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Introduction

 What This Book Is About

 AI for Robotics is the reimagination of robotics as an artificial intelligence 

problem. Modern robotics is steadily transformed by breakthroughs in 

AI. This book is your comprehensive guide to framing traditional robotics 

problems as AI problems and approaching them with deep learning 

techniques. Whether you’re a coder, an enthusiast, or an investor,  AI for 

 Robotics gives you the blueprint to create generalizable and data-driven 

robotic intelligence that learns, evolves, and tackles challenges we once 

thought impossible in dynamic, real-world environments. 

 Who This Book Is For

This book empowers:

•  Software and AI engineers: If you have a background 

in machine learning but are new to robotics, this book 

bridges the gap, showing you how to build robots that 

learn and adapt. 

•  Robotics and mechanical engineers: Stay ahead of the 

curve by learning how to integrate AI and data-driven 

approaches into your designs, ensuring your robots are 

at the forefront of innovation. 

•  Investors, executives, and decision-makers: Gain a 

clear understanding of the AI-robotics landscape. Make 

informed choices about which technologies to bet on. 
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 No matter your background, if you’re ready to shape the future of 

 robotics, this book is your guide. 

 The Structure of the Book

This book is structured to gradually build your understanding of the use of 

artificial intelligence for robotics, starting with fundamental concepts and 

progressing to advanced applications. 

•  Chapter 1: Introduction to General Purpose Robotics



Provides an overview of the current state and future 

directions of robotics, emphasizing the role of machine 

learning in enabling more versatile and intelligent 

systems. 

•  Chapter 2: Robot Perception: Sensors and Image 

Processing



Covers the basics of how robots perceive their 

environment through sensors and image-processing 

techniques, focusing on learning representations for 

vision tasks. 

•  Chapter 3: Robot Perception: 3D Data and 

Sensor Fusion



Explores how to process and integrate 3D data from 

various sensors to create a coherent understanding of 

the robot’s surroundings. 

•  Chapter 4: Foundation Models in Robotics



Discusses the application of large, pretrained models 

in robotics, including language models and visual 

language models, and how they can be adapted for 

robotics. 
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•  Chapter 5: Simulation



Details the use of synthetic data and simulation 

environments for training and testing robots, including 

simulated-to-real transfer techniques. 

•  Chapter 6: Mapping, Localization, and Navigation



Focuses on the techniques robots use to map the 

surroundings, understand where they are, and navigate 

their environments. 

•  Chapter 7: Reinforcement Learning and Control



Introduces reinforcement learning and control 

strategies for teaching robots to self-improve and learn 

from trial and error. 

•  Chapter 8: Self-Driving Vehicles



Explains the design, safety considerations, and 

technical challenges involved in building autonomous 

vehicles. 

•  Chapter 9: Industrial Robotics



Covers the application of robotics in industrial settings, 

including manufacturing and warehouse automation, 

and the integration of machine learning to enhance 

these processes. 

•  Chapter 10: Humanoid Robotics



Delves into the unique challenges and opportunities 

in developing humanoid robots, including perception, 

hardware, and software design. 
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•  Chapter 11: Data-Driven Robotics in Practice

Discusses the infrastructure required to support 

data-driven robotics, including important 

considerations, safety issues, and future directions. 

 What You Will Learn

By the end of this book, you’ll gain expertise in the following:

•  Applying machine learning to key robotics areas, 

including perception, mapping, control, and 

decision-making. 

•  Designing and implementing robotic systems for 

diverse industries, including self-driving cars, 

manufacturing, and humanoid robots. 

•  Overcoming the specific hurdles of integrating machine 

learning with robotics, understanding the future trends 

of robotics, and learning about the ongoing impact of 

machine learning. 

 What You Need to Know Before You Start

This book requires some Python programming knowledge and familiarity 

with libraries like NumPy, PyTorch/Jax, or ROS. A basic understanding of 

neural networks and machine learning is also necessary, either through 

an introductory course or self-study. If you lack this background, consider 

taking Andrew Ng’s ML course or the Deep Learning Specialization on 

Coursera. 
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 Why We Wrote This Book

The last half decade has shown robotics being disrupted by machine 

learning methods and evidence is stronger than ever that the path to 

building generally intelligent robots is paved heavily with AI. We believe 

that the field of robotics is at a special moment today: one that is ready 

to be disrupted by breakthroughs in AI research. Machine learning has 

fundamentally transformed how we design and build robots, opening 

up a world of possibilities to create intelligent machines that effortlessly 

navigate and interact with our complex world. 

Innovation at a rapid pace has created a gap in literature, where most 

textbooks on robotics taught at schools tread in classical methods and 

most ML textbooks rarely address embodied AI, therefore restricting the 

knowledge of designing data-driven robotics to privileged conferences, 

research labs, and academic papers. We are writing this book to 

democratize access to the practice and know-how of modern robotics. 

We aim to break down barriers, making the fusion of AI and robotics 

comprehensible to a broader audience and inspiring a new generation of 

roboticists. We write this book to spark innovation, ignite new ideas, and 

invite more people to contribute to this thrilling field. 

 It’s time to learn the new robotics, where AI leads the way. 
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CHAPTER 1

Introduction to 

General Purpose 

Robotics

People have dreamt of making intelligent machines that behave and think 

like humans for centuries. From the industrial revolution to Asimov’s 

“I, Robot” and the world’s first humanoids built a century ago, robots 

have occupied our collective imagination for a long time. Robots have 

transcended from being a figment of science fiction to being realized in the 

present, with accelerating capabilities. 

What led to this transformation? Advances in artificial intelligence 

have disrupted various industries in the last decade by unlocking new 

capabilities with machine learning. Robotics has escaped its constrained 

and narrow applications in well-structured industrial and research 

environments and is now integrated into our daily lives. Robots drive 

competition through automation in large-scale manufacturing[1], space 

and underwater exploration[2], agriculture[3], and healthcare[4], among other industries. In the future, we expect to see robots handling fine-manipulation tasks in industries, performing household chores in homes, 

and autonomously operating on public roads and in hospitals. 

As the capability has increased in the last few decades, the cost has 

decreased. Over the past 30 years, the average cost of robotics has fallen 

by half in Consumer Price Index (CPI)-adjusted terms (after accounting 
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for inflation), according to a recent McKinsey & Company report[5]. Costs 

have fallen even further in relation to their capabilities due to Moore’s law, 

the ubiquity of GPUs, and the falling cost yet rising capacity of batteries 

and onboard computers. The widespread adoption of robots is motivated 

by increased economic expansion, the rising cost of human labor, the 

falling cost of robots, and the increase in their capabilities. 

However, as robots move from research labs and constrained industrial 

settings to the real world, they face new challenges. Consider, for example, 

a household cleaning robot. This robot would have to engage in many 

tasks, including cleaning the floors, dusting counters, and washing dishes. 

To accomplish this, it must know how to:



–

Traverse indoor environments while perceiving and 

avoiding obstacles. 



–

Handle fragile, soft, and sometimes heavy objects with 

irregular shapes, including objects it may never have 

encountered before. 



–

Manipulate scenes it may have never experienced 

before, since each home looks different, has different 

lighting, layouts, and so on. 



–

Reason about interactions with household objects, 

humans, and pets and past configurations of the space. 

The challenge is designing an approach that can adapt to changes 

in the real world and the variety of situations it will encounter. Before 

the advent of deep learning, a software stack to solve any of these tasks 

would be written as a state machine with “hard-wired” motion primitives 

resembling traditional controls for that particular task. This approach 

cannot handle unseen situations very well, doesn’t scale, and limits the 

utility of hard-programmed robots. Additionally, even for simple pick-and- 

place, translating the wide repository of human intuitions into transitional 

controls is challenging, if not close to impossible. 
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The breadth and universality of perception, reasoning, and controls 

required for general-purpose robotics is best handled by universal 

function approximators:  neural networks.  Instead of hand-coding a control 

system, we use machine learning to allow a robot to learn the relevant 

features and their relationships from training data. 

This approach has yielded results in many other areas. The recent 

success of ChatGPT and language models in general has minted 

multibillion dollar AI companies. The research behind these products 

shows that scaling data, compute, and models programmatically leads to 

general capabilities in the language/vision/audio spaces. By converting 

data into tokens, similarities between them can be identified, and 

those similarities can be transferred to other domains. A wide array of 

capabilities have been unlocked as a result:

1.  Creation of custom and realistic images[37] and 

videos[38] on demand, which promises to transform 

the film, marketing, and advertising industries. 

2.  Language generation, including translations, 

creative writing, copywriting, code generation[41], 

and transcription[40]. 

3.  Audio generation. Creating on-demand 

podcasts[42] and music[43]. 

4.  Multimodal reasoning. Solving mathematics[45], 

graduate-level science problems, and law and 

medical problems[44]. 

These capabilities have led to an AI spring, with generative AI 

companies raising 25.9 billion dollars in funding in 2023 alone[39]. These 

trends, as well as recent breakthroughs in spatial intelligence and robot 

foundation models, show that robotics can also be framed and solved 

as an AI problem. In an era in which we have generic intelligence, the 

ingredients needed to build generally useful robots are mostly present. 
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The success of AI and the promise of emergent capabilities has led to a 

boon in machine learning powered robotics and a rising demand for talent 

in the labor market. According to research from  Mordor Intelligence[6], the Global Robotics Market was valued at USD 27.73 billion in 2020 and 

is expected to reach USD 74.1 billion by 2026, registering a Compound 

Annual Growth Rate (CAGR) of 17.45 percent. While this increase mostly 

accounts for the boon in industrial robots, the AI robotics market is 

expected to grow at a CAGR of 38.6 percent from 6.9 billion USD in 2021 

to 35.3 billion USD in 2026 according to this[7] report. To capitalize on 

this opportunity, large tech companies, startups, and research labs are 

increasingly seek qualified AI and robotics engineers for their robotics 

R&D, autonomous cars R&D, and manufacturing divisions. To start 

contributing to these companies’ machine learning efforts, you’ll need to 

understand:



–

How to formulate a robotics problem in the context of 

machine learning



–

Which machine learning methods can be used to solve 

different problems in robotics and the tradeoffs 

between them



–

At what point in the robotics stack you should use 

machine learning

Moravec’s paradox is one of the main challenges of machine learning for 

robotics. As Steven Pinker described in 1994[8], “The main lesson of 35 years 

of AI research is that the hard problems are easy and the easy problems are 

hard.” Artificial intelligence, especially neural nets, is a fairly different form 

of intelligence than the human brain and, as such, has different strengths. 

Things that may seem very difficult for humans—such as generative imaging, 

language compression, and sequential projection like stock analytics—are 

quite easy for AI. However, tasks that even a four year old child can do easily 
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via sensorimotor and perceptual reasoning—such as taking a walk and 

lifting a pencil—are much harder. In the history of scientific innovation, all 

problems seem hard before they are solved, and the authors of this book are 

optimistic that mapping and fixing the real challenges in robotic learning 

can put a dent in advancing physical intelligence. 

This chapter starts with defining the two premises of this book: robots 

and AI. We present general motivations for why one needs to use AI for 

robotics and the challenges in doing so. Subsequent chapters map out 

key areas in the development of AI for robotics, such as machine learning 

perception, language in robotics, training robots in simulations, and 

building infrastructures for scalable robot learning. Then we explain 

how to practically design and implement these principles in a few select 

applications—self-driving cars, industrial robots, and humanoids. 

Let’s get into it! 

 A Robot System

A robot is defined as an interactive machine that takes in a world model 

and outputs actions. Unlike many machine learning applications, a 

robot is characterized by agency and a closed loop feedback in a real or 

simulated world. 

A robot typically senses the world through its suite of sensors, 

including cameras, LiDAR, inertial measurement units (IMU), voice 

detectors, and/or radars, as a few examples. A robot brain, typically 

executing on an onboard microcontroller, processes the inputs from 

sensors and calculates actions, which are sent as signals to the robot’s 

actuators. These actuators can be direct current motors that cause its joints 

to move or compliant materials in the case of soft robotics. 

The action space of a robot is determined by its application. For 

example, the action space for self-driving cars and navigating robots is 

the acceleration and steering angle. A robot arm could be designed as 

5
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positions or velocities of the joints on the arm. Additional action spaces for 

robots that interact with humans could include natural language via a chat 

interface, gestures, and facial expressions. 

Figure 1-1 shows a high-level diagram of a robot system. 

 Figure 1-1. The main components of a robot: sensors (microphones, 

 vision systems like cameras and LiDAR, touch/force sensors, and 

 proprioception), which are used to perceive the environment; the 

 robot brain where perception data is processed in a continuous 

 perception-action loop; and actuators (speakers and rotary/linear 

 actuators), which carry out the robot’s actions. This perception-action 

 loop is critical for robotic learning

 Common Types of Robots

Robots come in many sizes and shapes. We can segregate them by vertical 

(or the sector in which they’re deployed), as shown in Table 1-1 (curated 

with assistance from AI). 
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 Table 1-1. Types of Robots by Vertical

Type

Definition

Examples Industrial 

robots

1. Industrial robots robots used in manufacturing 

robotic arms, gantry 

processes such as assembly, 

robots service robots

painting, welding, and packaging

2. service robots

robots that perform tasks 

delivery robots, cleaning 

to assist humans in various 

robots, telepresence 

environments such as hospitals,  robots

hotels, and restaurants

3. Medical robots robots used in healthcare 

da Vinci surgical system, 

settings to assist with surgeries,  rehabilitation robots, 

diagnostics, and patient care

pharmacy automation 

systems

4. Military and 

robots designed for use in 

unmanned aerial vehicles 

defense robots military applications, such as 

(uaVs), unmanned ground 

reconnaissance, surveillance, and  vehicles (uGVs), bomb 

combat support

disposal robots

5. agricultural 

robots used in farming to 

autonomous tractors, 

robots

automate tasks like planting, 

drones for crop 

harvesting, and monitoring crop 

monitoring, fruit-picking 

health

robots

6. domestic 

robots designed for use in homes  roomba vacuuming 

robots

to help with chores and other 

robots, lawn-mowing 

tasks

robots, personal assistant 

robots like Jibo

( continued)
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 Table 1-1. ( continued)

Type

Definition

Examples Industrial 

robots

7. educational 

robots used in educational 

leGo Mindstorms, social 

robots

settings to help teach various 

robots like pepper, sphero

subjects or skills

8. research 

robots used in scientific 

underwater robots, Mars 

robots

research, including exploring 

rovers, humanoid robots 

remote or hazardous 

like asIMo

environments and developing 

new robotic technologies

9. entertainment  robots designed for amusement  robotic pets like aibo, 

robots

or companionship

interactive toys like Furby, 

robots used in theme 

parks or movies

10. swarm robots

robots that work together in large  swarm robots used in 

groups, coordinating their actions  research, agriculture, 

to complete tasks more efficiently search and rescue, and 

environmental monitoring

A second way to split robots is by the nature of their embodiment, as 

shown in Table 1-2 (curated with assistance from AI). 
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 Table 1-2. Types of Robots by Embodiment

Serial  Embodiment Explanation

Examples

Num

1

Wheeled 

robots using wheels for locomotion, 

roomba, 

robots

often used on flat surfaces

turtlebot, self- 

driving cars like 

Waymo and 

Cruise

2

tracked 

robots utilizing tracks for movement, 

Mars rovers, 

robots

providing greater traction and stability 

bomb disposal 

on rough or uneven terrain

robots

3

legged 

robots using legs for locomotion, 

boston dynamics’ 

robots

navigating complex environments like 

spot, asIMo

stairs and uneven terrain

4

Flying robots robots capable of flight, typically using  Quadcopter 

rotors or wings, for aerial surveillance, 

drones, fixed- 

inspection, and photography. 

wing uaVs

5

underwater 

robots designed for underwater 

bluefin robotics 

robots

operation, used for exploration, 

auV, seabed

inspection, and monitoring tasks

6

snake robots robots with long, flexible bodies, for 

CMu’s biorobotics 

moving through tight spaces and 

lab’s snake 

navigating around obstacles

robots, oC 

robotics’ snake- 

arm robots

( continued)
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 Table 1-2. ( continued)

Serial  Embodiment Explanation

Examples

Num

7

robotic arms robots consisting of a series of joints 

KuKa, Fanuc, and 

and links, resembling a human arm, 

abb robotic arms

used in industrial settings

8

humanoid 

robots with human-like forms, used in  softbank 

robots

research, entertainment, and service 

robotics’ pepper, 

applications

hanson robotics’ 

sophia

9

soft robots

robots that mimic locomotion 

harvard’s Wyss 

mechanisms of deformable matter 

Institute’s soft 

such as fluids, gels, and elastomers 

robots, octobot

for greater flexibility. Commonly used 

in biomedical applications such as soft 

tools for surgery, rehabilitation devices, 

and drug delivery

Despite the variety in robots, they share many similarities that can 

be used to build a common framework and science for robotics, which is 

extensible with modifications to fit the deployment conditions of a robot. 

 Common Concepts in Robot Design

This section explains a few ubiquitous concepts that are used in 

robot design. 
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 Robotic  Manipulators

A common form of robots are robotic arms/manipulators. These robots 

can be found in the form of industrial robotics arms, assistive robots, 

and medical robots, which are used to complete various tasks in their 

environment. A robotic arm is a series of joints and links, such as the one 

depicted in Figure 1-2. Here, a link connects the joints and is a rigid body. 

A joint connects two or more links and allows for relative motion between 

the links. 

 Figure 1-2. Links and joints in a robot arm/manipulator. (a) A 

 seven-link robot arm labeled with its joints. (b) Representation 

 of the parent-child relationship between links through a joint. (c) 

 Visualization of links connected through joints with rotational 

 axes. Used with permission, source: https://robocademy. 

 com/2020/04/21/robot-kinematics-in-a-nutshell/ [49]
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 Degrees  of Freedom

Degrees of freedom (DoF) is a measure of the different components of 

motion a robot can undertake. For example, a rigid body in space has 

six DoF: translatory motion along the X, Y, and Z axes and rotary motion 

about X, Y, and Z axes, as shown in Figure 1-3. Every additional link adds 

to the degrees of freedom of a robot and every joint takes away from it by 

constraining motion in one or more directions. Each degree of freedom 

can be modeled as an independent, bounded variable that a robot brain 

needs to predict as an action target to control the robot. 

 Figure 1-3. Any rigid body has six degrees of freedom (DoF): three 

 translational (surge, sway, heave) and three rotational (roll, pitch, 

 yaw). Used with permission, source: https://www.researchgate. 

 net/publication/340403456_Efficiency_and_Survivability_

 of_a_Floating_Oscillating_Water_Column_Wave_Energy_

 Converter_Moored_to_the_Seabed_An_Overview_of_the_EsflOWC_

 MaRINET2_Database [50]
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 End Effectors and Workspaces

An end effector is a device attached to the end of the arm. A gripper, or 

dexterous hand, is the most common type of end effector and is a form 

factor that generalizes to a wide variety of tasks. Sometimes robots also 

have task specific end effectors like wipers, squeezers, and so on. 

The union of the three-dimensional space occupied by a robot is 

defined as its  workspace. A subset of this space, that which can be reached 

by the end effector, is defined as the reachable space of a robot. Reachable 

space and workspace bounds drive robot design considerations given that 

they drive the utility of a robot and its ability to manipulate objects within 

their placement in space. 

 Kinematics

A key concept in robot control is robot kinematics. Etymologically, the 

term refers to the study of the motion of a body or a system of bodies. In 

this case, it is the joint motion of a robot’s joints and links. With respect to 

robot control, two types of kinematics are relevant:

1. Forward kinematics: Here, given input joint angles, 

we determine the position and orientation of the 

end effector when all other joint parameters are 

known in a constellation of links and joints. 

2. Inverse kinematics: Here, given a specific position 

or velocity that an end effector intends to achieve, 

we calculate the required motions/orientations of 

the previous joints to achieve that motion. 

The sequence of links in the robot’s physical body, their properties 

(e.g., mass, moment of inertia, length), and the properties of joints 

(e.g., constraints imposed, torque of the joint) determine the kinematic 
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system/chain representing the robot. Figure 1-4 shows a depiction of 

the kinematics chain of a typical robot arm. Figure 1-5 represents the 

transformation between link i and link i+1. 

 Figure 1-4. Kinematic chain of a robot arm showing multiple links 

 connected by joints, with joint axes and coordinate frames

 Figure 1-5. The transformation matrix between link 𝑖 and link 𝑖+1 

 using yaw, pitch, and roll angles 𝛼, 𝛽, and 𝛾, respectively
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 Deep Learning for Robotics

In the last decade, several robotics companies have bloomed and perished 

in the market for a variety of reasons[9]. These reasons range from product 

market fit to revenue/financing and technological issues. 

Despite these failures, the robotics outlook for 2030 remains positive, 

partly due to the fact that most breakthroughs in deep learning research 

are happening in the current decade and are yet to be productized/

deployed on robots. Improving upon the failures of the last-gen classical 

robots and a fundamental rethinking of robot learning paradigms are 

both key to bringing to market more powerful and generalizable robots. 

Deep learning is a promising prospect[10] toward that goal, as shown in 

Figure 1-6. 

 Figure 1-6. Robotics market outlook for 2030, projecting a total 

 market volume of $160 billion to $260 billion, from BCG. Used with 

 permission, source: https://www.bcg.com/publications/2021/

 how-intelligence-and-mobility-will-shape-the-future-of-

 the-robotics-industry [51]
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Some of the benefits that deep learning provides include:

•  Generalization: Deep networks can learn nonlinear 

functions with enough parameters in the model and 

robust training methods to avoid overfitting. These 

functions are otherwise impossible to model with hand 

engineering. This is useful for dealing with diversity in 

the real world, such as handling various objects and 

scenes, learning inverse dynamics, and planning in 

diverse situations. 

•  Feature learning: Back propagation and carefully 

constructed loss functions allow deep neural networks 

to learn from data what is important, without the need 

for explicitly modeling representations or engineering 

features. It also allows networks to learn multiple 

representations of similar input data based on the 

application requirements. This translates into learning 

the correct distributions to generate actions for a 

variety of tasks with a single network. 

•  Parallelism: Real-world robotics requires responding 

at very fast inference speeds on the order of 10Hz or 

greater. While simpler classical methods are faster 

than neural nets, when the decision space becomes 

more complex, search/graph based methods become 

inefficient from a speed perspective and are not as 

friendly toward parallelization. Deep learning allows 

for massive parallelization on hardware accelerators 

like Tensor Processing Units (TPUs)[46] and Graphics 

Processing Units (GPUs)[47], which permit millions 

of matrix multiplications per second in an optimized 
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manner. Network architecture optimizations such as 

YOLO[11] and EfficientNet[12], discussed in Chapter 2, provide a tradeoff between accuracy and speed based 

on the application. 

To deploy deep learning for robotics, a whole host of infrastructure 

paradigms are important:

•  Compute: The improvements in performance from 

deploying larger and larger AI models is powered by 

innovations in compute architecture through massive 

parallelization on TPUs and GPUs. While the theory of 

deep learning has existed since the 1950s, the current 

spurt in research and applications was catalyzed 

by the availability and lowering cost of GPUs in the 

last decade. Additionally, robot onboard compute 

capabilities have improved due to platforms like 

NVIDIA Jetson[13], which allows for fast real-time 

inference on mobile robots. Over-the-air updating 

permits the deployment of newer software versions for 

on-the-field robots, enabling robot software iterations 

to happen at a rapid pace that pure software companies 

iterate on. 

•  Data: Deep learning is famously data hungry and 

its use in robotics requires data harvesting. A good 

example of this is Tesla’s large array of sensor-mounted 

vehicles on the road that gather data on a wide variety 

of highly improbable driving scenarios[14]. Scaling also 

poses questions with respect to the best architecture 

and training methods. A second example of disruption 

from large datasets is in visual-language research 

where large datasets like ImageNet[15], LAION[16], 
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and the Internet have enabled the development of 

extremely capable neural networks like ChatGPT[17], 

ResNets[18], and Stable Diffusion[19]. This is covered 

in greater detail in Chapter 2. 

•  Labeling: Supervised and weakly supervised learning 

are among the most performant types of deep learning 

out there. Supervised learning, especially for image 

data, is made possible by highly streamlined labeling 

pipelines that generate human feedback and the 

emergence of labeling companies like Scale AI[20]. 

Weak supervision from text such as language-image 

pairs extracted from the Internet also collect very large 

scale datasets that train neural networks. 

•  Simulation: The widespread availability of simulation 

engines, such as Gazebo[21], PyBullet[22], and 

MuJoCo[48], emulate physics in the real world. 

They unlock new functionalities for robots. For 

one, simulation allows modeling of and handling 

emergency/safety critical scenes that are very unlikely 

in the real world. Learning from simulated data also 

removes constraints imposed by robot capacity. 

Doubling your data, if you only rely on real robots, 

means doubling robot hours and robot capacity, which 

is costly from a hardware and time perspective, but 

creating copies of simulated robots to do the same 

is quite cheap. Additionally, R&D requires iterative 

development and evaluations and stands to benefit 

from faster feedback loops that simulation can provide. 
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 Deep Learning Frameworks

In the context of this book, we tend to use artificial intelligence, machine 

learning, and deep learning interchangeably to refer to data-driven 

methods. However, strictly speaking, the terms have some distinctions[36], 

addressed in this section. 

Artificial Intelligence (AI) is an overarching term to describe 

computational techniques capable of performing tasks with human-level 

intelligence. These tasks include problem-solving, understanding natural 

language, recognizing patterns, and making decisions based on learnings 

from model training. AI is the overarching field that consists of ML and DL, 

as shown in Figure 1-7. Artificial intelligence today is further differentiated into Artificial General Intelligence (AGI), which describes a system that 

has a wide range of intelligence capabilities useful in everyday life, and 

Artificial Super Intelligence (ASI), which describes intelligence that far 

exceeds human level capabilities. 

Machine Learning (ML) is a subfield of AI focused on  learning from 

 data.  Instead of being explicitly programmed to perform a task, ML models 

improve their performance through the data that they are trained on. ML 

comprises supervised learning (labeled data), unsupervised learning 

(unlabeled data), and reinforcement learning. 

Deep learning (DL) is a subset of ML that uses neural networks that 

often have many layers  (hence deep) and uses large scale data to perform 

complex tasks. These networks help understand images and language and 

can include more state-of-the-art methods like transformers, GPT, and so 

on. DL methods often have more layers and parameters and require more 

data and computational resources than “shallow” ML methods. 
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 Figure 1-7. Artificial intelligence (AI) is the overarching concept that 

 includes machine learning (ML) and its subset, deep learning (DL). 

 Inspired by [36 ]. 

Within deep learning there are four main types of learning systems: 

supervised learning[23], unsupervised learning[24], weakly supervised learning[25], and reinforcement learning[26]. In recent years, the lines between these three learning methods have blurred, as combinations or 

ideas from them can be utilized in a singular system. 

1. Supervised learning uses datasets with labels of the 

ground truth that the system should use to predict 

labels of previously unseen data. This is used for 

classification, where the output typically consists of 

discrete classes, or for regression, where predicted 

outputs are real numbers. 
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2. Unsupervised learning methods attempt to learn 

useful representations of data without labels. 

Examples of unsupervised learning methods 

include clustering, principal component analysis, 

Gaussian mixture models, auto-encoders, and so 

on. Unsupervised learning models are typically 

used for clustering, association, and dimensionality 

reduction. 

3. Weakly supervised learning methods use noisy 

labels in a supervised learning setting. They are 

used in cases where datasets are expensive to label 

and aggregating large datasets with weak labels is 

feasible over a smaller dataset with clean labels. 

Weakly supervised learning is used to train very 

powerful models, including CLIP, DALL-E, and so 

on, using Internet-scale data. 

4. Reinforcement learning motivates an agent to 

learn a policy that maximizes a reward function 

through processing sequences of state-action pairs, 

observing the achieved rewards, and adapting 

predictions until it accurately predicts an optimal 

path, or policy, for the agent. Reinforcement 

learning provides a framework for robots to 

autonomously learn through trial-and-error 

interactions and continuously self-improve with 

feedback. 

These terms are overarching and represent the entire field of AI. The 

next section looks at frameworks specifically used in robot learning. 
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 Robot Learning Frameworks and Objectives

Learning a task from a robotics perspective may be described as 

generating the distribution of actions given a specific input world model. 

As mentioned, a key manner in which robotics of the present differs from 

the past is that we can now design multi-purpose, generalist robots that 

can do a variety of tasks. Generality, from a deep learning perspective, can 

be framed in three settings:

1. Transfer learning: Given a network trained on task 

Ti, can we adapt it to learn task Ti+1? 

2. Meta-learning: Given a network that can do task T1, 

T2, and Tn-1, can we quickly adapt it to learn task Tn? 

3. Multi-task learning: Can we train a network on all 

tasks—T1, T2, to Tn—at the same time? 

Subsequent chapters address algorithms that explain these learning 

paradigms in detail. 

For a multitask robot, specifying the objective assume various forms. A 

robot brain can be configured to achieve an objective. But the question of 

how to convey an objective to a robot remains. This is especially important 

for deep learning, which is an objective optimization framework. Ideas 

explained in the book to address this question include the following:

•  Language conditioning: The practice of specifying 

targets for robotics using language as an interface. 

Language has been the natural interface for interaction 

between humans. The expansion in deep learning 

for natural language processing has made language 

interfaces to robots and generative a standard. 

22

Chapter 1   IntroduCtIon to General purpose robotICs

•  Goal conditioning: Goal conditioning often happens 

on policies where you can train policies to reach a goal 

state, which is provided as input. For example, goal- 

conditioned reinforcement learning (GCRL)[27] trains 

an agent to achieve different goals under particular 

scenarios. 

•  Self-collision: If the robot is not programmed properly, 

the robot can collide with itself. The goal of self- 

collision is to make the robot aware of its body to avoid 

collision during motion. Another type of collision is 

avoiding collisions with the environment. For example, 

suppose a robot experiences an unexpected obstacle 

while navigating its environment. In that case, it can 

use collision avoidance to determine the best action 

and path around the object and continue its task. 

•  Hierarchical robot learning: The goal of hierarchical 

learning is to break down larger problems into a 

hierarchy of subproblems. This allows higher-level 

parent tasks to invoke lower-level child tasks to 

complete a task. 

 Toward Embodied General Intelligence

Solving artificial general intelligence (AGI) is one of the most heated and 

important problems of our generation. Nick Bostrom defines AGI as “an 

intellect that is much smarter than the best human brains in practically 

every field”[28]. Wikipedia defines it as “the ability of an intelligent agent 

to understand or learn any intellectual task that a human being can”[29]. 

Open Philanthropy describes “transformative AI” with an economic 

definition, as something that could increase the Gross World Product ten 

times over[30]. 
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But all these specifications mainly focus on digital AI, whose imagined 

interfaces to the real world are still human. Transforming any industry 

that predates the Internet—such as manufacturing, construction, 

driving, logistics, energy, mining, and agriculture—and that encompass 

large portions of global GDP would require solving  embodied AI, that is 

intelligence within an embodiment that has physical reasoning and can 

manipulate the physical world. Advancements in compute and data have 

made it much easier for anyone to build and test deep learning models 

for robotics. But how does one know if an AI is embodied and general? 

Steve Wozniak has proposed a coffee test for embodied AGI: a machine 

can learn how to make coffee in an unseen human kitchen[31]. This flies 

in the face of Moravec’s paradox, because AI today can create high-quality 

graphic images and movies, but making a simple cup of coffee in a generic 

setting is still impossible. Robotics is hard AI, because it needs to solve 

computer vision (for understanding the world), language (for interacting 

with humans and communicating), manipulation and navigation (for 

acting in the real world), and tool use (for search, embodied reasoning, 

etc.). Robotics is the hard and over-encompassing version of AI, one that is 

truly packaged to change the world, and one that inhabits and lives among 

us, not just behind screens and in data centers. Specific benchmarks for 

embodied intelligence to measure and track progress toward solving 

robotics is still ongoing. 

 Environment Is Deeply Tied to the Definition 

of Intelligence

What is the north star for embodied intelligence? There is some 

evolutionary evidence that points to how the solution may look. 

Lifetime learning over several episodes has encoded data in our 

genes, so much that babies understand structured motion and the physics 

of the world before they understand and comprehend language. What 
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is intelligent is deeply tied to what provides a survival advantage in an 

environment. For example, aquatic animals have visual systems that 

are much better[32] at seeing underwater because they’ve evolved to 

accommodate for the refraction by water in a way that humans have not. 

Our sensors that attempt to emulate our visual range, and the data we’ve 

collected on that basis, including YouTube videos, suffers from being 

overfit to our domain of visual capability. In patients who have had their 

cataracts removed, allowing them to see for the first time, it was seen that 

despite spending an entire life in a 3D world, they lacked understanding 

of spatial imagery because their sensors didn’t have that input[33]. In 

essence, environment and agent cannot be removed from the definition of 

intelligence. 

The last decade of AI research has led to the rise of large transformers 

that are very good at multi-task speech and vision. A language-first AI 

would be susceptible to the failure modes[34] of a blind agent, beyond the 

visual context it receives from a training corpus gathered from humans 

who can see. It logically extends that a visual language model would 

suffer from an inability to approximate actuator parameters inherent to 

performing precise control of an embodied agent. Reasoning about the 

real world requires not just thinking about methodological spaces and 

language, but also being grounded in a real-world context[35]. 

In a world built by and designed for humans, an intelligence that 

is agnostic to sensory-motor dynamics is going to be suboptimal, and 

superhuman skills beckon physical agency and universal control. Having 

physical embodiment is absolutely indispensable to AGI. 

This book explores how to practically reach that goal and build a future 

with generally intelligent robots. 
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 Summary

This chapter covered the following points:

•  Recent advancements in AI are moving robots from 

controlled research labs into real-world applications, 

thus allowing them to adapt and generalize to dynamic, 

unpredictable environments. AI allows robots to learn 

from data, rather than relying on preprogrammed 

rules, making them versatile across various tasks and 

industries. 

•  A robot operates by processing sensor inputs (such as 

cameras, LiDAR, and IMUs) into actionable outputs 

via a microprocessor or microcontroller, which then 

signals actuators (like motors or soft materials) to 

execute physical movements. This perception-action 

loop is central to a robot’s ability to interact with and 

manipulate its environment. 

•  Robots can be classified based on their applications, 

including industrial robots (for assembly, welding, 

etc.), service robots (for tasks like cleaning or 

telepresence), medical robots (for surgeries and 

diagnostics), military and defense robots (for 

reconnaissance or bomb disposal), among others. They 

can also be categorized by their physical structure, 

such as wheeled, legged, flying, or humanoid forms, 

depending on their function and environment. 
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•  Key design principles include the use of robotic 

manipulators (arms with joints and links), degrees of 

freedom (the range of independent movements a robot 

can perform), the end effector (the tool at the end of 

a robotic arm used for tasks like gripping), workspace 

(the area a robot can physically reach), and kinematics 

(the study of the motion of joints and links, including 

forward and inverse kinematics for planning). 

•  The demand for robots is rapidly growing due to their 

increasing ability to generalize and perform a wide 

range of tasks in various industries. The development 

of infrastructure, software frameworks, and systems 

learning from AI has fueled advancements in the 

capabilities and adoption of robots. 

•  Robots learn to perform tasks through four main types 

of machine learning: supervised learning (training 

on labeled data), unsupervised learning (discovering 

patterns in data without labels), weakly supervised 

learning, and reinforcement learning. 

•  Various frameworks guide robot learning, including 

transfer learning, meta-learning, and multi-task 

learning. 

•  The ultimate goal of AI in robotics is to build a generally 

intelligent agent in the physical world. 

The next chapter discusses sensors, robot perception, and common 

neural network and transformer methods that robots use to sense and 

understand their environment. 

27

Chapter 1   IntroduCtIon to General purpose robotICs

References

[1]  Law, Marcus. “Robotics Reshaping Manufacturing and 

the Future of Work.” Technology Magazine, 31 May 

2024, technologymagazine.com/articles/robotics-

reshaping-manufacturing-and-the-future-of-work. 

[2]  Ryan, Melissa, and Karl McLetchie. “How Robots Are 

Uncovering the Mysteries of the Deep.” Oyla Articles: 

 Ocean Exploration Technology,  Aug. 2022, oceanexplorer. 

noaa.gov/explainers/technology.html. 

[3]  https://www.agritecture.com/blog/exploring-the-

future-of-agriculture-a-deep-dive-into-robots

[4]  https://online-engineering.case.edu/blog/

medical-robots-making-a-difference

[5]  Tilley, Jonathan. “Automation, Robotics, and the Factory 

of the Future | McKinsey.” McKinsey & Company, 7 Sept. 

2017, www.mckinsey.com/capabilities/operations/

our-insights/automation-robotics-and-the-

factory-of-the-future. 

[6]  www.mordorintelligence.com/industry-reports/

robotics-market. 

[7]  “Artificial Intelligence (AI) Robots Market Size, Growth, 

Trend and Forecast to 2023 | MarketsandMarkets.” 

 Markets and Markets,  www.marketsandmarkets.com/

Market-Reports/artificial-intelligence-robots-

market-120550497.html. 

[8]  Pinker, Steven.  The Language Instinct: The New Science of 

 Language and Mind. London, Penguin Books, 1994. 

28

Chapter 1   IntroduCtIon to General purpose robotICs

[9]  Casse, Bernard. “Council Post: The Demise of Robotics 

Companies: Learning from Past Mistakes.”  Forbes, 9 July 

2021, www.forbes.com/sites/forbesbusinesscouncil/ 

2021/07/09/the-demise-of-robotics-companies-

learning-from-past-mistakes/?sh=5b9a1bac2b1d. 

[10]  Lenz, Ian, et al. “Deep Learning for Detecting Robotic 

Grasps.”  The International Journal of Robotics Research,  

vol. 34, no. 4-5, 16 Mar. 2015, pp. 705–724, https://doi. 

org/10.1177/0278364914549607. 

[11]  Redmon, Joseph, et al. “You only look once: Unified, 

real-time object detection.” Proceedings of the 

IEEE Conference on Computer Vision and Pattern 

Recognition. 2016. 

[12]  Tan, Mingxing, and Quoc Le. “Efficientnet: Rethinking 

model scaling for convolutional neural networks.” 

International Conference on Machine Learning. 

PMLR, 2019. 

[13]  https://www.nvidia.com/en-us/autonomous-

machines/embedded-systems/

[14]  https://www.tesla.com/en_ca/support/

transitioning-tesla-vision

[15]  https://www.image-net.org/

[16]  https://laion.ai/

[17]  https://openai.com/chatgpt/

[18]  He, Kaiming, et al. “Deep residual learning for image 

recognition.” Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition. 2016. 

29

Chapter 1   IntroduCtIon to General purpose robotICs

[19]  Rombach, Robin, et al. “High-resolution image synthesis 

with latent diffusion models.” Proceedings of the IEEE/

CVF Conference on Computer Vision and Pattern 

Recognition. 2022. 

[20]  https://scale.com/data-engine

[21]  https://gazebosim.org/home

[22]  https://pybullet.org/wordpress/

[23]  Ali, Moez. “Supervised Machine Learning.”  DataCamp, 

Aug. 2022, www.datacamp.com/blog/supervised-

machine-learning. 

[24]  Pykes, Kurtis. “Introduction to Unsupervised Learning: 

Types, Applications and Differences from Supervised 

Learning.”  DataCamp, Jan. 2024,  www.datacamp.com/

blog/introduction-to-unsupervised-learning. 

[25]  Kanjilal, Joydip. “An Introduction to Weakly Supervised 

Learning.”  Paperspace Blog,  blog.paperspace.com/an-

introduction-to-weakly-supervised-learning/. 

[26]  https://spinningup.openai.com/en/latest/

[27]  Qian, Zhifeng, et al. “Goal-conditioned reinforcement 

learning with disentanglement-based reachability 

planning.”  IEEE Robotics and Automation Letters 8.8 

(2023): 4721-4728. 

[28]  Bostrom, Nick. “How long before superintelligence.” 

 International Journal of Futures Studies 2.1 (1998): 1-9. 

[29]  https://www.scientificamerican.com/article/

what-does-artificial-general-intelligence-

actually-mean/

30

Chapter 1   IntroduCtIon to General purpose robotICs

[30]  https://docs.google.com/document/d/1IJ6Sr-gPeX

dSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit?fbclid=

IwAR3W3XVgKok3caD2TY6zSxqFr2CFSmqpOKX-gObOjup-

o5nSJEdWEx2fy3o

[31]  https://koopingshung.com/blog/turing-test-is-

obsolete-bring-in-coffee-test/

[32]  www.wildlifeonline.me.uk/questions/answer/

how-can-marine-mammals-see-underwater-but-we-

cant#:~:text=Human%20eyes%20have%20evolved%20to

[33]  Chatterjee, Rhitu. “Feature: Giving blind people sight 

illuminates the brain’s secrets.”  Science Magazine (2015). 

[34]  Yang, Zhengyuan, et al. “An empirical study of gpt-3 for 

few-shot knowledge-based vqa.” Proceedings of the AAAI 

conference on artificial intelligence. Vol. 36. No. 3. 2022. 

[35]  Ahn, Michael, et al. “Do As I Can, Not As I Say: 

Grounding language in robotic affordances.”  arXiv 

 preprint arXiv: 2204.01691 (2022). 

[36]  https://www.intel.com/content/www/us/en/

robotics/artificial-intelligence-robotics.html

[37]  Ramesh, Aditya, Mikhail Pavlov, Gabriel Goh, Scott 

Gray, Chelsea Voss, Alec Radford, Mark Chen, and 

Ilya Sutskever. “Zero-shot text-to-image generation.” 

In  International conference on machine learning, 

pp. 8821-8831. Pmlr, 2021. 

[38]  Brooks, Peebles, et al., https://openai.com/index/

video-generation-models-as-world-simulators/

31

Chapter 1   IntroduCtIon to General purpose robotICs

[39]  https://www.cnbc.com/2024/09/06/ai-craze-

getting-funded-by-tech-giants-distorting-

traditional-vcs.html#:~:text=That%20continues%20

a%20trend%20from,27%25%20so%20far%20this%20year

[40]  Radford, A., Kim, J. W., Xu, T., Brockman, G., 

McLeavey, C., & Sutskever, I. (2023, July). “Robust 

speech recognition via large-scale weak supervision.” 

In  International Conference on Machine Learning 

(pp. 28492-28518). PMLR. 

[41]  https://github.com/features/copilot

[42]  https://notebooklm.google/

[43]  https://google-research.github.io/seanet/

musiclm/examples/

[44]  Achiam, Josh, Steven Adler, Sandhini Agarwal, Lama 

Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo 

Almeida et al. “Gpt-4 technical report.”  arXiv preprint 

 arXiv:2303.08774 (2023). 

[45]  https://www.nytimes.com/2024/07/25/science/ai-

math-alphaproof-deepmind.html

[46]  https://cloud.google.com/tpu

[47]  https://www.intel.com/content/www/us/en/

products/docs/processors/what-is-a-gpu.html

[48]  https://mujoco.org/

[49]  Joseph, Lentin. “Robot Kinematics in a Nutshell.” 

 ROBOCADEMY, 21 Apr. 2020, robocademy. 

com/2020/04/21/robot-kinematics-in-a-nutshell/. 

32

Chapter 1   IntroduCtIon to General purpose robotICs

[50]  Kisacik, Dogan, et al. “Efficiency and survivability of a 

floating oscillating water column wave energy converter 

moored to the seabed: an overview of the EsflOWC 

MaRINET2 database.”  Water 12.4 (2020): 992. 

[51]  Lässig, Ralph, et al. “Robotics Outlook 2030: How 

Intelligence and Mobility Will Shape the Future.”  BCG 

 Global,  28 June 2021, www.bcg.com/publications/2021/

how-intelligence-and-mobility-will-shape-the-

future-of-the-robotics-industry. 

33

CHAPTER 2

Robot Perception: 

Sensors and Image 

Processing

Humans use five senses to perceive the environment and various cognitive 

pathways to process this input. This conglomeration of senses, pathways, 

and the brain forms our perception system, which allows us to detect 

movement around us, recognize a friend’s face, and detect a familiar scent. 

Similarly, robots need to be aware of and understand what is around 

them to function in the real world. Perception systems enable robots to 

accomplish two objectives: to sense their surrounding environment and to 

comprehend and reason about it. 

The first objective of the perception system is achieved by the sensing 

suite. Sensors act as the eyes and ears of the robot, enabling it to observe 

and record the physical world around it. Additionally, they allow robots 

to collect useful data that in turn allows them to evolve and adapt in an 

environment. 

The second objective involves interpreting data from the sensors 

and extracting relevant information that can aid in completing a robot’s 

objective. Traditionally, this part was done by classical methods that were 

narrow and specific to a robot and task, making them difficult to generalize 

to changing environments. Machine learning perception systems, on the 
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other hand, are a lot more robust. They improve with data, and they can be 

used to map the robot’s surroundings, so it can navigate, detect, and track 

objects. 

An overview of this general pipeline is shown in Figure 2-1. 

 Figure 2-1. A typical robot perception system will include sensors 

 that collect data and ML/AI algorithms for interpretation, planning, 

 and execution of actions. Used with permission, source: https://www. 

 intechopen.com/chapters/62978 [39]

This chapter discusses sensing, explains the types of sensors, and 

highlights various ML algorithms commonly used for robotic perception. 

 Sensors

Robots use sensors to receive information about their surroundings and 

decide how to interact with the world and maneuver around it safely. 

Cameras take pictures, LiDARs provide point clouds and accurate depth, 

ultrasonic sensors measure proximity (especially of moving objects), 

and Inertial Measurement Units (IMUs) give information on orientation 

and motion. Robots may use singular sensors for object recognition, 

localization and mapping, collision avoidance, and feedback control. 

Robots may also use sensor fusion techniques to blend data from various 

sensors and get more comprehensive information. 
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While robotics applications use a variety of sensors, this book only 

covers the more popular ones. They fall into four main categories: (1) 

monocular vision, mainly cameras, (2) depth sensors, (3) range sensors, 

such as LiDARs and ultrasonic sensors, and (4) inertial measurement 

units (IMUs). 

 Vision Sensors (Cameras)

One of a robot system’s most important sensors is its camera. Light is 

captured by the camera sensor, which transforms the light into electrical 

signals to produce images. They are made up of a variety of pixels or 

photosensitive components. Every pixel records the amount of light that 

strikes it. 

The two most popular types of image sensors used in robotics are 

CMOS (Complementary Metal-Oxide Semiconductor) and CCD (Charge-

Coupled Device). CCD and CMOS image sensors both convert light into 

electrons by capturing photons (light particles) with numerous photosites, 

which are tiny, light-sensitive regions on the sensor that correspond to 

pixels in the final image. When taking a picture, these photosites collect 

and store photons as electrical signals. A key aspect that differentiates each 

sensor is the way accumulated charge (the electrical charge generated 

by the photosites when they capture photons) of each photosite is 

transported. CCD sensors transport charges with minimal distortion, 

resulting in high-quality, sensitive images but consuming significantly 

more power. CMOS sensors are more flexible and less expensive but 

tend to be more susceptible to noise and have lower light sensitivity. 

The exposure time, ISO sensitivity, and aperture size of camera sensors 

are all tunable parameters, allowing them to adapt to different lighting 

conditions. 
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Let’s outline a few key camera concepts:

1.  Pixel resolution of camera sensors determines 

the degree of detail in the captured images. High-

resolution sensors include more pixels, making 

images clearer and with more detail, but they use 

more memory and processing power. 

2.  Channels refer to color channels used in a camera. 

A common framework is RGB, where each image 

has red, green, and blue channels. Most cameras 

use a variety of color filters—typically the Bayer 

pattern—on top of the pixels to capture color 

information. Due to these filters, each pixel may 

capture red, green, or blue light. The camera sensor 


generates a full-color image by interpolating the 

color values from nearby pixels. So, a camera of 

resolution 480,640 with three channels (red, green, 

blue) generates an image that can be interpreted as 

a matrix of size[480,640, 3]. 

3.  Frame rate refers to the number of images a camera 

sensor takes each second. Robotics applications in 

high speed or dynamic environments can benefit 

from higher frame rates because they provide 

real-time perception, thus enabling quicker 

reaction times. 

4.  Post processing. Raw picture data from cameras 

may be further processed for noise reduction, white 

balance correction, color correction, and feature 

extraction. Image processing algorithms may be 

then used to improve image quality, find objects, 
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recognize patterns, and extract depth data. Camera 

sensors are frequently fused with other sensors, 

such as LiDAR, radar, or IMUs, in a sensor-fusion 

strategy to maximize their utility. 

Cameras as sensors also have certain limitations:

a.  They may struggle in low-light or high-contrast 

scenes and need a lot of lighting for the best 

outcome. 

b.  Cameras may struggle to effectively perceive depth 

and 3D information without additional sensors. 

c.  Cameras are also prone to occlusions. 

d.  Large-scale picture processing can also be 

computationally demanding. 

 Key Considerations for Cameras

This section discusses tradeoffs for selecting cameras for your robotic 

application. As shown in Figure 2-2, three factors mainly determine 

camera selection. 

 Figure 2-2. The three main components of a camera you need to 

 consider when selecting it for a robot application are frames per 

 second, resolution, and cost

Autonomous cars, for instance, require cameras that can capture 

images at a high frequency due to the speed of the moving car. If a car 

is moving at 60 miles per hour and passing another car in the opposite 

direction at the same speed, each frame captured represents a significant 

range between the two cars. In this scenario, we ideally want to capture 
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and process as many frames per second (fps) as possible. Typically, 

automotive cameras operate at 30 fps, but this can introduce processing 

delays for each frame[1]. Therefore, to accurately detect dynamic objects 

such as pedestrians and predict their path, multiple passes per frame are 

necessary[1]. If we miss one or a few frames because the camera is not fast 

enough, the result could be collisions. For instance, an advanced driver- 

assistance system (ADAS) today might use a camera with an 8-megapixel 

resolution and a frame rate of 60 fps to ensure reliable detection and 

understanding of its environment[2]. 

Cameras used for industrial applications have different specifications. 

Picking, packing, and grasping objects do not involve high-speed 

movements and don’t necessarily require the high frame rate capture. 

Usually, a regular 30 fps camera is sufficient. 

High frame rate cameras usually tend to have lower resolution, and 

lower resolution can impact precision of detection, especially with far 

away objects. Picking cameras both high resolution and high frequency 

can increase the cost, mainly because they imply higher bandwidth and 

processing power, and may be just as expensive as a 3D LiDAR. Ultimately, 

however, the precision requirements and cost constraints of an application 

drive camera selection. 

 Event-Based  Cameras

Another type of camera is an event-based or neuromorphic camera. It 

outputs pixel-level changes in brightness. This is in contrast to regular 

frame cameras, which transmit entire arrays of information of the single 

frame captured by the shutter at a given time. The data format and 

output of event-based cameras offer a significant advantage, as the only 

transmitted data is the individual pixel information that has changed from 

frame to frame. This allows it to capture objects in high-speed motion 

with no motion blur. An event camera is shown in Figure 2-3, and the data 

output of event cameras is shown in Figure 2-4. 
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Compared to regular frame cameras, event-based cameras have 

some strengths, such as no motion blur, high temporal resolution, and 

high dynamic range yet low bandwidth. Event cameras are still a novel 

approach for most solutions, and prices are still not as affordable as regular 

cameras. However, some applications are very suitable for event-based 

cameras:

•  Due to the low data rate and sparse information 

provided by event-based sensors, they can effectively 

track objects with low compute power. 

•  Frame interpolation, optical flow estimation, and high-

speed recording applications benefit from the high 

temporal resolution and better temporal modeling 

enabled by event cameras. 

 Figure 2-3. A 680 x 480 event camera
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 Figure 2-4. Data output of an event-based camera. Used with 

 permission, source: https://rpg.ifi.uzh.ch/docs/PAMI17_

 Gallego.pdf [40]

Research from Davide Scaramuzza’s group[3] at The University of 

Zurich shows the development of a hybrid event- and frame-based 

object detector. This method combines the high temporal resolution 

and efficiency of event cameras with the detailed imaging of traditional 

sensors, significantly reducing perceptual and computational latency while 

maintaining accuracy. Using a 20 Hz RGB camera with an event camera, the 

system achieves the same latency as a 5,000 Hz camera with the bandwidth 

of a 45 Hz camera. For a more detailed look at the latest research in event-

based vision and camera, we recommend this[3] resource. 

 Depth  Sensors

Robots also have sensors that measure the depth or distance of objects 

in their surroundings, such as time-of-flight cameras and structured 

light sensors. These sensors allow robots to comprehend the three-

dimensional structure of their surroundings and carry out tasks like object 

reconstruction, scene interpretation, and gesture identification because of 

the exact depth information provided by these sensors. Figure 2-5 shows 

depth sensors that use time-of-flight (ToF), structured light, and stereo-

vision principles to measure depth information. 
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•  Time-of-flight (ToF) sensors: ToF sensors measure 

the time it takes for a light signal to bounce back after 

reflecting off of surrounding objects. The light signal 

is commonly an infrared (IR) signal. The depth sensor 

can calculate the time it takes for the round-trip 

journey to determine the distance to objects. 

