated using any improvements or feedback from the

last round when they were invoked.

• Iterative prompting mechanism: There is an

iterative process for refining actions by executing

them, reporting errors, and refining the actions using

feedback from the language model and errors from the

simulator.

239

[image: Image 130]

Chapter 5 Simulation

An overview of how all of these ideas fit together is shown in

Figure 5-12.

 Figure 5-12. Automatic curriculum, iterative prompting mechanism,

 and skill library in Voyager. Used with permission, source: https://

 arxiv.org/pdf/2305.16291 [42]

Voyager learns and improves at playing Minecraft better than previous

methods. It also adapts to new tasks in a new Minecraft world using its

library of learned skills. Figure 5-13 shows a comparison of other methods

with Voyager.

240

[image: Image 131]

Chapter 5 Simulation

 Figure 5-13. When compared to baselines, Voyager is continually

 finding new Minecraft items and skills through self-exploration. Used

 with permission, source: https://arxiv.org/pdf/2305.16291 [42]

Alongside Voyager, the team at NVIDIA also developed MineDojo[44],

which is a platform built on Minecraft that can be used to train AI agents

using a wide range of tasks in a simulated environment (see Figure 5-14).

The MineDojo platform:

• Provides a standardized way to define tasks, world

settings, and agent behaviors, all within Minecraft,

making it easier to develop and test different models.

• Includes a large benchmark with thousands of different

Minecraft tasks.

• Curates a large-scale multimodal knowledge base

from tutorial videos, live streams, and so on, which

can be used to teach the agent tasks and strategies for

accomplishing a goal.

241

[image: Image 132]

Chapter 5 Simulation

 Figure 5-14. MineDojo is a framework for developing generalist

 agents that learn from open-ended tasks and Internet-scale

 data. Used with permission, source: https://arxiv.org/

 pdf/2206.08853 [44]

MineCLIP[45] is a novel learning method that uses pretrained video

models to learn a reward function that is used to guide agents in Minecraft.

MineCLIP connects large language models with visual understanding of

the Minecraft world, allowing agents to:

• Understand natural language instructions: Interpret

human-like commands and goals (e.g., “build a

house”).

• Learn from videos: Gain skills and strategies by

watching Minecraft gameplay videos.

• Act autonomously: Perform complex tasks in the

game based on language instructions and learned

knowledge.

In essence, MineCLIP acts as a bridge between language and action

in Minecraft. It does this by building a contrastive video-language model

pretrained on MineDojo’s YouTube videos. This model processes video

frames and their descriptions to learn correlations. It takes a sequence

242

[image: Image 133]

Chapter 5 Simulation

of the last 16 RGB frames, processes them to extract features, and

aggregates them into a video feature. The textual goal is encoded into a text

feature and then the video and text features are compared to compute a

correlation score, indicating how well the video frames the agent observes

match the goal, thus learning whether the agent is actually successful in

accomplishing the goal or not. For example, if the task is “do x task to get y

food” the correlation score will reflect how well the video frames align with

this task description.

This score is used as a reward for training the RL agent, helping it

prioritize actions aligned with goals. MineCLIP is designed for multi-task

RL, using the correlation score to guide the agent on various tasks without

manually engineering reward functions (see Figure 5-15).

 Figure 5-15. Pipeline for MineCLIP uses contrastive learning on

 video-language data. Used with permission, source: https://arxiv.

 org/pdf/2206.08853 [44]

Although the focus for this specific project was in Minecraft, similar

simulation environments can be used to show how robotics can benefit

from simulation. These environments provide a safe space for robots to

practice, refine, and store their skills, which enables better learning and

adaptation to new tasks and environments.

243

Chapter 5 Simulation

 Simulation for Reward Design

Teaching robots to perform complex tasks often requires hand-engineering

reward functions to guide the robot’s learning process. However, designing

these reward functions can be time-consuming and might not effectively

capture the complexity of tasks like dexterous manipulation. Using

simulation data can be useful as a way to generate, evaluate, and refine

reward functions in a more controlled and safe environment.

For example, Eureka[46], developed by NVIDIA, uses IsaacGym[1] to create diverse and complex robotic manipulation tasks. These tasks range

from simple object handling to bimanual manipulations like rotating a cup

by 180 degrees or performing pen spinning tricks with a Shadow Hand[47].

The core idea behind Eureka is using LLMs such as GPT-4 to generate

and improve reward functions using an iterative process within simulation.

See Figure 5-16.

In the Eureka framework, the robot is given a detailed description of

the task to perform: details on the environment, goals, and any constraints

the robot needs to abide by. An initial prompt is passed into the LLM,

which includes the task description and details about the environment

that guide the generation of initial reward functions.

Given a specific number of iteration, the following are done:

• Sample reward code: The LLM generates multiple

reward functions based on the initial prompt. These

reward functions are different “strategies” that provide

the robot with feedback on how well it is performing

the task.

• Evaluate reward functions in simulation: Each

reward function is tested in a simulated environment

where the robot attempts to complete the task using the

reward function and then performance is measured by

using a fitness function that quantifies the effectiveness

of each reward function in teaching the robot

244

[image: Image 134]

Chapter 5 Simulation

• Reward reflection: The best performing reward

functions are selected based on analyzing how rotation,

distance, and angular velocity penalties contributed to

the robot’s performance. Values of these components

and the task fitness function are monitored during the

training process. The initial prompts are then refined

to help the LLM generate more optimized reward

functions using feedback from the components and

adjustments.

• Update reward: If the best reward function from the

current iteration performs better than the previous

best, then Eureka updates its reference reward.

 Figure 5-16. Eureka algorithm. Used with permission, source:

 https://arxiv.org/pdf/2310.12931 [46]

245

Chapter 5 Simulation

An evolutionary search technique is used to sample multiple reward

functions from the LLM in each iteration, increasing the chances of finding

at least one good reward function by increasing the number of samples.

These functions are refined by mutating the best performers and using

random restarts to avoid local optima and find better solutions.

The reward function itself consists of a few main components:

• Rotation reward measures how closely the object’s

orientation matches the goal orientation.

• Distance reward focuses on the proximity between the

robot’s fingertips and the object.

• An angular velocity penalty is applied, which

discourages any sudden or rapid movements and helps

create more controlled actions.

• The total reward is a weighted sum of these

components based on how much they influence the

robot in completing its task successfully.

This continuous improvement would not be possible without a

simulated environment where it is easy to control the robot and its

environment and test different reward functions. Using this technique,

Eureka found that the generated reward functions improved over human

designed reward functions and in some cases even generated novel reward

formulations.

 Simulation for World Modelling

Traditional methods for generating large-scale datasets for robot learning

often rely on[48]:

246

Chapter 5 Simulation

• Demonstrations: Require significant human

involvement to teach the robot tasks, thus can be very

time-consuming and labor-intensive.

• Autonomous data collection: Can be engineering-

intensive for bootstrapping skills and challenging to

scale even if it is autonomous.

Since both methods are challenging to implement at a large scale,

this can limit the diversity and volume of data available for training robot

models. Simulation, as discussed, is one way to solve this problem because

it allows robots to learn in a virtual environment. Another solution is

through advanced world modeling, which can help generate realistic and

diverse data.

World modeling is important for robots to understand their

environment, but it’s also a good way to gather data that can be used

for robot learning. Consider the example of ROSIE (Scaling Robot

Learning with Semantically Imagined Experience)[48], work from Google

DeepMind, in which a text-guided diffusion model is used for world

modeling. See Figure 5-17.

ROSIE augments demonstration data to improve the variation in

robot learning datasets and increase the adaptability of imitation learned

policies.

• Using an open vocabulary segmentation model, ROSIE

identifies and localizes different regions of interest in

the image to identify where augmentations should be

applied.

• The identified regions are edited using text-guided

image-editing. For example, it might add new objects

or alter existing ones based on text prompts that are

variations of the initial task. Using the text prompts, the

image editor creates new, varied versions of the original

247

[image: Image 135]

Chapter 5 Simulation

task. This augmented data includes different objects,

backgrounds, and so on. Each image in the episode is

processed to include these new elements, which as a

result increases the diversity of the dataset.

• The augmented data is then used to train an RT-1[49]

manipulation policy, which is a multitask imitation

policy covered in Chapter 4. The idea is that, by

incorporating a wide range of scenarios, the policy

becomes more robust to new and unseen tasks.

 Figure 5-17. Architecture for ROSIE. Used with permission, source:

 https://diffusion-rosie.github.io/ [48]

Other methods, such as InstructPix2Pix[50], have tried using

similar approaches. However, ROSIE has found that their generated

augmentations end up being more physically realistic and consistent

within the context of the original task. This is done by ensuring there are

no broader, global changes to the image that could change the context of

the original image. See Figure 5-18.

248

[image: Image 136]

Chapter 5 Simulation

 Figure 5-18. Augmentation process used in ROSE. Used with

 permission, source: https://diffusion-rosie.github.io/ [48]

From an infrastructure perspective, NVIDIA has released a lot of new

tools for simulation and world modeling that may be of interest to robotics

developers interested in building realistic and scalable robot learning

policies. At GTC 2024, they announced Project GR00T, a foundation

model for humanoid robots and Jetson Thor, a new computer specifically

designed for humanoid robots[51]. Isaac Lab from NVIDIA supports

running thousands of parallel simulations to support RL and large-scale

data generation, model training, and distributed workflows[51]. These

tools collectively advance the capabilities of robots to be able to perform

more complex tasks and improve some of the data-scarcity issues that exist

in robotics through large-scale simulation support.

 Simulation for Imitation Learning

Simulation environments can provide a means to scale imitation learning

approaches and iterate on scalable research ideas. VIMA: General

Robot Manipulation with Multimodal Prompts is a work from NVIDIA

that pushes along this direction, with specific focus on multimodal task

249

Chapter 5 Simulation

conditioning[52]. While VIMA is a generic method that can be executed

in real-world settings, it is an impressive example of using simulation

for end-to-end learning, ground concepts, and iterating fast at scale.

VIMA constructs a simulation benchmark with thousands of generated

tabletop grasping tasks with a mix of text and image prompts and over

600,000 expert episodes to help robots learn through imitation. VIMA uses

multimodal prompting—that is prompting with a combination of images

and texts—with a transformer-based architecture to execute an extensive

range of robotic manipulation tasks.

VIMA demonstrates some interesting ways to specify tasks for robot

learning, via multimodal prompting:

• Goal conditioning for orientation: In a task such as

rearranging objects, it is harder to specify that goal via

text alone, and needs multimodal specification. One

way to do that is to give an image and prompt the robot

to rearrange the scene to match the expected final

configuration. Let’s say you have a table with various

fruits (apples, bananas, oranges) that are scattered

around. The prompt includes an image of a neatly

arranged fruit platter, where each fruit is arranged in a

specific order. The corresponding text “Rearrange the

fruits to match this layout” is provided.

• One-shot learning: The goal here is for the robot to

learn to perform a task when given a single expert

demonstration only. For example, if you want a robot to

learn to stack books in a specific order, you can provide

a sequence of images that show a person stacking

different books in each frame alongside the text “Stack

books in this order.”

250

[image: Image 137]

Chapter 5 Simulation

• Concept grounding: Checks if a robot can understand

symbolic concepts and perform tasks that manipulate

them. Let’s say you introduce new objects called “x”

and “y” to the robot. The prompt includes images

showing “This is x” next to a picture of a cylindrical

object and “This is y” next to a spherical object. The

task might be to “Place x next to y.”

• Visual constraint: Here you specify constraints

through a mix of images and text. For example, if you

want the robot to clean up a play area, you might

provide it with the prompt “Move all the toys into the

box without knocking over the tower of blocks,” but part

of the prompt is visual tokens.

Figure 5-19 shows examples of these use cases and how VIMA is

prompted multimodally for each.

 Figure 5-19. VIMA processes multimodal prompts combining

 language and visual inputs to specify robot manipulation tasks. Used

 with permission, source: https://arxiv.org/pdf/2210.03094 [52]

251

[image: Image 138]

Chapter 5 Simulation

The architecture of VIMA is shown in Figure 5-20. They use a trained

T5[55] tokenizer to tokenize the multimodal prompts and use self- and

cross-attention to interleave prompt tokens and tokenized interaction

history. This context is then used by a causal decoder to output actions,

and the entire system is trained via behavioral cloning on a dataset of

expert demonstrations.

 Figure 5-20. Architecture of VIMA. Used with permission, source:

 https://arxiv.org/pdf/2210.03094 [52]

252

[image: Image 139]

Chapter 5 Simulation

Trained VIMA variants were tested for various levels of generalization:

1. Scene generalization: By placing the objects in

different orders/orientations in the scene.

2. Seen objects, but novel combinations: Manipulating

two different objects in a combination that was not

seen in the training set, but in which each object

was seen in a different context while training. This

checks for transfer of concept grounding from the

training stage to the inference stage.

3. Novel objects: New objects are introduced to tasks

not seen during training to check for generalization.

4. Novel tasks: Entirely unseen tasks with unseen

objects.

Figure 5-21 shows the generalization evaluation framework used in

VIMA. Each of these levels differs progressively from the training data,

making the task more challenging and acting as a strong evaluation

framework for generalization. While this study was done entirely in

simulation, one can transfer all these concepts to real-world domains,

providing a stark example of how simulation is used to advance robot

learning research.

 Figure 5-21. Four levels of evaluation for VIMA to measure zero-shot

 generalizability. Used with permission, source: https://arxiv.org/

 pdf/2210.03094 [52]

253

Chapter 5 Simulation

 Summary

During this chapter, you learned that:

• Simulations offer a cost-effective and scalable solution

to generate diverse synthetic data, which can help

robots learn safely and efficiently. However, limitations

like the Sim2Real gap require combining simulation

with real-world data.

• Robot simulators, like PyBullet, MuJoCo, and Gazebo,

include core features such as physics engines for rigid

and soft body dynamics, robot modeling through

URDF, environment simulation, and user interaction

via APIs and GUIs for control and visualization.

• Techniques like domain adaptation and domain

randomization are used to bridge the gap between

simulation and the real world. Approaches such as

guided domain randomization focus on training

models with progressively more challenging scenarios.

• Methods like RL-CycleGAN address the Sim2Real gap

by translating simulated images into realistic ones

while preserving semantics. This can help improve the

ability of RL agents to generalize to real-world tasks.

• Learning from simulation using both simulated

and real-world data improves task exploration and

skill acquisition. This was shown by QT-Opt for

robotic manipulation, and projects like Voyager

and MineDojo, with LLMs and foundation models.

Simulators also help in reward design, as seen with

Eureka. Additionally, world modeling methods

like ROSIE augment training data to improve

254

Chapter 5 Simulation

policy adaptability, while VIMA uses multimodal

prompting and transformers to train robots on diverse

manipulation tasks.

The next chapter explores the use of deep learning methods for

mapping and localization in robotics, sensor setups, geometric and

semantic mapping techniques, and various localization methods.

 Tutorials

 PyBullet Tutorial

This tutorial walks you through foundational concepts in PyBullet,

including loading a URDF, running a simulation, and controlling joints.

To start, you need to create a URDF file of your robot’s physical

structure. If you haven’t created a URDF file before, you can use an

example one from online or generate one using SolidWorks, which has a

URDF export plugin.

To install PyBullet in your system, you can copy and paste the following

into your terminal (Mac and Linux):

sudo pip3 install pybullet

For Windows, you can use the following command in your terminal:

pip install pybullet

Create a new Python file where your URDF is stored. Name it

pybullet_simulation.py and open it in some code editor. The first pieces

of code to write in your script are import statements. PyBullet gives you

access to its simulation API and the time module allows you to add delays

to control the speed of the simulation.

import pybullet as p

import pybullet_data

import time

255

Chapter 5 Simulation

You can establish a connection to the PyBullet simulation GUI using

this line, which allows you to visualize and interact with the simulation:

p.connect(p.GUI)

You can run the simulation with an empty world by adding this loop:

while True:

p.stepSimulation()

time.sleep(1./240)

This environment should be completely empty. You can add a flow by

loading a preexisting URDF of a plane available in PyBullet’s data path:

p.setAdditionalSearchPath(pybullet_data.getDataPath())

floor = p.loadURDF("plane.urdf")

You can then load the robot URDF and set gravity in your environment.

Make sure to replace [robot_file_name].urdf with the actual name of

your URDF file.

robot = p.loadURDF("my_robot.urdf")

p.setGravity(0, 0, -9.81)

Before controlling the robot joints, it can be useful to inspect them

to understand the joints well. The getNumJoints() and getJointInfo()

functions can be used for this:

for i in range(p.getNumJoints(robot)):

joint_info = p.getJointInfo(robot, i)

print(f"Joint {i}: {joint_info}")

To move some joints, you can use the setJointMotorControl2()

function. This function lets you specify a target position, velocity, and

other control parameters.

This code will control the first joint, which usually represents the base

joint of your robot:

256

Chapter 5 Simulation

target_position = 1.57 # 90 degrees

p.setJointMotorControl2(bodyUniqueId=robot,

jointIndex=0, # can be changed

as needed

controlMode=p.POSITION_CONTROL,

targetPosition=target_position)

You can explore different control modes:

• POSITION_CONTROL: Moves the joint to a specific angle.

• VELOCITY_CONTROL: Controls the speed of the joint.

• TORQUE_CONTROL: Directly controls the torque applied

to the joint.

• PD_CONTROL: Uses a PD controller for the joint.

Finally, you can add the simulation loop to the end of your script to run

everything together:

while True:

p.stepSimulation()

time.sleep(1./240)

Once you have this basic setup working, you can start experimenting

with more the advanced features of PyBullet:

• Collision detection: Add objects to the environment

and check for collisions.

• Sensors: Simulate sensors like cameras or LiDAR.

• Reinforcement learning (RL): Train your robot using

RL algorithms in PyBullet.

For debugging and fixing any errors, we recommend looking through

PyBullet’s official documentation[53].

257

Chapter 5 Simulation

References

[1] https://developer.nvidia.com/isaac/sim

[2] https://www.simscale.com/blog/what-is-finite-

element-method/

[3] https://restackor.com/physics/response/spring-

mass-damper

[4] https://www.simscale.com/docs/simwiki/cfd-

computational-fluid-dynamics/what-is-cfd-

computational-fluid-dynamics/

[5] https://www.grc.nasa.gov/www/k-12/airplane/

nseqs.html

[6] https://wiki.ros.org/urdf

[7] https://www.geeksforgeeks.org/a-search-

algorithm/

[8] https://www.geeksforgeeks.org/introduction-to-

dijkstras-shortest-path-algorithm/

[9] https://www.opengl.org/

[10] https://www.ros.org/

[11] https://pybullet.org/wordpress/

[12] Kalashnikov, Dmitry, et al. “Scalable deep reinforcement

learning for vision-based robotic manipulation.”

Conference on Robot Learning. PMLR, 2018.

[13] http://sdformat.org/

[14] https://mujoco.readthedocs.io/en/latest/

modeling.html

258

Chapter 5 Simulation

[15] https://ompl.kavrakilab.org/

[16] https://gymnasium.farama.org/main/

environments/mujoco/

[17] https://github.com/google-deepmind/mujoco

[18] https://openai.com/index/learning-dexterity/

[19] https://mujoco.readthedocs.io/en/latest/

modeling.html

[20] https://gazebosim.org/home

[21] https://classic.gazebosim.org/tutorials

[22] https://classes.cs.uchicago.edu/archive/2021/

winter/20600-1/gazebo_simulator.html

[23] https://www.ros.org/

[24] Körber, Marian, et al. “Comparing popular simulation

environments in the scope of robotics and reinforcement

learning.” arXiv preprint arXiv:2103.04616 (2021).

[25] Souto, Nilson. “Video Game Physics Tutorial - Part

I: An Introduction to Rigid Body Dynamics.” Toptal

Engineering Blog, www.toptal.com/game/video-game-

physics-part-i-an-introduction-to-rigid-body-

dynamics.

[26] Souto, Nilson. “Video Game Physics Tutorial - Part III:

Constrained Rigid Body Simulation.” Toptal Engineering

Blog, www.toptal.com/game/video-game-physics-

part-iii-constrained-rigid-body-simulation.

[27] Tanveer, Muhammad Hassan, et al. “An In-Depth

Analysis of Domain Adaptation in Computer and Robotic

Vision.” Applied Sciences 13.23 (2023): 12823.

259

Chapter 5 Simulation

[28] Muratore, Fabio, et al. “Robot learning from randomized

simulations: A review.” Frontiers in Robotics and AI 9

(2022): 799893.

[29] Zhao, Wenshuai, Jorge Peña Queralta, and Tomi

Westerlund. “Sim-to- real transfer in deep reinforcement

learning for robotics: a survey.” 2020 IEEE Symposium

Series on Computational Intelligence (SSCI). IEEE, 2020.

[30] https://builtin.com/machine-learning/markov-

decision-process

[31] Tobin, Josh, et al. “Domain randomization for

transferring deep neural networks from simulation to the

real world.” 2017 IEEE/RSJ International Conference on

intelligent Robots and Systems (IROS). IEEE, 2017.

[32] Weng, Lilian. “Domain Randomization for Sim2Real

Transfer.” lilianweng.github.io, 5 May 2019, https://

lilianweng.github.io/posts/2019-05-05-domain-

randomization/.

[33] Mehta, Bhairav, et al. “Active domain randomization.”

Conference on Robot Learning. PMLR, 2020.

[34] Liu, Yang, et al. “Stein variational policy gradient.” arXiv

 preprint arXiv:1704.02399 (2017).

[35] Akkaya, Ilge, et al. “Solving Rubik’s Cube with a robot

hand.” arXiv preprint arXiv: 1910.07113 (2019).

[36] https://openai.com/index/solving-rubiks-cube/

[37] Rao, Kanishka, et al. “Rl-cyclegan: Reinforcement

learning aware simulation-to-real.” Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition. 2020.

260

Chapter 5 Simulation

[38] Zhu, Jun-Yan, et al. “Unpaired image-to-image

translation using cycle-consistent adversarial networks.”

Proceedings of the IEEE International Conference on

Computer Vision. 2017.

[39] https://developers.google.com/machine-learning/

gan/gan_structure

[40] https://huggingface.co/learn/deep-rl-course/en/

unit2/bellman-equation

[41] https://web.mit.edu/6.454/www/www_fall_2003/gew/

CEtutorial.pdf

[42] Wang, Guanzhi, et al. “Voyager: An open-ended

embodied agent with large language models.” arXiv

 preprint arXiv:2305.16291 (2023).

[43] Achiam, Josh, et al. “GPT-4 technical report.” arXiv

 preprint arXiv:2303.08774 (2023).

[44] Fan, Linxi, et al. “MineDojo: Building open-ended

embodied agents with Internet-scale knowledge.”

 Advances in Neural Information Processing Systems 35

(2022): 18343-18362.

[45] https://github.com/MineDojo/MineCLIP

[46] Ma, Yecheng Jason, et al. “Eureka: Human-level reward

design via coding large language models.” arXiv preprint

 arXiv:2310.12931 (2023).

[47] https://www.shadowrobot.com/dexterous-

hand-series/

[48] Yu, Tianhe, et al. “Scaling robot learning with

semantically imagined experience.” arXiv preprint

 arXiv: 2302.11550 (2023).

261

Chapter 5 Simulation

[49] Brohan, Anthony, et al. “Rt-1: Robotics transformer

for real-world control at scale.” arXiv preprint

 arXiv:2212.06817 (2022).

[50] Brooks, Tim, Aleksander Holynski, and Alexei A. Efros.

“Instructpix2pix: Learning to follow image editing

instructions.” Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition. 2023.

[51] https://nvidianews.nvidia.com/news/foundation-

model-isaac-robotics-platform

[52] Jiang, Yunfan, et al. “Vima: General robot manipulation

with multimodal prompts.” arXiv preprint

 arXiv:2210.03094 2.3 (2022): 6.

[53] https://pybullet.org/wordpress/index.php/

forum-2/

[54] https://www.do-mpc.com/en/latest/theory_mpc.html

[55] Raffel, Colin, Noam Shazeer, Adam Roberts, Katherine

Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei

Li, and Peter J. Liu. “Exploring the limits of transfer

learning with a unified text-to-text transformer.” Journal

 of Machine Learning Research 21, no. 140 (2020): 1-67.

[56] Yazici, Baris. “How to build self-learning grasping robot.”

 Medium, 20 Dec. 2020, towardsdatascience.com/

sample-efficient-robot-training-on-pybullet-

simulation-with-sac-algorithm-71d5d1d4587f.

[57] Coumans, Erwin. “GitHub - Erwincoumans/Pybullet_

robots.” GitHub, 2017, github.com/erwincoumans/

pybullet_robots.

262

Chapter 5 Simulation

[58] Collins, Jack, et al. “A review of physics simulators for

robotic applications.” IEEE Access 9 (2021): 51416-51431.

[59] Garcia, Ricardo, Robin Strudel, Shizhe Chen, Etienne

Arlaud, Ivan Laptev, and Cordelia Schmid. Robust

Visual Sim-to-Real Transfer for Robotic Manipulation.

International Conference on Intelligent Robots and

Systems (IROS), 2023.

263

CHAPTER 6

Mapping,

Localization,

and Navigation

Humans use multimodal sensory perception to identify objects and move

in complicated spaces. This allows us to navigate, perform complex tasks,

and interact with objects in our environment. Similarly, using varying

sensors and multimodal sensory perception, robots (such as self-driving

cars, drones, and home robots) can sense their surroundings and make

decisions by estimating their current state and environment. These

capabilities are enabled through localization and mapping, which are the

focus of this chapter.

 Localization helps a robot understand where it stands in a current

scene; it involves determining the “states” of a robot (location, orientation,

velocity, etc.) relative to other objects. Mapping involves capturing a model

of its environment through geometry, appearance, and different 2D or 3D

space semantics. Mapping is a precursor to localization, as localization of

a robot is done with respect to its map. Navigation is the act of moving to a

desired location, and it encompasses mapping, localization and reasoning.

Before you dive into methods for each of these, it’s essential to understand

why and when to use deep learning for mapping and localization tasks.

© Alishba Imran, Keerthana Gopalakrishnan 2025

265

A. Imran and K. Gopalakrishnan, AI for Robotics,

https://doi.org/10.1007/979-8-8688-0989-7_6

Chapter 6 Mapping, LoCaLization, and navigation

 Why Use Deep Learning?

Numerous classical methods and algorithms have been developed over

the years to address the challenges in localization and mapping. Some of

these methods include odometry estimation—such as visual odometry[1],

LIDAR odometry[2], SLAM[3], and structure from motion (SfM)[4].

Choosing between deep learning-based and traditional techniques,

like Kalman filters[5], involves considering tradeoffs. Kalman filters are

effective for visual odometry, sensor fusion localization, or SLAM. Take

for example, Comma AI’s open-source implementation, RedNose[6] that

is used for real world self-driving. While this chapter focuses on deep

learning methods, the choice of methods used depends on the application

requirements, as each approach has advantages and disadvantages.

 Traditional Methods

Traditional methods excel at handling noisy or inconsistent data

through well-established mathematical techniques. They can be more

interpretable, which is essential for applications where understanding the

decision-making process is crucial. These methods typically require less

labelled data for training, making them suitable for scenarios with limited

data collection.

However, traditional methods often require manual feature

engineering, which can be time-consuming and might only capture

some relevant information in complex sensor data. They may also need

significant modifications to adapt to new or changing environments.

266

Chapter 6 Mapping, LoCaLization, and navigation

 Deep Learning Methods

Deep learning methods can achieve high accuracy when trained on large

and diverse datasets, as they can learn complex relationships in data.

Relevant features can be learned directly from complex and high-

dimensional sensor input data, reducing the need for manual feature

engineering. If trained on representative data, these methods are

adaptable to different environments and scenarios, making them suitable

for applications with frequently changing environments. Additionally, they

capture intricate spatial relationships within data, useful for understanding

complex maps or 3D reconstructions.

On the downside, for deep learning models to learn effectively, a lot

of the labeled data can be needed for training and annotating data can be

time-consuming and expensive. These methods also demand significant

computational resources for training and running. Furthermore, while

they can excel in environments they’ve been trained in, they might only

generalize to new or unseen scenarios when trained on a large corpus of

diverse data.

 A Hybrid Approach

More practically, a hybrid strategy is often deployed in the real world,

which incorporates the benefits of both deep learning and conventional

methods. For instance, deep learning models can extract features and

learn complicated patterns, while conventional techniques can be used

for sensor fusion or noise reduction. Currently, tasks such as object

detection and semantic segmentation are done via a neural network, but

functions like odometry and 3D reconstruction are often done using more

“traditional” methods. See Figure 6-1.

267

[image: Image 140]

Chapter 6 Mapping, LoCaLization, and navigation

However, we are starting to see a change, as methods like Dust3r[7] use

neural networks to reconstruct geometry. Dust3r works with the following

main steps:

• Takes multiple images from different viewpoints and

passes these through a ViT[8] to get feature maps.

• These feature maps are then fed into transformers[9]

that share information between the different

viewpoints to produce pointmaps and confidence

scores for each image. The pointmaps represent the

3D coordinates of points in the scene, and each has an

assigned confidence score.

• The pointmaps from different viewpoints are aligned

to a common coordinate frame, allowing for the

reconstruction of a 3D scene model.

 Figure 6-1. The network uses a shared ViT encoder, transformer

 decoders, and regression heads to generate pointmaps and confidence

 maps from two scene views. Used with permission, source: https://

 arxiv.org/pdf/2312.14132 [7]

Similarly, neural network-based methods are becoming more

promising for monocular depth estimation. Recent developments in video

models are a strong example of this, as they can be conditioned on an

input image and could allow people to perform depth estimation from

video sequences. A 2023 survey[10] highlights that while NN monocular

268

Chapter 6 Mapping, LoCaLization, and navigation

depth estimation is not fully mature, progress is being made: “In our

view, the majority of existing MDE algorithms suffer from a limitation in

training diversity, specifically in terms of various areas and image types.

For instance, when the training dataset lacks a sufficient number of images

featuring the sky, it can lead to challenges in accurately estimating depth

in those particular regions.” As training datasets become more diverse

and detailed, the performance of neural network-based depth estimation

methods could improve significantly.

The decision of where and when to use deep learning for mapping

and localization tasks is ultimately influenced by variables such as data

availability, computational resources, and application needs.

 Typical Mobile Robot Setup

While there is a lot of variation in robot sensor configurations and

embodiments, most general-purpose systems (such as autonomous cars

or humanoid robots) require specific sensors to be effective at mapping

and localization. Having an RGB camera and an IMU sensor is essential,

and most systems will likely have multiple RGB cameras (possibly in a

stereo camera setup for depth estimation). A LiDAR depth sensor can

provide highly accurate 3D maps, but some companies (e.g., Tesla)

prefer vision-based systems due to LiDAR’s cost and complexity. Finally,

GPS sensors are commonly used for robots that may travel considerable

distances (such as autonomous cars). Determining the proper sensor

configuration and pairing it with the right estimation techniques is a

complex problem without a “one size fits all” answer and often involves

some experimentation.

269

Chapter 6 Mapping, LoCaLization, and navigation

 Mapping

In robotics, mapping refers to a robot’s ability to create a reliable, detailed

model of its environment, which helps it be aware of its surroundings.

Deep learning methods can be used to perceive the environment and

create a scene map. This scene map can be helpful in planning and

navigation.

 Geometric Mapping

Geometric mapping represents a scene’s shape and structural details. In

geometric mapping, voxel representation is a scene representation that

divides the 3D environment into a grid of small cubes (voxels) that can

tell you if the space in the scene at that point is occupied or free. Depth

representation involves creating an image from depth sensors where

each pixel has information on the distance to the nearest object. These

representations provide an understanding of the scene’s spatial layout and

spatial geometry.

 Depth Representation

Depth maps are crucial for understanding the geometry and structure of a

scene. Many deep learning methods, such as supervised learning methods,

use CNNs with RGB images and depth maps to predict depth. However,

these methods require a large amount of depth data, which might not be

available in all cases. To address this, semi-supervised methods and self-

supervised methods that rely on unlabeled data can be used, but they face

challenges in generalization.

270

Chapter 6 Mapping, LoCaLization, and navigation

The main steps in the depth representation pipeline are as follows:

• Collect RGB images using a monocular camera or

datasets such as NYU-v2[11] or KITTI[12], which

provide RGB images with ground truth depth maps.

• To extract features from the images, use a CNN, such as

pretrained models like ResNet[13] or DenseNet[14].

• Various deep-learning models can be used to predict

depth values for each image pixel. In supervised

learning methods, a CNN would be trained on RGB

images and corresponding depth maps to directly

output depth information. In self-supervised methods,

networks would be trained using unlabeled images

by getting additional information from stereo images

or visual odometry. Semi-supervised methods often

combine labelled and unlabeled data for training.

• Often, an additional module refines the depth map.

This can be done by aligning the initial depth estimates

with expected geometric constraints or integrating

global context through self-attention[15].

We don’t go into too much detail about these methods, but an

overview of specific deep learning-based depth estimation models is

shown in Figure 6-2, and you can learn more here[16].

271

[image: Image 141]

Chapter 6 Mapping, LoCaLization, and navigation

 Figure 6-2. Methods for depth estimation. Used with permission,

 source: https://www.ncbi.nlm.nih.gov/pmc/articles/

 PMC7219073/ [16]

 Voxel Representation

A 3D space’s volume element is known as a voxel, and a natural way to

represent 3D geometry is with a voxel-based formulation. The pipeline for

voxel representation often looks as follows:

• Sensors such as LiDAR, RGB-D, or stereo cameras

collect raw 3D data.

• This raw 3D data can be converted into a point cloud,

which is a collection of data points in which each point

represents a point on the surface of an object.

272

Chapter 6 Mapping, LoCaLization, and navigation

• In some cases, this point cloud can also be converted

into a 3D mesh, which is a group of vertices, edges, and

faces representing the shape of objects.

• This 3D data can undergo voxelization, where, based

on the points from the point cloud, each voxel is

identified as either occupied by an object or free.

• A voxel grid can be used as an input to a CNN to

extract features that represent the spatial structure and

occupancy of the environment.

Tesla previously popularized an Occupancy Network[17], a 3D voxel

representation of the world from their eight camera streams[18]. Their

system uses eight cameras, which feed into models designed for feature

extraction (see Figure 6-3), where an attention module generates an

occupancy feature volume, which is combined with previous volumes to

create a 4D occupancy grid. Finally, deconvolutions restore the original

size, resulting in the occupancy volume, a 3D bird’s-eye view, and the

occupancy flow, which shows the movement of each pixel from one frame

to the next.

273

[image: Image 142]

Chapter 6 Mapping, LoCaLization, and navigation

 Figure 6-3. Tesla’s Occupancy Network overview. Used with

 permission, source: https://www.thinkautonomous.ai/blog/

 occupancy-networks/ by Think Autonomous[39]

While voxels have many use cases, one of their limitations is the high

computational demand of reconstructing a scene in the high resolution

that’s needed for a voxel representation.

 NeRF: Neural Radiance Fields

Neural Radiance Fields (NeRFs)[19] are used in the computer vision field

because they allow the generation of detailed 3D scenes from 2D images.

They offer valuable applications in robotics, particularly for localization,

mapping, and understanding 3D environments. A NeRF is simply training

a neural network to predict what an image of a scene would look like from

a particular camera pose. The network is deliberately “overfit” to many

pictures of a single scene and can then predict images for novel camera

poses not in the training set.

274

[image: Image 143]

Chapter 6 Mapping, LoCaLization, and navigation

NeRFs use a feed-forward network to generate detailed information

about a scene. They use rays, which are lines in 3D space extending from a

specific camera viewpoint into the scene in certain directions. These rays

are lines in 3D space that project from a particular camera viewpoint into

the scene along specific paths. The rendering process then merges this

information into a 2D image. Since both components are differentiable,

the entire system can be trained end-to-end. NeRFs define a 5D radiance

field as an input of a location (x, y, z) and a 2D direction (specified by two

angles in 3D space). As shown in Figure 6-3, the output from this function

consists of volume density (opacity) and color (RGB value). The radiance

field uses a feed-forward neural network with a 5D input to output the

corresponding color and volume density information. An overview of the

main steps in NeRFs is shown in Figure 6-4. We break down each of these

steps in more detail next.

 Figure 6-4. Overview of NeRF and rendering. Used with permission,

 source: https://arxiv.org/pdf/2003.08934 [19]

To create a new view, camera rays are passed through the scene to get

3D points. These points, along with their 2D viewing directions, are input

into the neural network to generate colors and densities. These are then

combined using classical volume-rendering techniques into a 2D image.

275

Chapter 6 Mapping, LoCaLization, and navigation

The following code illustrates the MLP that can be used to convert the

5D input into RGB output:

Model architecture

def init_nerf_model(D=8, W=256, input_ch=3, input_ch_views=3,

output_ch=4, skips=[4], use_viewdirs=False):

relu = tf.keras.layers.ReLU()

def dense(W, act=relu): return tf.keras.layers.Dense(W,

activation=act)

print('MODEL', input_ch, input_ch_views, type(

input_ch), type(input_ch_views), use_viewdirs)

input_ch = int(input_ch)

input_ch_views = int(input_ch_views)

inputs = tf.keras.Input(shape=(input_ch + input_ch_views))

inputs_pts, inputs_views = tf.split(inputs, [input_ch,

input_ch_views], -1)

inputs_pts.set_shape([None, input_ch])

inputs_views.set_shape([None, input_ch_views])

print(inputs.shape, inputs_pts.shape, inputs_views.shape)

outputs = inputs_pts

for i in range(D):

outputs = dense(W)(outputs)

if i in skips:

outputs = tf.concat([inputs_pts, outputs], -1)

if use_viewdirs:

alpha_out = dense(1, act=None)(outputs)

bottleneck = dense(256, act=None)(outputs)

inputs_viewdirs = tf.concat(

[bottleneck, inputs_views], -1) # concat viewdirs

276

Chapter 6 Mapping, LoCaLization, and navigation

outputs = inputs_viewdirs

The supplement to the paper states there are 4 hidden

layers here, but this is an error since

the experiments were actually run with 1 hidden

layer, so we will leave it as 1.

for i in range(1):

outputs = dense(W//2)(outputs)

outputs = dense(3, act=None)(outputs)

outputs = tf.concat([outputs, alpha_out], -1)

else:

outputs = dense(output_ch, act=None)(outputs)

model = tf.keras.Model(inputs=inputs, outputs=outputs)

return model

This code has been taken without adaptation from [20].