•  Structured light sensors: Structured light sensors 

project a pattern of light onto the scene, such as a grid 

of infrared dots or a collection of structured patterns. 

The sensor’s infrared camera then records the distorted 

pattern. The depth sensor may determine depth 

information based on the distortions generated by 

object surfaces by examining the deformation of the 

pattern. 

•  Stereo vision sensors: Similar to human eyes, stereo 

vision sensors employ a pair of cameras with a known 

baseline separation. The depth sensor may determine 

the depth by comparing the disparities or discrepancies 

between corresponding pixels in the stereo pictures, 

and each camera captures a slightly different view of 

the scene. Triangulation techniques are frequently 

used to determine depth based on discrepancies 

in pixels. 
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 Figure 2-5. Time-of-flight (ToF), structured light, and stereo 

 vision methods for depth measurement. Used with permission by 

 Wavelength Opto-Electronic, source: https://wavelength-oe.com/

 articles/optics-for- consumer-electronics/ [41]

The output from depth sensors is a  point cloud,  a 3D representation 

of the scene consisting of a collection of 3D points that represent surfaces 

of the scene, or a depth image, representing the distance of each pixel 

from the sensor. Many depth sensors such as ToF and structured light will 

directly output depth images. In some cases, especially for sensors used 

in robotics applications, the output is a point cloud. A specific location in 

space and its corresponding color information are represented by each 

point in the cloud. An example of the 3D point cloud output produced 

from a depth sensor is shown in Figure 2-6. 
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 Figure 2-6. Example 3D point cloud output from a depth sensor. 

 Used with permission, source: https://learnopencv.com/3d-lidar-

 visualization/ [42]

The range, precision, sensitivity to lighting, occlusion issues, and 

difficulty photographing translucent or reflecting surfaces are drawbacks 

of depth sensors. But in recent years, improvements in depth sensor 

technology have improved their performance. For example, they are 

combined with other sensors, like cameras or inertial measurement units 

(IMUs), to create a more comprehensive perception system. 

 Range  Sensors

Another important type of sensor in robots are range sensors, such as Light 

Detection and Ranging (LiDAR), and ultrasonic sensors, which provide 

information about the distance between the robot and objects in its 

surroundings. If a range sensor has high fidelity (such as high accuracy and 

resolution, typically seen in high- density LiDAR), it is useful as a depth sensor 

for accurately measuring distances from the robot in question to other objects. 

The following section delves into how LiDAR achieves this feat. Overall, range 

sensors help robots navigate and avoid collisions by allowing 3D perception. 
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 LiDAR

LiDAR (Light Detection and Ranging) sensors emit laser pulses and track 

how long it takes for the pulses to reach nearby objects and return to the 

sensor. The LiDAR sensor then determines the distances to objects by 

calculating the round-trip time, based on the speed of light. 

Although some LiDARs also employ visible light, laser pulses primarily 

emitted by LiDARs are infrared (IR) light. Depending on the particular 

sensor, laser pulses are either released in brief bursts or as continuous 

beams. Time-of-flight (ToF) is used here along with high-speed electronics 

and exact timing mechanisms to measure the round-trip time of light more 

precisely. 

An overview of the LiDAR reflection process is shown in Figure 2-7. 

 Figure 2-7. Overview of LiDAR sensor. The LiDAR sensor receives 

 the laser pulses as they are reflected back when they strike objects. 

 A receiver on the LiDAR sensor picks up the returning laser pulses 

 and calculates the appropriate time of flight. Used with permission, 

 source: https://www.yellowscan.com/knowledge/how- does- lidar-

 work/ [43]
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LiDAR sensors provide a point cloud image of the surroundings by 

integrating the distance readings from several laser pulses. Each point in 

the point cloud represents a distinct position in 3D space, together with the 

relevant distance details. Since LiDAR sensors provide point clouds as their 

raw data output, additional processing is necessary to build high-resolution 

3D maps, eliminate outliers, segment objects, and filter out noise. 

A high-density LiDAR is one where more beams are emitted 

synchronously. A wide LiDAR is one where the opening angle of the beam 

is larger, such that if it is mounted on top of a self-driving car, it can get 

coverage even around the car itself. This is useful in situations such as when 

riders get on and off, to determine whether the curb is clear, and so on. 

Most LiDAR sensors use one of these popular scanning techniques:

•  Mechanical scanning: Mechanical scanning LiDARs 

employ a  spinning mirror or prism that directs laser 

pulses in various directions, enabling the LiDAR sensor 

to record a 360-degree image of its surroundings. 

•  Solid-state scanning: Solid-state LiDARs do not use 

moving elements, but steer laser pulses at various 

angles by using electronically controlled solid-state 

emitters and receivers such as phased arrays or optical 

phased arrays. Due to the lack of moving parts, they’re 

more energy efficient, more durable, and tend to be 

smaller. The downside is that there is a lower range and 

field of view. 

•  Hybrid solid-state LiDAR: This technique combines 

elements of mechanical and solid-state LiDAR, often 

using a rotating mirror to achieve a wider field of view 

while employing solid-state components for beam 

steering within that field of view. It offers a compromise 

between the wide field of view of mechanical LiDARs and 

the durability and compact size of solid- state LiDARs. 
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2D LiDARs operate on a single horizontal plane and emit beams in 

a fan-like pattern. They’re very low resolution but are enough in many 

simple autonomous robots to do simultaneous localization and mapping, 

such as in indoor environments like offices, warehouses, and so on. An 

example of a 2D LiDAR can be seen in Figure 2-8. In most scenarios, this 

data is combined with a depth sensor like an Intel RealSense to capture 

objects, obstacles, and blind spots for the LiDAR. 

 Figure 2-8. Setup of an indoor mobile robot with a 2D LiDAR for 

 navigation and mapping. The robot has two individually motorized 

 wheels and one castor wheel. Its position is tracked as O(x,y) with 

 orientation 𝜙, and the 2D LiDAR sensor scans the environment to 

 detect obstacles and surroundings. Used with permission, source: 

 https://www.mdpi.com/1424-8220/23/5/2534 [44]

Advanced autonomous robots implement 3D LiDARs for the 

perception stack due to the benefit of 360-degree coverage and more 

precise and larger mapping capabilities. The output from 3D LIDARs is 

shown in Figure 2-9. 
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 Figure 2-9. Output data of a 360 degree, 3D LiDAR. Used with 

 permission, source: https://ieeexplore.ieee.org/stamp/stamp. 

 jsp?tp=&arnumber=5980322 [45]

LiDAR sensors provide precise 3D perception, long-range sensing, 

a 360-degree field of view, resistance to lighting conditions, high data 

density, and obstacle detection capabilities in robotics applications. 

However, they can be expensive, use a lot of power, have low resolution 

for small objects, have problems with shiny or transparent surfaces, 

work worse than cameras in bad weather like snow/rain, and need large 

computational resources for processing. LiDAR sensors should be carefully 

weighed against these advantages and disadvantages to see if they are 

appropriate for particular robotic jobs and settings. 

 Ultrasonic  Sensors

For tasks involving obstacle identification, collision avoidance, presence 

detection, distance measuring, and navigation, ultrasonic sensors are 

frequently used in robotics. They use sound waves to interact with the 
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environment. In particular, ultrasonic sensors produce high-frequency 

sound waves often inaudible to humans (20 kHz and above). A 

piezoelectric transducer built into the sensor transforms electrical energy 

into ultrasonic sound waves. 

Once the sound waves are created, they spread outward like a cone-

shaped beam. The sound waves go in a straight line until they come into 

contact with a surface or object. The object’s surface characteristics cause 

the produced sound waves to reflect or bounce back when they collide 

with it. The ultrasonic sensor’s receiver detects these reflected sound 

waves. The time taken for the sound waves to travel to an object and back 

to the sensor is measured and used to determine the distance between the 

sensor and the object using the speed of sound in the medium, usually air. 

Figure 2-10 shows an overview of this process. 

 Figure 2-10. Overview of ultrasonic sensors showing how the 

 transmitter emits sound waves that bounce off an obstacle and are 

 received by the receiver, with the distance calculated based on the 

 time taken for the sound to return. Used with permission, source: 

 https://www.cuidevices.com/blog/the-basics-of-ultrasonic-

 sensors [46]
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The sensor’s design, the frequency of the sound waves, and the 

surrounding environment are only a few of the variables that affect the 

range and accuracy of ultrasonic sensors. In general, ultrasonic sensors 

have an accuracy range of a few millimeters to a few centimeters and can 

detect things within a few centimeters to several meters. 

However, there are several restrictions on ultrasonic sensors. For 

example, they can have trouble detecting items with uneven surfaces or 

ones that are smaller than the sound waves’ wavelength. They can also be 

impacted by background noise and echoes, impairing how accurately they 

calculate distance. These are important factors to consider when determining 

whether ultrasonic sensors are the best for your robotics application. 

 Inertial Measurement Units (IMUs)

Another sensor worth noting are the IMUs that give robots basic motion- 

measuring capabilities. IMUs record data on acceleration, angular velocity, 

and magnetic fields, thereby allowing robots to understand  their own 

motion and allow feedback to correct their motions. 

The three main sensors that make up an IMU are accelerometers, 

gyroscopes, and occasionally magnetometers. 

•  Accelerometers: Accelerometers measure linear 

acceleration along three orthogonal axes, often x, y, 

and z. They use the inertia principle, which states 

that acceleration produces an electrical signal when a 

mass is moved. Accelerometers calculate the object’s 

acceleration by analyzing the electrical output. 

•  Gyroscopes: Gyroscopes calculate the rotational 

rate or angular velocity around each of the three 

axes. To detect orientation changes, they rely on the 

angular momentum principles. Gyroscopes track the 

Coriolis effect as the item rotates and produce a signal 

corresponding to the rotation rate. 
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•  Magnetometers: Magnetometers are not always a part 

of an IMU, but they are occasionally integrated to give 

information about the object’s orientation with respect 

to the Earth’s magnetic field. They can be used to 

determine the magnetic field’s strength and direction. 

Figure 2-11 shows accelerometers and gyroscopes with the movement 

along three axes. 

 Figure 2-11. The accelerometer and gyroscope within an Inertial 

 Measurement Unit (IMU) detect angular velocity along the X, Y, and 

 Z axes, positioned at 90° to each other. Used with permission, source: 

 https://towardsdatascience.com/what-is-imu-9565e55b44c , created by Dr Barak Or[47]

IMUs use sensor-fusion techniques to understand the object’s motion 

thoroughly. The IMU estimates an object’s position, orientation, velocity, 

and acceleration by combining data from accelerometers, gyroscopes, and 

magnetometers and frequently utilizing techniques like Kalman filters or 

complementary filters. 
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IMUs are essential for tracking and managing robot movements. 

Thanks to IMUs, which continually measure and update orientation, 

velocity, and acceleration, robots can retain stability, modify their 

movements, and react to outside influences. This data is used for 

balancing humanoid robots, operating robotic arms, and enabling quick 

navigation in self-driving cars, among other things. 

Inertial navigation uses IMUs to determine the position and trajectory 

of the robot by integrating the data from accelerometers and gyroscopes 

over time. This method is particularly helpful for navigation inside 

buildings or in difficult circumstances where other external localization 

systems, like GPS, are not available or dependable. 

IMUs enable accurate motion tracking and control by providing real-

time, high-frequency data regarding the robot’s orientation, acceleration, 

and velocity. However, they are prone to accumulating mistakes over time 

due to sensor drift, which can reduce their accuracy. They are similarly 

unable to provide information on absolute positions without outside 

references. Additionally, magnetic field interference can cause problems 

for the magnetometers inside IMUs, reducing their dependability in some 

circumstances. In general, IMUs are useful sensors for robotic motion 

detection and control, but in applications where high accuracy and absolute 

position data are essential, these limitations should be accounted for. 

 Problems  in Perception

Now that you know the different types of sensors used in robotics and how 

they work, you need to understand how sensory data can be useful for 

robotics. The most common type of input data that robots use are images from 

cameras. Images help robots perceive their environment, such as identifying 

objects and their locations, and then carry out tasks accordingly. Common 

perception tasks for robotics include classification, semantic segmentation, 

instance segmentation, and object detection. These essential tasks are the 

foundation for how many robots see, reason, and manipulate objects. 
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 Classification

For robots to manipulate objects, they need to have a visual understanding 

of the object and its surroundings. Image classification allows images to be 

labeled based on a fixed set of categories. For example, if a kitchen robot 

is tasked with picking up a cup, it must first identify a cup in an image and 

differentiate it from other categories of objects such as a glass, plate, or 

spoon. The robot does this by taking in an array of pixels (the image) and 

assigning a class to it. Say that you have a dataset of N images, each labeled 

with one of the K classes. The goal is to use this dataset, pass it through 

a model, and learn what every one of the classes looks like. You can then 

evaluate how well your model learned the classes of objects by making 

predictions on a new set of images. 

 Segmentation

Imagine an example of an autonomous vehicle trying to navigate the 

road and understand its surroundings on a busy street with pavement, a 

car, and a bus in the foreground. In the background, there is a building, 

a tree, and the sky. Image segmentation aims to assign each pixel in the 

image that the car sees to the object to which it belongs. It can separate the 

foreground from the background, identify the precise location of any cars 

on the road, identify pedestrians, and mark where the road is. 

The pixel-level understanding that image segmentation provides 

can help robots understand how they can navigate their environment. 

For example, image segmentation can be used to extract an object that 

you may be grasping from a bin of objects or discover the safe areas to 

drive for a self-driving car. An encoder-decoder structure is often used for 

segmentation, as shown in Figure 2-12. 
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 Figure 2-12. A convolutional encoder-decoder architecture for image 

 segmentation. The RGB input image is processed through layers 

 of convolution, pooling, and upsampling, followed by a softmax 

 function to generate the segmented output. Used with permission, 

 source: https://arxiv.org/pdf/1511.00561 [48]

The CNN section dives more into what each of these layers means. 

Essentially, the encoder comprises a pre-trained classification network—

which means it was already trained on large quantities of data—commonly 

a ResNet, paired with a decoder network. The encoder downsamples the 

image to learn a compact representation, and the decoder upsamples this 

representation to reconstruct the high-resolution pixel space. Using the 

low-resolution spatial tensor generated by the encoder that encapsulates 

condensed high-level information, the decoder generates high-resolution 

segmented outputs. 

Simply stacking the encoder and decoder layers results in a loss of low- 

level information that is important for the model to have in later layers. To 

make up for the missing information, skip connections are used to allow 

the decoder to access the low-level features generated by the encoder 

layers. This allows it to capture both low-level and high-level features in 

later parts of the model. The primary concept behind skip connections is 

that the intermediate outputs from the encoder are merged with the inputs 

to the decoder’s intermediate layers at specific points. 

There are two major image segmentation types: semantic and 

instance. With semantic segmentation, all objects that are of the same 

kind (a person) are marked using one class label, while similar objects get 
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separate labels in instance segmentation (i.e., different people are marked 

as separate labels). The difference between these two segmentation types 

is shown in Figure 2-13. 

 Figure 2-13. Semantic segmentation (left) and instance 

 segmentation (right). Used with permission, source: https://www. 

 taus.net/resources/blog/introduction-to-image-annotation-

 for-ml-and-ai [49]

 Semantic  Segmentation

Semantic segmentation takes in an image and produces a segmentation 

map where each pixel is assigned a class label, thereby categorizing objects 

into predefined categories. It aggregates multiple objects of the same 

category (i.e., different people) into a single entity (humans). For instance, 

in an autonomous car’s street scene, segmentation might classify general 

categories of objects a car sees, such as pedestrians, bikes, vehicles, and so 

on. The output segmentation map matches the input image’s dimensions 

(width and height), with channels corresponding to predicted classes. 

Each channel has a binary mask that labels pixels by class, identifying 

where each class is in the input image. 
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Once you get the output predictions, how do you know how good the 

predictions are? A commonly used metric for segmentation is Intersection 

over Union (IoU), which calculates the percentage of overlap in the 

predicted image and the ground truth by dividing the number of pixels 

that are identical in the target and prediction masks by the total number 

of pixels present in either mask[4]. Figure 2-14 shows an example of this calculation. 

 Figure 2-14. Example of Intersection over Union (IoU) calculation 

 for object detection. (a) IoU is calculated as the ratio of the 

 intersection area between the ground truth bounding box and the 

 predicted bounding box to their union. (b) Various IoU values are 

 shown for different degrees of overlap between the predicted and 

 ground truth boxes. Used with permission, source: https://www. 

 researchgate.net/publication/335127265_AI-powered_banana_

 diseases_and_pest_detection [50]

 Instance  Segmentation

Instance segmentation identifies individual objects within categories of 

objects, such as people, cars, houses, and so on. For instance, categories 

such as animals might be further segmented into dogs, cats, and birds, and 
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categories like dogs may be segmented into dog 1, dog 2, and so on. This is 

done by clustering pixels that belong to a single instance of a dog against 

others. Instance segmentation can be very important for self-driving cars, 

where you want to have a detailed understanding of your surroundings, 

such as complex streets with many pedestrians and moving objects 

like cars. 

How do you evaluate predictions you get from an instance 

segmentation? One way is by using mean average overlap (mAP)[5]. Before 

looking at mAP, it’s useful to explain the concepts of precision and recall. 

To grasp precision and recall, it can be helpful to break down the confusion 

matrix, as shown in Table 2-1:

•  A true positive means that the prediction and target 

mask pair has an IoU score greater than some threshold 

you’ve set (usually 0.5 or more). This means the 

model has successfully predicted the segmentation or 

detected the object based on ground truth. 

•  A true negative occurs when the model does not 

predict a label that it shouldn’t (not in ground truth). 

•  A false positive is when the model predicts an object 

that doesn’t exist. 

•  A false negative is when the model fails to identify an 

object that it should have based on the ground truth. 
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 Table 2-1. Confusion Matrix Illustrating the Differences Between 

 Precision and Recall. Used with permission, source: https://

 octave-jkh.medium.com/theory-behind-confusion-matrix-

 bccabd3ad7d7 [51]

 Recall measures the number of objects that were correctly identified 

by taking the number of correctly identified objects and dividing by the 

number of actual objects.  Precision measures how many of the identified 

objects were correct by taking the number of correctly predicted objects 

and dividing by the total number of predicted objects. 

Recall = True positives / # of ground truths

Precision = True positives / # predictions

 Average precision builds on top of these concepts by calculating the 

area under a precision-recall curve to evaluate how well a segmentation 

or object-detection model performs. As an example, imagine a self-driving 

car that is detecting cars on a road. Let’s discuss this in the context of 

confidence intervals, where a high confidence interval means that there is 

a greater certainty that true values lie in that range. At a higher confidence 

interval, a model might detect only a few cars on the road (high precision, 

low recall). On the other hand, at a lower confidence interval, more cars 

may be detected but many of them could be false positives (not actual 

cars), referring to a lower precision but higher recall. 
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AP helps you understand the tradeoff that exists between precision 

and recall in many real-world scenarios. mAP builds on top of average 

precision (AP), which represents the area beneath the precision-recall 

curve (PR curve). mAP is simply all the AP values averaged over classes/

categories and is useful when you are detecting multiple classes or objects. 

Harshit Kumar created a good resource[6] if you are interested in diving 

deeper into these metrics and understanding how they are calculated. 

 Object  Detection

Object detection[7] classifies objects in an image and then specifies 

where they are in the image using bounding boxes. Each bounding box 

is characterized by a point, width, height, and associated class labels, 

sometimes identifying multiple objects within the image. Robots in 

industrial settings and self-driving cars have to do various tasks such as 

navigating, picking, and placing, based on their ability to recognize objects. 

Most commonly, AP and mAP are used as metrics to evaluate different 

object-detection models. 

For example, take a self-driving car, where you want to detect other 

cars on the highway. The output of the model’s prediction is shown in 

red boxes in Figure 2-15, whereas the green boxes are the ground truth 

detections. Each prediction is evaluated based on the IoU score, which 

measures how well the predicted bounding box overlaps with the ground 

truth bounding box. These IoU scores help determine true positives, false 

positives, and false negatives, which are then used to calculate precision 

and recall. By using the precision and recall values at different thresholds, 

you can calculate AP and mAP across different classes. 
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 Figure 2-15. Object detection on cars, showing predicted bounding 

 boxes (red) and ground truth bounding boxes (green) with 

 Intersection over Union (IoU) scores for each detected car (P1 to P7). 

 Used with permission, source: https://www.v7labs.com/blog/mean-

 average-precision#:~:text=let%27s%20dive%20in!-,What%20

 is%20Mean%20Average%20Precision%20(mAP)%3F,values%20

 from%200%20to%201 [5]

 Convolutional Neural Nets Overview

One approach to image classification, segmentation, and object detection 

is to use convolutional neural networks (CNNs)[8]. For a deeper dive into 

how CNNs work, we recommend going through Stanford’s CS231n[9] 

course notes and assignments. This section briefly overviews CNNs before 

jumping into how CNNs are used for perception in robotics. 

CNNs are deep neural networks that can classify and identify specific 

features from data, such as images collected using sensors on robots. Key 

parts of a CNN are the convolutional layers, pooling layers, and fully- 

connected (FC) layers. 
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 Convolutional  Layers

A convolutional layer extracts image features by applying small filters 

(kernels) over smaller regions of the input data. For example, a 3x3 filter 

scans over a 32x32x3 input image (height, width, and color channels) and 

captures patterns like edges and textures within those small sections. As the 

filter moves across the image, it creates a 30x30x1 feature map (assuming 

no padding and a stride of 1; we discuss these parameters soon) that learn 

features like corners and edges at each spatial location. Figure 2-16 shows a 

filter being used on a two-dimensional input to generate a feature map. 

 Figure 2-16. A feature map is generated by applying a filter to 

 an input 2D image. The filter moves across the image, capturing 

 important features like edges and textures at each location to 

 produce the final feature map. Used with permission, source article 

 “Building a Convolutional Neural Network in PyTorch”: https://

 machinelearningmastery.com/building-a-convolutional-

 neural-network-in-pytorch/ [52]

62

[image: Image 29]

Chapter 2   robot perCeption: SenSorS and image proCeSSing

An image and a filter, both represented as matrices, are essentially 

multiplied at corresponding values and then summed to produce an 

output. This output, known as a feature map, is then fed into subsequent 

layers of the network to help learn features in the input image. Figure 2-17 

provides a visual overview of this process. 

 Figure 2-17. Example of a convolution operation where a 3x3 filter is 

 applied to a 6x6 input image with a stride of 1. Used with permission, 

 source: https://www.ijsrp.org/research-paper-1019/

 ijsrp-p9420.pdf [53]

Three parameters determine the size of the feature map:

•  Depth: Indicates how many filters are used during the 

convolution process. 

•  Stride: Indicates how many pixels the filter matrix 

moves across the input matrix in each step. For 

example, a stride of 1 means the filter shifts one pixel at 

a time. Larger strides lead to smaller feature maps. 

•  Padding: Zero-pad the edges of the input matrix so that 

the filter can be applied to elements at the border of the 

input image and these features can be captured. 
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You can differ these values in the filter matrix to generate different 

feature maps for an input image. By stacking these convolutional layers, 

they can detect a variety of visual patterns in a hierarchical way. The 

earlier layers create feature maps that identify simple patterns, edges, 

and corners. The later layers start to discern more complex objects like 

animals, furniture, facial features, and landscapes. 

 Introducing Nonlinearity (ReLU)

After every convolution operation, Rectified Linear Unit (ReLU) is used to 

increase the nonlinearity in the images. ReLU as a function looks like f(x) 

= max(x, 0, such that negative elements are set to 0 and positive elements 

stay the same. Broadly speaking, ReLU is used to manage the information 

that moves forward through the network. ReLU does this by replacing all 

negative pixel values in the feature map with 0. An overview of this process 

is shown in Figure 2-18. Other types of nonlinearity that are used as 

alternatives for ReLU are Tanh and Sigmoid. In the context of CNNs, ReLU 

has been found to perform better in most situations. 

 Figure 2-18. Example of the ReLU (Rectified Linear Unit) activation 

 function applied to a matrix. Negative values in the input are 

 replaced with 0, while positive values remain unchanged. ReLU 

 introduces nonlinearity into the model. Used with permission, source: 

 https://www.linkedin.com/pulse/cnn- activation- functions-

 global-average-pooling-softmax-n-bhatt/ [54]
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 Pooling  Layers

The pooling layer is often placed after a convolutional layer, with its 

primary role being to reduce the dimensions of the previously created 

feature map. Reducing the feature map size cuts down on parameters 

and computational needs. The network also becomes more robust to 

minor changes in the input image, such as distortions and shifts, because 

it extracts the maximum or average values within a specific area. Pooling 

can be performed in two primary ways: max pooling, where the largest 

element from the feature map section is selected, and average pooling, 

which computes the mean of each section of a predetermined size in 

the image. 

 Fully Connected Layers

The outputs from the final pooling and convolutional layers are 

transformed into a flattened vector by unrolling the 3D matrix into a single 

dimension. This vector typically encapsulates high-level features of the 

input image, which then serve as inputs to the fully connected (FC) layer. 

The role of the FC layer is to leverage these features to classify the input 

image into various categories, as determined by the training data. FC layers 

are generally placed just before the output layer. 

 CNNs  for Perception

This section explains a simple example of a cleaning robot that uses a 

CNN to detect objects on a table and then clean the table. As shown in 

Figure 2-19, each object in the image has been located and identified with 

a certain level of accuracy. 
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 Figure 2-19. Example of a CNN detecting various objects on a table. 

 Used with permission, source: https://www.ubiqisense.com/news/

 robot-to-clean-canteens [55]

One general way to solve this problem using a CNN is as follows:

1.  Take an image of the table with the items we want to 

clean/organize using a sensor. 

2.  Input this image into the CNN. 

3.  Divide the image into various smaller sections, 

known as regions or patches, and treat each region 

as a separate image. 

4.  Pass all the regions to the CNN and classify the 

contents of each region into various classes. 
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5.  After assigning each divided region to its respective 

class, all these regions can be merged to re-create 

the original image, now annotated with the 

identified objects. 

Although this method might initially seem effective, it faces challenges 

due to objects in images having varying aspect ratios and locations. For 

instance, some objects might fill most of the image, while others appear as 

small parts. This variability means a significant number of regions would 

be needed, greatly increasing computational demands. To address this, 

region-based CNN (R-CNN)[10] can be used, which employs a proposal 

method to select fewer, but more relevant, regions. The next section 

explains how R-CNN works to streamline this process. 

 R-CNN

Rather than examining many regions, R-CNN[10] suggests potential 

regions within an image to determine if they contain objects. This 

method uses selective search, which recursively groups similar regions 

based on color, texture, and size, or edge boxes, which generate object 

bounding boxes based on edges in the image to identify regions of interest 

(RoI). Features from each RoI are then extracted using a pre-trained 

CNN. Following this, a classifier is used to classify objects for each RoI. 

One significant limitation of the R-CNN model is that it’s slow and 

computationally intensive. It generates and processes thousands (~2,000) 

of distinct regions per image. For applications like a cleaning robot, 

having the R-CNN take tens of seconds to analyze a new image would be 

impractically slow for real-time implementation. 

Thankfully, there’s a model, called Fast R-CNN, that aims to solve some 

of the problems with the R-CNN model. 

67

Chapter 2   robot perCeption: SenSorS and image proCeSSing

 Fast  R-CNN

As mentioned, a key limitation affecting the performance of an R-CNN is 

the computation that is done for each region proposal. In many  real- world 

scenarios, regions often overlap and independently extracting features 

for each one can result in redundant computations[11]. For example, in 

a robotics application where a robot navigates a cluttered environment, 

multiple overlapping regions might contain parts of various objects 

like boxes, furniture, people, and so on. Fast R-CNN[12] addresses the 

inefficiencies of R-CNN by processing the entire image at once for feature 

extraction, instead of handling individual region proposals separately. 

Here’s how it works:

•  The entire image is input into a CNN, generating 

convolutional feature maps. You can pass in a 512x512 

image from the robot’s camera, which then produces 

feature maps with a lower spatial resolution. These 

capture key information from the images, like edges, 

patterns, and shapes, that are needed for object 

detection or segmentation. 

•  These maps are used to identify RoIs, which are areas 

where objects are likely present. Say the network finds 

ROIs that contain different boxes, furniture items, and 

so on. Each RoI is then resized through an RoI pooling 

layer into a fixed size that can be passed into a fully 

connected network. These feature maps are then fed 

into a fully connected neural network where the objects 

in each RoI are classified and bounding box regression 

is used to refine location of the bounding boxes. 
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•  By using the same feature map for all object proposals, 

Fast R-CNN significantly improves the efficiency of 

object detection, unlike the original R-CNN, which 

processes each region independently. 

Although Fast R-CNN performs better than R-CNN, it still relies on 

selective search to find the RoI, which is a slow and time-consuming 

process. A cleaning robot would likely be working with a large dataset and 

would need a model that could detect each item on a table very quickly. To 

solve this problem, another iteration of R-CNN, called Faster R-CNN[13], 

was developed. 

 Faster  R-CNN

Faster R-CNN[13] improves the speed of object detection compared to 

Fast R-CNN. The key feature distinguishing Faster R-CNN from other 

models is its inclusion of a Region Proposal Network (RPN). Placed after 

the final convolutional layer, the RPN generates object proposals directly, 

eliminating the need for selective search. It slides a window, such as a 

3x3 convolutional layer, across the feature maps from the CNN, creating k 

anchor boxes of varying shapes and sizes at each position. The RPN then 

estimates the likelihood of each anchor containing an object and refining 

coordinates to better fit the detected object. An overview of how RPN 

works is shown in Figure 2-20. 
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 Figure 2-20. Process for how RPN works. Used with permission, 

 source: https://arxiv.org/abs/1506.01497 [13]

Overall, Faster R-CNN is approximately ten times faster than Fast 

R-CNN while maintaining similar accuracy on datasets like VOC-2007[14]. 

This makes Faster R-CNN a preferred algorithm for object detection. 

Table 2-2 provides a quick comparison of these versions of R-CNN. 

 Table 2-2. Comparison of R-CNN, Fast R-CNN, and Faster R-CNN 

 on Speed and Test Time Per Image. Used with permission, source: 

 https://cv-tricks.com/object-detection/faster-r-cnn-

 yolo-ssd/ [14]
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 Mask  R-CNN

Mask R-CNN[15] is an extension of the R-CNN models that allows for pixel- 

level classification, making it useful for image-segmentation tasks. While 

other R-CNN models—like R-CNN, Fast R-CNN, and Faster R-CNN—are 

primarily designed for object detection and bounding box predictions, 

Mask R-CNN adds a branch for predicting segmentation masks. This 

means it not only detects objects but also provides a detailed pixel-by-pixel 

mask for each detected object. It has been applied in various domains, 

such as object segmentation, distance measurement for robot grasping, 

and vehicle detection in self-driving cars. This could also be useful for the 

cleaning robot if you wanted to get more granular and segment out all of 

the objects it would be cleaning from the image. 

Mask R-CNN extends Faster R-CNN by adding a segmentation branch, 

a fully convolutional network that generates a binary mask for each RoI, 

which predicts the exact pixels that belong to each object. A CNN is used 

for generating feature maps from the input image. The RPN then identifies 

RoIs that are most likely to contain objects. RoI Align is used to match the 

RoIs from the image with the feature maps. Having precise matching can 

ensure the exact location and shape of objects is preserved, which can be 

useful for generating segmentation masks. Each ROI is then processed by 

three branches. The classification branch identifies the objects in each 

RoI. The bounding box regression branch is used to refine the coordinates 

of the bounding box. Finally, a mask branch generates a binary mask for 

each RoI. An illustration of Mask R-CNN is presented in Figure 2-21. 

The loss function used in Mask R-CNN encompasses three elements: 

classification loss, which assesses the accuracy of the predictions relative 

to the actual class; bounding box loss, which evaluates the model’s 

localization accuracy; and mask prediction loss, which is determined by 

calculating the binary cross-entropy between the predicted mask and the 

ground truth. 

71

[image: Image 34]

Chapter 2   robot perCeption: SenSorS and image proCeSSing

 Figure 2-21. Main components of Mask R-CNN. Used with 

 permission, source: https://arxiv.org/pdf/1703.06870 [15]

 ResNet

You’ve read about how it’s important to optimize the architecture of 

these models to make perception tasks faster to compute. But what about 

increasing the accuracy of these models to perform perception tasks 

better? For example, if a robot is used in environments like surgeries, it 

needs to be able to detect or classify objects with extremely high precision. 

A key question in deep learning is focused on understanding whether 

simply stacking more layers will improve model performance. The 

rationale is that these added layers progressively capture more complex 

features. However, it has been observed that beyond a certain network 

depth, accuracy plateaus and then quickly deteriorates. Traditional CNN 

models have a maximum effective depth, beyond which they suffer from 

the vanishing gradient problem—during back-propagation, the gradients 

can become exceedingly small due to repeated multiplication, nearly 

diminishing them. 
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Residual Neural Networks (ResNet)[16] were proposed by He et al. in 

2015 as a breakthrough that solved the vanishing gradient problem and 

allowed people to build larger CNNs that had improved performance 

in perception tasks. For this reason, ResNets are used as the backbone 

today for many computer vision tasks. They are not only limited to image 

classification but can also solve a wide range of problems in image 

segmentation and object detection—even in robotics. 

 Skip Connection: The Strength of ResNet

A key aspect of ResNets lies in the skip connection, which has become 

a fundamental component in many convolutional architectures. 

Skip connections offer an alternative route for gradient flow in 

backpropagation, enabling the output of a layer to feed into subsequent 

layers. This is done through vector addition, where the output of a layer 

is added directly to the output of a deeper layer. This addition creates a 

shortcut for the gradient during backpropagation, allowing it to bypass 

certain layers. By multiplying the gradient by 1 (identity function), the skip 

connection ensures that the gradient does not diminish and maintains its 

original value. ResNets are constructed by stacking these residual blocks 

that incorporate skip connections. Figure 2-22 illustrates a single residual 

block with a skip connection. 

 Figure 2-22. A residual block. Used with permission, source: 

 https://arxiv.org/pdf/1512.03385 [16]
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 U-Net

The concept of skip connections has influenced the design of architectures 

such as U-Net[17], which was originally developed by Ronneberger et al. 

for biomedical image segmentation. U-Nets are now being applied to other 

image segmentation tasks, including robotics perception. The architecture 

is an encoder-decoder structure with skip connections, known for its 

efficiency with fewer training images and highly accurate segmentations. 

U-Nets can segment images up to 512x512 pixels using a modern GPU 

(according to 2015) in under a second. 

As illustrated in Figure 2-23, a distinctive aspect of U-Net is the 

replacement of pooling operations with upsampling operators, which 

increase the resolution of the output. The encoder uses convolutional and 

pooling layers to capture features and reduce the spatial dimensions of 

the input image, creating a compressed representation of the input image. 

The decoder then uses upsampling operators to increase the resolution of 

the output from the encoder, refining the features captured by the encoder 

into a high-resolution, segmented output. U-Net also incorporates skip 

connections, which directly transfer feature maps from the encoder to the 

corresponding layers in the decoder. These skip connections help retain 

important spatial information that might otherwise be lost during the 

downsampling process. 
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 Figure 2-23. U-Net architecture. Used with permission, source: 

 https://arxiv.org/pdf/1505.04597 [17]

U-Net has been used commonly in segmentation tasks for robotics 

given its speed and the ability of the encoder-decoder structure to learn 

accurate spatial information. For example, it has been used in research for 

robotic instrument segmentation for robotic surgery, lane detection for 

self-driving cars, and for robot grasping. 

U-Net is notable in that it forms the backbone of several early diffusion 

models and even Stable Diffusion. An important property of U-Net is that 

the input and output are the same size, meaning the model maintains the 

spatial dimensions of the input throughout the network. This design allows 

U-Net to learn and encode detailed image features (latent encodings) 

within the encoder, which can then be used by some decoder or another 

model. Recent architectures use transformers in place of CNNs to make 

U-Nets that run faster. Despite the change in modules, the fundamental 

concepts of U-Nets transfer. 
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 EfficientNet

One way that CNNs can be scaled up is by adding more layers. Oftentimes, 

you can add more layers such as to ResNet and then manually make 

the network deeper and wider, or use higher-resolution images. 

EfficientNet[18] uses a compound scaling method that adjusts all three 

dimensions simultaneously based on a predefined scaling factor. 

By using a user-defined coefficient and fixed scaling constants, this 

method ensures that there is proportional growth across all three factors. 

For example, if you want to double the computational resources, you 

might increase the depth 1.2 times, the width 1.1 times, and the resolution 

1.15 times[18]. These empirically determined parameters help improve 

the features that CNNs capture by allowing them to learn more complex 

patterns (depth), capture more granular details (width), and detect 

smaller objects (resolution). Figure 2-24 shows a comparison of the scaling 

aspects. They also maintain computational efficiency by holistically 

optimizing the use of all available resources and features. This approach 

allows EfficientNet to achieve higher accuracy and efficiency, making the 

network up to ten times smaller yet faster compared to traditional scaling 

methods. 

 Figure 2-24. Comparison of scaling methods. Used with permission, 

 source: https://arxiv.org/pdf/1905.11946 [18]
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 One-Stage  Detectors

Many of the object-detection algorithms mentioned so far handle 

object detection as a classification problem by first generating object 

proposals and then sending these proposals to classification/regression or 

segmentation heads. What if there was a way to look at the complete image 

all at once rather than looking at only the generated region proposals? 

These methods would be able to compute extremely quickly and could be 

run real time. 

A method called You Only Look Once (YOLO)[19] aims to do 

this by making predictions of bounding boxes and class probabilities 

simultaneously. 

 YOLO

YOLO (You Only Look Once) has been commonly applied in robotics for 

object detection applications due to its simplicity and speed. For example, 

a more recent version of YOLO, called YOLO v10, achieves an impressive 

54.4 percent AP for real-time object detection. YOLO has been used 

for identifying objects using mobile robots, robotic grasping, and other 

autonomous navigation applications. 

YOLO works by dividing the input image into a grid of cells. Each cell in 

the grid is responsible for predicting the bounding boxes and determining 

the confidence scores for objects within that cell. However, this can result 

in multiple overlapping boxes for the same object. YOLO addresses this 

issue using Non-Maximal Suppression, which keeps the box with the 

highest confidence score and removes the redundant overlapping boxes. 

The YOLO architecture is shown in Figure 2-25. 
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 Figure 2-25. YOLO architecture. Used with permission, source: 

 https://arxiv.org/pdf/1506.02640 [19]

 SSD

Similar to YOLO, the single-shot detector (SSD)[20] detects objects in a 

single pass using a pretrained base network (like VGG16) followed by 

convolutional layers that generate multiple feature maps at different 

scales. These maps allow SSD to detect objects of different sizes, where 

early layers capture small objects and deeper layers detect larger ones. 

SSD uses receptive fields, which are specific regions of the input image 

that each feature map covers, to handle objects of different sizes. Similar 

to YOLO, SSD applies Non-Maximal Suppression to remove redundant 

bounding boxes and keep the most confident predictions. 

A visual comparison of the SSD and YOLO architectures is provided in 

Figure 2-26. 
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 Figure 2-26. SSD (top) and YOLO (bottom) architecture. Used with 

 permission, source: https://towardsdatascience.com/review-

 ssd-single-shot-detector-object-detection-851a94607d11 [56]

YOLO and SSD are both known to be fast. However, SSD is known 

to provide better accuracy for objects of varying sizes because of its 

multiscale feature maps and receptive fields. A comparison of the 

performance of SSD, YOLO, and Faster R-CNN is shown in Figure 2-27. 

 Model  Comparison

Choosing the right model is crucial for robotics and depends on the 

problem you are trying to solve and how you set it up. The results of Faster 

R-CNN, YOLO, and SSD based on mAP and FPS on Pascal VOC2007 

are shown[20] in Figure 2-27. The input images from these datasets are tested with different resolutions to compare results. It is important to note 

that newer versions of YOLO (YOLO v9, v10), which have an improved 

architecture, have much higher mAP and FPS, but we’ve provided results 

from this study as a benchmark. 
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 Figure 2-27. Comparison of Faster R-CNN, YOLO, and SSD based 

 on average precision (mAP) and FPS, on the Pascal VOC2007 

 dataset. Used with permission, source: https://arxiv.org/

 pdf/1512.02325 [20]

In another example, a paper[21] by Google Research looked at various 

object-detection models and the tradeoffs between speed (GPU time) and 

accuracy (mAP). They generally found that R-FCN and SSD models are 

faster, as they require less GPU time per image, but they tend to have lower 

accuracy (mAP). On the other hand, Faster R-CNN models tend to be 

slower but achieve higher accuracy. For Faster R-CNN models, the speed 

can also be improved by reducing the number of regions proposed during 

detection. It’s important to note that different combinations of feature 

extractors (e.g., Inception Resnet V2, MobileNet) and architectures (e.g., 

Faster R-CNN, SSD, and so on) result in different performance benefits, as 

shown in Figure 2-28. This tradeoff will differ depending on the problem 

you are working on and your dataset. This tradeoff is essential to consider, 

especially with real-time detection applications in robotics. 
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 Figure 2-28. Tradeoffs of various object-detection models when 

 it comes to GPU time vs mAP. Used with permission, source: 

 https://arxiv.org/pdf/1611.10012[ 57 ]

 Transformers  for Perception

The previous section covered CNN-based vision techniques. However, 

in recent times, transformer-based[23] vision techniques have provided 

a strong alternative to solving vision problems discussed in this chapter. 

Transformers, as opposed to CNNs, rely on self-attention mechanisms to 

model global connections among visual elements, thereby improving the 

model’s understanding of contextual information. In robotics, applications 

like object detection, image segmentation, and visual reasoning—where 

global context and fine-grained interactions are essential for precise 

decision-making—are ideally suited to transformers. 
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 Transformer  Introduction

To understand how sequence models can be applied to robotics, you first 

need to understand attention, which is the neural network element that 

explicitly motivates the network to focus on certain parts of the input data 

and ignore others. In long sequences, unrolling the net in time means 

older inputs are forgotten. Attention provides a direct path to older inputs, 

thereby reducing the vanishing/exploding gradient problem. 

The attention mechanism was first proposed by Bahdanau et al. 

[22] as embedding weights to jointly align and translate during a neural 

machine translation task. Prior to the work proposed by Bahdanau et al. 

[22], neural translation involved an encoder and decoder setup where 

an encoder converted inputs to an embedding representation and a 

decoder converted the embedding back into tokens in a target language. 

In Bahdanau et al.[22], a simple feedforward network was used to calculate 

alignment scores between the input and output tokens. This score was 

used to weigh the context vector of the RNN decoder. This would later 

become known as  additive attention since feedforward applies a linear, 

additive function on inputs. 



Equation 2-1

In Equation 2-1, a_ij is a learned weight given to the jth input to 

calculate the ith output. This mechanism was soft attention. Since then, 

several attention mechanisms have been proposed:

•  Content-based attention[35]: This method uses the 

cosine similarity between the target state and the 

source hidden state. 
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•  Additive attention[22]: Using a trainable weight vector, 

followed by a tanh activation over the combination 

or concatenation of the target state and the source 

hidden state. 

•  General attention[36]: A trainable weight matrix is 

applied to the source hidden state and the dot product 

is taken with the target state. 

•  Dot-product attention[36]: The dot product of the 

target state and the source hidden state is computed. 

•  Scaled dot-product attention[23]: Similar to dot- 

product attention, but the score is scaled by the square 

root of the dimension 𝑛 of the source hidden state. 

•  Cross-attention[38]: The attention scores are 

computed as the dot product between the queries 𝑄 

(from one input sequence) and the keys 𝐾 (from a 

different input sequence), scaled by the square root 

of the dimension of the keys divided by the number 

of heads, h. After applying the softmax function to 

these scores, they are used to weigh the values 𝑉. This 

technique can be used for conditioning on multiple 

input streams. 

•  Flash attention[37]: For Flash attention, tiling breaks 

the large attention matrix into smaller blocks that fit 

within fast memory (SRAM). Each block is processed 

independently, keeping intermediate data local to 

avoid frequent reads/writes to slower memory (HBM). 

This reduces memory overhead and speeds up 

computation, while making sure the correct softmax 

output is computed across the sequence. 
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 The  Transformer

An important neural network architecture that bases itself on the ability 

to utilize attention over long sequences is the transformer. Introduced in 

Vaswani et al.[23], titled “Attention Is All You Need,” transformers have 

changed the terrain of deep learning by providing better than human 

performance in speech and vision. The best language models in the world, 

including GPT-3[24] and PaLM[25], are transformers. 

Outside of being applied to tasks such as machine translation, text 

generation, and language understanding, transformers can be utilized 

for object detection and tracking in robotic vision systems. Using self- 

attention mechanisms, transformers can capture global dependencies 

and spatial relationships between different regions, leading to improved 

object recognition and tracking capabilities. Other use cases in robotics 

include path planning and navigation tasks in robotics where transformers 

can be used to capture long-range dependencies and use contextual 

information, improving the robot’s ability to navigate complex and 

dynamic environments. 

Vaswani et al.[23] categorizes an attention network generically as 

mapping a set of queries and key-value pairs to outputs where they are 

all vectors. Figure 2-29 shows that the output is a weighted sum of all the 

values, and the weight is calculated as a dot product of the query and key 

vectors. 
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 Figure 2-29. Scaled dot product attention and multi-head attention. 

 Used with permission, source: https://papers.nips.cc/paper_

 files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-

 Abstract.html [23]

In scaled dot product attention, the attention is calculated using 

Equation 2-2:



Equation 2-2

where Q is a query, K is the key, V are value vectors, and d_k is the 

dimension of the key vector. Compared to additive attention introduced in 

Bahdanau et al.[22], dot product attention is faster to compute and space-

efficient. In scaled dot product attention, the 1/ sqrt(d_k) keeps the input 

value of the softmax value normalized, since for large values of d_k, the dot 

product is pushed to areas where the softmax function has small gradients. 

The original transformer paper uses both scaled dot product attention 

and multi-head attention. Multi-head attention is used to project query, 

key values into multiple heads/representation subspaces to apply 

scaled dot product attention over them. In multi-headed attention, you 

85

[image: Image 45]

Chapter 2   robot perCeption: SenSorS and image proCeSSing

parallelize by first projecting values, keys, and queries to the d_v, d_k, and 

d_q dimensional arrays, respectively, then applying scaled dot product 

attention, as shown in Equation 2-3. This allows the model to attend to 

different information from different embedding subspaces jointly. 



Equation 2-3

The transformer (as shown in Figure 2-30) employs multi-headed 

attention with an encoder-decoder setup in three places:

1.  In the encoder as self-attention where the keys, 

values, and queries come from the encoder, such 

that the encoder can attend to all its positions. 

2.  Between the encoder and decoder, where keys and 

values come from the encoder and queries come 

from the previous output of the decoder. 

3.  In the decoder as self-attention, where the keys, 

values, and queries come from the decoder, such 

that the decoder can attend to all its positions. 
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 Figure 2-30. The transformer. Used with permission, source: 

 https://papers.nips.cc/paper_files/paper/2017/hash/3f5

 ee243547dee91fbd053c1c4a845aa-Abstract.html [23]

 Transformers  for Vision

This section looks at methods that allow you to apply transformers to 

perception problems mentioned in this chapter, namely classification, 

detection, segmentation, and captioning. 

 Image Classification with Vision Transformer (ViT)

One of the first applications of transformers to computer vision that could 

be applied for robotic perception was published by Dosovitskiy et al.[26] in 

the form of the vision transformer (ViT). By utilizing its ability to interpret 

visual data and capture contextual relationships, the vision transformer 
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(ViT) can be used for image classification. The ViT is useful when you need 

a thorough grasp of the environment because of its attention mechanism, 

which enables it to model long-range dependencies and capture fine- 

grained information. A robot’s perception abilities can be improved 

by modifying the ViT architecture and training it on domain-specific 

data. This allows the robot to move around, interact, and make better 

judgements based on visual input. 

The ViT tokenizes an image into patches. Then, it feeds it into a 

transformer as if the patches were sequences with a position embedding 

corresponding to the patch’s position in the picture. The architecture of 

this is shown in Figure 2-31. This architecture, in essence, unifies natural 

language research and computer vision research, because you can now 

treat images as language by tokenizing an image into a sequence of patch 

tokens, just like how a sentence/document is a sequence of language 

tokens. Prior to this paper, convolutional neural nets dominated vision 

processing and transformers dominated language processing, but ViT set 

the foundations for transformers dominating vision and eventually visual- 

language or multimodal processing. 

 Figure 2-31. Vision transformer architecture. Used with permission, 

 source: https://arxiv.org/abs/2010.11929 [26]
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While breaking a picture up into multiple patches seems 

counterintuitive to the purpose of retaining geometric correlation 

across patches, it was found that when the model is pretrained on a very 

large dataset (> 100M images) and then fine-tuned to a classification 

task, it learned the relationships between the position embeddings 

and could extract features across patches. With smaller dataset sizes, a 

ResNet-based model was still dominant given that convolution neural 

nets preserve inductive biases about translational equivariance and 

locality. A closer inspection found that the initial layers learn to attend to 

features in the patches, preserving its low dimensional structure. Once 

position embedding is added, there are similarities in the embeddings 

between close patches and those in the same row/column, meaning that 

the network learns the larger geometrical context of the image. From 

that perspective, the attention distance of the ViT is comparable to the 

receptive field of ResNets. 

The ViT handles images of higher resolution by increasing the 

sequence length and 2D interpolation of pretrained position embeddings 

corresponding to the new patch positions. 

The paper also found that ViTs outperform ResNets on compute 

vs performance, requiring two to four times less memory for the same 

performance. Interestingly, the model didn’t saturate, indicating the 

possibility of higher performance via scaling. 

 Scaling Vision Transformers

Although ViTs are state of the art for many computer vision tasks, scaling 

them like regular dense transformers had proven to be infeasible due to 

training instabilities. The paper, “Scaling Vision Transformers to 22 Billion 

Parameters, ”[27] dives into why the traditional method of training ViTs 

produces instability during scaling and how to modify the architecture 

to prevent it. As a result of these investigations and modifications, they 

introduce the ViT 22B model, composed of 22 billion parameters, which 
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at the time was 5.5x larger than the previous vision backbone ViT-e of four 

billion parameters. ViT 22B deeply inspired PaLM-e[28], which combines 

ViT and a large language model to create an early multimodal robot 

foundation model. Chapter 4 discusses this more in depth. 

The authors apply three main modifications to traditional ViT to 

enable scaling:

1. Parallel layers: ViT 22B applies attention and MLP 

blocks in parallel, rather than sequentially as in 

a traditional transformer. This enables grouping 

some operations such as parallelization of linear 

projections of the MLP and attention blocks. This 

technique results in a 15 percent increase in speed 

during training without affecting performance. 



2. QK normalization: At around 8B parameters, it 

was noticed that attention logits become really 

large values and exhibit very low entropy, leading 

to a divergence in training loss that makes training 

unstable. Applying a LayerNorm to queries and 

keys before scaled dot product attention fixes this 

issue, as shown in Figure 2-32. Attention weights 

are then calculated as 

where X is input, and W^Q and W^K correspond to 

query and key weight matrices, respectively. 
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3. Omitting bias terms: Removing the bias from QKV 

projections and LayerNorms was first found useful 

in the PaLM 540B paper[25] and was repeated in the 

ViT-22B paper as well, since it improves accelerator 

utilization without compromising performance. 

Contrary to PaLM 540B, ViT 22B preserves bias 

terms in MLP dense layers because it was found to 

not harm utilization. 

 Figure 2-32. Improvement in training metrics due to query/

 key normalization (green curve). Used with permission, source: 

 https://arxiv.org/pdf/2302.05442[ 27]

 Figure 2-33. Parallel ViT-22B layer with QK normalization. Used 

 with permission, source: https://arxiv.org/pdf/2302.05442 [27]

91

Chapter 2   robot perCeption: SenSorS and image proCeSSing

Figure 2-33 shows the modified ViT encoder with the modifications 

applied in ViT-22B. It is trained on an extended JFT dataset comprising 

around 4B images. The practical implementation of ViT 22B was done 

on JAX with model and data parallelism; it incorporates measures to 

optimize for throughput by improving computation (per device) and 

communication (between devices). ViT 22B approaches SoTA results on 

several perception tasks, including classification, semantic segmentation, 

and monocular depth estimation. 

 Learning Joint Image-Language Features

Applying language with computer vision such as using CLIP, introduced 

by Radford et al.[29], allows you to use a ViT-like transformer to get richer 

visual features. The idea of CLIP is to jointly learn embeddings from a large 

corpus of image-text pairs in order to use zero-shot image classification. 

Instead of training an image encoder and classifier, you jointly train an 

image encoder and text encoder, which are fed batches of (image, text) 

pairs with a label indicating whether they match. There are a few strong 

reasons for doing this. 