NeRF computes loss by comparing the pixels of the rendered image

to the ground truth images. Using this process, NeRFs can create detailed

3D reconstructions of physical spaces, which can be valuable for robots

navigating complex environments. Additionally, the photorealistic images

generated by NeRF capture the objects’ geometry and appearance,

improving the robots’ ability to interpret scenes and navigate their

surroundings accurately.

 Semantic Mapping

Semantic mapping is creating a map so that objects and features in a

scene are labelled with information that describes the scene. This can

include identifying objects (car, dog), attributes about the objects (red, tall)

and relationships (the vehicle is next to a tree). Traditionally, semantic

mapping has been based on closed-vocabulary techniques, which means

using a predefined set of labels. Due to large vision language models such

277

Chapter 6 Mapping, LoCaLization, and navigation

as CLIP[21], semantics are moving closer to open-vocabulary techniques.

This allows for a more flexible and dynamic understanding of the scene

and the ability to generate labels based on vocabulary learned from large

image-text datasets.

Examples of methods that use this approach are Language Embedded

Radiance Fields (LeRFs)[22], which use a neural approach to incorporate

open-vocabulary semantics, and ConceptFusion, an explicit approach to

semantic mapping.

 Language Embedded Radiance Fields (LeRFs)

LeRF[22] integrates open-vocabulary semantic features into neural

rendering, allowing detailed 3D scene representations to be created (see

Figure 6-5). The main steps in LeRF are as follows:

• An input image is preprocessed into multiscale patches,

which are smaller sections of an image extracted at

different scales or resolutions. These patches are

passed through a large vision language model such as

CLIP to obtain CLIP features at different scales.

• The CLIP model is key in extracting visual and semantic

information from the patches to generate feature maps

at different scales.

• The neural network will take in spatial coordinates (x,

y, z), view directions (θ, ϕ), and scale as inputs.

• Various parameters are outputted, such as RGB values,

density, and DINO[23] features, which capture visual

and semantic information from the input image, and

CLIP features, which provide representations linking

visual content with text descriptions.

278

[image: Image 144]

Chapter 6 Mapping, LoCaLization, and navigation

• A loss function aligns the rendered features with

semantic information from CLIP. This function is

essential to ensure that the generated 3D scene has

accurate semantic labels.

 Figure 6-5. LeRF rendering and multiscale CLIP preprocessing. Used

 with permission, source: https://arxiv.org/pdf/2303.09553 [22]

 ConceptFusion

ConceptFusion[24] uses an explicit approach to semantic mapping that

combines different levels of visual embeddings to create pixel-aligned

embeddings that contain semantic information. ConceptFusion has a few

main steps:

• Using an input image, masks and crops are generated.

Masks identify different objects in the image, and crops

are just smaller sections of the image that correspond

to these masks.

• Two levels of embeddings are generated using a feature

extractor that takes in the original image, masks, and

crops. Global embeddings represent the overall context

of the entire image, and region-level embeddings

capture more detailed features of specific objects in

the image.

279

[image: Image 145]

Chapter 6 Mapping, LoCaLization, and navigation

• The global and region-level embeddings are combined

using zero-shot pixel fusion, which aligns their features

at the pixel level.

• The output of the zero-shot pixel fusion is a pixel-

aligned embedding that captures the image’s visual

features and semantic information.

Given this learned embedding, you then have an image with labels that

provide a semantic map of the entire scene. The pipeline of ConceptFusion

is shown in Figure 6-6.

 Figure 6-6. ConceptFusion generating pixel-aligned features. Used

 with permission, source: https://concept-fusion.github.io/

 assets/pdf/2023-ConceptFusion.pdf [24]

 Localization

Understanding a robot’s location is essential because it helps it track its

path and determine its future actions. A typical approach to figuring out

a robot’s location involves using sensors such as LiDAR and odometry.

For example, integrating LiDAR data with odometry can help track how

the robot’s position changes over time, creating a map of the robot’s

surroundings. An instance of such a localization system is Simultaneous

Localization and Mapping (SLAM)[3]. However, SLAM can encounter

issues when the robot is moved unexpectedly and encounters failure

modes due to reliance on odometry. For this reason, using LiDAR or

camera data with deep learning methods is another promising direction.

280

[image: Image 146]

Chapter 6 Mapping, LoCaLization, and navigation

 2D-to-2D Localization

2D-to-2D localization estimates the camera’s position relative to a 2D

map by matching images captured by the robot with features on the map.

This method can use explicit localization, where the scene is represented

by images tagged with geographical coordinates that can be directly

compared and matched[25]. Alternatively, implicit localization uses a

neural network that has been trained to understand and represent the

scene. In this case, the camera’s position is inferred based on the captured

images without explicit geographical tags[25].

There are many 2D-to-2D localization methods, and while we don’t

cover them all here, Figure 6-7 provides a comprehensive overview for

further reference.

 Figure 6-7. Models used for 2D-to-2D localization. Used with

 permission, source: https://ieeexplore.ieee.org/stamp/stamp.

 jsp?tp=&arnumber=10260323 [40]

281

Chapter 6 Mapping, LoCaLization, and navigation

Figure 6-8 shows the typical 2D-to-2D-based localization architectures

using an explicit map from RelocNet[26] and an implicit map from

PoseNet[27]. In the case of explicit map-based localization, a new image

is captured, and features are extracted. There is a preexisting database of

features extracted from training images that are tagged with geographical

coordinates. The features from the captured image are compared with

those in the database to find the closest neighbor. The camera’s position

and orientation are determined by identifying the closest matching

features in the database and then applying a coordinate transformation

to map these features to the camera’s pose. On the other hand, implicit

map-based localization has another neural network module that takes the

feature maps of the input image and directly predicts the camera’s position

and rotation. The entire pipeline is trained end-to-end to directly map

from image features to camera pose.

282

[image: Image 147]

Chapter 6 Mapping, LoCaLization, and navigation

 Figure 6-8. Difference between explicit (a) RelocNet (https://www.

 robots.ox.ac.uk/~lav/Papers/balntas_etal_eccv2018/balntas_

 etal_eccv2018.pdf)[26] and implicit (b) PoseNet (https://arxiv.

 org/abs/1505.07427)[27] map-based localization. Used both with permission, source: https://ieeexplore.ieee.org/stamp/stamp.

 jsp?tp=&arnumber=10260323 [40]

RelocNet (see Figure 6-9) determines a camera’s position by

comparing images. It learns to represent images so that similar images

have similar representations using nearest-neighbor matching and

continuous metric learning-based feature descriptors. The method

incorporates information from overlapping parts of images

283

[image: Image 148]

Chapter 6 Mapping, LoCaLization, and navigation

(camera frusta overlaps) to improve its accuracy. Additionally, RelocNet

includes a pose regressor that fine-tunes the position estimate using

geometric information, making the location prediction more accurate.

 Figure 6-9. Overview of RelocNet. Used with permission, source:

 https://openaccess.thecvf.com/content_ECCV_2018/papers/

 Vassileios_Balntas_RelocNet_Continous_Metric_ECCV_2018_

 paper.pdf [26]

 2D-to-3D Localization

Two common 2D-to-3D location methods are descriptor matching and

scene coordinate regression, as shown in Figure 6-10. Descriptor matching

determines a camera’s position by comparing the image’s high-

level features and finer details with a database of pre-stored images to

refine the match and calculate the exact position and orientation[25]. In

contrast, scene coordinate regression uses a neural network to predict 3D

coordinates for each pixel in the input image, assesses the confidence of

these predictions, and then determines the camera pose based on these

coordinates[25]. Both methods aim to determine the camera’s location but

use different techniques.

284

[image: Image 149]

Chapter 6 Mapping, LoCaLization, and navigation

 Figure 6-10. Difference between descriptor matching (a),

 HF-Net (https://arxiv.org/pdf/1812.03506)[41], a nd scene coordinate regression (b), Confidence SCR (https://arxiv.

 org/abs/1805.08443)[42]. Used with permission, source:

 https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumb

 er=10260323 [40]

A summary of common 2D-to-3D localization methods is shown in

Figure 6-11.

285

[image: Image 150]

Chapter 6 Mapping, LoCaLization, and navigation

 Figure 6-11. 2D-to-3D localization models. Used with permission,

 source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arn

 umber=10260323 [40]

 3D-to-3D Localization

3D-to-3D localization, also known as LIDAR localization, involves

determining the position and orientation of the camera by matching

3D point clouds generated by a LiDAR to a preexisting 3D map of the

environment. This process usually means comparing the captured 3D

image with the stored map to find the best fit[25]. This can be helpful for

more complex environments where 2D mapping might fall short.

The process of 3D-to-3D localization is depicted in Figure 6-12.

Using a LiDAR point cloud and a prebuilt map, PointNet[28] extracts

relevant features. These features are then fed into a CNN for further

feature extraction. Finally, the processed data is passed through Recurrent

286

[image: Image 151]

[image: Image 152]

Chapter 6 Mapping, LoCaLization, and navigation

Neural Networks (RNNs)[29] to refine the pose estimate, learn temporal

relationships, and output the optimal camera pose.

 Figure 6-12. 3D-to-3D localization process. Used with permission,

 source: https://openaccess.thecvf.com/content_CVPR_2019/

 papers/Lu_L3-Net_Towards_Learning_Based_LiDAR_

 Localization_for_Autonomous_Driving_CVPR_2019_paper.pdf[43]

Figure 6-13 shows a summary of other 3D-to-3D localization methods.

 Figure 6-13. 3D-to-3D localization models. Used with permission,

 source: https://arxiv.org/pdf/2006.12567 [25]

We recommend checking out this paper[25], which we reference in this

chapter, for further reading.

 Navigation

Vision language models (VLMs)[30] are large models that can understand

and process text and image data. Google’s Gemini 1.5 Pro[31] is an

287

[image: Image 153]

Chapter 6 Mapping, LoCaLization, and navigation

example of this, and it uses a Mixture-of-Experts architecture[32] to

process long contexts. It can handle up to 1 million tokens in standard use

and up to 10 million tokens in research settings. This translates to about

one hour of video, eleven hours of audio, and over 30,000 lines of code.

Using VLMs can be powerful for robotics in solving navigation tasks.

Specifically, Multimodal Instruction Navigation with Demonstration

Tours (MINT) is a type of navigation task that uses recorded video

demonstrations to guide robotic navigation. An example of this method

is Mobility VLA[33], which uses a demonstration tour video of the

environment and multimodal user instructions (images and language).

The system has two main parts: a high-level policy, which uses the video

and instructions to identify the goal, and a low-level policy, which uses this

goal along with a pre-computed topological map to plan the robot’s path

and actions. An overview of Mobility VLA is shown in Figure 6-14.

 Figure 6-14. Mobility VLA architecture. Used with permission,

 source: https://arxiv.org/pdf/2407.07775 [33]

The Mobility VLA architecture consists of the following main parts:

• Multimodal user instruction: The user provides

instructions in the form of an image of the environment

288

[image: Image 154]

Chapter 6 Mapping, LoCaLization, and navigation

or task that needs to be done. For example, an image of

a shelf where an item needs to be placed. A language

instruction consists of text instructions describing the

task. For example, text saying “Place this box on the

top shelf.”

• Demonstration tour video: A recorded video where a

human or a robot navigates through the environment

and key locations and actions are captured. For

example, a video showing someone walking through

an office and pointing out where the desks, shelves,

and doors are. This serves as a reference for the robot

to understand the layout and important features of the

environment.

A prompt (𝐹, 𝑁, 𝑑, 𝐼) is prepared, which includes frames (images from

the tour video), narratives (descriptions associated with each frame),

distances (contextual information about the distance or location), and

multimodal user instructions combining text and images. An example of

this is shown in Figure 6-15.

 Figure 6-15. A demonstration of how a multimodal prompt is

 used by a Vision Language Model (VLM) to guide a robot in a

 navigation goal. Used with permission, source: https://arxiv.org/

 pdf/2407.07775 [33]

289

Chapter 6 Mapping, LoCaLization, and navigation

• Goal finding: The VLM identifies specific frames in

the video that correspond to the goal described by the

input instructions. For example, the VLM could identify

the frame showing the shelf where the box needs to

be placed. This ensures that the robot understands

what it needs to achieve based on context from the

instructions and the video.

• Navigation goal: A high-level goal frame is identified

by the VLM that matches the user’s instruction. This

goal could be reaching the shelf identified in the video.

• Path finding: The robot uses a pre-computed map,

which is created from the demonstration tour video

using a method classed structure-from-motion, which

creates a 3D representation of the environment. Using

this map, the robot finds the optimal path to reach the

navigation goal.

This is where the low-level goal reaching policy can be used. As input,

the specific frame identified by the high-level policy and the pre-

constructed map are used. The robot captures a new image of its current

view and then, using this the robot, determines its position within the

topological graph. The robot checks if it has reached the goal vertex and

if it has, the navigation goal is achieved. Otherwise, the robot computes

the shortest path from its current position to the goal. The robot calculates

the next action needed to move from its current position toward the first

vertex in the path and then the robot performs the calculated action. This

continues until the robot reaches the goal or the maximum number of

steps is exceeded. See Figure 6-16.

290

[image: Image 155]

Chapter 6 Mapping, LoCaLization, and navigation

 Figure 6-16. This low-level policy computes waypoint actions at

 every timestep. Used with permission, source: https://arxiv.org/

 pdf/2407.07775 [33]

This method shows the power of using VLMs and leveraging their

ability to capture long-contextual information for understanding complex

environments and instructions. Using VLMs to process multimodal inputs

can help robots get a more nuanced understanding of their tasks and

surroundings.

 Navigation and Exploration

Navigating new environments is a challenge for robots because they need

to be able to reach a specific goal that is already defined and search for

goals in new environments. These tasks are typically defined separately

and solved using different models. NoMaD[34] is a technique that aims

to build a unified approach that can solve both tasks and improve overall

navigation performance. See Figure 6-17.

NoMaD uses a single diffusion policy that handles both goal-directed

navigation and exploratory navigation:

• The robot takes in visual data from its surroundings

over the most recent moments. Optionally, the robot

can have a visual goal input indicating the goal

location, which shows the robot where it needs to go.

291

Chapter 6 Mapping, LoCaLization, and navigation

• Two EfficientNet[35] encoders are used to process the

visual data and goal input and turn them into tokens

that can be used by a Transformer[9] decoder.

• The tokens are passed into a Transformer model, which

uses the tokens to understand the context and make

decisions about the robot’s actions. The Transformer

generates a context vector by polling information from

the input tokens. This context vector represents the

current understanding of the environment and the task.

• Goal masking is a method used to help the model

understand whether it should be focusing on goal-

directed navigation or exploratory navigation. It

combines the information from the goal input with the

context generated from the observations to make sure

the model can adapt based on the task provided.

• The context vector is used in an action diffusion model,

which predicts the future actions the robot should take.

It uses a denoising process with ten steps to refine these

action predictions. Throughout this process, the model

computes the temporal distance between the current

distance and the goal observation (if provided) to

understand how far the robot is from the goal in terms

of time.

• The action diffusion model outputs a sequence of

future actions which guide the robot’s movement to

navigate the environment, whether that be searching

for a goal or moving toward a known goal.

292

[image: Image 156]

[image: Image 157]

Chapter 6 Mapping, LoCaLization, and navigation

 Figure 6-17. Architecture of NoMaD. Used with permission, source:

 https://arxiv.org/pdf/2310.07896 [34]

This model was tested in indoor and outdoor environments using the

LoCoBot platform[36]. In exploratory mode, the robot identifies potential

paths to find goals. In goal-directed mode, it navigates directly toward the

specified targets. This demonstrates the ability of an approach like this to

understand its environment, follow navigation routes, and make informed

decisions at intersections. See Figure 6-18.

 Figure 6-18. NoMaD's rollouts in indoor (top) and outdoor (bottom)

 environments. Yellow lines are future action samples from the

 undirected mode and blue lines indicate actions selected by the high-

 level planner. Used with permission, source: https://arxiv.org/

 pdf/2310.07896 [34]

293

Chapter 6 Mapping, LoCaLization, and navigation

 Locomotion for Legged Robots

An important area of development in robotics research is legged

locomotion—when a robot uses legs to move and navigate its

environment. These robots are beneficial for inspection and exploration,

where they must navigate challenging terrain and maneuver around

obstacles. Recently, developments to bring down hardware costs, make

simulation more realistic, and develop learning-based methods have

pushed forward research in this field[37].

 Hardware

Over the years, the hardware for quadrupedal robots has evolved to

have improved performance and reduced cost. There are three types of

actuations: hydraulic, electric motors, and series elastic actuators[37].

• Hydraulic actuators: These actuators are ideal for

powerful and dynamic movements because they have

high power-to-weight ratios. Regardless of this, they

can be costly and require specific maintenance.

• Electric motors: These actuators are most commonly

used in quadrupedal robots. In the past, these actuators

were used alongside other components, like high-ratio

gears to improve torque. Recently, high torque-density

actuators have been developed that allow for direct

joint control with fewer or no additional parts. These

developments have reduced complexity and improved

performance.

• Series elastic actuators: These actuators have an

elastic component that absorbs impact and allows for

more precise control.

294

[image: Image 158]

Chapter 6 Mapping, LoCaLization, and navigation

More recently, the field has been focusing on proprioceptive actuators,

which offer higher torque density and control. These actuators use

sensors to measure the force and position of the joints, which allows

the control to be more adaptive. These actuators will ultimately enable

quadrupedal robots to perform more complex tasks. Figure 6-19 shows

how quadrupedal robots have evolved over time.

 Figure 6-19. How quadruped robots have evolved overtime. Used

 with permission, source: https://arxiv.org/pdf/2406.01152 [37]

 Simulation

Simulation is essential to test control algorithms for quadrupedal robots

before deploying them in the real world. Recent simulations use rigid

body models, which can more accurately handle collisions by considering

friction, elastic interactions (two objects collide and bounce off each other

without loss of energy in the system), and inelastic interactions (when

two objects collide, they may deform, stick together, or lose some kinetic

energy)[37]. GPU acceleration has also sped up simulations and the

training process for more complex tasks using a mixture of real-world data

from sensor input and simulated data.

295

[image: Image 159]

[image: Image 160]

Chapter 6 Mapping, LoCaLization, and navigation

 MDP Formulation

Markov Decision Processes (MDPs) are used in RL as a framework for

decision-making. For locomotion in legged robots, MDPs help design

control policies.

The dynamics represent how the robot’s state (position, speed, etc.)

changes over time. The state evolved based on the robot’s current state and

the action it takes. This can be represented as follows:

Equation 6-1

This equation represents the state of the robot at the next time step,

which is determined by the current state, the action taken, and the change

over a small time step (dt). The change in the state due to actions is

modeled using a probability function:

Equation 6-2

This gives the likelihood of moving to the next state from the current

state after taking an action.

 Learning-based Methods

A few of the common learning-based methods used to solve MDP for

locomotion policies[37] are shown in Figure 6-20.

296

Chapter 6 Mapping, LoCaLization, and navigation

• End-to-end learning: The robot learns how to

move by treating the entire task as one big problem,

often formulated as a control problem by MDPs.

Oftentimes, RL algorithms like TRPO (Trust Region

Policy Optimization) and PPO (Proximal Policy

Optimization), which are described in Chapter 7, are

used to solve this. The intuition is that these algorithms

help the robot learn by making small, safe updates in

movements.

• Curriculum learning: The goal of curriculum learning

is to mimic the way humans learn by slowly increasing

the difficulty of tasks over time. This method helps

the robot build up skills over time, which can make it

a helpful technique in complex environments where

learning slowly with increasing difficulty in tasks can

be useful.

• Hierarchical learning: The complex tasks are broken

down into smaller, simpler tasks. A high-level policy

decides on the larger actions, such as choosing where

to step, and the low-level policies handle the specific

details like moving the robot’s legs. This can make it

easier to handle complicated behaviors by focusing on

specific actions one part at a time.

• Privileged learning: A “teacher” policy is trained

in a simulation where it has full access to all needed

information. This policy guides a “student” policy,

which operates on more limited information, similar

297

Chapter 6 Mapping, LoCaLization, and navigation

to real-world conditions. The “student” policy learns to

leverage the information it has by interrupting a history

of observations to make decisions. This approach can

be helpful to bridge the gap between a simulation and

the real world by helping the robot perform tasks in the

real world using a fully informed, simulated model.

298

[image: Image 161]

Chapter 6 Mapping, LoCaLization, and navigation

 Figure 6-20. Popular learning frameworks. Used with permission,

 source: https://arxiv.org/pdf/2406.01152 [37]

299

Chapter 6 Mapping, LoCaLization, and navigation

A future direction is using foundation models, which are large models

that have been trained on a large, diverse amount of data. For legged

robots, foundation models help the robot interpret its environment and

plan a sequence of actions. Fine-tuning foundation models with robot-

specific data, such as for manipulation tasks, can also be a useful direction

for directly controlling robot actions.

One of the challenges in legged robot locomotion is the need for

benchmarks to evaluate control policies and hardware. The Barkour

benchmark[38] aims to solve this by providing a standardized obstacle

course to measure the agility and performance of legged robots (see

Figure 6-21). The course is designed after dog agility competitions and

includes four main obstacles:

• Pause tables, which are platforms where the robot must

stop and hold its position for a specified time.

• Weave poles, which are a series of poles that the robot

must maneuver through. This directly tests the robot’s

ability to make precise and agile movements.

• An A-frame, which is a steep ramp that the robot must

climb up and down, allowing a way to evaluate how

well it can handle inclined surfaces.

• A board jump, which is a wide gap that the robot must

leap over, evaluating the ability of the robot to jump.

This course evaluates different movements, like running, moving

sideways, climbing, and jumping. A specific area and allocated time is

used for each obstacle for fair and consistent evaluation.

300

[image: Image 162]

[image: Image 163]

Chapter 6 Mapping, LoCaLization, and navigation

 Figure 6-21. The design for the Barkour course. Used with

 permission, source: https://arxiv.org/pdf/2305.14654 [38]

A score measures how quickly and accurately the robot completes the

course. The scoring starts at 1.0, and points are deducted for each failed or

skipped obstacle or for taking longer than the allotted time.

Equation 6-3

Here, the time allocated is the standard time based on dog agility

competitions. Penalties include a deduction of 0.1 for each failed or

skipped obstacle and 0.01 for each second over the allotted time. See

Figure 6-22.

301

Chapter 6 Mapping, LoCaLization, and navigation

To tackle the benchmark, there are two main phases to establishing the

baseline:

• Training phase: There are specialist policies that

include walking, jumping, and slope. In the walking

policy, the robot learns how to walk in all directions.

This policy is trained using RL. The jumping policy is

where the robot learns to jump over obstacles and this

policy is also trained on RL. The slope policy is where

the robot learns to handle inclined slopes by practicing

going up and down slopes. Each of these policies is

trained separately in a simulation environment. After

training, the robot’s performance under each policy

is recorded, creating datasets that capture the robot’s

behavior under different conditions. The collected

dataset is used to train a Locomotion Transformer,

which is a generalist policy that integrates the learned

behaviors into a single, diverse policy that can adapt to

the various tasks on the course.

• Deployment phase: The evaluation has two parts: the

evaluation with specialist policies and the evaluation

with the generalist policy. For the specialist policies, a

navigation controller, which is a high-level controller,

determines the overall path the robot should take

throughout the course. This is decided based on the

robot’s position and an elevation map of the course.

Based on the commands from the navigation controller,

the robot switches between specialist policies (walking,

jumping, and slope) to navigate through the course.

Similar to the specialist approach, the navigation

controller guides the robot through the course in

the evaluation of the generalist policy. Instead of

302

[image: Image 164]

Chapter 6 Mapping, LoCaLization, and navigation

switching between different policies, the robot uses the

Locomotion Transformer policy to dynamically adjust

the movements based on the environment and its

own state.

 Figure 6-22. Methods used to establish a baseline for the Barkour

 benchmark. Used with permission, source: https://arxiv.org/

 pdf/2305.14654 [38]

 Summary

During this chapter, you learned that:

• Deep learning can learn complex patterns from

high-dimensional sensor data and adapt to changing

environments, but it requires large, labeled datasets

and computational resources. Traditional methods are

more interpretable and effective with less data but need

manual feature engineering.

303

Chapter 6 Mapping, LoCaLization, and navigation

• Most robots use an RGB camera and IMU sensors and

some incorporate LiDAR for 3D mapping. The choice of

sensors and estimation techniques varies based on the

environment and task.

• Various representations for defining mapping tasks

exist in robotics. Geometric mapping creates 3D maps

with depth data, while voxel representation divides 3D

spaces into cubes to indicate occupancy. NeRF (Neural

Radiance Fields) generates 3D scenes from 2D images.

Semantic mapping uses models like CLIP to label

objects in scenes with examples of open-vocabulary

approaches like LeRF and ConceptFusion.

• Localization methods include 2D-to-2D localization,

which compare captured images to pre-tagged maps,

with methods like RelocNet and PoseNet using neural

networks to predict a robot’s position. 2D-to-3D

localization matches image features or uses scene-

coordinate regression to estimate a robot’s position.

3D-to-3D localization uses LiDAR to compare point

clouds to a 3D map.

• Some navigation approaches include Mobility VLA,

which uses a combination of demonstration tours

and multimodal instructions to guide robots. NoMaD

unifies goal-directed and exploratory navigation

using a diffusion policy that adapts to varying tasks by

combining visual data and goal inputs.

• Advances in hardware, simulation, and learning

methods (e.g., curriculum and hierarchical learning)

have enabled robots to navigate rough terrain with

growing research in legged locomotion.

304

Chapter 6 Mapping, LoCaLization, and navigation

The next chapter covers reinforcement learning’s role in robotics,

focusing on how agents learn from interactions to improve performance,

tackles challenges like reward design and sample efficiency, and applies

techniques like sim-to-real transfer and model-free methods like PPO. It

also highlights emerging trends, like integrating LLMs and learning

without manually engineered or explicit reward functions.

References

[1] Aqel, Mohammad OA, et al. “Review of visual odometry:

types, approaches, challenges, and applications.”

 SpringerPlus 5 (2016): 1-26.

[2] Zhang, Ji and Sanjiv Singh. “LOAM: LiDAR odometry and

mapping in real-time.” Robotics: Science and systems. Vol.

2. No. 9. 2014.

[3] https://www.mathworks.com/discovery/slam.html

[4] https://www.mathworks.com/help/vision/ug/what-

is-structure-from-motion.html;jsessionid=bad2

9d217299a9c65ea6e531733c

[5] https://thekalmanfilter.com/kalman-filter-

explained-simply/

[6] https://github.com/commaai/rednose

[7] Wang, Shuzhe, et al. “Dust3r: Geometric 3D vision made

easy.” Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition. 2024.

[8] Dosovitskiy, Alexey, et al. “An image is worth 16x16

words: Transformers for image recognition at scale.”

 arXiv preprint arXiv: 2010.11929 (2020).

305

Chapter 6 Mapping, LoCaLization, and navigation

[9] Vaswani, Ashish. “Attention is all you need.” arXiv

 preprint arXiv:1706.03762 (2017).

[10] Padkan, Nazanin, et al. “Evaluating Monocular

Depth Estimation Methods.” International Archives

of the Photogrammetry, Remote Sensing and Spatial

Information Sciences 48.1 (2023): 137-144.

[11] Silberman, Nathan, et al. “Indoor segmentation and

support inference from RGBD images.” Computer

Vision–ECCV 2012: 12th European Conference on

Computer Vision, Florence, Italy, October 7-13, 2012,

Proceedings, Part V 12. Springer Berlin Heidelberg, 2012.

[12] https://www.cvlibs.net/datasets/kitti/

[13] He, Kaiming, et al. “Deep residual learning for image

recognition.” Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 2016.

[14] Huang, Gao, et al. “Densely connected convolutional

networks.” Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 2017.

[15] Wagner, Joshua. “Chapter 8 Attention and Self-Attention

for NLP.” Modern Approaches in Natural Language

Processing, 8 Sept. 2020, slds-lmu.github.io/seminar_

nlp_ss20/attention-and-self-attention-for-

nlp.html.

[16] Khan, Faisal, Saqib Salahuddin, and Hossein Javidnia.

“Deep learning-based monocular depth estimation

methods—a state-of-the-art review.” Sensors 20.8

(2020): 2272.

306

Chapter 6 Mapping, LoCaLization, and navigation

[17] Mescheder, Lars, et al. “Occupancy networks: Learning

3D reconstruction in function space.” Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition. 2019.

[18] https://youtu.be/6x-Xb_uT7ts?feature=shared

[19] Mildenhall, Ben, et al. “ Nerf: Representing scenes

as neural radiance fields for view synthesis.”

 Communications of the ACM 65.1 (2021): 99-106.

[20] https://github.com/bmild/nerf/blob/master/run_

nerf_helpers.py

[21] Radford, Alec, et al. “Learning transferable visual models

from natural language supervision.” International

Conference on Machine Learning. PMLR, 2021.

[22] Kerr, Justin, et al. “LeRF: Language embedded radiance

fields.” Proceedings of the IEEE/CVF International

Conference on Computer Vision. 2023.

[23] Caron, Mathilde, et al. “Emerging properties in self-

supervised vision transformers.” Proceedings of the

IEEE/CVF International Conference on Computer

Vision. 2021.

[24] Jatavallabhula, Krishna Murthy, et al. “ConceptFusion:

Open-set multimodal 3D mapping.” arXiv preprint

 arXiv:2302.07241 (2023).

[25] Chen, Changhao, et al. “A survey on deep learning

for localization and mapping: Towards the age

of spatial machine intelligence.” arXiv preprint

 arXiv: 2006.12567 (2020).

307

Chapter 6 Mapping, LoCaLization, and navigation

[26] Balntas, Vassileios, Shuda Li, and Victor Prisacariu.

“RelocNet: Continuous metric learning relocalisation

using neural nets.” Proceedings of the European

Conference on Computer Vision (ECCV). 2018.

[27] Kendall, Alex, Matthew Grimes, and Roberto Cipolla.

“PoseNet: A convolutional network for real-time

6-DoF camera relocalization.” Proceedings of the IEEE

International Conference on Computer Vision. 2015.

[28] Qi, Charles R., et al. “PointNet: Deep learning on point

sets for 3D classification and segmentation.” Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition. 2017.

[29] https://www.geeksforgeeks.org/introduction-to-

recurrent-neural-network/

[30] Noyan, Merve and Edward Beeching. “Vision Language

Models Explained.” Hugging Face, 11 Apr. 2024,

huggingface.co/blog/vlms.

[31] Pichai, Sundar and Demis Hassabis. “Introducing

Gemini: Our Largest and Most Capable AI Model.”

Google, 6 Dec. 2023, blog.google/technology/ai/

google-gemini-ai/#sundar-note.

[32] https://huggingface.co/blog/moe

[33] Chiang, Hao-Tien Lewis, et al. “Mobility VLA:

Multimodal Instruction Navigation with Long-

Context VLMs and Topological Graphs.” arXiv preprint

 arXiv: 2407.07775 (2024).

[34] Sridhar, Ajay, et al. “NoMaD: Goal masked diffusion

policies for navigation and exploration.” 2024 IEEE

International Conference on Robotics and Automation

(ICRA). IEEE, 2024.

308

Chapter 6 Mapping, LoCaLization, and navigation

[35] Tan, Mingxing and Quoc Le. “EfficientNet: Rethinking

model scaling for convolutional neural networks.”

International Conference on Machine Learning.

PMLR, 2019.

[36] http://www.locobot.org/

[37] Ha, Sehoon, et al. “Learning-based legged locomotion;

state of the art and future perspectives.” arXiv preprint

 arXiv: 2406.01152 (2024).

[38] Caluwaerts, Ken, et al. “Barkour: Benchmarking animal-

level agility with quadruped robots.” arXiv preprint

 arXiv: 2305.14654 (2023).

[39] “A Look at Tesla’s Occupancy Networks.” Think

 Autonomous, 12 Sept. 2022, www.thinkautonomous.ai/

blog/occupancy-networks/.

[40] Chen, Changhao, et al. “Deep learning for visual

localization and mapping: A survey.” IEEE Transactions

on Neural Networks and Learning Systems (2023).

[41] Sarlin, Paul-Edouard, et al. “From coarse to fine: Robust

hierarchical localization at large scale.” Proceedings

of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition. 2019.

[42] Bui, Mai, et al. “Scene coordinate and correspondence

learning for image-based localization.” arXiv preprint

 arXiv: 1805.08443 (2018).

[43] Lu, Weixin, et al. “L3-net: Towards learning based LiDAR

localization for autonomous driving.” Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition. 2019.

309

[image: Image 165]

CHAPTER 7

Reinforcement

Learning and Control

Chris Paxton is a roboticist who has worked

for FAIR labs at Meta and NVIDIA research.

He earned his PhD in Computer Science

in 2019 from the Johns Hopkins University

in Baltimore, Maryland, focusing on using

learning to create powerful task and motion

planning capabilities for robots operating in

human environments. His work won the ICRA 2021 Best Paper Award on

Human-Robot Interaction and was nominated for best systems paper at CoRL

2021, among other things. His research focuses on using language, perception,

planning, and policy learning to make robots into general-purpose assistants.

The dominant paradigm for learning in general these days is supervised

 learning: taking a known set of data and fitting some large model to it,

which can be used for downstream applications. But this leaves many

questions unanswered: where is the data coming from? If the model is not

good enough—and no model is ever good enough for everything—how

will it improve, and which data is necessary for it to improve? It would be

great if the robots could collect their own data and improve on their own.

Studying how to do this is the main idea of reinforcement learning.

The dream of reinforcement learning is to build intelligent systems that

can learn as humans do. They collect data through their interactions with

the world, intelligently choosing which goals to attempt and which skills

© Alishba Imran, Keerthana Gopalakrishnan 2025

311

A. Imran and K. Gopalakrishnan, AI for Robotics,

https://doi.org/10.1007/979-8-8688-0989-7_7

[image: Image 166]

Chapter 7 reinforCement Learning and ControL

to employ in different situations so as to improve their underlying skill set

and, potentially, their model of the world.

In many ways, reinforcement learning seems like a true prerequisite for

real, robust embodied intelligence. Agents deployed in the real world must

be able to recover and learn from their mistakes; in general, people do not

want a robot that makes the same mistake over and over again. In addition,

reinforcement learning is perhaps the clearest route to true superhuman

intelligence. It is optimizing some underlying objective and collecting its

own data, so it can surpass the performance of even domain experts[12]

and constantly surprise its creators. See Figure 7-1.

 Figure 7-1. A Boston Dynamics spot robot trained to walk over

 rough terrain via reinforcement learning. Modern robots are often

 taught to walk via reinforcement learning, and Boston Dynamics is

 far from the only company to do so. Used with permission, source:

 https://bostondynamics.com/blog/starting-on-the-right-

 foot-with-reinforcement-learning/ by Boston Dynamics[10]

312

Chapter 7 reinforCement Learning and ControL

In spite of its high-profile successes in the research community,

reinforcement is a still-emerging and constantly-changing area of study.

Unlike in the case of supervised learning, which has dramatic high-

profile successes in applications like computer vision and language,

reinforcement learning still has a lot to prove at scale, both in robotics and

outside of it. However, it has many clear applications, from learning how

to move around in the world[10][11][22][23], to how to navigate in various environments[24][25], to how to grasp and manipulate objects[25][26][27]

[33], and it has even found applications in large language models[33][34].

Reinforcement learning has an unusual place in the milieu of machine

learning methods. It sits equal to supervised and unsupervised learning

as one of the three basic machine learning paradigms. Supervised learning

involves taking labeled data and fitting a model to it, and unsupervised

 learning involves taking whatever data exists in the world and using it to

learn a generally-useful model. Reinforcement learning tends to be much

more goal-oriented, and as such involves making many more assumptions.

Perhaps the clearest example is what reinforcement learning is used for

in robotics. It is generally not used to build general-purpose systems or build

the foundations for generalist algorithms. It’s used to excel at a specific task,

and is often accelerated by pretrained vision or vision-language backbones.

This has been famously summed up by Prof Yann Lecunn in his cake

metaphor. As applied to robotics, this means:

1. Self-supervised learning (a variant of unsupervised

learning) is used to train the models used as a visual

backbone.

2. Demonstration data is used to get the policy started,

to avoid local minima and dramatically accelerate

policy learning.

3. Finally, reinforcement learning can be used to achieve

truly superhuman performance, outperforming the

experts within whatever domain the robot is operating in.

313

Chapter 7 reinforCement Learning and ControL

The particular ratios of these components vary. In many cases, a

clearer problem setup and strong engineered priors can substitute for the

learned models preceding reinforcement learning, which creates many of

the difficulties.

This chapter includes a brief overview of the ideas of reinforcement

learning, looks at several widely used methods, and goes over common

modern applications of reinforcement learning, both to machine learning

in general and to robotics in particular.

 Reinforcement Learning Basics

Reinforcement learning is generally formalized as a Markov Decision

 Process, or MDP (see Figure 7-2). A Markov Decision Process is a model of the form (S, A, T, R), where:

1. S is a state space, a representation of the world

such as the poses of objects a robot might need to

manipulate.

2. A is the action space, representing which actions the

agent can take from each state.

3. T is the transition model, in the form of the

conditional probability distribution P(St+1 | St, At),

meaning it represents how likely it will transition

from one state to the next given a particular action.

4. R is the reward function, representing the immediate

value of transitioning from state St to state St+1.

314

[image: Image 167]

Chapter 7 reinforCement Learning and ControL

 Figure 7-2. An illustration of the basic reinforcement learning

 loop. An agent—such as a robot—takes actions from its action set

 A, which results in new states in S and observed rewards, R. Used

 with permission, source: http://incompleteideas.net/book/

 RLbook2020.pdf [44]

From any given state s ∈ S, within the Markov Decision Process, the

agent’s goal is to choose the best possible action a, such that the agent

maximizes accumulated reward over its lifetime. The choice of a is

determined by the policy a = π(s); the goal of reinforcement learning is

then to learn the policy function π, which itself is often represented by a

neural network.

Immediately, you can see how this might cover a wide range of

problems: the actions might be displaying different types of ads to a user

browsing a website, or they might be controllable degrees of freedom of a

robot arm. Positive rewards can be given for click-through, or when a grasp

was successfully executed, or when a mobile robot is getting closer to its

destination.

315

Chapter 7 reinforCement Learning and ControL

 Solving a Markov Decision Process

Assume for now that you have access to the transition function T, and that

you might easily visit all possible states s ∈ S. Starting from state s 0, you might simply choose the best next state given the transition probabilities:

 s argmax

 P

 s s,| a R s s, V s

 a

 s

Where P(s, s′ | a) is the probability of transitioning from state s to state s’ given action a, R(s, s′) is the reward associated with that transition, γ is some discount factor, and V(s′) is the value of state s′. The value is the expected reward-to-go from this point onward. To put it in other words,

the policy computes the action that you expect will lead to the highest

overall reward.

For a finite, fixed-size Markov Decision Process, you can solve this via

dynamic programming by performing Bellman value iteration[1][2][19]:

 V s max

 P , |

,

1

 s s a R s s V s

 i

 a

 i

 s

for the i-th iteration of the algorithm, until it converges. Then the best

action can be chosen simply. This is the foundation of reinforcement

learning, and you will see how it gets built upon for more complex

applications later in this chapter.

 Considerations

When applying this to robotics, there are many obvious issues. First, these

algorithms mostly work on finite, relatively small, discrete spaces where

it’s reasonable to compute probabilities and iterate over all possible states

in the state space. Robotics state spaces tend to be large and continuous,

meaning that direct application of methods like Bellman value iteration

316

Chapter 7 reinforCement Learning and ControL

are not trivial. In addition, there’s a great deal of difficulty scaling these

methods, and a great deal of work goes into designing the underlying MDP,

with its state, actions, and rewards[1].

Rewards can take a lot of forms; the principal concern in robotics

is that they may be sparse, meaning that it is often hard to observe a

meaningful, informative reward at a transition from St to St+1.

Consider the example of the maze in Figure 7-2. Imagine a dense

 reward function for an agent solving a maze, which represents the reward

as a penalty, given a:

− || p − g ||

2

Where p = (x, y) is the robot’s position and g = (xg, yg) is the position of the other end of the maze. This has a few advantages: it is easy to compute,

it’s easy to specify, it’s relatively generic, and it will be useful in all mazes

and in many related tasks like navigation. However, it’s very greedy: if the

solution involves a lot of backtracking, this reward function may lead the

agent astray, because it will penalize the agent for moving away from the

goal, even if there is no way to get closer!

Consider instead a sparse reward function. This is even more generic:

you just give one point to the agent if it reaches the end, and no points

otherwise. This sort of approach is ideal for most applications, but is much

harder to solve, as the reward provides essentially no information along

the way.

In practice, most applications of reinforcement learning thrive in

the first case, where there is a dense reward function, and fail in the

latter case. Design of the reward function becomes a major part of many

reinforcement learning applications.

317

Chapter 7 reinforCement Learning and ControL

 Model-Free vs Model-Based RL

One fundamental concern with all reinforcement learning, particularly in

robotics, is sample complexity. How much data does your method need, in

order to work well at scale? Can it solve arbitrarily complex problems?

Take a “traditional” RL algorithm, represented as the Markov Decision

Process. It explores an environment—like the maze—based on either

sampling from a stochastic policy, or by adding some noise to policy

outputs. Then, based on these experiences, the algorithm will directly

optimize the underlying policy. This is called model-free reinforcement

 learning for reasons we get to in a moment.

At first glance, this seems great. It relies on making very few

assumptions about the world; in principle, such a method will work in

any domain, for any application. However, it quickly becomes apparent

that under some realistic assumptions—sparse rewards like in the maze

example, or high-dimensional problems like controlling a high-DoF robot

arm—suddenly you might need a very large amount of information to

properly characterize the underlying space.

There are many potential solutions to this, from the ever-popular

reward shaping—manually designing a system of rewards to encourage

the agent to succeed—to the more principled. But fundamentally one

major way you might improve reinforcement learning performance is via

 planning, hallucinating different possible futures that you believe will

be optimal, instead of actually executing them. This requires having an

accurate world model; hence, model-based reinforcement learning. See

Figure 7-3.

318

[image: Image 168]

Chapter 7 reinforCement Learning and ControL

 Figure 7-3. Examples of visual domains used in PlaNet[16]. T hese are common reinforcement learning domains used for model

 development. Model-based RL algorithms like PlaNet are capable of

 more efficient learning, but sometimes they don’t scale as well. Used

 with permission, source: https://proceedings.mlr.press/v97/

 hafner19a/hafner19a.pdf [16]

Of course, using a world model to generate different possible futures

is easier said than done. For this to be useful, that model has to be able

to be evaluated offline efficiently, which is often very difficult in complex

domains! In addition, certain environments can be nearly impossible

to simulate (a bin full of deformable objects, for example), and even if

they can be simulated, this might not be possible at faster than real time.

A recent push that’s shown impressive results has been model-based

reinforcement learning with learned models. Works such as AlphaGo[12]

and PlaNet[16] showed that in some domains, a useful model can be

learned, which then provides all the advantages of model-based RL

without needing this model.

For the most part, the dream of model-based RL has not arrived. The

most common means of performing reinforcement learning as of 2024

is Proximal Policy Optimization (PPO), a highly scalable, model-free

algorithm[6]. PPO has shown great results in a wide range of different

robotics problems, from learning dexterous robot skills[35][36] to

navigation[24] to mobile manipulation[31]. However, there remain many challenges and the debate is not truly solved.

With that context, the next section goes into more detail on these two

main families of reinforcement learning methods.

319

[image: Image 169]

Chapter 7 reinforCement Learning and ControL

 Model-Free Reinforcement Learning

As a reminder, a reinforcement learning problem is formalized as a Markov

Decision Process (S, A, T, R), with states S, actions A, rewards R, and state-

transitions T. In model-free reinforcement learning, you neither have

access to nor attempt to estimate the transition probability T.

This is useful because learning and properly estimating T can be

expensive and difficult, and T is often very hard to model—sometimes harder

to model than simply estimating the value of a particular state in the abstract!

The value V(s) for states s ∈ S represents the reward-to-go from a particular state s, meaning the reward that will be accumulated for all states the agent

expects to visit from this point forward. To put it simply, this can be a simpler

value to learn, since it’s often a direct quality of the state itself—if you do not

want to fall, teetering on the edge of a cliff is obviously bad—and it requires

estimating only the value itself, a single quantity, instead of predicting a full

state, which could be extremely high dimensional. See Figure 7-4.

 Figure 7-4. OpenAI used Proximal Policy Optimization (PPO), a

 model-free reinforcement learning method, to train a policy that

 could defeat Dota 2 world champions. Used with permission, source:

 https://www.vox.com/2019/4/13/18309418/open-ai-dota-

 triumph-og [45]. N ote: This book is in no way affiliated with or endorsed by OpenAI.

320

Chapter 7 reinforCement Learning and ControL

As a result, model-free methods have historically been more tractable

and more scalable than their model-based competitors. Some of the

most storied reinforcement learning approaches have been model-free,

including Deep Q Learning[20], which brought deep learning into the

mainstream with exciting results on playing Atari games; AlphaGo, which

could play Go at a level exceeding the best humans in the world[12]; and

Proximal Policy Optimization[6], a general method used to play the video

game Dota 2 at a competitive level[7].

 Q Learning

The Q function is simply defined as Q(s, a) for a state s ∈ S and an action a ∈ A, where Q(s, a) is the expected value (reward-to-go) from the given state, if the specified action is taken. If you successively take the action

that maximizes this function’s return value from each state, you would

presumably solve the problem in an optimal way.

The difficulty, then, is learning the Q function in the first place. The

core of Q learning is a modified version of the Bellman value iteration

algorithm from the “Solving a Markov Decision Process” section, modified

to use the Q function as follows:

, 1 , ,

,

1

 Q s a

 Q s a

 R s s

 Q s a

 i

 i

 i

where 0 <= α <= 1 is a learning rate. Note the absence of the transition

probability in the original version of the algorithm. However, this

formulation is more practical in many ways, being able to handle problems

where the transition probabilities are unknown or difficult to compute,

allowing the agent to learn optimal behavior through direct interaction

with the environment.

 Deep Q Learning

In 2014, Google DeepMind released Deep Q Learning, which is a variant

of Q learning modified to use a convolutional neural network as a function

321

Chapter 7 reinforCement Learning and ControL

approximator[20]. This opens up some interesting problems, particularly

that it is very susceptible to oscillations or changes in the parameters

underlying the neural net.

Instead, they propose deep reinforcement learning over a replay buffer. As

the agent explores, data points are added to a memory, and when computing

an update to the policy, a random batch of observations (s, a, r, s′) are sampled from memory. Then the current target Q value can be computed and a

gradient descent update can be performed on the neural network weights.

Successful for the first time at performing a wide variety of tasks from

pixels alone, this innovation fueled an explosion in reinforcement learning

research. However, Deep Q Learning has some limitations when applied to

robotics: it still operates over discrete action spaces, where robot actions are

generally continuous. It is susceptible to a wide range of hyperparameters

that need to be tuned, and it’s often unreliable. This leads to a second family

of methods that are less restricted: policy gradient methods.

 Policy Gradient Methods

Deep Q Learning has a good number of weaknesses, however. The fact

that you’re still approximating these Q values iteratively introduces a lot of

potential for instability when learning, as small changes in the policy can

lead to dramatic changes in evaluation, especially in response to changing

states. While you’re optimizing Q(s, a), it’s important to remember what

you’re actually optimizing is still

, | 1 , | ,

,

1

 Q s a

 Q s a

 R s s

 Q s a

 i

 i

 i

where θ is some set of neural network weights. Instead, policy gradient

methods aim to optimize the policy parameters \ θ so as to optimize the

expected return. The expected return is given as

 H

 J

 E

 k

 rk

 k 0

322

[image: Image 170]

[image: Image 171]

Chapter 7 reinforCement Learning and ControL

Where r_k is the reward at the k-th step, gamma is a discount factor,

and so on. In other words, the return is the discounted sum of all future

expected rewards.

Now, instead of updating Q, assume you have some policy with

parameters θ, where θ could for example be the parameters of a neural

network. You might then take the derivative with respect to these policy

parameters and optimize them directly[1]:

Again for policy parameters θ. This gives you a formulation where,

now, you just need to compute this derivative of the return J(θ) and can

directly optimize the policy—hence, policy gradients.

You can then express the gradient δJ(θ)[2] as:

Where

 p

indicates that you are sampling a trajectory from the policy

 b(st) is the baseline reward-to-go

ˆ A s , a is the return estimate—an estimate of what the expected

 t

 t

return given (s, a) would be out to the horizon

The term Â can be computed in various ways; often it is estimated by a

second neural network, called the critic.

Overall, policy gradient methods let you theoretically directly optimize

what you really care about, which is to say the policy parameters. While

there are many ways of computing the return and therefore the gradients,

this section focuses on just a couple options.

323

[image: Image 172]

[image: Image 173]

Chapter 7 reinforCement Learning and ControL

 Trust Region Policy Optimization

Of course, as elegant as it sounds, there are some serious issues with

this idea when applied naively. Gradient-based optimization is nice, but

susceptible both to being caught in local minima, and to instability due to

taking steps that are too large. In addition, merely computing the gradients

with respect to the thousands or even millions of parameters in a deep

neural network can be problematic.

Trust Region Policy Optimization (TRPO)[3] aims to solve this problem

by constraining the Kullback-Leibler (KL) divergence between the

distributions of the old and new policies during policy updates. It does this

while optimizing a surrogate advantage function between the old and new

policies[4].

In other words, TRPO maximizes the advantage—the estimated

improvement—between an old and a new policy at each step of the

learning process, while constraining the KL divergence between the old

and the new policies.

In practice, this is still too difficult to solve, so TRPO makes some

approximations, particularly a Taylor expansion of the objective and

constraint:

324

[image: Image 174]

[image: Image 175]

Chapter 7 reinforCement Learning and ControL

This results in an approximate constrained objective function[2][5]:

Which can be solved analytically. However, you’re still not done here,

because the Taylor series expansion above may have introduced an error,

which means that the original constraint is not fully satisfied. Therefore,

you add a backtracking line search to the original analytical solution

Where α in (0, 1) is the backtracking coefficient and j is the smallest

nonnegative integer such that there is a positive advantage and the KL

divergence constraint is satisfied.

TRPO was able to substantially outperform Deep Q Learning on Atari

domains from vision inputs[3], meaning it was a notable step forward for

reinforcement learning. However, TRPO has a few notable issues:

1. As obvious, the math is fairly complex—it requires

solving a constrained optimization problem, for

example. This makes it harder to implement.

2. It’s computationally inefficient, requiring computing

things like the KL divergence.

Fortunately, TRPO was soon followed by a method that resolved these

issues: Proximal Policy Optimization.

325

[image: Image 176]

[image: Image 177]

[image: Image 178]

Chapter 7 reinforCement Learning and ControL

 Proximal Policy Optimization

Finally, the most widely used reinforcement learning of the current day—

Proximal Policy Optimization (PPO)—introduced by OpenAI in 2017[6].

The idea behind PPO is the same as TRPO: you need a way to

substantially update policies with huge numbers of parameters without

causing performance to collapse. TRPO solved this by applying a

constraint with complex second-order methods. PPO adds some extra

constraints but results in an overall simpler optimization problem.

The core equation being solved by PPO is this:

Where at each step, you are finding the θ that maximizes L(s, a, θ, θk) such that

Where g is given by

A is the advantage.

So, what does all this mean? Let’s break it down:

1. If the advantage is positive, the g term will be

(1 + ε) A, and the min() in L means that there is no

advantage to moving very far away from the old

policy, πθ.

2. If the advantage is negative, the objective increases

if the action becomes less likely, again constrained

to stay near the old policy.

326

[image: Image 179]

Chapter 7 reinforCement Learning and ControL

Therefore, you have a substantially simpler problem, which can be

repeatedly optimized by several (stochastic, minibatch) gradient descent

steps, before a new batch is sampled. See Figure 7-5.

 Figure 7-5. A five-fingered robotic hand trained using PPO to

 manipulate cubes into any configuration. PPO is one of the more

 widely employed reinforcement learning algorithms at present. Used

 with permission, source: https://journals.sagepub.com/doi/

 pdf/10.1177/0278364919887447 [9]. N ote: This book is in no way affiliated with or endorsed by OpenAI.

In practice, PPO is an extremely effective algorithm, being used for

everything from playing games like Dota[7] to a wide range of robotics

tasks, such as quadruped locomotion[8] and dexterous manipulation[9].

 Model-Based Reinforcement Learning

Model-based reinforcement learning differs in that it presumes a model

of the world exists, i.e. that you will be able to approximate the state

probability distribution P(s, s’ | a) during learning. This is less commonly

used in practice than model-free methods, but it’s useful to understand

327

[image: Image 180]

Chapter 7 reinforCement Learning and ControL

why this probability distribution—this world model— is such a compelling

addition to the reinforcement learning framework, and indeed the robot

learning framework in general.

Model-based reinforcement learning does not have as many widely-

used algorithms across the field as PPO. Intuitively, this is because model-

based RL requires that model of the world; and often, these assumptions

can be built into the algorithm itself. Perhaps the most significant line of

work in this space is from Google DeepMind, which used model-based RL

to defeat world champions at the game Go[12], using a combination of tree

search—which is to say, traditional planning over which states to explore—

and neural networks to learn which areas to perform that tree search in.

This kind of approach was expanded in follow-up works, resulting in

MuZero, a model-based system which uses planning to determine which

states are worth exploring[14]. See Figure 7-6. It learns what actions to take, as well as what states will result from those actions. By making these

types of predictions, MuZero can solve much more challenging, long-

horizon tasks, like the aforementioned Go. Model-based reinforcement

learning methods from this family—AlphaProof and AlphaGeometry2—

achieved silver medal status at the International Math Olympiad in

2024[15], showing how capable model-based methods can be at solving

specific extremely challenging problem sets.

 Figure 7-6. MuZero uses planning to determine where to explore

 next. It learns a dynamics function that’s used to model how the future

 state will change and what rewards will result. Used with permission,

 source: https://deepmind.google/discover/blog/muzero-

 mastering-go-chess-shogi-and-atari-without-rules/ [14].

328

[image: Image 181]

Chapter 7 reinforCement Learning and ControL

 Robotics: Model-Based RL for Continuous Control

There have been a few attempts to develop model-based RL methods

that can be applied to robotics. These share some similar ideas to the

MuZero method:

1. In addition to learning a policy, one must learn a

 simulator.

2. This simulator is essentially giving you the transition

function T(s, a) -> s’ from the original reinforcement

learning simulator.

3. It allows you to plan and compute which sequences

of actions will give you an optimal return before

actually executing them.

 Figure 7-7. The Recurrent State Space Model from PlaNet. Model-

 based RL methods can use search and a learned world model to

 focus their exploration in more useful regions of the state space. Used

 with permission, source: https://proceedings.mlr.press/v97/

 hafner19a/hafner19a.pdf [16].

329

[image: Image 182]

Chapter 7 reinforCement Learning and ControL

One such method is the Deep Planning Network (PlaNet) proposed

in [16]. PlaNet uses a Recurrent State Space Model (RSSM) to predict

future latent states given action sequences. See Figure 7-7. Predicting

 latent spaces instead of full observations means that the method does

not need to decode and generate a full image to perform a “rollout” of a

future plan; this makes the overall method more efficient and faster.

The core idea of PlaNet[16] and, relatedly, Dreamer[17], is that they make predictions in some latent space. See Figure 7-8. In this latent space, you use data to learn not just the policy π but some transition function

as well:

 s T s, a

 Figure 7-8. Model learning approach from Dreamer. Used with

 permission, source: https://arxiv.org/pdf/1912.01603 [17]

This tells you that, given state s and action a, you will end up in a state

 s′ that results from this state. Models like PlaNet assume deterministic state

dynamics (i.e., s′ = T(s, a)). This transition function is often referred to as a world model.

However, this full world modeling challenge is extremely difficult. You

can compare this to generative AI techniques for video generation, like

SORA[21]—on the outside, learning such a world model is an even more

difficult problem than generating a video! This is because the robot’s world

model must be an extremely accurate simulator of the world. Models like

330

Chapter 7 reinforCement Learning and ControL

the Universal Policy[30] use video generation as a “world model” to predict

futures for robot actions. This can be used for directly planning out which

actions to take, but also provides an example for how such a world model

can be learned and what it entails.

Model-based methods, to summarize, have an incredible promise:

to use planning and foresight to choose better actions and explore more

efficiently, solving a core issue facing model-free reinforcement learning.

This has allowed them to solve incredibly difficult problems like the

International Math Olympiad. However, there’s no clear “best” approach

yet, and there are few model-based methods that can be widely applied in

robotics without substantial work—even more than the usual reward and

environment engineering necessary for model-free methods. However,

this is an exciting and promising area of research.

 Offline Reinforcement Learning

Reinforcement learning is often solved as an inherently online process,

meaning that it is performed as an agent interacts with a (real or

simulated) world. This is inherently limiting in the age of big data; we want

algorithms that can be applied on very large datasets collected in myriad

ways. Sometimes human data will be useful; sometimes autonomous

exploration; other times, it will even be necessary to use heuristic policies

to get a good start in certain difficult domains. In this area, previous

reinforcement learning approaches often fail.

However, the underlying reinforcement learning problem formulation

is still a valuable one. One line of work looks more intensely at offline,

off-policy reinforcement learning methods—those that can be applied

on large, precomputed datasets—in many ways, these datasets are most

reflective of the realities of robot learning problems[2].

331

[image: Image 183]

Chapter 7 reinforCement Learning and ControL

Take Decision Transformer[13] as an example, shown in Figure 7-9.

It follows the classic reinforcement learning structure, with actions a ∈ A,

states s ∈ S, and even a reward function R(s, s′). However, you do not learn any of these via interacting with the environment, as in the original

reinforcement learning formulation. Instead, it uses a large offline dataset,

and has reward labels as a part of the data itself.

 Figure 7-9. Decision Transformer is an example of an offline

 reinforcement learning method, which works similarly to supervised

 techniques used for large language models. Used with permission,

 source: https://proceedings.neurips.cc/paper_files/paper/

 2021/file/7f489f642a0ddb10272b5c31057f0663-Paper.pdf [13].

332

[image: Image 184]

Chapter 7 reinforCement Learning and ControL

 Applications and Challenges

 Figure 7-10. Deploying RL skills for mobile robot navigation in a

 variety of real-world home environments. Reinforcement learning

 skills have been tested on robot learning problems and in many

 cases are competitive with or even exceed traditional robotics

 methods. Used with permission, source: https://www.science.org/

 doi/10.1126/scirobotics.adf6991 [24]

Robotics has long been one of the main motivating examples for

reinforcement learning. On the face of it, it’s the perfect application: we do

not know how to solve many important robotics problems, but we know

what these problems look like when they succeed.

However, applying reinforcement learning to robotics problems has

a couple huge issues. The biggest is, as always, the data. Robotics data is

fairly rare and expensive to collect, but reinforcement learning methods

can require hundreds of thousands or even millions of steps[12][14]. There are two ways forward: train in simulation[10][24][25][28][29] or use a very large number of robots to collect data at scale in the real world[26][27][32].

See Figure 7-10.

333

Chapter 7 reinforCement Learning and ControL

Using a large number of robots is obviously very expensive and comes

with a lot of headaches—a fleet of robots must be maintained, data is

difficult to collect, and policy rollouts are quite expensive. However, sim-

to- real, despite its great appeal, has real shortcomings. Works that do

sim-to-real testing have been able to show some impressive results, and for

certain things like quadruped gait learning and humanoid gait learning,

it is quickly becoming standard[25]. For more complex semantic tasks,

however, sim-to-real often cannot transfer at all—instead, works learning

semantic skills like object search use detectors trained on supervised

learning and a mixture of traditional robot control for the best and most

generalizable results[24]. Sim-to-real transfer, however, is a fast moving

and thrilling area, and through better real-to-sim, incredibly impressive

policies can be trained for dynamic, reactive, and robust robot skills such

as soccer playing[28][29].

 Scaling Up RL in the Real World

The gold standard, however, is real-world data collection. A large amount

of work has been done on scaling up real-world data collection, particularly

spearheaded by Google’s robotics lab in California[26][27], which used an

“arm farm” of seven robots in their MT-Opt work. See Figure 7-11.

334

[image: Image 185]

Chapter 7 reinforCement Learning and ControL

 Figure 7-11. Examples of manipulation tasks from MT-Opt. Training

 large numbers of manipulation skills on large numbers of real robots

 could potentially be a route to generally useful robots. Used with

 permission, source: https://arxiv.org/pdf/2104.08212 [26]

In particular, MT-Opt looks at how to train general-purpose robot

policies. This means that it does something called multitask reinforcement

learning, where the policy is additionally parameterized by some goal

(which can be thought of as a part of the state in the traditional RL

formulation from the beginning of the chapter). In this case, an extra token

is passed to indicate which task is being executed.

Then the model can be set up to train a large number of skills all at

once. MT-Opt codifies how you can perform reinforcement learning at

scale in such a setting:

1. Set up a system so tasks can be easily reset or can

reset themselves.

2. Train success classifiers to determine when tasks

succeed.

335

Chapter 7 reinforCement Learning and ControL

3. Crucially, make sure you have tasks that can

be accomplished easily enough that you get a

positive reward signal quickly, before building to

harder tasks.

The team was able to train robots to perform a wide variety of tasks,

doing things like aligning, rearranging, and moving objects from one

location to another. All in all, they trained their system to perform 12

different tasks using a fleet of seven robot arms.

Importantly, training all of these tasks at once as part of a multitask

policy actually helps accelerate single-task learning in a few ways. Many

aspects of visual feature learning are going to be shared across different

settings, which means that these do not need to be learned over and

over again. Things like approaching the surface of the table or avoiding

collisions are shared across all policies. In addition, entire sub-skills

might be shared: nudging an object out of the way, for example, to access

a different one, might appear in multiple skills. It might even be possible

to learn this nudging skill as a part of some task where it is actively being

rewarded, which will then enable the robot to learn other skills that would

be otherwise impossible with a relatively sparse reward function.

This was then extended as AW-Opt[27], a method that allows robots to

learn using both online and offline, sub-optimal data by using some ideas

from advantage-weighted regression. The advantage here is that it helps

address a key shortcoming of on-robot reinforcement learning: that data

is still hard to collect, even with a fleet of robots, and that bad data is much

more common than good data.

336

[image: Image 186]

Chapter 7 reinforCement Learning and ControL

 Figure 7-12. Large-scale mobile robot trash sorting from Google

 and Everyday Robots. Twenty-three robots were deployed performing

 trash sorting over the course of two years. Used with permission,

 source: https://arxiv.org/pdf/2305.03270 [32]

Finally, it’s worth noting a dramatic experiment building upon these

works. Researchers at Everyday Robots deployed a fleet of 23 mobile

manipulators, shown in Figure 7-12, to perform trash-sorting tasks.

Over two years, they used reinforcement learning at scale to collect vast

amounts of data—9,527 hours of robot experiences—and use them to train

policies for sorting across nine different trash-distribution scenarios. The

robots had to place objects correctly into compost, recycling, or garbage

bins. This is perhaps the largest real-world RL undertaking performed,

where robots had to sequentially execute pick-and-place tasks for a very

wide variety of objects, understand what those objects were, and move

them into different locations. To do this, they had both a simulation and a

“teaching” environment in which data could be collected more efficiently.

These methods show promise, but also still show common RL pitfalls:

data is hard to get, RL policies often do not generalize well outside of

what they saw during training and so training environments are carefully

constructed, and collecting real data with useful rewards is difficult. The

next section looks at cases where this is less relevant: training mostly in

simulation.

337

[image: Image 187]

Chapter 7 reinforCement Learning and ControL

 Learning to Walk

 Figure 7-13. Boston Dynamics trains its robots to walk in simulation.

 Used with permission, source: https://bostondynamics.com/blog/

 starting-on-the-right-foot-with-reinforcement-learning/[10]

Reinforcement learning has one spectacular success story: walking

skills for mobile robots. Walking has long been the quintessential robot

skill. This has become the de facto way quadruped locomotion is done,

with companies like Unitree, Boston Dynamics[10], and Anybotics[22]

beginning to ship products trained with reinforcement learning. See

Figure 7-13.

These robots commonly use depth sensors to determine the geometry

of the world around them. This problem is perfect for the reinforcement

learning case: unlike complex problems like trash sorting or pick-and-

place, feedback is frequent, reward functions are valuable, and it’s easy to

reset and recover. RL methods like PPO and TRPO are extremely effective

in these kinds of scenarios, where feedback to the policy—and thus, the

ability to estimate the necessary gradient—is readily available.

338

Chapter 7 reinforCement Learning and ControL

Recently, researchers have moved toward fast, dynamic motions

trained using reinforcement learning; training in simulation and testing in

the real world allows less efficient model-free algorithms like PPO[6] and

TRPO[4][5][6] to be deployed on real hardware[11][23].

 Robots Playing Soccer

Training robots to play soccer using deep RL[28]. Robot skills can be

learned in simulation and transferred to real robots. This has even been

extended to the multi-agent reinforcement learning case[29].

Bringing these together, as a case study in robot reinforcement

learning, consider recent work on having robots play soccer. This is a

interesting task for robots because:

1. It involves multiple intelligent agents.

2. Robots must learn using a high-dimensional,

partially-observable observation space—images.

3. The robots themselves are relatively high degree-of-

freedom, being small humanoids, and they need to

be able to run and recover when they inevitably fall.

They train using maximum a posteriori policy optimization (MPO), an

off-policy actor-critic algorithm, and they generate large amounts of data

in simulation to accomplish this. They separately train skills like scoring

goals and getting up off the ground if the robot falls[28], before combining

them—a common strategy in longer horizon tasks also seen elsewhere[31].

They then train an agent policy that has to compete against increasingly

difficult opponents.

Their agent is capable of zero-shot sim-to-real transfer, which is to say

that it works without any real-world data. This is accomplished through

adding perturbations and domain randomizations to the simulation

environment. They randomized the floor friction and applied random

339

Chapter 7 reinforCement Learning and ControL

forces to the agents as they moved[28], without which zero-shot sim to real

transfer was not possible. This was taken further with random changes to

lighting and color saturation[29] in order to improve visual transfer.

In the end, this resulted in robot agents that could play soccer against

each other, kick the ball, and score goals.

 Reinforcement Learning and Large

Language Models

Large language models (LLMs) have made a dramatic impact on the

robotics space, as well as on the wider tech world, and part of the magic

that has made LLMs so appealing is a technique called Reinforcement

Learning from Human Feedback (RLHF). As LLMs are highly relevant

to robotics, it’s important to discuss the reinforcement learning use case

associated with them[33].

 Reinforcement Learning from Human Feedback (RLHF)

RLHF is performed after training an LLM on a large corpus of data. After

training an LLM on all useful (supervised) data, you perform two steps:

1. Train a reward model.

2. Use this reward model to update the original LLM.

As noted, getting a reward function is the most difficult part of applying

reinforcement learning to many real-world problems. LLMs are no

exception. To learn the reward function, human annotators must rank the

outputs of the original LLM (this is the human feedback part of RLHF).

Then, these rankings are used to fine-tune a second language model,

which could be the same architecture as the first one, or, as is often the

case, a smaller model.

340

Chapter 7 reinforCement Learning and ControL

Then, given a model that can predict reward from text outputs, you

now have the reinforcement learning problem. The state, s, is the original

text, the action a the context, and the reward is the newly-trained reward

function estimator. From here, you can compute policy gradient steps as

per the PPO algorithm[6], modifying the weights of a copy of the original

language model.

What is the result? A model that produces text more like whatever it is

that humans prefer! In general, models trained with RLHF have a strongly

preferable style to those trained without it, which is particularly important

for a chatbot or an AI research assistant!

There are some weaknesses, however. Gathering this human data is

extremely expensive[33], and you cannot use your reward function too

much either. You generally cannot take that many gradient steps or do too

many iterations of RLHF without the model beginning to find loopholes

that it can take advantage of. If the LLM can find adversarial examples

that fool the reward function, performance will begin to drop again[34].

Also, because it’s based on human preferences, it can focus overly on style

transfer and other visual aspects over substance[34]. Finally, there are

many open questions about how to set up the RL algorithm, and there are

many potential improvements to PPO[6] suitable for RLHF.

 Direct Preference Optimization (DPO)

Direct Preference Optimization (DPO) simplifies the RLHF process by

removing the need for a separate reward model[37]. Instead, DPO treats

the problem as a classification task. The model is directly fine-tuned using

human preference data, which more directly aligns the models’ outputs

with what humans prefer. The process has these main steps[38]:

• It starts with supervised fine-tuning (SFT) where the

model is fine-tuned on a labeled dataset. The labels

represent the preferred responses and the output of the

model is aligned with specific guidelines.

341

Chapter 7 reinforCement Learning and ControL

• After SFT, the model is further refined using preference

data, which consists of pairs of outputs ranked by

human annotators. In DPO, a preference loss function

is defined that reflects how well the model’s outputs

align with these human rankings. Since this loss is a

function of the policy itself, you don’t need a separate

reward model.

• The model is optimized by reducing the preference loss

such that, for each pair of outputs, the model learns to

produce the one that humans prefer more often.

Overall, DPO can be more stable and efficient than RLHF, as it

eliminates the need for a lot of sampling and hyperparameter tuning. For

this reason, it can be a useful method for fine-tuning LLMs with human

preferences without the overhead of traditional RL methods.

 Reinforcement Learning from AI Feedback (RLAIF)

RLAIF automates the collection of human preference data using an off- the-

shelf LLM to generate preference labels[39]. Instead of relying on binary

labels, RLAIF uses the log probabilities of different preference outputs,

essentially creating a preference distribution using a softmax function.

This approach reduces the time and cost usually associated with

collecting human feedback and has shown to perform similarly to RLHF,

especially when using large models like Google’s PaLM[40].

As LLMs become more integrated into robotics, it can be useful

to understand how human preference data can be leveraged. This is

especially useful in applications where robots need to interact with

humans and abide by their needs/preferences. RLHF, DPO, and RLAIF

all provide paths to fine-tune LLMs to align better with human behavior.

However, each of these methods has its own tradeoffs depending on the

application, LLMs being used, and so on, and thus further research is

needed to refine these methods for real-world robotics applications.

342

Chapter 7 reinforCement Learning and ControL

 Challenges in RL for Robotics

Although there have been some successful applications of RL for real-

world robotics, it is important to note some of the key challenges that the

field still faces. Many of these challenges have been discussed throughout

the chapter. The following is a consolidated summary of these challenges,

along with potential solutions:

• Sample efficiency: RL algorithms often require a

large number of samples or interactions with the

environment to learn useful policies. In robotics,

collecting these samples in the real world can be costly

and time-consuming. Improving sample efficiency is

important for reducing the amount of data required for

learning while still achieving good performance. One

way to do this is relying more heavily on simulation

data while improving Sim2Real methods, such that the

gap between simulated and real-world environments is

minimized. These ideas were covered in Chapter 5.

• Transfer learning: Generalizing RL policies from one

robot or environment to another is a difficult challenge.

What works well in a simulated environment or on one

robot may not be directly transferable to a different

robot or real-world setting. Developing transferable RL

algorithms that can adapt to new conditions is critical

for practical use. Using techniques like meta-learning,

where you train RL agents to learn how to learn, and

domain randomization could be helpful in improving

performance in new environments.

• Scalability: As robotic tasks become more complex

and involve high-dimensional state and action spaces,

scalability becomes a concern. Some RL algorithms

343

Chapter 7 reinforCement Learning and ControL

that work well for simple tasks may not scale to handle

the complexities of real-world robotics applications. A

few directions for developing scalable RL algorithms

use hierarchical RL, where complex tasks are broken

down into simpler subtasks, and developing more

efficient exploration strategies that focus on promising

areas of the state space.

• Reward design: Designing suitable reward functions

that guide the learning process is often one of the

hardest tasks in RL. Misaligned or poorly defined

rewards can lead to suboptimal policies or to your

agent not learning anything useful. Thus, developing

reward functions that accurately represent the task’s

objectives and constraints is an important aspect of

RL algorithm design. A few strategies here include

using Inverse RL (IRL), where the reward function

can be learned based on observed expert behavior,

incrementally shaping the reward function, or having

multiple objectives in the reward design.

 Emerging Trends in RL for Robotics

Reinforcement learning is making a comeback in robotics, after the field

has been dominated by imitation learning approaches for years.

• Sim-to-real: Generating the data for RL training is

difficult; even the best RL methods, like TRPO and

PPO, require very large amounts of training data,

which is often impractical to collect in the real world.

Research like [28] and [29] has showed how we can

apply reinforcement learning to exciting problems,

thanks to clever use of simulation.

344

Chapter 7 reinforCement Learning and ControL

• Integrating large language models: Including large

language models, large vision-language models, and

turning them into action models that can act in real

environments may require reinforcement learning,

wherein AI agents repeatedly interact with virtual

environments or systems[41].

• Learning without manual reward functions: The

reward function is one of the most difficult parts of a

reinforcement learning problem. Works like Eureka[42]

have looked into using LLMs and AI agents to design

and tune reward functions; works like VIP[43] have

looked at extracting these reward functions from video.

Finding ways to use Internet-scale data to reduce or

remove the need for reward tuning will be crucial to

scaling RL for real-world robotics.

 Conclusions

Reinforcement learning is a powerful and general-purpose framework for

describing robotics problems, and it has the great promise of allowing us

to automatically learn skills for a wide variety of problems for which it is

hard to collect data, and to improve on expert performance.

Reinforcement learning has previously been applied to multi-step

manipulation tasks, to locomotion, and to language models. It’s a powerful

toolkit that appears in real robots products like quadrupedal robots and AI

chatbots.

However, there are great open questions to resolve. We need robotics

RL algorithms that are more capable of generalizing to unseen objects

and environments. Leveraging more offline data, whether through mixing

in imitation learning as per AW-Opt[27], offline RL methods[2][17], or

pretraining[30][33], will be a large part of what makes this successful, given the limitations of collecting all data on-site[26][27][32].

345

Chapter 7 reinforCement Learning and ControL

Future work in reinforcement learning will surely take advantage

of learning in simulation and sim-to-real transfer, which continues to

produce incredible results[24][28][29] and circumvents some of the biggest data efficiency problems facing reinforcement learning. All in all, it seems

certain that the robots of the future will use reinforcement learning to

become faster, stronger, and smarter—the question is how.