It removes the requirement of labeling the data in the format intended 

for classification tasks. Even ImageNet only labels 1,000 classes, which 

is far fewer than object descriptors required for generalized vision. 

Compared to it, natural language supervision trains on descriptive text, 

without explicit and formatted labeling. This enables training from the 

large number of image/text descriptions on the Internet, compared to 

previous benchmarks, as well learning attributes of the image such as 

object types, aesthetics, style, and other features that people are likely to 

write online about. 

Contrastive objectives are also found to be better than predictive 

objectives at learning representations. In a contrastive setting, the model 

is trained to predict which text is paired with which image rather than 

predicting the exact words of that text. This is because the jointly trained 
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image encoder learns the representations required to describe the same 

image in many ways rather than using a singular label. An overview of 

CLIP is shown in Figure 2-34. 

 Figure 2-34. Summary of CLIP. Used with permission, source: 

 https://arxiv.org/pdf/2103.00020v1 [29]

The image encoder backbone could be a standard ResNet or the vision 

transformer and the text encoder could be another text transformer such 

as in Vaswani et al.[23]

Robotic perception can be improved by richer image understanding 

made possible by CLIP features. Language allows more flexible querying of 

objects than is allowed by pure classification/detection methods. CLIP’s skill 

in correlating image and text features can help robots make inferences based 

on language instruction from a human to relevant object/image features in 

the environment to complete challenging visual language tasks. Chapter 4 

discusses the applications of language in robotics in better depth. 

 Open Vocabulary Object Detection with Transformers

While the original ViT models perform detection on ImageNet 

benchmarks[30], OWL-ViT[31] combines the techniques of ViT and CLIP 

to perform open vocabulary object detection. They train a large CLIP 

network on billions of Internet-scale, paired image-text data and fine tune 

it to a smaller detection dataset with millions of examples. 
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How does OWL-ViT modify CLIP? 

1.  OWL-ViT removes the token pooling and projection 

layer of CLIP and instead projects the output token 

embeddings to get per object detection labels. For 

each object query, a probability of how much the 

query relates to the image and a bounding box is 

predicted. At this point, closed class object detection 

becomes a special case, where every class label is 

applied as a query to every image. 

2.  While early fusion is generally useful to extract the 

right image features, early fusion can make things 

slower in OWL-ViT, since you would need to parse 

through the entire image for every query. Instead, 

the queries are independently passed through a text 

encoder, allowing the use of thousands of queries 

per image and boosting inference efficiency. 

3.  Since language and image are fused late, you could 

also perform object detection conditioned on image 

embeddings instead of text embeddings, enabling 

image-conditioned object detection. 

4.  The model is trained using focal sigmoid cross-

entropy loss, which fits datasets with a large number 

of classes, where labels are disjoint and each image 

has several examples of positive (present) and 

negative (absent) labels. 

OWL-ViT gets really good performance on open vocabulary object 

detection, by a large margin from prior work. It also shows zero-shot 

object detection, signaling the transfer of knowledge and representations 
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from Internet-scale data to object detection tasks. OWL-ViT is fast enough 

to run open vocabulary detection within 100ms, which means it can be 

widely used as an auto-labeling system. Figure 2-35 shows the process of 

pretraining an image and text encoder using CLIP and the OWL-VIT used 

for open-vocabulary detection. 

 Figure 2-35. Left: CLIP pretraining. Right: OWL-VIT for detection. Used 

 with permission, source: https://arxiv.org/pdf/2205.06230[ 58]

 Promptable Open Vocabulary Segmentation

Transformers have also been applied to solve the image segmentation 

problem with a method called Segment Anything Model 

(SAM)[32]developed by Meta Research in 2023. They followed this up 

with Segment Anything 2[33] in 2024, which applies segmentation across 

video frames. SAM defines promptable segmentation as the task of 

generating a valid segmentation mask for any prompt specifying textual 

or spatial information to look for in an image, in a manner that is flexible, 

ambiguity-aware, and in real time. SAM was trained on 11 million images 

and 1.1 billion segmentation masks[34], becoming an extremely valuable 

foundation model in computer vision. 
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SAM has three main components:

1. An 

image encoder that encodes an input image 

into an embedding to extract high level features and 

semantic representation, in this case a ViT

2. A 

prompt encoder to encode different types of 

prompts (sparse and dense) into embedding vectors

3. A 

mask decoder that uses the image and prompt 

embeddings to predict segmentation masks. It updates 

these embeddings using self-attention and cross-

attention between the prompt and image embeddings

Figure 2-36 shows an overview of how these three components interact 

in the Segment Anything framework. SAM has an end-to-end latency of 

50ms from input to mask generation and is very fast. 

 Figure 2-36. The Segment Anything processing pipeline. Used with 

 permission, source: https://arxiv.org/pdf/2304.02643 [32]

To extend SAM to video segmentation, SAM2 introduces a memory 

attention, a memory encoder, and a memory bank. SAM2 extends 

segmentation in the temporal dimension by allowing a prompt on one 

or more images of a video, and expecting a segmented output across 

frames. The prompt could be a click, a text description, and so on. The 

image encoder in SAM2 produces one embedding per frame of video. The 

memory attention conditions the output segmentation mask prediction 

on past images, past predictions, and any new prompts by applying self-

attention on current images and cross-attention to memories of frames 

96

Chapter 2   robot perCeption: SenSorS and image proCeSSing

and past predictions. The memory encoder generates memories by 

downsampling the output. The memory bank is a first-in, first-out (FIFO) 

queue that stores as spatial feature maps M memories for frames and N 

memories for prompted frames as well as object pointers for the target 

object to be segmented as vector embedding. 

SAM2 is trained jointly on image and video data with interactive 

prompting and shows remarkable performance for zero-shot open 

vocabulary segmentation in videos. 

 Summary

The chapter covered the following concepts:

•  Robots use various sensors to perceive their 

environment, including vision sensors like cameras 

for capturing images, depth sensors for measuring 

distance, range sensors like LiDAR and ultrasonic 

sensors for navigation, and IMUs to track motion and 

orientation. 

•  Robots perform tasks like classification, semantic 

segmentation, instance segmentation, and object 

detection. These tasks help robots navigate, manipulate 

objects, and interpret environments. 

•  CNNs can be used to process images through layers 

like convolutional layers, ReLU, and pooling layers. The 

chapter discussed different models, including R-CNN, 

Fast/Faster R-CNN, YOLO, and SSD, including how 

such models balance speed and accuracy for tasks like 

object detection and segmentation, each with tradeoffs 

in performance. 
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•  Transformers treat images as sequences, allowing them 

to capture global context and dependencies within 

an image. Models like vision transformers (ViT) and 

detection transformers (DETR) can be used for object 

detection and segmentation, and they outperform 

traditional CNNs in certain scenarios. The chapter also 

explored how transformers can be scaled efficiently, 

and how methods like ViT (for classification), CLIP 

(for joint image-text understanding), and SAM (for 

segmentation) can be useful in robotics. 

This chapter focused mainly on 2D image-processing techniques. 

The next chapter discusses 3D image-processing methods, multimodal 

perception, and sensor fusion. 
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CHAPTER 3

Robot Perception: 

3D Data and Sensor 

Fusion

3D sensor data collected from LiDAR or depth cameras is critical for real-

world robotic perception, as it allows robots to perceive the three- 

dimensional structure of objects around them. 3D sensor data is often 

collected and used by industrial and consumer robots, but one of the most 

relevant applications is in the development of autonomous vehicles. The 

key force behind autonomous vehicles is 3D sensor data collected from 

LiDAR or depth cameras. From 3D sensor data, autonomous vehicles 

can accurately perceive the three-dimensional structure of objects, 

pedestrians, and other vehicles around them. This information enables 

robust object detection, precise localization, and reliable path planning, 

leading to improved safety, situational awareness, and more efficient 

decision-making in real-time driving scenarios. Some autonomous vehicle 

companies also rely on 3D data processing to create detailed maps, aiding 

in navigation and ensuring smooth and reliable autonomous driving 

experiences. 

Overall, 3D data processing is extremely important for robotic 

perception, mapping, and navigation. By processing 3D sensor data, such 

as point clouds and depth maps, robots can perceive their surroundings in 
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three dimensions, detect obstacles, and plan collision-free paths to reach 

their destinations. This chapter addresses methods to process data with 

depth perception such as 3D maps as well as sensor fusion. It also covers 

techniques used to compress data from multimodal sensors such as radar, 

LiDAR, and cameras. 

 3D Data Processing

To understand 3D data processing, you first need to study how 3D data 

is represented in the framework of machine learning. Then you can 

understand the methods and learn from the data representations that the 

model generates. 

 Data  Representation

3D data, typically from a LiDAR, which is a stereo vision camera with depth 

or infrared sensor, is generally represented in the form of point clouds, 

voxels, or meshes. 

Let’s consider each of these terms. 

•  A point cloud is a set of point coordinates in space, 

generally represented as a cartesian (x, y, z). A multiple 

return LiDAR sensor can provide a point cloud. 

•  A voxel or a volumetric pixel is a 3D pixel. It is again 

represented as a pixelized (x, y, z) point where the 

coordinates are limited by resolution of the voxel grid. 

A sparse voxel is a memory efficient representation 

where only cells containing information are stored. 

Octrees are a variant of sparse voxels where adjacent 

cells that are identical are aggregated, allowing for data 

compression. 
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•  A mesh is a polygon representation of 3D data where 

the data is represented as a composition of polygon 

surfaces, generally triangles. 

A depth map is typically the output of a stereo vision camera where, for 

every (x,y) pixel, there’s a depth (z). Note that this is a 2.5D representation, 

as you cannot have multiple values of depth for the same pixel. 

Parametric modeling refers to representing objects in terms of surfaces 

and volumes that share parameters, such that interlinked attributes 

change together. An example is a CAD model of an object, where height 

and width can change with scale. The difference between a 3D mesh image 

and a voxelized image is shown in Figure 3-1. 

 Figure 3-1. 3D mesh and voxel representation of a human face. 

 Used with permission, source: https://link.springer.com/

 article/10.1007/s11042-020-08688-x [29]

With voxels, the size of the dataset increases cubically with space, 

while the data stays ordered. With point clouds, you can represent varied 

spatial density and resolutions effectively, but a point set is permutation- 

invariant and models that use them need to factor that property. 
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For the purpose of robotics, this chapter focuses on processing point 

clouds, since, following the advent of LiDARs, they have been more widely 

adopted in research and industry. 

 Processing Point Clouds

Point clouds are fundamentally irregular in representation. They are also 

permutation-invariant, meaning changing the order of the points does 

not change the dataset. In the past, point clouds were processed after their 

voxelization, such as with VoxNet[1] and 3D ShapeNet[2]. However, this increases memory usage and introduces quantization artifacts, such as 

removing information in high point density clusters. 

PointNet[3], shown in Figure 3-2, is a pioneering architecture for object classification and segmentation on point clouds. The network takes a set 

of  n unordered points and converts them to transform invariant feature 

vectors using multilayer perceptrons. 

 Figure 3-2. PointNet architecture. Used with permission, source: 

 https://arxiv.org/abs/1612.00593 [3]

The inputs are aligned to a canonical space by calculating an affine 

transformation using a T-net, which is a mini-network resembling the 

bigger network, shown in Figure 3-2, that contains point-independent 

feature extraction, max pooling, and fully connected layers. The feature 
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vectors are concatenated to original points and these joint point features 

are aggregated using multiple MLP[4] and max pooling layers[5] to output per point scores. At the time of its release, PointNet was the state of the art 

in semantic segmentation for point clouds. However, since max pooling 

is an aggregation and doesn’t preserve local structures, PointNet is not 

robust with fine grained patterns and highly complex scenes. 

The drawback concerning local structures was improved upon by 

PointNet++[6], shown in Figure 3-3. PointNet++ attempts to solve this issue by first partitioning the set of points into overlapping local regions 

using a Euclidean distance metric for 3D space. Then, instead of using 

a single max pooling operator on the entire point cloud, PointNet++ 

builds a hierarchical grouping of these points, extracts local features 

using PointNet, and processes them in hierarchical groups to get higher 

level features in an iterative fashion. Essentially, they recursively apply 

PointNet on a nested partition of the input set. The overlapping partitions 

are generated by defining balls in the input space with varying sizes and 

centers, and the centroids of these clusters/balls are generated using the 

farthest point sampling (FPS) algorithm[7]. In comparison to volumetric 

CNNs[8], which always have the same receptive field, applying PointNet 

to these Euclidean kernels of varying sizes adapts to the variation of 

point cloud density and variation in feature scales. This is achieved 

during training by random input dropout such that the network learns to 

adaptively combine features extracted from multiscale neighborhoods 

based on input data. 
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 Figure 3-3. PointNet++ architecture. Used with permission, source: 

 https://arxiv.org/pdf/1706.02413 [6]

The interpolation operation shown in the segmentation head of the 

network in Figure 3-3 is achieved by interpolating features at point j using 

an inverse distance weighted averaging over k nearest neighbors (see 

Equation 3-1). 



Equation 3-1, source: https://arxiv.org/pdf/1706.02413[6]

These are then concatenated with skip level point features from 

the abstraction layer and passed through unit PointNets (close to 1*1 

convolution). These are then propagated back until the original point set is 

labeled. 

However, PointNet++ still has room to improve. Feature extraction 

using PointNet that uses max pooling loses spatial information. 

PointCNN[9], shown in Figure 3-5, aims to use the ability of traditional CNNs to capture local and hierarchical features with increasing receptive 

fields on point clouds. One way to apply CNNs on point clouds is by 

voxelizing the data and then applying CNNs on the voxels. However, this 
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is not an efficient representation of data and voxel CNNs take up too 

much memory due to dimensionality. PointCNN solves this problem by 

introducing an 𝑋-conv operator that transforms the point cloud into a 

latent and canonical space. The algorithm for this is shown in Figure 3-4. 

 Figure 3-4. 𝑋-conv algorithm. Used with permission, source: 

 https://arxiv.org/pdf/1801.07791 [9]

If there are N points in the point set, the 𝑋-conv operation samples K 

neighborhood points for every point in input set, which constitutes its local 

neighborhood. Each local neighborhood is brought to its own coordinate 

system. The 𝑋-conv operation is completely differentiable and converts 

the points to a feature space that is deeper, with smaller spatial resolution. 

 Figure 3-5. Point CNN architecture for classification (a and b) and 

 for segmentation (c). Used with permission, source: https://arxiv. 

 org/pdf/1801.07791 [9]
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Each 𝑋-conv layer reduces the number of points with increasing 

receptive fields, with the final point seeing all the points. For detection, 

the final 𝑋-conv layer is paired with a fully connected layer and loss 

function to train the network. For segmentation, 𝑋-conv is applied in a 

fashion similar to the U-Net, where there are successive d-conv operations 

until the original points have propagated features. PointCNN is found to 

perform better than PointNet++ in several classification tasks. 

Dynamic Graph CNN (DGCNN)[10], shown in Figure 3-6, is an 

algorithm that aims to improve upon the fact that PointNets cannot 

capture features at local scale due to permutation invariance of points. It 

does so by introducing an edge convolution operation. 

 Figure 3-6. DGCNN for classification (top path) and segmentation 

 (bottom path). Used with permission, source: https://arxiv.org/

 pdf/1801.07829 [10]

DGCNN constructs a local neighborhood graph of k nearest points and 

updates the graph at each layer by adding convolution-like operations on 

edges, thus connecting pairs of points in a neighborhood. The neighbors 

change in each layer and the graph is recomputed, hence it is dynamic. 

The edgeconv operation takes an  n*f tensor (where  n is the number 

of points and  f is input feature size to that layer), applies a multilayer 

perceptron, and calculates edge features for each point. For classification, 

114

Chapter 3   robot perCeption: 3D Data anD SenSor FuSion

the last edgeconv layer is aggregated to get a global 1D descriptor, which 

is used to arrive at a class label for the point set. For segmentation, the 1D 

descriptor is concatenated with edge features from each edgeconv layer to 

provide global and local features for each point. This allows it to arrive at 

per point segmentation output scores. 

DGCNN performs close to PointCNN on classification and 

segmentation tasks ( +-3%). However, the fixed size of edge features can 

limit its performance at different scales and resolutions. Given that input 

features contribute differently to the nodes, attention mechanisms could 

further improve performance by looking at the relevant features when 

variable sized input is involved. 

 Research  Opportunities

1. Exploiting context: Most point cloud based models 

treat points at a local scale as independent in order 

to maintain permutation invariance. But this means 

they’re unable to extract finer features and exploit 

the relationship between a point and its neighbors. 

2. Real-time performance: Despite the abundance of 

models for point clouds, most robotic systems have 

onboard compute and need to respond quickly. This 

calls for lighter models with lower inference time. 

3. The pitfall of supervised learning: Most existing 

point cloud models utilize supervised learning, 

which is not robust to unseen scenarios and 

requires large amounts of data to train and 

generalize. Weakly supervised or unsupervised 

frameworks can improve these limitations. 
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 Multimodal Perception and Sensor Fusion

The goal of multimodal perception is to use a combination of different 

sensing modalities to get a robot to accomplish a task. Sensor fusion 

is combining input from more than one sensor to gain a deeper 

understanding of the surrounding environment. Multi-modal sensor input 

can also make perception more robust in the case of failure modes in any 

of the sensors—this is an important safety mechanism. Sensor fusion is 

often used in applications like self-driving cars to fuse some combination 

of LiDARs, radars, and cameras to exploit their various strengths and 

improve performance of the overall combined system. For example, 

LiDARs have good depth perception but don’t provide color information. 

While cameras don’t provide information about an object’s depth, they can 

provide color information. Radars, on the other hand, provide direct speed 

measurements of obstacles and complement LiDAR and cameras. 

The utility and specifics of sensor fusion is ultimately warranted by the cost 

and precision required by a robot application. One downside of multisensor 

perception is the added system complexity of synchronizing information 

and inputs of sensor fusion. For sensor fusion to work, the sensors need to be 

calibrated, registered with respect to the other, and need to use a common 

time reference. Given various sensing modalities, you need a way to fuse them 

to achieve an accurate 3D representation of the world for the robot to act in. 

The following sections cover some common strategies to accomplish this. 

 Fusion  Strategies

Recent advances in deep learning have led to two main sensor fusion 

strategies:

1. Late fusion: Processes each sensing modality 

independently until the very end. For example, it 

will fuse bounding boxes from LiDAR and from the 

camera that were processed separately. 
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2. Early fusion: Leverages recent advances in deep 

learning to fuse the raw sensor reading in the early 

stages. For example, it will fuse pixels and point 

clouds directly. 

This section focuses on integrating LiDAR and camera data to leverage 

the camera’s high resolution and its ability to classify objects, along with 

LiDAR’s capability to measure distances and perceive the world in 3D. You 

can see how both of these work together by looking at fusing point clouds 

and pixels in the early fusion mode and fusing bounding boxes in the late 

fusion mode. 

To illustrate the advantages of sensor fusion, different sensors and 

their main uses in autonomous vehicles are shown in Figure 3-7. 

 Figure 3-7. Overview of sensor fusion in autonomous vehicles, 

 combining data from long-range and short-range RADAR, LiDAR, 

 vision cameras, thermal imagers, GPS, and other sensors. Used 

 with permission, source: https://semiengineering.com/a-dsp-

 for-implementing-high-performance-sensor-fusion-on-an-

 embedded-budget/  by Synopsys[30]
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 Fusing Raw Data: Early Fusion

In early fusion, raw data like point clouds from LiDAR and camera images 

are fused together directly[11]. The goal is to create a 2D projection of the 

3D point cloud within the camera frame, where each point’s location is 

now directly comparable to objects and features in the 2D camera image. 

This three-step process is shown in Figure 3-8. 

 Figure 3-8. Pipeline for early sensor fusion. Used with permission, 

 source: https://www.thinkautonomous.ai/blog/lidar-and-

 camera-sensor-fusion-in-self-driving-cars/  by Think Autonomous[11]

 Step 1: Projection of Point Cloud

The first step translates the 3D point clouds captured by the LiDAR into 

a format that can be used given the 2D data type for the camera. This 

involves a few steps:

•  Convert each 3D point from the LiDAR data into 

homogeneous coordinates. This involves converting 

the standard Euclidean coordinates (x, y, z) and adding 

an additional dimension, making the point (x, y, z, w). 
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Specifically, each point in the LiDAR’s 3D point cloud 

(x, y, z) is converted to homogeneous coordinates 

(x, y, z, 1).This extra coordinate allows for different 

transformations using matrix multiplication and 

simplifies aligning 3D data with 2D data. 

•  A transformation matrix (including rotation and 

translation) aligns the LiDAR coordinate system 

with the camera coordinate system. This is useful 

for extrinsic (relative to the LiDAR, the position/

orientation of the camera) camera calibration. 

•  Another transformation matrix projects the 3D points 

onto the 2D image plane of the camera. This matrix 

accounts for intrinsic (camera-specific properties like 

focal length and optical center) calibration. This data 

is useful to accurately translate and rotate the LiDAR 

points to align them with the camera’s point of view. 

•  After projection, the points are transformed back from 

homogeneous to standard Euclidean coordinates. 2D 

points can now be directly compared with objects and 

features in the 2D camera image. 

If interested, this course[12] talks more about what homogeneous 

coordinates are and how these specific projections and rotations are done. 

The result from this step is shown in Figure 3-9. 
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 Figure 3-9. Going from a 3D point cloud to a point cloud 

 projection in 2D. Used with permission, source: https://www. 

 thinkautonomous.ai/blog/lidar-and-camera-sensor-fusion-in-

 self-driving-cars/  by Think Autonomous[11 ]

 Step 2: Object Detection

Now that the projected point cloud image is aligned with the image, 

various models such as YOLOv4[13] can be used to do object detection. 

You can learn more about how these object-detection models work in 

Chapter 2. 

 Step 3: Region of Interest (RoI) Matching

Once the objects are detected in the camera image using 2D bounding 

boxes, the next step is to match the 3D points from the LiDAR data with 

these detected objects. This process is called  Region of Interest (RoI) 

matching. 

•  The 3D points from the LiDAR, which were projected 

onto the 2D image plane in the previous steps, are now 

compared against the 2D bounding boxes generated by 

the object detection model. 

•  For each 2D bounding box, each 3D point is associated 

with a detected object. 
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•  Once the points are associated with specific objects, 

each 3D point is labeled according to the detected 

object it belongs to. For example, points in a bounding 

box for a car are labeled as part of that car. 

 Fusing Outputs: Late Fusion

In late fusion, the data from different sensors is processed separately 

before combining the results[11]. With this approach, independent object 

detections are done on each sensor’s data, resulting in either 2D or 3D 

bounding boxes, which are then fused. An overview of how the process 

works in 3D is shown in Figure 3-10. 

 Figure 3-10. Late fusion pipeline using a 3D point cloud and 

 2D image as input. Used with permission, source: https://www. 

 thinkautonomous.ai/blog/lidar-and-camera-sensor-fusion-in-

 self-driving-cars/  by Think Autonomous[11 ]

 Steps 1 and 2: LiDAR 3D Object Detection and Camera 3D 

Object Detection

There are many LiDAR deep learning models that can be used for 3D 

object detection, such as PointNet[3], PointNet++[6], VoxelNet[14], and SECOND (a spatially sparse convolutional network)[15], some of which 
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are covered in this chapter. These models generate 3D bounding boxes 

for objects that are detected and include their positions, dimensions, 

and orientations within the LiDAR’s coordinate system. For 3D camera 

detection, some object detection methods used in 2D can be altered so 

that they work with 3D data, such as adding a depth estimation network to 

YOLO[16]. It’s important to note that the bounding boxes are generated as 

(x, y, z length, width, height, rotation) within the coordinate system of your 

data (LiDAR or camera). 

From here, the 3D bounding boxes from one coordinate system are 

converted to the other. For example, the bounding boxes can be converted 

from a LiDAR coordinate system to the camera coordinate system. This 

allows both sets of the bounding boxes to be aligned in the same frame of 

reference. 

 Step 3: IOU Matching

The next step is to match these bounding boxes to identify the same 

objects detected by both sensors. This process involves matching in space 

or in time. 

•  Matching in space: For each pair of 3D bounding 

boxes in LiDAR and camera data, the IOU score is 

computed. An IOU score above a certain threshold 

indicates that the bounding boxes likely correspond to 

the same object. 

•  Matching in time: This extends the matching process 

over time. Using techniques like the Kalman Filter[17] 

and the Hungarian Algorithm[18], objects can be 

tracked across different frames. If a bounding box from 

one frame overlaps with one in a subsequent frame 

(based on IOU), the object is considered the same. 
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•  The Kalman Filter operates by first predicting a 

vehicle’s future position using prior knowledge and 

kinematic equations, then measuring the actual 

position with sensor data to compare against the 

prediction, and finally updating the prediction to 

improve accuracy based on the new information. 

This helps provide a refined estimation of the object’s 

trajectory. We won’t be focusing too much on classical 

methods for sensor fusion, but if interested you can 

learn more about Kalman filters here[19]. 

Some information from this section was referenced from[11] and we 

recommend it as a good source. 

 LiDAR-Camera  Fusion

Now that you understand the main frameworks for sensor fusion, let’s dive 

into deep learning models that are deployed for LiDAR-camera fusion[25]

[20][21]. 

 Proposal-level Fusion Methods

Combining LiDAR and camera, proposal-level fusion is where “proposals” 

or ROIs are generated from one type of sensor data and then refined and 

augmented using data from another sensor. 

The overall pipeline for proposal-level fusion methods is:

•  Initial guesses or proposals are provided for where 

objects might be located. For example, a 2D CNN can 

be used to generate 2D bounding boxes around where 

objects might be located. 
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•  2D proposals can be expanded to 3D proposals using 

the projection matrix of the camera. This is called a 3D 

frustum, representing the volume that goes from the 

2D bounding box space to the 3D space that the 2D 

bounding box might occupy. 

•  Data from LiDAR can be integrated into these 3D 

proposals by seeing which point clouds fall within 

each frustum, essentially allowing you to add depth 

information to the initial 2D proposals. 

•  Within each frustum, the combined data is used 

to further refine the detection and classification of 

objects. Finally, the exact position, dimensions, and 

orientation of the objects within the 3D space are 

determined to estimate precise 3D bounding boxes for 

the detected objects. 

Frustum PointNets[22] use RGB-D data for 3D object detection. This 

starts by using a 2D CNN to detect objects in the camera image, generating 

2D bounding boxes. These 2D bounding boxes are projected into 3D 

space, creating frustums. The points within the frustums create a frustum 

point cloud. A detailed depiction of the Frustum PointNet is shown in 

Figure 3-11. 

 Figure 3-11. Main components of Frustum PointNet. Used with 

 permission, source: https://arxiv.org/pdf/1711.08488 [22]
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LiDAR points within each frustum are extracted and processed by 

a network to classify whether each point belongs to the object or the 

background. A T-Net then refines these points by shifting their centroid 

to align it more closely with the object’s true center. Another network 

estimates the precise 3D bounding box, including the object’s position, 

dimensions, and orientation. 

These steps and their results are illustrated in Figure 3-12, showing 

how these transformations are applied to derive the final object detection 

and positioning in 3D space. 

 Figure 3-12. Transformations in Frustum PointNets. Default camera 

 coordinate system(a). Frustum coordinate system is obtained after 

 rotating the frustum to center the view (b). 3D mask coordinate aligns 

 the mask point’s centroid at the origin (c). 3D object coordinate is 

 predicted using T-Net (d). Used with permission, source: https://

 arxiv.org/pdf/1711.08488 [22]

By generating initial proposals with one sensor and refining them with 

another, proposal-level fusion has better accuracy and reliability of object 

detection and classification, which can be especially important in complex 

environments like those encountered by self-driving cars. 
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 Point-level Fusion Methods

On the other hand, point-level fusion techniques augment the LiDAR 

point cloud data with the camera features. 

The overall steps for point-level fusion methods include:

•  Sensor calibration, which includes determining the 

internal parameters (focal length, optical center, 

etc.) and external parameters (relative position and 

orientation between the camera and LiDAR). This can 

help align the camera and LiDAR to be in a similar 

coordinate system. 

•  A CNN can be used to extract main features from the 

camera data. 

•  Each LiDAR point is projected onto the camera image 

plane using the calibration parameters. This helps map 

each LiDAR point to each camera point. 

•  The LiDAR points can be combined with their 

corresponding camera features and methods, such 

as PointNet++ and VoxelNet, and can be used to 

perform tasks like object detection, segmentation, and 

classification. 

In some cases, point-level fusion offers a more detailed and accurate 

representation because it combines visual features with each LiDAR point. 

This can help improve the model’s ability to detect and classify objects. 

 Input-Level Fusion: PointPainting and PointAugmenting

PointPainting[23] is an example of a point-level fusion method that 

consists of three main stages:
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•  Initially, images are segmented, providing you with a 

segmentation mask that scores each pixel by categories. 

•  LiDAR points are mapped to their corresponding 

locations in the segmentation mask, and each point is 

assigned the semantic scores from the image, adding 

contextual visual information. 

•  The final stage utilizes the point clouds with the 

additional semantic information to identify and 

localize objects in 3D space. This final point cloud, 

which now contains both geometric and semantic 

information, can be used for more accurate detection 

of objects than just LiDAR or camera data detection. 

An illustration of this process can be viewed in Figure 3-13, which 

showcases how PointPainting integrates image and LiDAR data to increase 

accuracy when doing object detection for autonomous driving systems. 

 Figure 3-13. Overview of PointPainting and its three main stages: (1) 

 An image-based semantic segmentation network, (2) PointPainting 

 (fusion), (3) A LiDAR-based object detector. Used with permission, 

 source: https://arxiv.org/pdf/1911.10150 [23]
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PointAugmenting[24] builds on the PointPainting method, but instead 

of using simple categorical scores from the segmentation mask, features 

extracted by a CNN are mapped onto the LiDAR points. This is called a 

cross-modal fusion strategy. It combines visual features with depth data, 

which can improve the accuracy of 3D object detection. 

PointAugmenting is shown in Figure 3-14, which illustrates how this 

technique combines and utilizes data from LiDAR and camera sensors to 

improve detection in autonomous vehicles. 

 Figure 3-14. Overview of PointAugmenting. Used with permission, 

 source: https://openaccess.thecvf.com/content/CVPR2021/

 papers/Wang_PointAugmenting_Cross-Modal_Augmentation_

 for_3D_Object_Detection_CVPR_2021_paper.pdf [24]

 Feature-level Fusion: DeepFusion

An effective mechanism for aligning camera and LiDAR features is a 

critical component that is missing from existing work like PointPainting 

and PointAugmenting. As shown in Figure 3-15, DeepFusion[25] is a 

model that does fusion at the feature level, meaning it combines features 

extracted from both LiDAR and camera data, with the goal of improving 

the alignment to increase performance on downstream tasks. 

128

[image: Image 70]

Chapter 3   robot perCeption: 3D Data anD SenSor FuSion

 Figure 3-15. Overview of DeepFusion (b). Used with permission, 

 source: https://arxiv.org/pdf/2203.08195 [25]

A key component of DeepFusion is Inverse Augmentation (InverseAug)

[26], which reverses the augmentations applied during training before 

the data fusion step. The main idea is that when the LiDAR point cloud is 

rotated or transformed during training, it becomes difficult to match 3D 

points with their correct 2D locations in the camera image. InverseAug 

solves this by storing the applied transformations and reversing them 
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before combining the data, as shown in Figure 3-16. This ensures that the 

3D points return to their original positions, making it easier to map them 

to the 2D camera view. This process is illustrated in Figure 3-17, showing 

alignments both with and without the application of InverseAug. 

 Figure 3-16. Overview of the InverseAug method. The original 

 LiDAR point cloud (a). After applying augmentation to LiDAR points 

 (b). Key points in the original 3D coordinate system (c). Projected 

 points in the 2D coordinate system (d). Used with permission, source: 

 https://arxiv.org/pdf/2203.08195 [25]

 Figure 3-17. Alignment without InverseAug (a). Alignment with 

 InverseAug (b). Used with permission, source: https://arxiv.org/

 pdf/2203.08195 [25]

To further improve the precision of alignment between different types 

of data, DeepFusion introduces a method called Learnable Alignment 

(LearnableAlign), as illustrated in Figure 3-18. This is mainly a cross- 

modality attention mechanism. This mechanism processes the features 

from LiDAR data (each voxel) and the corresponding camera data. It 

then calculates an output that is a weighted sum of the camera features, 
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meaning that it gives more importance to the most relevant camera 

features. By focusing on the most relevant features from the LiDAR and 

camera data through weighted attention, LearnableAlign ensures that the 

feature alignment is more precise, which helps improve the accuracy of 

object detection and classification tasks. 

 Figure 3-18. Process of Learnable Alignment in DeepFusion where 

 LiDAR and camera features are aligned. Used with permission, 

 source: https://arxiv.org/pdf/2203.08195 [25]

Putting this all together, DeepFusion[25] improves object detection 

by combining LiDAR and camera data. First, it transforms LiDAR points 

into useful features and extracts features from camera images using 

ResNet. These features are then aligned and fused using InverseAug, which 

reverses transformations for better alignment, and LearnableAlign, which 

uses an attention mechanism to focus on the most relevant features. The 

fused data is processed by a 3D detection model, including the backbone 

and detection head of the PointPillars system, to produce the final 

detection results. The entire workflow of this process, from initial data 

input to the production of detection outputs, is shown in Figure 3-19. 
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 Figure 3-19. High-level overview of the workflow for 

 DeepFusion. Used with permission, source: https://arxiv.org/

 pdf/2203.08195 [25]

 BEVFusion

Building on the idea of multisensor fusion, BEVFusion[27][28] takes a 

different approach to 3D perception tasks. It converts the input from both 

sensors into features and transforms them into a bird’s-eye view (BEV) 

space, which is a top-down perspective of the environment. This unified 

view makes it easier to integrate the data. A BEV encoder then processes 

these combined features, which are used by specialized task-specific 

components to perform various 3D perception tasks, such as object 

detection and tracking, as illustrated in Figure 3-20. 

 Figure 3-20. BEVFusion process of extracting features from various 

 inputs and turning them into a shared BEV space. Used with 

 permission, source: https://arxiv.org/pdf/2205.13542 [27]
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If you want to learn more about this approach, we recommend 

reading the original paper[27]. However, the main benefit of BEV is that it 

provides a consistent and unified top-down perspective that simplifies the 

fusion of the LiDAR and camera data. Since the data is in a shared space, 

there is improved spatial alignment that can improve the accuracy of 3D 

perception tasks. 

Overall, sensor fusion can combine data from many sensors, such 

as cameras and LiDAR, to leverage their complementary strengths. This 

integration can improve the performance of common robotic perception 

tasks such as detection, segmentation, and tracking. 

 Summary

In this chapter you learned:

•  How 3D data can be represented as voxels (3D pixels 

in a grid), point clouds (sets of 3D points), and meshes 

(polygonal surfaces). Point clouds can be processed 

using methods like PointNet, PointNet++, PointCNN, 

and Dynamic Graph CNN (DGCNN). 

•  Two main fusion strategies exist: early fusion 

(combining raw sensor data like point clouds and 

images directly) and late fusion (combining processed 

data such as bounding boxes from different sensors). 

•  LiDAR-camera fusion methods combine data from 

LiDARs and cameras. Techniques like Frustum 

PointNets, along with point-level fusion methods 

such as PointPainting and PointAugmenting, 

improve detection by projecting LiDAR points onto 

camera images

133

Chapter 3   robot perCeption: 3D Data anD SenSor FuSion

•  Feature-level fusion approaches like DeepFusion 

align camera and LiDAR features using techniques 

such as InverseAug and LearnableAlign. Additionally, 

BEVFusion converts sensor data into a unified 

bird’s-eye view (BEV), therefore improving 3D object 

detection and tracking. 

The next chapter discusses how large language models (LLMs) are 

applied to robotic planning, control, and mapping, including the use of 

foundation models, multimodal approaches, and end-to-end robot control 

methods and diffusion models. 
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CHAPTER 4

Foundation Models 

in Robotics

Foundation models developed for language research are now boldly 

taking on many fields, including robotics. Many of these advancements are 

fueled by making information look like language, i.e., making information 

resemble sequences of tokens. You learned in Chapter 2 how vision 

research is now fully dominated by transformers[43] by tokenizing the 

inputs (the images and outputs) to look like tokens. Foundation models 

and their rise in robotics naturally grew as an outcome of using language 

in robotics. 

This chapter first explains, very briefly, how large foundation models 

are trained. Then it delves into how language became increasingly used as 

a connective tissue in robotics and how that research evolved into end-to-

end robot control with large transformers. Finally, the chapter covers the 

rise of diffusion models and their applications in robot control. 

 Large Foundation Models

Language research has been leading the way in machine learning for 

the last decade. Several recent language models based on large-scale 

transformers have made the news, including GPT-4[1], Gemini[2], and 
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Llama[3]. They’re products of a long line of research starting from Bert[4], earlier GPTs[5][6][7], PaLM[8], and more. This section discusses how large multimodal models are trained with Llama[9] as an example. 

Developing a large multimodal model involves two main steps:

1. Pretraining: In this stage the model is trained on 

vast amounts of multilingual data from the Internet. 

In the case of Llama 3[10], a 405 B model was 

trained on 15.6 T tokens, with a token vocabulary of 

128K, where 28K vocab tokens support non-English 

languages. Llama transformer uses grouped query 

attention[11] and key value caches[12] to improve 

inference speed (refer to the resources to learn more 

about these topics). 

2. Post-training: In this stage, the model is improved 

on instruction following by using a smaller set of 

high-quality data coming from human annotations 

and synthetic data. 

Llama 3 uses a compositional approach to multimodality and has 

separate vision and speech encoders. 

1. Image encoder and adapters: An image encoder 

is trained on a large corpus of image text pairs, 

akin to CLIP[13], covered in Chapter 2, to generate 

representations that are aware of visual content and 

its language representations. Two separate adapters 

are trained for images and videos on image-text and 

video-text pairs respectively, during the training of 

which the pretrained language model is kept frozen, 

while the weights of the pretrained image encoder 

are edited. These adapters use cross-attention to 

feed pretrained image encoder representations into 

the pretrained language model. 
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2. Speech encoder and image adapter: Akin to the 

image setting, a separate speech encoder is trained 

and a speech adapter is trained with cross-attention 

to align the embeddings of the pretrained speech 

encoder and the large, pretrained language model. 

Pretraining has three major components:

1. Web data curation: Involves creating a large high-

quality dataset while applying techniques for 

 deduplication, removal of personally identifiable 

information and adult content via both heuristic 

and learned filtering. 

2. Data mix determination: Scaling law experiments 

are done to predict the performance of a large 

model by interpolating the performances of 

several smaller models in order to arrive at an 

optimal data mix, and to understand how different 

datasets contribute/affect the large model mixture. 

Ultimately, they arrive at 50 percent general 

knowledge tokens, 25 percent math and reasoning 

tokens, 17 percent code tokens, and 8 percent 

multilingual data. 

3. Initial pretraining: Llama pretraining uses a cosine 

learning rate schedule with decay and warm up, 

and starts with a smaller batch size and sequence 

length, which is gradually increased as pretraining 

progresses. 

4. Long context pretraining: Pretraining on long 

contexts is introduced during the final stages of 

pretraining, since compute in self-attention layers 

grows quadratically with context length. Supported 
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context length is increased in increments, with 

adaptation to increased context lengths measured 

by recovery of performance on shorter context 

lengths and needle-in-a-haystack[14] tests for the 

increased context length. 

5. Annealing: Training on small quantities of very 

high-quality math and code data was found 

to improve reasoning across the board for 

smaller models. 

Post-training has two major components: a reward model and a 

language model. It uses supervised fine-tuning and direct preference 

optimization (DPO)[15]. An example of a post-training strategy is shown 

in Figure 4-1. First a preference dataset is constructed by prompting the 

model and generating outputs that are then annotated by humans in order 

of their preference. Human annotators can also edit the chosen output, 

and a ranking mechanism (edited ➤ chosen ➤ rejected) is used to rank 

preferences. 

1. Supervised fine-tuning (SFT): During this stage, 

a reward model is trained on preferences. This 

reward model is then used at scale by prompting the 

pretrained language model and rejecting outputs 

based on reward to create a rejection-sampled dataset 

of LLM outputs. Additional synthetic data is generated 

for code and math by deploying various strategies:

a.  Training a code expert by branching the 

pretraining run and training it on high-quality 

code tokens. The intuition here is that continued 

pretraining on domain-specific data improves 

performance in that domain. This expert is then 

used to create high-quality generations that 

comprise a dataset. 
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b.  Code interpreters and linting is used to improve 

the quality of synthetic generations. Self-

correction via chain-of-thought reasoning 

is used to further improve the quality of the 

dataset. 

The pretrained language model is then fine-tuned on high-quality 

datasets acquired via synthetic generation and rejection sampling with a 

learned reward model. 

2. Direct preference optimization (DPO): While 

prior methods in language model instruction 

tuning used reinforcement learning on human 

feedback (RLHF)[16], DPO is increasingly popular 

now because it is simpler. By not learning an 

intermediate reward model, and it bypasses some 

of the instabilities in training actor-critic RL models. 

Chapter 7 covers RLHF in detail. DPO instead 

directly optimizes for a reward constrained by KL 

divergence by directly increasing the relative log 

likelihood of a preferred response over nonpreferred 

ones. The KL divergence measure in DPO balances 

the tradeoff between maximizing rewards by 

preference alignment with minimizing the 

divergence from the base pretrained model. 
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 Figure 4-1. LLM post-training strategy. Used with permission, 

 source: https://arxiv.org/pdf/2407.21783 [10]

Llama3 is adapted for tool use by having a chat format where each 

message has a header specifying a source and a destination for a message. 

Each message also has a termination token specifying when to alternate 

between AI and human. 

 Scaling Laws for Language Models

Scaling laws for language models predict what performance or test 

loss one may achieve while scaling data, compute, or model parameter 

size. Since large model training runs are very expensive, understanding 

scaling behaviors helps forecast the capabilities of language models and 

make the right tradeoffs while investing into large model training runs. 

Note that almost all neural scaling laws are empirically determined and 

approximated via interpolation. 

Kaplan et al.[17] came up with the first neural scaling laws for large 

language models by running lots of smaller models and interpolating their 

behavior. They considered three aspects of scale: the number of model 

parameters N, the dataset size D, and the amount of compute used C. They 

found that model loss has a power law relationship with each of the three 

factors when unconstrained by the others. This indicates that there is an 
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efficient frontier that balances model size, dataset size, and compute to 

achieve the best possible performance with a given amount of resources. 

They also found that larger models are more sample-efficient than smaller 

models and that training to convergence is suboptimal. The results are 

shown in Figure 4-2. 







 Figure 4-2. Test loss as a function of compute, dataset size, and 

 model size. Used with permission, source: https://arxiv.org/

 abs/2001.08361 [17]

Hoffman et al.[18], two years later, introduced Chinchilla optimal 

scaling laws. They tried to answer the question, given a fixed FLOPs[19] 

budget, what is the tradeoff between model size and dataset size? 

They tried two approaches:

1.  Fix the model size and train with different dataset 

sizes to plot the loss. 

2.  Fix the model size and train for different FLOP 

counts to plot the loss. 
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Based on the results of the two approaches, they fitted a parametric 

equation (Equation 4-1) for the data. The proposed fit is:

Equation 4-1

Then they estimated these parameters by minimizing the Huber loss 

between predicted log loss and observed log loss. A later study by Epoch 

AI that attempted to replicate the results from Hoffman et al.[20] came 

up with corrected versions of estimates for these parameters, as shown in 

Table 4-1. 

 Table 4-1. Lost Function Estimates from Epoch AI 

 Chinchilla Replication Attempt and Chinchilla’s Original 

 Estimates. Numbers in Brackets Are Standard Deviation. 

 Used with Permission, Source https://arxiv.org/

 pdf/2404.10102v1 [20]

-

Based on this, nearly optimal allocation of compute can be mapped to 

N and D separately, as follows:
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Equation 4-2

The results from Chinchilla indicate that many of the frontier models 

trained at the time, such as GPT3, were undertrained on data, so the 

optimal model would be much smaller (15B from 175B) in parameter 

count. It also follows from the results that, for a fixed compute budget, 

scaling data is far more effective than scaling model parameters. 

Muennighoff et al.[21] tried to predict scaling laws in data-constrained 

regimes and concluded that repeating data up to four epochs yields no 

difference in loss, and that to optimize performance while repeating data, 

training smaller models for longer is preferred. This is shown in Figure 4-3. 

 Figure 4-3. Top: LLM loss trained on repeated data diminishes 

 predictably. Bottom: How data-constrained scaling laws diverge from 

 unconstrained optimal scaling: increasing distance of contours show 

 diminishing gains from repeating data. Used with permission, source: 

 https://arxiv.org/pdf/2305.16264 [21]
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Recent research from Sorscher et al.[22] showed that the power law 

relationship between training loss and dataset token size could be broken 

by ranking the examples from hard to easy on a high-quality metric and 

then pruning the easy examples out of the dataset. They posit that such 

pruning can even lead to an exponential relationship. 

 Evaluating Language Models

Now that you understand how language models are trained and scaled, you’ll 

learn how they are evaluated. Language model research predominantly uses 

benchmarks to evaluate performance. The following are a few widely used 

benchmarks, sorted by category and what they are testing for:

1.  General Benchmarks

•   MMLU[ 23 ]  (Massive Multitask Language 

 Understanding): Evaluates understanding and 

reasoning across 57 academic disciplines with 

14,000+ multiple-choice questions. 

•   MMLU-Pro[ 24 ] : A more challenging version of 

MMLU with harder reasoning tasks. 

•   AGIEval[25 ]: Assesses general intelligence of AI 

models across various tasks. 

2.  Math and Reasoning

•   GSM8K[26 ]: Tests grade-school math problem-

solving with 8,000 step-by-step reasoning tasks. 

•   MATH[27 ]: Evaluates high school and competition-

level math problem-solving abilities. 

•   ARC-C  [28]  (AI2 Reasoning Challenge - Challenge 

 Set): Assesses complex reasoning and problem-

solving skills. 
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3.  Common Sense Understanding

•   CommonSenseQA[29 ], OpenBookQA[30 ], PiQA[31 ], SiQA[32 ]: Evaluates common sense reasoning and 

logical understanding in everyday scenarios. 

•   CommonSenseQA[29 ]: A benchmark for evaluating 

common sense reasoning, testing models on 

multiple-choice questions. 

•   OpenBookQA[30 ]: Tests open book question 

answering with a focus on science questions 

requiring additional knowledge beyond the text. 

•   Pi QA[ 31 ] : Evaluates physical common sense reasoning by requiring the choice of the most 

plausible completion for a given scenario. 

•   SocialIQA (SiQA)[32 ]: Focuses on common sense 

reasoning about social situations and human 

interactions. 

4. Code

•   HumanEval[ 33 ] , MBPP[34 ]  (Multi-Task Benchmark for Programming Problems): Assesses coding 

proficiency and problem-solving in programming 

contexts. 

5.  Reading Comprehension

•   SQuAD[ 35 ]  (Stanford Question Answering Dataset): 

Tests reading comprehension and information 

extraction from Wikipedia articles. 

•   QuAC[ 36 ]  (Question Answering in Context): 

Evaluates contextual understanding and coherence 

in conversational question answering. 
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•   RACE[37 ]  (Reading Comprehension from 

 Examinations): Assesses reading comprehension 

using middle and high school English exam 

questions. 

6.  Long Context Benchmarks

•   Needle-in-a-Haystack[ 38 ] : Tests document 

comprehension with a focus on finding relevant 

information in long texts. 

•   ZeroSCROLLS[39 ]: Assesses the ability of models 

to perform various NLP tasks using minimal data 

annotations. 

•   InfiniteBench[ 40 ] : Focuses on long document 

understanding and reasoning tasks, including 

summarization and question answering. 

7.  Tool Use Benchmark

•   API-Bank[41 ], API-Bench[ 42 ] : Evaluates the ability to interact with and utilize various external APIs 

effectively. 

In addition to these, they’re also evaluated on AP tests, GMAT, GRE, 

bar, and medical exams and various other specialized tests. 

This section discussed how language models are trained, how they 

scale, and on what they are evaluated. The next section explains how 

language models are used in robotics. You learn that almost all robotics 

data can be modeled as tokens and sequences and processed like language 

for various downstream use cases. 
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 Language as a Connective Tissue 

in Robotics

Language has long been used as a medium of communication among 

humans, so much so that a large part of the wealth of human knowledge 

and experience is encoded in language. Language is also fairly flexible and 

fluid, allowing for communication of a wide range of topics to a certain 

degree of precision. The rise of transformers[43] led to breakthroughs 

in language understanding, language generation, and reasoning with 

language. In recent years, language in robotics has become an interesting 

and promising new research area, allowing robots greater generalization 

with a language-predicated understanding of world context. Language 

models have provided a method for simple and extensible multimodal 

fusion of modalities, including vision and action. 

Language-conditioned robotics is the idea of specifying robot goals in 

natural language and measuring success against correct achievement of 

those goals. Language conditioning can be used for planning (“how would 

you bring me a coke from the fridge”), control (“pick up the coke can”), 

mapping (“where is the coke can”), and navigation (“go to the coke can”). 

This section explains that almost all robotics data can be modeled as 

tokens and sequences and processed like language in a similar fashion for 

various downstream use cases. 

 Language  for Planning

When humans interface with robots in natural language, a typical 

instruction could be “bring me a drink from the fridge,” which consists 

of multiple steps such as “go to the fridge,” “open the fridge door,” “pick 

up the drink,” “close the fridge,” “go to the human,” and “place the drink 

down.” This requires a robot to perform embodied reasoning in an unseen 
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environment. If we ask a language model, say, “how do you clean up a 

spill,” it may provide steps that are inaccessible to a robot. For example, 

it could say “find a vacuum cleaner” as one of the steps, but if a vacuum 

cleaner is not present in the scene, this would be an incorrect plan. A 

second mode of failure could be when the LLM suggests a plan that is 

feasible but that is not part of the robot’s skillset, e.g., “use a vacuum 

cleaner,” when a vacuum cleaner is present but the robot hasn’t been 

trained to use one. One of the challenges of robot-human interaction 

is that robots have a finite set of skills that they’re trained on and the 

vocabulary of task instructions conveyed to them needs to be limited by 

their skillset. 

The property that refers to how feasible and successful a task could 

be in a particular scenario is formally referred to as  affordance, usually 

expressed as a float value between 0.0 and 1.0, where 0.0 means highly 

impossible and 1.0 is possible and highly likely to succeed. 

There are two classes of planning approaches:

1. In-context learning: Here a language model is 

shown examples of robot plans in context via 

prompting and asked to generate new plans. The 

language model is not specifically fine-tuned for 

robot learning. An example of an in-context learning 

algorithm is SayCan/Inner Monologue, explained in 

this next section. 

2. Fine-tuned/learned planning models: Here, a 

general-purpose language/multimodal language 

model is specifically trained/fine-tuned for the 

purpose of robot planning. Roboplan and PaLM-E 

are examples of this. 
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 Open Loop SayCan

SayCan[44] is an algorithm that integrates language for robotic planning. 

An overview of SayCan is shown in Figure 4-4. 

 Figure 4-4. SayCan combines probabilities from a LLM to determine 

 which skill is useful for a given instruction with probabilities from a 

 value function (VF) that assesses the feasibility of executing the skill. 

 Used with permission, source: https://say-can.github.io/assets/

 palm_saycan.pdf [45]

The main idea is as follows:

•  A language model is used to break down high-level 

task instructions into skill primitives that a trained 

manipulation policy can then execute. The LLM 

models the probability that a high-level task instruction 

is achieved by compositionality of skill primitives. 

•  To ground the language model in the skill space of the 

robot, a second affordance model is independently 

learned. The affordance model learns the probability 
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of success of a skill primitive given the current state of 

the robot and environment. Value functions are a close 

approximation of such an affordance model and can be 

trained using reinforcement learning. 

•  The two probabilities are multiplied for each skill 

primitive and the one with the maximum value is 

picked for execution, as shown here. 



Another interesting observation from this work is that simply updating 

the underlying language model makes a robot better at planning. As shown 

in Figure 4-5, PaLM-SayCan has been shown to have increasing planning 

accuracy when scaling the language models. 

 Figure 4-5. SayCan planning performance with model size. 

 Used with permission, source: https://x.com/hausman_k/

 status/1559558929297727489 [96]
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 Closed Loop Planning

One of the problems with SayCan-style language predicated planning is 

that if any of the intermediate steps fails, the whole process execution fails. 

The algorithm is not interactively replanning or taking feedback from the 

environment. Inner Monologue[46] poses an improvement over SayCan by 

closing the feedback loop from the environment to the language model. It 

considers three types of feedback:

1. Success detection: A binary classification, in 

language form, of whether the task is successful or 

not at a given timestep. 

2. Passive scene description: Feedback from the 

scene queried through external object detectors/

scene descriptors. They’re primarily of two types:

a.  Object feedback: Textual output of object 

locations from object detectors

b.  Scene feedback: Task progress scene description 

in text form

3. Active scene description: The language model 

interactively asks questions about the scene/

task, which are answered by a visual question 

answering model. 

Figure 4-6 shows Inner Monologue in different scenarios. 
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 Figure 4-6. Example of Inner Monologue planning in robot 

 manipulation tasks showing simulated and real-world scenarios for 

 tabletop rearrangement and kitchen mobile manipulation. Used with 

 permission, source: https://arxiv.org/pdf/2207.05608 [46]

Inner Monologue reports a higher performance rate over SayCan and a 

few emergent capabilities, such as robot reacting to intermediary feedback 

from humans, replanning under infeasibility, and better interactive scene 

understanding demonstrated through question-answering. 

 Multimodal  Planning

In addition to language feedback, multimodal models specifically fine-

tuned for robotic planning have two advantages:

1.  More precise than open loop planning in grounded, 

unseen environments

2.  Ability to still remember larger context from 

Internet-scale knowledge
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3.  Visual feedback and states in the loop yield a model 

that can see and think simultaneously

One of the prominent works in multimodal planning is PaLM-e[47] 

(see Figure 4-7), also called Embodied PaLM. 

 Figure 4-7. Overview of PaLM-E used for various tasks, such 

 as mobile manipulation, visual Q&A, and task and motion 

 planning. Used with permission, source: https://arxiv.org/

 pdf/2303.03378 [47]

PaLM-e encodes continuous inputs into a decoder-only LLM (e.g., 

PaLM). To encode the image, it uses the ViT 22B[48] and feeds image 

tokens concatenated with language. The inputs to PaLM are multimodal 

sentences that interleave continuous inputs with text. An example of such 

a multimodal sentence from the paper is “Q: What happened between 

<img> and <img>?” (<img> represents an embedding of an image). 

PaLM-e then outputs text autoregressively. The outputs could be answers 

to questions, or a sequence of decisions/plans executed by a lower-level 

policy. One impressive result of the PaLM-e paper is that fine-tuning on 

robot text/plans doesn’t significantly decrease performance in generic 

language skills, paving the way for one model for all high-level/low-level 

tasks in the future. 
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 Planning via Multimodal Dialogue

A second approach to language-based planning is via visual question 

answering using multimodal models. RoboVQA[76] is an example of such 

a framework, using learned/fine-tuned models. This involves showing a 

model the last few seconds of a sensor feed and asking questions such as:

1.  “The high-level goal is to stack the cups. What 

should the robot do next? So far we executed 1. 

Stack blue cup on red cup 2.”. 

2.  “What just happened?” 

3.  In this context, generative affordance is a type 

of question that generates possible tasks, such 

as “What tasks can the robot do now?” and 

discriminative affordance is a type of question that 

classifies a proposed task into feasible or not. For 

example, “Is it possible to pick up a cup now?” 

The output of the multimodal model is used for robot execution. 

 Challenges

Despite the rise of large language models and computation and planning 

via language, several problems remain to be solved with respect to LLM 

robotic planning:

1.  There are fundamental failure modes when 

language models cannot see and do not have an 

understanding of physics. One way to bridge this 

gap is to use a VLM[49] in the loop or, as in PaLM-E, 

use a connected vision model. Both approaches are 

susceptible to fragility. In the former approach, the 

understanding of object relations is constrained 
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by the VLM’s ability to describe, which can miss 

several things For example, if a VLM finds a phone 

and a person, a robot may plan to pick up the phone 

even if the phone is being held by the person, thus 

ignoring object relations. Object detection methods 

have their own failures that overall bring down 

planning accuracy. 

2.  A second failure mode is failure in understanding 

physics. For example, LLMs might not know 

how much an object weighs, whether it is safe to 

handle, how to approach the target object based 

on surrounding obstacles, and so on. Endowing 

language models with physics understanding[50] is 

an ongoing area of work. 

3.  A third failure mode is embodiment-specific 

planning. A specific robot may have certain 

strengths and weaknesses that need to be factored 

in with regards to its planning. This could include 

payload, number of arms, reachable height, blind 

spots of sensor suite, and so on. While affordance 

functions learned via RL can get some idea of 

expected reward, coverage over state action space 

may not be enough for thorough consideration of 

embodiment attributes. 

4.  Planning in an unseen environment is very hard 

for LLMs that suffer from hallucinations, faulty 

reasoning, and so on. 
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 Language  for Mapping

In addition to high-level planning, language can be used for mapping and 

localization. Earlier in this chapter, you learned that through affordance 

functions, which map the environment and potential interactions 

robots can have with objects, large language models can be used for 

robotic planning, such as in SayCan. One of the drawbacks of SayCan 

is that it is unable to reason over what a robot can do in a scene beyond 

what the robot can see. This is important because many indoor mobile 

manipulation tasks involve knowing where objects are even if they are not 

visible in the image. 

NLMap-SayCan[51] aims to address this issue by proposing potential 

objects and generating plans to execute on actions even when those 

objects are not directly visible. As a recap, SayCan takes in an instruction 

through an LLM to generate and score possible actions from a predefined 

list, then uses value functions to select the most feasible action based on 

the current state of the environment. In contrast, NLMap[51] creates a map 

of the environment and uses the value functions to evaluate the feasibility 

of the actions. This ensures that the selected action is relevant to the 

instruction but also feasible within the context of the environment. 

Figure 4-8 shows the main differences between SayCan and NLMap-

SayCan. Overall, NLMap addresses SayCan’s limitation in planning with a 

stronger contextual understanding through include maps. 
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 Figure 4-8. Comparison of SayCan and NLMap-SayCan. NLMap-

 SayCan generates relevant objects dynamically using an LLM and 

 queries the NLMap for object locations. This allows for more flexible 

 and context-specific task planning. Used with permission, source: 

 https://arxiv.org/pdf/2209.09874 [51]

NLMap starts with an instruction, such as “pick up the coke bottle,” 

and by allowing the robot to explore, collects RGB-D images. Then ROIs 

are generated from these images to determine where the objects are. 3D 

information about the scene is learned through a VLM, which creates a 

detailed scene map. The LLM then proposes relevant objects based on the 

instructions, such as “coke” and “bottle,” and the VLM checks the scene 

map to determine if and where these objects are, scoring how likely they 

are to be found in different places in the scene. Scene objects are then 

updated to match the most relevant ones and LLM plans how to execute 

the task. This process is shown in Figure 4-9. 
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 Figure 4-9. NLMap-SayCan generates relevant objects based on an 

 instruction, then queries NLMap to filter the object list and find their 

 locations. The system creates executable options and uses LLM-based 

 planning to guide the robot through the task step-by-step. Used with 

 permission, source: https://nlmap-saycan.github.io/ [51]

This approach does have a few limitations worth mentioning that 

were highlighted in the paper: it struggles with understanding how objects 

relate to each other within the environment and handling changing 

scenes. It’s also important to note that the accuracy of object proposals 

relies on the performance of the LLM. Although these limitations exist, 

NLMap-SayCan is still a leap forward in more robust robotic planning. 

 Language  for Reward

Once planning is complete, the robot must execute the planned actions, 

which involves accurately doing robotic control and motion. LLM training 

data often lacks information about physical actions and embodiment, 

making it harder to use LLMs for direct robotic control and motion, as 

these scenarios fall outside their typical training distribution. 
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What if a robot could learn to execute the tasks more accurately by 

having an internal framework of what’s “wrong” and what’s “good”? This 

is exactly what reward functions can do for LLMs and control policies, by 

providing a robot with feedback to guide the robot’s actions and improve 

its accuracy. “Language to Rewards for Robotic Skill Synthesis (L2R)”[52] 

is a paper that uses reward functions to determine controls for a robot to 

execute different tasks in its environment. 

L2R works as follows:

•  It takes in a user instruction, which in the case of 

Figure 4-10 is: “Make robot dog stand up on two feet.” 

•  The bulk of the work is done by the Reward Translator, 

which breaks down the high-level command into 

more detailed and specific actions that the robot can 

execute. Within this component, the Motion Descriptor 

translates the user’s instruction into a detailed motion 

description. For instance, it could say something like, 

“Both front feet should be lifted to 0.7 meters high.” 

•  The motion description is passed to the Reward 

Coder, which converts the description into actionable 

reward functions for the robot’s control system using a 

predefined API that the robot is set up to understand. 

•  These reward functions are sent to the Motion 

Controller, which is responsible for executing the 

actions using the reward functions to control the 

robot’s movements and improve on them. 
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 Figure 4-10. Depiction of L2R, with motion descriptor and 

 reward coder. Used with permission, source: https://arxiv.org/

 pdf/2306.08647 [52]

A key limitation to this approach is that it requires a predefined 

template that can be used for the robot to understand the motion 

descriptions. This can make it difficult to generalize across different robots 

and modalities. 

 Language for Robot Code

A key theme in methods like L2R is developing a “standardized” way for 

robots to understand the motion descriptions necessary to complete tasks. 

Given that robots can be programmed and controlled, can we leverage 

LLMs to improve their ability to execute these tasks more effectively by 


writing code? 

Code as Policies[53] is a method that aims to do this by using LLMs to 

translate natural language commands into executable robot policy code. 

When a user provides an instruction, such as “put these fruits in a line,” 

the LLM processes this input and generates corresponding code that 

includes a perception APIs to identify relevant objects in the environment 
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and control APIs to manipulate these objects. This code includes specific 

functions that identify these objects and execute the required actions by 

moving, arranging, or manipulating them. An example of code that could 

be generated by Code as Policies is shown in Figure 4-11. The interesting 

aspect of Code as Policies is that it relies solely on prompt engineering 

with a pretrained LLM without specific task training, meaning it could 

theoretically generalize to tasks involving objects and actions that fall 

within the distribution of the pretrained LLM. By generating and adjusting 

code from examples, robots can learn various tasks and follow new 

instructions in everyday language. 

 Figure 4-11. Example of input instructions formatted as comments 

 (green). The instructions are interpreted by an LLM, generating valid 

 Python code (highlighted) to complete tasks such as stacking blocks in 

 an empty bowl. Used with permission, source: https://arxiv.org/

 pdf/2209.07753 [53]

To generate these policies, a language model is prompted with a few 

examples. An LLM then autoregressively and hierarchically creates them 

by combining well-known functions or invoking other programs to define 

functions that are not clearly defined already. As a framework, this is 

particularly interesting for robots because collecting large amounts of task-

specific data is challenging, and using already trained large models allows 

for a more efficient solution. Visit [54] to learn more. 
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Recent research has shown that robot code generation can be 

improved in more ways as LLM research matured:

1.  Robot code generation can be multimodal 

conditioned by using VLMs, which are good at code 

generation, and feeding them images from the 

robot’s camera directly, rather than feeding natural 

language description of images into an LLM. This 

allowed reasoning to be more natively multimodal 

than in Code as Policies. 

2.  Feeding a VLM highly descriptive definitions of 

robot APIs and using long context models that are 

good at chain-of-thought reasoning improves code 

generation by large margins and can invoke unseen 

behaviors zero-shot without any training data. 

3.  Showing examples of correct code generation also 

improves the likelihood of being correct. 

These and a few other tricks on how to prompt a robot can be further 

studied here[55]. An example is shown in Figure 4-12. 

166

[image: Image 94]

Chapter 4   Foundation Models in robotiCs

 Figure 4-12. An example code gen input and output from “How 

 to Prompt your Robot.” Used with permission, source https://

 openreview.net/pdf?id=T8AiZj1QdN [55]

The success of code generation for zero-shot control signals that 

there’s a lot more opportunity in extracting movements from the world 

knowledge contained in LLMs via code, and make it a learnable recipe for 

scaling robot learning. One potential opposition to this idea is the notion 

that, although some methods have very good zero-shot performance, they 

may not be enough to scale with learning resembling a method that has 

the potential to reach 100 percent success. Improving zero-shot methods 

via feedback is a common post-training strategy in LLM research, so it may 

quite be possible that Code as Policies can be framed into a continuously 

improving recipe, if it is also adapted to gather new skills, unknown to an 

LLM via demonstrations. 

 End-to-End Robot Control

An important concept in robotics is  generalization: can a model perform 

a new task that it was not trained on? The importance of this concept 

emerges from the fact that generally intelligent robots have to be successful 
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across a wide range of deployment environments and tasks, but it would 

be hard to represent this diversity in training sets. So methods that 

can generalize to new situations, via learning better representations or 

reasoning about the semantics of tasks, stand to gain. 

In this current moment of robotics research, there are multiple axes of 

generalization:

1. Object generalization: Can a model handle unseen 

objects? 

2. Environment generalization: Can a model act in 

unseen environments? 

3. Motion generalization: Can a model create new 

motions? 

4. Perspective generalization: Can models transfer 

from third person to egocentric perspectives and 

vice versa? Does the pose of the camera matter? 

5. Embodiment generalization: Can data on one type 

of robot body be used to improve skills on a different 

type of robot body? 

Additionally, robot control models may be measured on symbolic 

understanding, reasoning, longer horizon planning, human recognition, 

physical safety, and so on. 

End-to-end robot control encompasses the problem of learning low-

level control in a way where gradients flow all the way from control outputs 

to robot inputs[56]. In conventional usage, this means learning actions 

directly from using camera images and other observations as input. How 

do we develop methods that can control robots end-to-end? Can we 

connect these models to the large trend of scaling and large models in AI? 

How do we measure and improve them on axes of generalization? 
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 End-to-End Robot Control 

with Autoregressive Transformers

Until as recently as 2022, scaling large multitask reinforcement learning 

models was considered the key to solving robotics, but since then the 

wave has shifted toward large imitation learned models, mainly because 

imitation pretraining started to perform better than RL methods on 

multitask benchmarks. Robotics Transformer 1 (RT-1)[57], shown 

in Figure 4-13, was created in this era, and it was an early large-scale 

imitation learned multitask model. It is trained on a large corpus of 

real-world robot data covering a diverse range of tasks and is an early 

foundation model. RT-1 works as follows:

•  A user instruction in text and a series of images 

(history) captured by the robot are the inputs to the 

RT-1 model. Text is encoded by a frozen text tokenizer 

and then images and text are jointly fused by a FiLM-

efficient net[58][59]. Early fusion of vision and language 

tokens proved very important in extracting the right 

context from images. 

•  These visual language tokens are then compressed 

by a TokenLearner[60], which uses attention to focus 

on the most relevant parts of the images and text. 

TokenLearner compresses the total amount of tokens, 

and makes inference three times faster. 

•  These tokens are then processed by a transformer, 

which uses self-attention to understand the 

relationship between objects in the images and the 

commands in the text[43]. It then outputs actions: a 

single control parameter for every degree of freedom. 

In case of a cartesian end effector control, that becomes 
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a gripper 3D position, 3D rotation, base movements, 

and so on. Actions that are continuous values are 

tokenized by mapping them to a discrete uniform 

distribution, and then predicting the bucket number 

corresponding to the float action. 

•  The model is trained with cross-entropy loss, and the 

training data (action outputs and image/text inputs) is 

collected by humans teleoperating the robot. 

 Figure 4-13. RT-1 processes images and natural language 

 instructions to control a robot’s actions. Used with permission, source: 

 https://arxiv.org/pdf/2212.06817 [57]

RT-1 performs closed-loop control and executes actions until it either 

produces a termination action or reaches a predetermined number of 

time steps. This work shows that given enough domain data, a transformer 

based model can fit to it to create a large multitask transformer for robot 

control. The work also showed that simulation data, when added in the 

right mix, can improve performance, as you saw with synthetic data in 

LLM domain. RT-1 also showed signs of transfer between robots that later 

emerged to be a wider area of research, as is covered later in this chapter. 

One drawback of RT1 is that it was tested mainly on gross 

manipulation—pick and place—and this makes it harder to know if it can 

work for highly dexterous tasks. Dexterous tasks are manipulation tasks 

that require fine motor control and coordination similar to human hands 
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manipulating objects in their environment. Within robotics, this means 

dealing with objects of different texture, sizes, and shapes. A second 

drawback is that while it showed impressive generalization in domain, its 

ability to generalize outside of domain—with entirely new objects and with 

reasoning—was limited. 

Another model, very similar to RT-1, that is widely used today is ACT 

(Action Chunking Transformer)[61]. ACT is an encoder-decoder model 

that introduces a concept called “action chunking.” Action chunking refers 

to the method of modelling k steps into the future. At any given point in 

time, you get an observation but predict k actions, effectively reducing 

the horizon of the task by k fold. This outperforms single-step policies 

in situations where there are temporally correlated confounders, such 

as when there’s a pause in demonstration and the next action is not just 

a function of state but also of timestep. As long as these confounders 

fall inside the length of the chunk, an action chunking policy can 

recover. In practice, chunk length corresponds to 1s of horizon into the 

future. That is, if your control is running at 30hz, a single observation, 

instead of predicting one action as in RT1, would predict 32 actions, or 1 

second horizons. In practice, training on chunks also employs temporal 

ensembling, along with chunking. As shown in Figure 4-14 on the 

right, this means that instead of training on disjoint chunks, chunks for 

observations overlap, allowing for very dense modeling. 

 Figure 4-14. Action chunking encoder-decoder transformer 

 architecture on top; chunking with temporal ensembling on 

 bottom. Used with permission, source: https://arxiv.org/

 pdf/2304.13705 [61]
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RT-2[62] is a method built on top of RT-1 that uses the semantic 

information that pretrained vision-language models have to generate low-

level robot actions. 

RT-2 uses visual question answering (VQA) data, where there are 

images paired with questions and answers describing the context within 

the images, and robot action data, which pairs images and text instructions 

with robot actions that need to be executed to successfully complete that 

task. The model first uses a pretrained VLM trained on Internet-scale data, 

then co-trains it with robot action and Internet-scale data to get a vision-

language-action (VLA) model for the robot control. This training recipe is 

depicted in Figure 4-15. 

 Figure 4-15. RT-2 represents robot actions as text tokens, trained 

 together with large-scale vision-language datasets. Used with 

 permission, source: https://arxiv.org/pdf/2307.15818 [62]

Inference starts with a user query, such as “What should the robot do 

to pick up the apple?” This query and images of the scene where the user 

wants the task executed are processed by a ViT and a LLM. The ViT extracts 

visual features from the images and the LLM understands the language 

part of the query. These combined features generate a sequence of actions 

represented as specific translations and rotations for the robot to do. 

The results of the paper denote that co-training on Internet and robot 

datasets jointly in this fashion allows robots to understand concepts only 

seen in the Internet and practically use them in real-world situations. 
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For example, the robots are able to identify celebrities (“move can to 

Taylor Swift”), do simple math (“move coke can to the sum of 1 + 2”) and 

understand symbols (“move coke can to Google”). It even understands 

other relative concepts, such as “pick up the object with different color,” 

“put strawberry into the correct bowl,” and so on, that require one to 

reason among the options in the scene, when the question is asked in 

natural language. The work notices that Internet-scale pretraining leads 

to much better representations than previously possible. Some of these 

results are shown in Figure 4-16. 

 Figure 4-16. Evaluation results from RT2. Robots understand 

 concepts from the Internet such as Google, letters, colors, Taylor 

 Swift, and so on. Used with permission, source: https://arxiv.org/

 pdf/2307.15818 [62]
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A bonus of training on multimodal data is that the model, with a small 

amount of fine-tuning on robot plans with language and images, can also 

do high-level planning, as exhibited by the SayCan model. This indicates a 

future opportunity to unify high-level planning and low-level control into a 

single robot brain that’s capable of both. 

While RT1 and RT2 showed ways to model in-domain robot data, 

and model joint large-scale Internet and robot data respectively, each 

robot still had different action spaces, and it was unclear if learned 

representations transferred across robots. The Open X embodiment[63] 

effort initiated by Google DeepMind studied the problem of cross-

embodied robot learning—can we build a singular brain to control many 

different robot embodiments? In order to study this problem, a huge 

dataset representing data across many different robot embodiments was 

collected, with labs across the world participating in this study. The dataset 

contained more than a million robot episodes from more than 34 research 

labs, representing 22+ different robot embodiments. Figure 4-17 shows 

details of the dataset. It is open source and can be accessed here[64]. 

 Figure 4-17. Distribution of data in the Open X embodiment 

 dataset. Used with permission, source https://arxiv.org/

 pdf/2310.08864 [63]
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In order to train a model that can control multiple embodiments, two 

candidates were considered: RT1 and RT2. The versions of the model 

trained on cross-embodied data are respectively known as RT1-X[63] and 

RT2-X[63]. Only single arm robots were considered for this study and all 

datasets were transformed into cartesian position control parameters as 

learning targets, as in RT1 and RT2. 



–

Evaluations found that models trained on all robot data 

were able to beat individual models trained by each lab 

on their own data. In other words, generalist models 

performed better than specialists, as shown in 

Figure 4-18. 



–

The study also found that Internet co-trained data 

improved performance over training on robot data 

from scratch and that co-training with Internet data 

and robot data mixed in batches is better than fine-

tuning on robot data followed by pretraining on 

Internet data. The former helped learn better joint 

representations between robot and Internet scale data, 

and to retain Internet concepts after several epochs of 

training. 

 Figure 4-18. Evaluation of RTX models. Used with permission, 

 source: https://arxiv.org/pdf/2310.08864 [63]
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RTX provides evidence to support the idea that a singular brain for 

many robots may be possible in the future, and that robots are not too 

different from each other. They may be only as different as say English 

and Chinese and many common synergies could be exploited. It also 

presents a way to collect data differently: if you can collect your data on a 

scalable cheaper embodiment and then transfer that to a more expensive 

embodiment that’s harder to deploy, you improve the efficiency of 

operations and the ability to scale by a lot. This idea was further explored 

in work like CrossFormer[80], which expands cross-embodiment to 

navigation robots, bimanual robots, and even drones. Cross-embodied 

learning is now a key research area in robotics, with many upcoming 

developments. 

 End-to-End Robot Control with Diffusion Models

Recently, diffusion models have become very popular in the field of robot 

learning due to their ability to model multimodality well[65]. They also 

scale easily, and are better suited to deal with noisy datasets, especially 

when generating high-dimensional data that is extremely multimodal. 

For example, say your dataset has two trajectories for the same state: 

one with the robot going in clockwise circles and another with it going 

in counterclockwise circles. An autoregressive transformer is generally 

trained to predict the average of the two trajectories, since it uses a 

cross-entropy objective on the mean of the loss. This approach can yield 

nonsensical results in this situation. Diffusion, on the other hand, tends to 

fall back to one or more modes of the data and follow it consistently. This 

property can be extremely useful when there are distinct strategies, such 

as in manipulation. Another aspect where it becomes useful is when you 

need generated trajectories to be highly precise and have high fidelity. 

Denoising steps in diffusion allows correcting to get very fine trajectories 

needed for highly dexterous motions, when autoregressive models output 

an action, but cannot refine it to remove suboptimality. 
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This section explains how diffusion models work fundamentally and 

how diffusion can be applied in robotics. 

 Forward Diffusion Process

Diffusion models learn to generate data by reversing an iterative noising 

process. In the forward diffusion process, noise is added to data in small 

steps. In the reverse process, the model learns to remove this noise step 

by step. 

Forward diffusion starts with an initial image that is sampled from a 

data distribution. At each time step t, noise is progressively added to the 

image until it resembles pure Gaussian noise. This process is described by 

a Markov chain, where each x(t) is a noisy version of x(t-1). Equation 4-3 

shows how to generate the noisy image at time step t. The noisy image at 

some step is created by taking the original image, scaling it down (using 

square root of α), and then adding random noise. The random noise is 

added such that its variance is controlled by (1-α), making sure the added 

noise fits a normal distribution. 



Equation 4-3

 Reverse Diffusion Process

In the reverse process, you start with a pure noise sample. At every step, 

a trained neural network is used to predict the previous, less noisy image 

from the current noise sample. This prediction has two components: the 

expected value of the previous image and the uncertainty or variance of 

this prediction. The neural network takes the current noisy image, the time 

steps as inputs, and produces the expected value (mean) and variance 

for the previous step. This noise is then subtracted from the noisy image 
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to get a clearer image. The process is repeated iteratively, allowing the 

network to gradually remove noise from the image step-by-step, shown in 

Equation 4-4. 



Equation 4-4

The goal of the training process is to make the reverse process as 

accurate as possible by minimizing the difference between the predicted 

distribution (reverse) and the true posterior distribution (calculated from 

the forward process), such that the output of the reverse process looks like 

the target output distribution seen during training. One way to do this is 

using KL divergence, which measures how one probability distribution 

differs from another. In the context of diffusion, the divergence measures 

the difference between the network’s prediction of noise to be subtracted 

and the true noise added during the forward process. By reducing the 

KL divergence between these two, the neural network can be improved 

to make predictions more accurate and closer to the true noise that was 

added during the forward process, and thereby retrieving out of pure noise 

an image that resembles the training distribution. 

An overview of this process is shown in Figure 4-19. 
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 Figure 4-19. Illustration of the diffusion model’s forward and 

 reverse processes. In the forward process, noise is added step-by-step 

 to an image until it becomes random noise. The reverse process, 

 approximated by a neural network, predicts the denoised image at 

 each step. Used with permission, source: https://roysubhradip. 

 hashnode.dev/a-beginners-guide-to-diffusion-models-

 understanding-the-basics-and-beyond [97]

Putting this together, the core steps for diffusion training are:

•  Load some dataset, preprocess images (augmentations, 

normalization), and use a data loader for loading data 

in batches. 

•  As described in Chapter 2, a U-Net model[66] can be 

used for image generation. Custom U-Net models can 

be created by specifying input/output channels and 

structuring downsampling and upsampling blocks. 
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•  A noise scheduler can be used to define how 

(intensity and frequency) noise is added to the image 

progressively over multiple timesteps. This is important 

to ensure that noise is added in a controlled and 

gradual manner, which can help stabilize training. 

•  For each epoch, add noise to the current timestep. The 

model predicts the noise that was added and the loss 

is calculated as the Mean Squared Error between the 

predicted and actual noise. The model parameters 

are updated using backprop and these metrics (loss, 

learning rate, etc.) are logged. 

On the inference side:

•  You load the trained U-Net model and noise scheduler. 

•  Starting with a batch of noisy images (random 

noise), the model is used to predict the noise in the 

current image. 

•  The predicted noise is removed from the noisy image to 

get a less noisy image. 

•  This process is repeated for all timesteps to gradually 

remove noise from the image. 

We recommend checking out HuggingFace docs as a way to get started 

implementing these steps[67]. 

 DDPMs (Denoising Diffusion 

Probabilistic Models)

DDPM[72] was one of the first papers that showed how diffusion models 

could be used to generate images. The two main algorithms in the paper 

are for training and sampling, as shown in Figure 4-20. 
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The training stage aims to teach the model to predict noise added to 

images at various timesteps. These steps are done per epoch:

•  Sample a batch of images from some data distribution 

(dataset of images). Sample a timestep t uniformly for 

each image in the batch. This will determine when 

in the diffusion process we add noise to the image. 

Each timestep is modeled individually, compared 

to modeling the entire diffusion process with one 

function. This improves training stability and speed, as 

the model only needs to predict noise for timestep t, as 

t is sampled uniformly. 

•  Generate random noise from a standard normal 

distribution. Each image up to timestep t in the batch 

is noised using an equation that combines the original 

image with sampled noise. 

•  The model predicts the noise given the noisy image and 

timestep t. Mean Squared Error (MSE) loss is computed 

between the predicted noise and the actual noise 

added at timestep t. 

The goal of the sampling stage is to generate a new image by iteratively 

denoising a noisy image. The main steps for sampling are:

•  Start by sampling a noisy image from a standard 

normal distribution. The image is currently at the final 

timestep T. 

•  Iteratively from t = T to 1, if t > 1, then sample noise 

from a standard normal distribution which will be 

used in the next timestep. If t = 1, then there’s no 

noise needed since you are at the final denoising step. 

This noise will be used in the last stochastic part for 

computing the denoised image at each timestep. 
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•  The goal is to estimate the denoised image at the 

previous timestep (t-1) given the current noisy image 

and the model’s prediction of the noise. The trained 

model predicts the noise in the current image at t and 

then the prediction is used to remove the noise and 

move it to t-1. 

•  Computing the denoised image has two main parts 

to it. The first part is the deterministic part where the 

predicted noise is subtracted from the current noise. 

The stochastic part adds a controlled amount of noise 

back into the image using a scaling factor. This helps 

ensure there is variation and the model is not overly 

deterministic. 

 Figure 4-20. DDPM training and sampling algorithms. Used with 

 permission, source: https://arxiv.org/abs/2006.11239 [72]

For an example of how DDPM is implemented, we recommend this 

tutorial[73]. 

The main issue with the original DDPM was its poor log-likelihood 

score. This meant that while it could generate high-quality images, it 

did not accurately fit the data distribution of real images. The improved 

DDPM[89] introduced some variations to address this:
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•  Variance prediction: Instead of using a fixed variance, 

the improved DDPM learns the variance of the noise 

distribution, which helps improve log-likelihood and 

model stability. This is done by interpolating variance 

between an upper bound and a lower bound. 

•  Learning rate scheduling: The original linear 

scheduling of noise was replaced with a cosine 

interpolation, which led to better control over noise 

addition and removal. 

•  Increased timesteps: The number of timesteps in the 

diffusion process was increased from 1,000 to 4,000, 

which improved sample quality. However, this did 

increase the time and compute required for training 

and sampling. 

 DDIM (Denoising Diffusion Implicit Models)

In the DDPM approach, the model is predicting noise that was added to a 

clean image to produce a noisy image. This is done gradually and can be 

over many steps. Instead of predicting noise added to the image at each 

step like DDPMs do, DDIMs[74] predict the noise so that when the noise 

and clean image are mixed, they make xt. This allows the model to get 

closer to the final clean image in fewer steps. 

The process is controlled by σ, which determines how much noise is 

added at each step. If it is 0, then the process is deterministic. The model 

then predicts what the clean image looks like from the noisy image. This 

prediction is given by Equation 4-5, which subtracts the noise from the 

noisy image and then scales it:



Equation 4-5
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To generate the image at step t-1 from the image at step t, an equation 

(Equation 4-6) is used, which combines the predicted clean image and 

some noise to step back from xt to xt-1. The predicted clean image is 

scaled to fit the previous timestep. Some noise is added back and scaled 

back to fit the previous timestep. A bit of noise, which is controlled by σt, 

is also added to ensure there is some variability and the process isn’t fully 

deterministic. 



Equation 4-6

There is also a case of Equation 4-6 where σt is set to 0 so no noise 

is added and the process is more deterministic. The model and training 

objectives used are the same as DDPMs, but the idea is that the technique 

allows for fewer and larger steps to be taken. 

 Stable  Diffusion

The diffusion process described so far works directly in the raw image pixel 

space. This can be time intensive for very large images (lots of pixels to 

denoise) and can suffer from modeling fine details in images incorrectly. 

Stable diffusion[68] is a popular method that tackles both these problems 

by compressing the image into a latent space before applying the diffusion 

model. Stable diffusion took the world by storm with its very remarkable 

and realistic AI generated output. 

During the stable diffusion training phase, you take an image and 

pass it through a Variational Autoencoder (VAE)[69], which compresses 

it into a latent vector. The encoder helps reduce the image into a lower-

dimensional representation while preserving important features—think 

of this as a semantic compression. This vector is then used as the starting 

point of the diffusion process and noise is added to the latent vector at 

each timestep to make it nosier. The resultant noisy vector becomes the 
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starting point of the reverse diffusion process, where a U-Net is used to 

predict and remove noise at each step. This U-Net has text-conditioning, 

which means that it also uses text embeddings from a user’s input query 

(during inference) or captioning (in training datasets) to guide the image 

generation. The denoised latent vector is passed through a decoder, which 

reconstructs the original image—think of this as decompression. Overall, 

the goal of this approach is to make sure a high-quality image is output 

that matches the user’s input at inference time by reconstructing this from 

the conditioned latent vector. Because the diffusion process operates on 

the latent encoding instead of the original image, it’s fast enough to be 

used in products. You can see these steps in Figure 4-21. 

 Figure 4-21. Stable diffusion generates an image by iteratively 

 denoising a latent image representation, conditioned on text 

 embeddings produced by a CLIP model. U-Net refines the noisy 

 latents over multiple iterations, and the final latent representation 

 is decoded by a VAE into the output image. Used with permission, 

 source: https://towardsdatascience.com/stable-diffusion-

 using-hugging-face-501d8dbdd8 [98]
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 Conditioned  Generation

You have seen in stable diffusion how a user input query or caption is used 

to guide the generated image via conditioning. This section digs deeper 

into conditioning for diffusion. 

There are two variants of conditioning popularly used: classifier 

guidance[70] and classifier-free[71]. The main difference between the two is that in the case of classifier guidance, a separate classifier needs to be trained, 

whereas classifier-free guidance does not need an external classifier network. 

 Classifier-Guided  Diffusion

The goal in classifier-guided diffusion is to generate images that lie within 

a certain class or have certain attributes. This is accomplished by training 

a separate classifier network on the labels of the same dataset that the 

diffusion network is trained on. Then, the classifier network is used to 

guide the image-generation process by using the Bayes rule to combine 

the probability of the image and the class (see Equation 4-7):



Equation 4-7

The image generation is updated based on the combination of 

the gradients of the log probabilities of the image and the class (see 

Equation 4-8). 



Equation 4-8

Combining the signal’s sub-times requires a linear parameter called 

guidance scale, 𝛄. A higher guidance means images pay more attention to 

class and are less diverse, and a lower guidance means that images are less 

class specific but are more diverse. 
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 Classifier-Free  Guidance

The main idea in classifier-free guidance is to train the diffusion model 

to understand class labels directly without needing a separate classifier, 

that is, your classifier is the model itself. The model is trained to generate 

images with and without specific class information, by dropping in 

labels 20-30 percent of the time during training. During denoising, 

two predictions are made—one with the label as conditioning and one 

without. The probabilities of the conditional generation and unconditional 

generation are combined while applying a weight to balance the 

importance of class guidance, 𝛄. Once this combined gradient equation is 

expanded and simplified, you get Equation 4-9:



Equation 4-9

Where 𝛄 = w/(1-w). As in classifier-guided generation, higher 𝛄 implies 

more attention to class labels at the cost of diversity. 

Classifier-free guidance is simpler while providing more control and 

fidelity over generation. It also avoids any adversarial generation prompted 

by a separate classifier network. 

 Text-Conditioned  Guidance

Text-conditioned guidance is used in many generative AI products that 

generate images/videos that a user is specifically asking for. To this end, a 

text prompt that describes the output image is converted into embeddings 

with a text encoder. The text embeddings are integrated into the U-Net 

model using cross-attention (see Equation 4-10):



Equation 4-10
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Equation 4-11 represents the model’s prediction at step t, using the 

image and the text embeddings. During image generation, the model uses 

the text embeddings to guide each step:



Equation 4-11

The gradient will adjust the image based on the text description, just 

like the guidance discussed previously. Overall, a text description is used 

to guide the model in generating images that match the description. 

 Action Diffusion for Robot Control

Diffusion Policy[75] is a method that, instead of directly deciding the 

robot’s actions, uses conditional denoising diffusion to generate the best 

actions to take. Diffusion policy can sample from a very high dimensional 

output space. The iterative refinement in diffusion also allows for more 

flexible and adaptable actions. Some other common policies used for 

actions include:

•  Explicit policy: This directly maps visual inputs 

to robot actions and can have different action 

representations, like regression, mixture of Gaussians, 

and so on. One limitation of this policy is that directly 

outputting actions can be less flexible and harder to 

train for more complex behaviors because there is a 

direct learned mapping from input to output. 

•  Implicit policy: These methods use an energy function 

to implicitly define the policy, where the policy learns 

an energy function conditioned on both actions and 

observations. One limitation of this method is that 
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optimization during inference can be computationally 

intensive when it comes to solving the minimum 

energy configuration. 

Instead of directly outputting actions, in diffusion policy, the policy 

infers the action-score gradient based on visual observations. The process 

starts with a sequence of images as input, which are encoded to extract 

relevant features. The diffusion policy takes these observations and 

generates a sequence of actions over some time horizon. This can be seen 

as initial noisy actions given as a rough guess, which is refined over K 

iterations. As shown in Figure 4-22, the model refines noise into actions 

using a gradient field in diffusion policy. 

 Figure 4-22. The difference between explicit, implicit and diffusion 

 policy. Used with permission, source: https://arxiv.org/

 pdf/2303.04137 [75]

As shown in Figure 4-23, the general steps are that the robot gets a 

sequence of images from the environment, which are encoded. The policy 

uses the encoded observations to generate a sequence of actions, which 

are refined iteratively. Based on new observations, these actions are 

refined to guide the robot’s movement. The specific policy implementation 

uses two approaches: a) CNN-based, which uses convolutional layers 

and FiLM[58] to condition each layer with some observation features 

and refine actions and b) transformer-based, which uses cross-attention 

to integrate observations and actions while leveraging strengths of 

transformers to handle sequential data. For more details, we recommend 

checking out the paper[75]. 
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 Figure 4-23. Overview of diffusion policy pipeline outputting the 

 action sequence for the robot to perform. Used with permission, 

 source: https://arxiv.org/pdf/2303.04137 [75]

Since this work, there have been other variants of diffusion policies for 

robot control, such as Aloha Unleashed[94], where a transformer decoder 

iteratively refines actions from noise, while taking in an embedding of 

observations and diffusion timestep as input, via cross-attention. Diffusion 

models provide an alternative to autoregressive models for control of 

robots, and they can model high-fidelity actions, due to outputting float 

actions directly instead of outputting tokens. In practice, they can also 

model multimodality and noisy datasets much better, as discussed earlier 

in this chapter. 

Combining VLMs and Diffusion Models

Recently, we have seen architectures that combine VLAs and diffusion 

models as a system 1 / system 2 model and trained jointly. Pi0[99], Groot 

N1[100] and Gemini Robotics[101] are some of these variants. Combining 

a large VLM with diffusion allows exploiting the generality and capacity of 

a VLA while retaining the smooth behaviours of diffusion. In Groot N1, the 

input to the diffusion model is the output of one of the final layers of the 

VLM. During inference time, the models may be split, with the large model 

living in cloud and the smaller model on robot as in [101]. 
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 Learning from Video Demonstrations

A key paradigm in robot learning is learning from video demonstrations 

(LfV)[90]. The biggest challenge to learning from video demonstrations 

is that they do not have action labels, which makes it harder to convert 

video data into actionable robotic data. A second challenge is that 

most _Internet-scale video data has a distribution shift relative to robot 

deployment, but in instances this may be an advantage as the diversity 

of video data allows for generalization to wide variety of scenes the robot 

hasn’t seen before. A third challenge, or opportunity, is that well curated, 

open source video datasets with language annotations that can be used for 

robotics are still relatively limited or small in size. 

The first challenge may be overcome in the following ways:

1. Inferring motion from video: Adding proxy action 

labels to video data, via using optimal flow. Such 

as by annotating hand positions, or inferring hand 

positions via monocular/stereo tracking. 

2. High-level language as actions: Annotations 

using captioning models, language description 

of motions, can be derived. While this type of 

information is useful for learning semantics, 

language lacks the fidelity required for precise 

control. 

3. Learning latent actions from video: Usually an 

auto-encoder compresses and decompresses the 

video, and then uses the learned compressions as a 

latent variable. 
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 World Modeling Using Video Data

A world model is an internal representation of the world: the physics of 

the world, how objects interact and their dynamics, and what a robot may 

possess to anticipate outcomes for its own or another dynamic agents’ 

actions. One way to look at it is that it is an internal simulation. 

A common way of creating a world model is by learning good latent 

representations of observations. Videos provide a very rich opportunity to 

create extensive world models. Usually, an encoder network encodes video 

into a latent representation, and then a dynamics model predicts the next 

latent state and the rewards, using current state and embedded actions as 

input. A reconstruction loss is typically used to train them. In a video, the 

dataset presents future states, thus providing a useful training signal. A 

world model thus learned can then be fine-tuned to learn general action 

dynamics based on specific robot embodiments. 

Once you create this world model, you can use it for a variety of 

downstream robotic applications. 

 Reasoning  from Video

Video language planning[95] is an example of this method. It reasons 

about the world and creates plans in multimodal video and text, akin to 

PaLM-e, discussed earlier, but with a temporal component. Internet-scale 

video data with language annotations holds a ton of contextual knowledge, 

presenting an opportunity for acquiring generalization. Robots can learn 

low-level actions from their current “robot dataset” while gaining high-

level task understanding from the video dataset through visual cues and 

steps needed to complete tasks. 

 Actions from Video by Fine-Tuning World Models

Structured World Models for Intentionality, or SWIM[78], is a work that 

helps robots learn manipulation tasks by first creating a world model 
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from human videos and then fine-tuning it on robot data. SWIM trains 

both a world model (which predicts how the environment changes when 

actions are taken) and an affordance model (which learns where and 

how to interact with objects, i.e. grasping) using human video data. This 

affordance model is used to guide the behavior of a robot collecting data in 

the real world, and the data from the robot is used to fine-tune the world 

model, thus embodying it in an unsupervised manner. 

One can argue that today’s foundation models already have an implicit 

world model from being trained on the Internet and a wide variety of data. 

Therefore, fine-tuning them on actions is an expression of transferring 

their world model understanding to the concept of actions and movement. 

Results from RT2 discussed earlier in this chapter provide evidence to 

some of these claims. 

 Action Models by Conditioning 

on Video Representations

Video-conditioned policy learning uses the idea that a robot can observe 

a human (or robot) performing a task and infer actions the needed to 

complete the task in its own environment. This is useful, as it allows non-

experts to specify tasks for robots in an intuitive way without needing 

complex reward function design or explicit goal definitions. For example, 

you can just show a robot how to do a task, then that video is the input to 

policy. Vid2Robot is an example of this type of method[77]. In addition to 

directly prompting with the video, users can also extract high-level task 

representations from video via large-scale pretraining, and then use it for 

downstream policy learning, thus conditioning a policy on embeddings 

extracted from videos. For example, Time-Contrastive Networks (TCN)[81] 

extracts visual features like hand-object interactions and spatial relations 

from multi-view videos and Contrastive Video Representation Learning 

(CVRL)[82] learns spatiotemporal representations from video data. 
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 Action Models from Thinking in Video

An interesting approach toward action prediction we want to highlight is 

Policy-as-Video[79]. It models the world in images. It introduces Unified 

Predictive Decision Process (UPDP) as an alternative to MDP that uses 

images for representing environments instead of numerical states. The 

video generator predicts trajectories of images showing how the robot 

should progress from its initial state to achieve the goal described by 

the text. Once the video is generated, an inverse dynamics model (IDM) 

extracts the corresponding actions (e.g., motor commands) from the 

predicted frames. Diffusion models are used to generate the video 

sequences in UPDP and they progressively denoise the images toward the 

end goal. A key feature of UPDP is that it separates the planning process 

(video generation) from the execution (action extraction), which can make 

this method more flexible to different robots and environments. 

 AI Safety for Robotics

As we trust AI models to perform actions in the physical world 

autonomously, we need to be aware of the security risks that stem from 

these applications. 

A practical study of security risks show that physical, network, and 

software attacks are probable scenarios[86]. Physical attacks on robots, like 

tampering with hardware or feeding them false sensor data (sensor spoofing) 

can directly alter robot behavior, causing them to crash or fail. Attacks on the 

perception layer (sensors such as IMU, GPS, LiDAR, camera, etc.) can disrupt 

the robot’s ability to understand its environment and this can further impact 

its navigation and control abilities. On the hardware side, hacking actuators 

and control systems can directly lead to dangerous behavior. Network 

attacks, like Denial-of-Service (DoS), can overload the robot’s network and 

cause slowdown or system failures. Software-level attacks, such as injecting 

malicious code, can alter a robot’s actions and lead to harmful actions. 
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To protect robots from various security threats, some defense strategies 

include:

1.  Anomaly detection systems that monitor sensor 

data for irregularities and then trigger failsafe modes 

when issues are detected. 

2.  Filtering and sensor fusion can mitigate spoofing 

and jamming by cross-referencing multiple data 

sources (e.g., GPS, LiDAR) to verify if data is 

consistent. 

3.  Data sanitization and validation can help ensure 

that inputs are checked for malicious content before 

processing. 

4.  Cryptographic integrity checks and secure firmware 

updates protect against data tampering and 

unauthorized code execution. 

5.  Failsafe mechanisms and secure update protocols 

can be useful for robots to revert to safe states and 

receive only verified updates. 

For more details on attacks and potential defense mechanisms, we 

recommend reading [87]. 

While these threats are more practical, there is also a longer range and 

philosophical resistance to autonomy. As AI becomes more intelligent 

and more integrated into everyday life, their situational awareness could 

improve, making them able to deceive humans, persuade us to execute 

harmful behavior, spread misinformation, and so on. There are several 

organizations working on addressing longer-term existential threats to 

humanity from AI. This is in sharp contrast to folks working on AI ethics, 

who focus on nearer-term risks from AI such as deep fakes, bias in AI 

outputs, privacy concerns, and so on. 
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Anthropic’s core AI safety principles[88] is an industry-defining 

standard for designing safer AI systems. These are some of the ways we 

might use these principles to improve AI-driven robotics systems:

•  Mechanistic interpretability focuses on 

understanding the internal decision-making processes 

of AI models (their interpretability). In robotics, this 

means being able to detect if a robot might misinterpret 

a situation before potentially making any harmful 

actions. An area of AI safety research is reverse-

engineering models and building tools for model 

interpretability so engineers can detect whether the 

robot may have unintended behaviors, like moving into 

a dangerous area or misidentifying an object. A recent 

advance in interpretability is the study from OpenAI 

that showed that a smaller model can be explained 

with a larger model[91]. In the study, GPT-4 generates 

explanations for the role of neurons in GPT-2, and 

then the neuron is simulated to score the explanation, 

providing a way for scalable interpretability. There 

remains the question though whether all neurons could 

be interpretable, if they do not have clean and human 

understandable semantic explanations for their role. 

•  Red teaming is a technique where AI models are 

stress-tested with difficult or adversarial conditions 

prior to their deployment to identify and correct 

vulnerabilities before applying them in the real world. 

Stress-testing AI models in an environment that is 

controlled can help identify and fix any failure points. 

In the context of robotics, for example, robots could 

encounter scenarios where their sensors are fed 

misleading information, which could lead to dangerous 

actions, such as crashing or navigating incorrectly. 
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By deliberately placing robots in these controlled 

adversarial conditions, engineers can detect and 

mitigate failure points when under attack from physical 

or cyber threats, like sensor spoofing. 

•  Alignment refers to the problem of enabling AI systems to 

follow human values and adhere to human preferences. 

As discussed earlier in this chapter, the post-training 

phase is mainly used to improve the alignment of models, 

along with their instruction following abilities. In many 

situations, especially in robots being deployed in real-

time, it is not practical for humans to provide constant, 

real-time supervision. Developing techniques that allow 

robotic systems to self-monitor and correct their own 

behaviors without human supervision will be important. 

Constitutional AI[92] and RLAIF[93] are two works that 

advance this. RLAIF provides a way to scale human 

feedback by training a model from human preferences 

that can provide feedback without the bottleneck 

of human involvement and act as a critic during 

training large networks. Constitutional AI introduces a 

constitution or value system, which is used by language 

models to reason about their responses and edit them to 

align them to the constitution during post-training. 

•  Robots must be able to operate in various 

environments without reprogramming. Building 

generalization into model training, by training on 

varying conditions and environments and testing on 

these, can be critical. If a robot was trained in a specific 

factory, it may have unintended behavior without 

reprogramming in a new environment. Ensuring and 

testing for generalization can be helpful not only for 

performance but also for safety in robotics. 
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For more aspects of practical safety during deployment, refer to 

Chapter 11. 

 Summary

In summary, this chapter covered the following points:

•  How robotic planning, control, and mapping can be 

framed as a language problem and various ways of 

solving it with LLMs using open loop and closed loop 

techniques. 

•  Large foundation models are pretrained on a large 

corpus of data and later refined using supervised fine-

tuning (SFT) or direct preference optimization (DPO). 

Scaling laws help guide their development by predicting 

performance improvements as models grow in size, data, 

or compute. Benchmarks like MMLU and HumanEval 

evaluate language models’ performance across tasks. 

•  Models like SayCan break down high-level instructions 

for a robot to execute and PaLM-e incorporates 

multimodal inputs (text, vision) for planning. These 

models help robots understand tasks in context, 

generate actions, and adjust. 

•  Methods like NLMap-SayCan allow robots to build a 

map of their surroundings and plan based on unseen 

objects. Code as Policies allows LLMs to translate 

natural language instructions into executable code for 

robots using pretrained models and examples to guide 

task execution. 

198

Chapter 4   Foundation Models in robotiCs

•  Models like RT-1, RT-2, and RT-X use transformers to 

directly control robot actions from visual and textual 

inputs, allowing multitask and real-world control 

across different robots and tasks. 

•  Diffusion-based policies offer flexibility in generating 

high-dimensional action sequences through iterative 

refinement. 

•  Robots can learn tasks by observing video 

demonstrations, extracting high-level task 

representations, and applying those tasks to their 

own actions, bridging the gap between human 

demonstrations and robot tasks. 

•  AI-driven robots face practical security risks, such as 

physical tampering, network attacks, and software 

vulnerabilities, while also posing long-term risks 

related to autonomy and generalization. Robust safety 

mechanisms, anomaly detection, and interpretability 

are crucial for safe robotic operations. 

The next chapter discusses how simulation can be used in robotics, 

common simulators, their tradeoffs and benefits, and methods like 

domain randomization and domain adaptation, which are used to address 

the Sim2Real gap. The next chapter also discusses common learning 

methods using simulators for RL and IL. 
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CHAPTER 5

Simulation

 Simulation  for Robots

Obtaining real-world data to train robot models can be costly and time- 

consuming. Many models require trillions of trajectories to learn all 

scenarios in which a robot can operate and every potential combination of 

actions it can perform. This could take decades to collect, a ton of capital 

to deploy, and is harder to scale due to having hardware in the loop. 

To address this issue, several researchers and companies have 

implemented simulation technologies that aim to create synthetic data 

that closely resembles the real world. One example of such an engine is 

NVIDIA’s Isaac Sim[1], which generates synthetic data for lifelike graphics. 

Including simulation data in robotics training pipelines has various 

benefits. Simulators provide a controlled environment in which robots can 

learn and execute their actions without the dangers involved with real- 

world testing. Simulation data covering diverse scenes allows models to 

generalize more effectively to new scenarios. See Figure 5-1. However, it is 

essential that simulated data adequately represents real-world dynamics 

and bridges the “simulated-to-real” (Sim2Real) gap, which is the gap that 

explains that models trained in simulation may not perform as well in the 

real world. 
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 Figure 5-1. Simulated robotic grasping environment in PyBullet. 

 Used with permission, source: https://towardsdatascience.com/

 sample-efficient-robot-training-on-pybullet-simulation-

 with-sac-algorithm-71d5d1d4587f [56]

 Considerations for Simulation in Robotics

Before you learn how these simulation engines work and can be used for 

robotics, it’s important to consider the benefits and limitations of using 

simulations in your applications. 

Benefits of simulation include:

•  Scaling faster with diversity: A key advantage of using 

simulation is that you can use generative AI to produce 

highly diverse scenes in simulation, which can then be 
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used to train models. This is cost effective and can scale 

better than setting up those scenes in the real world 

and collecting them with robots. 

•  Faster iteration cycles: Simulated environments allow 

for easier development and testing of novel algorithms, 

leading to faster engineering iterations. In comparison, 

these iteration cycles on a physical robot in the real 

world may take incredibly long or may be incredibly 

expensive. 

•  Safety critical feature testing: Many safety features 

that are critical in dangerous situations are harder to 

test in the real world. These are better tested thoroughly 

in simulation, where you can easily and safely simulate 

dangerous agent behaviors, crashes, and so on, without 

causing actual danger. This is especially useful for 

safety critical applications like self-driving or  

surgical robots. 

•  Reproducibility and comparison for 

experimentation: It is often challenging to reproduce 

a certain result in the real world since real-world 

results and data can be noisy or constantly changing. 

Simulated environments are designed to be 

controllable and reproducible and thus reliable, which 

allows them to also be used to compare algorithms in 

identical experiments. Simulated environments can 

also be used to create clean data to ablate for highly 

specific experiments. 
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A few limitations of using simulators include these:

•  World modeling: Learning only in toy environments 

can lead to toy intelligence. Ultimately, the models may 

fail to learn real-world dynamics, and this knowledge 

may fail to transfer to real physical robots. 

•  Sim2Real gap: A gap still exists where the performance 

of a robot trained in simulation may not exactly 

translate to the real world. This is due to physics, 

dynamics, and external factors that are not fully 

captured in a virtual environment but are present in 

physical environments. 