 Summary

In this chapter, you learned the following ideas and concepts:

• Supervised learning relies on labeled data, but it has

limitations. Reinforcement learning addresses these

challenges by allowing robots to autonomously collect

data and learn as they interact with their environment.

• The ultimate goal of RL is to create intelligent systems

that learn like humans, by interacting with their

environment, setting goals, and refining their skills. RL

is essential for achieving robust embodied intelligence

in robots by letting them learn from mistakes and

improve.

• The basics of RL, including its formulation as a Markov

Decision Process (MDP), and the differences between

model-free and model-based methods.

• Projects like Google’s MT-Opt and AW-Opt improve

learning by training robots on multiple tasks, allowing

for better generalization and faster single-task learning

because of shared visual features and sub-skills.

346

Chapter 7 reinforCement Learning and ControL

• Reinforcement Learning from Human Feedback

(RLHF) is used in large language models to fine-

tune outputs based on human preferences, but it

faces drawbacks like high data collection costs and

potential adversarial behavior. Alternative approaches

include Direct Preference Optimization (DPO) and

Reinforcement Learning from AI Feedback (RLAIF),

which can be more efficient methods for aligning

LLMs with human preferences without explicit

reward models.

• Real-world RL struggles with data scarcity, poor

generalization, and reward design difficulties that can

in some ways be addressed by methods like sim-to-real

transfer.

• In the future, RL in robotics will likely focus on

improving sample efficiency, transfer learning,

scalability, and reward design, using more offline data

and sim-to-real methods.

The next chapter explores self-driving technology as a key application

of robotics, focusing on its economic potential and the software and

hardware frameworks that enable perception, prediction, planning,

and safety.

References

[1] Peters, Jan. “Policy gradient methods.” Scholarpedia

5.11 (2010): 3698.

[2] Levine, Sergey, et al. “Offline reinforcement learning:

Tutorial, review, and perspectives on open problems.”

 arXiv preprint arXiv: 2005.01643 (2020).

347

Chapter 7 reinforCement Learning and ControL

[3] Schulman, John, et al. “Trust region policy optimization.”

International Conference on Machine Learning.

PMLR, 2015.

[4] Jayakody, Dilith. “Trust Region Policy Optimization

(TRPO) - A Quick Introduction.” 3 Apr. 2023, dilithjay.

com/blog/trpo#objective-function.

[5] TRPO Docs, “Spinning Up OpenAI. ” https://

spinningup.openai.com/en/latest/algorithms/

trpo.html

[6] Schulman, John, et al. “Proximal policy optimization

algorithms.” arXiv preprint arXiv: 1707.06347 (2017).

[7] Berner, Christopher, et al. “Dota 2 with large scale

deep reinforcement learning.” arXiv preprint

 arXiv: 1912.06680 (2019).

[8] Tsounis, Vassilios, et al. “DeepGait: Planning and control

of quadrupedal gaits using deep reinforcement learning.”

 IEEE Robotics and Automation Letters 5.2 (2020):

3699-3706.

[9] Andrychowicz, Marcin, OpenAI, et al. “Learning

dexterous in-hand manipulation.” The International

 Journal of Robotics Research 39.1 (2020): 3-20.

[10] “Starting on the Right Foot with Reinforcement Learning.”

Boston Dynamics. https://bostondynamics.com/blog/

starting-on-the-right-foot-with-reinforcement-

learning/

[11] Bellegarda, Guillaume, et al. “Robust high-speed running

for quadruped robots via deep reinforcement learning.”

2022 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). IEEE, 2022.

348

Chapter 7 reinforCement Learning and ControL

[12] AlphaGo https://deepmind.google/technologies/

alphago/

[13] Chen, Lili, et al. “Decision Transformer: Reinforcement

learning via sequence modeling.” Advances in Neural

 Information Processing Systems 34 (2021): 15084-15097.

[14] Schrittwieser, Julian, et al. “Mastering Atari, Go, chess,

and shogi by planning with a learned model.” Nature

588.7839 (2020): 604-609.

[15] “AI achieves silver-medal standard solving International

Mathematical Olympiad problems.” Google DeepMind.

https://deepmind.google/discover/blog/ai-solves-

imo-problems-at-silver-medal-level/

[16] Hafner, Danijar, et al. “Learning latent dynamics for

planning from pixels.” International Conference on

Machine Learning. PMLR, 2019.

[17] Hafner, Danijar, et al. “Dream to control: Learning

behaviors by latent imagination.” arXiv preprint

 arXiv:1912.01603 (2019).

[18] “Reinforcement Learning. Geeks for Geeks. ” https://

www.geeksforgeeks.org/what-is-reinforcement-

learning/#

[19] Bellman, Richard. “A Markovian decision process.”

 Journal of Mathematics and Mechanics (1957): 679-684.

[20] Mnih, Volodymyr, et al. “Human-level control through

deep reinforcement learning.” Nature 518.7540 (2015):

529-533.

349

Chapter 7 reinforCement Learning and ControL

[21] SORA. OpenAI. https://openai.com/index/sora/

[22] “Superior Robot Mobility – Where AI Meets the Real

World.” Anybotics. https://www.anybotics.com/news/

superior-robot-mobility-where-ai-meets-the-

real-world/

[23] Hwangbo, Jemin, et al. “Learning agile and dynamic

motor skills for legged robots.” Science Robotics 4.26

(2019): eaau5872.

[24] Gervet, Theophile, et al. “Navigating to objects in the real

world.” Science Robotics 8.79 (2023): eadf6991.

[25] Tang, Chen, et al. “Deep Reinforcement Learning for

Robotics: A Survey of Real-World Successes.” arXiv

 preprint arXiv:2408.03539 (2024).

[26] Kalashnikov, Dmitry, et al. “Mt-opt: Continuous multi-

task robotic reinforcement learning at scale.” arXiv

 preprint arXiv: 2104.08212 (2021).

[27] Lu, Yao, et al. “Aw-opt: Learning robotic skills with

imitation and reinforcement at scale.” arXiv preprint

 arXiv:2111.05424 (2021).

[28] Haarnoja, T., Moran, B., Lever, G., Huang, S. H., Tirumala,

D., Humplik, J., ... and Heess, N. (2024). “Learning agile

soccer skills for a bipedal robot with deep reinforcement

learning.” Science Robotics, 9(89), eadi8022. https://

arxiv.org/pdf/2405.02425

[29] Tirumala, D., Wulfmeier, M., Moran, B., Huang,

S., Humplik, J., Lever, G., ... and Heess, N. (2024).

“Learning Robot Soccer from Egocentric Vision

with Deep Reinforcement Learning.” arXiv preprint

 arXiv:2405.02425. https://arxiv.org/pdf/2405.02425

350

Chapter 7 reinforCement Learning and ControL

[30] Du, Y., Yang, S., Dai, B., Dai, H., Nachum, O., Tenenbaum,

J., ... and Abbeel, P. (2024). “Learning universal policies

via text-guided video generation.” Advances in Neural

 Information Processing Systems, 36. https://proceedings.

neurips.cc/paper_files/paper/2023/file/1d5b9233

ad716a43be5c0d3023cb82d0-Paper-Conference.pdf

[31] Yenamandra, S., Ramachandran, A., Yadav, K., Wang,

A., Khanna, M., Gervet, T., ... and Paxton, C. (2023).

“HomeRobot: Open-vocabulary mobile manipulation.”

 arXiv preprint arXiv:2306.11565.

[32] Herzog, A., Rao, K., Hausman, K., Lu, Y., Wohlhart,

P., Yan, M., ... and Levine, S. (2023). Deep RL at scale:

Sorting waste in office buildings with a fleet of mobile

manipulators. arXiv preprint arXiv:2305.03270. https://

rl-at-scale.github.io/assets/rl_at_scale.pdf

[33] Nathan Lambert, Louis Castricato, Leandro von Werra,

and Dahoas Alex Havrilla. https://huggingface.co/

blog/rlhf

[34] Andrej Karpathy. X. https://twitter.com/karpathy/

status/1821277264996352246

[35] Andrychowicz, O. M., Baker, B., Chociej, M., Jozefowicz,

R., McGrew, B., Pachocki, J., ... and Zaremba, W. (2020).

“Learning dexterous in-hand manipulation.” The

 International Journal of Robotics Research, 39(1),

3-20. https://journals.sagepub.com/doi/

pdf/10.1177/0278364919887447

[36] Yu, C. and Wang, P. (2022). “Dexterous manipulation for

multi- fingered robotic hands with reinforcement learning:

A review.” Frontiers in Neurorobotics, 16, 861825. https://

www.ncbi.nlm.nih.gov/pmc/articles/PMC9083362/#B6

351

Chapter 7 reinforCement Learning and ControL

[37] Rafailov, Rafael, et al. “Direct preference optimization:

Your language model is secretly a reward model.”

 Advances in Neural Information Processing Systems

36 (2024).

[38] https://toloka.ai/blog/direct-preference-

optimization

[39] Lee, Harrison, et al. “RLAIF: Scaling Reinforcement

Learning from Human Feedback with AI feedback.” arXiv

 preprint arXiv: 2309.00267 (2023).

[40] Chowdhery, Aakanksha, et al. “PaLM: Scaling language

modeling with pathways.” Journal of Machine Learning

 Research 24.240 (2023): 1-113.

[41] Zhai, Y., Bai, H., Lin, Z., Pan, J., Tong, S., Zhou, Y., ... and

Levine, S. (2024). “Fine-Tuning Large Vision-Language

Models as Decision- Making Agents via Reinforcement

Learning.” arXiv preprint arXiv:2405.10292.

[42] Ma, Y. J., Liang, W., Wang, G., Huang, D. A., Bastani, O.,

Jayaraman, D., ... and Anandkumar, A. (2023). “Eureka:

Human-level reward design via coding large language

models.” arXiv preprint arXiv:2310.12931.

[43] Ma, Y. J., Sodhani, S., Jayaraman, D., Bastani, O., Kumar,

V., and Zhang, A. (2022). “ViP: Towards universal visual

reward and representation via value-implicit pre-

training.” arXiv preprint arXiv:2210.00030.

[44] Sutton, Richard S. and Andrew G. Barto. Reinforcement

 Learning: An Introduction. MIT press, 2018.

[45] Piper, Kelsey. “AI Triumphs against the World’s Top

Pro Team in Strategy Game Dota 2.” Vox, 13 Apr. 2019,

 www.vox.com/2019/4/13/18309418/open-ai-dota-

triumph-og

352

CHAPTER 8

Self-Driving Vehicles

This chapter covers autonomous driving technology and explains

how autonomous cars are built. The goal of this chapter is to help you

understand how such a system is designed and built and what metrics are

used to evaluate the performance of various components.

 Economic Opportunity

Self-driving cars present a massive economic opportunity, as the

transportation industry is roughly worth 7 trillion dollars[1]. The

transportation industry is also divided into highway driving for freight

and other operations, which forms the backbone of the supply chain, and

urban driving for transporting humans.

Historically, self-driving innovation picked up pace during the DARPA

urban challenge[2] funded by the United States Department of Defense

in 2007. Several teams competed in this challenge, which eventually spun

out multiple startups, including Zoox[3] arising out of Stanford, Waymo[4]

led by folks from Berkeley and Carnegie Mellon University (CMU), Argo

AI[5] taking birth in CMU, and Cruise Automation[6], which was later acquired by General Motors (GM). After the COVID-19 pandemic and the

associated recession-inspired funding crunch, there was a widespread

consolidation in the market, with Amazon acquiring Zoox, Uber selling off

ATG to Aurora[7], Cruise acquiring Voyager[8], Apple acquiring drive.ai[9],

and several other startups going bust.

© Alishba Imran, Keerthana Gopalakrishnan 2025

353

A. Imran and K. Gopalakrishnan, AI for Robotics,

https://doi.org/10.1007/979-8-8688-0989-7_8

Chapter 8 Self-Driving vehiCleS

There are two prominent business models for self-driving. One is the

personal car model, pursued by Tesla[10] and Comma AI[11], where self-driving cars are sold to individual customers. Given that use of personal

cars spans a wide geographical area which can be costly to map in high

definition, companies betting on this business model invest in as little

mapping as possible. Since the cars are sold to individuals, there is a

requirement to keep the cost of self-driving, both the software and the

sensor suite, affordable. The second model is the robotaxi business model,

where companies run self-driving cars as robotaxis, akin to Uber and Lyft,

in a geofenced area that has been thoroughly mapped and tested. This

is pursued by Waymo and Cruise. Usually, the cost of a taxi is amortized

across its entire lifespan, allowing them to be slightly more expensive than

personal vehicles. These two business models also lead to slightly different

technical philosophies:

1. Sensors and redundancy: Due to cost concerns,

personal vehicle self-driving business models

tend to rely less on expensive sensors like LiDARs,

leading to vision-only self-driving cars supported by

multiview cameras. In recent years, however, LiDAR

prices have fallen drastically, as shown in Figure 8-1.

2. Style of intervention and liability: In the personal

vehicle business model, since the vehicle is owned

and operated by the customer, intervention in tricky

scenarios, or what is called disengagement (when an

autonomous system is deactivated in favor of human

driving manually), is provided by the driver at the

wheel. When accidents result from poorly behaved

self-driving, the liability falls on the customer. Contrary

to this, in a robotaxi business model, intervention

is provided by teleoperation and remote humans,

allowing a car to fully remove the driver inside.

354

[image: Image 188]

Chapter 8 Self-Driving vehiCleS

 Figure 8-1. Decreasing cost of LiDAR. Used with permission, source:

 https://scoop.market.us/lidar-statistics/ [19]

Starting in 2023, Cruise and Waymo obtained permits to charge

customers for self-driving taxi rides in San Francisco city as well as in parts

of the Bay Area[12].

 System Design

A self-driving system, in its simplest interpretation, is designed with inputs

being the sensor inputs and outputs being acceleration, steering, and the

angle of the car. The goal of the system is to successfully go from point A

355

[image: Image 189]

Chapter 8 Self-Driving vehiCleS

to point B in the map while reducing costs like time and without violating

traffic rules or other constraints. The high-level architecture and building

blocks of these systems are shown in Figure 8-2.

 Figure 8-2. Self-driving system architecture. Used with permission,

 source: https://medium.com/@justinmilner/a-visual-guide-to-

 the-software-architecture-of-autonomous-vehicles-390b1744c

 bd6 [20]

For urban and highway driving, a car is expected to have a response

frequency of upwards of 10 Hz, which means that the entire stack end to

end and running on device/remote needs to deliver an output at least once

every 100 milliseconds.

The main components of these systems are:

1. Perception: Sensor suite, perception algorithms, and

localization

2. Prediction

3. Planning and Control

Many of these components were covered in depth in previous

chapters, so this chapter only covers the self-driving-related details driving

the design of these systems.

356

[image: Image 190]

Chapter 8 Self-Driving vehiCleS

 End-to-End Self-Driving (E2E)

Several companies approach or have done work in pushing for self-driving

systems that are an end-to-end neural net. Comma AI, Wayve[13], and

Waabi[14] are a few examples. An end-to-end neural planner usually takes

sensors and maps as inputs and outputs either a lowest cost trajectory or

current actions at each time step. Compared to the classical design, the

E2E planner is a single-neuron neural network, with highly interpretable

intermediate outputs for safety verifications. Compared to traditional

planners, E2E planners could be more unsafe, since a neural network has

full control over the actions of the car. Due to safety concerns, it’s harder

to productionize this technology. While most self-driving cars on the road

today are classical planners, the continued rise of deep learning points

to E2E planners becoming a tangible possibility in the future. Figure 8-3

shows an early E2E neural planner proposed by Uber ATG Research group.

 Figure 8-3. End-to-end interpretable neural planner. Used with

 permission, source: https://arxiv.org/pdf/2101.06679 [21]

357

Chapter 8 Self-Driving vehiCleS

 Perception

The goal of self-driving perception is to build an environment model

around the vehicle that is aware of all static, dynamic objects and any

contextual scene information required to make a driving decision.

• Static objects include nonmoving entities like traffic

lights, lane lines, buildings, trees, and so on. Static

entities from perception can be used to localize on a

preloaded map by matching static artifacts observed

by the vehicle to artifacts saved in a preloaded high-

definition map. They can also be used to determine if

the map is wrong, such as if there’s construction or if

the map is outdated, to either dynamically replan or

request remote assistance.

• Dynamic objects include moving agents like people,

other vehicles like cars, bikes, and trucks, live animals,

and so on. Intentions of objects are also detected using

tracking and specific intent prediction models.

• Contextual scene information includes relationships

between objects. Here are a few examples:

• A biker and their bike move together

• Which lanes contain which objects

• Which animal is leashed to which person

• Whether a trailer truck is an articulated

object or not

358

Chapter 8 Self-Driving vehiCleS

In order to assist good perception of the environment, three stages are

involved:

1. Sensing: For self-driving cars, the main

consideration for the sensing suite is to ensure

that there are very few blind spots, and that

resolution of camera and LiDAR images is dense.

Modern self-driving cars are also equipped with

audio sensors (to detect oncoming emergency

vehicles, for example), IMUs for odometry, radar

for velocity estimation, and so on. Figure 8-4 shows

an example sensor suite on a car. Usually, surround

view cameras are used for near-range information,

such as onboarding passengers and curbs, and

long-range dense LiDARs are used for far-view

information.

359

[image: Image 191]

Chapter 8 Self-Driving vehiCleS

 Figure 8-4. “Types of sensors” from the article by J. Hecht, “LiDAR

 for Self-Driving Cars,” Optics & Photonics News 29(1), 26-33 (2018),

 created by Alessia Kirkland, Senior Manager and Creative Director of

 OPN. Used with permission, source: https://www.optica-opn.org/

 home/articles/volume_29/january_2018/features/lidar_for_

 self-driving_cars/ [22] R eprinted/adapted with permission from ©

 Optica Publishing Group.

360

[image: Image 192]

Chapter 8 Self-Driving vehiCleS

2. Computer vision: 2D and 3D computer vision

algorithms are applied on fused or unfused sensory

images to obtain relevant information from the

scene and objects, as discussed earlier in this

section. Chapter 2 discusses the type of algorithms

used to detect this information. Figure 8-5 shows

typical computer vision output where objects have

been detected by bounding boxes.

 Figure 8-5. Typical computer vision output. Used with permission,

 source: screenshot from https://youtu.be/YmbhRxQkLMg?feature=

 shared [23]

3. Sensor fusion: The outputs from various sensors

are combined to remove ghost objects, improve

confidence of true objects, and combine object

features. For example, LiDAR depth is a lot more

precise than stereo depth, so once an object is

classified using a camera image, its depth attribute

is updated from its corresponding instance in the

LiDAR image.

361

[image: Image 193]

Chapter 8 Self-Driving vehiCleS

 Prediction

It is very important for a self-driving car to anticipate the actions of

other agents. This is done via intent prediction. In state-of-the-art

self-driving software stacks, intent prediction is done via large neural

nets. Waymo’s ChauffeurNet[15] paper proposed one of the first intent-

prediction systems, with inputs involving maps, traffic lights, speed limit

information, and other agents, as well as past trajectories to predict future

trajectory, where all inputs were transformed to images for processing by

convolutional neural nets. These inputs are shown in Figure 8-6.

 Figure 8-6. Predicting future agent pose. Used with permission,

 source: https://arxiv.org/pdf/1812.03079.pdf [15]

Waymo’s ChauffeurNet architecture predicts the future actions of

other road agents using a combination of convolutional and recurrent

neural networks. The core of the model is a FeatureNet that processes

inputs (maps, traffic lights, etc.) and transforms them into features. These

features are then fed into an AgentRNN, which predicts driving parameters

like heading, speed, and waypoints. Additionally, a Road Mask Net and

362

Chapter 8 Self-Driving vehiCleS

Perception RNN are used to predict the drivable area and detect other

agents, respectively. The model itself is trained of various loss functions—

heading loss, speed loss, and collision loss—which focus on minimizing

differences between the model’s prediction and actual outcomes.

The architecture also has a memory component, which keeps track of past

agent locations. This improves overall model prediction of future positions

and trajectories. By using convolutional neural networks for image processing

and recurrent neural networks for handling sequence data, ChauffeurNet can

leverage different types of data to understand the driving environment and

predict future actions of agents in complex traffic scenarios.

While ChauffeurNet predicts the future of the driver, similar logic can

be applied to predict the intents of other agents as well.

Intent prediction is crucial for driving situations like:

1. Traffic light intersections, such as four-way and

two-way stops, where multiple agents indicate their

intentions through hand signals, lights, and other ways.

2. During lane change and merging situations, where

it is important to know if other parties are giving you

the right of way or not.

 Planning

Given an agent’s surroundings, such as its location on the map, the static

and dynamic obstacles around it, its destination, and relevant traffic rules,

planning is the problem of finding an optimal trajectory toward the safe

achievement of reaching the destination. Costs involved during planning

are multifold:

1. Collision cost: An accident with any agent or static

obstacle has among the highest costs in planning

and is to be avoided with priority.

363

Chapter 8 Self-Driving vehiCleS

2. Traffic rule violation: Violating speed limits,

traffic lights, HOV lane rules, and other traffic rules

constitutes another cost. Compared to collision

costs, these are lower, which means that a violation

of traffic rules or speed limits may be incurred to

avoid a collision.

3. Distance and time cost: Reaching a destination

within optimal path and time.

The most common type of planners in self-driving are search-based

planners. There are also neural planners and reinforcement-learned

planners in research settings. The main downsides of neural planners are

non-interpretability of decision making as well as lack of control over final

actions chosen by the car.

The following code segment shows how a search-based planner (A*

search used in the example here) can be utilized. Note that this is a highly

simplified version of a planner. Lane segments refer to elements in the

map, and segments of lanes that may be occupied by an agent. For this

example, the map is interpreted as a graph of lane segments, with a start

and destination. Note that this code segment is modified based on A*

search code provided here[16].

// A* search algorithm for self-driving to go from lane segment

start // to lane segment destination

1. Initialize an to_explore with the first lane segment where

the ego is, and set its f = 0

2. Initialize the explored list

3. while the to_explore list is not empty

a) find the lane segment with the least f on the to_explore

list, call it "q"

b) pop q off the to_explore list

364

Chapter 8 Self-Driving vehiCleS

c) generate q's successors, ie, lane segments that can be

traversed to from q and set their parents to q

d) for each successor

i) if successor is the goal, stop search

ii) else, compute both g and h for successor

successor. g = q. g + cost to go from q to successor

successor. h = cost to go from goal to successor

distance (eg Manhattan distance cost + other costs

discussed above)

successor. f = successor. g + successor. h

iii) if a node with the same position as successor is

in the to_explore list which has a lower f than

successor, skip this successor

iV) if a node with the same position as successor is

in the explored list which has a lower f than

successor, skip this successor otherwise, add the

node to the to_explore list end (for loop)

e) push q on the explored list end (while loop)

Similarly, an intersection may be modelled as follows:

// Modeling a traffic intersection in C++

class Intersection

{

public:

Type type_of_intersection; // type of intersection,

say traffic

// light, 4 way stop, 2 way stop

LaneSegment[] lanesegments; // list of lane segments

that are

// part of the intersection

and their

365

Chapter 8 Self-Driving vehiCleS

// relationships to each other

Crosswalk[] crosswalks; // crosswalks that are

part of the

// intersection and agent IDs

// belonging to them

TrafficLights[] trafficlights; // traffic light

elements and

// their states that are

// part of the intersection

Agent[] order_of_arrival; // order of arrival

of agents

Agent[] agents; // all agents and their

attributes

// that are relevant to the

// intersection

};

 Safety

Engineering safety is a core concept when building robust robotics

products. This is especially crucial with self-driving systems, as vehicles

operate among people, sometimes at high speeds, and mistakes can

be deadly.

 AI Safety and Systems

Previous safety standards were designed with traditional systems in mind

and don’t cater as well to AI-based self-driving systems. For example, ML

systems can be unpredictable, use incomplete data, and are often difficult

to interpret, which makes it hard to guarantee their safety using existing

standards.

366

Chapter 8 Self-Driving vehiCleS

A key failure mode of ML systems is breaking down when interacting

with people or their environments in unexpected ways. Since ML methods

rely heavily on the completeness of the data, ensuring that important

scenarios and data is accounted for is crucial. If data is missing for

important scenarios that the vehicle may encounter, its behavior could be

unexpected and more likely to break down.

A group in the ISO (the International Organization for Standardization)

[17] is focused on developing standards to ensure that AI systems being

developed are safe and reliable for applications that involve human

interactions, like autonomous vehicles. To account for the unique

challenges that ML systems face in autonomous vehicles, we can also

draw on principles from the AI safety community. The goal of AI safety is

to ensure that AI systems act fairly and don’t discriminate in any way. A

few key ideas of AI safety, as described in [18], include ensuring that AI is

fair (doesn’t discriminate), transparent (easy to understand), and secure

(protected from hackers).

 Safety Considerations

This section discusses a few aspects of general safety to consider when it

comes to the hardware and algorithm design of self-driving cars. Many

of these points are focused on companies building self-driving cars that

will be used publicly, but these ideas are similarly applicable in research

settings.

 Sensor Reliability

Self-driving cars can use many sensors, including cameras, radar, and

LiDAR, to understand their environment. To ensure that sensors work

reliably, it can be helpful to use multiple types of sensors to cover various

weaknesses, perform regular calibration to ensure that sensors perform

367

Chapter 8 Self-Driving vehiCleS

well, and use sensor-fusion techniques to validate information from

different sensors. That way, if a single sensor is spooked, others can

balance it out.

 Algorithmic Robustness

The algorithms used in self-driving cars must be able to work in a wide

range of driving scenarios, whether it be empty streets or complex

urban environments. To catch edge cases and measure adaptation,

these algorithms should be tested in varying real-world and simulated

environments. It’s also important to implement fail-safe methods and

monitoring methods to detect and address any anomalies or edge cases

that the vehicle encounters that are not accounted for in algorithm design.

 Cybersecurity

Using sensors and other technologies in self-driving cars makes them

more vulnerable to cyberattacks, which can compromise safety and

privacy. To protect against these attacks, it’s important to have encryption

methods in place to protect data and establish detection systems to

monitor for and respond to potential threats. Companies should conduct

regular security audits and collaborate with cybersecurity experts to

identify and mitigate data-related risks.

 Ethical Decision-Making

It’s important that companies have clear ethical guidelines that dictate

how ethical decisions should be made by the self-driving car and

ensure that these guidelines are reflected in how the vehicle handles

edge cases. To build trust in the company and with the public, having

clear documentation and communicating openly about these topics is

important.

368

Chapter 8 Self-Driving vehiCleS

 Human-Machine Interaction

The interaction between self-driving cars and the people riding in them

should be intuitive and user-friendly. When designing these vehicles, it can

be useful to have clear visual and auditory signals to inform passengers

about the vehicle’s actions and goals. This can include designing controls

and interfaces that are easy to understand and operate, and allowing

passengers to take over control in any emergency cases. Making sure

these human-machine interactions are straightforward can be extremely

important for public trust and to maintain safety.

 Fail-Safe Mechanisms

Self-driving cars must have mechanisms in place to handle unexpected

failures safely. This includes developing comprehensive emergency

protocols that allow the vehicle to safely stop or return to a secure state if

any issues come up. Having manual or backup control systems that can

take over if the primary system fails can be useful during deployment to

ensure safe operation continues even if a malfunction happens.

 Data Privacy

Given the vast amount of data that’s collected by self-driving cars,

protecting user privacy is important. When training models or sharing

data, anonymizing that data can be useful to prevent the identification of

individuals. Developing standards about data usage and privacy policies,

and sharing these standards publicly can build trust with the people using

self-driving cars.

369

Chapter 8 Self-Driving vehiCleS

 Summary

This chapter covered the following points:

• There is a huge economic opportunity to build self-

driving cars, as the transportation industry is worth $7

trillion.

• The system design for these vehicles can be broken

into perception, prediction, and planning algorithms,

along with hardware considerations. There is a growing

interest in end-to-end neural planners, but they face

challenges in safety and commercialization.

• The goal of perception in self-driving is to build an

environment model that is aware of static, dynamic

objects, and contextual scene information around the

vehicle.

• Prediction focuses on anticipating the actions of other

agents in the environment using large neural networks.

• Planning involves finding an optimal trajectory for

the vehicle to achieve its goal safely while minimizing

various costs, including collision costs, traffic rule

violation costs, and time costs.

• Safety is a critical aspect of self-driving cars, including

AI safety, ML system robustness, and general safety

considerations for companies and research.

The next chapter explores common tasks in industrial robotics,

including peg-in-hole assembly, welding, and warehouse automation.

It discusses various robot types, key system design considerations for

hardware, the use of software (such as CNNs for grasping), scaling

reinforcement learning for grasping, as well as performance and safety

metrics.

370

Chapter 8 Self-Driving vehiCleS

References

[1] https://www.datamintelligence.com/research-

report/transportation-industry-market

[2] https://www.darpa.mil/about-us/timeline/-grand-

challenge-for-autonomous-vehicles

[3] https://zoox.com/

[4] https://waymo.com/

[5] https://www.bloomberg.com/profile/

company/1489336D:US

[6] https://www.getcruise.com/

[7] https://investor.uber.com/news-events/news/

press-release-details/2020/Aurora-is-acquiring-

Ubers-self-driving-unit-Advanced-Technologies-

Group-accelerating-development-of-the-Aurora-

Driver/default.aspx

[8] Korosec, Kirsten. “Cruise Acquires Self-Driving Startup

Voyage." TechCrunch, 15 Mar. 2021, techcrunch.

com/2021/03/15/cruise-acquires-self-driving-

startup-voyage/.

[9] Leswing, Kif. “Apple Bought Autonomous Vehicle

Start-up Drive.Ai.” CNBC, 25 June 2019, www.cnbc.

com/2019/06/26/apple-buys-autonomous-vehicle-

start-up-driveai.html.

[10] https://www.tesla.com/

[11] https://www.comma.ai/

371

Chapter 8 Self-Driving vehiCleS

[12] Templeton, Brad. “Waymo and Cruise Get Permits for

Full-Day Robotaxi for Money in SF, LA, Silicon Valley.”

 Forbes Magazine, 10 Aug. 2023, www.forbes.com/sites/

bradtempleton/2023/08/10/waymo-and-cruise-get-

permits-for-full-day-robotaxi-for-money-in-sf-

la-silicon-valley/.

[13] https://wayve.ai/

[14] https://waabi.ai/

[15] Bansal, Mayank, Alex Krizhevsky, and Abhijit Ogale.

“ChauffeurNet: Learning to drive by imitating the

best and synthesizing the worst.” arXiv preprint arXiv:

1812.03079 (2018).

[16] Belwariar, Rachit. “A* Search Algorithm.” GeeksforGeeks,

30 July 2024, www.geeksforgeeks.org/a-search-

algorithm/.

[17] https://www.iso.org/home.html

[18] Burton S., Gauerhof L., Sethy B. B., Habli I., Hawkins

R. (2019). “Confidence arguments for evidence of

performance in machine learning for highly automated

driving functions,” in Computer Safety, Reliability,

 and Security, Vol. 11699 of Lecture Notes in Computer

Science, eds A. Romanovsky, E. Troubitsyna, I. Gashi,

E. Schoitsch, and F. Bitsch (Cham: Springer International

Publishing;), 365–377. 10.1007/978-3-030-26250-1_30.

[19] Pangarkar, Tajammul. “LiDAR Statistics 2024 by New

Light Detection Technology.” Market.us Scoop, 10 July

2024, scoop.market.us/lidar-statistics/.

372

Chapter 8 Self-Driving vehiCleS

[20] Milner, Justin. “A Visual Guide to the Software

Architecture of Autonomous Vehicles.” Medium, 25 Sept.

2022, medium.com/@justinmilner/a-visual-guide-

to-the-software-architecture-of-autonomous-

vehicles-390b1744cbd6.

[21] Zeng, Wenyuan, et al. “End-to-end interpretable

neural motion planner.” Proceedings of the IEEE/

CVF Conference on Computer Vision and Pattern

Recognition. 2019.

[22] Hecht, Jeff. “LiDAR for Self-Driving Cars.” Optica-Opn.

org, Optics & Photonics News, 2018, www.optica-opn.

org/home/articles/volume_29/january_2018/

features/lidar_for_self-driving_cars/.

[23] Redmon, Joseph. “YOLO in New York.” YouTube, 12 Nov.

2017, youtu.be/YmbhRxQkLMg?feature=shared.

373

CHAPTER 9

Industrial Robotics

Industrial robots perform tasks in industrial and manufacturing settings

such as assembly, welding, and packing. These tasks are repetitive and

labor-intensive and require a level of precision and consistency. By using

deep learning, we can improve a robot’s ability to perceive and understand

their environment and perform these complex tasks. Using sensor data,

robots can recognize objects, plan paths, and execute on tasks. Deep

learning can especially be important, as it allows robots to adapt to their

changing, unstructured environment and perform tasks in predictive

maintenance and operations alongside humans.

Deep learning techniques are being used by several businesses

in manufacturing and industrial settings. One is Amazon, which uses

computer vision methods to deploy a fleet of robots in their fulfillment

centers. According to Amazon, “In 2022, 1 billion packages, or one-eighth

of all the orders we delivered to customers worldwide, were sorted by

Robin, one of Amazon’s robotic-handling systems. ”[1] By creating a

collaborative environment between robots and humans, they have seen an

increase in efficiency, a reduction in errors, and an increase in how many

orders they can process in their fulfillment centers. Before diving into

which deep learning methods are used, the following section talks about

which tasks are commonly performed in manufacturing settings.

© Alishba Imran, Keerthana Gopalakrishnan 2025

375

A. Imran and K. Gopalakrishnan, AI for Robotics,

https://doi.org/10.1007/979-8-8688-0989-7_9

Chapter 9 IndustrIal robotICs

 Common Tasks

Manufacturing and industrial robotics are employed in a wide range of

tasks to automate processes, improve efficiency, and increase precision. A

few common tasks in manufacturing and industrial robotics include pick-

and- place, peg-in-hole, and welding.

 Pick-and-Place

In industrial automation, picking up an object from one position and

placing it in another is known as “pick-and-place.” In fields such as

automotive, electronics, and logistics, this task is extremely important

for a robot to complete, as it helps place components on assembly lines

and generally manipulate heavy items. A pick-and-place system typically

comprises a robotic arm or manipulator with end effectors like grippers,

vacuum cups, or magnetic attachments. For placement and control, it

also has sensors, a vision system, and a controller. Commonly, FANUC’s

robotic arms are used in automotive assembly[2], ABB’s robots are used for

electronics manufacturing, and Amazon’s robotics are used in fulfillment

centers[3]. Figure 9-1 is an illustration of a pick-and-place robot system.

376

[image: Image 194]

Chapter 9 IndustrIal robotICs

 Figure 9-1. Pick-and-place system by Covariant AI. Used with

 permission, source: https://covariant.ai/insights/automation-

 upgraded-robotic-sorter-induction/ [31]

 Peg-in-Hole

In the peg-in-hole task, an item must be carefully inserted into the

correct hole or container. Electronics production, automobile assembly,

and aircraft manufacturing all depend on this work. For example, in

electronics manufacturing, you may need to place chips on circuit boards,

which requires extreme precision that robots like ABB’s IRB series[4] can

help with. In the automotive industry, aircraft manufacturers use robots

like FANUC’s M-20iA[5] or KUKA’s KR Quantec robots[6] to assemble components. The components of a peg-in-hole system include a robotic

arm, end effectors (usually a gripper or other specialized tool), sensors,

and a vision system for alignment and positioning. Figure 9-2 depicts a

system with a peg-in-hole robot as an example.

377

[image: Image 195]

Chapter 9 IndustrIal robotICs

 Figure 9-2. Robot performing peg-in-hole task. Used with

 permission, source: https://www.semanticscholar.org/paper/

 Robot-Learning-from-Demonstration-in-Robotic-A-Zhu-Hu/

 d77d2925eee76dbb41d7c2fbda138b2f7beeec62 [32]

 Welding

Robotic welding machines are used to weld materials together by

melting and then combining them using heat. This is an important task

in sectors including aircraft, construction, and the automobile industry.

In the aircraft industry, you need precise and high-quality welds and

in the construction sector, robots are used for tasks such as steel beam

welding. In the automotive industry, manufacturers like Tesla[7], General

Motors[8], and Toyota[9] use robots to weld car bodies. This can speed up manufacturing time and, in some cases, improve the quality of the

welds. Common robots used for these tasks are the KUKA’s KR Quantec[6],

FANUC ARC Mate series[10], and ABB’s IRB 6700 robots[11]. A welding robot system incorporates a robotic arm with a torch or tool, a welding

power source, sensors, and a vision system for tracking. Figure 9-3 shows

an illustration of a welding robot.

378

[image: Image 196]

Chapter 9 IndustrIal robotICs

 Figure 9-3. Welding robot example showing mechanical structure

 and joint rotations. Used with permission, source: https://

 journals.sagepub.com/doi/full/10.1177/16878132241260525[33]

 Warehouse Tasks

Outside of improving specific industrial processes, robots can also be

used to improve overall warehousing duties. Robots can do inventory

movement and fulfillment, inventory tracking, and scanning, which can

help modern warehouses and distribution centers operate as efficiently as

possible.

• Inventory movement and fulfillment: Effective

management and handling of items within a

warehouse or distribution center are necessary for

inventory movement and fulfillment tasks. To fulfill

client orders and maintain stock levels, robots are

used for choosing, packaging, sorting, and delivering

products. Typically, automated guided vehicles

(AGVs)—which are mobile robots that have conveyors,

shelves, grippers, and sensors—are used for inventory

transportation and fulfillment. They can be linked to a

centralized command system that controls orders and

inventory information.