Although there are many benefits to simulated data, the main 

limitation is that there can be discrepancies between the real world and 

the simulated world. A combination of simulation and real-world data 

for training and careful domain adaptation/randomization strategies are 

frequently needed to close this gap. Later in this chapter, we expand on 

these strategies. 

 Components of a Robot Simulator

This section discusses the commonly used robot simulators—how they 

work and their benefits and tradeoffs. 

A rigid body physics engine simulates a variety of interactions, such 

as collisions and contact forces. A rigid body is defined as a solid item that 

does not alter its form as it interacts with the environment. It has mass, 

location, velocity, volume, and shape. This allows it to rotate around its 

center of mass, as shown in Figure 5-2, which represents the average 

position of the object’s mass. When a rigid body rotates, it has three 

angular properties: angular velocity (how fast it spins), torque (the force 

214

[image: Image 116]

Chapter 5   Simulation

that causes it to rotate), and moment of inertia (the resistance to altering 

rotation). When you apply force to a spot on a rigid body, torque is created, 

causing it to rotate. Torque calculation is simple in two dimensions and 

requires quaternions and a 3x3 matrix in three dimensions. Integrals can 

help find the center of mass and the moment of inertia because the object 

is continuous (not made of separate particles). 

 Figure 5-2. The position and rotation of a rigid body at any 

 given time is defined as an offset from the initial state. Used with 

 permission, source: https://www.toptal.com/game/video-game-

 physics-part-i-an-introduction-to-rigid-body-dynamics [25]

Soft body simulation, on the other hand, deals with objects that may 

deform when forces are applied, which means that the soft body changes 

shape. Often, more advanced simulation approaches are required to 

account for interior forces and deformations. Bending, stretching, and 

compressing are modeled using techniques such as spring-mass models or 

finite element approaches, making soft body simulations computationally 

costly but necessary for robotic simulators. 
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Most robot simulators frequently include the following features:

1. Physics engine: A physics engine is used to 

simulate physical dynamics of a robot, including 

rigid dynamics, soft body modeling, and fluid 

dynamics. Rigid body dynamics often focuses on 

collision detection and modeling, friction, and 

other interactive dynamics. Soft body modeling 

focuses on the behavior of deformable objects like 

tissue, cloth, or flexible materials. Fluid dynamics is 

used to simulate the behavior of liquids and gasses, 

which is especially important in situations involving 

aerodynamics (drones, planes, moving parts) and 

underwater robots. 

a.  Simulating physics includes solving equations that 

model the motion of rigid bodies and other forces 

that may act on a robot body. 

b.  For soft body simulation, finite element[2] or mass-

spring methods[3] are often used for understanding 

internal forces and for modeling how deformations 

occur in materials. 

c.  Fluid dynamics use various computational fluid 

dynamics (CFD)[4] methods, which solve Navier-

Stokes equations[5] under the hood to simulate the 

flow of liquids and gasses. 

2. Modeling robots: Simulators use standardized 

formats like URDF (Unified Robot Description 

Format)[6] to describe and load robot kinematics. 

This is usually done by parsing XML-based files 

describing joints (such as the weight, dimensions of 

a link, and its center of gravity) and transformations 
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between joints. They usually also include 

support for sensors such as cameras and LiDAR, 

and they map camera intrinsics and extrinsics 

(transformations of the camera with respect to the 

robot). Once you have the full specification of a 

robot and its sensor, you can construct images from 

the point of view of the sensors and simulate motion 

by applying forces or specifying positions for end 

effectors and then calculating the position of all 

joints using forward or inverse kinematics. 

3. Modeling environments: Simulators usually have 

libraries that enable you to configure the scenes 

and environment. Adding objects, changing their 

locations, and adding terrains and surfaces, for 

example. In addition to objects and surfaces, they 

also allow you to simulate weather (e.g., sunshine), 

lighting (indoor/outdoor) and shadows, and other 

conditions, like humidity/temperature, and so 

on. In addition to static objects, simulators can 

also generate dynamic agents such as humans 

by using humanoid models to imitate realistic 

human movements. Once a user configures the 

environment and settings, the physics engine then 

models them, and a graphics library renders them 

onscreen. 

4. Interacting with users: To interface with the user, 

simulation engines provide APIs that allow users 

to write code to control the environment and the 

robot and to run specific models/policies or specific 

high-level goals. In addition to APIs, simulators also 

have GUIs for users to interact with the simulator. 
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Most simulators have built-in trajectory planning 

algorithms, such as A*[7], Dijkstra’s[8], or model 

predictive control (MPC)[54] for path planning. We 

cover model predictive control in detail later in this 

chapter. 

5. Visualization and rendering: The scenes 

themselves are rendered using graphics libraries 

like OpenGL[9] so that robot movements and 

interactions can be seen onscreen in real time. 

Most simulators also integrate with middleware 

frameworks such as Robot Operating System 

(ROS)[10]. ROS is a distributed framework for 

publishing and subscribing to information, enabling 

sensors/joints/programs within a robot to operate 

at different frequencies (such as when a camera 

updates at 30fps, but an IMU updates at 100 Hz) and 

still communicate with each other. Many simulators 

allow you to publish information out of and in to the 

simulator as ROS messages or other commonly used 

communication protocols. 

Now that you understand the key components of robot simulators, take 

a look at how they interact to mimic real-world object behavior[25][26]: 1.  It begins with a mathematical model that represents 

the system’s current state, such as the object’s 

positions and speeds. 

2.  The engine uses equations to predict how these 

states will change over time depending on forces, 

object shapes, and movements. 

218

Chapter 5   Simulation

3.  The engine uses numerical methods to solve these 

equations. Runge- Kutta is a widely used technique 

that estimates varying positions and velocities step 

by step. 

4.  When objects collide, the engine identifies the 

collision and adjusts the objects’ speeds and 

directions to reflect the impact correctly. 

5.  There are many performance and reliability 


optimization tasks involved, such as rendering 

objects onscreen, managing user inputs, and 

ensuring that everything runs in real time. 

Now let’s look at some popular simulators used by robotics researchers 

and developers and their specific properties. 

 The PyBullet Module

The Python module PyBullet[11] uses the Bullet physics engine to simulate 

physical interactions and robot motion. An important notable application 

of PyBullet was the QT-Opt system[12], an algorithm that we explore in 

detail in the learning section of this chapter, where Bullet helped mimic 

a grasping environment in order to train a robotic arm on a large corpus 

of grasping tasks. PyBullet allows you to import robot models in multiple 

formats:

1.  SDFormat (Simulation Description Format)[13]

2.  Unified Robotics Description Format (URDF)[6]

3. MJCF[14]

PyBullet supports contact, collision, friction, and rigid-body 

dynamics for existing robot models or the robots imported by users. 

PyBullet is commonly used to simulate various robotic tasks, like robotic 
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manipulation tasks. Pictures of some of the supported robots are shown in 

Figure 5-3. For advanced motion planning, you can integrate PyBullet with 

external libraries, such as the Open Motion Planning Library (OMPL)[15], 

which is widely used in robotics. There is a tutorial on getting started with 

PyBullet at the end of this chapter. 

 Figure 5-3. A variety of robots supported by PyBullet simulation. 

 These include legged robots like Boston Dynamics’ Atlas, quadrupeds, 

 wheeled robots, robotic arms, and manipulators. Used with 

 permission, source: https://github.com/erwincoumans/pybullet_

 robots [57]
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 MuJoCo

MuJoCo (Multi-Joint Dynamics with Contact)[16] is a platform owned and 

open-sourced by DeepMind[17] that was developed for robotics. MuJoCo 

focuses on traditional robotics applications, including multiple link arms, 

grasping, and bipedal walking. It has garnered a lot of popularity because 

of its speed, precision in highly accurate physics, and user-friendly 

robotics design. It supports friction, contact, and rigid-body dynamics, 

and can accommodate more flexible bodies. As an example, the shadow 

hand[18] from Open AI, which was one of the first times a robotic hand 

could manipulate its environment with high dexterity, was built using 

the MuJoCo physics engine. We recommend going through MuJoCo’s 

documentation[19] to get started with it. 

 Gazebo

Another popular robotics simulation platform is Gazebo[20]. It is often 

utilized for mobile manipulation, robotic grasping, and off-road mobility, 

as well as for more conventional robotics applications. We recommend 

going through Gazebo’s documentation[21] to get started with it. 

Specifically, here is a tutorial[22] we recommend for using a simple 

Gazebo environment. 

Gazebo’s middleware interface with The Robot Operating System 

(ROS)[23] allows it to be used in combination with existing robotics stacks 

used in industrial robots. In contrast, PyBullet and MuJoCo provide more 

integration with DL and RL frameworks, as well as gym environments, 

making it more favorable for these use cases. The simulator you choose 

may be determined by a variety of criteria, including the features you 

require, speed, and application. A more comprehensive comparison of 

various simulators is shown in Figure 5-4. 
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 Figure 5-4. Comparison of robotics simulation platforms based 

 on various features, such as sensor support (RGBD, LiDAR, force 

 sensors), actuator types, multi-body import, and soft-body contacts. 

 This table shows the strengths and limitations of each simulator, 

 including PyBullet, MuJoCo, Gazebo, and others. Used with 

 permission, source https://ieeexplore.ieee.org/stamp/stamp.js

 p?tp=&arnumber=9386154 [58]

Overall, Gazebo offers extensive ROS integration and the ability to 

simulate different environments. PyBullet integrates well with machine 

learning frameworks and MuJoCo outperforms simulation speed and 

accuracy[24]. 

 Concepts  in Sim2Real

Sim2Real refers to strategies that utilize simulation to learn policies to act 

in the real world. They may or may not also utilize real-world data. In this 

part, we look at some of the most frequent strategies utilized in Sim2Real. 

Many of these principles may be discussed in the context of reinforcement 

learning (RL), but they may also be applied to more general tasks, such as 

object identification, real-world control, and so on. In the context of RL 
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specifically, the goal is to train an RL agent in a simulation environment 

and deploy/test it in the real world using techniques like domain 

adaptation or domain randomization. 

 Domain  Adaptation

The primary principle behind domain adaptation (DA)[27][28][29] is to use data from one area (source) to improve a model’s performance in 

another area (target) when there is less data. To accomplish this, you want 

to make the data from both sources appear more similar. To understand 

what source domain and target domain mean, consider the Markov 

decision process (MDP)[30]. An MDP is a model of decision-making in 

which an agent makes decisions in a succession of steps. At each step, the 

agent performs an action that changes the current scenario (state) to a new 

scenario (next state) with varying probability. The agent is rewarded for the 

actions it takes. RL seeks to identify the most effective technique (policy) 

that maximizes the total rewards over time. MDP is represented with states 

(S), actions (A), transitions (P) that happen with a certain probability, and 

rewards (R ):



Equation 5-1

A Markov Decision Process is Markovian, which means that the state 

is fully observable and the information of how it got to the state is not 

relevant in deciding any aspect of the future. 

The source domain is the environment to which you have complete 

access (in this case, the simulator), and the target domain is the actual 

physical world. The source domain in RL tasks and the target domain 

are designed as custom MDPs. Their states can be very different, while 

actions, transitions, and rewards have similarity, as you want actions from 

simulation to translate to the real world. 
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There are several common domain adaptation techniques[27][29], which ultimately intend to make source data look like target data:

•  One method uses statistical techniques to assess and 

correct disparities between features from several 

sources. This can be done by aligning the mean and 

variances of features or minimizing the distance 

between distributions of the domains in a high- 

dimensional space. 

•  Another method trains a model to recognize which 

source the features come from before adjusting them 

to be more alike. Here, you can use a domain classifier 

to distinguish between features of each domain, which 

can be trained adversarially to make the classification 

difficult. 

•  Finally, a technique will identify shared characteristics 

by learning to reproduce the original data using these 

shared features, ensuring that essential information 

is captured from both sources. An encoder-decoder 

structure can be used, where the encoder maps the 

data from both domains to a latent space and the 

decoder is used to reconstruct the input data based on 

this shared representation. 

We recommend [29] as a source to learn more. 

 Domain  Randomization

Domain randomization[31] is a strategy for increasing model robustness 

by exposing the model to a wide range of simulated situations. The 

purpose of randomizing the simulation is to make the model responsive 
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to real-world fluctuations and situations that may arise. In this way, the 

model learns to deal with a wide range of circumstances, making it more 

successful when applied to real-world data. 

In Figure 5-5, the diagram depicts domain randomization by 

demonstrating how simulated data is randomized to replicate the 

distribution of real-world data. It shows two tasks—Rope shaping and 

Assembling—trained in both standard and randomized simulation 

environments. Domain randomization adds visual and physical 

variability to help models generalize better to real-world robot testing. 

In contrast, domain adaptation aligns features from the source 

(simulation) and target (real) domains to create a shared feature space for 

reinforcement learning. 

 Figure 5-5. Example of domain randomization: Visuomotor 

 manipulation policies are trained in simulation (top row) with 

 domain randomization using varied textures, lighting, object colors, 

 and camera settings (middle row). These policies transfer directly 

 to real-world tasks (bottom row). Used with permission, source: 

 https://arxiv.org/pdf/2307.15320 [59]
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Domain randomization has three primary training approaches[28]:

•  Static randomization,  which introduces random 

changes to the training environment at the beginning 

and maintains these variations throughout the training 

process. This is often done through varying light 

conditions, textures, and placement. These changes are 

then set throughout the training process of the model. 

This strategy is straightforward and quick, but it may 

not be as useful in real-world situations because it may 

not capture the full range of variations encountered by 

a robot. 

•  Adaptive randomization modifies these random 

modifications during training based on the model’s 

learning progress. For example, the environment might 

have smaller variations at the start of the training but 

as the model improves, more complex changes might 

be introduced to ensure that the model is learning. 

This approach might result in improved performance 

but requires substantial real-world data to guide the 

adjustments. 

•  Adversarial randomization adds adversarial 

disturbances during training by using a different model 

to generate challenging scenarios, thus making the 

training environment more difficult for the “main” 

model. This helps the model grow more robust, but it 

needs to be carefully calibrated to prevent making the 

tasks overly difficult and worsen learning. 

We recommend [28] as a source where we gathered ideas for this 

section. 
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Another way of exposing the model to different scenarios during 

training is through Uniform Domain Randomization (UDR)[32], which 

is the process of randomly modifying the training environment’s 

properties at every step. These variations can include aspects in lightning, 

textures, and placement, so that the model does not overfit on a specific 

environment[32]. This implies that the model is continually exposed 

to new scenarios, making it more adaptive and powerful in the face of 

variations between training and real-world contexts. However, uniform 

sampling assumes that all changes in the training environment are equally 

important, which is incorrect because certain scenarios are more difficult 

to learn than others and require more focus during the training process. 

 Guided Domain Randomization

GDR (Guided Domain Randomization)[32] was proposed to solve some of 

these issues with a more directed sampling technique. This section covers 

two GDR methods: Active Domain Randomization and Automatic Domain 

Randomization. 

 Active Domain Randomization

Instead of simply randomizing environment settings uniformly, Active 

Domain Randomization (ADR), which was presented in Mehta et al., 

2020[33], focuses on identifying and training the model in the most 

difficult settings it encounters. This technique involves constructing 

diverse and complex simulated situations, evaluating which ones are the 

most difficult for the model, and then focusing training on these difficult 

scenarios. 

A simulator is specifically used to generate a variety of simulated 

environments with varied parameters. The model’s policy is then tested 

in these simulated environments. A discriminator assesses the level 

of difficulty of these environments by comparing them to a reference 
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environment; it provides a reward accordingly. The reference environment 

could be chosen based on typical conditions that the model is expected to 

encounter. The Stein Variational Policy Gradient (SVPG)[34] then uses this 

reward to update the model’s parameters by directing the model to spend 

more time training in difficult scenarios. This is achieved by iteratively 

adjusting the policy’s parameters to maximize the expected reward. The 

main steps of how active domain randomization works are shown in 

Figure 5-6. 

 Figure 5-6. ADR framework uses a simulator to generate 

 randomized environments for training an agent policy. A 

 discriminator distinguishes between reference and randomized 

 environments, generating a reward signal used to train SVPG 

 particles. These particles explore difficult environment parameters 

 to improve the policy’s robustness. Used with permission, source: 

 https://arxiv.org/abs/1904.04762 [33]
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The focus of active domain randomization is to dynamically adapt 

the training process based on difficulty. On the other hand, Automatic 

Domain Randomization provides a more systematic approach to domain 

randomization. 

 Automatic Domain Randomization

The relatively straightforward GDR technique Automatic Domain 

Randomization was introduced by Open AI in 2018[35], and it was 

successful in helping a real robotic hand solve a Rubik’s Cube[36]. 

Automatic Domain Randomization begins by training a policy in an 

environment with default parameters. It goes through several training 

episodes in which it randomly decides whether to put lower or higher 

constraints on parameters to create variability. The policy interacts with 

the environment, and its performance is evaluated. If the policy performs 

consistently well, the parameters’ limits are gradually increased, making 

the environment more difficult. If performance decreases, the boundaries 

are tightened to make the environment easier. This iterative process 

teaches the policy how to handle a wide range of scenarios based on direct 

feedback. 

For more details on the algorithmic design, we recommend 

reading[35]. 
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 Closing the Sim2Real Gap for RL

RL-CycleGAN[37] is an important method that aims to close the Sim2Real 

gap for RL and was tested for vision-based robotic grasping tasks. At a high 

level, RL-CycleGAN combines RL with CycleGAN[38] (which we explain 

in more detail later) to transfer knowledge from simulated to real-world 

environments. The main components of RL-CycleGAN are:

•  Sim2Real generator: This component converts images 

from the simulator to look closer to real-world images. 

The generator takes an image from the simulator 

and translates it into an image that has the texture, 

lightning, and noise characteristics of real- 

world images. 

•  Real2Sim generator: To ensure that the transformation 

between two domains (simulated and real images) is 

consistent, the real images are converted to simulated 

ones and back again. This means that when an 

image is converted from simulated to real and back 

to simulated, it should closely resemble the original 

simulated image. 

The RL learns by interacting with the environment and getting some 

sort of reward as feedback. For example, a robot might get a positive 

reward for successfully picking up an object and a negative reward for 

dropping it. Overall, the agent’s goal is to maximize its cumulative reward 

by learning the best actions to take in different states. In the case of 

CycleGAN, the RL agent is trained using images converted by the Sim2Real 

generator (see Figure 5-7). Ideally, these images look as real as possible, 

so that the agent learns to effectively perform tasks outside the simulator. 

Once the RL agent is well-trained in the simulated environment with 

Sim2Real images, it is deployed and tested in the real world. 
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 Figure 5-7. RL-CycleGAN trains a CycleGAN to map simulator 

 images to realistic images and vice versa. The RL model is transferred 

 to a real robot for testing and task execution. Used with permission, 

 source: https://arxiv.org/pdf/2006.09001 [37]

 CycleGAN

To fully understand how CycleGAN[38] can be used for RL-based 

robotic grasping tasks, it can be helpful to understand the architecture 

and key losses. CycleGAN itself is a type of Generative Adversarial 

Network (GAN)[39] used to learn mapping between two image domains 

(simulated and real images) without paired examples. It is made up of 

two generators—the Sim2Real generator and the Real2Sim generator. The 

Sim2Real generator maps images from the simulated domain to the real 

domain. The Real2Sim generator maps images from the real domain back 

to the simulated domain. There is a discriminator for each image domain 

type: one discriminator will distinguish between real images from the real- 

world domain and fake images generated by the Sim2Real generator from 

simulated images, while the other discriminator distinguishes simulated 

images from the simulated domain and fake images generated by the 

Real2Sim generator from the real images. 

Three main losses are used in CycleGAN—adversarial loss, cycle 

consistency loss, and final total loss. 
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The  adversarial loss is used to make the generated images look as 

realistic as possible. There are two discriminators: one for real images and 

one for simulated images. Each generator (Sim2real and Real2Sim) tries to 

fool its corresponding discriminator by generating images that look real. 

The discriminators, in turn, try to correctly identify real and fake images. 

The generators aim to minimize the adversarial loss by producing highly 

realistic images, while the discriminators aim to maximize it by accurately 

identifying fake images. The first term in each loss function measures 

how well the discriminator identifies real images and the second term 

measures how well it identifies fake images produced by the generators. 



Equation 5-2

The  cycle consistency loss ensures that the transformation between 

simulated and real images is consistent and reversible. The cycle 

consistency loss function ensures that when an image is transformed from 

one domain to another and back again, it remains similar to the original. 

It does this by penalizing the model if the twice-transformed image differs 

significantly from the original. Overall, this encourages the model to 

preserve important features during the transformations. 



Equation 5-3

The  final total loss function combines the adversarial losses for both 

generators and discriminators with the cycle consistency loss. This ensures 

that the generated images are realistic and the transformation between 

domains are consistent. 
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Equation 5-4

 RL-CycleGAN

The main components of RL-CycleGAN include:

•  GAN, which transforms images between the simulated 

and real domains. This includes the Sim2Real GAN, 

which converts simulated images to look realistic, and 

the Real2Sim GAN, which converts real images back 

into simulated. 

•  Cycle consistency ensures that when an image is 

transformed from simulated to real and back to 

simulated (or vice versa), it retains the essential 

features. 

•  Two Q-networks are trained: one on simulated images 

to help the robot interact with objects in the simulated 

environment and one on real images to help the robot 

interact with objects in the real world. 

•  There is an RL scene consistency component that 

ensures that robot actions are consistent across 

simulated and real environments. For example, if the 

robot learns how to grasp an object in simulation, it 

should be able to apply the same grasping technique 

in the real world. As well, this ensures that q-values 

for similar scenes (whether in real or sim) are similar. 

This is done because the RL-scene consistency loss 

penalizes differences in q-values for corresponding 

scenes across different transformations (e.g., sim-to- 

real-to-sim, real-to-sim-to-real). 
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Figure 5-8 shows how these components fit together. 

 Figure 5-8. RL-CycleGAN combines a CycleGAN with RL scene 

 consistency. Used with permission, source: https://arxiv.org/

 pdf/2006.09001 [37]

The training of RL-CycleGAN combines several objectives:

•  Realistic Image Generation (L_GAN): Ensures that the 

images generated by the GANs look realistic. 

•  Cycle Consistency (L_cycle): Ensures that the 

image transformed from simulated to real and back 

to simulated (or real to simulated and back to real) 

remains consistent with the original image. 
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•  RL-Scene Consistency (L_RL-scene): Ensures that 

similar scenes have similar q-values. 

•  Traditional RL Loss (L_RL): Trains the q-networks 

using standard RL loss; the model learns the q-values 

based on the actions and rewards. 

The distinction between style and semantics is important in this 

context. Style refers to visual aspects such as lighting and textures, which 

should ideally not impact the robot’s performance. For example, a 

change in the lightning of the environment should not change how the 

robot grasps an object. Semantics, on the other hand, refers to features 

like positions and what objects are. These impact how a robot performs 

its tasks. For example, knowing the exact position and identity of an 

object is crucial for a robot to grasp an object. RL-CycleGAN focuses on 

preserving semantics while transforming images between simulated 

and real environments. This is important, as semantics for the task 

should be maintained while visuals aspects (style) can change during the 

transformation. 

 Learning  from Simulation

Now that you understand how domain randomization can improve 

training models from simulation and translate them more effectively to the 

real world, this section explores a few key examples of how simulation has 

been used in robotics. 

Specifically, robots can be trained to handle complex and dynamic 

environments using reinforcement learning, but the high cost of data 

acquisition is a significant limitation. Many methods have been developed 

to address this by combining real-world and simulation data for model 

development and training. 
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 Simulation for Bootstrapping RL

QT-Opt[12] trains a Q-function with tens of thousands of real-world and 

simulated grasps. In this case, a Q-function is the expected future rewards 

for taking a given action in a given state. This approach can generalize 

grasping to 96 percent grip success on unseen objects, representing a 

substantial improvement over existing approaches. 

QT-Opt starts with a large collection of offline data consisting of 

580,000 recorded grasps, which includes state-action-reward tuples. This 

data is stored in replay buffers, where it is supplemented with data from 

online real robot interactions. The Bellman Updater samples transitions 

from these replay buffers to generate training examples and refines the 

model’s value estimates using the Bellman equation[40]. This equation 

updates the Q-values, which represent the expected rewards for each state- 

action pair, based on both immediate and future rewards. The training 

workers then use these examples to update the Q-function parameters. To 

select the best grasping action, QT-Opt uses the Cross Entropy Method[41], 

which identifies the action that maximizes the model’s estimated value 

(Q). Finally, the robot uses the trained model to perform grasping tasks in 

the real world. This process is shown in Figure 5-9. 

 Figure 5-9. Pipeline for QT-Opt. Used with permission, source: 

 https://arxiv.org/pdf/1806.10293 [12]
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Alongside using real data, an important component of this model 

is training it on a diverse set of objects using simulation data from the 

Bullet Physics simulator. The same model, training method, and control 

were used to train in real and simulation. This ensures that the learned 

policy can generalize and the robot can execute grasping in varying 

environments. The simulation setup is shown in Figure 5-10. 

 Figure 5-10. QT-Opt robot manipulation set up in simulation. Used 

 with permission, source: https://arxiv.org/pdf/1806.10293 [12]

Through simulation, they were able to quickly run a large-scale 

experiment with up to 1,000 virtual robots operating simultaneously. 

These experiments used real-world policies learned from real-world data, 

finding real-world learning more challenging with more data needed and 

longer training time for the performance to be as effective as simulation. 

Overall, this experiment highlighted the importance of using both 

simulation and real-world data for testing and training robot models. 
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 Foundation Agents in Simulation

Over the past few years, a key direction in machine learning has been 

developing foundation models trained on a large corpus of data that can 

be generalized to many tasks. Foundation models are frequently used in 

simulations to allow robots to accomplish a wider range of activities and 

better understand their environment. Large language models can generate 

action plans, but many robots still need help acquiring and updating 

knowledge over long periods. 

In order to drive exploration and generalize to a wider range of abilities 

in a Minecraft simulation environment, Voyager[42] tries to address this 

issue by using LLMs for agents like robots. This is an example of how 

learning in simulation may be helpful for exploring a wide range of tasks 

and contexts and evaluate tasks at a larger scale. Voyager has a loop where, 

based on the player’s inventory, what’s located nearby, health, hunger, 

and the environment (biome and time of day), the agent in simulation 

suggests the next best action. But its exploration, learning, and memory 

are managed via the three following components:

•  Automatic curriculum: New tasks for the agent to 

complete are generated by GPT-4[43], by analyzing 

state information. The model’s reasoning explains 

why the suggested task is beneficial, and from this 

list, a specific task is queued for the player to execute. 

Since the curriculum or tasks an agent improves 

on is determined by an LLM, it is programmatically 

generated. Examples of tasks generated by the agent 

are shown in Figure 5-11. 
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 Figure 5-11. Example of tasks that automatic curriculum has 

 proposed. Used with permission, source: https://arxiv.org/

 pdf/2305.16291 [42]

•  Skill library: In order to accumulate and build on 

the skills gathered in simulation, agents have a skill 

library. When an agent performs a task, by generating 

code, this task and the program generated are stored 

in a dictionary called the skill library. The keys of the 

dictionary are embeddings of the skill description 

and the value corresponding is the program itself. 

New skills are added to the dictionary when the 

corresponding tasks are encountered, post their 

execution. Older skills are retrieved via querying and 

updated using any improvements or feedback from the 

last round when they were invoked. 

•  Iterative prompting mechanism: There is an 

iterative process for refining actions by executing 

them, reporting errors, and refining the actions using 

feedback from the language model and errors from the 

simulator. 
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An overview of how all of these ideas fit together is shown in 

Figure 5-12. 

 Figure 5-12. Automatic curriculum, iterative prompting mechanism, 

 and skill library in Voyager. Used with permission, source: https://

 arxiv.org/pdf/2305.16291 [42]

Voyager learns and improves at playing Minecraft better than previous 

methods. It also adapts to new tasks in a new Minecraft world using its 

library of learned skills. Figure 5-13 shows a comparison of other methods 

with Voyager. 
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 Figure 5-13. When compared to baselines, Voyager is continually 

 finding new Minecraft items and skills through self-exploration. Used 

 with permission, source: https://arxiv.org/pdf/2305.16291 [42]

Alongside Voyager, the team at NVIDIA also developed MineDojo[44], 

which is a platform built on Minecraft that can be used to train AI agents 

using a wide range of tasks in a simulated environment (see Figure 5-14). 

The MineDojo platform:

•  Provides a standardized way to define tasks, world 

settings, and agent behaviors, all within Minecraft, 

making it easier to develop and test different models. 

•  Includes a large benchmark with thousands of different 

Minecraft tasks. 

•  Curates a large-scale multimodal knowledge base 

from tutorial videos, live streams, and so on, which 

can be used to teach the agent tasks and strategies for 

accomplishing a goal. 
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 Figure 5-14. MineDojo is a framework for developing generalist 

 agents that learn from open-ended tasks and Internet-scale 

 data. Used with permission, source: https://arxiv.org/

 pdf/2206.08853 [44]

MineCLIP[45] is a novel learning method that uses pretrained video 

models to learn a reward function that is used to guide agents in Minecraft. 

MineCLIP connects large language models with visual understanding of 

the Minecraft world, allowing agents to:

•  Understand natural language instructions: Interpret 

human-like commands and goals (e.g., “build a 

house”). 

•  Learn from videos: Gain skills and strategies by 

watching Minecraft gameplay videos. 

•  Act autonomously: Perform complex tasks in the 

game based on language instructions and learned 

knowledge. 

In essence, MineCLIP acts as a bridge between language and action 

in Minecraft. It does this by building a contrastive video-language model 

pretrained on MineDojo’s YouTube videos. This model processes video 

frames and their descriptions to learn correlations. It takes a sequence 
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of the last 16 RGB frames, processes them to extract features, and 

aggregates them into a video feature. The textual goal is encoded into a text 

feature and then the video and text features are compared to compute a 

correlation score, indicating how well the video frames the agent observes 

match the goal, thus learning whether the agent is actually successful in 

accomplishing the goal or not. For example, if the task is “do x task to get y 

food” the correlation score will reflect how well the video frames align with 

this task description. 

This score is used as a reward for training the RL agent, helping it 

prioritize actions aligned with goals. MineCLIP is designed for multi-task 

RL, using the correlation score to guide the agent on various tasks without 

manually engineering reward functions (see Figure 5-15). 

 Figure 5-15. Pipeline for MineCLIP uses contrastive learning on 

 video-language data. Used with permission, source: https://arxiv. 

 org/pdf/2206.08853 [44]

Although the focus for this specific project was in Minecraft, similar 

simulation environments can be used to show how robotics can benefit 

from simulation. These environments provide a safe space for robots to 

practice, refine, and store their skills, which enables better learning and 

adaptation to new tasks and environments. 
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 Simulation for Reward Design

Teaching robots to perform complex tasks often requires hand-engineering 

reward functions to guide the robot’s learning process. However, designing 

these reward functions can be time-consuming and might not effectively 

capture the complexity of tasks like dexterous manipulation. Using 

simulation data can be useful as a way to generate, evaluate, and refine 

reward functions in a more controlled and safe environment. 

For example, Eureka[46], developed by NVIDIA, uses IsaacGym[1] to create diverse and complex robotic manipulation tasks. These tasks range 

from simple object handling to bimanual manipulations like rotating a cup 

by 180 degrees or performing pen spinning tricks with a Shadow Hand[47]. 

The core idea behind Eureka is using LLMs such as GPT-4 to generate 

and improve reward functions using an iterative process within simulation. 

See Figure 5-16. 

In the Eureka framework, the robot is given a detailed description of 

the task to perform: details on the environment, goals, and any constraints 

the robot needs to abide by. An initial prompt is passed into the LLM, 

which includes the task description and details about the environment 

that guide the generation of initial reward functions. 

Given a specific number of iteration, the following are done:

•  Sample reward code: The LLM generates multiple 

reward functions based on the initial prompt. These 

reward functions are different “strategies” that provide 

the robot with feedback on how well it is performing 

the task. 

•  Evaluate reward functions in simulation: Each 

reward function is tested in a simulated environment 

where the robot attempts to complete the task using the 

reward function and then performance is measured by 

using a fitness function that quantifies the effectiveness 

of each reward function in teaching the robot
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•  Reward reflection: The best performing reward 

functions are selected based on analyzing how rotation, 

distance, and angular velocity penalties contributed to 

the robot’s performance. Values of these components 

and the task fitness function are monitored during the 

training process. The initial prompts are then refined 

to help the LLM generate more optimized reward 

functions using feedback from the components and 

adjustments. 

•  Update reward: If the best reward function from the 

current iteration performs better than the previous 

best, then Eureka updates its reference reward. 

 Figure 5-16. Eureka algorithm. Used with permission, source: 

 https://arxiv.org/pdf/2310.12931 [46]
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An evolutionary search technique is used to sample multiple reward 

functions from the LLM in each iteration, increasing the chances of finding 

at least one good reward function by increasing the number of samples. 

These functions are refined by mutating the best performers and using 

random restarts to avoid local optima and find better solutions. 

The reward function itself consists of a few main components:

•  Rotation reward measures how closely the object’s 

orientation matches the goal orientation. 

•  Distance reward focuses on the proximity between the 

robot’s fingertips and the object. 

•  An angular velocity penalty is applied, which 

discourages any sudden or rapid movements and helps 

create more controlled actions. 

•  The total reward is a weighted sum of these 

components based on how much they influence the 

robot in completing its task successfully. 

This continuous improvement would not be possible without a 

simulated environment where it is easy to control the robot and its 

environment and test different reward functions. Using this technique, 

Eureka found that the generated reward functions improved over human 

designed reward functions and in some cases even generated novel reward 

formulations. 

 Simulation for World Modelling

Traditional methods for generating large-scale datasets for robot learning 

often rely on[48]:
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•  Demonstrations: Require significant human 

involvement to teach the robot tasks, thus can be very 

time-consuming and labor-intensive. 

•  Autonomous data collection: Can be engineering- 

intensive for bootstrapping skills and challenging to 

scale even if it is autonomous. 

Since both methods are challenging to implement at a large scale, 

this can limit the diversity and volume of data available for training robot 

models. Simulation, as discussed, is one way to solve this problem because 

it allows robots to learn in a virtual environment. Another solution is 

through advanced world modeling, which can help generate realistic and 

diverse data. 

World modeling is important for robots to understand their 

environment, but it’s also a good way to gather data that can be used 

for robot learning. Consider the example of ROSIE (Scaling Robot 

Learning with Semantically Imagined Experience)[48], work from Google 

DeepMind, in which a text-guided diffusion model is used for world 

modeling. See Figure 5-17. 

ROSIE augments demonstration data to improve the variation in 

robot learning datasets and increase the adaptability of imitation learned 

policies. 

•  Using an open vocabulary segmentation model, ROSIE 

identifies and localizes different regions of interest in 

the image to identify where augmentations should be 

applied. 

•  The identified regions are edited using text-guided 

image-editing. For example, it might add new objects 

or alter existing ones based on text prompts that are 

variations of the initial task. Using the text prompts, the 

image editor creates new, varied versions of the original 
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task. This augmented data includes different objects, 

backgrounds, and so on. Each image in the episode is 

processed to include these new elements, which as a 

result increases the diversity of the dataset. 

•  The augmented data is then used to train an RT-1[49] 

manipulation policy, which is a multitask imitation 

policy covered in Chapter 4. The idea is that, by 

incorporating a wide range of scenarios, the policy 

becomes more robust to new and unseen tasks. 

 Figure 5-17. Architecture for ROSIE. Used with permission, source: 

 https://diffusion-rosie.github.io/ [48]

Other methods, such as InstructPix2Pix[50], have tried using 

similar approaches. However, ROSIE has found that their generated 

augmentations end up being more physically realistic and consistent 

within the context of the original task. This is done by ensuring there are 

no broader, global changes to the image that could change the context of 

the original image. See Figure 5-18. 
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 Figure 5-18. Augmentation process used in ROSE. Used with 

 permission, source: https://diffusion-rosie.github.io/ [48]

From an infrastructure perspective, NVIDIA has released a lot of new 

tools for simulation and world modeling that may be of interest to robotics 

developers interested in building realistic and scalable robot learning 

policies. At GTC 2024, they announced Project GR00T, a foundation 

model for humanoid robots and Jetson Thor, a new computer specifically 

designed for humanoid robots[51]. Isaac Lab from NVIDIA supports 

running thousands of parallel simulations to support RL and large-scale 

data generation, model training, and distributed workflows[51]. These 

tools collectively advance the capabilities of robots to be able to perform 

more complex tasks and improve some of the data-scarcity issues that exist 

in robotics through large-scale simulation support. 

 Simulation for Imitation Learning

Simulation environments can provide a means to scale imitation learning 

approaches and iterate on scalable research ideas. VIMA: General 

Robot Manipulation with Multimodal Prompts is a work from NVIDIA 

that pushes along this direction, with specific focus on multimodal task 
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conditioning[52]. While VIMA is a generic method that can be executed 

in real-world settings, it is an impressive example of using simulation 

for end-to-end learning, ground concepts, and iterating fast at scale. 

VIMA constructs a simulation benchmark with thousands of generated 

tabletop grasping tasks with a mix of text and image prompts and over 

600,000 expert episodes to help robots learn through imitation. VIMA uses 

multimodal prompting—that is prompting with a combination of images 

and texts—with a transformer-based architecture to execute an extensive 

range of robotic manipulation tasks. 

VIMA demonstrates some interesting ways to specify tasks for robot 

learning, via multimodal prompting:

•  Goal conditioning for orientation: In a task such as 

rearranging objects, it is harder to specify that goal via 

text alone, and needs multimodal specification. One 

way to do that is to give an image and prompt the robot 

to rearrange the scene to match the expected final 

configuration. Let’s say you have a table with various 

fruits (apples, bananas, oranges) that are scattered 

around. The prompt includes an image of a neatly 

arranged fruit platter, where each fruit is arranged in a 

specific order. The corresponding text “Rearrange the 

fruits to match this layout” is provided. 

•  One-shot learning: The goal here is for the robot to 

learn to perform a task when given a single expert 

demonstration only. For example, if you want a robot to 

learn to stack books in a specific order, you can provide 

a sequence of images that show a person stacking 

different books in each frame alongside the text “Stack 

books in this order.” 
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•  Concept grounding: Checks if a robot can understand 

symbolic concepts and perform tasks that manipulate 

them. Let’s say you introduce new objects called “x” 

and “y” to the robot. The prompt includes images 

showing “This is x” next to a picture of a cylindrical 

object and “This is y” next to a spherical object. The 

task might be to “Place x next to y.” 

•  Visual constraint: Here you specify constraints 

through a mix of images and text. For example, if you 

want the robot to clean up a play area, you might 

provide it with the prompt “Move all the toys into the 

box without knocking over the tower of blocks,” but part 

of the prompt is visual tokens. 

Figure 5-19 shows examples of these use cases and how VIMA is 

prompted multimodally for each. 

 Figure 5-19. VIMA processes multimodal prompts combining 

 language and visual inputs to specify robot manipulation tasks. Used 

 with permission, source: https://arxiv.org/pdf/2210.03094 [52]
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The architecture of VIMA is shown in Figure 5-20. They use a trained 

T5[55] tokenizer to tokenize the multimodal prompts and use self- and 

cross-attention to interleave prompt tokens and tokenized interaction 

history. This context is then used by a causal decoder to output actions, 

and the entire system is trained via behavioral cloning on a dataset of 

expert demonstrations. 

 Figure 5-20. Architecture of VIMA. Used with permission, source: 

 https://arxiv.org/pdf/2210.03094 [52]
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Trained VIMA variants were tested for various levels of generalization:

1.  Scene generalization: By placing the objects in 

different orders/orientations in the scene. 

2.  Seen objects, but novel combinations: Manipulating 

two different objects in a combination that was not 

seen in the training set, but in which each object 

was seen in a different context while training. This 

checks for transfer of concept grounding from the 

training stage to the inference stage. 

3.  Novel objects: New objects are introduced to tasks 

not seen during training to check for generalization. 

4.  Novel tasks: Entirely unseen tasks with unseen 

objects. 

Figure 5-21 shows the generalization evaluation framework used in 

VIMA. Each of these levels differs progressively from the training data, 

making the task more challenging and acting as a strong evaluation 

framework for generalization. While this study was done entirely in 

simulation, one can transfer all these concepts to real-world domains, 

providing a stark example of how simulation is used to advance robot 

learning research. 

 Figure 5-21. Four levels of evaluation for VIMA to measure zero-shot 

 generalizability. Used with permission, source: https://arxiv.org/

 pdf/2210.03094 [52]
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 Summary

During this chapter, you learned that:

•  Simulations offer a cost-effective and scalable solution 

to generate diverse synthetic data, which can help 

robots learn safely and efficiently. However, limitations 

like the Sim2Real gap require combining simulation 

with real-world data. 

•  Robot simulators, like PyBullet, MuJoCo, and Gazebo, 

include core features such as physics engines for rigid 

and soft body dynamics, robot modeling through 

URDF, environment simulation, and user interaction 

via APIs and GUIs for control and visualization. 

•  Techniques like domain adaptation and domain 

randomization are used to bridge the gap between 

simulation and the real world. Approaches such as 

guided domain randomization focus on training 

models with progressively more challenging scenarios. 

•  Methods like RL-CycleGAN address the Sim2Real gap 

by translating simulated images into realistic ones 

while preserving semantics. This can help improve the 

ability of RL agents to generalize to real-world tasks. 

•  Learning from simulation using both simulated 

and real-world data improves task exploration and 

skill acquisition. This was shown by QT-Opt for 

robotic manipulation, and projects like Voyager 

and MineDojo, with LLMs and foundation models. 

Simulators also help in reward design, as seen with 

Eureka. Additionally, world modeling methods 

like ROSIE augment training data to improve 
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policy adaptability, while VIMA uses multimodal 

prompting and transformers to train robots on diverse 

manipulation tasks. 

The next chapter explores the use of deep learning methods for 

mapping and localization in robotics, sensor setups, geometric and 

semantic mapping techniques, and various localization methods. 

 Tutorials

 PyBullet  Tutorial

This tutorial walks you through foundational concepts in PyBullet, 

including loading a URDF, running a simulation, and controlling joints. 

To start, you need to create a URDF file of your robot’s physical 

structure. If you haven’t created a URDF file before, you can use an 

example one from online or generate one using SolidWorks, which has a 

URDF export plugin. 

To install PyBullet in your system, you can copy and paste the following 

into your terminal (Mac and Linux):

sudo pip3 install pybullet

For Windows, you can use the following command in your terminal:

pip install pybullet

Create a new Python file where your URDF is stored. Name it 

pybullet_simulation.py and open it in some code editor. The first pieces 

of code to write in your script are import statements. PyBullet gives you 

access to its simulation API and the time module allows you to add delays 

to control the speed of the simulation. 

import pybullet as p

import pybullet_data

import time
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You can establish a connection to the PyBullet simulation GUI using 

this line, which allows you to visualize and interact with the simulation:

p.connect(p.GUI)

You can run the simulation with an empty world by adding this loop:

while True:

p.stepSimulation()

time.sleep(1./240)

This environment should be completely empty. You can add a flow by 

loading a preexisting URDF of a plane available in PyBullet’s data path:

p.setAdditionalSearchPath(pybullet_data.getDataPath())

floor = p.loadURDF("plane.urdf")

You can then load the robot URDF and set gravity in your environment. 

Make sure to replace [robot_file_name].urdf with the actual name of 

your URDF file. 

robot = p.loadURDF("my_robot.urdf")

p.setGravity(0, 0, -9.81)

Before controlling the robot joints, it can be useful to inspect them 

to understand the joints well. The getNumJoints() and getJointInfo() 

functions can be used for this:

for i in range(p.getNumJoints(robot)):

joint_info = p.getJointInfo(robot, i)

print(f"Joint {i}: {joint_info}")

To move some joints, you can use the setJointMotorControl2() 

function. This function lets you specify a target position, velocity, and 

other control parameters. 

This code will control the first joint, which usually represents the base 

joint of your robot:
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target_position = 1.57  # 90 degrees

p.setJointMotorControl2(bodyUniqueId=robot, 

jointIndex=0,  # can be changed 

as needed

controlMode=p.POSITION_CONTROL, 

targetPosition=target_position)

You can explore different control modes:

•  POSITION_CONTROL: Moves the joint to a specific angle. 

•  VELOCITY_CONTROL: Controls the speed of the joint. 

•  TORQUE_CONTROL: Directly controls the torque applied 

to the joint. 

•  PD_CONTROL: Uses a PD controller for the joint. 

Finally, you can add the simulation loop to the end of your script to run 

everything together:

while True:

p.stepSimulation()

time.sleep(1./240)

Once you have this basic setup working, you can start experimenting 

with more the advanced features of PyBullet:

•  Collision detection: Add objects to the environment 

and check for collisions. 

•  Sensors: Simulate sensors like cameras or LiDAR. 

•  Reinforcement learning (RL): Train your robot using 

RL algorithms in PyBullet. 

For debugging and fixing any errors, we recommend looking through 

PyBullet’s official documentation[53]. 
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CHAPTER 6

Mapping, 

Localization, 

and Navigation

Humans use multimodal sensory perception to identify objects and move 

in complicated spaces. This allows us to navigate, perform complex tasks, 

and interact with objects in our environment. Similarly, using varying 

sensors and multimodal sensory perception, robots (such as self-driving 

cars, drones, and home robots) can sense their surroundings and make 

decisions by estimating their current state and environment. These 

capabilities are enabled through localization and mapping, which are the 

focus of this chapter. 

 Localization helps a robot understand where it stands in a current 

scene; it involves determining the “states” of a robot (location, orientation, 

velocity, etc.) relative to other objects.  Mapping involves capturing a model 

of its environment through geometry, appearance, and different 2D or 3D 

space semantics. Mapping is a precursor to localization, as localization of 

a robot is done with respect to its map.  Navigation is the act of moving to a 

desired location, and it encompasses mapping, localization and reasoning. 

Before you dive into methods for each of these, it’s essential to understand 

why and when to use deep learning for mapping and localization tasks. 

© Alishba Imran, Keerthana Gopalakrishnan 2025 
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 Why Use Deep Learning? 

Numerous classical methods and algorithms have been developed over 

the years to address the challenges in localization and mapping. Some of 

these methods include odometry estimation—such as visual odometry[1], 

LIDAR odometry[2], SLAM[3], and structure from motion (SfM)[4]. 

Choosing between deep learning-based and traditional techniques, 

like Kalman filters[5], involves considering tradeoffs. Kalman filters are 

effective for visual odometry, sensor fusion localization, or SLAM. Take 

for example, Comma AI’s open-source implementation, RedNose[6] that 

is used for real world self-driving. While this chapter focuses on deep 

learning methods, the choice of methods used depends on the application 

requirements, as each approach has advantages and disadvantages. 

 Traditional  Methods

Traditional methods excel at handling noisy or inconsistent data 

through well-established mathematical techniques. They can be more 

interpretable, which is essential for applications where understanding the 

decision-making process is crucial. These methods typically require less 

labelled data for training, making them suitable for scenarios with limited 

data collection. 

However, traditional methods often require manual feature 

engineering, which can be time-consuming and might only capture 

some relevant information in complex sensor data. They may also need 

significant modifications to adapt to new or changing environments. 
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 Deep Learning Methods

Deep learning methods can achieve high accuracy when trained on large 

and diverse datasets, as they can learn complex relationships in data. 

Relevant features can be learned directly from complex and  high- 

dimensional sensor input data, reducing the need for manual feature 

engineering. If trained on representative data, these methods are 

adaptable to different environments and scenarios, making them suitable 

for applications with frequently changing environments. Additionally, they 

capture intricate spatial relationships within data, useful for understanding 

complex maps or 3D reconstructions. 

On the downside, for deep learning models to learn effectively, a lot 

of the labeled data can be needed for training and annotating data can be 

time-consuming and expensive. These methods also demand significant 

computational resources for training and running. Furthermore, while 

they can excel in environments they’ve been trained in, they might only 

generalize to new or unseen scenarios when trained on a large corpus of 

diverse data. 

 A Hybrid Approach

More practically, a hybrid strategy is often deployed in the real world, 

which incorporates the benefits of both deep learning and conventional 

methods. For instance, deep learning models can extract features and 

learn complicated patterns, while conventional techniques can be used 

for sensor fusion or noise reduction. Currently, tasks such as object 

detection and semantic segmentation are done via a neural network, but 

functions like odometry and 3D reconstruction are often done using more 

“traditional” methods. See Figure 6-1. 
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However, we are starting to see a change, as methods like Dust3r[7] use 

neural networks to reconstruct geometry. Dust3r works with the following 

main steps:

•  Takes multiple images from different viewpoints and 

passes these through a ViT[8] to get feature maps. 

•  These feature maps are then fed into transformers[9] 

that share information between the different 

viewpoints to produce pointmaps and confidence 

scores for each image. The pointmaps represent the 

3D coordinates of points in the scene, and each has an 

assigned confidence score. 

•  The pointmaps from different viewpoints are aligned 

to a common coordinate frame, allowing for the 

reconstruction of a 3D scene model. 

 Figure 6-1. The network uses a shared ViT encoder, transformer 

 decoders, and regression heads to generate pointmaps and confidence 

 maps from two scene views. Used with permission, source: https://

 arxiv.org/pdf/2312.14132 [7]

Similarly, neural network-based methods are becoming more 

promising for monocular depth estimation. Recent developments in video 

models are a strong example of this, as they can be conditioned on an 

input image and could allow people to perform depth estimation from 

video sequences. A 2023 survey[10] highlights that while NN monocular 
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depth estimation is not fully mature, progress is being made: “In our 

view, the majority of existing MDE algorithms suffer from a limitation in 

training diversity, specifically in terms of various areas and image types. 

For instance, when the training dataset lacks a sufficient number of images 

featuring the sky, it can lead to challenges in accurately estimating depth 

in those particular regions.” As training datasets become more diverse 

and detailed, the performance of neural network-based depth estimation 

methods could improve significantly. 

The decision of where and when to use deep learning for mapping 

and localization tasks is ultimately influenced by variables such as data 

availability, computational resources, and application needs. 

 Typical Mobile Robot Setup

While there is a lot of variation in robot sensor configurations and 

embodiments, most general-purpose systems (such as autonomous cars 

or humanoid robots) require specific sensors to be effective at mapping 

and localization. Having an RGB camera and an IMU sensor is essential, 

and most systems will likely have multiple RGB cameras (possibly in a 

stereo camera setup for depth estimation). A LiDAR depth sensor can 

provide highly accurate 3D maps, but some companies (e.g., Tesla) 

prefer vision-based systems due to LiDAR’s cost and complexity. Finally, 

GPS sensors are commonly used for robots that may travel considerable 

distances (such as autonomous cars). Determining the proper sensor 

configuration and pairing it with the right estimation techniques is a 

complex problem without a “one size fits all” answer and often involves 

some experimentation. 
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 Mapping

In robotics,  mapping refers to a robot’s ability to create a reliable, detailed 

model of its environment, which helps it be aware of its surroundings. 

Deep learning methods can be used to perceive the environment and 

create a scene map. This scene map can be helpful in planning and 

navigation. 

 Geometric  Mapping

Geometric mapping represents a scene’s shape and structural details. In 

geometric mapping, voxel representation is a scene representation that 

divides the 3D environment into a grid of small cubes (voxels) that can 

tell you if the space in the scene at that point is occupied or free. Depth 

representation involves creating an image from depth sensors where 

each pixel has information on the distance to the nearest object. These 

representations provide an understanding of the scene’s spatial layout and 

spatial geometry. 

 Depth  Representation

Depth maps are crucial for understanding the geometry and structure of a 

scene. Many deep learning methods, such as supervised learning methods, 

use CNNs with RGB images and depth maps to predict depth. However, 

these methods require a large amount of depth data, which might not be 

available in all cases. To address this, semi-supervised methods and self- 

supervised methods that rely on unlabeled data can be used, but they face 

challenges in generalization. 
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The main steps in the depth representation pipeline are as follows:

•  Collect RGB images using a monocular camera or 

datasets such as NYU-v2[11] or KITTI[12], which 

provide RGB images with ground truth depth maps. 

•  To extract features from the images, use a CNN, such as 

pretrained models like ResNet[13] or DenseNet[14]. 

•  Various deep-learning models can be used to predict 

depth values for each image pixel. In supervised 

learning methods, a CNN would be trained on RGB 

images and corresponding depth maps to directly 

output depth information. In self-supervised methods, 

networks would be trained using unlabeled images 

by getting additional information from stereo images 

or visual odometry. Semi-supervised methods often 

combine labelled and unlabeled data for training. 

•  Often, an additional module refines the depth map. 

This can be done by aligning the initial depth estimates 

with expected geometric constraints or integrating 

global context through self-attention[15]. 

We don’t go into too much detail about these methods, but an 

overview of specific deep learning-based depth estimation models is 

shown in Figure 6-2, and you can learn more here[16]. 
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 Figure 6-2. Methods for depth estimation. Used with permission, 

 source: https://www.ncbi.nlm.nih.gov/pmc/articles/

 PMC7219073/ [16]

 Voxel  Representation

A 3D space’s volume element is known as a  voxel, and a natural way to 

represent 3D geometry is with a voxel-based formulation. The pipeline for 

voxel representation often looks as follows:

•  Sensors such as LiDAR, RGB-D, or stereo cameras 

collect raw 3D data. 

•  This raw 3D data can be converted into a  point cloud,  

which is a collection of data points in which each point 

represents a point on the surface of an object. 
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•  In some cases, this point cloud can also be converted 

into a  3D mesh,  which is a group of vertices, edges, and 

faces representing the shape of objects. 

•  This 3D data can undergo voxelization, where, based 

on the points from the point cloud, each voxel is 

identified as either occupied by an object or free. 

•  A voxel grid can be used as an input to a CNN to 

extract features that represent the spatial structure and 

occupancy of the environment. 

Tesla previously popularized an Occupancy Network[17], a 3D voxel 

representation of the world from their eight camera streams[18]. Their 

system uses eight cameras, which feed into models designed for feature 

extraction (see Figure 6-3), where an attention module generates an 

occupancy feature volume, which is combined with previous volumes to 

create a 4D occupancy grid. Finally, deconvolutions restore the original 

size, resulting in the occupancy volume, a 3D bird’s-eye view, and the 

occupancy flow, which shows the movement of each pixel from one frame 

to the next. 
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 Figure 6-3. Tesla’s Occupancy Network overview. Used with 

 permission, source: https://www.thinkautonomous.ai/blog/

 occupancy-networks/  by Think Autonomous[39 ]

While voxels have many use cases, one of their limitations is the high 

computational demand of reconstructing a scene in the high resolution 

that’s needed for a voxel representation. 

 NeRF: Neural Radiance Fields

Neural Radiance Fields (NeRFs)[19] are used in the computer vision field 

because they allow the generation of detailed 3D scenes from 2D images. 

They offer valuable applications in robotics, particularly for localization, 

mapping, and understanding 3D environments. A NeRF is simply training 

a neural network to predict what an image of a scene would look like from 

a particular camera pose. The network is deliberately “overfit” to many 

pictures of a single scene and can then predict images for novel camera 

poses not in the training set. 
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NeRFs use a feed-forward network to generate detailed information 

about a scene. They use  rays, which are lines in 3D space extending from a 

specific camera viewpoint into the scene in certain directions. These rays 

are lines in 3D space that project from a particular camera viewpoint into 

the scene along specific paths. The rendering process then merges this 

information into a 2D image. Since both components are differentiable, 

the entire system can be trained end-to-end. NeRFs define a 5D radiance 

field as an input of a location (x, y, z) and a 2D direction (specified by two 

angles in 3D space). As shown in Figure 6-3, the output from this function 

consists of volume density (opacity) and color (RGB value). The radiance 

field uses a feed-forward neural network with a 5D input to output the 

corresponding color and volume density information. An overview of the 

main steps in NeRFs is shown in Figure 6-4. We break down each of these 

steps in more detail next. 

 Figure 6-4. Overview of NeRF and rendering. Used with permission, 

 source: https://arxiv.org/pdf/2003.08934 [19]

To create a new view, camera rays are passed through the scene to get 

3D points. These points, along with their 2D viewing directions, are input 

into the neural network to generate colors and densities. These are then 

combined using classical volume-rendering techniques into a 2D image. 
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The following code illustrates the MLP that can be used to convert the 

5D input into RGB output:

# Model architecture

def init_nerf_model(D=8, W=256, input_ch=3, input_ch_views=3, 

output_ch=4, skips=[4], use_viewdirs=False):

relu = tf.keras.layers.ReLU()

def dense(W, act=relu): return tf.keras.layers.Dense(W, 

activation=act)

print('MODEL', input_ch, input_ch_views, type(

input_ch), type(input_ch_views), use_viewdirs)

input_ch = int(input_ch)

input_ch_views = int(input_ch_views)

inputs = tf.keras.Input(shape=(input_ch + input_ch_views))

inputs_pts, inputs_views = tf.split(inputs, [input_ch, 

input_ch_views], -1)

inputs_pts.set_shape([None, input_ch])

inputs_views.set_shape([None, input_ch_views])

print(inputs.shape, inputs_pts.shape, inputs_views.shape)

outputs = inputs_pts

for i in range(D):

outputs = dense(W)(outputs)

if i in skips:

outputs = tf.concat([inputs_pts, outputs], -1)

if use_viewdirs:

alpha_out = dense(1, act=None)(outputs)

bottleneck = dense(256, act=None)(outputs)

inputs_viewdirs = tf.concat(

[bottleneck, inputs_views], -1)  # concat viewdirs
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outputs = inputs_viewdirs

# The supplement to the paper states there are 4 hidden 

layers here, but this is an error since

# the experiments were actually run with 1 hidden 

layer, so we will leave it as 1. 

for i in range(1):

outputs = dense(W//2)(outputs)

outputs = dense(3, act=None)(outputs)

outputs = tf.concat([outputs, alpha_out], -1)

else:

outputs = dense(output_ch, act=None)(outputs)

model = tf.keras.Model(inputs=inputs, outputs=outputs)

return model

This code has been taken without adaptation from [20]. 

NeRF computes loss by comparing the pixels of the rendered image 

to the ground truth images. Using this process, NeRFs can create detailed 

3D reconstructions of physical spaces, which can be valuable for robots 

navigating complex environments. Additionally, the photorealistic images 

generated by NeRF capture the objects’ geometry and appearance, 

improving the robots’ ability to interpret scenes and navigate their 

surroundings accurately. 

 Semantic  Mapping

Semantic mapping is creating a map so that objects and features in a 

scene are labelled with information that describes the scene. This can 

include identifying objects (car, dog), attributes about the objects (red, tall) 

and relationships (the vehicle is next to a tree). Traditionally, semantic 

mapping has been based on closed-vocabulary techniques, which means 

using a predefined set of labels. Due to large vision language models such 
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as CLIP[21], semantics are moving closer to open-vocabulary techniques. 

This allows for a more flexible and dynamic understanding of the scene 

and the ability to generate labels based on vocabulary learned from large 

image-text datasets. 

Examples of methods that use this approach are Language Embedded 

Radiance Fields (LeRFs)[22], which use a neural approach to incorporate 

open-vocabulary semantics, and ConceptFusion, an explicit approach to 

semantic mapping. 

 Language Embedded Radiance Fields (LeRFs)

LeRF[22] integrates open-vocabulary semantic features into neural 

rendering, allowing detailed 3D scene representations to be created (see 

Figure 6-5). The main steps in LeRF are as follows:

•  An input image is preprocessed into multiscale patches, 

which are smaller sections of an image extracted at 

different scales or resolutions. These patches are 

passed through a large vision language model such as 

CLIP to obtain CLIP features at different scales. 

•  The CLIP model is key in extracting visual and semantic 

information from the patches to generate feature maps 

at different scales. 

•  The neural network will take in spatial coordinates (x, 

y, z), view directions (θ, ϕ), and scale as inputs. 

•  Various parameters are outputted, such as RGB values, 

density, and DINO[23] features, which capture visual 

and semantic information from the input image, and 

CLIP features, which provide representations linking 

visual content with text descriptions. 
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•  A loss function aligns the rendered features with 

semantic information from CLIP. This function is 

essential to ensure that the generated 3D scene has 

accurate semantic labels. 

 Figure 6-5. LeRF rendering and multiscale CLIP preprocessing. Used 

 with permission, source: https://arxiv.org/pdf/2303.09553 [22]

 ConceptFusion

ConceptFusion[24] uses an explicit approach to semantic mapping that 

combines different levels of visual embeddings to create pixel-aligned 

embeddings that contain semantic information. ConceptFusion has a few 

main steps:

•  Using an input image, masks and crops are generated. 

Masks identify different objects in the image, and crops 

are just smaller sections of the image that correspond 

to these masks. 

•  Two levels of embeddings are generated using a feature 

extractor that takes in the original image, masks, and 

crops. Global embeddings represent the overall context 

of the entire image, and region-level embeddings 

capture more detailed features of specific objects in 

the image. 
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•  The global and region-level embeddings are combined 

using zero-shot pixel fusion, which aligns their features 

at the pixel level. 

•  The output of the zero-shot pixel fusion is a pixel- 

aligned embedding that captures the image’s visual 

features and semantic information. 

Given this learned embedding, you then have an image with labels that 

provide a semantic map of the entire scene. The pipeline of ConceptFusion 

is shown in Figure 6-6. 

 Figure 6-6. ConceptFusion generating pixel-aligned features. Used 

 with permission, source: https://concept-fusion.github.io/

 assets/pdf/2023-ConceptFusion.pdf [24]

 Localization

Understanding a robot’s location is essential because it helps it track its 

path and determine its future actions. A typical approach to figuring out 

a robot’s location involves using sensors such as LiDAR and odometry. 

For example, integrating LiDAR data with odometry can help track how 

the robot’s position changes over time, creating a map of the robot’s 

surroundings. An instance of such a localization system is Simultaneous 

Localization and Mapping (SLAM)[3]. However, SLAM can encounter 

issues when the robot is moved unexpectedly and encounters failure 

modes due to reliance on odometry. For this reason, using LiDAR or 

camera data with deep learning methods is another promising direction. 
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 2D-to-2D  Localization

2D-to-2D localization estimates the camera’s position relative to a 2D 

map by matching images captured by the robot with features on the map. 

This method can use  explicit localization,  where the scene is represented 

by images tagged with geographical coordinates that can be directly 

compared and matched[25]. Alternatively,  implicit localization uses a 

neural network that has been trained to understand and represent the 

scene. In this case, the camera’s position is inferred based on the captured 

images without explicit geographical tags[25]. 

There are many 2D-to-2D localization methods, and while we don’t 

cover them all here, Figure 6-7 provides a comprehensive overview for 

further reference. 

 Figure 6-7. Models used for 2D-to-2D localization. Used with 

 permission, source: https://ieeexplore.ieee.org/stamp/stamp. 

 jsp?tp=&arnumber=10260323 [40]
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Figure 6-8 shows the typical 2D-to-2D-based localization architectures 

using an explicit map from RelocNet[26] and an implicit map from 

PoseNet[27]. In the case of explicit map-based localization, a new image 

is captured, and features are extracted. There is a preexisting database of 

features extracted from training images that are tagged with geographical 

coordinates. The features from the captured image are compared with 

those in the database to find the closest neighbor. The camera’s position 


and orientation are determined by identifying the closest matching 

features in the database and then applying a coordinate transformation 

to map these features to the camera’s pose. On the other hand, implicit 

map-based localization has another neural network module that takes the 

feature maps of the input image and directly predicts the camera’s position 

and rotation. The entire pipeline is trained end-to-end to directly map 

from image features to camera pose. 
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 Figure 6-8. Difference between explicit (a) RelocNet (https://www. 

 robots.ox.ac.uk/~lav/Papers/balntas_etal_eccv2018/balntas_

 etal_eccv2018.pdf )[26 ] and implicit (b) PoseNet (https://arxiv. 

 org/abs/1505.07427 )[27 ] map-based localization. Used both with permission, source: https://ieeexplore.ieee.org/stamp/stamp. 

 jsp?tp=&arnumber=10260323 [40]

RelocNet (see Figure 6-9) determines a camera’s position by 

comparing images. It learns to represent images so that similar images 

have similar representations using nearest-neighbor matching and 

continuous metric learning-based feature descriptors. The method 

incorporates information from overlapping parts of images  
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(camera frusta overlaps) to improve its accuracy. Additionally, RelocNet 

includes a pose regressor that fine-tunes the position estimate using 

geometric information, making the location prediction more accurate. 

 Figure 6-9. Overview of RelocNet. Used with permission, source: 

 https://openaccess.thecvf.com/content_ECCV_2018/papers/

 Vassileios_Balntas_RelocNet_Continous_Metric_ECCV_2018_

 paper.pdf [26]

 2D-to-3D  Localization

Two common 2D-to-3D location methods are descriptor matching and 

scene coordinate regression, as shown in Figure 6-10.  Descriptor matching 

determines a camera’s position by comparing the image’s high- 

level features and finer details with a database of pre-stored images to 

refine the match and calculate the exact position and orientation[25]. In 

contrast,  scene coordinate regression uses a neural network to predict 3D 

coordinates for each pixel in the input image, assesses the confidence of 

these predictions, and then determines the camera pose based on these 

coordinates[25]. Both methods aim to determine the camera’s location but 

use different techniques. 

284

[image: Image 149]

Chapter 6   Mapping, LoCaLization, and navigation

 Figure 6-10. Difference between descriptor matching (a), 

 HF-Net (https://arxiv.org/pdf/1812.03506 )[41], a nd scene coordinate regression (b), Confidence SCR (https://arxiv. 

 org/abs/1805.08443 )[42 ]. Used with permission, source: 

 https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumb

 er=10260323 [40]

A summary of common 2D-to-3D localization methods is shown in 

Figure 6-11. 
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 Figure 6-11. 2D-to-3D localization models. Used with permission, 

 source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arn

 umber=10260323 [40]

 3D-to-3D  Localization

3D-to-3D localization, also known as LIDAR localization, involves 

determining the position and orientation of the camera by matching 

3D point clouds generated by a LiDAR to a preexisting 3D map of the 

environment. This process usually means comparing the captured 3D 

image with the stored map to find the best fit[25]. This can be helpful for 

more complex environments where 2D mapping might fall short. 

The process of 3D-to-3D localization is depicted in Figure 6-12. 

Using a LiDAR point cloud and a prebuilt map, PointNet[28] extracts 

relevant features. These features are then fed into a CNN for further 

feature extraction. Finally, the processed data is passed through Recurrent 
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Neural Networks (RNNs)[29] to refine the pose estimate, learn temporal 

relationships, and output the optimal camera pose. 

 Figure 6-12. 3D-to-3D localization process. Used with permission, 

 source: https://openaccess.thecvf.com/content_CVPR_2019/

 papers/Lu_L3-Net_Towards_Learning_Based_LiDAR_

 Localization_for_Autonomous_Driving_CVPR_2019_paper.pdf[ 43 ]

Figure 6-13 shows a summary of other 3D-to-3D localization methods. 

 Figure 6-13. 3D-to-3D localization models. Used with permission, 

 source: https://arxiv.org/pdf/2006.12567 [25]

We recommend checking out this paper[25], which we reference in this 

chapter, for further reading. 

 Navigation

Vision language models (VLMs)[30] are large models that can understand 

and process text and image data. Google’s Gemini 1.5 Pro[31] is an 
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example of this, and it uses a Mixture-of-Experts architecture[32] to 

process long contexts. It can handle up to 1 million tokens in standard use 

and up to 10 million tokens in research settings. This translates to about 

one hour of video, eleven hours of audio, and over 30,000 lines of code. 

Using VLMs can be powerful for robotics in solving navigation tasks. 

Specifically, Multimodal Instruction Navigation with Demonstration 

Tours (MINT) is a type of navigation task that uses recorded video 

demonstrations to guide robotic navigation. An example of this method 

is Mobility VLA[33], which uses a demonstration tour video of the 

environment and multimodal user instructions (images and language). 

The system has two main parts: a high-level policy, which uses the video 

and instructions to identify the goal, and a low-level policy, which uses this 

goal along with a pre-computed topological map to plan the robot’s path 

and actions. An overview of Mobility VLA is shown in Figure 6-14. 

 Figure 6-14. Mobility VLA architecture. Used with permission, 

 source: https://arxiv.org/pdf/2407.07775 [33]

The Mobility VLA architecture consists of the following main parts:

•  Multimodal user instruction: The user provides 

instructions in the form of an image of the environment 
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or task that needs to be done. For example, an image of 

a shelf where an item needs to be placed. A language 

instruction consists of text instructions describing the 

task. For example, text saying “Place this box on the 

top shelf.” 

•  Demonstration tour video: A recorded video where a 

human or a robot navigates through the environment 

and key locations and actions are captured. For 

example, a video showing someone walking through 

an office and pointing out where the desks, shelves, 

and doors are. This serves as a reference for the robot 

to understand the layout and important features of the 

environment. 

A prompt (𝐹, 𝑁, 𝑑, 𝐼) is prepared, which includes frames (images from 

the tour video), narratives (descriptions associated with each frame), 

distances (contextual information about the distance or location), and 

multimodal user instructions combining text and images. An example of 

this is shown in Figure 6-15. 

 Figure 6-15. A demonstration of how a multimodal prompt is 

 used by a Vision Language Model (VLM) to guide a robot in a 

 navigation goal. Used with permission, source: https://arxiv.org/

 pdf/2407.07775 [33]
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•  Goal finding: The VLM identifies specific frames in 

the video that correspond to the goal described by the 

input instructions. For example, the VLM could identify 

the frame showing the shelf where the box needs to 

be placed. This ensures that the robot understands 

what it needs to achieve based on context from the 

instructions and the video. 

•  Navigation goal: A high-level goal frame is identified 

by the VLM that matches the user’s instruction. This 

goal could be reaching the shelf identified in the video. 

•  Path finding: The robot uses a pre-computed map, 

which is created from the demonstration tour video 

using a method classed structure-from-motion, which 

creates a 3D representation of the environment. Using 

this map, the robot finds the optimal path to reach the 

navigation goal. 

This is where the low-level goal reaching policy can be used. As input, 

the specific frame identified by the high-level policy and the pre- 

constructed map are used. The robot captures a new image of its current 

view and then, using this the robot, determines its position within the 

topological graph. The robot checks if it has reached the goal vertex and 

if it has, the navigation goal is achieved. Otherwise, the robot computes 

the shortest path from its current position to the goal. The robot calculates 

the next action needed to move from its current position toward the first 

vertex in the path and then the robot performs the calculated action. This 

continues until the robot reaches the goal or the maximum number of 

steps is exceeded. See Figure 6-16. 
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 Figure 6-16. This low-level policy computes waypoint actions at 

 every timestep. Used with permission, source: https://arxiv.org/

 pdf/2407.07775 [33]

This method shows the power of using VLMs and leveraging their 

ability to capture long-contextual information for understanding complex 

environments and instructions. Using VLMs to process multimodal inputs 

can help robots get a more nuanced understanding of their tasks and 

surroundings. 

 Navigation  and Exploration

Navigating new environments is a challenge for robots because they need 

to be able to reach a specific goal that is already defined and search for 

goals in new environments. These tasks are typically defined separately 

and solved using different models. NoMaD[34] is a technique that aims 

to build a unified approach that can solve both tasks and improve overall 

navigation performance. See Figure 6-17. 

NoMaD uses a single diffusion policy that handles both goal-directed 

navigation and exploratory navigation:

•  The robot takes in visual data from its surroundings 

over the most recent moments. Optionally, the robot 

can have a visual goal input indicating the goal 

location, which shows the robot where it needs to go. 
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•  Two EfficientNet[35] encoders are used to process the 

visual data and goal input and turn them into tokens 

that can be used by a Transformer[9] decoder. 

•  The tokens are passed into a Transformer model, which 

uses the tokens to understand the context and make 

decisions about the robot’s actions. The Transformer 

generates a context vector by polling information from 

the input tokens. This context vector represents the 

current understanding of the environment and the task. 

•  Goal masking is a method used to help the model 

understand whether it should be focusing on goal- 

directed navigation or exploratory navigation. It 

combines the information from the goal input with the 

context generated from the observations to make sure 

the model can adapt based on the task provided. 

•  The context vector is used in an action diffusion model, 

which predicts the future actions the robot should take. 

It uses a denoising process with ten steps to refine these 

action predictions. Throughout this process, the model 

computes the temporal distance between the current 

distance and the goal observation (if provided) to 

understand how far the robot is from the goal in terms 

of time. 

•  The action diffusion model outputs a sequence of 

future actions which guide the robot’s movement to 

navigate the environment, whether that be searching 

for a goal or moving toward a known goal. 

292

[image: Image 156]

[image: Image 157]

Chapter 6   Mapping, LoCaLization, and navigation

 Figure 6-17. Architecture of NoMaD. Used with permission, source: 

 https://arxiv.org/pdf/2310.07896 [34]

This model was tested in indoor and outdoor environments using the 

LoCoBot platform[36]. In exploratory mode, the robot identifies potential 

paths to find goals. In goal-directed mode, it navigates directly toward the 

specified targets. This demonstrates the ability of an approach like this to 

understand its environment, follow navigation routes, and make informed 

decisions at intersections. See Figure 6-18. 

 Figure 6-18. NoMaD's rollouts in indoor (top) and outdoor (bottom) 

 environments. Yellow lines are future action samples from the 

 undirected mode and blue lines indicate actions selected by the high-

 level planner. Used with permission, source: https://arxiv.org/

 pdf/2310.07896 [34]
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 Locomotion for Legged Robots

An important area of development in robotics research is legged 

locomotion—when a robot uses legs to move and navigate its 

environment. These robots are beneficial for inspection and exploration, 

where they must navigate challenging terrain and maneuver around 

obstacles. Recently, developments to bring down hardware costs, make 

simulation more realistic, and develop learning-based methods have 

pushed forward research in this field[37]. 

 Hardware

Over the years, the hardware for quadrupedal robots has evolved to 

have improved performance and reduced cost. There are three types of 

actuations: hydraulic, electric motors, and series elastic actuators[37]. 

•  Hydraulic actuators: These actuators are ideal for 

powerful and dynamic movements because they have 

high power-to-weight ratios. Regardless of this, they 

can be costly and require specific maintenance. 

•  Electric motors: These actuators are most commonly 

used in quadrupedal robots. In the past, these actuators 

were used alongside other components, like high-ratio 

gears to improve torque. Recently, high torque-density 

actuators have been developed that allow for direct 

joint control with fewer or no additional parts. These 

developments have reduced complexity and improved 

performance. 

•  Series elastic actuators: These actuators have an 

elastic component that absorbs impact and allows for 

more precise control. 
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More recently, the field has been focusing on proprioceptive actuators, 

which offer higher torque density and control. These actuators use 

sensors to measure the force and position of the joints, which allows 

the control to be more adaptive. These actuators will ultimately enable 

quadrupedal robots to perform more complex tasks. Figure 6-19 shows 

how quadrupedal robots have evolved over time. 

 Figure 6-19. How quadruped robots have evolved overtime. Used 

 with permission, source: https://arxiv.org/pdf/2406.01152 [37]

 Simulation

Simulation is essential to test control algorithms for quadrupedal robots 

before deploying them in the real world. Recent simulations use rigid 

body models, which can more accurately handle collisions by considering 

friction, elastic interactions (two objects collide and bounce off each other 

without loss of energy in the system), and inelastic interactions (when 

two objects collide, they may deform, stick together, or lose some kinetic 

energy)[37]. GPU acceleration has also sped up simulations and the 

training process for more complex tasks using a mixture of real-world data 

from sensor input and simulated data. 
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 MDP  Formulation

Markov Decision Processes (MDPs) are used in RL as a framework for 

decision-making. For locomotion in legged robots, MDPs help design 

control policies. 

The dynamics represent how the robot’s state (position, speed, etc.) 

changes over time. The state evolved based on the robot’s current state and 

the action it takes. This can be represented as follows:



Equation 6-1

This equation represents the state of the robot at the next time step, 

which is determined by the current state, the action taken, and the change 

over a small time step (dt). The change in the state due to actions is 

modeled using a probability function:



Equation 6-2

This gives the likelihood of moving to the next state from the current 

state after taking an action. 

 Learning-based  Methods

A few of the common learning-based methods used to solve MDP for 

locomotion policies[37] are shown in Figure 6-20. 
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•  End-to-end learning: The robot learns how to 

move by treating the entire task as one big problem, 

often formulated as a control problem by MDPs. 

Oftentimes, RL algorithms like TRPO (Trust Region 

Policy Optimization) and PPO (Proximal Policy 

Optimization), which are described in Chapter 7, are 

used to solve this. The intuition is that these algorithms 

help the robot learn by making small, safe updates in 

movements. 

•  Curriculum learning: The goal of curriculum learning 

is to mimic the way humans learn by slowly increasing 

the difficulty of tasks over time. This method helps 

the robot build up skills over time, which can make it 

a helpful technique in complex environments where 

learning slowly with increasing difficulty in tasks can 

be useful. 

•  Hierarchical learning: The complex tasks are broken 

down into smaller, simpler tasks. A high-level policy 

decides on the larger actions, such as choosing where 

to step, and the low-level policies handle the specific 

details like moving the robot’s legs. This can make it 

easier to handle complicated behaviors by focusing on 

specific actions one part at a time. 

•  Privileged learning: A “teacher” policy is trained 

in a simulation where it has full access to all needed 

information. This policy guides a “student” policy, 

which operates on more limited information, similar 
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to real-world conditions. The “student” policy learns to 

leverage the information it has by interrupting a history 

of observations to make decisions. This approach can 

be helpful to bridge the gap between a simulation and 

the real world by helping the robot perform tasks in the 

real world using a fully informed, simulated model. 
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 Figure 6-20. Popular learning frameworks. Used with permission, 

 source: https://arxiv.org/pdf/2406.01152 [37]
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A future direction is using foundation models, which are large models 

that have been trained on a large, diverse amount of data. For legged 

robots, foundation models help the robot interpret its environment and 

plan a sequence of actions. Fine-tuning foundation models with  robot- 

specific data, such as for manipulation tasks, can also be a useful direction 

for directly controlling robot actions. 

One of the challenges in legged robot locomotion is the need for 

benchmarks to evaluate control policies and hardware. The Barkour 

benchmark[38] aims to solve this by providing a standardized obstacle 

course to measure the agility and performance of legged robots (see 

Figure 6-21). The course is designed after dog agility competitions and 

includes four main obstacles:

•  Pause tables, which are platforms where the robot must 

stop and hold its position for a specified time. 

•  Weave poles, which are a series of poles that the robot 

must maneuver through. This directly tests the robot’s 

ability to make precise and agile movements. 

•  An A-frame, which is a steep ramp that the robot must 

climb up and down, allowing a way to evaluate how 

well it can handle inclined surfaces. 

•  A board jump, which is a wide gap that the robot must 

leap over, evaluating the ability of the robot to jump. 

This course evaluates different movements, like running, moving 

sideways, climbing, and jumping. A specific area and allocated time is 

used for each obstacle for fair and consistent evaluation. 
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 Figure 6-21. The design for the Barkour course. Used with 

 permission, source: https://arxiv.org/pdf/2305.14654 [38]

A score measures how quickly and accurately the robot completes the 

course. The scoring starts at 1.0, and points are deducted for each failed or 

skipped obstacle or for taking longer than the allotted time. 

Equation 6-3

Here, the time allocated is the standard time based on dog agility 

competitions. Penalties include a deduction of 0.1 for each failed or 

skipped obstacle and 0.01 for each second over the allotted time. See 

Figure 6-22. 
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To tackle the benchmark, there are two main phases to establishing the 

baseline:

•  Training phase: There are specialist policies that 

include walking, jumping, and slope. In the walking 

policy, the robot learns how to walk in all directions. 

This policy is trained using RL. The jumping policy is 

where the robot learns to jump over obstacles and this 

policy is also trained on RL. The slope policy is where 

the robot learns to handle inclined slopes by practicing 

going up and down slopes. Each of these policies is 

trained separately in a simulation environment. After 

training, the robot’s performance under each policy 

is recorded, creating datasets that capture the robot’s 

behavior under different conditions. The collected 

dataset is used to train a Locomotion Transformer, 

which is a generalist policy that integrates the learned 

behaviors into a single, diverse policy that can adapt to 

the various tasks on the course. 

•  Deployment phase: The evaluation has two parts: the 

evaluation with specialist policies and the evaluation 

with the generalist policy. For the specialist policies, a 

navigation controller, which is a high-level controller, 

determines the overall path the robot should take 

throughout the course. This is decided based on the 

robot’s position and an elevation map of the course. 

Based on the commands from the navigation controller, 

the robot switches between specialist policies (walking, 

jumping, and slope) to navigate through the course. 

Similar to the specialist approach, the navigation 

controller guides the robot through the course in 

the evaluation of the generalist policy. Instead of 
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switching between different policies, the robot uses the 

Locomotion Transformer policy to dynamically adjust 

the movements based on the environment and its 

own state. 

 Figure 6-22. Methods used to establish a baseline for the Barkour 

 benchmark. Used with permission, source: https://arxiv.org/

 pdf/2305.14654 [38]

 Summary

During this chapter, you learned that:

•  Deep learning can learn complex patterns from 

high-dimensional sensor data and adapt to changing 

environments, but it requires large, labeled datasets 

and computational resources. Traditional methods are 

more interpretable and effective with less data but need 

manual feature engineering. 
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•  Most robots use an RGB camera and IMU sensors and 

some incorporate LiDAR for 3D mapping. The choice of 

sensors and estimation techniques varies based on the 

environment and task. 

•  Various representations for defining mapping tasks 

exist in robotics. Geometric mapping creates 3D maps 

with depth data, while voxel representation divides 3D 

spaces into cubes to indicate occupancy. NeRF (Neural 

Radiance Fields) generates 3D scenes from 2D images. 

Semantic mapping uses models like CLIP to label 

objects in scenes with examples of open-vocabulary 

approaches like LeRF and ConceptFusion. 

•  Localization methods include 2D-to-2D localization, 

which compare captured images to pre-tagged maps, 

with methods like RelocNet and PoseNet using neural 

networks to predict a robot’s position. 2D-to-3D 

localization matches image features or uses scene- 

coordinate regression to estimate a robot’s position. 

3D-to-3D localization uses LiDAR to compare point 

clouds to a 3D map. 

•  Some navigation approaches include Mobility VLA, 

which uses a combination of demonstration tours 

and multimodal instructions to guide robots. NoMaD 

unifies goal-directed and exploratory navigation 

using a diffusion policy that adapts to varying tasks by 

combining visual data and goal inputs. 

•  Advances in hardware, simulation, and learning 

methods (e.g., curriculum and hierarchical learning) 

have enabled robots to navigate rough terrain with 

growing research in legged locomotion. 
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The next chapter covers reinforcement learning’s role in robotics, 

focusing on how agents learn from interactions to improve performance, 

tackles challenges like reward design and sample efficiency, and applies 

techniques like sim-to-real transfer and model-free methods like PPO. It 

also highlights emerging trends, like integrating LLMs and learning 

without manually engineered or explicit reward functions. 
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CHAPTER 7

Reinforcement 

Learning and Control

Chris Paxton is a roboticist who has worked 

for FAIR labs at Meta and NVIDIA research. 

He earned his PhD in Computer Science 

in 2019 from the Johns Hopkins University 

in Baltimore, Maryland, focusing on using 

learning to create powerful task and motion 

planning capabilities for robots operating in 

human environments. His work won the ICRA 2021 Best Paper Award on 

Human-Robot Interaction and was nominated for best systems paper at CoRL 

2021, among other things. His research focuses on using language, perception, 

planning, and policy learning to make robots into general-purpose assistants. 

The dominant paradigm for learning in general these days is  supervised 

 learning: taking a known set of data and fitting some large model to it, 

which can be used for downstream applications. But this leaves many 

questions unanswered: where is the data coming from? If the model is not 

good enough—and no model is ever good enough for everything—how 

will it improve, and which data is necessary for it to improve? It would be 

great if the robots could collect their own data and improve on their own. 

Studying how to do this is the main idea of reinforcement learning. 

The dream of reinforcement learning is to build intelligent systems that 

can learn as humans do. They collect data through their interactions with 

the world, intelligently choosing which goals to attempt and which skills 
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to employ in different situations so as to improve their underlying skill set 

and, potentially, their model of the world. 

In many ways, reinforcement learning seems like a true prerequisite for 

real, robust embodied intelligence. Agents deployed in the real world must 

be able to recover and learn from their mistakes; in general, people do not 

want a robot that makes the same mistake over and over again. In addition, 

reinforcement learning is perhaps the clearest route to true  superhuman 

intelligence. It is optimizing some underlying objective and collecting its 

own data, so it can surpass the performance of even domain experts[12] 

and constantly surprise its creators. See Figure 7-1. 

 Figure 7-1. A Boston Dynamics spot robot trained to walk over 

 rough terrain via reinforcement learning. Modern robots are often 

 taught to walk via reinforcement learning, and Boston Dynamics is 

 far from the only company to do so. Used with permission, source:  

 https://bostondynamics.com/blog/starting-on-the-right-

 foot-with-reinforcement-learning/  by Boston Dynamics[10]
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In spite of its high-profile successes in the research community, 

reinforcement is a still-emerging and constantly-changing area of study. 

Unlike in the case of supervised learning, which has dramatic high- 

profile successes in applications like computer vision and language, 

reinforcement learning still has a lot to prove at scale, both in robotics and 

outside of it. However, it has many clear applications, from learning how 

to move around in the world[10][11][22][23], to how to navigate in various environments[24][25], to how to grasp and manipulate objects[25][26][27]

[33], and it has even found applications in large language models[33][34]. 

Reinforcement learning has an unusual place in the milieu of machine 

learning methods. It sits equal to supervised and unsupervised learning 

as one of the three basic machine learning paradigms.  Supervised learning 

involves taking labeled data and fitting a model to it, and  unsupervised 

 learning involves taking whatever data exists in the world and using it to 

learn a generally-useful model.  Reinforcement learning tends to be much 

more goal-oriented, and as such involves making many more assumptions. 

Perhaps the clearest example is what reinforcement learning is used for 

in robotics. It is generally  not used to build general-purpose systems or build 

the foundations for generalist algorithms. It’s used to excel at a specific task, 

and is often accelerated by pretrained vision or vision-language backbones. 

This has been famously summed up by Prof Yann Lecunn in his cake 

metaphor. As applied to robotics, this means:

1.  Self-supervised learning (a variant of unsupervised 

learning) is used to train the models used as a visual 

backbone. 

2.  Demonstration data is used to get the policy started, 

to avoid local minima and dramatically accelerate 

policy learning. 

3.  Finally, reinforcement learning can be used to achieve 

truly superhuman performance, outperforming the 

experts within whatever domain the robot is operating in. 
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The particular ratios of these components vary. In many cases, a 

clearer  problem setup and strong engineered priors can substitute for the 

learned models preceding reinforcement learning, which creates many of 

the difficulties. 

This chapter includes a brief overview of the ideas of reinforcement 

learning, looks at several widely used methods, and goes over common 

modern applications of reinforcement learning, both to machine learning 

in general and to robotics in particular. 

 Reinforcement Learning Basics

Reinforcement learning is generally formalized as a  Markov Decision 

 Process, or MDP (see Figure 7-2). A Markov Decision Process is a model of the form (S, A, T, R), where:

1.  S is a  state space, a representation of the world 

such as the poses of objects a robot might need to 

manipulate. 

2.  A is the  action space, representing which actions the 

agent can take from each state. 

3.  T is the  transition model, in the form of the 

conditional probability distribution P(St+1 | St, At), 

meaning it represents how likely it will transition 

from one state to the next given a particular action. 

4.  R is the  reward function,  representing the immediate 

value of transitioning from state St to state St+1. 
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 Figure 7-2. An illustration of the basic reinforcement learning 

 loop. An agent—such as a robot—takes actions from its action set 

 A, which results in new states in S and observed rewards, R. Used 

 with permission, source: http://incompleteideas.net/book/

 RLbook2020.pdf  [44 ]

From any given state  s ∈  S, within the Markov Decision Process, the 

agent’s goal is to choose the best possible action  a, such that the agent 

maximizes accumulated reward over its lifetime. The choice of  a is 

determined by the policy  a =  π( s); the goal of reinforcement learning is 

then to learn the policy function  π, which itself is often represented by a 

neural network. 

Immediately, you can see how this might cover a wide range of 

problems: the actions might be displaying different types of ads to a user 

browsing a website, or they might be controllable degrees of freedom of a 

robot arm. Positive rewards can be given for click-through, or when a grasp 

was successfully executed, or when a mobile robot is getting closer to its 

destination. 
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 Solving a Markov Decision Process

Assume for now that you have access to the transition function  T, and that 

you might easily visit all possible states  s ∈  S.  Starting from state  s 0, you might simply choose the best next state given the transition probabilities:

 s   argmax

 P

 s s,| a  R s s,  V  s

 a





 s

Where  P( s,  s′ |  a) is the probability of transitioning from state s to state s’ given action a,  R( s,  s′) is the reward associated with that transition, γ is some discount factor, and  V( s′) is the  value of state  s′. The value is the expected reward-to-go from this point onward. To put it in other words, 

the  policy computes the action that you expect will lead to the highest 

overall reward. 

For a finite, fixed-size Markov Decision Process, you can solve this via 

dynamic programming by performing Bellman value iteration[1][2][19]:

 V  s   max
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 s

for the i-th iteration of the algorithm, until it converges. Then the best 

action can be chosen simply. This is the foundation of reinforcement 

learning, and you will see how it gets built upon for more complex 

applications later in this chapter. 

 Considerations

When applying this to robotics, there are many obvious issues. First, these 

algorithms mostly work on finite, relatively small, discrete spaces where 

it’s reasonable to compute probabilities and iterate over all possible states 

in the state space. Robotics state spaces tend to be large and  continuous, 

meaning that direct application of methods like Bellman value iteration 
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are not trivial. In addition, there’s a great deal of difficulty  scaling these 

methods, and a great deal of work goes into designing the underlying MDP, 

with its state, actions, and rewards[1]. 

Rewards can take a lot of forms; the principal concern in robotics 

is that they may be  sparse, meaning that it is often hard to observe a 

meaningful, informative reward at a transition from St to St+1. 

Consider the example of the maze in Figure 7-2. Imagine a  dense 

 reward function for an agent solving a maze, which represents the reward 

as a penalty, given a:



− ||  p −  g ||  

2

Where  p = ( x,  y) is the robot’s position and  g = ( xg,  yg) is the position of the other end of the maze. This has a few advantages: it is easy to compute, 

it’s easy to specify, it’s relatively generic, and it will be useful in all mazes 

and in many related tasks like navigation. However, it’s very greedy: if the 

solution involves a lot of backtracking, this reward function may lead the 

agent astray, because it will  penalize the agent for moving away from the 

goal, even if there is no way to get closer! 

Consider instead a  sparse reward function. This is even more generic: 

you just give one point to the agent if it reaches the end, and no points 

otherwise. This sort of approach is ideal for most applications, but is much 

harder to solve, as the reward provides essentially no information along 

the way. 

In practice, most applications of reinforcement learning thrive in 

the first case, where there is a dense reward function, and fail in the 

latter case. Design of the reward function becomes a major part of many 

reinforcement learning applications. 
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 Model-Free vs Model-Based RL

One fundamental concern with all reinforcement learning, particularly in 

robotics, is  sample complexity.  How much data does your method need, in 

order to work well at scale? Can it solve arbitrarily complex problems? 

Take a “traditional” RL algorithm, represented as the Markov Decision 

Process. It explores an environment—like the maze—based on either 

sampling from a stochastic policy, or by adding some noise to policy 

outputs. Then, based on these experiences, the algorithm will directly 

optimize the underlying policy. This is called  model-free reinforcement 

 learning for reasons we get to in a moment. 

At first glance, this seems great. It relies on making very few 

assumptions about the world; in principle, such a method will work in 

any domain, for any application. However, it quickly becomes apparent 

that under some realistic assumptions—sparse rewards like in the maze 

example, or high-dimensional problems like controlling a high-DoF robot 

arm—suddenly you might need a very large amount of information to 

properly characterize the underlying space. 

There are many potential solutions to this, from the ever-popular 

reward shaping—manually designing a system of rewards to encourage 

the agent to succeed—to the more principled. But fundamentally one 

major way you might improve reinforcement learning performance is via 

 planning, hallucinating different possible futures that you believe will 

be optimal, instead of actually executing them. This requires having an 

accurate  world model; hence, model-based reinforcement learning. See 

Figure 7-3. 
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 Figure 7-3. Examples of visual domains used in PlaNet[16]. T hese are common reinforcement learning domains used for model 

 development. Model-based RL algorithms like PlaNet are capable of 

 more efficient learning, but sometimes they don’t scale as well. Used 

 with permission, source: https://proceedings.mlr.press/v97/

 hafner19a/hafner19a.pdf [16]

Of course, using a world model to generate different possible futures 

is easier said than done. For this to be useful, that model has to be able 

to be evaluated offline efficiently, which is often very difficult in complex 

domains! In addition, certain environments can be nearly impossible 

to simulate (a bin full of deformable objects, for example), and even if 

they  can be simulated, this might not be possible at faster than real time. 

A recent push that’s shown impressive results has been model-based 

reinforcement learning with learned models. Works such as AlphaGo[12] 

and PlaNet[16] showed that in some domains, a useful model can be 

learned, which then provides all the advantages of model-based RL 

without needing this model. 

For the most part, the dream of model-based RL has not arrived. The 

most common means of performing reinforcement learning as of 2024 

is Proximal Policy Optimization (PPO), a highly scalable, model-free 

algorithm[6]. PPO has shown great results in a wide range of different 

robotics problems, from learning dexterous robot skills[35][36] to 

navigation[24] to mobile manipulation[31]. However, there remain many challenges and the debate is not truly solved. 

With that context, the next section goes into more detail on these two 

main families of reinforcement learning methods. 
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 Model-Free Reinforcement Learning

As a reminder, a reinforcement learning problem is formalized as a Markov 

Decision Process (S, A, T, R), with states S, actions A, rewards R, and state- 

transitions T. In model-free reinforcement learning, you neither have 

access to nor attempt to estimate the transition probability T. 

This is useful because learning and properly estimating T can be 

expensive and difficult, and T is often very hard to model—sometimes harder 

to model than simply estimating the  value of a particular state in the abstract! 

The value  V( s) for states  s ∈  S represents the reward-to-go from a particular state  s, meaning the reward that will be accumulated for all states the agent 

expects to visit from this point forward. To put it simply, this can be a simpler 

value to learn, since it’s often a direct quality of the state itself—if you do not 

want to fall, teetering on the edge of a cliff is obviously bad—and it requires 

estimating only the value itself, a single quantity, instead of predicting a full 

state, which could be extremely high dimensional. See Figure 7-4. 

 Figure 7-4. OpenAI used Proximal Policy Optimization (PPO), a 

 model-free reinforcement learning method, to train a policy that 

 could defeat Dota 2 world champions. Used with permission, source: 

 https://www.vox.com/2019/4/13/18309418/open-ai-dota-

 triumph-og [45]. N ote: This book is in no way affiliated with or endorsed by OpenAI. 
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As a result, model-free methods have historically been more tractable 

and more scalable than their model-based competitors. Some of the 

most storied reinforcement learning approaches have been model-free, 

including Deep Q Learning[20], which brought deep learning into the 

mainstream with exciting results on playing Atari games; AlphaGo, which 

could play Go at a level exceeding the best humans in the world[12]; and 

Proximal Policy Optimization[6], a general method used to play the video 

game Dota 2 at a competitive level[7]. 

 Q  Learning

The Q function is simply defined as  Q( s,  a) for a state  s ∈  S and an action a ∈  A, where  Q( s,  a) is the expected value (reward-to-go) from the given state, if the specified action is taken. If you successively take the action 

that maximizes this function’s return value from each state, you would 

presumably solve the problem in an optimal way. 

The difficulty, then, is learning the Q function in the first place. The 

core of Q learning is a modified version of the Bellman value iteration 

algorithm from the “Solving a Markov Decision Process” section, modified 

to use the Q function as follows:

, 1   ,   , 

, 

1







 Q   s a

 Q s a

 R s s

 Q s a

 i

 i

 i



where 0 <=  α <= 1 is a learning rate. Note the absence of the transition 

probability in the original version of the algorithm. However, this 

formulation is more practical in many ways, being able to handle problems 

where the transition probabilities are unknown or difficult to compute, 

allowing the agent to learn optimal behavior through direct interaction 

with the environment. 

 Deep Q Learning

In 2014, Google DeepMind released Deep Q Learning, which is a variant 

of Q learning modified to use a convolutional neural network as a function 
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approximator[20]. This opens up some interesting problems, particularly 

that it is very susceptible to oscillations or changes in the parameters 

underlying the neural net. 

Instead, they propose deep reinforcement learning over a  replay buffer. As 

the agent explores, data points are added to a memory, and when computing 

an update to the policy, a random batch of observations ( s,  a,  r,  s′) are sampled from memory. Then the current target Q value can be computed and a 

gradient descent update can be performed on the neural network weights. 

Successful for the first time at performing a wide variety of tasks from 

pixels alone, this innovation fueled an explosion in reinforcement learning 

research. However, Deep Q Learning has some limitations when applied to 

robotics: it still operates over  discrete action spaces, where robot actions are 

generally continuous. It is susceptible to a wide range of hyperparameters 

that need to be tuned, and it’s often unreliable. This leads to a second family 

of methods that are less restricted: policy gradient methods. 

 Policy Gradient Methods

Deep Q Learning has a good number of weaknesses, however. The fact 

that you’re still approximating these Q values iteratively introduces a lot of 

potential for instability when learning, as small changes in the policy can 

lead to dramatic changes in evaluation, especially in response to changing 

states. While you’re optimizing Q(s, a), it’s important to remember what 

you’re actually optimizing is still

, |   1   , |   , 
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where  θ is some set of neural network weights. Instead, policy gradient 

methods aim to optimize the policy parameters \ θ so as to optimize the 

expected return. The expected return is given as

 H
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 rk 



 k 0



322

[image: Image 170]

[image: Image 171]

Chapter 7   reinforCement Learning and ControL

Where r_k is the reward at the k-th step, gamma is a discount factor, 

and so on. In other words, the  return is the discounted sum of all future 

expected rewards. 

Now, instead of updating Q, assume you have some policy with 

parameters  θ, where  θ could for example be the parameters of a neural 

network. You might then take the derivative with respect to these policy 

parameters and optimize them directly[1]:



Again for policy parameters  θ. This gives you a formulation where, 

now, you just need to compute this derivative of the return J( θ) and can 

directly optimize the policy—hence, policy gradients. 

You can then express the gradient  δJ( θ)[2] as:



Where

 p 





indicates that you are sampling a trajectory from the policy



 b( st) is the  baseline reward-to-go

ˆ A s ,  a   is the return estimate—an estimate of what the expected 

 t

 t

return given (s, a) would be out to the horizon

The term  Â can be computed in various ways; often it is estimated by a 

second neural network, called the  critic. 

Overall, policy gradient methods let you theoretically directly optimize 

what you really care about, which is to say the policy parameters. While 

there are many ways of computing the return and therefore the gradients, 

this section focuses on just a couple options. 
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 Trust Region Policy Optimization

Of course, as elegant as it sounds, there are some serious issues with 

this idea when applied naively. Gradient-based optimization is nice, but 

susceptible both to being caught in local minima, and to instability due to 

taking steps that are too large. In addition, merely  computing the gradients 

with respect to the thousands or even millions of parameters in a deep 

neural network can be problematic. 

Trust Region Policy Optimization (TRPO)[3] aims to solve this problem 

by constraining the Kullback-Leibler (KL) divergence between the 

distributions of the old and new policies during policy updates. It does this 

while optimizing a surrogate advantage function between the old and new 

policies[4]. 



In other words, TRPO maximizes the  advantage—the estimated 

improvement—between an old and a new policy at each step of the 

learning process, while constraining the KL divergence between the old 

and the new policies. 

In practice, this is  still too difficult to solve, so TRPO makes some 

approximations, particularly a Taylor expansion of the objective and 

constraint:
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This results in an approximate constrained objective function[2][5]:



Which can be solved analytically. However, you’re  still not done here, 

because the Taylor series expansion above may have introduced an error, 

which means that the original constraint is not fully satisfied. Therefore, 

you add a backtracking line search to the original analytical solution



Where  α in (0, 1) is the backtracking coefficient and j is the smallest 

nonnegative integer such that there is a positive advantage and the KL 

divergence constraint is satisfied. 

TRPO was able to substantially outperform Deep Q Learning on Atari 

domains from vision inputs[3], meaning it was a notable step forward for 

reinforcement learning. However, TRPO has a few notable issues:

1.  As obvious, the math is fairly complex—it requires 

solving a constrained optimization problem, for 

example. This makes it harder to implement. 

2.  It’s computationally inefficient, requiring computing 

things like the KL divergence. 

Fortunately, TRPO was soon followed by a method that resolved these 

issues: Proximal Policy Optimization. 
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 Proximal Policy Optimization

Finally, the most widely used reinforcement learning of the current day—

Proximal Policy Optimization (PPO)—introduced by OpenAI in 2017[6]. 

The idea behind PPO is the same as TRPO: you need a way to 

substantially update policies with huge numbers of parameters without 

causing performance to collapse. TRPO solved this by applying a 

constraint with complex second-order methods. PPO adds some extra 

constraints but results in an overall simpler optimization problem. 

The core equation being solved by PPO is this:



Where at each step, you are finding the  θ that  maximizes L(s, a,  θ,  θk) such that



Where g is given by



A is the advantage. 

So, what does all this mean? Let’s break it down:

1.  If the advantage is positive, the  g term will be  

(1 +  ε) A, and the min() in L means that there is no 

advantage to moving very far away from the old 

policy,  πθ. 

2.  If the advantage is negative, the objective increases 

if the action becomes  less likely, again constrained 

to stay near the old policy. 
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Therefore, you have a substantially simpler problem, which can be 

repeatedly optimized by several (stochastic, minibatch) gradient descent 

steps, before a new batch is sampled. See Figure 7-5. 

 Figure 7-5. A five-fingered robotic hand trained using PPO to 

 manipulate cubes into any configuration. PPO is one of the more 

 widely employed reinforcement learning algorithms at present. Used 

 with permission, source: https://journals.sagepub.com/doi/

 pdf/10.1177/0278364919887447 [9]. N ote: This book is in no way affiliated with or endorsed by OpenAI. 

In practice, PPO is an extremely effective algorithm, being used for 

everything from playing games like Dota[7] to a wide range of robotics 

tasks, such as quadruped locomotion[8] and dexterous manipulation[9]. 

 Model-Based Reinforcement Learning

Model-based reinforcement learning differs in that it presumes a  model 

of the world exists, i.e. that you will be able to approximate the state 

probability distribution P(s, s’ | a) during learning. This is less commonly 

used in practice than model-free methods, but it’s useful to understand 
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why this probability distribution—this  world model— is such a compelling 

addition to the reinforcement learning framework, and indeed the robot 

learning framework in general. 

Model-based reinforcement learning does not have as many widely- 

used algorithms across the field as PPO. Intuitively, this is because  model- 

based RL requires that model of the world; and often, these assumptions 

can be built into the algorithm itself. Perhaps the most significant line of 

work in this space is from Google DeepMind, which used model-based RL 

to defeat world champions at the game Go[12], using a combination of tree 

search—which is to say, traditional planning over which states to explore—

and neural networks to learn which areas to perform that tree search in. 

This kind of approach was expanded in follow-up works, resulting in 

MuZero, a model-based system which uses planning to determine which 

states are worth exploring[14]. See Figure 7-6. It learns what actions to take, as well as what states will  result from those actions. By making these 

types of predictions, MuZero can solve much more challenging, long- 

horizon tasks, like the aforementioned Go. Model-based reinforcement 

learning methods from this family—AlphaProof and AlphaGeometry2—

achieved silver medal status at the International Math Olympiad in 

2024[15], showing how capable model-based methods can be at solving 

specific extremely challenging problem sets. 

 Figure 7-6. MuZero uses planning to determine where to explore 

 next. It learns a dynamics function that’s used to model how the future 

 state will change and what rewards will result. Used with permission, 

 source: https://deepmind.google/discover/blog/muzero-

 mastering-go-chess-shogi-and-atari-without-rules/ [14]. 
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 Robotics: Model-Based RL for Continuous Control

There have been a few attempts to develop model-based RL methods 

that can be applied to robotics. These share some similar ideas to the 

MuZero method:

1.  In addition to learning a policy, one must learn a 

 simulator. 

2.  This simulator is essentially giving you the transition 

function T(s, a) -> s’ from the original reinforcement 

learning simulator. 

3.  It allows you to  plan and compute which sequences 

of actions will give you an optimal return before 

actually executing them. 

 Figure 7-7. The Recurrent State Space Model from PlaNet. Model- 

 based RL methods can use search and a learned world model to 

 focus their exploration in more useful regions of the state space. Used 

 with permission, source: https://proceedings.mlr.press/v97/

 hafner19a/hafner19a.pdf [16]. 
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One such method is the Deep Planning Network (PlaNet) proposed 

in [16]. PlaNet uses a Recurrent State Space Model (RSSM) to predict 

future latent states given action sequences. See Figure 7-7. Predicting 

 latent spaces instead of full observations means that the method does 

not need to decode and generate a full image to perform a “rollout” of a 

future plan; this makes the overall method more efficient and faster. 