379

Chapter 9 IndustrIal robotICs

• Inventory tracking and scanning: Robots are used

for inventory tracking and scanning to monitor and

control inventory levels, ensure accuracy, and track

the movement of items throughout the warehouse.

These robots have various sensors, including cameras,

barcode scanners, RFID readers, and computer

vision systems for monitoring, recognizing objects,

navigation, and obstacle avoidance.

 Common Robots

Robots used in industrial settings come in many shapes and forms,

depending on the environment and tasks being completed[12].

 Standalone Industrial Robots

• Articulated robots: These robots have rotary joints

and between three to six degrees of freedom. For this

reason, they are flexible and can rotate in multiple

directions. They have a base, arm, wrist, end effector,

control system, and sensors/actuators, which allow

for controlling movement. Commonly these types of

robots are used in assembly and welding. An example

of a robot like this is the Kuka KR Quantec series,[6]

which are commonly used in manufacturing for

welding car bodies.

• Parallel robots: These robots have three arms, which

are connected to a base platform using universal joints.

The arms themselves are placed in a parallelogram

configuration, which allows them to move quickly. For

380

Chapter 9 IndustrIal robotICs

these reasons, parallel robots are ideal for packing and

higher precision assembly. ABBs FlexPicker robots

are examples of these; they have been used in food

processing plants[13] for pick-and-place and to prepare

frozen pizzas[14].

• Gantry robots: With three linear axes of control

placed at 90-degree angles to each other, these robots

are known for being simple to control and useful

when space is limited. Gantry robots consist of linear

actuators, guide rails, and a control system. Güdel’s

TMF Gantry robots[15] are an example of this; they

are commonly used in automotive assembly lines to

manipulate heavy parts.

 Collaborative Robots (Cobots)

As it says in the name, these robots work with humans and are designed

with safety in mind. They are useful in tasks where flexibility and working

on ground with humans is important.

• Assembly: These cobots can perform tasks such as

screwing, fitting, and joining parts, often working

alongside human workers.

• Material handling: They assist in moving, sorting, and

packaging materials, which reduces the physical strain

on human workers and increases throughput.

• Pick-and-place: These cobots are used to pick items

from one location and place them in another, which is

useful in logistics and warehousing.

381

Chapter 9 IndustrIal robotICs

• Quality inspection: Using vision systems, these cobots

can inspect products for defects. They are very effective

at performing routine tasks, which frees up human

operators for other needed duties.

• Safety: Using sensors, these cobots can detect

contact with humans or objects and stop or slow

down in these scenarios to avoid injury. They are

often designed to apply little force, which can be

helpful in cases where there is unintended contact

with a human.

• Hardware: Force sensors are used to detect

force and torque applied by the cobot and

adjust movement as needed. Cameras and other

sensors mentioned in Chapter 2 are used to

recognize humans and objects, navigate in their

environment, and perform tasks such as quality

inspections. Oftentimes, there is some GUI or

easy-to-use interface for humans to easily program

or interact with the robot in case of changes to the

environment or tasks.

A popular cobot is Universal Robots’ UR series[16], which is often used

in smaller spaces. It is lightweight compared to other robots, is fast, and

can tend to different applications easily. These robots are commonly used

for welding and stacking objects.

 Mobile Robots

There are two common types of mobile robots: Autonomous Guided

Vehicles (AGVs) and Autonomous Mobile Robots (AMRs). The main

difference is that, while AGVs follow a fixed, predetermined path using

382

Chapter 9 IndustrIal robotICs

tape, wires, or rails in the physical environment, AMRs can use sensors

like cameras and LiDAR to navigate their environment more dynamically,

without the need for physical guides.

• AGVs: These are mobile robots that follow a fixed

path and predetermined routes to transport materials

from one location to another. They often require

modifying the physical environment using guide tracks

or markers for them to operate. They are commonly

used in warehouses/distribution centers, where you

are following the same path to transport an object

from one location to another. They are made up of

navigation systems that can navigate their environment

and then follow those predefined paths, drive motors

for movements, and various sensors to detect any

obstacles. An example of these are Amazon’s Robotics,

which usually transport items within their fulfillment

centers[17]. These AGVs follow a predefined path

to receive and deliver inventory items and reduce

repetitive tasks that humans need to do.

• AMRs: These robots use cameras, LiDARs, and

algorithms to navigate their environment in a more

flexible manner. AMRs can be used in logistics and

manufacturing to transport materials and pick-and-

place items and deliver them within facilities. AMRs

have navigation systems with mapping, localization

abilities, sensors for detecting and avoiding obstacles,

and path planning. Fetch Robotics’ AMRs[18] are

commonly used in warehouses for picking and

transporting items autonomously.

383

Chapter 9 IndustrIal robotICs

 Humanoids

Humanoid robots are designed to complete tasks like a human would,

with a head, torso, arms, and legs. They are made up of actuators that

help move the robots limbs and joints, sensors that are used to provide

feedback on the environment, control systems that process sensor data,

manage actuators that move, and end effectors that interact with items to

perform specific tasks like gripping or manipulating items. Recently the

company Figure built humanoid robots and signed an agreement with

BMW[19] to use their robots in automotive manufacturing. Similarly,

companies like Tesla are building humanoid robots to work alongside

humans in their factories[20].

For more information on the hardware and software design of these

humanoid robots, we recommend reading Chapter 10.

 Market Opportunity

According to a McKinsey report, “The overall automation market is

growing rapidly: at least some expert sources expect robot shipments

to increase by up to 50 percent each year through 2030, with warehouse

automation growing by more than 10 percent per year”[21]. The industrial

robotics market worldwide was valued at 54 billion in 2023 and is expected

to grow to 142.8 billion[22]. The growth of this market and the applications

breakdown are shown in Figure 9-4.

384

[image: Image 197]

Chapter 9 IndustrIal robotICs

 Figure 9-4. Growth of industrial robotics market and main

 applications in welding, soldering, assembling, and so on. Used

 with permission, source: https://market.us/report/industrial-

 robotics-market/ [34]

There are a few reasons for growing market interest, including:

• Decreasing prices: Due to lower production costs in

regions with cheaper labor, robots have become more

accessible.

• Robots: There is an increase in the variety of robots

and improved software with greater precision and

mobility, which have allowed robots to be deployed

across a wider range of manufacturing industries.

• Labor: Rising labor costs globally have also made

the investment in robotics more attractive because

companies are seeking to automate to maintain

competitiveness and address skill shortages.

385

[image: Image 198]

Chapter 9 IndustrIal robotICs

According to recent data from Statista’s Market Insights, ABB leads the

market with a 21 percent global market share in 2022, KUKA and Japan’s

Kawasaki make up 9 percent share, and other important players are Fanuc

with an 8 percent share, Mitsubishi, and Yaskawa, who have 5 percent of

the market each[23]. A breakdown of this is shown in Figure 9-5.

 Figure 9-5. Companies that produce robots commonly used

 in industrial tasks. Used with permission, source: https://

 www.statista.com/chart/32239/global-market-share-of-

 industrial-robotics-companies/ by Statista[23]

These robotic manufacturing companies design the arms or platforms

that are deployed by other companies. There are also companies like

Boston Dynamics, which leverages deep learning methods for their

robots, including their robot, Spot[24], which can be used for industrial

inspections.

386

Chapter 9 IndustrIal robotICs

 System Design for Pick-and-Place Robots

Now that you are familiar with the common tasks in industrial robotics,

this section explains how to design a system to accomplish these tasks,

specifically the task of pick-and-place. The pick-and-place task is essential

because it is a specific task that is usually part of accomplishing larger

manufacturing goals, such as assembling components, packaging

products, and sorting materials.

The most common pick-and-place robots[25][26] include:

• Robotic arm: This five-axis robotic arm is used for

most common pick-and-place tasks that involve

picking up and dropping an object in a single plane. To

rotate objects, you need a six-axis arm or seven-

axis arm to turn objects before dropping/placing them

somewhere.

• Cartesian: These robots can move in x, y, and z axes

and use linear actuators to control belts, balls, and

so on, which can help with positioning. These robots

are often used for material handling, CNC operations,

electronics, and food because they are reliable and

provide more precise manipulation.

• Delta: They have three or four arms that are connected

on a base and provide speed with pick-and-place tasks.

 Hardware Components

The main components of pick-and-place robots include the arm, end

effectors, control system, and sensors[25].

387

Chapter 9 IndustrIal robotICs

• Arm: The arm itself can range from five-axis designs for

basic tasks, to six-axis and seven-axis arms, which can

help perform more complex rotations and orientation

changes. The arm has a combination of motors and

actuators, which provide control and sensors used for

managing pressure/force.

• End effectors: An end effector is attached to the end of

the robot arm and is the part of the arm that is used to

grip, hold, and manipulate objects using picking and

placing. A few common end effectors include:

• Vacuum grippers: These grippers create a vacuum

that allows you to lift objects. This gripper is ideal

for objects that are relatively flat, such as glass and

metal sheets. These grippers are commonly used in

electronics and packing for these reasons.

• Mechanical grippers: These can be two or three

finger grippers that are usually designed to handle

different shapes and sizes of objects. Often these

grippers are used for picking and placing in

automotive parts and consumer electronics. As

they are able to manipulate different objects, they

are commonly used for gripping and manipulation.

• Control system: This is the “brain” of the pick-

and- place robot because it is used to manage the

movements and actions that the arm takes. Inputs

are taken from sensors and commands are sent to

actuators to execute actions. Some common controllers

include:

388

Chapter 9 IndustrIal robotICs

• PID: These controllers continuously adjust the

robot’s movement based on feedback from

the environment. They use three components:

the proportional component, which corrects

for differences when the robot goes off path by

applying a correction proportional to the error,

the integral component, which removes common

recurring errors by accumulating past errors and

adjusting the path to correct this offset, and the

derivative component, which predicts change and

adjusts position so that you don’t miss the target

position.

• ML: Neural network based controllers are trained

on a larger dataset of robot movement and

outcomes. The robot can learn various different

pick-and-place actions and ideally adapt to any

environment that it operates in. In reality, training

these models requires extensive data and can be

difficult to generalize. A lot of research is working

to improve this through simulation data and agent-

based learning through RL.

• Sensors: Vision sensors and force sensors are typically

used in pick-and-place tasks. Vision sensors help

identify and locate objects before picking them up and

force sensors ensure that the robot grips objects with

an appropriate amount of force.

All these components interact together to accomplish a pick-and-place

task. Sensors are used initially to understand the environment, control

systems provide a command to execute on the task based on where the

initial and target location are sensed, and sensors are used during grasping

to ensure enough grip is applied to execute the task.

389

Chapter 9 IndustrIal robotICs

 Software Components

Over the years, there have been many deep learning methods developed to

perform grasping. Why is deep learning even good for a task like pick-

and- place?

Given the repetitive nature of pick-and-place tasks, many

demonstrations can be collected. This provides a diverse dataset to train

deep learning models. These models need to generalize to various object

morphologies and environments, which is challenging for traditional

methods. For example, handling soft objects requires being delicate to

avoid damage, and deep learning models can learn the specific ways to

grasp such objects and ensure they land correctly in their designated

places. This adaptability and precision make deep learning an ideal

approach for improving the efficiency and accuracy of pick-and-place

tasks in changing and different visual environments. A common approach

is using Convolutional Neural Networks (CNNs), which was explained in

Chapter 2 to execute grasping tasks.

 Convolutional Neural Networks for Grasping

A popular method that uses CNNs for grasping was presented in this

paper[27]. As input, they take in an image that is captured before the robot

attempts to grasp any object (without gripper) and an input image that

is captured at some specific time t during the grasping process. These

images are combined and processed using multiple layers of convolutional

filters. The idea is for each layer to extract different features from the

image, including edges, shapes, textures of the environment, and specific

objects to grasp. The filter sizes are fairly small (3x3, 5x5, etc.) and many

are applied per layer. After convolutional layers, there are pooling layers

to reduce the size of feature maps and fully connected layers toward

390

[image: Image 199]

Chapter 9 IndustrIal robotICs

the end that takes in the flattened feature maps as a vector and makes

predictions. Here, the network outputs a probability indicating the success

of grasping an object. An important aspect of this approach is that it

takes in a proposed motor command (describing planned movement

of the robotic arm) and considers this alongside the input images of the

scene to determine the success of the grasp. This architecture is shown in

Figure 9-6.

 Figure 9-6. Architecture used for CNN for robot grasping in [27].

 Used with permission, source: https://journals.sagepub.com/doi/

 full/10.1177/0278364917710318 [27]

This method uses training data from real physical robots that attempt

grasps, records images, poses, and movements at each time step, and then

evaluates the success of the grasp to produce labeled training samples.

Each sample includes the image, the current pose to the final pose, and

the overall grasp success. The setup for collecting grasping training data is

shown in Figure 9-7.

391

[image: Image 200]

Chapter 9 IndustrIal robotICs

 Figure 9-7. Grasp setup includes multiple timesteps, which

 correspond to an image and a pose. Used with permission,

 source: https://journals.sagepub.com/doi/full/10.117

 7/0278364917710318 [27]

Another important aspect of this method is the serving mechanism.

It takes the trained network from the previous step to determine motor

commands, which will improve the likelihood of grasping success.

Conceptually, this part of the method is optimizing the commands

through a sampling-based approach, making sure while staying within

constraints, it is adapting the gripper’s position based on predicted success

probabilities. In the end, this approach is able to effectively grasp objects,

even in cluttered environments.

A lot of work has built on this or taken other directions using CNNs

for grasping, but fundamentally all of these do the same thing—they use

CNNs to process images of the scene, extract relevant features, predict the

392

Chapter 9 IndustrIal robotICs

optimal motor commands for grasping, and then evaluate the probability

of these commands to successfully guide the robot’s actions.

 Scaling RL for Robotic Grasping

Reinforcement Learning (RL) has shown success in individual robotic

applications like grasping and manipulation. One of the key challenges

in scaling up these systems is ensuring that they can reliably be used in

everyday life. A paper by Google[28] tackled this problem by getting 23

RL-enabled robots over two years in their offices to sort waste/recycling

and then collect this data. Their system combined deep RL from real-world

data with simulation data to accomplish grasping. Although this was done

in the context of trash sorting, it acts as a case study of how ideas you’ve

learned throughout this book on simulation, RL, and perception methods

can be combined to solve real-world robotic manipulation challenges.

Their pipeline uses three main components:

• A scripted policy where they detect objects, plan the

grasp pose, and generate the trajectories to reach the

object as a way to start collecting data in simulation

and the real world.

• The RL training starts in simulation and simulation-

to- real methods are used to bridge the gap between

simulation and the real world.

• They start training on tasks with varying levels of

difficulty, with sorting trash being the hardest task.

Initially the tasks start out easier and there’s higher

success, which gradually turns into harder tasks. By

quickly introducing easier tasks at the start of the

training, the aim is for the model to learn and be able to

adapt to more challenging tasks.

393

[image: Image 201]

Chapter 9 IndustrIal robotICs

PI-QT-Opt[29] is used to train the final policy on the full dataset that

is collected from simulations and real world. The Q-function architecture

takes in an RGB image of the scene that has unsorted objects and the

masks of the shapes of the objects in the scene are generated. Features

are extracted from the images and masks using convolutional layers.

The features from the masks and the original image are combined.

One encoder, called the forward encoder, is used to process the current

image and the background encoder processes the next image as a way

to predict future states. An LSTM layer is used to keep context overtime

on observations and actions. The Q-function uses the current state and

action to predict future rewards and uses the most recent six time steps.

The final output is given as a predicted value, which tells you the expected

success of a particular action. This architecture is shown in more detail in

Figure 9-8.

 Figure 9-8. Overview of PI-QT-Opt system used to sort trash. Used

 with permission, source: https://rl-at-scale.github.io/assets/

 rl_at_scale.pdf [28]

An important aspect highlighted in this work is the need for large-scale

data collection and the combination of online and offline data to improve

model performance for robotic grasping.

 Multimodal Grasping System

An interesting direction to build a foundation model for robotics was

presented by Covariant AI, in their method called RFM-1[30]. This

method is particularly suited for manufacturing, logistics, and warehouse

394

Chapter 9 IndustrIal robotICs

applications, as it can adapt to changes and collaborate and communicate

with human workers. An important aspect is that Covariant has been

able to collect diverse data of their robots performing tasks in challenging

dynamic environments with many different object shapes and types, as

shown in Figure 9-9. A few unique aspects of RFM-1 include:

• Multimodal: The model itself is a transformer that

tokenizes different modalities such as text, sensor data,

and camera data into a shared space, which allows

for next-token prediction. This means the model can

take in any input modality and output in any modality

as well.

• Physics understanding: Using a technique that allows

for learning world models, the method can gain a

deeper understanding of physics, which can help with

performing realistic actions and reacting to changes

in the environment. This is done by generating videos

where input tokens of an initial image and robot

actions are used to predict future video tokens.

• Language re-programming: A big challenge in

robotics is re-programming robots when changes

occur. Oftentimes, this is a difficult task that only

the person who initially programmed the robot can

successfully do. Through natural language commands,

a person can instruct a robot to do a task and the robot

can ask for help when it needs it. This back-

and- forth dialogue is useful in the real world, where

environmental changes require changing the task or

re-programming the robot in any way.

395

[image: Image 202]

Chapter 9 IndustrIal robotICs

 Figure 9-9. RFM-1 system by Covariant AI performing various tasks.

 Used with permission, source: https://covariant.ai/insights/

 introducing-rfm-1-giving-robots-human-like-reasoning-

 capabilities/ [30]

This method shows the power of large-scale data collection and

benefits that multimodal data can bring to improving interactions with

robots in pick-and-place environments. To learn more, we recommend

reading this release[30] on RFM-1.

 Performance Metrics

The success of deep learning-powered pick-and-place robots is primarily

measured by a variety of performance, efficiency, and reliability metrics.

These metrics help assess how well the robots do the tasks they were

designed for. A few important metrics include:

396

Chapter 9 IndustrIal robotICs

• Accuracy of object detection: How accurately a robot

can detect objects is crucial because it determines the

robot’s capacity to recognize and categorize things

in its surroundings. High object detection accuracy

improves the ability of the robot to work efficiently

within diverse environments.

• Grasping success rate: The robot’s capacity to pick and

move items without dropping them or damaging them

should be measured. Pick-and-place operations must

be reliable and precise, which requires algorithms that

have a high grasping success rate.

• Cycle time: The robot’s time to execute a full pick-and-

place task, including detecting the object, planning,

grabbing, and placement, is measured in terms of

cycle time. Reducing this cycle time is important

for improving output and productivity in industrial

settings.

• Collision avoidance rate: The robot’s ability to

avoid hitting objects or obstacles while navigating its

surroundings is measured by its collision avoidance

rate. For safety and effectiveness, reducing collisions

and near-miss accidents is critical.

• Task completion rate: This measures the proportion of

pick-and-place tasks that were successfully completed

out of all tasks that were tried. It measures how

dependable and efficient the robot is in completing the

tasks that are assigned to it.

397

Chapter 9 IndustrIal robotICs

 Safety Considerations

When employing deep learning for industrial robotics, safety must always

come first in order to safeguard people and avoid accidents. Here are some

safety points to remember:

• Use safety sensors to keep an eye on the robot’s

surroundings and spot any sudden movements or

obstacles. When required, these sensors can initiate

emergency stops.

• When using cobots, make sure they follow safety

regulations by designing safety features like speed

monitoring and force-limiting joints to lessen the

possibility of accidents when interacting with people.

• Implement software capabilities that are linked to

safety, such as path tracking and collision detection.

These features can help the robot identify and react to

unforeseen objects or changes in its surroundings.

 Summary

In this chapter, you learned the following:

• Industrial robots perform tasks such as pick-and-place,

peg-in-hole, welding, and warehouse operations. Deep

learning allows robots to adapt to their environments,

improving their ability to identify objects, plan paths,

and execute tasks in unstructured environments.

• Industrial robots come in various forms depending on

their design and application. Standalone robots include

articulated robots with rotary joints, parallel robots for

398

Chapter 9 IndustrIal robotICs

high-speed assembly, and gantry robots. Collaborative

robots (cobots) work alongside humans with safety

features like force-limiting joints. Mobile robots, such

as AGVs and AMRs, handle inventory movement, while

humanoid robots mimic human movements.

• Robotics in manufacturing facilities is expanding due

to decreasing costs, improved capabilities, and the

need to automate complex tasks.

• The chapter explained a system design for pick-and-

place robots that are useful for assembly, sorting, and

packaging. The design includes a robotic arm equipped

with various end effectors, like grippers and vacuum

cups. Deep learning is used to improve grasping

accuracy through computer vision and reinforcement

learning, which allow the robot to adapt to diverse

environments and objects. Multimodal systems use

various sensory data, which can be useful for the robot

to process visual and tactile information.

• Performance metrics like object detection accuracy,

grasping success rate, cycle time, collision avoidance,

and task completion rate are crucial for improving

the efficiency and reliability of industrial robots in

real time. Ensuring safety is equally important by

requiring robots to have sensors for collision detection,

emergency stops, and force-limiting joints to prevent

accidents when working alongside humans.

The next chapter covers the hardware and software setup for

humanoid robots, including approaches for manipulation, walking,

teleoperation, and whole body manipulation.

399

Chapter 9 IndustrIal robotICs

References

[1] Quinlivan, Joseph. “How Amazon Deploys Robots in Its

Operations Facilities.” US Amazon, 26 June 2023, www.

aboutamazon.com/news/operations/how-amazon-

deploys-robots-in-its-operations-facilities.

[2] https://www.fanucamerica.com/solutions/

industries/automotive-robots

[3] https://new.abb.com/products/robotics

[4] https://new.abb.com/products/robotics/robots/

articulated-robots

[5] https://www.fanucamerica.com/products/robots/

series/m-20/m-20ia-35m

[6] https://www.kuka.com/en-ca/products/robotics-

systems/industrial-robots/kr-quantec

[7] Liu, Gene. “Tesla Factory Robots Named after X-Men

Superheroes.” TESLARATI, 18 Nov. 2014, www.teslarati.

com/tesla-factory-upgrade-facts-figures/.

[8] Black, Thomas. “GM Hooking 30,000 Robots to Internet

to Keep Factories Humming.” Bloomberg, 4 Apr. 2017,

www.bloomberg.com/news/articles/2017-04-04/

gm-hooking-30-000-robots-to-internet-to-keep-

factories-humming?embedded-checkout=true.

[9] https://www.robots.com/articles/how-toyota-uses-

automation-to-improve-processes

[10] https://www.fanucamerica.com/products/robots/

series/arc-mate

[11] https://new.abb.com/products/robotics/robots/

articulated-robots/irb-6700

400

Chapter 9 IndustrIal robotICs

[12] “Industrial Robotics.” McKinsey & Company, July 2019,

www.mckinsey.com/~/media/mckinsey/industries/

advanced%20electronics/our%20insights/growth%20

dynamics%20in%20industrial%20robotics/

industrial-robotics-insights-into-the-sectors-

future-growth-dynamics.ashx .

[13] “Fine Foods Packing Plant Uses ABB Cobots to Keep

Ahead of Competition.” ABB News, ABB Group, 7 Apr.

2022, new.abb.com/news/detail/89351/prsrl-fine-

foods-packing-plant-uses-abb-cobots-to-keep-

ahead-of-competition

[14] Labs, Wayne. “Robotic Vision Systems and Roles for

Cobotics.” Food Engineering RSS, Food Engineering,

3 Aug. 2020, www.foodengineeringmag.com/

articles/99045-a-further-look-at-robotic-vision-

systems-and-roles-for-cobotics

[15] https://www.gudel.com/products/robots/

gantry-robot

[16] https://www.universal-robots.com/products/

[17] https://www.waredock.com/magazine/what-is-

amazon-robotic-fulfillment-center/

[18] https://www.zebra.com/us/en/products/autonomous-

mobile-robots.html

[19] https://www.prnewswire.com/news-releases/

figure-announces-commercial-agreement-with-bmw-

manufacturing-to-bring-general-purpose-robots-

into-automotive-production-302036263.html

401

Chapter 9 IndustrIal robotICs

[20] Carter, Tom. “Tesla Has Put 2 Optimus Robots to

Work on Its Factory Floor.” Business Insider, 12 June

2024, www.businessinsider.com/tesla-says-two-

optimus-humanoid-robots-working-in-factory-

autonomously-2024-6.

[21] Davies, Alan, et al. “Getting Warehouse Automation

Right.” McKinsey & Company, McKinsey & Company,

1 Dec. 2023, www.mckinsey.com/capabilities/

operations/our-insights/getting-warehouse-

automation-right

[22] https://market.us/report/industrial-

robotics-market/

[23] Fleck, Anna. “Infographic: The Giants of Industrial

Robotics.” Statista Daily Data, 13 May 2024, www.

statista.com/chart/32239/global-market-share-of-

industrial-robotics-companies/.

[24] https://bostondynamics.com/products/spot/

[25] Moraes, Cassiano Ferro. “Pick and Place Robots: An in-

Depth Guide to Their Functionality and Applications.”

 Wevolver, 25 Mar. 2024, www.wevolver.com/article/

pick-and-place-robots-an-in-depth-guide-to-

their-functionality-and-applications

[26] “Everything You Need to Know about Pick and Place

Robots.” Robotic Automation Systems, 30 June 2023, www.

roboticautomationsystems.com/blog/everything-

you-need-to-know-about-pick-and-place-robots/

[27] Levine, Sergey, et al. “Learning hand-eye coordination

for robotic grasping with deep learning and large-scale

data collection.” The International Journal of Robotics

 Research 37.4-5 (2018): 421-436.

402

Chapter 9 IndustrIal robotICs

[28] Herzog, Alexander, et al. “Deep RL at scale: Sorting waste

in office buildings with a fleet of mobile manipulators.”

 arXiv preprint arXiv: 2305.03270 (2023).

[29] Lee, Kuang-Huei, et al. “PI-QT-Opt: Predictive

information improves multi-task robotic reinforcement

learning at scale.” Conference on Robot Learning.

PMLR, 2023.

[30] “Introducing RFM-1: Giving Robots Human-like

Reasoning Capabilities.” Covariant, 11 Mar. 2024,

covariant.ai/insights/introducing-rfm-1-giving-

robots-human-like-reasoning-capabilities/

[31] “Automation, Upgraded: Robotic Induction.” Covariant.

ai, 2022, covariant.ai/insights/automation-

upgraded-robotic-sorter-induction/.

[32] Zhu, Zuyuan and Huosheng Hu. “Robot learning from

demonstration in robotic assembly: A survey.” Robotics

7.2 (2018): 17.

[33] Phan, Gia-Hoang. “Integrating long short-term

memory for optimal control of 6-DOF welding robot

arm.” Advances in Mechanical Engineering 16.6 (2024):

16878132241260525.

[34] “Industrial Robotics Market.” Market.us, market.us/

report/industrial-robotics-market/

403

CHAPTER 10

Humanoid Robotics

Humanoid robotics concerns the study of robots that assume a human

form factor. The term is loosely applied to robots that try to match a human

form factor in various ways, and exact matching is not required. Usually,

this means mobile robots (walking and sometimes on wheels), with

human height (5 to 6 feet, although sometimes only as tall as children),

and bimanual platforms, with grippers or multi-fingered dexterous hands

for end effectors. Actuating a full humanoid—with legs, multi-fingered

hands, and torso and head mobility—may be harder, for which reason

roboticists may opt to simplify the platform in various ways (wheels

instead of legs, grippers instead of hands, etc.).

 The Case for Humanoids

There are several reasons why humanoid robotics is a popular strategy in

robotics:

1. The physical world is often designed for the

human form factor. Cups handles are made to be

manipulated by fingers, coke cans fit conveniently

in hands, kitchen counters are at heights accessible

by humans, and so on. This makes a case for why

having a human form factor may allow a robot to

perform lots of different tasks in environments

© Alishba Imran, Keerthana Gopalakrishnan 2025

405

A. Imran and K. Gopalakrishnan, AI for Robotics,

https://doi.org/10.1007/979-8-8688-0989-7_10

Chapter 10 humanoid robotiCs

designed for humans without modification, and

theoretically could reach human proficiency in

physical skills.

2. Internet scale models transfer general

intelligence to robotics. However, most of the

data powering Internet scale models is the Internet

itself and the Internet is a collection of human

experiences. Optimal control policies may differ

based on the bodies and intelligence may transfer

better from a human body to a humanoid form

factor than to other form factors, because the

embodiment gap is smaller.

3. A lot of valuable physical labor in the world is

performed by humans. Humanoids point to an

opportunity to supplement labor markets and

provide economic value without the need to invent

new markets.

 Alternative Approaches

A humanoid approach to robotics is to a greater degree vertically

integrated. This contrasts the extreme cross-embodied approach, which

builds general physical intelligence that may transfer to any robot body. It

is likely that solving robotics necessitates both approaches:

1. End-to-end ownership on deployment and data

with vertical integration and optimization of a

robot body.

2. Large cross-embodied foundation models that

provide general intelligence and reduce data

requirements to train a well actuated body.

406

Chapter 10 humanoid robotiCs

Humanoids are also general bodies that can perform a wide variety

of tasks with the same body. This contrasts the approach of building

specialized robots for specialized, repeatable tasks. Most robots deployed

in industries today are specialized robots:

1. Task specialization via general-purpose manipulator

arms; for example, a generic ABB arm[1] assembling

Printed Circuit Boards (PCBs).

2. Embodiment specialization for tasks; for example,

snake robots for pipe inspections.

The humanoid strategy cuts across task and embodiment

specialization toward generalization.

 Humanoid Markets

The humanoid space has multiple players at the moment, as shown in

Figure 10-1:

1. Intelligence providers: Companies that ship

foundation models, like Google[2], OpenAI[3],

Mistral[4], Meta[5], and so on. These companies

are building foundation models used for humanoid

development, have teams that are doing humanoid

research, or they are funding/partnering with

companies to conduct humanoid research.

2. Hardware providers: Companies that build

humanoid hardware, such as Boston Dynamics[6],

Fourier Intelligence[7], Unitree[8], Apptronik[9], and Agility[10].

407

[image: Image 203]

Chapter 10 humanoid robotiCs

3. Fully integrated providers: Companies that solve

intelligence and hardware: Tesla[11], Figure AI[12],

1x Technologies[13], and so on.

 Figure 10-1. The humanoid hardware market. Used with

 permission, source: https://lifearchitect.ai/humanoids/ by

 https://lifearchitect.ai/ [32]

These companies share several key ingredients that have contributed

to their success in humanoid development, including[14]:

1. Capital: Creating advanced robots can be

expensive, so having funding to support research,

development, and production of humanoid robots

is essential. Given the impact and growth of this

industry, investors are increasing funding toward

humanoid companies[15]. For example, Figure

AI, a California-based startup, raised $675 million

in a Series B round including LG, Samsung, and

Microsoft[15]. Similarly, Sanctuary AI, based in

Vancouver, has raised significant funds, including

recent investments from Accenture Ventures and

Magna[15]. These funds will be used to further

408

Chapter 10 humanoid robotiCs

their work in general-purpose humanoid robots.

The growing investment in humanoid technology

highlights the increasing belief in their potential

and the resources needed to bring these robots

to market.

2. Foundation Models: Large-scale AI models that

enable humanoids to understand and learn from

vast amounts of data are critical. These foundation

models demonstrate the cognitive abilities of

humanoid robots, allowing them to perform tasks

autonomously and adapt to new situations. Further,

these large-scale generalized models form the basis

to be fine-tuned for specialized tasks.

3. Data: Generally, the more data a robot has access

to, the better it can learn to perform tasks, recognize

objects, and understand human behavior. For

humanoids, this data can include anything from

images and videos to text and sensor data from real-

world environments.

4. Robots: The physical construction of humanoid

robots involves hardware and biomechanics such as

sensors, and actuators to create physical machinery

that can mimic human actions. Companies like

Boston Dynamics and Tesla invest heavily in this

field, developing robots that can lift heavy objects or

perform other complex movements with agility.

5. Compute: As you scale model size and data, having

compute infrastructure is critical to support the

training and testing of models on a vast amount

of data.

409

Chapter 10 humanoid robotiCs

The market for humanoid robots is projected to grow significantly, with

an estimated value of $4.85 trillion by 2035[14]. This is mostly driven by

the increasing adoption of humanoid robots in industrial and household

settings. In industries like manufacturing, humanoid robots are expected

to take over about 35 percent of current human tasks, which would

contribute to a $1.75 trillion market[14]. For households, these robots

could become common for tasks like cleaning and elderly care and grow

to a $2.8 trillion market[14]. As more advancements happen in tech and

prices drop, humanoid robots are likely to follow a similar adoption path

as electric vehicles, allowing them to become a daily part of our life and

improving industries and homes.

 How to Build a Humanoid

This section contains a rough overview of the techniques used to build and

control a humanoid.

 Hardware

Hardware design choices [16][17]:

1. Mobility: There are two commonly accepted

approaches to humanoid mobility:

a. Legged humanoids: These humanoids are equipped

with legs for walking. The advantage of this method

is that the humanoid can traverse multiple terrains,

environments with curbs or steps, and so on. A

second advantage is that the footprint of a legged

humanoid is smaller, and its dexterity toward whole

body manipulation is higher. For example, it can

traverse cluttered spaces and orient its legs in ways

410

Chapter 10 humanoid robotiCs

that distribute moment for lifting heavy objects,

manipulating far away objects on tables, and so on,

which could increase the workspace and payload

of a humanoid. (When humans lift a heavy box,

they often take a wide stance or put one leg in front

to distribute the load.) Downsides include the

fact that walking is a harder control problem and

it introduces an instability into the system. This

makes failures more catastrophic (if the humanoid

falls, it could damage itself, surrounding objects,

and cause injury). An interesting design choice for

legs is the reverse knee from agility[18].

b. Wheeled humanoids: The lower torso of the

humanoid is a wheeled platform, similar to Eve

from 1X technologies[19]. The main advantage of

this design choice is that stabilizing the robot is

easier. Wheels also allow the robot to be heavier

since distributing the weight doesn’t require

specific control. A downside is that the robot

may be useless in harder terrains and uneven

environments. Additionally, its ability to move

through cluttered spaces and do whole body

manipulation might be limited, therefore limiting

its workspace and flexibility.

2. End effectors: Humanoids may be equipped with a

variety of end effectors:

a. Grippers: Grippers are commonly used in robotics

and are rather easy to control due to the lower

degrees of freedom. This makes them a popular

choice for humanoids.

411

Chapter 10 humanoid robotiCs

b. Dexterous hands: Humanoids may also come

equipped with multi- fingered hands. Three-

fingered and five-fingered hands are popular

choices. Each finger adds additional degrees

of freedom, which then must be modeled and

controlled, adding to the complexity of control.

c. End effectors with tactile feedback: Force feedback

on hands allows for proprioceptive control, in

addition to visual, and is useful for manipulating

deformable and fragile objects. There is a tradeoff

with increased cost.

3. Wrist and head camera vs head camera only: It

has been shown that incorporating wrist-mounted

cameras can improve manipulation performance

compared to using only head-mounted cameras[20].

Having wrist cameras provides additional visual

feedback, improving spatial awareness and accuracy

in teleoperation and human-robot interactions.

4. Camera only vs camera and stereo/LiDAR

depth: Camera-only systems are simpler and

cheaper but face challenges in depth perception

and object recognition. Advanced ML techniques

can help overcome some of these limitations.

Most humanoid designs on the market do not

use LiDAR to keep the bill of materials smaller.

Therefore, methods using only a camera as a sensor

are preferred and may require more algorithmic

development.

412

Chapter 10 humanoid robotiCs

5. Linear/rotary actuators, hydraulic actuators:

Linear/rotary actuators are more accurate than

hydraulic ones. It is also messier to develop with

hydraulic actuators because of hydraulic systems

maintenance and potential fluid leaks, and so on. As

such, most humanoid companies, such as Boston

Dynamics, are moving to fully electric motors and

away from hydraulics[21].

A humanoid robot may have the following control parameters:

1. Head/hip position: This parameter controls the

vertical and horizontal positioning of the head and

hips, which allows the robot to orient itself and

interact with its environment from various angles.

2. Head rotation: This parameter controls the

rotational movement of the robot’s head, which

allows it to look in different directions. Head

rotation is important for focusing on specific objects

or areas.

3. Shoulder extensions/rotations: These parameters

manage the extension and rotational movements

of the robot’s shoulders. They position the arms

correctly for various tasks like reaching or lifting

objects.

4. Elbow flex: This parameter controls the bending

and straightening of the robot’s elbows. Elbow

flexion is useful for adjusting arm length and

positioning during manipulation tasks.

413

Chapter 10 humanoid robotiCs

5. Wrist joint rotations: This parameter monitors the

rotational movements of the wrist joints. Wrist joint

control is important for fine motor tasks.

6. Finger joints/gripper open-close: This parameter

controls the movement of individual finger joints

or the opening and closing of the robot’s gripper. It

allows the robot to grasp, hold, and release objects

with different degrees of force and precision.

7. Torso joint rotations/extensions: This parameter

monitors the rotational and extension movements

of the robot’s torso. It allows for adjustments in the

robot’s upper body posture, which is important for

maintaining balance and reaching different areas.

8. Hip joints: These parameters control the movement

of the robot’s hips, like rotation and tilt. Hip joint

control is important for walking, sitting, and

adjusting the way the robot stands.

9. Knee flexions: This parameter controls the bending

and straightening of the robot’s knees. Knee flexion

is used during walking, squatting, and maintaining

stability when doing activities.

10. Ankle joint rotations: This parameter manages the

rotational movements of the robot’s ankles. It helps

the robot adapt to uneven surfaces and maintain

balance while standing or moving.