The core idea of PlaNet[16] and, relatedly, Dreamer[17], is that they make predictions in some  latent space. See Figure 7-8. In this latent space, you use data to learn not just the policy  π but some transition function 

as well:

 s  T  s,  a





 Figure 7-8. Model learning approach from Dreamer. Used with 

 permission, source: https://arxiv.org/pdf/1912.01603 [17]

This tells you that, given state s and action  a, you will end up in a state 

 s′ that results from this state. Models like PlaNet assume deterministic state 

dynamics (i.e.,  s′ =  T( s,  a)). This transition function is often referred to as a world model. 

However, this full world modeling challenge is extremely difficult. You 

can compare this to generative AI techniques for video generation, like 

SORA[21]—on the outside, learning such a world model is an even more 

difficult problem than generating a video! This is because the robot’s world 

model must be an extremely accurate simulator of the world. Models like 
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the Universal Policy[30] use video generation as a “world model” to predict 

futures for robot actions. This can be used for directly planning out which 

actions to take, but also provides an example for how such a world model 

can be learned and what it entails. 

Model-based methods, to summarize, have an incredible promise: 

to use planning and foresight to choose better actions and explore more 

efficiently, solving a core issue facing model-free reinforcement learning. 

This has allowed them to solve incredibly difficult problems like the 

International Math Olympiad. However, there’s no clear “best” approach 

yet, and there are few model-based methods that can be widely applied in 

robotics without substantial work—even more than the usual reward and 

environment engineering necessary for model-free methods. However, 

this is an exciting and promising area of research. 

 Offline Reinforcement Learning

Reinforcement learning is often solved as an inherently  online process, 

meaning that it is performed as an agent interacts with a (real or 

simulated) world. This is inherently limiting in the age of big data; we want 

algorithms that can be applied on very large datasets collected in myriad 

ways. Sometimes human data will be useful; sometimes autonomous 

exploration; other times, it will even be necessary to use heuristic policies 

to get a good start in certain difficult domains. In this area, previous 

reinforcement learning approaches often fail. 

However, the underlying reinforcement learning problem formulation 

is still a valuable one. One line of work looks more intensely at offline, 

off-policy reinforcement learning methods—those that can be applied 

on large, precomputed datasets—in many ways, these datasets are most 

reflective of the realities of robot learning problems[2]. 
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Take Decision Transformer[13] as an example, shown in Figure 7-9. 

It follows the classic reinforcement learning structure, with actions  a ∈  A, 

states  s ∈  S, and even a reward function  R( s,  s′). However, you do not learn any of these via interacting with the environment, as in the original 

reinforcement learning formulation. Instead, it uses a large offline dataset, 

and has reward labels as a part of the data itself. 

 Figure 7-9. Decision Transformer is an example of an offline 

 reinforcement learning method, which works similarly to supervised 

 techniques used for large language models. Used with permission, 

 source: https://proceedings.neurips.cc/paper_files/paper/ 

 2021/file/7f489f642a0ddb10272b5c31057f0663-Paper.pdf [13]. 
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 Applications  and Challenges

 Figure 7-10. Deploying RL skills for mobile robot navigation in a 

 variety of real-world home environments. Reinforcement learning 

 skills have been tested on robot learning problems and in many 

 cases are competitive with or even exceed traditional robotics 

 methods. Used with permission, source: https://www.science.org/

 doi/10.1126/scirobotics.adf6991 [24]

Robotics has long been one of the main motivating examples for 

reinforcement learning. On the face of it, it’s the perfect application: we do 

not know how to solve many important robotics problems, but we know 

what these problems look like when they succeed. 

However, applying reinforcement learning to robotics problems has 

a couple huge issues. The biggest is, as always, the data. Robotics data is 

fairly rare and expensive to collect, but reinforcement learning methods 

can require hundreds of thousands or even millions of steps[12][14]. There are two ways forward: train in simulation[10][24][25][28][29] or use a very large number of robots to collect data at scale in the real world[26][27][32]. 

See Figure 7-10. 
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Using a large number of robots is obviously very expensive and comes 

with a lot of headaches—a fleet of robots must be maintained, data is 

difficult to collect, and policy rollouts are quite expensive. However, sim- 

to- real, despite its great appeal, has real shortcomings. Works that do 

sim-to-real testing have been able to show some impressive results, and for 

certain things like quadruped gait learning and humanoid gait learning, 

it is quickly becoming standard[25]. For more complex semantic tasks, 

however, sim-to-real often cannot transfer at all—instead, works learning 

semantic skills like object search use detectors trained on supervised 

learning and a mixture of traditional robot control for the best and most 

generalizable results[24]. Sim-to-real transfer, however, is a fast moving 

and thrilling area, and through better real-to-sim, incredibly impressive 

policies can be trained for dynamic, reactive, and robust robot skills such 

as soccer playing[28][29]. 

 Scaling Up RL in the Real World

The gold standard, however, is real-world data collection. A large amount 

of work has been done on scaling up real-world data collection, particularly 

spearheaded by Google’s robotics lab in California[26][27], which used an 

“arm farm” of seven robots in their MT-Opt work. See Figure 7-11. 
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 Figure 7-11. Examples of manipulation tasks from MT-Opt. Training 

 large numbers of manipulation skills on large numbers of real robots 

 could potentially be a route to generally useful robots. Used with 

 permission, source: https://arxiv.org/pdf/2104.08212 [26]

In particular, MT-Opt looks at how to train general-purpose robot 

policies. This means that it does something called  multitask reinforcement 

learning, where the policy is additionally parameterized by some goal 

(which can be thought of as a part of the state in the traditional RL 

formulation from the beginning of the chapter). In this case, an extra token 

is passed to indicate which task is being executed. 

Then the model can be set up to train a large number of skills all at 

once. MT-Opt codifies how you can perform reinforcement learning at 

scale in such a setting:

1.  Set up a system so tasks can be easily reset or can 

reset themselves. 

2.  Train success classifiers to determine when tasks 

succeed. 
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3.  Crucially, make sure you have tasks that can 

be accomplished easily enough that you get a 

positive reward signal quickly, before building to 

harder tasks. 

The team was able to train robots to perform a wide variety of tasks, 

doing things like aligning, rearranging, and moving objects from one 

location to another. All in all, they trained their system to perform 12 

different tasks using a fleet of seven robot arms. 

Importantly, training all of these tasks at once as part of a multitask 

policy actually helps  accelerate single-task learning in a few ways. Many 

aspects of visual feature learning are going to be shared across different 

settings, which means that these do not need to be learned over and 

over again. Things like approaching the surface of the table or avoiding 

collisions are shared across all policies. In addition, entire sub-skills 

might be shared: nudging an object out of the way, for example, to access 

a different one, might appear in multiple skills. It might even be possible 

to  learn this nudging skill as a part of some task where it is actively being 

rewarded, which will then enable the robot to learn other skills that would 

be otherwise impossible with a relatively sparse reward function. 

This was then extended as AW-Opt[27], a method that allows robots to 

learn using both online and offline, sub-optimal data by using some ideas 

from advantage-weighted regression. The advantage here is that it helps 

address a key shortcoming of on-robot reinforcement learning: that data 

is still hard to collect, even with a fleet of robots, and that  bad data is much 

more common than  good data. 
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 Figure 7-12. Large-scale mobile robot trash sorting from Google 

 and Everyday Robots. Twenty-three robots were deployed performing 

 trash sorting over the course of two years. Used with permission, 

 source: https://arxiv.org/pdf/2305.03270 [32]

Finally, it’s worth noting a dramatic experiment building upon these 

works. Researchers at Everyday Robots deployed a fleet of 23 mobile 

manipulators, shown in Figure 7-12, to perform trash-sorting tasks. 

Over two years, they used reinforcement learning at scale to collect vast 

amounts of data—9,527 hours of robot experiences—and use them to train 

policies for sorting across nine different trash-distribution scenarios. The 

robots had to place objects correctly into compost, recycling, or garbage 

bins. This is perhaps the largest real-world RL undertaking performed, 

where robots had to sequentially execute pick-and-place tasks for a very 

wide variety of objects, understand what those objects were, and move 

them into different locations. To do this, they had both a simulation and a 

“teaching” environment in which data could be collected more efficiently. 

These methods show promise, but also still show common RL pitfalls: 

data is hard to get, RL policies often do not  generalize well outside of 

what they saw during training and so training environments are carefully 

constructed, and collecting real data with useful rewards is difficult. The 

next section looks at cases where this is less relevant: training mostly in 

simulation. 
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 Learning  to Walk

 Figure 7-13. Boston Dynamics trains its robots to walk in simulation. 

 Used with permission, source: https://bostondynamics.com/blog/

 starting-on-the-right-foot-with-reinforcement-learning/[ 10 ]

Reinforcement learning has one spectacular success story: walking 

skills for mobile robots. Walking has long been the quintessential robot 

skill. This has become the de facto way quadruped locomotion is done, 

with companies like Unitree, Boston Dynamics[10], and Anybotics[22] 

beginning to ship products trained with reinforcement learning. See 

Figure 7-13. 

These robots commonly use depth sensors to determine the geometry 

of the world around them. This problem is perfect for the reinforcement 

learning case: unlike complex problems like trash sorting or pick-and- 

place, feedback is frequent, reward functions are valuable, and it’s easy to 

reset and recover. RL methods like PPO and TRPO are extremely effective 

in these kinds of scenarios, where feedback to the policy—and thus, the 

ability to estimate the necessary gradient—is readily available. 
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Recently, researchers have moved toward fast, dynamic motions 

trained using reinforcement learning; training in simulation and testing in 

the real world allows less efficient model-free algorithms like PPO[6] and 

TRPO[4][5][6] to be deployed on real hardware[11][23]. 

 Robots Playing Soccer

Training robots to play soccer using deep RL[28]. Robot skills can be 

learned in simulation and transferred to real robots. This has even been 

extended to the multi-agent reinforcement learning case[29]. 

Bringing these together, as a case study in robot reinforcement 

learning, consider recent work on having robots play soccer. This is a 

interesting task for robots because:

1.  It involves  multiple intelligent agents. 

2.  Robots must learn using a high-dimensional, 

partially-observable observation space—images. 

3.  The robots themselves are relatively high degree-of-

freedom, being small humanoids, and they need to 

be able to run and recover when they inevitably fall. 

They train using maximum a posteriori policy optimization (MPO), an 

off-policy actor-critic algorithm, and they generate large amounts of data 

in simulation to accomplish this. They separately train skills like scoring 

goals and getting up off the ground if the robot falls[28], before combining 

them—a common strategy in longer horizon tasks also seen elsewhere[31]. 

They then train an agent policy that has to compete against increasingly 

difficult opponents. 

Their agent is capable of  zero-shot sim-to-real transfer, which is to say 

that it works without any real-world data. This is accomplished through 

adding perturbations and domain randomizations to the simulation 

environment. They randomized the floor friction and applied random 

339

Chapter 7   reinforCement Learning and ControL

forces to the agents as they moved[28], without which zero-shot sim to real 

transfer was not possible. This was taken further with random changes to 

lighting and color saturation[29] in order to improve visual transfer. 

In the end, this resulted in robot agents that could play soccer against 

each other, kick the ball, and score goals. 

 Reinforcement Learning and Large 

Language Models

Large language models (LLMs) have made a dramatic impact on the 

robotics space, as well as on the wider tech world, and part of the magic 

that has made LLMs so appealing is a technique called Reinforcement 

Learning from Human Feedback (RLHF). As LLMs are highly relevant 

to robotics, it’s important to discuss the reinforcement learning use case 

associated with them[33]. 

 Reinforcement Learning from Human Feedback (RLHF)

RLHF is performed  after training an LLM on a large corpus of data. After 

training an LLM on all useful (supervised) data, you perform two steps:

1.  Train a reward model. 

2.  Use this reward model to update the original LLM. 

As noted, getting a reward function is the most difficult part of applying 

reinforcement learning to many real-world problems. LLMs are no 

exception. To learn the reward function, human annotators must rank the 

outputs of the original LLM (this is the human feedback part of RLHF). 

Then, these rankings are used to fine-tune a second language model, 

which could be the same architecture as the first one, or, as is often the 

case, a smaller model. 
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Then, given a model that can predict reward from text outputs, you 

now have the reinforcement learning problem. The state, s, is the original 

text, the action  a the context, and the reward is the newly-trained reward 

function estimator. From here, you can compute policy gradient steps as 

per the PPO algorithm[6], modifying the weights of a copy of the original 

language model. 

What is the result? A model that produces text more like whatever it is 

that humans prefer! In general, models trained with RLHF have a strongly 

preferable style to those trained without it, which is particularly important 

for a chatbot or an AI research assistant! 

There are some weaknesses, however. Gathering this human data is 

extremely expensive[33], and you cannot use your reward function too 

much either. You generally cannot take that many gradient steps or do too 

many iterations of RLHF without the model beginning to find loopholes 

that it can take advantage of. If the LLM can find adversarial examples 

that fool the reward function, performance will begin to drop again[34]. 

Also, because it’s based on human preferences, it can focus overly on style 

transfer and other visual aspects over substance[34]. Finally, there are 

many open questions about how to set up the RL algorithm, and there are 

many potential improvements to PPO[6] suitable for RLHF. 

 Direct Preference Optimization (DPO)

Direct Preference Optimization (DPO) simplifies the RLHF process by 

removing the need for a separate reward model[37]. Instead, DPO treats 

the problem as a classification task. The model is directly fine-tuned using 

human preference data, which more directly aligns the models’ outputs 

with what humans prefer. The process has these main steps[38]:

•  It starts with supervised fine-tuning (SFT) where the 

model is fine-tuned on a labeled dataset. The labels 

represent the preferred responses and the output of the 

model is aligned with specific guidelines. 
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•  After SFT, the model is further refined using preference 

data, which consists of pairs of outputs ranked by 

human annotators. In DPO, a preference loss function 

is defined that reflects how well the model’s outputs 

align with these human rankings. Since this loss is a 

function of the policy itself, you don’t need a separate 

reward model. 

•  The model is optimized by reducing the preference loss 

such that, for each pair of outputs, the model learns to 

produce the one that humans prefer more often. 

Overall, DPO can be more stable and efficient than RLHF, as it 

eliminates the need for a lot of sampling and hyperparameter tuning. For 

this reason, it can be a useful method for fine-tuning LLMs with human 

preferences without the overhead of traditional RL methods. 

 Reinforcement Learning from AI Feedback (RLAIF)

RLAIF automates the collection of human preference data using an off- the- 

shelf LLM to generate preference labels[39]. Instead of relying on binary 

labels, RLAIF uses the log probabilities of different preference outputs, 

essentially creating a preference distribution using a softmax function. 

This approach reduces the time and cost usually associated with 

collecting human feedback and has shown to perform similarly to RLHF, 

especially when using large models like Google’s PaLM[40]. 

As LLMs become more integrated into robotics, it can be useful 

to understand how human preference data can be leveraged. This is 

especially useful in applications where robots need to interact with 

humans and abide by their needs/preferences. RLHF, DPO, and RLAIF 

all provide paths to fine-tune LLMs to align better with human behavior. 

However, each of these methods has its own tradeoffs depending on the 

application, LLMs being used, and so on, and thus further research is 

needed to refine these methods for real-world robotics applications. 
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 Challenges in RL for Robotics

Although there have been some successful applications of RL for real- 

world robotics, it is important to note some of the key challenges that the 

field still faces. Many of these challenges have been discussed throughout 

the chapter. The following is a consolidated summary of these challenges, 

along with potential solutions:

•  Sample efficiency: RL algorithms often require a 

large number of samples or interactions with the 

environment to learn useful policies. In robotics, 

collecting these samples in the real world can be costly 

and time-consuming. Improving sample efficiency is 

important for reducing the amount of data required for 

learning while still achieving good performance. One 

way to do this is relying more heavily on simulation 

data while improving Sim2Real methods, such that the 

gap between simulated and real-world environments is 

minimized. These ideas were covered in Chapter 5. 

•  Transfer learning: Generalizing RL policies from one 

robot or environment to another is a difficult challenge. 

What works well in a simulated environment or on one 

robot may not be directly transferable to a different 

robot or real-world setting. Developing transferable RL 

algorithms that can adapt to new conditions is critical 

for practical use. Using techniques like meta-learning, 

where you train RL agents to learn how to learn, and 

domain randomization could be helpful in improving 

performance in new environments. 

•  Scalability: As robotic tasks become more complex 

and involve high-dimensional state and action spaces, 

scalability becomes a concern. Some RL algorithms 

343

Chapter 7   reinforCement Learning and ControL

that work well for simple tasks may not scale to handle 

the complexities of real-world robotics applications. A 

few directions for developing scalable RL algorithms 

use hierarchical RL, where complex tasks are broken 

down into simpler subtasks, and developing more 

efficient exploration strategies that focus on promising 

areas of the state space. 

•  Reward design: Designing suitable reward functions 

that guide the learning process is often one of the 


hardest tasks in RL. Misaligned or poorly defined 

rewards can lead to suboptimal policies or to your 

agent not learning anything useful. Thus, developing 

reward functions that accurately represent the task’s 

objectives and constraints is an important aspect of 

RL algorithm design. A few strategies here include 

using Inverse RL (IRL), where the reward function 

can be learned based on observed expert behavior, 

incrementally shaping the reward function, or having 

multiple objectives in the reward design. 

 Emerging Trends in RL for Robotics

Reinforcement learning is making a comeback in robotics, after the field 

has been dominated by imitation learning approaches for years. 

•  Sim-to-real: Generating the data for RL training is 

difficult; even the best RL methods, like TRPO and 

PPO, require very large amounts of training data, 

which is often impractical to collect in the real world. 

Research like [28] and [29] has showed how we can 

apply reinforcement learning to exciting problems, 

thanks to clever use of simulation. 
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•  Integrating large language models: Including large 

language models, large vision-language models, and 

turning them into  action models that can act in real 

environments may require reinforcement learning, 

wherein AI agents repeatedly interact with virtual 

environments or systems[41]. 

•  Learning without manual reward functions: The 

reward function is one of the most difficult parts of a 

reinforcement learning problem. Works like Eureka[42] 

have looked into using LLMs and AI agents to design 

and tune reward functions; works like VIP[43] have 

looked at extracting these reward functions from video. 

Finding ways to use Internet-scale data to reduce or 

remove the need for reward tuning will be crucial to 

scaling RL for real-world robotics. 

 Conclusions

Reinforcement learning is a powerful and general-purpose framework for 

describing robotics problems, and it has the great promise of allowing us 

to automatically learn skills for a wide variety of problems for which it is 

hard to collect data, and to improve on expert performance. 

Reinforcement learning has previously been applied to multi-step 

manipulation tasks, to locomotion, and to language models. It’s a powerful 

toolkit that appears in real robots products like quadrupedal robots and AI 

chatbots. 

However, there are great open questions to resolve. We need robotics 

RL algorithms that are more capable of generalizing to unseen objects 

and environments. Leveraging more offline data, whether through mixing 

in imitation learning as per AW-Opt[27], offline RL methods[2][17], or 

pretraining[30][33], will be a large part of what makes this successful, given the limitations of collecting all data on-site[26][27][32]. 
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Future work in reinforcement learning will surely take advantage 

of learning in simulation and sim-to-real transfer, which continues to 

produce incredible results[24][28][29] and circumvents some of the biggest data efficiency problems facing reinforcement learning. All in all, it seems 

certain that the robots of the future will use reinforcement learning to 

become faster, stronger, and smarter—the question is how. 

 Summary

In this chapter, you learned the following ideas and concepts:

•  Supervised learning relies on labeled data, but it has 

limitations. Reinforcement learning addresses these 

challenges by allowing robots to autonomously collect 

data and learn as they interact with their environment. 

•  The ultimate goal of RL is to create intelligent systems 

that learn like humans, by interacting with their 

environment, setting goals, and refining their skills. RL 

is essential for achieving robust embodied intelligence 

in robots by letting them learn from mistakes and 

improve. 

•  The basics of RL, including its formulation as a Markov 

Decision Process (MDP), and the differences between 

model-free and model-based methods. 

•  Projects like Google’s MT-Opt and AW-Opt improve 

learning by training robots on multiple tasks, allowing 

for better generalization and faster single-task learning 

because of shared visual features and sub-skills. 
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•  Reinforcement Learning from Human Feedback 

(RLHF) is used in large language models to fine- 

tune outputs based on human preferences, but it 

faces drawbacks like high data collection costs and 

potential adversarial behavior. Alternative approaches 

include Direct Preference Optimization (DPO) and 

Reinforcement Learning from AI Feedback (RLAIF), 

which can be more efficient methods for aligning 

LLMs with human preferences without explicit 

reward models. 

•  Real-world RL struggles with data scarcity, poor 

generalization, and reward design difficulties that can 

in some ways be addressed by methods like sim-to-real 

transfer. 

•  In the future, RL in robotics will likely focus on 

improving sample efficiency, transfer learning, 

scalability, and reward design, using more offline data 

and sim-to-real methods. 

The next chapter explores self-driving technology as a key application 

of robotics, focusing on its economic potential and the software and 

hardware frameworks that enable perception, prediction, planning, 

and safety. 
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CHAPTER 8

Self-Driving Vehicles

This chapter covers autonomous driving technology and explains 

how autonomous cars are built. The goal of this chapter is to help you 

understand how such a system is designed and built and what metrics are 

used to evaluate the performance of various components. 

 Economic  Opportunity

Self-driving cars present a massive economic opportunity, as the 

transportation industry is roughly worth 7 trillion dollars[1]. The 

transportation industry is also divided into highway driving for freight 

and other operations, which forms the backbone of the supply chain, and 

urban driving for transporting humans. 

Historically, self-driving innovation picked up pace during the DARPA 

urban challenge[2] funded by the United States Department of Defense 

in 2007. Several teams competed in this challenge, which eventually spun 

out multiple startups, including Zoox[3] arising out of Stanford, Waymo[4] 

led by folks from Berkeley and Carnegie Mellon University (CMU), Argo 

AI[5] taking birth in CMU, and Cruise Automation[6], which was later acquired by General Motors (GM). After the COVID-19 pandemic and the 

associated recession-inspired funding crunch, there was a widespread 

consolidation in the market, with Amazon acquiring Zoox, Uber selling off 

ATG to Aurora[7], Cruise acquiring Voyager[8], Apple acquiring drive.ai[9], 

and several other startups going bust. 
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There are two prominent business models for self-driving. One is the 

personal car model, pursued by Tesla[10] and Comma AI[11], where self-driving cars are sold to individual customers. Given that use of personal 

cars spans a wide geographical area which can be costly to map in high 

definition, companies betting on this business model invest in as little 

mapping as possible. Since the cars are sold to individuals, there is a 

requirement to keep the cost of self-driving, both the software and the 

sensor suite, affordable. The second model is the robotaxi business model, 

where companies run self-driving cars as robotaxis, akin to Uber and Lyft, 

in a geofenced area that has been thoroughly mapped and tested. This 

is pursued by Waymo and Cruise. Usually, the cost of a taxi is amortized 

across its entire lifespan, allowing them to be slightly more expensive than 

personal vehicles. These two business models also lead to slightly different 

technical philosophies:

1. Sensors and redundancy: Due to cost concerns, 

personal vehicle self-driving business models 

tend to rely less on expensive sensors like LiDARs, 

leading to vision-only self-driving cars supported by 

multiview cameras. In recent years, however, LiDAR 

prices have fallen drastically, as shown in Figure 8-1. 

2. Style of intervention and liability: In the personal 

vehicle business model, since the vehicle is owned 

and operated by the customer, intervention in tricky 

scenarios, or what is called  disengagement (when an 

autonomous system is deactivated in favor of human 

driving manually), is provided by the driver at the 

wheel. When accidents result from poorly behaved 

self-driving, the liability falls on the customer. Contrary 

to this, in a robotaxi business model, intervention 

is provided by teleoperation and remote humans, 

allowing a car to fully remove the driver inside. 
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 Figure 8-1. Decreasing cost of LiDAR. Used with permission, source: 

 https://scoop.market.us/lidar-statistics/ [19]

Starting in 2023, Cruise and Waymo obtained permits to charge 

customers for self-driving taxi rides in San Francisco city as well as in parts 

of the Bay Area[12]. 

 System  Design

A self-driving system, in its simplest interpretation, is designed with inputs 

being the sensor inputs and outputs being acceleration, steering, and the 

angle of the car. The goal of the system is to successfully go from point A 
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to point B in the map while reducing costs like time and without violating 

traffic rules or other constraints. The high-level architecture and building 

blocks of these systems are shown in Figure 8-2. 

 Figure 8-2. Self-driving system architecture. Used with permission, 

 source: https://medium.com/@justinmilner/a-visual-guide-to-

 the-software-architecture-of-autonomous-vehicles-390b1744c

 bd6 [20]

For urban and highway driving, a car is expected to have a response 

frequency of upwards of 10 Hz, which means that the entire stack end to 

end and running on device/remote needs to deliver an output at least once 

every 100 milliseconds. 

The main components of these systems are:

1.  Perception: Sensor suite, perception algorithms, and 

localization

2. Prediction

3.  Planning and Control

Many of these components were covered in depth in previous 

chapters, so this chapter only covers the self-driving-related details driving 

the design of these systems. 
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 End-to-End Self-Driving (E2E)

Several companies approach or have done work in pushing for self-driving 

systems that are an end-to-end neural net. Comma AI, Wayve[13], and 

Waabi[14] are a few examples. An end-to-end neural planner usually takes 

sensors and maps as inputs and outputs either a lowest cost trajectory or 

current actions at each time step. Compared to the classical design, the 

E2E planner is a single-neuron neural network, with highly interpretable 

intermediate outputs for safety verifications. Compared to traditional 

planners, E2E planners could be more unsafe, since a neural network has 

full control over the actions of the car. Due to safety concerns, it’s harder 

to productionize this technology. While most self-driving cars on the road 

today are classical planners, the continued rise of deep learning points 

to E2E planners becoming a tangible possibility in the future. Figure 8-3 

shows an early E2E neural planner proposed by Uber ATG Research group. 

 Figure 8-3. End-to-end interpretable neural planner. Used with 

 permission, source: https://arxiv.org/pdf/2101.06679 [21]
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 Perception

The goal of self-driving perception is to build an environment model 

around the vehicle that is aware of all static, dynamic objects and any 

contextual scene information required to make a driving decision. 

•  Static objects include nonmoving entities like traffic 

lights, lane lines, buildings, trees, and so on. Static 

entities from perception can be used to localize on a 

preloaded map by matching static artifacts observed 

by the vehicle to artifacts saved in a preloaded high-

definition map. They can also be used to determine if 

the map is wrong, such as if there’s construction or if 

the map is outdated, to either dynamically replan or 

request remote assistance. 

•  Dynamic objects include moving agents like people, 

other vehicles like cars, bikes, and trucks, live animals, 

and so on. Intentions of objects are also detected using 

tracking and specific intent prediction models. 

•  Contextual scene information includes relationships 

between objects. Here are a few examples:

•  A biker and their bike move together

•  Which lanes contain which objects

•  Which animal is leashed to which person

•  Whether a trailer truck is an articulated 

object or not
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In order to assist good perception of the environment, three stages are 

involved:

1. Sensing: For self-driving cars, the main 

consideration for the sensing suite is to ensure 

that there are very few blind spots, and that 

resolution of camera and LiDAR images is dense. 

Modern self-driving cars are also equipped with 

audio sensors (to detect oncoming emergency 

vehicles, for example), IMUs for odometry, radar 

for velocity estimation, and so on. Figure 8-4 shows 

an example sensor suite on a car. Usually, surround 

view cameras are used for near-range information, 

such as onboarding passengers and curbs, and 

long-range dense LiDARs are used for far-view 

information. 
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 Figure 8-4. “Types of sensors” from the article by J. Hecht, “LiDAR 

 for Self-Driving Cars,” Optics & Photonics News 29(1), 26-33 (2018), 

 created by Alessia Kirkland, Senior Manager and Creative Director of 

 OPN. Used with permission, source: https://www.optica-opn.org/

 home/articles/volume_29/january_2018/features/lidar_for_

 self-driving_cars/ [22] R eprinted/adapted with permission from © 

 Optica Publishing Group. 
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2. Computer vision: 2D and 3D computer vision 

algorithms are applied on fused or unfused sensory 

images to obtain relevant information from the 

scene and objects, as discussed earlier in this 

section. Chapter 2 discusses the type of algorithms 

used to detect this information. Figure 8-5 shows 

typical computer vision output where objects have 

been detected by bounding boxes. 

 Figure 8-5. Typical computer vision output. Used with permission, 

 source: screenshot from https://youtu.be/YmbhRxQkLMg?feature=

 shared [23]

3. Sensor fusion: The outputs from various sensors 

are combined to remove ghost objects, improve 

confidence of true objects, and combine object 

features. For example, LiDAR depth is a lot more 

precise than stereo depth, so once an object is 

classified using a camera image, its depth attribute 

is updated from its corresponding instance in the 

LiDAR image. 
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 Prediction

It is very important for a self-driving car to anticipate the actions of 

other agents. This is done via intent prediction. In state-of-the-art 

self-driving software stacks, intent prediction is done via large neural 

nets. Waymo’s ChauffeurNet[15] paper proposed one of the first intent-

prediction systems, with inputs involving maps, traffic lights, speed limit 

information, and other agents, as well as past trajectories to predict future 

trajectory, where all inputs were transformed to images for processing by 

convolutional neural nets. These inputs are shown in Figure 8-6. 

 Figure 8-6. Predicting future agent pose. Used with permission, 

 source: https://arxiv.org/pdf/1812.03079.pdf [15]

Waymo’s ChauffeurNet architecture predicts the future actions of 

other road agents using a combination of convolutional and recurrent 

neural networks. The core of the model is a FeatureNet that processes 

inputs (maps, traffic lights, etc.) and transforms them into features. These 

features are then fed into an AgentRNN, which predicts driving parameters 

like heading, speed, and waypoints. Additionally, a Road Mask Net and 
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Perception RNN are used to predict the drivable area and detect other 

agents, respectively. The model itself is trained of various loss functions—

heading loss, speed loss, and collision loss—which focus on minimizing 

differences between the model’s prediction and actual outcomes. 

The architecture also has a memory component, which keeps track of past 

agent locations. This improves overall model prediction of future positions 

and trajectories. By using convolutional neural networks for image processing 

and recurrent neural networks for handling sequence data, ChauffeurNet can 

leverage different types of data to understand the driving environment and 

predict future actions of agents in complex traffic scenarios. 

While ChauffeurNet predicts the future of the driver, similar logic can 

be applied to predict the intents of other agents as well. 

Intent prediction is crucial for driving situations like:

1.  Traffic light intersections, such as four-way and 

two-way stops, where multiple agents indicate their 

intentions through hand signals, lights, and other ways. 

2.  During lane change and merging situations, where 

it is important to know if other parties are giving you 

the right of way or not. 

 Planning

Given an agent’s surroundings, such as its location on the map, the static 

and dynamic obstacles around it, its destination, and relevant traffic rules, 

planning is the problem of finding an optimal trajectory toward the safe 

achievement of reaching the destination. Costs involved during planning 

are multifold:

1. Collision cost: An accident with any agent or static 

obstacle has among the highest costs in planning 

and is to be avoided with priority. 
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2. Traffic rule violation: Violating speed limits, 

traffic lights, HOV lane rules, and other traffic rules 

constitutes another cost. Compared to collision 

costs, these are lower, which means that a violation 

of traffic rules or speed limits may be incurred to 

avoid a collision. 

3. Distance and time cost: Reaching a destination 

within optimal path and time. 

The most common type of planners in self-driving are search-based 

planners. There are also neural planners and reinforcement-learned 

planners in research settings. The main downsides of neural planners are 

non-interpretability of decision making as well as lack of control over final 

actions chosen by the car. 

The following code segment shows how a search-based planner (A* 

search used in the example here) can be utilized. Note that this is a highly 

simplified version of a planner. Lane segments refer to elements in the 

map, and segments of lanes that may be occupied by an agent. For this 

example, the map is interpreted as a graph of lane segments, with a start 

and destination. Note that this code segment is modified based on A* 

search code provided here[16]. 

// A* search algorithm for self-driving to go from lane segment 

start // to lane segment destination

1.   Initialize an to_explore with the first lane segment where 

the ego is, and set its f = 0

2.  Initialize the explored list

3.  while the to_explore list is not empty

a)  find the lane segment with the least f on the to_explore 

list, call it "q" 

b) pop q off the to_explore list
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c)  generate q's successors, ie, lane segments that can be 

traversed to from q and set their parents to q

d) for each successor

i) if successor is the goal, stop search

ii) else, compute both g and h for successor

successor. g = q. g + cost to go from q to successor

successor. h = cost to go from goal to successor 

distance (eg Manhattan distance cost + other costs 

discussed above)

successor. f = successor. g + successor. h

iii)  if a node with the same position as successor is 

in the to_explore list which has a lower f than 

successor, skip this successor

iV)  if a node with the same position as successor  is 

in the explored list which has a lower f than 

successor, skip this successor otherwise, add the 

node to the to_explore list end (for loop)

e) push q on the explored list end (while loop)

Similarly, an intersection may be modelled as follows:

// Modeling a traffic intersection in C++

class Intersection

{

public:

Type type_of_intersection; //  type of intersection, 

say traffic

// light, 4 way stop, 2 way stop

LaneSegment[] lanesegments; //  list of lane segments 

that are

//  part of the intersection 

and their
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// relationships to each other

Crosswalk[] crosswalks;        //  crosswalks that are 

part of the

// intersection and agent IDs

// belonging to them

TrafficLights[] trafficlights; //  traffic light 

elements and

// their states that are

// part of the intersection

Agent[] order_of_arrival;      //  order of arrival 

of agents

Agent[] agents;                //  all agents and their 

attributes

// that are relevant to the

// intersection

}; 

 Safety

Engineering safety is a core concept when building robust robotics 

products. This is especially crucial with self-driving systems, as vehicles 

operate among people, sometimes at high speeds, and mistakes can 

be deadly. 

 AI Safety and Systems

Previous safety standards were designed with traditional systems in mind 

and don’t cater as well to AI-based self-driving systems. For example, ML 

systems can be unpredictable, use incomplete data, and are often difficult 

to interpret, which makes it hard to guarantee their safety using existing 

standards. 
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A key failure mode of ML systems is breaking down when interacting 

with people or their environments in unexpected ways. Since ML methods 

rely heavily on the completeness of the data, ensuring that important 

scenarios and data is accounted for is crucial. If data is missing for 

important scenarios that the vehicle may encounter, its behavior could be 

unexpected and more likely to break down. 

A group in the ISO (the International Organization for Standardization)

[17] is focused on developing standards to ensure that AI systems being 

developed are safe and reliable for applications that involve human 

interactions, like autonomous vehicles. To account for the unique 

challenges that ML systems face in autonomous vehicles, we can also 

draw on principles from the AI safety community. The goal of AI safety is 

to ensure that AI systems act fairly and don’t discriminate in any way. A 

few key ideas of AI safety, as described in [18], include ensuring that AI is 

fair (doesn’t discriminate), transparent (easy to understand), and secure 

(protected from hackers). 

 Safety  Considerations

This section discusses a few aspects of general safety to consider when it 

comes to the hardware and algorithm design of self-driving cars. Many 

of these points are focused on companies building self-driving cars that 

will be used publicly, but these ideas are similarly applicable in research 

settings. 

 Sensor  Reliability

Self-driving cars can use many sensors, including cameras, radar, and 

LiDAR, to understand their environment. To ensure that sensors work 

reliably, it can be helpful to use multiple types of sensors to cover various 

weaknesses, perform regular calibration to ensure that sensors perform 
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well, and use sensor-fusion techniques to validate information from 

different sensors. That way, if a single sensor is spooked, others can 

balance it out. 

 Algorithmic  Robustness

The algorithms used in self-driving cars must be able to work in a wide 

range of driving scenarios, whether it be empty streets or complex 

urban environments. To catch edge cases and measure adaptation, 

these algorithms should be tested in varying real-world and simulated 

environments. It’s also important to implement fail-safe methods and 

monitoring methods to detect and address any anomalies or edge cases 

that the vehicle encounters that are not accounted for in algorithm design. 

 Cybersecurity

Using sensors and other technologies in self-driving cars makes them 

more vulnerable to cyberattacks, which can compromise safety and 

privacy. To protect against these attacks, it’s important to have encryption 

methods in place to protect data and establish detection systems to 

monitor for and respond to potential threats. Companies should conduct 

regular security audits and collaborate with cybersecurity experts to 

identify and mitigate data-related risks. 

 Ethical  Decision-Making

It’s important that companies have clear ethical guidelines that dictate 

how ethical decisions should be made by the self-driving car and 

ensure that these guidelines are reflected in how the vehicle handles 

edge cases. To build trust in the company and with the public, having 

clear documentation and communicating openly about these topics is 

important. 
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 Human-Machine  Interaction

The interaction between self-driving cars and the people riding in them 

should be intuitive and user-friendly. When designing these vehicles, it can 

be useful to have clear visual and auditory signals to inform passengers 

about the vehicle’s actions and goals. This can include designing controls 

and interfaces that are easy to understand and operate, and allowing 

passengers to take over control in any emergency cases. Making sure 

these human-machine interactions are straightforward can be extremely 

important for public trust and to maintain safety. 

 Fail-Safe  Mechanisms

Self-driving cars must have mechanisms in place to handle unexpected 

failures safely. This includes developing comprehensive emergency 

protocols that allow the vehicle to safely stop or return to a secure state if 

any issues come up. Having manual or backup control systems that can 

take over if the primary system fails can be useful during deployment to 

ensure safe operation continues even if a malfunction happens. 

 Data  Privacy

Given the vast amount of data that’s collected by self-driving cars, 

protecting user privacy is important. When training models or sharing 

data, anonymizing that data can be useful to prevent the identification of 

individuals. Developing standards about data usage and privacy policies, 

and sharing these standards publicly can build trust with the people using 

self-driving cars. 
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 Summary

This chapter covered the following points:

•  There is a huge economic opportunity to build self-

driving cars, as the transportation industry is worth $7 

trillion. 

•  The system design for these vehicles can be broken 

into perception, prediction, and planning algorithms, 

along with hardware considerations. There is a growing 

interest in end-to-end neural planners, but they face 

challenges in safety and commercialization. 

•  The goal of perception in self-driving is to build an 

environment model that is aware of static, dynamic 

objects, and contextual scene information around the 

vehicle. 

•  Prediction focuses on anticipating the actions of other 

agents in the environment using large neural networks. 

•  Planning involves finding an optimal trajectory for 

the vehicle to achieve its goal safely while minimizing 

various costs, including collision costs, traffic rule 

violation costs, and time costs. 

•  Safety is a critical aspect of self-driving cars, including 

AI safety, ML system robustness, and general safety 

considerations for companies and research. 

The next chapter explores common tasks in industrial robotics, 

including peg-in-hole assembly, welding, and warehouse automation. 

It discusses various robot types, key system design considerations for 

hardware, the use of software (such as CNNs for grasping), scaling 

reinforcement learning for grasping, as well as performance and safety 

metrics. 
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CHAPTER 9

Industrial Robotics

Industrial robots perform tasks in industrial and manufacturing settings 

such as assembly, welding, and packing. These tasks are repetitive and 

labor-intensive and require a level of precision and consistency. By using 

deep learning, we can improve a robot’s ability to perceive and understand 

their environment and perform these complex tasks. Using sensor data, 

robots can recognize objects, plan paths, and execute on tasks. Deep 

learning can especially be important, as it allows robots to adapt to their 

changing, unstructured environment and perform tasks in predictive 

maintenance and operations alongside humans. 

Deep learning techniques are being used by several businesses 

in manufacturing and industrial settings. One is Amazon, which uses 

computer vision methods to deploy a fleet of robots in their fulfillment 

centers. According to Amazon, “In 2022, 1 billion packages, or one-eighth 

of all the orders we delivered to customers worldwide, were sorted by 

Robin, one of Amazon’s robotic-handling systems. ”[1] By creating a 

collaborative environment between robots and humans, they have seen an 

increase in efficiency, a reduction in errors, and an increase in how many 

orders they can process in their fulfillment centers. Before diving into 

which deep learning methods are used, the following section talks about 

which tasks are commonly performed in manufacturing settings. 

© Alishba Imran, Keerthana Gopalakrishnan 2025 

375

A. Imran and K. Gopalakrishnan,  AI for Robotics, 

https://doi.org/10.1007/979-8-8688-0989-7_9

Chapter 9   IndustrIal robotICs

 Common  Tasks

Manufacturing and industrial robotics are employed in a wide range of 

tasks to automate processes, improve efficiency, and increase precision. A 

few common tasks in manufacturing and industrial robotics include pick- 

and- place, peg-in-hole, and welding. 

 Pick-and-Place

In industrial automation, picking up an object from one position and 

placing it in another is known as “pick-and-place.” In fields such as 

automotive, electronics, and logistics, this task is extremely important 

for a robot to complete, as it helps place components on assembly lines 

and generally manipulate heavy items. A pick-and-place system typically 

comprises a robotic arm or manipulator with end effectors like grippers, 

vacuum cups, or magnetic attachments. For placement and control, it 

also has sensors, a vision system, and a controller. Commonly, FANUC’s 

robotic arms are used in automotive assembly[2], ABB’s robots are used for 

electronics manufacturing, and Amazon’s robotics are used in fulfillment 

centers[3]. Figure 9-1 is an illustration of a pick-and-place robot system. 
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 Figure 9-1. Pick-and-place system by Covariant AI. Used with 

 permission, source: https://covariant.ai/insights/automation-

 upgraded-robotic-sorter-induction/ [31]

 Peg-in-Hole

In the peg-in-hole task, an item must be carefully inserted into the 

correct hole or container. Electronics production, automobile assembly, 

and aircraft manufacturing all depend on this work. For example, in 

electronics manufacturing, you may need to place chips on circuit boards, 

which requires extreme precision that robots like ABB’s IRB series[4] can 

help with. In the automotive industry, aircraft manufacturers use robots 

like FANUC’s M-20iA[5] or KUKA’s KR Quantec robots[6] to assemble components. The components of a peg-in-hole system include a robotic 

arm, end effectors (usually a gripper or other specialized tool), sensors, 

and a vision system for alignment and positioning. Figure 9-2 depicts a 

system with a peg-in-hole robot as an example. 

377

[image: Image 195]

Chapter 9   IndustrIal robotICs

 Figure 9-2. Robot performing peg-in-hole task. Used with 

 permission, source: https://www.semanticscholar.org/paper/

 Robot-Learning-from-Demonstration-in-Robotic-A-Zhu-Hu/

 d77d2925eee76dbb41d7c2fbda138b2f7beeec62 [32]

 Welding

Robotic welding machines are used to weld materials together by 

melting and then combining them using heat. This is an important task 

in sectors including aircraft, construction, and the automobile industry. 

In the aircraft industry, you need precise and high-quality welds and 

in the construction sector, robots are used for tasks such as steel beam 

welding. In the automotive industry, manufacturers like Tesla[7], General 

Motors[8], and Toyota[9] use robots to weld car bodies. This can speed up manufacturing time and, in some cases, improve the quality of the 

welds. Common robots used for these tasks are the KUKA’s KR Quantec[6], 

FANUC ARC Mate series[10], and ABB’s IRB 6700 robots[11]. A welding robot system incorporates a robotic arm with a torch or tool, a welding 

power source, sensors, and a vision system for tracking. Figure 9-3 shows 

an illustration of a welding robot. 
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 Figure 9-3. Welding robot example showing mechanical structure 

 and joint rotations. Used with permission, source: https://

 journals.sagepub.com/doi/full/10.1177/16878132241260525[ 33 ]

 Warehouse  Tasks

Outside of improving specific industrial processes, robots can also be 

used to improve overall warehousing duties. Robots can do inventory 

movement and fulfillment, inventory tracking, and scanning, which can 

help modern warehouses and distribution centers operate as efficiently as 

possible. 

•  Inventory movement and fulfillment: Effective 

management and handling of items within a 

warehouse or distribution center are necessary for 

inventory movement and fulfillment tasks. To fulfill 

client orders and maintain stock levels, robots are 

used for choosing, packaging, sorting, and delivering 

products. Typically, automated guided vehicles 

(AGVs)—which are mobile robots that have conveyors, 

shelves, grippers, and sensors—are used for inventory 

transportation and fulfillment. They can be linked to a 

centralized command system that controls orders and 

inventory information. 
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•  Inventory tracking and scanning: Robots are used 

for inventory tracking and scanning to monitor and 

control inventory levels, ensure accuracy, and track 

the movement of items throughout the warehouse. 

These robots have various sensors, including cameras, 

barcode scanners, RFID readers, and computer 

vision systems for monitoring, recognizing objects, 

navigation, and obstacle avoidance. 

 Common  Robots

Robots used in industrial settings come in many shapes and forms, 

depending on the environment and tasks being completed[12]. 

 Standalone Industrial Robots

•  Articulated robots: These robots have rotary joints 

and between three to six degrees of freedom. For this 

reason, they are flexible and can rotate in multiple 

directions. They have a base, arm, wrist, end effector, 

control system, and sensors/actuators, which allow 

for controlling movement. Commonly these types of 

robots are used in assembly and welding. An example 

of a robot like this is the Kuka KR Quantec series,[6] 

which are commonly used in manufacturing for 

welding car bodies. 

•  Parallel robots: These robots have three arms, which 

are connected to a base platform using universal joints. 

The arms themselves are placed in a parallelogram 

configuration, which allows them to move quickly. For 
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these reasons, parallel robots are ideal for packing and 

higher precision assembly. ABBs FlexPicker robots 

are examples of these; they have been used in food 

processing plants[13] for pick-and-place and to prepare 

frozen pizzas[14]. 

•  Gantry robots: With three linear axes of control 

placed at 90-degree angles to each other, these robots 

are known for being simple to control and useful 

when space is limited. Gantry robots consist of linear 

actuators, guide rails, and a control system. Güdel’s 

TMF Gantry robots[15] are an example of this; they 

are commonly used in automotive assembly lines to 

manipulate heavy parts. 

 Collaborative Robots (Cobots)

As it says in the name, these robots work with humans and are designed 

with safety in mind. They are useful in tasks where flexibility and working 

on ground with humans is important. 

•  Assembly: These cobots can perform tasks such as 

screwing, fitting, and joining parts, often working 

alongside human workers. 

•  Material handling: They assist in moving, sorting, and 

packaging materials, which reduces the physical strain 

on human workers and increases throughput. 

•  Pick-and-place: These cobots are used to pick items 

from one location and place them in another, which is 

useful in logistics and warehousing. 
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•  Quality inspection: Using vision systems, these cobots 

can inspect products for defects. They are very effective 

at performing routine tasks, which frees up human 

operators for other needed duties. 

•  Safety: Using sensors, these cobots can detect 

contact with humans or objects and stop or slow 

down in these scenarios to avoid injury. They are 

often designed to apply little force, which can be 

helpful in cases where there is unintended contact 

with a human. 

•  Hardware: Force sensors are used to detect 

force and torque applied by the cobot and 

adjust movement as needed. Cameras and other 

sensors mentioned in Chapter 2 are used to 

recognize humans and objects, navigate in their 

environment, and perform tasks such as quality 

inspections. Oftentimes, there is some GUI or 

easy-to-use interface for humans to easily program 

or interact with the robot in case of changes to the 

environment or tasks. 

A popular cobot is Universal Robots’ UR series[16], which is often used 

in smaller spaces. It is lightweight compared to other robots, is fast, and 

can tend to different applications easily. These robots are commonly used 

for welding and stacking objects. 

 Mobile  Robots

There are two common types of mobile robots: Autonomous Guided 

Vehicles (AGVs) and Autonomous Mobile Robots (AMRs). The main 

difference is that, while AGVs follow a fixed, predetermined path using 
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tape, wires, or rails in the physical environment, AMRs can use sensors 

like cameras and LiDAR to navigate their environment more dynamically, 

without the need for physical guides. 

•  AGVs: These are mobile robots that follow a fixed 

path and predetermined routes to transport materials 

from one location to another. They often require 

modifying the physical environment using guide tracks 

or markers for them to operate. They are commonly 

used in warehouses/distribution centers, where you 

are following the same path to transport an object 

from one location to another. They are made up of 

navigation systems that can navigate their environment 

and then follow those predefined paths, drive motors 

for movements, and various sensors to detect any 

obstacles. An example of these are Amazon’s Robotics, 

which usually transport items within their fulfillment 

centers[17]. These AGVs follow a predefined path 

to receive and deliver inventory items and reduce 

repetitive tasks that humans need to do. 

•  AMRs: These robots use cameras, LiDARs, and 

algorithms to navigate their environment in a more 

flexible manner. AMRs can be used in logistics and 

manufacturing to transport materials and pick-and- 

place items and deliver them within facilities. AMRs 

have navigation systems with mapping, localization 

abilities, sensors for detecting and avoiding obstacles, 

and path planning. Fetch Robotics’ AMRs[18] are 

commonly used in warehouses for picking and 

transporting items autonomously. 
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 Humanoids

Humanoid robots are designed to complete tasks like a human would, 

with a head, torso, arms, and legs. They are made up of actuators that 

help move the robots limbs and joints, sensors that are used to provide 

feedback on the environment, control systems that process sensor data, 

manage actuators that move, and end effectors that interact with items to 

perform specific tasks like gripping or manipulating items. Recently the 

company Figure built humanoid robots and signed an agreement with 

BMW[19] to use their robots in automotive manufacturing. Similarly, 

companies like Tesla are building humanoid robots to work alongside 

humans in their factories[20]. 

For more information on the hardware and software design of these 

humanoid robots, we recommend reading Chapter 10. 

 Market  Opportunity

According to a McKinsey report, “The overall automation market is 

growing rapidly: at least some expert sources expect robot shipments 

to increase by up to 50 percent each year through 2030, with warehouse 

automation growing by more than 10 percent per year”[21]. The industrial 

robotics market worldwide was valued at 54 billion in 2023 and is expected 

to grow to 142.8 billion[22]. The growth of this market and the applications 

breakdown are shown in Figure 9-4. 
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 Figure 9-4. Growth of industrial robotics market and main 

 applications in welding, soldering, assembling, and so on. Used 

 with permission, source: https://market.us/report/industrial-

 robotics-market/ [34]

There are a few reasons for growing market interest, including:

•  Decreasing prices: Due to lower production costs in 

regions with cheaper labor, robots have become more 

accessible. 

•  Robots: There is an increase in the variety of robots 

and improved software with greater precision and 

mobility, which have allowed robots to be deployed 

across a wider range of manufacturing industries. 

•  Labor: Rising labor costs globally have also made 

the investment in robotics more attractive because 

companies are seeking to automate to maintain 

competitiveness and address skill shortages. 
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According to recent data from Statista’s Market Insights, ABB leads the 

market with a 21 percent global market share in 2022, KUKA and Japan’s 

Kawasaki make up 9 percent share, and other important players are Fanuc 

with an 8 percent share, Mitsubishi, and Yaskawa, who have 5 percent of 

the market each[23]. A breakdown of this is shown in Figure 9-5. 

 Figure 9-5. Companies that produce robots commonly used 

 in industrial tasks. Used with permission, source: https://

 www.statista.com/chart/32239/global-market-share-of-

 industrial-robotics-companies/  by Statista[23 ]

These robotic manufacturing companies design the arms or platforms 

that are deployed by other companies. There are also companies like 

Boston Dynamics, which leverages deep learning methods for their 

robots, including their robot, Spot[24], which can be used for industrial 

inspections. 
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 System Design for Pick-and-Place Robots

Now that you are familiar with the common tasks in industrial robotics, 

this section explains how to design a system to accomplish these tasks, 

specifically the task of pick-and-place. The pick-and-place task is essential 

because it is a specific task that is usually part of accomplishing larger 

manufacturing goals, such as assembling components, packaging 

products, and sorting materials. 

The most common pick-and-place robots[25][26] include:

•  Robotic arm: This five-axis robotic arm is used for 

most common pick-and-place tasks that involve 

picking up and dropping an object in a single plane. To 

rotate objects, you need a six-axis arm or seven- 

axis arm to turn objects before dropping/placing them 

somewhere. 

•  Cartesian: These robots can move in x, y, and z axes 

and use linear actuators to control belts, balls, and 

so on, which can help with positioning. These robots 

are often used for material handling, CNC operations, 

electronics, and food because they are reliable and 

provide more precise manipulation. 

•  Delta: They have three or four arms that are connected 

on a base and provide speed with pick-and-place tasks. 

 Hardware  Components

The main components of pick-and-place robots include the arm, end 

effectors, control system, and sensors[25]. 
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•  Arm: The arm itself can range from five-axis designs for 

basic tasks, to six-axis and seven-axis arms, which can 

help perform more complex rotations and orientation 

changes. The arm has a combination of motors and 

actuators, which provide control and sensors used for 

managing pressure/force. 

•  End effectors: An end effector is attached to the end of 

the robot arm and is the part of the arm that is used to 

grip, hold, and manipulate objects using picking and 

placing. A few common end effectors include:

•   Vacuum grippers: These grippers create a vacuum 

that allows you to lift objects. This gripper is ideal 

for objects that are relatively flat, such as glass and 

metal sheets. These grippers are commonly used in 

electronics and packing for these reasons. 