11. Foot positions: This parameter controls the

placement and orientation of the robot’s feet.

Adjusting foot positions is important for walking

stability, posture, and navigation over different

terrains.

414

Chapter 10 humanoid robotiCs

While most people expect humanoids to be modeled after the human

form factor, humanoid design can happen in a way where they’ve fewer

or greater control parameters. The argument for fewer degrees of freedom

is that it is simplified and easier to control. The argument to make it more

complex is that machines are not bound to the limitations of the human

form factor: that they can have full rotations at various joints. A few

companies experimenting with the latter are Booster Robotics[22] and

Boston Dynamics.

 Software

This section describes the software stack of a typical humanoid and

approaches to learning or scripting humanoid control.

 Approaches to Manipulation

Humanoid manipulation is a problem of bimanual dexterous

manipulation and various control algorithms and techniques, discussed in

Chapters 4 and 5. As such, large-scale deployment of humanoids beyond demos is still an unsolved problem, which points to unsolved research

questions on generalizable ways to control a full humanoid. Imitation-

learned approaches with scalable data generation are common in

research, a recent example being Humanoid Shadowing Transformer[23],

which takes images from humanoids’ cameras and their proprioception

(joint positions) as inputs and uses a decoder only transformer to

learn control parameters from imitating humans. An overview of this

architecture is shown in Figure 10-2.

415

[image: Image 204]

Chapter 10 humanoid robotiCs

 Figure 10-2. Architecture of the humanoid shadowing

 transformer. Used with permission, source: https://arxiv.org/

 html/2406.10454v . HumanPlus: Humanoid Shadowing and Imitation from Humans by Zipeng Fu, Qingqing Zhao, Qi Wu,

 Gordon Wetzstein, and Chelsea Finn at Stanford University[23].

Learning from large video data is still the Holy Grail in terms of

unlocking general-purpose humanoid intelligence and the methods

covered in Chapters 4 and 5. Using simulation data should point in that direction. Human manipulation data has the lowest embodiment gap to

humanoid control, which makes transfer more likely and easier than for

any other embodiment due to structural similarity of policies.

 Approaches to Walking

Traditional approaches to solving walking included scripted approaches

that did not utilize machine learning. Since this book focuses on machine

learned approaches, this section covers some new and experimental

approaches to walking. A notable recent approach is from Radosavovic,

et al.[24], which treats humanoid walking as a next token prediction

problem. They train a walking neural network controller on many different

types of data, where some include action outputs and some don’t. The four

types of datasets they train on are:

416

Chapter 10 humanoid robotiCs

1. Neural network policies: Observation action pairs

generated in sim by an RL policy trained in sim.

2. Data from model based controllers: Trajectories

without actions, generated by a humanoid

company’s controller (in this case, Agility Robotics).

3. Mocap (motion capture) data: Data of humans

with markers on their bodies, such as KIT[25]. This

data was retargeted to the humanoid by using the

humanoid’s inverse kinematics model.

4. YouTube data of human poses: YouTube videos of

humans doing things, with pose estimation applied

to the videos and then retargeted onto humanoids

with the inverse kinematics model.

In order to train on data with lots of different modalities, the authors

use a mask token, initialized as a random vector to replace a missing

modality (e.g., action). They also use casual masking, meaning that each

token only attends to previous inputs. Figure 10-3 shows a schematic of

this. Due to these methods and the data sources used, they are able to

outperform reinforcement learned state-of-the-art methods and perform

zero-shot walking in unseen scenarios. Training in this manner exhibits

scaling with data, larger context lengths, and model size, indicating that

very large models with large datasets and generic capabilities may be built

by scaling strategies similar to ones deployed in large foundation model

training.

417

[image: Image 205]

Chapter 10 humanoid robotiCs

 Figure 10-3. Training with missing data. Used with permission,

 source: https://arxiv.org/pdf/2402.19469 [24]

 Approaches to Teleoperation and Data

One way to control humanoids is through teleoperation, which provides

many ways to improve the functionally of humanoids. Teleoperation

techniques for humanoid bimanual operation include several design

choices that may be relevant:

1. VR headset teleoperation vs line-of-sight: In a

VR headset teleoperation mode[29], the operator

who controls the humanoid is only subjected to the

images from the humanoid’s camera. This ensures

that the observation for training learned policies

have as much information to do the task as the

operator does. Since the operator can succeed at

the task, one can assume that a minimum set of

features to finish the task is captured in the dataset.

However, a robot’s camera stream may have several

downsides, including inaccurate depth perception

compared to humans. This would lower the success

of tasks and the throughput of data collection

for imitation learning. One way to deal with this

inaccurate depth perception is by doing line-of-sight

418

Chapter 10 humanoid robotiCs

teleoperation, such as in ALOHA[26] and RT_1[28].

While line-of-sight teleoperation is very natural for

humans, it may not capture head movements (i.e.,

information about where to look/where to direct

the camera). As such, line-of-sight teleoperation

is more useful for stationary setups and operation

on table tops than for mobile robots or whole body

manipulation.

2. Puppeteering vs VR: In a puppeteering setup, there

are two sets of robot arms—one is the leader and

the other the follower (the puppet). In practice, data

from puppeteering is cleaner because the leader and

follower are often identical, as in ALOHA[26], and

the leader is physically moved by a teleoperating

human. The movement and similarity of the two

arms ensures that the targets conceived by the leader

are achievable by the follower. In a VR setup, targets

set by a VR controller operated by a human are

retargeted on to the robot and may include tracking

errors or infeasible inverse kinematics (IK) since

the human arm is not exactly identical to the robot

arm. However, since puppeteering involves two sets

of robots (the puppet and the puppeteer), it may

become more expensive depending on the setup.

3. Motion capture: In motion capture

teleoperation[30][31], a computer vision algorithm

is run on video streams of humans doing things,

such as detecting poses of body parts, and these

targets are retargeted on to a robot to control the

robot. Some of these algorithms are quite similar to

the ones covered in Chapter 4.

419

Chapter 10 humanoid robotiCs

 Approaches to Whole Body Manipulation

Whole body manipulation (walking and performing a task at the same

time) may be taught entirely by learning/modeling all joints of a robot. But

whole body teleoperation is much harder and requires full exoskeletons.

This section introduces a hybrid approach to whole body manipulation—

one that uses learning for the upper body/arms and scripting for the

lower body. In a world where we expect robots to do a lot of manual

labor, manipulation may be a more valuable skill than navigation, and a

hybrid approach allows manipulation or the placement of hands/arms to

drive the modeling of the rest of the robot. So, for example, accurate foot

placement is driven by the goal of opening the door, and correct hand

placement and movement for it, but here the role of the lower body is

simply to allow for these arm/hand movements while keeping the body

stable and moving.

One such approach is TRILL (Teleoperation and Imitation Learning for

Loco-manipulation)[27] from UT Austin, where robot arm manipulation

is learned via deep imitation of human arms/hands via VR teleoperation.

The method is hierarchical and consists of a high-level learned

policy that generates trajectories based on language goals and image

observations, and a low-level whole body controller that converts these

learned trajectories into joint torques. Figure 10-4 shows a schematic of

TRILL. Modeling high-level behaviors via a learned policy allows it to

model semantics (move hand) as opposed to modeling individual joints,

and makes the robot efficient in learning longer horizon behaviors, even

with a smaller modeling capacity.

420

[image: Image 206]

Chapter 10 humanoid robotiCs

 Figure 10-4. Overview of how TRILL works. Used with permission,

 source: https://arxiv.org/pdf/2309.01952 [27]

 Conclusion

Widely deployed, generally intelligent, dexterous humanoids could

transform the labor market. Recent advances in embodied AI provide an

opportunity to unlock this futuristic technology. They include:

1. The potential market use cases for humanoids and

cost-benefit tradeoffs

2. Hardware design choices for building effective

humanoids

3. Learning and data approaches for scaling humanoid

intelligence

The authors believe that humanoids will be an important robotics area

in the future and we recommend digging deeper using the references and

papers cited in this chapter.

421

Chapter 10 humanoid robotiCs

 Summary

This chapter covered the following points:

• The usefulness of humanoid robots by highlighting

their ability to operate in environments designed for

humans. This includes tasks like handling objects

designed for human hands or navigating spaces like

kitchens and offices. The humanoid robot market is

divided into three main categories: foundational model

providers (e.g., Google, OpenAI); hardware providers

(e.g., Boston Dynamics, Unitree) that build physical

robots; and fully integrated companies (e.g., Tesla,

Figure AI) that combine AI and hardware for complete

humanoids.

• Key hardware design decisions include choosing

between legged and wheeled mobility, simple grippers

versus dexterous hands, and different camera setups

(head-mounted, wrist-mounted, or additional sensors).

Linear and rotary actuators are often preferred over

hydraulic ones due to their precision and easier

maintenance.

• Methods like imitation learning and advanced walking

algorithms can improve humanoid performance.

Teleoperation techniques include VR headsets, line-of-

sight control, puppeteering, and motion capture, each

of which has unique benefits and challenges.

• Hybrid systems like TRILL combine learning-based

control for upper-body manipulation with scripted

stability for the lower body and help balance flexibility

and control.

422

Chapter 10 humanoid robotiCs

The next chapter brings together all the concepts we’ve covered by

exploring data infrastructure, training and deployment strategies, and

large-scale robotic data collection, all of which are essential for real-world

robotics.

References

[1] https://new.abb.com/products/robotics/robots

[2] https://research.google/research-areas/robotics/

[3] https://www.prnewswire.com/news-releases/

figure-raises-675m-at-2-6b-valuation-

and-signs-collaboration-agreement-with-

openai-302074897.html

[4] https://mistral.ai/

[5] https://ai.meta.com/research/

[6] https://bostondynamics.com/

[7] https://fourierintelligence.com/

[8] https://www.unitree.com/

[9] https://apptronik.com/

[10] https://agilityrobotics.com/

[11] https://www.tesla.com/

[12] https://www.figure.ai/

[13] https://www.1x.tech/

[14] Caspi, Ido. “The Rise of Humanoids, Explained.” Global X

 ETFs, 1 Mar. 2024, www.globalxetfs.com/the-rise-of-

humanoids-explained/.

423

Chapter 10 humanoid robotiCs

[15] Andonov, Kaloyan. “Humanoid Robot Startups Attract

Corporate Investment.” Global Corporate Venturing,

26 June 2024, globalventuring.com/corporate/

investment/humanoid-robot-startups-attract-

corporate-investment/.

[16] Ficht, Grzegorz, and Sven Behnke. “Bipedal humanoid

hardware design: A technology review.” Current Robotics

 Reports 2 (2021): 201-210.

[17] Mesbahi, Mina. “Design Considerations for Humanoid

Robots.” Wevolver, 23 Oct. 2020, www.wevolver.

com/article/design-considerations-for-

humanoid-robots.

[18] Ackerman, Evan. “Agility Robotics Raises $8 Million

for Commercial Bipedal Robots.” IEEE Spectrum, 22

Mar. 2018, spectrum.ieee.org/agility-robotics-

raises-8-million-for-commercial-bipedal- robots.

[19] https://www.1x.tech/androids/eve

[20] Wood, Chris. “Hand-Mounted Cameras Make Robots

Better at Mapping Their Environments.” New Atlas,

17 May 2016, newatlas.com/hand-mounted-camera-

robots-manipulation/43375/.

[21] https://bostondynamics.com/blog/electric-new-

era-for-atlas/

[22] https://www.boosterobotics.com/

[23] Fu, Zipeng, et al. “HumanPlus: Humanoid Shadowing

and Imitation from Humans.” arXiv preprint

 arXiv: 2406.10454 (2024).

424

Chapter 10 humanoid robotiCs

[24] Radosavovic, Ilija, et al. “Humanoid locomotion

as next token prediction.” arXiv preprint

 arXiv: 2402.19469 (2024).

[25] Plappert, Matthias, Christian Mandery, and Tamim

Asfour. “The kit motion-language dataset.” Big Data 4.4

(2016): 236-252.

[26] Fu, Zipeng, Tony Z. Zhao, and Chelsea Finn. “Mobile

aloha: Learning bimanual mobile manipulation with

low-cost whole-body teleoperation.” arXiv preprint

 arXiv: 2401.02117 (2024).

[27] Seo, Mingyo, et al. “Deep imitation learning for

humanoid loco-manipulation through human

teleoperation.” 2023 IEEE-RAS 22nd International

Conference on Humanoid Robots (Humanoids).

IEEE, 2023.

[28] Brohan, Anthony, Noah Brown, Justice Carbajal, Yevgen

Chebotar, Joseph Dabis, Chelsea Finn, Keerthana

Gopalakrishnan, et al. “Rt-1: Robotics transformer

for real-world control at scale.” arXiv preprint

 arXiv:2212.06817 (2022).

[29] Allspaw, Jordan, Gregory LeMasurier, and

Holly Yanco. “Implementing Virtual Reality for

Teleoperation of a Humanoid Robot.” arXiv preprint

 arXiv:2104.11826 (2021).

[30] https://www.movella.com/resources/cases/

humanoid-robots-learning-human-movement-using-

xsens-motion-capture

425

Chapter 10 humanoid robotiCs

[31] Kim, Seungsu, ChangHwan Kim, and Jong Hyeon Park.

“Human-like arm motion generation for humanoid

robots using motion capture database.” In 2006 IEEE/

 RSJ International Conference on Intelligent Robots and

 Systems, pp. 3486-3491. IEEE, 2006.

[32] “Humanoid Robots Ready for LLMs.” Dr Alan

D. Thompson. LifeArchitect.ai, Aug. 2023,

lifearchitect.ai/humanoids/.

426

CHAPTER 11

Data-Driven Robotics

in Practice

Data-driven robotics is sustained by far more activities than developing

algorithms and programming robots. In fact, a large part of the bet is

about scaling robot datasets[1] to accumulate skills that are as general as

possible.

This chapter discusses the practical aspects of data-driven robotics.

Data flywheels are the heart of data-driven robotics, but this is a relatively

small body of published work. We invite our readers to refer to [10], [12], and [16] to learn about practical aspects of imitation learning flywheels

and to [14] for RL flywheels.

 Robot Operations

Robot operations encompass the day-to-day management and control

of robots in their working environments. For data-driven robot learning,

robot data is the lifeline of the operations. Robot operations involve

managing the following:

1. Deployment of robots: Installing, configuring, and

powering robot hardware in the target environment.

For navigation research on legged robots, this also

involves setting up gantries to catch unstable robots.

© Alishba Imran, Keerthana Gopalakrishnan 2025

427

A. Imran and K. Gopalakrishnan, AI for Robotics,

https://doi.org/10.1007/979-8-8688-0989-7_11

Chapter 11 Data-Driven robotiCs in praCtiCe

2. Monitoring and maintenance: Involves

continuously monitoring robot performance and

system health. Also involves calibrating sensors and

replacing parts/repair of robots.

3. Organization: Teleoperator scheduling to perform

human aided data collection.

Most robotics teams have dedicated operations that are in charge of

maintaining the hardware and software builds.

Safe operation of robots is an important component of operations.

Common safety procedures used in robotics include[10]:

1. E-stops (emergency stops) to freeze robots in place

via manual intervention during emergencies or

routine operations

2. Hard e-stops to cut power to robot actuators during

emergencies

3. Hardware modifications for low impact upon

collisions[18]

4. Onboard software limitations on maximum speed

and acceleration of actuators, and maximum

allowed force on end effectors

5. Human-in-the-loop intervention in real time to

handle tricky scenarios that an onboard model

cannot handle[18]

6. Foundation model safety for contextual evaluation

of safety scenarios[10]

Organizations that prioritize safety invest a lot of resources to ensure

safe deployment of robots. This can have huge consequences for the

trajectory of the program and the whole industry. Past incidents in

428

Chapter 11 Data-Driven robotiCs in praCtiCe

self-driving safety have taken human lives[8], caused grave injuries[9],

and crippled the companies and set back entire industries. Bringing a

new technology to market and allowing it to win the trust of consumers

requires acting responsibly.

 Data Infrastructure

Data infrastructure plays a critical role in collecting, storing, processing,

and analyzing data generated by robots, from sensor readings to

performance metrics (see Figure 11-1). Key components of data

infrastructure include:

1. Data collection and logging: Making sure that data

coming from the robots is synchronized to represent

an MDP/POMDP in (state, action, reward) tuples.

Sometimes this requires that sensors that update

at a faster rate are downsampled to match control

frequency.

2. Data storage: Involves building frameworks to

store large quantities of robot data. TFexamples is a

commonly used storage format[2].

3. Data labeling: This involves building pipelines to

get labeled data from sources like mechanical turk

or Scale AI that utilize human labelers to examine

and rate robot data. Human labeling is used in robot

learning in a variety of ways:

a. Success detection labeling for episodic data.

Labelers can act as an independent arbitrator of

success and define why an episode failed with

visual grounding (which frames had the incident)

[18][12][10].

429

Chapter 11 Data-Driven robotiCs in praCtiCe

b. Interleaved labeling for video segmentation. This

can teach models about what happened during

what part of policy execution, where policies went

wrong during execution, how to reason about

data quality, the smoothness of trajectories, and

so on[18].

c. Visual question-answering datasets to learn

reasoning over robotics data[18][19].

4. Data processing and loading:

a. Loading teleoperator collected data for training,

and allowing it to train on specific partitions of the

dataset for ablation experiments

b. Integrating hindsight relabeling back into datasets

c. Allowing post processing of datasets for additional

feature extractions, such as what's done in

RTTrajectory[3] (where trajectories were added

back into datasets for training) and RobotMOO

(where object-centric labels were added back into

training)

5. Data analysis: Employing machine learning and

data analytics techniques to extract insights from

robot data.

a. Offline analysis of data include areas like

determining spread of data over objects, actions,

and 3D trajectories[20]

b. Offline metrics provide proxy objectives to

evaluate the capacity of a dataset to give rise to

generalization[12][10]

430

[image: Image 207]

Chapter 11 Data-Driven robotiCs in praCtiCe

c. Additionally, offline metrics can be used to guide

online data collection (more of which tasks to

collect for, which object configurations are missing,

etc.)[10]

 Figure 11-1. Top: A 3D span of interactions in many datasets,

 source[20] Bottom: Trajectory visualizations in MotIF1k, source[13].

 Figure used under CC 4.0

A well-designed data infrastructure saves a lot of developer time by

making it easier to gather valuable insights into robot performance, as well

as to run experiments.

 The Training and Deployment Infrastructure

Training robots to perform complex tasks requires a dedicated

infrastructure that provides the necessary resources for simulation,

learning, and evaluation. Training infrastructure encompasses:

1. Training algorithms: This involves developing and

implementing machine learning algorithms that

enable robots to learn from data and experience.

Generally, organizations develop either imitation

431

Chapter 11 Data-Driven robotiCs in praCtiCe

learning based algorithms or reinforcement learning

based algorithms, both of which require a similar

infrastructure. Both types require breaking robotics

data down into (state, action, reward) tuples, where

action becomes the target to train upon for imitation

and reward is largely used only in reinforcement

learning setups.

Since RL requires improvement from experience,

bootstrapping becomes a prerequisite. Gathering

good data requires a good policy, and this policy

is often first trained in simulation, before being

deployed in the real world, such as in QtOpt[5].

Hence, simulation has a larger role in an RL

framework over an imitation learning framework.

2. Performance evaluation: This involves assessing

robot performance through metrics and

benchmarks to measure progress and identify

areas for improvement. Evaluation involves the

following types:

a. Offline evaluation: This is inferred by using the loss

on validation sets or by running inference on test

splits of data and comparing results against ground

truth[10][12].

b. Evaluation in simulation: If simulation closely

mocks real-world performance, simulation can

be used to scale up evaluation[6][12]. Generative

AI can be used to build very realistic simulation

environments to test model performance[7].

432

[image: Image 208]

Chapter 11 Data-Driven robotiCs in praCtiCe

3. Distributed infrastructure: For load allocation

during training and for faster inference during

deployment, efficient use of allocated compute is

necessary for ensuring optimality of foundation

models trained. This was explored in Chapter 4.

 Robot Data Flywheels

The successful integration of robot operations, data infrastructure, and

training/deployment infrastructure is crucial for maximizing the value

of robots. Combined, this system is called the robot data flywheel (see

Figure 11-2) and can result in models with increasing capabilities via

acquiring new data. Data flywheels are the heart of any AI-driven robotics

research lab.

 Figure 11-2. Schematic diagram of a robot data flywheel

433

Chapter 11 Data-Driven robotiCs in praCtiCe

With a robot data flywheel, organizations can:

1. Continuously improve robot performance:

Leverage data insights to identify areas for

improvement and refine robot training processes.

2. Adapt to changing environments: Collect new

environments to quickly adapt a foundation model

to new situations and unseen tasks.

3. Optimize resource utilization: Analyze data

to optimize robot deployment, scheduling, and

maintenance strategies.

In conclusion, the integration of robot operations, data infrastructure,

and training infrastructure forms the foundation for successful robot

deployment and utilization. By effectively managing robots, harnessing

data insights, and supporting ever-changing research processes,

organizations can move fast in robotics.

The next section examines a couple of data-driven robotics projects.

 Large-Scale Robotic Data Collection

AutoRT[10] is a recent system from Google DeepMind that uses LLMs and

VLMs in the loop for large-scale robot orchestration and data collection

for in-the-wild scenarios (see Figure 11-3). This method uses a variant

of curiosity-driven exploration, where robots roam areas that may be

inhabited by humans, and reason using VLMs and LLMs for feasible

tasks to do, then call a remote human/onboard action model to perform

inference based on affordance estimation of the task vis-à-vis capabilities

of autonomous models. After collection of that episode, the episode gets a

diversity rating based on its first and last images.

434

[image: Image 209]

Chapter 11 Data-Driven robotiCs in praCtiCe

 Figure 11-3. Schematic diagram of AutoRT, source: https://arxiv.

 org/pdf/2401.12963 [10]. F igure used under CC 4.0

To decide which tasks are feasible and useful to do, AutoRT introduces

a robot constitution guide behavior. The constitution has three sections:

1. Fundamental rules: Derived from Asimov’s laws,

these rules talk about how robots should not do

anything that would harm a human.

2. Safety rules: Describes tasks that are unsafe to do

based on current capabilities in deployment, such as

not to deal with sharp objects, electrical appliances,

or living beings.

435

[image: Image 210]

Chapter 11 Data-Driven robotiCs in praCtiCe

3. Embodied specific rules: These rules inform the

robot of its own affordance; for example, that it is a

unimanual robot, meaning that it has to reject tasks

that require two arms.

Scaling robotic datasets requires one-on-one human supervision,

which means that the number of human teleoperators are a bottleneck to

scaling. AutoRT was able to achieve a one-to-five human-to-robot ratio,

with humans acting only to intervene. This introduced a way to scale robot

deployment and learn from in-the-wild data. See Figure 11-4.

 Figure 11-4. Scaling unique tasks in datasets, number of episodes,

 number of robots deployed simultaneously. AutoRT controlled 55

 robots over its six month lifetime with a peak load of 20, source:

 https://arxiv.org/pdf/2401.12963 [10]. F igure used under CC 4.0

436

Chapter 11 Data-Driven robotiCs in praCtiCe

While AutoRT was successful in collecting highly diverse data, the

method informs future data collection efforts in the following ways:

1. The best dataset is not the largest dataset or the

most diverse dataset, it is the dataset that leads to

the best policy improvement. While diversity and

size are proxy objectives, it is important to verify that

you are collecting the right data by doing frequent

trainings and evaluation of the collected data.

2. While autonomously collected data may be a

promising way to harvest data without linearly

scaling humans involvement, learning from that

data efficiently is less than solved. Most foundation

models sit atop of scaled imitation learning

algorithms, but imitation learning shows worse

 performance when lower quality data is added, and

imitation learning loses RL’s ability to trajectory

stitch from suboptimal trajectories. Combining

imitation and reinforcement in a complementary

manner in robotics may become a winning recipe.

3. Highly diverse data may be too wide of a distribution

for current models to learn. The construction of a

dataset should depend on the sample efficiency of

the underlying policies. Training from a smaller,

but carefully curated high-quality dataset may

yield more improvement than training from large

quantities of weak data. That means that tracking

quality while scaling data becomes important.

437

Chapter 11 Data-Driven robotiCs in praCtiCe

 Recipes for the Future

At the precipice of where robotics stands today, there are enough

compelling pieces of evidence that the key to solving robotics and building

general purpose, generally intelligent robots lies in building very good

robot foundation models. As such, finding a way to make robotics look

more and more like a vision-language problem will be necessary to bring

the two worlds together coherently.

–

Motion generalization may be the last remaining

fundamental research problem in robotics. As argued

in [13] and [11], VLMs at the moment cannot suffi-

ciently understand trajectories, and their ability to

come up with new motions is limited to their datasets,

which are costly to acquire. Improving reasoning about

motions via motion-centric visual representations

(such as in [3] and [13]) or via learning from Internet

videos[15] may be necessary to unlock and scale-

motion generalization, and therefore endow VLMs with

the ability to reason about motions as easily as they do

about images and language.

–

Understanding how VLAs scale and what the empirical

scaling laws may be that govern them is critical to

understanding and projecting how the field evolves.

–

The next era will also see robots and robot foundation

models increasingly deployed in the real world for

dexterous manipulation. There’s no scaling without

scale itself, and we need to bring robots into the real

world to capture diversity and scale.

438

Chapter 11 Data-Driven robotiCs in praCtiCe

–

Safety and alignment in general-purpose robots will be

a necessary condition to large-scale deployment, and

making breakthroughs in this area will be crucial to

push for real-world usage.

–

Autonomy through hill-climbing with scaled, semi-

autonomous systems, with the performance gap

bridged via intervention with humans-

in- the loop, may be another key trend we will see in

the future.

Acting intelligently in the physical space is an emergent property

of a large audio-visual language agent, and intelligence at the most

fundamental level is the same, whether its expression is digital or physical.

The authors are excited to see how this field evolves, and how you, the

reader, will go forth and shape it!

References

[1] Banfield, Richard. “Physical Intelligence Raises $70M

to Build AI-Powered Robots for Any Application.”

 Maginative, 12 Mar. 2024, www.maginative.com/

article/physical-intelligence-raises-70m-to-

build-ai-powered-robots-for-any-application/.

[2] https://www.tensorflow.org/api_docs/python/tf/

train/Example

[3] Gu, Jiayuan, Sean Kirmani, Paul Wohlhart, Yao Lu,

Montserrat Gonzalez Arenas, Kanishka Rao, Wenhao

Yu, et al. “Rt-trajectory: Robotic task generalization

via hindsight trajectory sketches.” arXiv preprint

 arXiv:2311.01977 (2023).

439

Chapter 11 Data-Driven robotiCs in praCtiCe

[4] Stone, Austin, Ted Xiao, Yao Lu, Keerthana

Gopalakrishnan, Kuang-Huei Lee, Quan Vuong, Paul

Wohlhart, et al. “Open-world object manipulation using

pre-trained vision-language models.” arXiv preprint

 arXiv:2303.00905 (2023).

[5] Kalashnikov, Dmitry, Alex Irpan, Peter Pastor, Julian

Ibarz, Alexander Herzog, Eric Jang, Deirdre Quillen, et al.

“Scalable deep reinforcement learning for vision-based

robotic manipulation.” In Conference on Robot Learning,

pp. 651-673. PMLR, 2018.

[6] Li, Xuanlin, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier

Mees, Homer Rich Walke, Chuyuan Fu, et al. “Evaluating

Real-World Robot Manipulation Policies in Simulation.”

 arXiv preprint arXiv:2405.05941 (2024).

[7] https://www.1x.tech/discover/1x-world-model

[8] https://www.wired.com/story/ubers-fatal-

self-driving-car-crash-saga-over-operator-

avoids-prison/

[9] https://fortune.com/2024/05/16/inside-gm-cruise-

self-driving-car-accident-san-francisco-what-

really-happened/

[10] Ahn, Michael, Debidatta Dwibedi, Chelsea Finn,

Montse Gonzalez Arenas, Keerthana Gopalakrishnan,

Karol Hausman, Brian Ichter, et al. “AutoRT: Embodied

foundation models for large scale orchestration of

robotic agents.” arXiv preprint arXiv:2401.12963 (2024).

440

Chapter 11 Data-Driven robotiCs in praCtiCe

[11] Brohan, Anthony, Noah Brown, Justice Carbajal, Yevgen

Chebotar, Xi Chen, Krzysztof Choromanski, Tianli Ding,

et al. “Rt-2: Vision-language- action models transfer

web knowledge to robotic control.” arXiv preprint

 arXiv:2307.15818 (2023).

[12] Brohan, Anthony, Noah Brown, Justice Carbajal, Yevgen

Chebotar, Joseph Dabis, Chelsea Finn, Keerthana

Gopalakrishnan, et al. “Rt-1: Robotics transformer

for real-world control at scale.” arXiv preprint

 arXiv:2212.06817 (2022).

[13] Hwang, Minyoung, Joey Hejna, Dorsa Sadigh, and

Yonatan Bisk. “MotIF: Motion Instruction Fine-tuning.”

 arXiv preprint arXiv:2409.10683 (2024).

[14] Herzog, Alexander, Kanishka Rao, Karol Hausman, Yao

Lu, Paul Wohlhart, Mengyuan Yan, Jessica Lin, et al.

“Deep RL at scale: Sorting waste in office buildings

with a fleet of mobile manipulators.” arXiv preprint

 arXiv:2305.03270 (2023).

[15] Hou, Shuaiying, Hongyu Tao, Junheng Fang,

Changqing Zou, Hujun Bao, and Weiwei Xu.

“Learning Human Motion from Monocular Videos

via Cross-Modal Manifold Alignment.” arXiv preprint

 arXiv:2404.09499 (2024).

[16] Jang, Eric, Alex Irpan, Mohi Khansari, Daniel Kappler,

Frederik Ebert, Corey Lynch, Sergey Levine, and Chelsea

Finn. “Bc-z: Zero-shot task generalization with robotic

imitation learning.” In Conference on Robot Learning,

pp. 991-1002. PMLR, 2022.

[17] https://evjang.com/2024/08/31/motors.html

441

Chapter 11 Data-Driven robotiCs in praCtiCe

[18] Sermanet, P., Ding, T., Zhao, J., Xia, F., Dwibedi, D.,

Gopalakrishnan, K., Chan, C., Dulac-Arnold, G.,

Maddineni, S., Joshi, N.J. and Florence, P., 2024, May.

Robovqa: Multimodal long-horizon reasoning for

robotics. In 2024 IEEE International Conference on

 Robotics and Automation (ICRA) (pp. 645-652). IEEE.

[19] Du, Yilun, Mengjiao Yang, Pete Florence, Fei Xia,

Ayzaan Wahid, Brian Ichter, Pierre Sermanet,

et al. “Video language planning.” arXiv preprint

 arXiv:2310.10625 (2023).

[20] Khazatsky, Alexander, Karl Pertsch, Suraj Nair, Ashwin

Balakrishna, Sudeep Dasari, Siddharth Karamcheti,

Soroush Nasiriany, et al. “Droid: A large-scale in-

the-wild robot manipulation dataset.” arXiv preprint

 arXiv:2403.12945 (2024).

442

Index

A

C

Accelerometers, 51

Carnegie Mellon University

Action chunking, 171

(CMU), 353

Active Domain Randomization

Charge-Coupled Device (CCD), 37

(ADR), 227

ChatGPT, 3

Additive attention, 82

Classifier-free guidance, 187

Advanced driver-assistance system

Classifier-guided diffusion, 186

(ADAS), 40

Collaborative Robots (Cobots), 381

AI-driven robots, 199

Complementary filters, 52

Artificial general intelligence

Complementary Metal-Oxide

(AGI), 19, 23

Semiconductor (CMOS), 37

Artificial Intelligence (AI), 19

Compound Annual Growth Rate

Artificial Super Intelligence

(CAGR), 4

(ASI), 19

ConceptFusion, 279

Automated guided vehicles (AGVs),

Consumer Price Index (CPI), 1

379, 382

Contrastive Video Representation

Autonomous Mobile Robots

Learning (CVRL), 193

(AMRs), 382

Convolutional neural networks

AutoRT, 436, 437

(CNNs), 390

EfficientNet, 76

B

faster R-CNN, 67–69

FC layers, 61

BEVFusion, 132

layers, 62–66, 97

Bird’s-eye view (BEV), 134

mask R-CNN, 71

Boston Dynamics

ResNet, 72–75

spot robot, 312

Cross entropy method, 236

Bullet Physics simulator, 237

Cross-modal fusion strategy, 128

© Alishba Imran, Keerthana Gopalakrishnan 2025

443

A. Imran and K. Gopalakrishnan, AI for Robotics,

https://doi.org/10.1007/979-8-8688-0989-7

INDEX

Cyberattacks, 368

Direct preference optimization

CycleGAN, 231

(DPO), 143, 198, 347

Disengagement, 354

D

Domain randomization, 224

Dynamic Graph CNN

Data-driven robotics

(DGCNN), 133

algorithms and programming

robots, 427

data infrastructure, 429–431

E

LLMs/VLMs, 434, 435, 437

EfficientNet, 76

robot data flywheel, 433, 434

Embodied PaLM, 157

robot operations, 427–429

End-to-end robot control

training/deployment

action diffusion, 188–190

infrastructure, 431, 432

autoregressive

vision-language problem,

transformers, 169–176

438, 439

conditional generation, 186, 187

DeepFusion, 128, 129

DDIM, 183–185

Deep learning (DP), 19

DDPMs, 180–183

hybrid strategy, 267–269

diffusion models, 176–180

labeled datasets, 303

generalization, 168

methods, 267

End-to-End Self-Driving (E2E), 357

traditional methods, 266

Event-based cameras, 40

typical mobile robot setup, 269

Deep learning (DL), 19

Deep Planning Network

F

(PlaNet), 330

Failsafe mechanisms, 195

Degrees of freedom (DoF), 12

Fast R-CNN, 67

Denial-of-Service (DoS), 194

Foundation models

Denoising Diffusion

AI safety, 194–197

Implicit Models

components, 141

(DDIM), 183

compositional approach,

Denoising Diffusion Probabilistic

140, 141

Models (DDPMs), 180

evaluating language

Detection transformers (DETR), 98

models, 148–150

444

INDEX

human annotators, 142, 143

markets, 407–409

large multimodal model, 140

methods, 422

LLM post-training strategy, 144

software

pre-trained language

manipulation approaches,

model, 143

415, 416

scaling laws, language

teleoperation/data, 418, 419

models, 144–148

walking approaches, 416–418

whole body

G

manipulation, 420

Humanoid robots, 384

Gazebo, 221, 254

Generative Adversarial Network

(GAN), 231

I, J

Goal-conditioned reinforcement

Image classification, 54

learning (GCRL), 23

Image encoder, 140

Google’s MT-Opt, 346

Image segmentation

Gradient-based optimization, 324

convolutional encoder-decoder

Graphics Processing Units

architecture, 55

(GPUs), 16

object detection, 60

Grippers, 411

pixels, 54

Guided Domain Randomization

types, 55

(GDR), 227

instance, 57–59

Gyroscopes, 51

semantic, 56, 57

Industrial robots

H

Cobots, 381, 382

deep learning techniques, 375

Humanoid robotics

humanoid, 384

approaches, 406

industrial and manufacturing

categories, 422

settings, 375

dexterous, 421

market opportunity, 384–386

hardware, 410–414

mobile, 382, 383

human form factor, 405

performance metrics, 399

humanoid case, 405

safety, 398

hybrid systems, 422

standalone, 380

445

INDEX

Industrial robots (cont.)

Learnable Alignment

tasks, 398

(LearnableAlign), 130

peg-in-hole, 377, 378

Learning from video

pick-and-place, 376, 377

demonstrations (LfV)

warehouse, 379

challenges, 191

welding, 378

generalization, 190

Inertial measurement units

world model, 191–193

(IMUs), 5, 36, 37, 45

LiDAR-camera fusion methods, 133

Instance segmentation, 57

Light Detection and Ranging

Intersection over Union (IoU), 57

(LiDAR), 45

Llama 3, 140

Localization, 265

K

2D-to-2D, 281, 282, 284

Kalman filters, 52, 266

2D-to-3D, 284, 286

3D-to-3D, 286, 287

L

Language

M

human knowledge, 151

Machine learning (ML), 19

mapping, 160, 162

Machine learning perception

planning

systems, 35

approaches, 152

Magnetometers, 52

challenges, 158, 159

Mapping, 265

closed loop, 155, 156

geometric

LLM, 152

definition, 270

multimodal, 156–158

depth

open loop SayCan, 153, 154

representation, 270–272

reward, 162, 163

NeRFs, 274–277

robot code, 164, 165, 167

voxel, 272–274

Language Embedded Radiance

scene map, 270

Fields (LeRFs), 278

semantic

Language models, 3

ConceptFusion, 279, 280

Large language

definition, 277

models (LLMs), 134

LeRF, 278

446

INDEX

Markov Decision Processes

legged robots, locomotion

(MDPs), 223, 296, 320, 346

hardware, 294, 295

Mean average overlap (mAP), 58

learning-based methods,

MineCLIP, 242

296, 297, 300–303

MineDojo, 254

MDP formulation, 296

Model-based reinforcement

simulation, 295

learning, 327, 328

VLA, 288, 289, 304

Model-free reinforcement

VLM, 288–291

learning, 318

Neural Radiance Fields (NeRFs),

Moore’s law, 2

274, 304

Mordor Intelligence, 4

NLMap-SayCan, 160

Multi-Joint Dynamics with Contact

(MuJoCo), 221, 254

O

Multimodal Instruction Navigation

with Demonstration Tours

One-stage detectors

(MINT), 288

model comparison, 79, 80

Multimodal perception/

SSD, 78, 79

sensor fusion

YOLO, 77

fusion outputs, 121–123

Open Motion Planning Library

LiDAR-camera fusion

(OMPL), 220

point-level fusion

techniques, 126–133

P, Q

proposal level fusion

methods, 123–125

Pick-and-place robots, 399

LiDARs, 116

components, 387

raw data, 118–120

hardware, 387–389

strategies, deep learning, 116

software, 390, 391, 393

uses, 117

multimodal grasping

MuZero method, 329

system, 394–396

performance

metrics, 396, 397

N

RL

Navigation, 265

components, 393

exploration, 291–293

PI-QT-Opt, 394

447

INDEX

PlaNet, 319

Q Learning, 321

Point-level fusion techniques, 126

RLAIF, 342

PointNet, 110, 124

RLHF, 340

PointPainting method, 128

scaling up, 334–338

Pretrained language model, 143

trust region policy

Proximal Policy Optimization

optimization, 324–327

(PPO), 297, 319, 326

Reinforcement Learning from AI

PyBullet, 219, 254–257

Feedback (RLAIF), 342, 347

Reinforcement Learning from

R

Human Feedback (RLHF),

143, 340, 347

Rectified Linear Unit (ReLU), 64

Reinforcement learning (RL),

Recurrent Neural Networks

222, 393

(RNNs), 286

RelocNet, 284

Recurrent State Space Model

Residual Neural Networks

(RSSM), 329, 330

(ResNet), 55, 73

RedNose, 266

RFM-1, 394

Red teaming, 196

RL-CycleGAN, 233, 254

Region of Interest (RoI), 120

Robot data flywheel, 433

Region Proposal Network

Robotics Transformer 1 (RT-1), 169

(RPN), 69

Robotic vision systems, 84

Reinforcement learning, 19, 313

Robot Operating System (ROS),

application/challenges, 333

218, 221

deep Q Learning, 321

Robots

emerging trends, 344, 345

AGI, 23

intelligent systems, 311

capabilities, 3

MDP, 314, 316, 317

components, 6

model-based RL, 327–330

deep learning, 15

model-free vs. model-based

benefits, 16

RL, 318–321

frameworks, 19–21

offline, 331, 332

infrastructure

play soccer, robots, 339

paradigms, 17, 18

policy gradient methods,

design

322, 323

DoF, 12

448

INDEX

end effector/workspaces, 13

sensor reliability, 367

kinematics, 13, 14

software, 370

robotic manipulators, 11

system design, 355–357

design principles, 27

Semantic segmentation, 56

frameworks, 22, 23, 27

Sensor fusion localization

language models, 25

(SLAM), 266

large-scale manufacturing, 1

Sensors

machine learning, 4, 27

depth, 42–44

real-world applications, 26

IMUs, 51–53

science fiction, 1

LiDARs, 36, 37

sensors, 5

range

tasks, 2

LiDAR, 46–49

types, 7, 9, 10

ultrasonic sensors, 49–51

vision

S

camera, 38

CCD, 37

Scene coordinate regression, 284

CMOS, 37

Segment Anything Model

components, camera, 39

(SAM), 95

event-based

Self-driving vehicles

cameras, 40, 42

economic opportunity, 353–355

light, 37

perception, 358–361

Sim2Real

planning, 363, 364, 366, 370

domain adaptation, 223, 224

prediction, 362, 363

domain randomization,

safety

224, 226

AI systems, 366, 367

GDR, 227, 229

algorithmic robustness, 368

RL, 230–235

cybersecurity, 368

Simulation

data privacy, 369

benefits, 212, 213

ethical decisions, 368

boostrapping RL, 236, 237

fail-safe mechanisms, 369

components

human machine

features, 216–218

interaction, 369

Gazebo, 221, 222

449

INDEX

Simulation (cont.)

industrial and consumer

MuJoCo, 221

robots, 107

PyBullet, 219, 220

Time-Contrastive Networks

real-world object

(TCN), 193

behavior, 218

Training actor-critic RL models, 143

rigid body, 214, 215

Transformer

foundation agents, 238–243

attention mechanism, 82–84

imitation learning, 249–253

learning joint image-language

limitations, 214

features, 92, 93

reward design, 244–246

multi-head attention, 85, 86

robotics training pipelines, 211

open vocabulary object

world modelling, 246–249

detection, 93, 94

Simulation Description Format

promptable open vocabulary

(SDFormat), 219

segmentation, 95–97

Simultaneous Localization and

scaling vision, 89, 90, 92

Mapping (SLAM), 280

ViT, image classification, 87, 89

Single-shot detector (SSD), 78

Trust Region Policy Optimization

Skill library, 239

(TRPO), 297

Stein Variational Policy Gradient

(SVPG), 228

U

Structure from motion (SfM), 266

Ultrasonic sensors, 37

Supervised fine-tuning (SFT), 142,

U-Net, 185

198, 341

Unified Predictive Decision

Supervised learning, 18, 311, 313

Process (UPDP), 193

Unified Robotics Description

T

Format (URDF), 219

Tensor Processing Units (TPUs), 16

Unsupervised learning, 313

3D data processing, 107

data representation, 108, 109

point clouds,

V, W, X

processing, 110–115

Variational Autoencoder (VAE), 184

research opportunities, 115

Video-conditioned policy

3D sensor data

learning, 193

450

INDEX

Vision language models (VLMs),

Y, Z

287, 289

You Only Look

Vision sensors, 97

Once (YOLO), 77

Vision transformers (ViT), 87, 98

451

Document Outline

	Table of Contents

	About the Authors

	About the Technical Reviewers

	Acknowledgments

	Introduction

	Chapter 1: Introduction to General Purpose Robotics

	A Robot System

	Common Types of Robots

	Common Concepts in Robot Design

	Robotic Manipulators

	Degrees of Freedom

	End Effectors and Workspaces

	Kinematics

	Deep Learning for Robotics

	Deep Learning Frameworks

	Robot Learning Frameworks and Objectives

	Toward Embodied General Intelligence

	Environment Is Deeply Tied to the Definition of Intelligence

	Summary

	References

	Chapter 2: Robot Perception: Sensors and Image Processing

	Sensors

	Vision Sensors (Cameras)

	Key Considerations for Cameras

	Event-Based Cameras

	Depth Sensors

	Range Sensors

	LiDAR

	Ultrasonic Sensors

	Inertial Measurement Units (IMUs)

	Problems in Perception

	Classification

	Segmentation

	Semantic Segmentation

	Instance Segmentation

	Object Detection

	Convolutional Neural Nets Overview

	Convolutional Layers

	Introducing Nonlinearity (ReLU)

	Pooling Layers

	Fully Connected Layers

	CNNs for Perception

	R-CNN

	Fast R-CNN

	Faster R-CNN

	Mask R-CNN

	ResNet

	Skip Connection: The Strength of ResNet

	U-Net

	EfficientNet

	One-Stage Detectors

	YOLO

	SSD

	Model Comparison

	Transformers for Perception

	Transformer Introduction

	The Transformer

	Transformers for Vision

	Image Classification with Vision Transformer (ViT)

	Scaling Vision Transformers

	Learning Joint Image-Language Features

	Open Vocabulary Object Detection with Transformers

	Promptable Open Vocabulary Segmentation

	Summary

	References

	Chapter 3: Robot Perception: 3D Data and Sensor Fusion

	3D Data Processing

	Data Representation

	Processing Point Clouds

	Research Opportunities

	Multimodal Perception and Sensor Fusion

	Fusion Strategies

	Fusing Raw Data: Early Fusion

	Step 1: Projection of Point Cloud

	Step 2: Object Detection

	Step 3: Region of Interest (RoI) Matching

	Fusing Outputs: Late Fusion

	Steps 1 and 2: LiDAR 3D Object Detection and Camera 3D Object Detection

	Step 3: IOU Matching

	LiDAR-Camera Fusion

	Proposal-level Fusion Methods

	Point-level Fusion Methods

	Input-Level Fusion: PointPainting and PointAugmenting

	Feature-level Fusion: DeepFusion

	BEVFusion

	Summary

	References

	Chapter 4: Foundation Models in Robotics

	Large Foundation Models

	Scaling Laws for Language Models

	Evaluating Language Models

	Language as a Connective Tissue in Robotics

	Language for Planning

	Open Loop SayCan

	Closed Loop Planning

	Multimodal Planning

	Planning via Multimodal Dialogue

	Challenges

	Language for Mapping

	Language for Reward

	Language for Robot Code

	End-to-End Robot Control

	End-to-End Robot Control with Autoregressive Transformers

	End-to-End Robot Control with Diffusion Models

	Forward Diffusion Process

	Reverse Diffusion Process

	DDPMs (Denoising Diffusion Probabilistic Models)

	DDIM (Denoising Diffusion Implicit Models)

	Stable Diffusion

	Conditioned Generation

	Classifier-Guided Diffusion

	Classifier-Free Guidance

	Text-Conditioned Guidance

	Action Diffusion for Robot Control

	Combining VLMs and Diffusion Models

	Learning from Video Demonstrations

	World Modeling Using Video Data

	Reasoning from Video

	Actions from Video by Fine-Tuning World Models

	Action Models by Conditioning on Video Representations

	Action Models from Thinking in Video

	AI Safety for Robotics

	Summary

	References

	Chapter 5: Simulation

	Simulation for Robots

	Considerations for Simulation in Robotics

	Components of a Robot Simulator

	The PyBullet Module

	MuJoCo

	Gazebo

	Concepts in Sim2Real

	Domain Adaptation

	Domain Randomization

	Guided Domain Randomization

	Active Domain Randomization

	Automatic Domain Randomization

	Closing the Sim2Real Gap for RL

	CycleGAN

	RL-CycleGAN

	Learning from Simulation

	Simulation for Bootstrapping RL

	Foundation Agents in Simulation

	Simulation for Reward Design

	Simulation for World Modelling

	Simulation for Imitation Learning

	Summary

	Tutorials

	PyBullet Tutorial

	References

	Chapter 6: Mapping, Localization, and Navigation

	Why Use Deep Learning?

	Traditional Methods

	Deep Learning Methods

	A Hybrid Approach

	Typical Mobile Robot Setup

	Mapping

	Geometric Mapping

	Depth Representation

	Voxel Representation

	NeRF: Neural Radiance Fields

	Semantic Mapping

	Language Embedded Radiance Fields (LeRFs)

	ConceptFusion

	Localization

	2D-to-2D Localization

	2D-to-3D Localization

	3D-to-3D Localization

	Navigation

	Navigation and Exploration

	Locomotion for Legged Robots

	Hardware

	Simulation

	MDP Formulation

	Learning-based Methods

	Summary

	References

	Chapter 7: Reinforcement Learning and Control

	Reinforcement Learning Basics

	Solving a Markov Decision Process

	Considerations

	Model-Free vs Model-Based RL

	Model-Free Reinforcement Learning

	Q Learning

	Deep Q Learning

	Policy Gradient Methods

	Trust Region Policy Optimization

	Proximal Policy Optimization

	Model-Based Reinforcement Learning

	Robotics: Model-Based RL for Continuous Control

	Offline Reinforcement Learning

	Applications and Challenges

	Scaling Up RL in the Real World

	Learning to Walk

	Robots Playing Soccer

	Reinforcement Learning and Large Language Models

	Reinforcement Learning from Human Feedback (RLHF)

	Direct Preference Optimization (DPO)

	Reinforcement Learning from AI Feedback (RLAIF)

	Challenges in RL for Robotics

	Emerging Trends in RL for Robotics

	Conclusions

	Summary

	References

	Chapter 8: Self-Driving Vehicles

	Economic Opportunity

	System Design

	End-to-End Self-Driving (E2E)

	Perception

	Prediction

	Planning

	Safety

	AI Safety and Systems

	Safety Considerations

	Sensor Reliability

	Algorithmic Robustness

	Cybersecurity

	Ethical Decision-Making

	Human-Machine Interaction

	Fail-Safe Mechanisms

	Data Privacy

	Summary

	References

	Chapter 9: Industrial Robotics

	Common Tasks

	Pick-and-Place

	Peg-in-Hole

	Welding

	Warehouse Tasks

	Common Robots

	Standalone Industrial Robots

	Collaborative Robots (Cobots)

	Mobile Robots

	Humanoids

	Market Opportunity

	System Design for Pick-and-Place Robots

	Hardware Components

	Software Components

	Convolutional Neural Networks for Grasping

	Scaling RL for Robotic Grasping

	Multimodal Grasping System

	Performance Metrics

	Safety Considerations

	Summary

	References

	Chapter 10: Humanoid Robotics

	The Case for Humanoids

	Alternative Approaches

	Humanoid Markets

	How to Build a Humanoid

	Hardware

	Software

	Approaches to Manipulation

	Approaches to Walking

	Approaches to Teleoperation and Data

	Approaches to Whole Body Manipulation

	Conclusion

	Summary

	References

	Chapter 11: Data-Driven Robotics in Practice

	Robot Operations

	Data Infrastructure

	The Training and Deployment Infrastructure

	Robot Data Flywheels

	Large-Scale Robotic Data Collection

	Recipes for the Future

	References

	Index

index-352_1.jpg

index-350_1.jpg
Ablation tasks:

pick-from-bowl

- }

chase-carrot

index-370_1.jpg
LiDAR Price & Growth Rate

Price in USD & Growth Rate in Percentage
Il Price (USD) [l Growth Rate (%)

400 375

2007 2014 2017 2018 2019 2020

(Price in $$ & Rate in %)
Source: Market.us Scoop

index-353_1.jpg

index-345_1.jpg
4
llllll A
IIIIII I

(a) Learn dynamlcs from experience (b) Learn behavior in imagination (¢) Act in the environment

index-344_1.png

index-348_1.jpg

index-347_1.jpg
linear decoder

L

emb. + pos. enc.

return state action

cover_image.jpg
Al for Robotics

index-343_1.jpg
aus
/\
”;J

H%_____
//“\::
N

Inal

A
A
s gl

at&z
A
”;J

¥

N
AN

A

N\ |
FAVAN

> JF
s

1/\ A
=l

index-342_1.jpg
/
7
Initial
configuration

-
‘I conf

Goal
figuraticn

index-340_2.png
Opr1 = Ok + &

index-340_1.png
1
0.1 = arg max g’ (0 —6) s.it. 5(9 —0)TH(O —6,) <9

index-341_2.png
L(s,a, 61, 6) — min (

A% (37 a)a g(e, A% (37 a’)))

index-341_1.png
o =
k+1 = arg max Esanm, [L(s,a,0k,0)|,

index-338_2.png
t'=t

VoJ(m9) =Errp,, (r) LE: 7'V log mg(aylse) (Z Y (s, an) — b(St))]

return estimate A(s;,a;)

index-338_1.png
Ori1 = O + OszQOJ(ﬂ'O) |90:0k

index-339_2.png
L(0r,0) ~ g (6 — 0x)

D 1 THO -0
Dx1(0)|6x) ~ 5((9—9,0 H(k)

index-339_1.png
Or.1 = arg mgmxﬁ(@k,G) s.t. Dki(0]|6:) <6

index-341_3.png
(1+€)A ifA>0
A) =
9(e, 4) {(16),4 if A <0

index-335_1.jpg

index-319_1.jpg
Training

Deployment

Locomotion Transformer policy

Walking policy

Jumping policy
Slope policy

Causal Transformer

L A4 4
0 @o S @l-l@b!@(@z

Barkour eval with speci policies Barkour eval with generalist policy
el Robot position Robot position
p Navigation controller
i Navigation controller
:g';?.:fl Elevation Velocity commands & 52
H map Policy type H Velocity
Nl Elevation commands
o i Walking policy H map
i k— =
Agile Transformer policy
locomotion <
skills
Robot

index-317_2.png
_ trun—t .
Ragitity = 1.0 — max (”;Tffe‘;““‘, O) — penalties

index-327_1.jpg

index-326_1.jpg

index-312_2.png
P($t+1 |3t7 at)

index-312_1.png
D=(S,AP,R)

index-317_1.png
0.5m
broad jump

0.2m

we

index-315_1.jpg
(a) Basic Formulation

S¢ a :
. | .I Environment

(b) Curriculum Learning

RL

RL

index-35_1.jpg
Global robotics market ($b) ~260

Conventional industrial
robots and cobots

End-effectors
AGVs

Stationary professional
services robots

Mobile professional
services robots

2030 2030
base upside

In 2030, the global robotics total
market volume is expected to
reach $160 billion to $260 billion.

In 2030, professional services
robots (with market volume

of $90 billion to 170 billion)
will outpace conventional
industrial robots and cobots (with
market volume of $40 billion to
$50 billion) by far.

Between 2020 and 2023, the
professional services robot
market will grow at an annual
compounded rate of 25% to 35%.

index-34_2.jpg
T cosy —siny O|| cosB 0 sinfB|[1 0 0 Tit1
y; | =|siny cosy 0 0 1 0 0 cosa —sina||yi+1
% 0 0 1{|—sinf 0 cosfB||0 sina cosa ||zi41

a, 3,7 are yaw, pitch, and roll of link i+1 with respect to link i.

z; =R 2411

_ p-1
Tit1 = R7 x5

index-334_1.jpg
(a) Cartpole (b) Reacher (c) Cheetah (d) Finger (e) Cup (f) Walker

index-55_1.jpg

index-330_1.png
t+1

Environment

index-40_1.jpg

index-60_1.jpg

index-58_1.jpg
Frames per

Resolution ———— Cost
second

index-304_1.jpg
Multimodal User Instruction Mobility Vision-Language-Action (VLA)

P R -
Where < 1 3
should | | ‘ waoodm 1 | Low Level \
return this? with Long-Conf] 1 Goal Reaching 1
R e]
¥ ! 3 =
Image Instruction Language Instruction I Waypoint Action

Navigation Goal ————————— Path finding ———»
1

o -

Az, Ay, A0

Topological Graph Observation

Structure I (computed offline)

From]
™ Metion %
(offline)]
!
Drive robot for tour / Human record tour ~

index-303_2.png
Models Agnostic Contributions

LocNet [225] No convert 3D points into 2D matrix, search in global prior map
PointNetVLAD [226] Yes learn global descriptor from point clouds

Barsan et al. [227] No learn from LIDAR intensity maps and online point clouds

L3-Net [224] No extract feature by PointNet

PCAN [228] Yes predict the significance of each local point based on context

DeepICP [229] Yes generate matching correspondence from learned matching probabilities
DCP [230] Yes a learning based iterative closest point

D3Feat [231] Yes jointly learn detector and descriptors for 3D points

index-307_1.png
Algorithm 1 Low-level Goal Reaching Policy

1: Input: goal frame index g, offline-constructed topological graph G.
2:
: while timestep < maximum steps do
Get new camera observation image O
Get start vertex v and robot pose 7" by localizing O in G
if v; ==v, then
Navigation goal reached, break
end if
Compute S= [v;,V1,...,04], the shortest path between v, and vg.
10: Compute waypoint action a from the relative pose between 7" and v,
11: Execute a on robot
12: end while

R A

index-305_1.png
You are a robot operating in a building and your task is to respond to the user
command about going to a specific location by finding the closest frame in the
tour video to navigate to.

These frames are from the tour of the building last year.

[Frame 1 Image f;]

Frame 1. [Frame narrative ni]

[Frame k Image f;]

Frame k. [Frame narrative mn;]

This image is what you see now. You may or may not see the user in this image.
[Image Instruction I]

The user says: Where should I return this?

How would you respond? Can you find the closest frame?

index-301_1.jpg
Hierarchical
Localization

1) Global
Matching

Retrieved i\ Direct

Matching
(a)
Scene Coordinate Regression Confidence Prediction Pose Estimation
hxwx3 hxwx8 hxwx3 N x5
w w k Nexl Now X5
—
> . e
I_.[I [R]7
~ . =
I;[] 20130
0 confidence 1.0

index-303_1.jpg
ad

Optimal
Pose

PointNet CNNs

index-302_1.png
Performance (m/degree)

Model Year Agnostic 78, . Contributions
cenes Cambridge
NetVLAD [91] 2016 Yes - - differentiable VLAD layer
DELF [113] 2017 Yes - - attentive local feature descriptor
InLoc [114] 2018 Yes 0.04/1.38 0.31/0.73 dense data association
SVL [115] 2018 No - - leverage a generative model for descriptor learning
SuperPoint [116] 2018 Yes - - jointly extract interest points and descriptors
Sarlin et al. [117] 2018 Yes - - hierarchical localization
= NC-Net [118] 2018 Yes - - neighbourhood consensus constraints
9 2D3D-MatchNet [119] 2019 Yes - - jointly learn the descriptors for 2D and 3D keypoints
2 HF-Net [120] 2019 Yes 0.042/1.3 0.356/0.31 coarse-to-fine localization
5 D2-Net [121] 2019 Yes - - jointly learn keypoints and descriptors
§ Speciale et al [122] 2019 No - - privacy preserving localization
g g2 OOI-Net [123] 2019 No - - objects-of-interest annotations
= & Camposeco et al. [124] 2019 Yes - 0.56/0.66 hybrid scene compression for localization
a Cheng et al. [125] 2019 Yes - - cascaded parallel filtering
= Taira et al. [126] 2019 Yes - - comprehensive analysis of pose verification
= R2D2 [127 2019 Yes - - learn a predictor of the descriptor discriminativeness
2 ASLFeat [128] 2020 Yes - - leverage deformable convolutional networks
ﬁ CD-VLM [129] 2021 Yes - - cross-descriptor matching
s VS-Net [130] 2021 No 0.024/0.8 0.136/0.24 vote by segmentation
£ T2 DSAC [131 2017 No 0.20/6.3 0.32/0.78 differentiable RANSAC
~ % DSAC++ [132] 2018 No 0.08/2.40 0.19/0.50 without using a 3D model of the scene
§ Angle DSAC++ [133] 2018 No 0.06/1.47 0.17/0.50 angle-based reprojection loss
g Dense SCR [134] 2018 No 0.04/1.4 - full frame scene coordinate regression
f Confidence SCR [135] 2018 No 0.06/3.1 - model uncertainty of correspondences
s ESAC [136] 2019 No 0.034/1.50 - integrates DSAC in a Mixture of Experts
-E NG-RANSAC [137] 2019 No - 0.24/0.30 prior-guided model hypothesis search
§ SANet [138 2019 Yes 0.05/1.68 0.23/0.53 scene agnostic architecture for camera localization
] MV-SCR [139] 2019 No 0.05/1.63 0.17/0.40 multi-view constraints
2 HSC-Net [140] 2020 No 0.03/0.90 0.13/0.30 hierarchical scene coordinate network
g KFNet [141 2020 No 0.03/0.88 0.13/0.30 extends the problem to the time domain
DSM [142] 2021 Yes 0.027/0.92 0.27/0.52 dense coordinates prediction

index-309_2.jpg

index-309_1.jpg
Observations

Past 5 timesteps
96x96x3 RGB

Optional

g | -

A

A ENEEEN

7 Tokens
x256-D

Transformer
4 Layers, 4 Heads
5M Parameters

e

Goal Masking

Context
Average Pooled

iy D d(0t709)

Temporal Distance
- o 10 denoising steps
afv 4 V@)
— colcr.ar) at
8 Future
1 Actions
a

index-311_1.jpg

index-13_1.jpg

index-14_1.jpg

index-13_2.jpg

index-26_1.png
Sensors Actuators

Microphone Robot Brain
Speaker
Vision (camera, lidar) /—\
=) Pperceive Act =) Rotary/Linear

Touch/Force v Actuators

Proprioception

index-14_2.jpg

index-32_1.jpg

index-31_1.jpg
(a)

joint axes 5 & 6 intercept

=g
spherical
wrist
<~ elbow offsets
i W@/ 3
joint 7 ot
joint 2 spherical
shoulder

(c)

index-34_1.jpg
Joint Axis

i1
Joint 2
End Effector Yia
1
Joint 1 \
T x) ~ 1
Ground ! - Zm
Joint 2 X
n-1
2
Joint 1
End Effector

index-290_1.jpg
' TESLA'S OCCUPANCY NETWORKS

Occupancy Volume Occupancy Flow

Backbone (Regnets + BiFPNs)

Attention Module

Coordinate Frame
Synchronization

Occupancy features (t-1)

Occupancy features (t-2)

Occupancy features (t-3)

index-288_1.png
Method Architecture Category
EMDEOM [32] FC
ACAN [46] Encoder-Decoder
DenseDepth [47] Encoder-Decoder
DORN [18] CNN Supervised
VNL [48] Encoder-Decoder
BTS [49] Encoder-Decoder

DeepV2D [50]
LISM [51]
monoResMatch [38]
PackNet-SfM [52]
VOMonodepth [53]
monodepth?2 [42]

GASDA [54]

CNN
Encoder-Decoder
CNN
CNN
Auto-Decoder
CNN

CNN

Self-supervised

Semi-supervised

index-295_1.jpg
LERF Rendering . Multiscale CLIP Preprocessing

R —>RG.B
X320
(> Network —> Densin
= DINO Features

= CLIP Features

Volume Render

N ' Multiscale CLIP Features Image Patches Training Image

index-291_1.jpg
9D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss

(X..v,:.d¢)-'m~
"l Ray 1 j /-"\..-g-t-l
ul myzj /W.'g’t'“:

Ray Distance

(c) (d)

2
2

index-284_1.jpg
mage I; € RW>H<3

—
Patchify

mage I, € RWXHx3

||
]
Pointmap
H Transformer BRI
e
= F? Cnndangs Common coordinate frame
£ peiacis of camera 1 (image I;)
Shdred
w;‘;“ Information i
. iform (at origin]
5 Pointmaj
p
. errd Transformer A= ERbs
5] ncoder Decoder, i
2 S‘Z“ g ‘;f nce (unknown position)

index-270_1.jpg
Stronger Generalization

Training Level 1 Level 2 Level 3

Object Placement Novel Combination Novel Object

Putthe & intothe @ Putthe @ intothe @ Putthe ; lmnh'm

putthe & into the [

index-83_1.jpg

index-82_1.jpg
[6] =91 +20+51)+
61+ 240 + 4%(-1) +
4*1 +5°0 + 4*(-1)

https://indoml.com

index-89_1.jpg
e

cls layer ‘ ' reg layer

256-d

t intermediate layer -

sliding window

conv feature map

index-85_1.jpg

index-297_1.png
Performance (m/degree)

Model Year Agnostic 7S " Contributions
cenes Cambridge
o NN-Net [62] 2017 Yes 0.21/9.30 - combine retrieval and relative pose estimation
g DeLS-3D [63] 2018 No - - jointly learn with semantics
= AnchorNet [64] 2018 Yes 0.09/6.74 0.84/2.10 anchor point allocation
2 RelocNet [65] 2018 Yes 0.21/6.73 - camera frustum overlap loss
E CamNet [66] 2019 Yes 0.04/1.69 - multi-stage image retrieval
PixLoc [67] 2021 Yes 0.03/0.98 0.15/0.25 cast camera localization as metric learning
PoseNet [68] 2015 No 0.44710.44 2.09/6.84 first neural network in global pose regression
Bayesian PoseNet [69] 2016 No 0.47/9.81 1.92/6.28 estimate Bayesian uncertainty for global pose
X BranchNet [70] 2017 No 0.29/8.30 - multi-task learning for orientation and translation
= VidLoc [71] 2017 No 0.25/- - efficient localization from image sequences
ﬁ Geometric PoseNet [72] 2017 No 0.23/8.12 1.63/2.86 geometry-aware loss
o SVS-Pose [73] 2017 No - 1.33/5.17 data augmentation in 3D space
" LSTM PoseNet [74] 2017 No 0.31/9.85 1.30/5.52 spatial correlation
g a Hourglass PoseNet [75] 2017 No 0.23/9.53 - hourglass-shaped architecture
E § MapNet [76] 2018 No 0.21/7.77 1.63/3.64 impose spatial and temporal constraints
s = SPP-Net [77] 2018 No 0.18/6.20 1.24/2.68 synthetic data augmentation
% ,_.i GPoseNet [78] 2018 No 0.30/9.90 2.00/4.60 hybrid model with Gaussian Process Regressor
x g LSG [79] 2019 No 0.19/7.47 - odometry-aided localization
= PVL [80] 2019 No - 1.60/4.21 prior-guided dropout mask to improve robustness
AdPR [81] 2019 No 0.22/8.8 - adversarial architecture
AtLoc [82] 2019 No 0.20/7.56 - attention-guided spatial correlation
GR-Net [83] 2020 No 0.19/6.33 1.12/2.40 construct a view graph
MS-Transformer [84] 2021 Yes 0.18/ 7.28 1.28/2.73 extend to multiple scenes with transformers

index-91_1.jpg

index-296_1.jpg
I

[Image (X) || Masks (r;)]| Crops (b;) l

e F
»

Global Region-level
Embedding £¢ Embedding £~

igned
Embedding £/

index-89_2.jpg
T [rew FastRONN | Fastor RCNN

Test Time per 50 Seconds 2 Seconds 0.2 Seconds
Image
Speed Up 1x 25x 250x

index-300_1.jpg
unseen query

RelocNet

training features

query features
Lo

predicted image

ray casting

Global view

index-94_1.jpg
1 2

28 64 64
input
i output
Imatﬁz M’ i segmentation

map

572 x572

570 x 570

568 x 568
392 x 392
388 x 38

' 128 128

256 128

1982
1962 :

=}
S
«

512 256 t

2 =»conv 3x3, ReLU
o

¥ s s 1024 512 f - =+ copy and crop
=l ¥ max pool 2x2
S L 4 - 4 up-conv 2x2
=» conv 1x1

=
|
|

' 256 256

=Y

A

1042

&

522

index-299_1.jpg
training features

Database ‘ ‘

Query Image

query features

(a)
Visual Pose Regressor
Encoder c
]
o~
i S
— —p
U 7 :
N B Bt
7]
<)
Q

Feature Map
(b)

index-92_1.jpg
weight layer

x
identity

index-80_1.jpg

index-78_1.jpg
Actual

Positive Negative
- Positive | True Positive | False Positive
Q
2
g Negative
A

False Negative | True Negative

index-81_1.png
Filter

Repeated overlapping
application...

index-258_1.jpg
Minecraft Tech Tree Diamond Tool

0999 X

Wooden Stone Iron Diamond
Tool Tool Tool Tool

[=)]
o

w
o

S
o

N
o

Number of Distinct Items
w
o

[
o

0 25 50 15 100 125 150

Prompting Iterations in Code Generation

~ \Joyager (Ours) = Voyager w/o Skill Library === ReAct == Reflexion AutoGPT

index-257_1.jpg
Automatic Curriculum Iterative Prompting Mechanism Skill Library

async function combatZombie(bot) {
// Equip a weapon
const sword = bot. inventory. findInventoryItem(
mcData. itemsByName["stone_sword"].1d);
if (sword) {
M

lake Crafting Table await bot.equip(sword, “hand");} Craft Stone Sword

3
else { "
await craftStoneSword(bot);} - ’(Skill ‘ Make Furnace

Mine Wood Log
Make Crafting Table

Combat
Zombie

7/ Craft and equip a shield Retrieval
await craftSheild(bot); ceseeceeesceennn. s el Craft Shield
Cook Steak

Mine Wood Log Combat Zombie

Env Feedback Code as Refine Program
9 Execution Errors Actions

MINELRREY

Mine Diamond Update
Exploration
Progress

Environment Self-Verification

index-260_1.jpg
Observation space

I

1

I

1 l RGB ‘ Voxel

1 |
. GPS ilnvenmry

| ov

R MinecLIP
i

Correlation = 0.95
Action space |
Frrove & Attack I e
Cam Equi “Shear sheep to
= ' e obtain wool”

MineDojo Sim

@1

o1

(]

Per-frame
~ Feature

‘ Video
Feature

1 —

Aggregate

index-259_1.jpg
Open-ended Environments

Craft Glass Bridge Build Oak House Make Ice Igloo

Combat Zombie Fish Squid
Find Ocean Explore Treasure Hunt
Monument Desert Temple in End City

Generalist Agent

Internet-scale Knowledge Base

v always bringing blocks to
the staircase

enderpear

{0 Water s useful i a ot of situations

' arty qame. and late game

190 1 present to you me struggling to get up
stairs in the end city

index-256_1.jpg
Inventory (5/36): {'oak_planks": 3, 'stick':
4, ‘crafting_table": 1, 'stone’: 3,
‘wooden_pickaxe': 1}

Biome: river

Inventory (4/36): {'sugar_cane": 3, ‘paper":

3, 'fishing_rod': 1, ‘wooden_pickaxe': 1}

Nearby entities: pig, cat, villager
Health: 12/20
Hunger: 0/20

Inventory (6/36): {'furnace": 1,
‘stone_pickaxe': 1, ‘oak_planks": 7,
‘crafting_table: 1, 'raw_iron': 4, ‘coal': 1}

Time: night
Nearby entities: zombie
Equipment: 'stone_sword', 'shield"

ALLL,

Reasoning: Since you have a wooden pickaxe and some stones, it would be
beneficial to upgrade your pickaxe to a stone pickaxe for better efficiency.
Task: Craft 1 stone pickaxe.

Reasoning: Since you have a fishing rod in your inventory and you are near a river
biome, it would be a good opportunity to catch some fish for food and experience.
Task: Catch 1 fish.

Reasoning: Your hunger is at 0, which means you need to find food to replenish
your hunger. Since there are pigs nearby, you can kill one to obtain raw porkchops.
Task: Kill 1 pig.

Reasoning: You have raw iron and coal, and you have a furnace. It's time to smelt
the iron to make iron ingots, which can be used to craft better tools and armor.
Task: Smelt 4 raw iron.

Reasoning: Since it's night and there's a zombie nearby, it's a good opportunity to
try killing the zombie now that you have a stone sword and a shield equipped.
Task: Kill 1 zombie.

index-67_1.jpg
2D LIDAR y

1 castor wheel

2 Individually

Mobile robot motorized wheels

index-269_1.jpg
I rext Token ay as as

~ Action token

[

|
Prompt Tokens
EECTETEER
i

index-69_1.jpg
Ground

index-68_1.jpg

index-265_1.jpg
Source task: place coke
caninto top drawer
Target Task: place coke
caninto cluttered top
drawer

—

Mask Region
Localization

Prompt

LM ——

@ different colors

Proposed Augmentations

VIT region prompt: opened drawer
passthrough object prompt:
robot arm, robot gripper
Inpainting prompt: Add a toy block
in the drawer, the block has
different colors

LLM-assisted Augmentation Prompt Generation

Imagen Editor

Inpainting prompt: Add
acan of coke into the
drawer
> A
Inpainting prompt: Add
atoy blockin the.

drawer, the block has RT-1Training

Imege Promgt Imagen Editor

“Addacanof coke..”

T5-XXL Encoder
Output

Encoder 1 |————>{ 64 x 64 Base |
17
Encoder 2 }—)' 256 x 256 SR

index-74_1.jpg
RGB Image

Convolutional Encoder-Decoder

Pooling Indices

I Conv + Batch Normalisation + ReLU

I Pooling M Upsampling =~ Softmax

Output

Segmentation

index-262_1.jpg
Algorithm 1 EUREKA

1: Require: Task description [, environment code M,

coding LLM L1V, fitness function F', initial prompt prompt

2: Hyperparameters: search iteration NV, iteration batch size K
3: for N iterations do

R

10:
11:

// Sample K reward code from LLM
Ri,...,Rg ~ LLM(l, M, prompt)

// Evaluate reward candidates

S1 = F(Rl), ey SK = F(RK)

// Reward reflection

prompt := prompt : Reflection(Ry..;, Shest)s
where best = arg maxy. s1, ..., SK

// Update Eureka reward

REureka, SEureka = (R&st, St?c.st)a if S&st > SEureka

l 2 Output REurcka

index-71_1.jpg
7JALMA

index-268_1.jpg
Visual Goal: Rearrangement
7= D)
Rearrange objects to match this scene:

One-shot Demonstration

o
Follow this motion for & : LI g e’y L I

) |

|
Novel Concept Grounding = [h
Ie ql— ?)
Thisis ablicket @)— Thisisawug i Putawugintoa blicket I =
: M Text token ‘ (=1 @!‘ ‘@ @)
Object token ‘
Visual Constraint = Padding

Sweep all = into ‘ ‘ without exceeding s

index-76_1.jpg
Intersection Union

BN B,

W
R e

B, = Ground truth bounding box
B, = Predicted bounding box

1oU(By, B;) =

B,

b

~0.53 ~0.391 0.143

e

index-266_1.jpg
“Add a coke to the drawer”
ROSIE(Ours)

“Add a coke to the drawer”
InstructPix2Pix

Original

index-75_1.jpg
Semantic Segmentation Instance Segmentation

index-63_1.jpg
ImageL " ImageR
Camera L CameraR

Stereo vision

i
z

Al

~—=

ToF sensor

Time of Flight

Projector Camera

Structured light sensor

index-61_1.jpg

index-65_1.jpg
Power
Q

Emission

Altitude

index-64_1.jpg
3D Point Cloud Simulation

index-242_1.jpg
Rope shaping Assembling

Simulation Simulation

I

ain randomization

index-240_1.png
D=(S,AP,R)

index-248_1.jpg
Tain (o) ([F——— Test (Rea)

train with RL in simulator choose action a

index-245_1.jpg
(h) Parameters

(b) Slmulator

(a) Referenoe Environment (c) Sim. Instances 1 (d) Policy

(f) Reward

(e) Discriminator (g) SVPG

index-110_1.jpg
loss (training)

0 steps

——norm

gradient L2 norm
10°

10!

5k 0 steps 5k

=== NOo norm

3.7k

param L2 norm

0 steps 5k

logit max

steps

first lyr

5k

0
mid lyr

attn max

steps 5k

— last lyr

index-109_2.png
softmax [%LN(XWQ)(LN(XWK))T] ,

index-112_1.jpg
(1) Contrastive pre-training

Pepper the
aussie pup

i

|

|

!

g [S [s TN
— | hT T | LT 1Ty
> b LT | LT [Ty TN

Lo| 5T LT | T Iy Ty
Lol Iy | [InTy |InTs [InTs INTy

(2) Create dataset classifier from label

text

A photo of Text
a {object]. Encoder
(3) Use for zero-shot prediction v
o |V | s S Ry
-
PR AR T 1Ty
¥
A photo of

a dog

index-254_1.jpg

index-110_2.jpg
i Attout |

i
'

ememmm oo

An encoder layer with parallel Attention-MLP blocks

|||

PErTT "

fmm—

PR S

Q

Py ey

VL Ls

Inputs

index-253_1.jpg
5
5
@
8
Q
(7]
o

index-115_1.jpg
image
encoder

image

conv. prompt encoder
image

embedding Mask points box text

10000

valid masks

index-114_1.jpg
Image-level contrastive pre-training

Text
'bird embedding
sitting
on a tree'

Transfer to open-vocabulary detection

'giraffe’
‘tree’ —>|
laar®

O
]
O
|

Object image embeddings

Query Obiject box embeddings
‘embeddings
10 Predicted

classes/queries

9 4 A—>rgirafee’

8 4 0—>'giraffe’

2 8 0—>'tree' \q

A4 0 1—><no object> Set prediction

loss over objects

Predicted boxes in an image.

s, By

-,

>,

LBy

F————— . %

index-128_1.jpg
in]iut pbints

nx3

output scores

mlp (64,64) feature mlp (64,128,1024) mvax‘ ' mlp
. transform . pool ;054 (512,256,k)
o
2 shared E —D‘ % shared nx1024
8 global feature X
........ i . . output scores
! et T — AR
1088 8 = g
nie shalred 'E shared g
mlp (512,256,128) mlp (128,m)

Segmentation Network

index-249_2.png
LCyC(G’ F) = Ew~pdm(x)[”F(G(w)) - w”l] +]Ey~pda:a(y)[”G(F(y)) - yHI]

index-127_1.jpg
a) 3D Mesh Image b) Voxelization ¢) Clustered Voxels

index-249_1.png
Lean(G, Dy, X,Y) = Eypia(v) [log Dy (y)] + E e piata(z) [log(1 — Dy (G(z)))]

Lean(F,Dx,Y,X) =E,p,..)l0og Dx(z)] + Eyp,..x) [108(1 — Dx(F(y)))]

index-130_2.png
fP(z) =

S wi(z)

Sk wi(x)

where w;(z) =

index-251_1.jpg
e Cycle-Consistency-

index-130_1.jpg
skip link concatenation

—

—

8

sampling & pointnet ~ sampling& ~ pointnet g

grouping grouping g

\ I\) &
set abstraction set abstraction

pointnet fully connected layers

index-250_1.png
L(GaF7DX7DY) = LGAN(Ga Dy,X,Y) +LG'AN(FaDXaYaX) +)‘Lcyc(GaF)

index-109_1.png
y' = LayerNorm(z),
y =z + MLP(y') + Attention(y’).

index-203_2.jpg
v:l?t lng(a}t|C) — vmt logp(mt) + va‘t logp(c‘wt)

index-204_2.png
€ (mta ta C)

index-204_1.png
V. |(1 —w)logp(x:) + wlog p(x¢|c)

index-98_1.jpg
o-uon-:am per Class

L:

J g 74.3mAP
E 59FPS
Conv. J3x(4x(Classes+4))
11
“Conv: 3x3x1024 Conv: 1x1x1024 Onm mnss eun mxm oom mxm cur(mnzs
Conv. 3x3x512-52 Conv: 3x3x256-52 3325651
g 63.4mAP
§| 4sFPs

'YOLO Customized Architecture
o
= o
>

| Detections: 98 per class |

index-100_1.jpg
Overall mAP

35

30

25

20

15

10

Faster R-CNN w/ResNet, Hi

Res, 50 Proposals

R-FCN w/
ResNet, Hi Res,
100 Proposals

j L0 T oo
P
© % op s

{ou o

200

°
(]

SSD w/Inception V2, Lo Res
SSD w/MobileNet, Lo Res

400

Meta Architecture
@ Faster RCNN

B R-FCN @ SsD

GPU Time

Faster R-CNN w/Inception
Resnet, Hi Res, 300
Proposals, Stride 8

Feature Extractor
Inception Resnet V2
Inception V2
Inception V3
MobileNet
Resnet 101
VGG

600 800 1000

index-237_1.jpg

index-232_1.jpg

index-99_1.png
Method mAP | FPS | batch size | # Boxes | Input resolution
Faster R-CNN (VGG16) ~ 1000 x 600
Fast YOLO 1 448 x 448
YOLO (VGG16) . 1 448 x 448
SSD300 74.3 | 46 1 8732 300 x 300
SSD512 76.8 | 19 1 24564 512 x 512
SSD300 743 | 59 8 8732 300 x 300
SSD512 76.8 | 22 8 24564 512 x 512

index-104_1.jpg
Scaled Dot-Product Attention Multi-Head Attention

Scaled Dot-Product
Attention

index-101_1.png

index-239_1.png
RGBD

a Force Linear + Cable ~Multi-Body Soft-Body DEM Fluid Headless ROS 3 Realistic Inverse
Simulator | 4 HITL Teleoperation
Lipap | Semer Acuator Impot Comacts Simulaon Mechanics Mode Support Rendering ~ Kinematics
i
Airsim v x x x x x x v v v v 7, unreal x
CARLA ¢ x x x x x x v v x v 7, unreal x
CoppeliaSim | v v Linear v X v x 7 v Z v x v
only
Gassho . . Linear . X Through Through y . v . x .
only Fluidix Fluidix
MuloCo v 7 v v v v Limited v x HAPTIX HAPTIX x x
only only
PyBullet v & Lieer, v v v X v x X v x v
only
SOFA x x v v v v v v v v v . Unity x
UWSim RGED . x 7 x x x v v s v +, custom x
only
Chrono v v v x v v v v x x v 7, offline v
Webots v 7 linear v x x Limited v v x v x x

index-105_1.png
MultiHead(Q, K, V) = Concat(head;, ..., head,)W
where head; = Attention(QWiQ, KWE vwY)

index-206_1.jpg
Scalar (Regression
A

1
1
|
1
1
1

T | |

A4 %\ 1
I

Mixture of Gaussians |

1
'
1
1
'

©

(a) Explicit Policy

(b) Implicit Policy

Energy

wmy

(c) Diffusion Policy

Gradient Field

-Wﬂﬂ

index-104_2.png
QK™
"

Attention(Q, K, V') = softmax(WV

index-205_1.png
V2, log p(z¢|c)

index-107_1.jpg
Vision Transformer (ViT)

Transformer Encoder

Transformer Encoder

)) &))

Linear Projection of Flattened Patches

Patch + Position @a
Embedding > 0
* Extra learnable
[class] embedding

SR
o —— 5 I IR
e

Multi-Head
Attention
\ A

Embedded
Patches

index-229_1.jpg

index-106_1.jpg
Output
Probabilities

Nx
Positional Positional
Encoding e D D e Encoding
Input Output
Embedding Embedding

Inputs Outputs
(shifted right)

index-207_1.jpg
Input: Image Observation Sequence Observation O«

\] ___l - o T s
A E a-x+b

Diffusion Policy £4(0, A, k) » b fconviD Action Emb
O ¥ xActionEmb [« " 2
a 4ConviD o i
a-x+b = i
Action Sequence A« b TConviD > g

| «—Prediction Horizon Tp—| Asia B FiLm xActionEmb g Action Emb

RO conditioning ConviD
(i < |«

a) Diffusion Policy General Formulation b) CNN-based c) Transformer-based

Output: Action Sequence

index-97_1.png
n2

56

o s e P9 |
n2 56 3
2 4
7 7 7

3 192 256 512 1024 1024 1024 4096 30
Conv. Layer Conv. Layer Conv. Layers Conv. Layers Conv. Layers Conv. Layers Conn. Layer Conn. Layer
7x7x64-52 3x3x192 1x1x128 lxlx256}x4 1x1x512 }xz 3x3x1024
Maxpool Layer Maxpool Layer 3x3x256 3x3x512 3x3x1024 3x3x1024
2x2-52 2x2-52 1x1x256 1x1x512 3x3x1024
3x3x512 3x3x1024 3x3x1024-5-2

Maxpool Layer Maxpool Layer

index-95_1.jpg
#channels ’) :
sk o b wider oo = i
el e ‘; ; =
deeper

E——— E———; E

- - layer_i - =

i i 2 i i
. i [T ¥ higher H _,.-higher
resolution HxW \:] : ; { ; W e
H} olution Hx b _,_resolution & .| & resolution

(a) baseline (b) width scaling (c) depth scaling (d) resolution scaling (e) compound scaling

index-192_1.jpg
Multi-robot &

Multi-dataset 1 Original Method
© MVP BC-RNN
11 Resnet + MLP
VINN
@ TACORL, HULC2

RT-1

=RT-1-X

Task-Agnostic Play

index-191_1.jpg
Utensils

WidowX

(c) # Trajectories per Embodiment

Sawyer
Kinova Gen3
Hello Stretch

owX i !.m«
(b) # Scenes per Embodiment
Shapes
0 l m H
SEFS
& £,
Vol

IR EEER

In
]_Illllll“llnm-n_
& FLEsE dt 2 4 e eIsNS
FELLT T GI AT
Fe & e o}ﬁ CANCF
(a) # Datasets per Robot Embodiment
sooooo‘L .
PELFEL SRR EFE P e s
F $§ §EEFESF &8
LLLALS T &’fas*@"ff*fff

150000
125000
100000
75000
50000
25000
3

(e) Common Dataset Objects

(d) Common Dataset Skills

index-147_1.jpg
(a) Point Decoration (previous)

_Lidar Feat.
Extractor = log!\\kess
» [Predictions
Camera
Feature
Camera Img.
y (b) Deep Fusion (ours)
/
m _ _Lidar Feat. . ;
Lid‘ Pm\ Extractor fn
ar Points
Camera Feat. | Camera Predictions
Extractor Feature |
Camera Img. TR —— — s N
Fused |
Feature

Camera
Feature

uojuUaNY SS0ID
eijawe) o1 ¥yall

LearnableAlign ')

index-146_1.jpg
| wonedYIsSE) | | uoIssAASY

e) s s G esnamesin

L.
2

Point-wise Feature Fetchin:

index-148_2.jpg
(b) w/ InverseAug

index-148_1.jpg
i

&R
_ DataAug. - 7 2
, tolearPomts /// 5
K%

Wit

Y
AL

(a) Original Point Cloud (b) Key Points in Augmented (c) Key Points in Original (d) Projected Key Points in
3D Coordinate System 3D Coordinate System 2D Coordinate System

index-150_1.jpg
_._Lidar Feature _
Extractor
Camera Feature Camera
Extractor Feature

Camera Image

LearnableAlign
(+ InverseAug)

index-201_1.png
Tt—1 = \/at_lfé(wt) +vV1I—-oa1— 0‘t2€0(33t,t) + o€

index-149_1.jpg
Camera
Feature

uouaRY S50

wBWeD) ¥yan

Fully-Connected
ayer

Fused
Feature

LearnableAlign

index-200_1.png
fo(zt) := (2t — V1 — cueg(m, t)) /o ou

index-161_1.jpg
Collected Prompts

t models from
ious rounds

K Generations per
Prompt

Best model for next round

DPO Training
—> Rejection Sampling ~ —| Final DPO el

Pairwise Annotated and Specialized .
Specialized Per-Capability Binary Per-capability
Preference Data SFT data @ oo
® o

Reward model training DPO Training

index-203_1.jpg
p(xz¢|c) o p(e|lx:)p(xs)

index-150_2.jpg
Task-Specific Heads
P

Camera Feat.
(in BEV)

>

= «
BEV Map Segmentation

- B (& &,

Camera Camera Camera-to-BEV

Encoder Features View Transform F) -
Multi-View RGB Images g > = _’—“]7(\(
i i g
P BEV Fused BEV
Z =
-> DD > > > ;ﬁl?f

Encoder Features
LiDAR LiDAR Flatten LiDAR Feat.
Encoder Features (along z-axis) (in BEV)

3D Object Detection

LiDAR Point Cloud

index-202_1.jpg
Gaussian Noise
1x4x64x64

Prompt — “A dog wearing a hat”

CLIP Model

Token To
Embedding

Tokenizer

Latents
1x4x64x64

Scheduler
Text Embeddings algorithm to
1x77x768 add noise

Repeat N times

Conditioned Latents
1x4x64x64

Output Image
(3x512x512)

index-162_2.png
L(D) = (D./D)*?; ap ~0.095, D, ~ 5.4 x 10'3 (tokens)

index-195_1.png
Do (ivt—l |$t) = N(xt—l; ,Ufﬂ(xt) t)’ Eﬁ(mt) t))

index-162_1.jpg
L(N) = (N./N)*Y; any ~ 0.076, N~ 8.8 x 10'3 (non-embedding parameters)

index-194_1.png
q(:ct|:c0) = N(mt; \/a_txO’ (1 - dt)I)

index-199_1.png
Algorithm 1 Training Algorithm 2 Sampling

é l'il’eat q(x0) 1: xp ~ N(O,I)

: 0~ q(xo 2: fort=T,...,1do
Z: ZNIJ{P(l(f)orII)H({l,...,T}) 3 B N(OD) it > 1, elsez =0
5: Take gradient descent step on 4: xX4_1 = \/;a_‘ (xt _ 1;_&(;1 ee(xt,t)) touz

Ve ||€—ee(\/c_vtxo+\/1—&te,t)||2 g: end for

6: until converged : return xo

index-196_1.jpg
Neural Network
Polxpy | xp)

Add Noise
qx; [Xr.1)

Xt

*t-1 Reverse Noise
(impossible)

Target Distribution q(a:t_1|a:t) = N(xt—l; ﬁ't(mt’ mO)a BtI)

Approximated Distribution Po(@—1]@¢) = N(@¢-1; po(xt,t), So(zt,t))

Learnable parameters
(Neural Network)

index-449_1.jpg
Robots Simultaneously Controlled by AutoRT

20

-
o

Number

o

Episodes Collected
80000 { — Total

70000 | — Success

t‘lum?1 the
remove the yellow fruit from the p
.

m %e wl
wi.th' the red fruits

issue box
e location to another

place the snack bar and"

pick J.p' En%s
® ’

&
-
- -
chip «
B Rhip: « teleop
w e 12
Cumulative Unique Tasks

7000
6000
5000
2
@ 4000
s
3 3000
g
c
> 2000

1000

0

PSS Y SR T U e
I P R L

Date

index-448_1.jpg
(1) Exploration

Map env or load cache,
sample and drive to target

|

C Reset
l

Diversity Scoring

Diversity score: 0.644

Describe
Scene + Objects
(VLM)

(2) Task Generation

Generate __ Samplem
Tasks (LLM) + Prompt

'

I see a counter
top with a sponge 1. Wipe down the countertop

and cloth on it.

Objects:

with the sponge
soap, 2. Place the soap onto the

napkin, snack, countertop
cloth, sponge 3. Place the napkin onto

the countertop
4. Place the snack onto the

(3) Affordance countertop

5. Fold the cloth into a

Filter Tasks (LLM) =— . .¢ square

!

. teleop
. teleop
. re2 b
. r2 &
. reject:

o
2 Sample task valid
form

needs two arms
(4) Data Collection

Wipe down the
countertop
with the
sponge

index-131_1.png
ALGORITHM 1: X-Conv Operator
Input :K,p, P, F

Output:F, > Features “projected”, or “aggregated”, into representative point p
1: P/« P p > Move P to local coordinate system of p
2: Fs + MLPs(P’') > Individually lift each point into C's dimensional space
3: Fu « [Fs,F) > Concatenate Fs and F, F, is a K X (Cs + C1) matrix
4: X + MLP(P') > Learn the K x K X-transformation matrix
5: Fx < A xF. > Weight and permute F. with the learnt X’
6: Fp «+ Conv(K,Fx) > Finally, typical convolution between K and F »

index-132_1.jpg
point cloud

EdgeConv |
mip {128}

Max
pooling

mip {64}

{1024}
— e

mip {512, 265, ¢}

[

classification

8 g
@ e (1029 N @ ropeating | & @ (256, 256, 128, p)
Max x
pooling &

‘spatial transform

output scores

segmetation

output scores

index-131_2.jpg
T " — T — —
R A A

X-Conv(N =10,C = Cy,K = 3)
[Loss | (Loss) (Loss)[Loss |
/FCs/ /Fcs/ [FCs/ [FCs//FCs/
(XCom(N=1C=CK=4) | [X-Conv(N =4,C=C,, K=4,D=2)]
IR
XComu(N=4C=C,K=4) | X-Conv(N =7,C=C,K=4) XConv(N =7,C = C,K = 4)

WYX\ /71 l/V\/Vl\)VW N

index-136_1.jpg
3D POINT CLOUD

Point Cloud 2D Projecti
0 dslsiiniolensl gl 2D ROI Matching

Q 2D Object Detection

index-135_1.jpg
GPS, speedometer,
accelerometer, compass, ..

RADAR
(long range)
Thermal imager

RADAR
(short range)

Sensor Fusion

V2X
“seeing around corners”
Other traffic, road conditions

index-139_1.jpg
3D POINT CLOUD o 3D Obstacle Detection

index-138_1.jpg
3D POINT CLOUD

Point Cloud 2D Projection

index-143_1.jpg
.
L .
/

l’ o . I”
1 A
I‘ / 'l /!
J ,I l’ ’,
1 .
,’ ..o ./" 'I‘ .. ./.,
1 / ’ .
, 1/ frustum ¢/ mask point
1 7 4 . .
i* 4 rotation I3t centroid
L2 1
/7
£
1/
(b) frustum (c) 3D mask (d) 3D object
coordinate coordinate

(a) camera
coordinate coordinate

index-142_1.jpg
Depth

/
| segmented |

\ /
2d region 1 point cloud
:objccl points;

proposal | in frustum

|
i
& £] | (npoints) ! 1 (m points) ! E
& £ . 1 g
£ | {] | spmsance | | =l ¢ []/1 o g
= L & 1 Segmentation [—>| % [E .| 3DBo g
g i i i & 118 { Estimation | 1 &
g E-a ' PointNet g i ; b £
= bl { ! g PointNet b =
) ! | i b 2
L ; ¢ .

Frustum Proposal

index-145_1.jpg
Point
Painting

Sem. Seg

(: Point Painting

Lidar
Detector

eg.
Point RCNN
PointPillars
etc

index-446_1.jpg
Training Infrastructure Robot operations

Algorithms for robot Data collection and
models, training to produce deployment with latest
better model models

Robot Data

Flywheel

Data infrastructure

Labeling, offline processing,
data filtering and cleaning

index-178_1.jpg
SayCan

NLMap + SayCan

Instruction Relevance with LLMs Combine score for pre-defined options Value functions provide grounding with state !

LI A

Prompt Examples

I
[
[
1.0 Find an apple 09 1
I

Water the plan ~60 pre-defined options
LLM Value Functions I
piease 0.01 Find a coke 09 1
[
I would: 1. NA il ahe ekt NA I
I

[P ——

Instruction Relevance with LLMs Combine score for generated options NLMap provide grounding with scene

Prompt Examples

! N 3
0.7 Find an water bottle 0.6 NLMap
Water the plants Other Options generated I
please . based on LLM and NLMap y
Planning Value

LLM 0.9 Find a plant 06 Functions

I would: 1.

index-405_1.jpg
. ——
194 + uuod Ay
0y + ‘uuoo m_z_

©

19y + Au0d exe.
pareadai

=

§

N8y + Auco. eﬁ

(1194 + Au03
paread

¥

§

N9y + AUod Gxgt

£

19y + AU 9x|
Zopuis

i
H

index-174_1.jpg
Mobile Manipulation PaLM-E: An Embodied Multimodal Language Model Task and Motion Planning

Given <emb> ... Q: How to grasp blue block? A: First, grasp yellow block [vel "l’_"h"{ ‘:
A: First grasp yellow

? it -
block and place it on
. ' ' L] A v]]] A
the table, then grasp
- - G- TS G - o e
the blue block.

Large Language Model (PaLM)
Tabletop Manipulation

- e @3 w e m w = 4
Given Task: S

\g> 3. Pick the green rice RN R B calre o cormer
chip bag from the drawer and place it on the Control - A:First, grasp yellow block and ... Step 1. Push the green
_ LN B

o | stor to the bottom left.
Step 2. Push the green

Language Only Tasks circle to the green star.

counter.

Visual Q&A, Captioning ...

Describe the foll

n . Q: What's in the dmg
image? Answer in 3 A dog jumplrig over s n 7 A: Atlantic. O: What is 372 x 187 A: 6696.0: Write a
Y 22 T3 hurdle at a dog show. < L A: Embodied language. Models learn to understand.
The world around them.

index-181_1.jpg
User Motion Descriptor Prompt

Make robot dog stand up on two feet. Describe the motion of a dog robot using the following form:

* The torso of the robot should pitch upward at [NUM: 0.0] degrees. Motion

l * The height of the robot's CoM or torso center should be at [NUM: 0.3] m. template

Reward Translator }
Motion Descriptor
[] Remember:
o 1. If you see phrases like [NUM: default_value], replace the entire phrase

[start of description] i with a numerical value.
The torso of the robot should pitch upward at 90.0 degrees. 2. If you see phrases like {CHOICE: choice1, choice2, ...}, it means you Rules
The height of the robot’'s CoM or torso center should be at 0.7 meters. should replace the entire phrase with one of the choices listed.

front_left foot lifted to 0.7 meters high.
front_right foot lifted to 0.7 meters high.

[end of description] Reward Coder Prompt
We have a description of a robot's motion and we want you to turn that into

the corresponding program with following functions:
Reward Coder - set_torso_rewards(height, pitch)

height: height target for the robot torso

pitch: pitch angle of the torso

Reward
API

Set torso rewards |
set_torso_rewards(height=07, pitch=np.deg2rad(90))

Set feet rewards
set_feet_pos_rewards(‘front_left, height=07)

set_feet_pos_rewards(back_left, height:
set_feet_pos_rewards(‘front_right|, heigh

set_feet_pos_rewards(back_right, heigh

Example answer code:
import numpy as np
set_torso_targets(0.1, np.deg2rad(5))

Example

Remember:

1. Always format the code in code blocks Rules

Motion Controller ‘

index-179_1.jpg
“Recycle the coke can”

» ou

“coke can”, “recycle bin”

“coke can” found at (x1, y1)
“recycle bin” found at (x2, y2)

” u

“go to coke can”, “pick up coke can”,
“put down coke can”,

2 e
EXN;
|

Scene: coke can, recycle bin
Robot: | should

1. find the coke can

2. pick up coke can

3. go to recycle bin

4. put down coke can

pick up the coke can

0.00
find the recycling bin

000
put down the coke can

0.00

index-184_1.jpg
Environment
Poses, coordinate system, bboxes,
frame conventions, orientations.

Embodiment
Embodiment constraints, Robot
API skeleton with documentation.

Define poses and bbox conventions.
Poses are a dictionary, ‘position’ indicates [x, y, z.
Bounding boxes are z-aligned ... in robot frame.

Directional information.
Positive x is forward.
Negative x is backward.

Gripper orientation
Euler degree angles (roll, pitch, yaw) for the gripper.
Positive z and fingers aligned with x axis [0,8,-98]...

You are a robot with one arm and a mobile base... The
gripper fingers are 1ecm long...

Class RobotAPI(object):

def detect_objects(self, obj_names):

*** Docymentation ...

def follow_trajectory(self, poses, allow_base,
constraint_orientation):

* Documentation ... *
def gripper_open(self, arm_name, obj_name):
def gripper_close(self, arm_name, obj_name):

Example

Task: User defined task.

1/0: Allows LLM to decide
when to add bboxes to prompt.

bboxes: scene state in prompt.
Code w. COT:Enforces spatial
and geometric reasoning.

Instruction: Pick the bottle on the right.
objects = robot_api.detect_objects(...)
print(objects)

#1/0

objects = {‘cabinet': [{'centroid_pose':
{'position’: [2.07,8.54,0.2], 'orientation':
"size': [3.81 , 3.86,0.4]}], 'water bottle'

COT: Select object to interact with
#... Second bottle is the right most.
right_bottle_position = objects'water bottle][1]

COT: Select gripper orientation.

Grasp orientation quaternion corresponding to [186,
@, 0] roll,pitch and yaw ...
grasp_orientation_quaternion

COT: Calculate grasp pose and pregrasp
robot_api. follow_arm_trajectory([pregras_pose, grasp_po
se],allow_base=True, orientation_constraint=True)

COT: Calculate 1ift arm trajectory
1ift_arm_pose = {'position’: arm_pose['position'] +
{0.0, 6.15],

COT: Decide trajectory parameters for IK controller
robot_api.follow_arn_trajectory([11ft_arm_pose],allow_
base=True, orientation_constraint=False)

% Instruction: Open middle drawer

objects = robot_api.detect_objects(["drawer’,...])
print(objects)

#1/0

objects = {'drawer handle’: [{'centroid_pose':
{'position’: [0.8,-8.93,0.11], ‘orientation’: [...]},
“size': [0.10 , .01 , 0.84]}, {

... The middle handle is the third one
right_bottle_position = objects('water bottle'][1]

Front grasp with fingers aligned with the z-axis.
Grasp orientation in euler is (0, 99, 0]
grasp_orientation_quaternion =
robot_api.orientation_quaternion_fron_euler(-99,0,-98)

pregrasp_pose has a -x delta over the grasp pose.
pregrasp_pose = {*position’: grasp_pose|'position'] +
{-niddle_handle_size[0]/2 - 0.03, 6, 0], ...}
robot_api.. follow_arn_trajectory([pregras_pose, grasp_po
se],allow_base=True, orientation_constraint=True)
robot_api gripper_close()

Opening the drawer is moving the handle on x-axis
pull_arm_pose = {'position’ : arm_poselposition] +
[-0.15, 6,], ‘orientation’: ...}

We don’t care about the final orientation of the
object after opening it
robot_api.follow_arm_trajectory((pull_arm_pose],
allow_base_noves=True. follow_arm_position_only=True

index-182_1.jpg
stack the blocks in the empty bowl.
empty_bowl_name = parse_obj(’empty bowl’)
block_names = parse_obj(’blocks’)

obj_names = [empty_bowl_name] + block_names
stack_objs_in_order (obj_names=obj_names)

index-188_1.png
action sequence

i

transformer
encoder

transformer
decoder

o

joints 2

T

position embeddings (fixed)

Action Chunking

0o 1 2 3 4 5 6 7
w @000
=4 oooo
Action Chunking + Temporal Ensemble
=0 E E E E xlo.s,o.a.o.z,o.n:u
=1 [T
=2 mOoo
=3 {0

index-431_1.jpg
Training with complete data Training with missing data

] 1

1 T T 1
Transformer Transformer

1 t 1 4 1

T]
Erer . oo o

t
-

index-187_1.jpg
Instruction >

y < Action
Pick rice chips from top drawer ;” RT-1 \ Mode Am Base
and place on counter — \ 3Hz — & 5

Images FiLM
EfficientNet TokenLearner Transformer

index-429_1.jpg
Joint Pos Setpoints

.—- PD Controller — Torques

(1000Hz)

Humanoid
Shadowing
Transformer

manoid Shadowi
Transformer

Target Pose X 50

Positional Embeddings

index-190_1.jpg
put strawberry
into the correct

pick up the bag

about to fall RO AR

Denver Nuggets

bowl off the table

place orange in
matching bowl

move banana to
Germany

move redbull can move soccer ball
to H to basketball

move cup to the
wine bottle

pick animal with
different colour

move coke can to move coke can to
Taylor Swift X

move bag to
Google

move banana to
the sum of two
plus one

pick land animal

index-444_1.jpg
Bridge V2

gtf‘

index-189_1.jpg
Internet-Scale VQA + Robot Action Data Vision-Language-Action Models for Robot Control Closed-Loop
Robot Control

Q: What is happening Q: What should the robot RT 2
n the image? do to <task>? A: -, .l".l l"'ll.'l .‘I'.'
: e i
3 coocooco C T —Y
A grey donkey walks Fob BT
down neseet = "
; T T R A Put the strawberry
3 ot i?lw e o into the correct bowl
Q: Que puis-je faire avec H ViT

ces objets?

Faire cuire un géteau.)
A:132 114 128 525 156

Q: What should the robot De-Tokenize
do to <task>? Robot Action
Rl
. ATranslation = [0.1, -0.2, 0] g I—.

ARotation = [10°, 25} -7°] Co-Fine-Tune Deploy

Pick the neary fallng bag

Pick object thats différent

index-434_1.jpg
L3

hand/foot pose

joint states

state machine

__ ——

4
Gaussian grasping switch
Mixture Model

(GMM) e
"*“—-1
Bemoull)
O distribion hand setpoints

=

64x1

3

64x1

28x1

R B

joint torques

i

limb trajectories

8ix1 |concat

gait trigger

K‘ gait sequences
High-level Visuomotor Policy 7, Y Low-level Whole-body Controller 7;,

locomotion types

index-408_1.jpg
07 RGB (640, 512, 3)

ShapeMask

Unsorted Object Masks

~——— Conv

Conv

» Conv—
t]

Forward Encoder
MLP— e(2]0})
c«mm:CEBlnu
A

Backward Encoder
b(20},;)

@ “MLP——~ Q(sg, a;)

v
Cross-Entropy Loss
A

ls}t;f'ario. S‘t‘al‘e :
Acion 1 Qr(8t,at, St41)

index-406_1.jpg

index-421_1.jpg
n HUMANOID ROBOTS 2024 //

2y =
HD Atlas NEO GR-1 Figure Phoenix Apollo Digit Atlas H1 Optimus Gen 2
Boston Dynamics 1 Fourler o1 Senctuary Al Apptronik Agiity Boston Dynamics Unitree Tesla

29X 0 & ® @ 2] & T

6.0
50
a0
-
55

1.0

© 1031 | 47kg 66ib | 30kg 121 | 55k 1321 | 60ky 1541b| 70kg 158 | 72kg 14610 | Bakg 81800 | B0kg 1030 | 47kg # 103 | 47kg 1801 | 81kg
Smph|Bkm/h 7.4mph|12kmh Smph|Bkmh 26mph | 43kmh 3mph|Skmh 7.dmph | 12kmh 33mph | 5.dkmh ® 11mph | 18kmh Smph | Bkmh 8mph | 13kmh

index-410_1.jpg

index-162_3.png
min

L(Cumin) = (C™/Crain)*© 5 B ~0.050, C™P ~ 3.1 x 10° (PF-days)

index-163_1.jpg
L(
N
,D) &
E+2
Ne T8

index-162_4.jpg
Test Loss

4.2
—— L=(D/5.4:10%3)700% | 5.6 —— L=(N/8.8+10'3)70076
s 3.9 is
3.6 4.0
4
3.3 32
3
3.0
3 2.4
——— = (Cmin/2-3 a 105)—0.050
2 . 2.7 .
10=° 1077 10 107 107! 10! 108 10° 10° 107 10°
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

index-164_1.png
Nopt(C) = G(C/6)* Dope(C) = G=H(C/6)"

ad\T B «
BB

where G = (

index-163_2.png
Parameter

«

B
a=pB/(c+p)

Data points

Our estimate

482.01
(124.58)

2085.43
(1293.23)

1.82
(0.03)

0.35
(0.02)

0.37
(0.02)

0.512
(0.018)

240

Hoffman et al’s estimate
406.4
410.7
1.69
0.34
0.28
0.454

> 400

index-170_1.jpg
Instruction Relevance with LLMs Combined Skill Affordances with Value Functions

-6 Find an apple 0.6
-30 Find a coke 0.6
-30 Find a sponge 06
How would you put .
an apple on the -4 Pick up the apple 0.2
table? -30 Pick up the coke 0.2
I would: 1.
-5 Place the apple 0.1
) &
Q -30 Place the coke 0.1
10 Go to the table 0.8 e Valtl:le
LLM -20 Go to the counter 0.8 unctions

I would: 1. Find an apple, 2.

-

index-164_2.png
Final test loss

Predicted IsoLoss Contours
Return on compute when repeating

|
= 4 4.65
o

8

-
o
w
w
. - 4.18
2.21 Up to = 4 epochs Rapidly diminishin i fraa, "aa,!
repeating is almost returns for 1 At = 40 epochs,
20 as good as new data ! more repetitions E repeating is wortt
: 128 488 1208 4808 12T
1) (4) (10) (40) (100)
(gOke:S) ’ 1 10 30 59100 300 1000 3.95
pochs Epochs

* % Models trained
* © + Loss assuming repeated data is worth the same as new data . chinchilla scaling laws efficient frontier o Models trained
=== Loss predicted by our data-constrained scaling laws === Data-constrained scaling laws efficient frontier

index-171_2.jpg
Planning Performance
® FLAN-SayCan @ PALM-SayCan
100%

75%
50%
25%

0%

10 50 100 500

Model Size (B)

index-171_1.png
Pr " =pUnl|tylrp_1s ey lmo) > Evaluate scoring of LLM

paffordance — 4(c 15, £,) > Evaluate affordance function

combined __ ,affordance,,LLM
p‘ll’ 1 - p‘ll' pﬂ'

index-173_1.jpg
Tabletop
Rearrangement (Sim)

Tabletop
Rearrangement (Real)

Kitchen Mobile
Manipulation (Real)

move all the blocks into mismatching bowls.

Ther K wl, blue
-k, blue bowl, red block, red bowl.
t: My goal is ['yellow block in blue bowl’, ‘red
block in yellow bowl', ‘blue block in red bow!’]. Beaved

u achieved ['y block ir > bowl Achieved
t: | need red block in yellow bowl, blue block in
red bowl

You

Object Recognition Task-Progress Success Detection
Scene Description

Sort fruits and condiments in different plates

False

Object Recognition
(w/ Potential Occlusion)

Bring me a drink from the table Pick up chocolate bar
' =
| see a coke and lime soda 3 =
What kind of drink would you like? B | mkpooke
Something with caffeine £3
53
(False % Pick up water
Open drawer
L

Object Recogpnition Success Detection Affordance Grounding

index-399_1.jpg
Global Industrial Robotics Market ™ Moteriol Handing

’ . . - m Welding & Soldering
Size, by application, 2022-2032 (USD Billion) PO —

160 m Palletizing, Packaging 143
140 W Painting & Dispensing 126
| Mllhng l

- .
78

80

. -
v o o
60 49 - ,
40---
-a il
0

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

index-393_1.jpg

index-400_1.jpg
The Giants of
Industrial Robotics

Estimated global market share of industrial
robotics companies in 2022, by value

® 21% ABB

® 9% Kawasaki

® 9% KUKA

8% Fanuc

5% Mitsubishi
5% Yaskawa

3% Epson

3% Omron Adept
3% Staubli

34% Others

Source: Statista Market Insights

statista %

index-377_1.png
(a) Roadmap (b) Traffic Lights (c) Speed Limit (d) Route

Current Agent (f) Dynamic Boxes (g) Past Agent Poses (h) Future Agent Poses

index-376_1.jpg

index-392_1.jpg

index-391_1.jpg

index-371_1.jpg
High-Level Software Architecture of AVs in 2022

Mappmg Database Planning — Control

Sensors : l
Prediction

Actuation

Camera

LiDAR GPS/GNSS

Radar Odometer Outcomes

External Perception Simulation

and others

index-375_1.jpg
Types of sensors

Several sensors collect data that is analyzed
by the car’s computer and used to steer and
brake the car along with information from
environmental maps stored in the cloud
and updated by data from other cars.

Park assistai
Surround view

Rearview mirror

Environment
mapping

detection

) Rear collision
warning

Cross-
traffic
alert Park

assistance

Pedestrian
Detection

Emergency
braking
Collision
avoidance
Adaptive
cruise control

)
3

Long-range radar
Microwave radar at 77
GHz has low resolu-
tion but can measure
speed and detect
vehicles and obstacles
0 200 meters away.

Environment
mapping

warning

Ultrasound

Short range, but that
makes it the best
choice for identify-
ing close objects,
particularty for
parking. Used in
some parking assist
systems today. Can
spot people close

to cars.

Lane m-’{m

Short/medium-
range rodar

Mature and inex-
pensive technology
in 24-GHz and 76-
80-GHz bands used
in some cars today.
Can detect velocity
and distance, but
broad beams and
long wavelengths
limit resolution and
produce complex
return signals.

Digital side mirror

Surround view

Optical cameras
Good spatial resolu-
tion, but cannot
directly measure
distance or velocity.
They rely on external
light, so they see
traffic signals and
daytime scenes, but
at night can miss
pedestrians or
wildlife not ittumi-
nated by headlights
or street lights. Color
yields valuable infor-
mation, but analysis
of color data is time-
consuming.

Lidar

Emits short pulses

in a steerable and
tightly focused beam,
measuring a million
points or more a
second. 905-nm
systems limited in
range, but 1550-nm
<an detect objects at
200-300 m. Coherent
lidars can measure
velocity directly. High
resolution is valuable
for identifying
objects. Can map
static environment
as well as detect

and identify moving
wvehicles, pedestrians.
and wildlife. High
cost now a limit, but
prices are coming
down with new
technology.

Infographic: Alessia Kirkiand and Jeff Hecht

index-372_1.jpg
Backbone Network

Perception

Cost Volume

&7
@ .
1

&
@ Argmin Trajectory

Trajectory Samples

CT—l