•   Mechanical grippers: These can be two or three 

finger grippers that are usually designed to handle 

different shapes and sizes of objects. Often these 

grippers are used for picking and placing in 

automotive parts and consumer electronics. As 

they are able to manipulate different objects, they 

are commonly used for gripping and manipulation. 

•  Control system: This is the “brain” of the pick- 

and- place robot because it is used to manage the 

movements and actions that the arm takes. Inputs 

are taken from sensors and commands are sent to 

actuators to execute actions. Some common controllers 

include:
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•   PID: These controllers continuously adjust the 

robot’s movement based on feedback from 

the environment. They use three components: 

the proportional component, which corrects 

for differences when the robot goes off path by 

applying a correction proportional to the error, 

the integral component, which removes common 

recurring errors by accumulating past errors and 

adjusting the path to correct this offset, and the 

derivative component, which predicts change and 

adjusts position so that you don’t miss the target 

position. 

•   ML: Neural network based controllers are trained 

on a larger dataset of robot movement and 

outcomes. The robot can learn various different 

pick-and-place actions and ideally adapt to any 

environment that it operates in. In reality, training 

these models requires extensive data and can be 

difficult to generalize. A lot of research is working 

to improve this through simulation data and agent-

based learning through RL. 

•  Sensors: Vision sensors and force sensors are typically 

used in pick-and-place tasks. Vision sensors help 

identify and locate objects before picking them up and 

force sensors ensure that the robot grips objects with 

an appropriate amount of force. 

All these components interact together to accomplish a pick-and-place 

task. Sensors are used initially to understand the environment, control 

systems provide a command to execute on the task based on where the 

initial and target location are sensed, and sensors are used during grasping 

to ensure enough grip is applied to execute the task. 
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 Software  Components

Over the years, there have been many deep learning methods developed to 

perform grasping. Why is deep learning even good for a task like pick- 

and- place? 

Given the repetitive nature of pick-and-place tasks, many 

demonstrations can be collected. This provides a diverse dataset to train 

deep learning models. These models need to generalize to various object 

morphologies and environments, which is challenging for traditional 

methods. For example, handling soft objects requires being delicate to 

avoid damage, and deep learning models can learn the specific ways to 

grasp such objects and ensure they land correctly in their designated 

places. This adaptability and precision make deep learning an ideal 

approach for improving the efficiency and accuracy of pick-and-place 

tasks in changing and different visual environments. A common approach 

is using Convolutional Neural Networks (CNNs), which was explained in 

Chapter 2 to execute grasping tasks. 

 Convolutional Neural Networks for Grasping

A popular method that uses CNNs for grasping was presented in this 

paper[27]. As input, they take in an image that is captured before the robot 

attempts to grasp any object (without gripper) and an input image that 

is captured at some specific time t during the grasping process. These 

images are combined and processed using multiple layers of convolutional 

filters. The idea is for each layer to extract different features from the 

image, including edges, shapes, textures of the environment, and specific 

objects to grasp. The filter sizes are fairly small (3x3, 5x5, etc.) and many 

are applied per layer. After convolutional layers, there are pooling layers 

to reduce the size of feature maps and fully connected layers toward 
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the end that takes in the flattened feature maps as a vector and makes 

predictions. Here, the network outputs a probability indicating the success 

of grasping an object. An important aspect of this approach is that it 

takes in a proposed motor command (describing planned movement 

of the robotic arm) and considers this alongside the input images of the 

scene to determine the success of the grasp. This architecture is shown in 

Figure 9-6. 

 Figure 9-6. Architecture used for CNN for robot grasping in [27]. 

 Used with permission, source: https://journals.sagepub.com/doi/

 full/10.1177/0278364917710318 [27]

This method uses training data from real physical robots that attempt 

grasps, records images, poses, and movements at each time step, and then 

evaluates the success of the grasp to produce labeled training samples. 

Each sample includes the image, the current pose to the final pose, and 

the overall grasp success. The setup for collecting grasping training data is 

shown in Figure 9-7. 
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 Figure 9-7. Grasp setup includes multiple timesteps, which 

 correspond to an image and a pose. Used with permission, 

 source: https://journals.sagepub.com/doi/full/10.117

 7/0278364917710318 [27]

Another important aspect of this method is the serving mechanism. 

It takes the trained network from the previous step to determine motor 

commands, which will improve the likelihood of grasping success. 

Conceptually, this part of the method is optimizing the commands 

through a sampling-based approach, making sure while staying within 

constraints, it is adapting the gripper’s position based on predicted success 

probabilities. In the end, this approach is able to effectively grasp objects, 

even in cluttered environments. 

A lot of work has built on this or taken other directions using CNNs 

for grasping, but fundamentally all of these do the same thing—they use 

CNNs to process images of the scene, extract relevant features, predict the 
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optimal motor commands for grasping, and then evaluate the probability 

of these commands to successfully guide the robot’s actions. 

 Scaling RL for Robotic Grasping

Reinforcement Learning (RL) has shown success in individual robotic 

applications like grasping and manipulation. One of the key challenges 

in scaling up these systems is ensuring that they can reliably be used in 

everyday life. A paper by Google[28] tackled this problem by getting 23 

RL-enabled robots over two years in their offices to sort waste/recycling 

and then collect this data. Their system combined deep RL from real-world 

data with simulation data to accomplish grasping. Although this was done 

in the context of trash sorting, it acts as a case study of how ideas you’ve 

learned throughout this book on simulation, RL, and perception methods 

can be combined to solve real-world robotic manipulation challenges. 

Their pipeline uses three main components:

•  A scripted policy where they detect objects, plan the 

grasp pose, and generate the trajectories to reach the 

object as a way to start collecting data in simulation 

and the real world. 

•  The RL training starts in simulation and simulation- 

to- real methods are used to bridge the gap between 

simulation and the real world. 

•  They start training on tasks with varying levels of 

difficulty, with sorting trash being the hardest task. 

Initially the tasks start out easier and there’s higher 

success, which gradually turns into harder tasks. By 

quickly introducing easier tasks at the start of the 

training, the aim is for the model to learn and be able to 

adapt to more challenging tasks. 
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PI-QT-Opt[29] is used to train the final policy on the full dataset that 

is collected from simulations and real world. The Q-function architecture 

takes in an RGB image of the scene that has unsorted objects and the 

masks of the shapes of the objects in the scene are generated. Features 

are extracted from the images and masks using convolutional layers. 

The features from the masks and the original image are combined. 

One encoder, called the forward encoder, is used to process the current 

image and the background encoder processes the next image as a way 

to predict future states. An LSTM layer is used to keep context overtime 

on observations and actions. The Q-function uses the current state and 

action to predict future rewards and uses the most recent six time steps. 

The final output is given as a predicted value, which tells you the expected 

success of a particular action. This architecture is shown in more detail in 

Figure 9-8. 

 Figure 9-8. Overview of PI-QT-Opt system used to sort trash. Used 

 with permission, source: https://rl-at-scale.github.io/assets/

 rl_at_scale.pdf [28]

An important aspect highlighted in this work is the need for large-scale 

data collection and the combination of online and offline data to improve 

model performance for robotic grasping. 

 Multimodal Grasping System

An interesting direction to build a foundation model for robotics was 

presented by Covariant AI, in their method called RFM-1[30]. This 

method is particularly suited for manufacturing, logistics, and warehouse 
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applications, as it can adapt to changes and collaborate and communicate 

with human workers. An important aspect is that Covariant has been 

able to collect diverse data of their robots performing tasks in challenging 

dynamic environments with many different object shapes and types, as 

shown in Figure 9-9. A few unique aspects of RFM-1 include:

•  Multimodal: The model itself is a transformer that 

tokenizes different modalities such as text, sensor data, 

and camera data into a shared space, which allows 

for next-token prediction. This means the model can 

take in any input modality and output in any modality 

as well. 

•  Physics understanding: Using a technique that allows 

for learning world models, the method can gain a 

deeper understanding of physics, which can help with 

performing realistic actions and reacting to changes 

in the environment. This is done by generating videos 

where input tokens of an initial image and robot 

actions are used to predict future video tokens. 

•  Language re-programming: A big challenge in 

robotics is re-programming robots when changes 

occur. Oftentimes, this is a difficult task that only 

the person who initially programmed the robot can 

successfully do. Through natural language commands, 

a person can instruct a robot to do a task and the robot 

can ask for help when it needs it. This back- 

and- forth dialogue is useful in the real world, where 

environmental changes require changing the task or 

re-programming the robot in any way. 
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 Figure 9-9. RFM-1 system by Covariant AI performing various tasks. 

 Used with permission, source: https://covariant.ai/insights/

 introducing-rfm-1-giving-robots-human-like-reasoning-

 capabilities/ [30]

This method shows the power of large-scale data collection and 

benefits that multimodal data can bring to improving interactions with 

robots in pick-and-place environments. To learn more, we recommend 

reading this release[30] on RFM-1. 

 Performance  Metrics

The success of deep learning-powered pick-and-place robots is primarily 

measured by a variety of performance, efficiency, and reliability metrics. 

These metrics help assess how well the robots do the tasks they were 

designed for. A few important metrics include:
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•  Accuracy of object detection: How accurately a robot 

can detect objects is crucial because it determines the 

robot’s capacity to recognize and categorize things 

in its surroundings. High object detection accuracy 

improves the ability of the robot to work efficiently 

within diverse environments. 

•  Grasping success rate: The robot’s capacity to pick and 

move items without dropping them or damaging them 

should be measured. Pick-and-place operations must 

be reliable and precise, which requires algorithms that 

have a high grasping success rate. 

•  Cycle time: The robot’s time to execute a full pick-and- 

place task, including detecting the object, planning, 

grabbing, and placement, is measured in terms of 

cycle time. Reducing this cycle time is important 

for improving output and productivity in industrial 

settings. 

•  Collision avoidance rate: The robot’s ability to 

avoid hitting objects or obstacles while navigating its 

surroundings is measured by its collision avoidance 

rate. For safety and effectiveness, reducing collisions 

and near-miss accidents is critical. 

•  Task completion rate: This measures the proportion of 

pick-and-place tasks that were successfully completed 

out of all tasks that were tried. It measures how 

dependable and efficient the robot is in completing the 

tasks that are assigned to it. 
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 Safety  Considerations

When employing deep learning for industrial robotics, safety must always 

come first in order to safeguard people and avoid accidents. Here are some 

safety points to remember:

•  Use safety sensors to keep an eye on the robot’s 

surroundings and spot any sudden movements or 

obstacles. When required, these sensors can initiate 

emergency stops. 

•  When using cobots, make sure they follow safety 

regulations by designing safety features like speed 

monitoring and force-limiting joints to lessen the 

possibility of accidents when interacting with people. 

•  Implement software capabilities that are linked to 

safety, such as path tracking and collision detection. 

These features can help the robot identify and react to 

unforeseen objects or changes in its surroundings. 

 Summary

In this chapter, you learned the following:

•  Industrial robots perform tasks such as pick-and-place, 

peg-in-hole, welding, and warehouse operations. Deep 

learning allows robots to adapt to their environments, 

improving their ability to identify objects, plan paths, 

and execute tasks in unstructured environments. 

•  Industrial robots come in various forms depending on 

their design and application. Standalone robots include 

articulated robots with rotary joints, parallel robots for 
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high-speed assembly, and gantry robots. Collaborative 

robots (cobots) work alongside humans with safety 

features like force-limiting joints. Mobile robots, such 

as AGVs and AMRs, handle inventory movement, while 

humanoid robots mimic human movements. 

•  Robotics in manufacturing facilities is expanding due 

to decreasing costs, improved capabilities, and the 

need to automate complex tasks. 

•  The chapter explained a system design for pick-and- 

place robots that are useful for assembly, sorting, and 

packaging. The design includes a robotic arm equipped 

with various end effectors, like grippers and vacuum 

cups. Deep learning is used to improve grasping 

accuracy through computer vision and reinforcement 

learning, which allow the robot to adapt to diverse 

environments and objects. Multimodal systems use 

various sensory data, which can be useful for the robot 

to process visual and tactile information. 

•  Performance metrics like object detection accuracy, 

grasping success rate, cycle time, collision avoidance, 

and task completion rate are crucial for improving 

the efficiency and reliability of industrial robots in 

real time. Ensuring safety is equally important by 

requiring robots to have sensors for collision detection, 

emergency stops, and force-limiting joints to prevent 

accidents when working alongside humans. 

The next chapter covers the hardware and software setup for 

humanoid robots, including approaches for manipulation, walking, 

teleoperation, and whole body manipulation. 

399

Chapter 9   IndustrIal robotICs

References

[1]  Quinlivan, Joseph. “How Amazon Deploys Robots in Its 

Operations Facilities.” US Amazon, 26 June 2023, www. 

aboutamazon.com/news/operations/how-amazon-

deploys-robots-in-its-operations-facilities. 

[2]  https://www.fanucamerica.com/solutions/

industries/automotive-robots

[3]  https://new.abb.com/products/robotics

[4]  https://new.abb.com/products/robotics/robots/

articulated-robots

[5]  https://www.fanucamerica.com/products/robots/

series/m-20/m-20ia-35m

[6]  https://www.kuka.com/en-ca/products/robotics-

systems/industrial-robots/kr-quantec

[7]  Liu, Gene. “Tesla Factory Robots Named after X-Men 

Superheroes.” TESLARATI, 18 Nov. 2014, www.teslarati. 

com/tesla-factory-upgrade-facts-figures/. 

[8]  Black, Thomas. “GM Hooking 30,000 Robots to Internet 

to Keep Factories Humming.”  Bloomberg, 4 Apr. 2017, 

www.bloomberg.com/news/articles/2017-04-04/

gm-hooking-30-000-robots-to-internet-to-keep-

factories-humming?embedded-checkout=true. 

[9]  https://www.robots.com/articles/how-toyota-uses-

automation-to-improve-processes

[10]  https://www.fanucamerica.com/products/robots/

series/arc-mate

[11]  https://new.abb.com/products/robotics/robots/

articulated-robots/irb-6700

400

Chapter 9   IndustrIal robotICs

[12]  “Industrial Robotics.” McKinsey & Company, July 2019, 

www.mckinsey.com/~/media/mckinsey/industries/

advanced%20electronics/our%20insights/growth%20

dynamics%20in%20industrial%20robotics/

industrial-robotics-insights-into-the-sectors-

future-growth-dynamics.ashx . 

[13]  “Fine Foods Packing Plant Uses ABB Cobots to Keep 

Ahead of Competition.”  ABB News, ABB Group, 7 Apr. 

2022, new.abb.com/news/detail/89351/prsrl-fine-

foods-packing-plant-uses-abb-cobots-to-keep-

ahead-of-competition

[14]  Labs, Wayne. “Robotic Vision Systems and Roles for 

Cobotics.”  Food Engineering RSS,  Food Engineering,  

3 Aug. 2020, www.foodengineeringmag.com/

articles/99045-a-further-look-at-robotic-vision-

systems-and-roles-for-cobotics

[15]  https://www.gudel.com/products/robots/

gantry-robot

[16]  https://www.universal-robots.com/products/

[17]  https://www.waredock.com/magazine/what-is-

amazon-robotic-fulfillment-center/

[18]  https://www.zebra.com/us/en/products/autonomous-

mobile-robots.html

[19]  https://www.prnewswire.com/news-releases/

figure-announces-commercial-agreement-with-bmw-

manufacturing-to-bring-general-purpose-robots-

into-automotive-production-302036263.html

401

Chapter 9   IndustrIal robotICs

[20]  Carter, Tom. “Tesla Has Put 2 Optimus Robots to 

Work on Its Factory Floor.”  Business Insider,  12 June 

2024, www.businessinsider.com/tesla-says-two-

optimus-humanoid-robots-working-in-factory-

autonomously-2024-6. 

[21]  Davies, Alan, et al. “Getting Warehouse Automation 

Right.”  McKinsey & Company, McKinsey & Company, 

1 Dec. 2023, www.mckinsey.com/capabilities/

operations/our-insights/getting-warehouse-

automation-right

[22]  https://market.us/report/industrial-

robotics-market/

[23]  Fleck, Anna. “Infographic: The Giants of Industrial 

Robotics.”  Statista Daily Data,  13 May 2024, www. 

statista.com/chart/32239/global-market-share-of-

industrial-robotics-companies/. 

[24]  https://bostondynamics.com/products/spot/

[25]  Moraes, Cassiano Ferro. “Pick and Place Robots: An in-

Depth Guide to Their Functionality and Applications.” 

 Wevolver, 25 Mar. 2024, www.wevolver.com/article/

pick-and-place-robots-an-in-depth-guide-to-

their-functionality-and-applications

[26]  “Everything You Need to Know about Pick and Place 

Robots.”  Robotic Automation Systems, 30 June 2023, www. 

roboticautomationsystems.com/blog/everything-

you-need-to-know-about-pick-and-place-robots/

[27]  Levine, Sergey, et al. “Learning hand-eye coordination 

for robotic grasping with deep learning and large-scale 

data collection.”  The International Journal of Robotics 

 Research 37.4-5 (2018): 421-436. 

402

Chapter 9   IndustrIal robotICs

[28]  Herzog, Alexander, et al. “Deep RL at scale: Sorting waste 

in office buildings with a fleet of mobile manipulators.” 

 arXiv preprint arXiv: 2305.03270 (2023). 

[29]  Lee, Kuang-Huei, et al. “PI-QT-Opt: Predictive 

information improves multi-task robotic reinforcement 

learning at scale.” Conference on Robot Learning. 

PMLR, 2023. 

[30]  “Introducing RFM-1: Giving Robots Human-like 

Reasoning Capabilities.”  Covariant, 11 Mar. 2024, 

covariant.ai/insights/introducing-rfm-1-giving-

robots-human-like-reasoning-capabilities/

[31]  “Automation, Upgraded: Robotic Induction.” Covariant. 

ai, 2022, covariant.ai/insights/automation-

upgraded-robotic-sorter-induction/. 

[32]  Zhu, Zuyuan and Huosheng Hu. “Robot learning from 

demonstration in robotic assembly: A survey.”  Robotics 

7.2 (2018): 17. 

[33]  Phan, Gia-Hoang. “Integrating long short-term 

memory for optimal control of 6-DOF welding robot 

arm.”  Advances in Mechanical Engineering 16.6 (2024): 

16878132241260525. 

[34]  “Industrial Robotics Market.” Market.us,  market.us/

report/industrial-robotics-market/

403

CHAPTER 10

Humanoid Robotics

Humanoid robotics concerns the study of robots that assume a human 

form factor. The term is loosely applied to robots that try to match a human 

form factor in various ways, and exact matching is not required. Usually, 

this means mobile robots (walking and sometimes on wheels), with 

human height (5 to 6 feet, although sometimes only as tall as children), 

and bimanual platforms, with grippers or multi-fingered dexterous hands 

for end effectors. Actuating a full humanoid—with legs, multi-fingered 

hands, and torso and head mobility—may be harder, for which reason 

roboticists may opt to simplify the platform in various ways (wheels 

instead of legs, grippers instead of hands, etc.). 

 The Case for Humanoids

There are several reasons why humanoid robotics is a popular strategy in 

robotics:

1. The physical world is often designed for the 

human form factor.  Cups handles are made to be 

manipulated by fingers, coke cans fit conveniently 

in hands, kitchen counters are at heights accessible 

by humans, and so on. This makes a case for why 

having a human form factor may allow a robot to 

perform lots of different tasks in environments 
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designed for humans without modification, and 

theoretically could reach human proficiency in 

physical skills. 

2. Internet scale models transfer general 

intelligence to robotics.  However, most of the 

data powering Internet scale models is the Internet 

itself and the Internet is a collection of human 

experiences. Optimal control policies may differ 

based on the bodies and intelligence may transfer 

better from a human body to a humanoid form 

factor than to other form factors, because the 

embodiment gap is smaller. 

3. A lot of valuable physical labor in the world is 

performed by humans.  Humanoids point to an 

opportunity to supplement labor markets and 

provide economic value without the need to invent 

new markets. 

 Alternative  Approaches

A humanoid approach to robotics is to a greater degree vertically 

integrated. This contrasts the extreme cross-embodied approach, which 

builds general physical intelligence that may transfer to any robot body. It 

is likely that solving robotics necessitates both approaches:

1.  End-to-end ownership on deployment and data 

with vertical integration and optimization of a 

robot body. 

2.  Large cross-embodied foundation models that 

provide general intelligence and reduce data 

requirements to train a well actuated body. 
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Humanoids are also general bodies that can perform a wide variety 

of tasks with the same body. This contrasts the approach of building 

specialized robots for specialized, repeatable tasks. Most robots deployed 

in industries today are specialized robots:

1.  Task specialization via general-purpose manipulator 

arms; for example, a generic ABB arm[1] assembling 

Printed Circuit Boards (PCBs). 

2.  Embodiment specialization for tasks; for example, 

snake robots for pipe inspections. 

The humanoid strategy cuts across task and embodiment 

specialization toward generalization. 

 Humanoid  Markets

The humanoid space has multiple players at the moment, as shown in 

Figure 10-1:

1. Intelligence providers: Companies that ship 

foundation models, like Google[2], OpenAI[3], 

Mistral[4], Meta[5], and so on. These companies 

are building foundation models used for humanoid 

development, have teams that are doing humanoid 

research, or they are funding/partnering with 

companies to conduct humanoid research. 

2. Hardware providers: Companies that build 

humanoid hardware, such as Boston Dynamics[6], 

Fourier Intelligence[7], Unitree[8], Apptronik[9], and Agility[10]. 
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3. Fully integrated providers: Companies that solve 

intelligence and hardware: Tesla[11], Figure AI[12], 

1x Technologies[13], and so on. 

 Figure 10-1. The humanoid hardware market. Used with 

 permission, source: https://lifearchitect.ai/humanoids/  by 

 https://lifearchitect.ai/ [32]

These companies share several key ingredients that have contributed 

to their success in humanoid development, including[14]:

1. Capital: Creating advanced robots can be 

expensive, so having funding to support research, 

development, and production of humanoid robots 

is essential. Given the impact and growth of this 

industry, investors are increasing funding toward 

humanoid companies[15]. For example, Figure 

AI, a California-based startup, raised $675 million 

in a Series B round including LG, Samsung, and 

Microsoft[15]. Similarly, Sanctuary AI, based in 

Vancouver, has raised significant funds, including 

recent investments from Accenture Ventures and 

Magna[15]. These funds will be used to further 
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their work in general-purpose humanoid robots. 

The growing investment in humanoid technology 

highlights the increasing belief in their potential 

and the resources needed to bring these robots 

to market. 

2. Foundation Models: Large-scale AI models that 

enable humanoids to understand and learn from 

vast amounts of data are critical. These foundation 

models demonstrate the cognitive abilities of 

humanoid robots, allowing them to perform tasks 

autonomously and adapt to new situations. Further, 

these large-scale generalized models form the basis 

to be fine-tuned for specialized tasks. 

3. Data: Generally, the more data a robot has access 

to, the better it can learn to perform tasks, recognize 

objects, and understand human behavior. For 

humanoids, this data can include anything from 

images and videos to text and sensor data from real-

world environments. 

4. Robots: The physical construction of humanoid 

robots involves hardware and biomechanics such as 

sensors, and actuators to create physical machinery 

that can mimic human actions. Companies like 

Boston Dynamics and Tesla invest heavily in this 

field, developing robots that can lift heavy objects or 

perform other complex movements with agility. 

5. Compute: As you scale model size and data, having 

compute infrastructure is critical to support the 

training and testing of models on a vast amount 

of data. 
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The market for humanoid robots is projected to grow significantly, with 

an estimated value of $4.85 trillion by 2035[14]. This is mostly driven by 

the increasing adoption of humanoid robots in industrial and household 

settings. In industries like manufacturing, humanoid robots are expected 

to take over about 35 percent of current human tasks, which would 

contribute to a $1.75 trillion market[14]. For households, these robots 

could become common for tasks like cleaning and elderly care and grow 

to a $2.8 trillion market[14]. As more advancements happen in tech and 

prices drop, humanoid robots are likely to follow a similar adoption path 

as electric vehicles, allowing them to become a daily part of our life and 

improving industries and homes. 

 How to Build a Humanoid

This section contains a rough overview of the techniques used to build and 

control a humanoid. 

 Hardware

Hardware design choices [16][17]:

1. Mobility: There are two commonly accepted 

approaches to humanoid mobility:

a.  Legged humanoids: These humanoids are equipped 

with legs for walking. The advantage of this method 

is that the humanoid can traverse multiple terrains, 

environments with curbs or steps, and so on. A 

second advantage is that the footprint of a legged 

humanoid is smaller, and its dexterity toward whole 

body manipulation is higher. For example, it can 

traverse cluttered spaces and orient its legs in ways 
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that distribute moment for lifting heavy objects, 

manipulating far away objects on tables, and so on, 

which could increase the workspace and payload 

of a humanoid. (When humans lift a heavy box, 

they often take a wide stance or put one leg in front 

to distribute the load.) Downsides include the 

fact that walking is a harder control problem and 

it introduces an instability into the system. This 

makes failures more catastrophic (if the humanoid 

falls, it could damage itself, surrounding objects, 

and cause injury). An interesting design choice for 

legs is the reverse knee from agility[18]. 

b.  Wheeled humanoids: The lower torso of the 

humanoid is a wheeled platform, similar to Eve 

from 1X technologies[19]. The main advantage of 

this design choice is that stabilizing the robot is 

easier. Wheels also allow the robot to be heavier 

since distributing the weight doesn’t require 

specific control. A downside is that the robot 

may be useless in harder terrains and uneven 

environments. Additionally, its ability to move 

through cluttered spaces and do whole body 

manipulation might be limited, therefore limiting 

its workspace and flexibility. 

2. End effectors: Humanoids may be equipped with a 

variety of end effectors:

a.  Grippers: Grippers are commonly used in robotics 

and are rather easy to control due to the lower 

degrees of freedom. This makes them a popular 

choice for humanoids. 
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b.  Dexterous hands: Humanoids may also come 

equipped with multi- fingered hands. Three-

fingered and five-fingered hands are popular 

choices. Each finger adds additional degrees 

of freedom, which then must be modeled and 

controlled, adding to the complexity of control. 

c.  End effectors with tactile feedback: Force feedback 

on hands allows for proprioceptive control, in 

addition to visual, and is useful for manipulating 

deformable and fragile objects. There is a tradeoff 

with increased cost. 

3. Wrist and head camera vs head camera only: It 

has been shown that incorporating wrist-mounted 

cameras can improve manipulation performance 

compared to using only head-mounted cameras[20]. 

Having wrist cameras provides additional visual 

feedback, improving spatial awareness and accuracy 

in teleoperation and human-robot interactions. 

4. Camera only vs camera and stereo/LiDAR 

depth: Camera-only systems are simpler and 

cheaper but face challenges in depth perception 

and object recognition. Advanced ML techniques 

can help overcome some of these limitations. 

Most humanoid designs on the market do not 

use LiDAR to keep the bill of materials smaller. 

Therefore, methods using only a camera as a sensor 

are preferred and may require more algorithmic 

development. 
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5. Linear/rotary actuators, hydraulic actuators: 

Linear/rotary actuators are more accurate than 

hydraulic ones. It is also messier to develop with 

hydraulic actuators because of hydraulic systems 

maintenance and potential fluid leaks, and so on. As 

such, most humanoid companies, such as Boston 

Dynamics, are moving to fully electric motors and 

away from hydraulics[21]. 

A humanoid robot may have the following control parameters:

1. Head/hip position: This parameter controls the 

vertical and horizontal positioning of the head and 

hips, which allows the robot to orient itself and 

interact with its environment from various angles. 

2. Head rotation: This parameter controls the 

rotational movement of the robot’s head, which 

allows it to look in different directions. Head 

rotation is important for focusing on specific objects 

or areas. 

3. Shoulder extensions/rotations: These parameters 

manage the extension and rotational movements 

of the robot’s shoulders. They position the arms 

correctly for various tasks like reaching or lifting 

objects. 

4. Elbow flex: This parameter controls the bending 

and straightening of the robot’s elbows. Elbow 

flexion is useful for adjusting arm length and 

positioning during manipulation tasks. 
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5. Wrist joint rotations: This parameter monitors the 

rotational movements of the wrist joints. Wrist joint 

control is important for fine motor tasks. 

6. Finger joints/gripper open-close: This parameter 

controls the movement of individual finger joints 

or the opening and closing of the robot’s gripper. It 

allows the robot to grasp, hold, and release objects 

with different degrees of force and precision. 

7. Torso joint rotations/extensions: This parameter 

monitors the rotational and extension movements 

of the robot’s torso. It allows for adjustments in the 

robot’s upper body posture, which is important for 

maintaining balance and reaching different areas. 

8. Hip joints: These parameters control the movement 

of the robot’s hips, like rotation and tilt. Hip joint 

control is important for walking, sitting, and 

adjusting the way the robot stands. 

9. Knee flexions: This parameter controls the bending 

and straightening of the robot’s knees. Knee flexion 

is used during walking, squatting, and maintaining 

stability when doing activities. 

10. Ankle joint rotations: This parameter manages the 

rotational movements of the robot’s ankles. It helps 

the robot adapt to uneven surfaces and maintain 

balance while standing or moving. 

11. Foot positions: This parameter controls the 

placement and orientation of the robot’s feet. 

Adjusting foot positions is important for walking 

stability, posture, and navigation over different 

terrains. 
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While most people expect humanoids to be modeled after the human 

form factor, humanoid design can happen in a way where they’ve fewer 

or greater control parameters. The argument for fewer degrees of freedom 

is that it is simplified and easier to control. The argument to make it more 

complex is that machines are not bound to the limitations of the human 

form factor: that they can have full rotations at various joints. A few 

companies experimenting with the latter are Booster Robotics[22] and 

Boston Dynamics. 

 Software

This section describes the software stack of a typical humanoid and 

approaches to learning or scripting humanoid control. 

 Approaches  to Manipulation

Humanoid manipulation is a problem of bimanual dexterous 

manipulation and various control algorithms and techniques, discussed in 

Chapters 4 and 5. As such, large-scale deployment of humanoids beyond demos is still an unsolved problem, which points to unsolved research 

questions on generalizable ways to control a full humanoid. Imitation- 

learned approaches with scalable data generation are common in 

research, a recent example being Humanoid Shadowing Transformer[23], 

which takes images from humanoids’ cameras and their proprioception 

(joint positions) as inputs and uses a decoder only transformer to 

learn control parameters from imitating humans. An overview of this 

architecture is shown in Figure 10-2. 
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 Figure 10-2. Architecture of the humanoid shadowing 

 transformer. Used with permission, source: https://arxiv.org/

 html/2406.10454v . HumanPlus: Humanoid Shadowing and Imitation from Humans by Zipeng Fu, Qingqing Zhao, Qi Wu, 

 Gordon Wetzstein, and Chelsea Finn at Stanford University[23]. 

Learning from large video data is still the Holy Grail in terms of 

unlocking general-purpose humanoid intelligence and the methods 

covered in Chapters 4 and 5. Using simulation data should point in that direction. Human manipulation data has the lowest embodiment gap to 

humanoid control, which makes transfer more likely and easier than for 

any other embodiment due to structural similarity of policies. 

 Approaches  to Walking

Traditional approaches to solving walking included scripted approaches 

that did not utilize machine learning. Since this book focuses on machine 

learned approaches, this section covers some new and experimental 

approaches to walking. A notable recent approach is from Radosavovic, 

et al.[24], which treats humanoid walking as a next token prediction 

problem. They train a walking neural network controller on many different 

types of data, where some include action outputs and some don’t. The four 

types of datasets they train on are:
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1. Neural network policies: Observation action pairs 

generated in sim by an RL policy trained in sim. 

2. Data from model based controllers: Trajectories 

without actions, generated by a humanoid 

company’s controller (in this case, Agility Robotics). 

3. Mocap (motion capture) data: Data of humans 

with markers on their bodies, such as KIT[25]. This 

data was retargeted to the humanoid by using the 

humanoid’s inverse kinematics model. 

4. YouTube data of human poses: YouTube videos of 

humans doing things, with pose estimation applied 

to the videos and then retargeted onto humanoids 

with the inverse kinematics model. 

In order to train on data with lots of different modalities, the authors 

use a mask token, initialized as a random vector to replace a missing 

modality (e.g., action). They also use casual masking, meaning that each 

token only attends to previous inputs. Figure 10-3 shows a schematic of 

this. Due to these methods and the data sources used, they are able to 

outperform reinforcement learned state-of-the-art methods and perform 

zero-shot walking in unseen scenarios. Training in this manner exhibits 

scaling with data, larger context lengths, and model size, indicating that 

very large models with large datasets and generic capabilities may be built 

by scaling strategies similar to ones deployed in large foundation model 

training. 
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 Figure 10-3. Training with missing data. Used with permission, 

 source: https://arxiv.org/pdf/2402.19469 [24]

 Approaches to Teleoperation and Data

One way to control humanoids is through teleoperation, which provides 

many ways to improve the functionally of humanoids. Teleoperation 

techniques for humanoid bimanual operation include several design 

choices that may be relevant:

1. VR headset teleoperation vs line-of-sight: In a 

VR headset teleoperation mode[29], the operator 

who controls the humanoid is only subjected to the 

images from the humanoid’s camera. This ensures 

that the observation for training learned policies 

have as much information to do the task as the 

operator does. Since the operator can succeed at 

the task, one can assume that a minimum set of 

features to finish the task is captured in the dataset. 

However, a robot’s camera stream may have several 

downsides, including inaccurate depth perception 

compared to humans. This would lower the success 

of tasks and the throughput of data collection 

for imitation learning. One way to deal with this 

inaccurate depth perception is by doing line-of-sight 
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teleoperation, such as in ALOHA[26] and RT_1[28]. 

While line-of-sight teleoperation is very natural for 

humans, it may not capture head movements (i.e., 

information about where to look/where to direct 

the camera). As such, line-of-sight teleoperation 

is more useful for stationary setups and operation 

on table tops than for mobile robots or whole body 

manipulation. 

2. Puppeteering vs VR: In a puppeteering setup, there 

are two sets of robot arms—one is the leader and 

the other the follower (the puppet). In practice, data 

from puppeteering is cleaner because the leader and 

follower are often identical, as in ALOHA[26], and 

the leader is physically moved by a teleoperating 

human. The movement and similarity of the two 

arms ensures that the targets conceived by the leader 

are achievable by the follower. In a VR setup, targets 

set by a VR controller operated by a human are 

retargeted on to the robot and may include tracking 

errors or infeasible inverse kinematics (IK) since 

the human arm is not exactly identical to the robot 

arm. However, since puppeteering involves two sets 

of robots (the puppet and the puppeteer), it may 

become more expensive depending on the setup. 

3. Motion capture: In motion capture 

teleoperation[30][31], a computer vision algorithm 

is run on video streams of humans doing things, 

such as detecting poses of body parts, and these 

targets are retargeted on to a robot to control the 

robot. Some of these algorithms are quite similar to 

the ones covered in Chapter 4. 
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 Approaches to Whole Body Manipulation

Whole body manipulation (walking and performing a task at the same 

time) may be taught entirely by learning/modeling all joints of a robot. But 

whole body  teleoperation is much harder and requires full exoskeletons. 

This section introduces a hybrid approach to whole body manipulation—

one that uses learning for the upper body/arms and scripting for the 

lower body. In a world where we expect robots to do a lot of manual 

labor, manipulation may be a more valuable skill than navigation, and a 

hybrid approach allows manipulation or the placement of hands/arms to 

drive the modeling of the rest of the robot. So, for example, accurate foot 

placement is driven by the goal of opening the door, and correct hand 

placement and movement for it, but here the role of the lower body is 

simply to allow for these arm/hand movements while keeping the body 

stable and moving. 

One such approach is TRILL (Teleoperation and Imitation Learning for 

Loco-manipulation)[27] from UT Austin, where robot arm manipulation 

is learned via deep imitation of human arms/hands via VR teleoperation. 

The method is hierarchical and consists of a high-level learned 

policy that generates trajectories based on language goals and image 

observations, and a low-level whole body controller that converts these 

learned trajectories into joint torques. Figure 10-4 shows a schematic of 

TRILL. Modeling high-level behaviors via a learned policy allows it to 

model semantics (move hand) as opposed to modeling individual joints, 

and makes the robot efficient in learning longer horizon behaviors, even 

with a smaller modeling capacity. 
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 Figure 10-4. Overview of how TRILL works. Used with permission, 

 source: https://arxiv.org/pdf/2309.01952 [27]

 Conclusion

Widely deployed, generally intelligent, dexterous humanoids could 

transform the labor market. Recent advances in embodied AI provide an 

opportunity to unlock this futuristic technology. They include:

1.  The potential market use cases for humanoids and 

cost-benefit tradeoffs

2.  Hardware design choices for building effective 

humanoids

3.  Learning and data approaches for scaling humanoid 

intelligence

The authors believe that humanoids will be an important robotics area 

in the future and we recommend digging deeper using the references and 

papers cited in this chapter. 

421

Chapter 10   humanoid robotiCs

 Summary

This chapter covered the following points:

•  The usefulness of humanoid robots by highlighting 

their ability to operate in environments designed for 

humans. This includes tasks like handling objects 

designed for human hands or navigating spaces like 

kitchens and offices. The humanoid robot market is 

divided into three main categories: foundational model 

providers (e.g., Google, OpenAI); hardware providers 

(e.g., Boston Dynamics, Unitree) that build physical 

robots; and fully integrated companies (e.g., Tesla, 

Figure AI) that combine AI and hardware for complete 

humanoids. 

•  Key hardware design decisions include choosing 

between legged and wheeled mobility, simple grippers 

versus dexterous hands, and different camera setups 

(head-mounted, wrist-mounted, or additional sensors). 

Linear and rotary actuators are often preferred over 

hydraulic ones due to their precision and easier 

maintenance. 

•  Methods like imitation learning and advanced walking 

algorithms can improve humanoid performance. 

Teleoperation techniques include VR headsets, line-of- 

sight control, puppeteering, and motion capture, each 

of which has unique benefits and challenges. 

•  Hybrid systems like TRILL combine learning-based 

control for upper-body manipulation with scripted 

stability for the lower body and help balance flexibility 

and control. 
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The next chapter brings together all the concepts we’ve covered by 

exploring data infrastructure, training and deployment strategies, and 

large-scale robotic data collection, all of which are essential for real-world 

robotics. 
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CHAPTER 11

Data-Driven Robotics 

in Practice

Data-driven robotics is sustained by far more activities than developing 

algorithms and programming robots. In fact, a large part of the bet is 

about scaling robot datasets[1] to accumulate skills that are as general as 

possible. 

This chapter discusses the practical aspects of data-driven robotics. 

Data flywheels are the heart of data-driven robotics, but this is a relatively 

small body of published work. We invite our readers to refer to [10], [12], and [16] to learn about practical aspects of imitation learning flywheels 

and to [14] for RL flywheels. 

 Robot  Operations

Robot operations encompass the day-to-day management and control 

of robots in their working environments. For data-driven robot learning, 

robot data is the lifeline of the operations. Robot operations involve 

managing the following:

1. Deployment of robots: Installing, configuring, and 

powering robot hardware in the target environment. 

For navigation research on legged robots, this also 

involves setting up gantries to catch unstable robots. 
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2. Monitoring and maintenance: Involves 

continuously monitoring robot performance and 

system health. Also involves calibrating sensors and 

replacing parts/repair of robots. 

3. Organization: Teleoperator scheduling to perform 

human aided data collection. 

Most robotics teams have dedicated operations that are in charge of 

maintaining the hardware and software builds. 

Safe operation of robots is an important component of operations. 

Common safety procedures used in robotics include[10]:

1.  E-stops (emergency stops) to freeze robots in place 

via manual intervention during emergencies or 

routine operations

2.  Hard e-stops to cut power to robot actuators during 

emergencies

3.  Hardware modifications for low impact upon 

collisions[18]

4.  Onboard software limitations on maximum speed 

and acceleration of actuators, and maximum 

allowed force on end effectors

5.  Human-in-the-loop intervention in real time to 

handle tricky scenarios that an onboard model 

cannot handle[18]

6.  Foundation model safety for contextual evaluation 

of safety scenarios[10]

Organizations that prioritize safety invest a lot of resources to ensure 

safe deployment of robots. This can have huge consequences for the 

trajectory of the program and the whole industry. Past incidents in 
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self-driving safety have taken human lives[8], caused grave injuries[9], 

and crippled the companies and set back entire industries. Bringing a 

new technology to market and allowing it to win the trust of consumers 

requires acting responsibly. 

 Data  Infrastructure

Data infrastructure plays a critical role in collecting, storing, processing, 

and analyzing data generated by robots, from sensor readings to 

performance metrics (see Figure 11-1). Key components of data 

infrastructure include:

1. Data collection and logging: Making sure that data 

coming from the robots is synchronized to represent 

an MDP/POMDP in (state, action, reward) tuples. 

Sometimes this requires that sensors that update 

at a faster rate are downsampled to match control 

frequency. 

2. Data storage: Involves building frameworks to 

store large quantities of robot data. TFexamples is a 

commonly used storage format[2]. 

3. Data labeling: This involves building pipelines to 

get labeled data from sources like mechanical turk 

or Scale AI that utilize human labelers to examine 

and rate robot data. Human labeling is used in robot 

learning in a variety of ways:

a.  Success detection labeling for episodic data. 

Labelers can act as an independent arbitrator of 

success and define why an episode failed with 

visual grounding (which frames had the incident)

[18][12][10]. 
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b.  Interleaved labeling for video segmentation. This 

can teach models about what happened during 

what part of policy execution, where policies went 

wrong during execution, how to reason about 

data quality, the smoothness of trajectories, and 

so on[18]. 

c.  Visual question-answering datasets to learn 

reasoning over robotics data[18][19]. 

4. Data processing and loading:

a.  Loading teleoperator collected data for training, 

and allowing it to train on specific partitions of the 

dataset for ablation experiments

b.  Integrating hindsight relabeling back into datasets

c.  Allowing post processing of datasets for additional 

feature extractions, such as what's done in 

RTTrajectory[3] (where trajectories were added 

back into datasets for training) and RobotMOO 

(where object-centric labels were added back into 

training)

5. Data analysis: Employing machine learning and 

data analytics techniques to extract insights from 

robot data. 

a.  Offline analysis of data include areas like 

determining spread of data over objects, actions, 

and 3D trajectories[20]

b.  Offline metrics provide proxy objectives to 

evaluate the capacity of a dataset to give rise to 

generalization[12][10]
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c.  Additionally, offline metrics can be used to guide 

online data collection (more of which tasks to 

collect for, which object configurations are missing, 

etc.)[10]

 Figure 11-1. Top: A 3D span of interactions in many datasets, 

 source[20 ] Bottom: Trajectory visualizations in MotIF1k, source[13 ]. 

 Figure used under CC 4.0

A well-designed data infrastructure saves a lot of developer time by 

making it easier to gather valuable insights into robot performance, as well 

as to run experiments. 

 The Training and Deployment Infrastructure

Training robots to perform complex tasks requires a dedicated 

infrastructure that provides the necessary resources for simulation, 

learning, and evaluation. Training infrastructure encompasses:

1. Training algorithms: This involves developing and 

implementing machine learning algorithms that 

enable robots to learn from data and experience. 

Generally, organizations develop either imitation 
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learning based algorithms or reinforcement learning 

based algorithms, both of which require a similar 

infrastructure. Both types require breaking robotics 

data down into (state, action, reward) tuples, where 

action becomes the target to train upon for imitation 

and reward is largely used only in reinforcement 

learning setups. 

Since RL requires improvement from experience, 

bootstrapping becomes a prerequisite. Gathering 

good data requires a good policy, and this policy 

is often first trained in simulation, before being 

deployed in the real world, such as in QtOpt[5]. 

Hence, simulation has a larger role in an RL 

framework over an imitation learning framework. 

2. Performance evaluation: This involves assessing 

robot performance through metrics and 

benchmarks to measure progress and identify 

areas for improvement. Evaluation involves the 

following types:

a.  Offline evaluation: This is inferred by using the loss 

on validation sets or by running inference on test 

splits of data and comparing results against ground 

truth[10][12]. 

b.  Evaluation in simulation: If simulation closely 

mocks real-world performance, simulation can 

be used to scale up evaluation[6][12]. Generative 

AI can be used to build very realistic simulation 

environments to test model performance[7]. 
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3. Distributed infrastructure: For load allocation 

during training and for faster inference during 

deployment, efficient use of allocated compute is 

necessary for ensuring optimality of foundation 

models trained. This was explored in Chapter 4. 

 Robot Data Flywheels

The successful integration of robot operations, data infrastructure, and 

training/deployment infrastructure is crucial for maximizing the value 

of robots. Combined, this system is called the  robot data flywheel (see 

Figure 11-2) and can result in models with increasing capabilities via 

acquiring new data. Data flywheels are the heart of any AI-driven robotics 

research lab. 

 Figure 11-2. Schematic diagram of a robot data flywheel
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With a robot data flywheel, organizations can:

1. Continuously improve robot performance: 

Leverage data insights to identify areas for 

improvement and refine robot training processes. 

2. Adapt to changing environments: Collect new 

environments to quickly adapt a foundation model 

to new situations and unseen tasks. 

3. Optimize resource utilization: Analyze data 

to optimize robot deployment, scheduling, and 

maintenance strategies. 

In conclusion, the integration of robot operations, data infrastructure, 

and training infrastructure forms the foundation for successful robot 

deployment and utilization. By effectively managing robots, harnessing 

data insights, and supporting ever-changing research processes, 

organizations can move fast in robotics. 

The next section examines a couple of data-driven robotics projects. 

 Large-Scale Robotic Data Collection

AutoRT[10] is a recent system from Google DeepMind that uses LLMs and 

VLMs in the loop for large-scale robot orchestration and data collection 

for in-the-wild scenarios (see Figure 11-3). This method uses a variant 

of curiosity-driven exploration, where robots roam areas that may be 

inhabited by humans, and reason using VLMs and LLMs for feasible 

tasks to do, then call a remote human/onboard action model to perform 

inference based on affordance estimation of the task vis-à-vis capabilities 

of autonomous models. After collection of that episode, the episode gets a 

diversity rating based on its first and last images. 
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 Figure 11-3. Schematic diagram of AutoRT, source: https://arxiv. 

 org/pdf/2401.12963 [10]. F igure used under CC 4.0

To decide which tasks are feasible and useful to do, AutoRT introduces 

a robot constitution guide behavior. The constitution has three sections:

1. Fundamental rules: Derived from Asimov’s laws, 

these rules talk about how robots should not do 

anything that would harm a human. 

2. Safety rules: Describes tasks that are unsafe to do 

based on current capabilities in deployment, such as 

not to deal with sharp objects, electrical appliances, 

or living beings. 
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3. Embodied specific rules: These rules inform the 

robot of its own affordance; for example, that it is a 

unimanual robot, meaning that it has to reject tasks 

that require two arms. 

Scaling robotic datasets requires one-on-one human supervision, 

which means that the number of human teleoperators are a bottleneck to 

scaling. AutoRT was able to achieve a one-to-five human-to-robot ratio, 

with humans acting only to intervene. This introduced a way to scale robot 

deployment and learn from in-the-wild data. See Figure 11-4. 

 Figure 11-4. Scaling unique tasks in datasets, number of episodes, 

 number of robots deployed simultaneously. AutoRT controlled 55 

 robots over its six month lifetime with a peak load of 20, source: 

 https://arxiv.org/pdf/2401.12963 [10]. F igure used under CC 4.0
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While AutoRT was successful in collecting highly diverse data, the 

method informs future data collection efforts in the following ways:

1.  The best dataset is not the largest dataset or the 

most diverse dataset, it is the dataset that leads to 

the best policy improvement. While diversity and 

size are proxy objectives, it is important to verify that 

you are collecting the right data by doing frequent 

trainings and evaluation of the collected data. 

2.  While autonomously collected data may be a 

promising way to harvest data without linearly 

scaling humans involvement, learning from that 

data efficiently is less than solved. Most foundation 

models sit atop of scaled imitation learning 

algorithms, but  imitation learning shows worse 

 performance when lower quality data is added, and 

imitation learning loses RL’s ability to trajectory 

stitch from suboptimal trajectories. Combining 

imitation and reinforcement in a complementary 

manner in robotics may become a winning recipe. 

3.  Highly diverse data may be too wide of a distribution 

for current models to learn. The construction of a 

dataset should depend on the sample efficiency of 

the underlying policies. Training from a smaller, 

but carefully curated high-quality dataset may 

yield more improvement than training from large 

quantities of weak data. That means that tracking 

quality while scaling data becomes important. 
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 Recipes  for the Future

At the precipice of where robotics stands today, there are enough 

compelling pieces of evidence that the key to solving robotics and building 

general purpose, generally intelligent robots lies in building very good 

robot foundation models. As such, finding a way to make robotics look 

more and more like a vision-language problem will be necessary to bring 

the two worlds together coherently. 



–

Motion generalization may be the last remaining 

fundamental research problem in robotics. As argued 

in [13] and [11], VLMs at the moment cannot suffi-

ciently understand trajectories, and their ability to 

come up with new motions is limited to their datasets, 

which are costly to acquire. Improving reasoning about 

motions via motion-centric visual representations 

(such as in [3] and [13]) or via learning from Internet 

videos[15] may be necessary to unlock and scale-

motion generalization, and therefore endow VLMs with 

the ability to reason about motions as easily as they do 

about images and language. 



–

Understanding how VLAs scale and what the empirical 

scaling laws may be that govern them is critical to 

understanding and projecting how the field evolves. 



–

The next era will also see robots and robot foundation 

models increasingly deployed in the real world for 

dexterous manipulation. There’s no scaling without 

scale itself, and we need to bring robots into the real 

world to capture diversity and scale. 
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–

Safety and alignment in general-purpose robots will be 

a necessary condition to large-scale deployment, and 

making breakthroughs in this area will be crucial to 

push for real-world usage. 



–

Autonomy through hill-climbing with scaled, semi-

autonomous systems, with the performance gap 

bridged via intervention with humans- 

in- the loop, may be another key trend we will see in 

the future. 

Acting intelligently in the physical space is an emergent property 

of a large audio-visual language agent, and intelligence at the most 

fundamental level is the same, whether its expression is digital or physical. 

The authors are excited to see how this field evolves, and how you, the 

reader, will go forth and shape it! 
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Reasoning: Since it's night and there's a zombie nearby, it's a good opportunity to
try killing the zombie now that you have a stone sword and a shield equipped.
Task: Kill 1 zombie.
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Training Infrastructure Robot operations

Algorithms for robot Data collection and
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Mobile Manipulation PaLM-E: An Embodied Multimodal Language Model Task and Motion Planning

Given <emb> ... <img> Q: How to grasp blue block? A: First, grasp yellow block [ vel "l’_"h"{ ‘:
A: First grasp yellow

? it -
block and place it on
. ' ' L] A v ] ] ] A
the table, then grasp
- - G- TS G - o e
the blue block.

Large Language Model (PaLM)
Tabletop Manipulation

- e @3 w e m w = 4
Given <img> Task: S

\g> 3. Pick the green rice RN R B calre o cormer
chip bag from the drawer and place it on the Control - A:First, grasp yellow block and ... Step 1. Push the green
_ LN B

o | stor to the bottom left.
Step 2. Push the green

Language Only Tasks circle to the green star.

counter.

Visual Q&A, Captioning ...

Describe the foll

n <img>. Q: What's in the dmg
image? Answer in 3 A dog jumplrig over s n 7 A: Atlantic. O: What is 372 x 187 A: 6696.0: Write a
Y 22 T3 hurdle at a dog show. < L A: Embodied language. Models learn to understand.
The world around them.
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User Motion Descriptor Prompt

Make robot dog stand up on two feet. Describe the motion of a dog robot using the following form:

* The torso of the robot should pitch upward at [NUM: 0.0] degrees. Motion

l * The height of the robot's CoM or torso center should be at [NUM: 0.3] m. template

Reward Translator }
Motion Descriptor
[] Remember:
o 1. If you see phrases like [NUM: default_value], replace the entire phrase

[start of description] i with a numerical value.
The torso of the robot should pitch upward at 90.0 degrees. 2. If you see phrases like {CHOICE: choice1, choice2, ...}, it means you Rules
The height of the robot’'s CoM or torso center should be at 0.7 meters. should replace the entire phrase with one of the choices listed.

front_left foot lifted to 0.7 meters high.
front_right foot lifted to 0.7 meters high.

[end of description] Reward Coder Prompt
We have a description of a robot's motion and we want you to turn that into

the corresponding program with following functions:
Reward Coder - set_torso_rewards(height, pitch)

height: height target for the robot torso

pitch: pitch angle of the torso

Reward
API

# Set torso rewards |
set_torso_rewards(height=07, pitch=np.deg2rad(90))

# Set feet rewards
set_feet_pos_rewards(‘front_left, height=07)

set_feet_pos_rewards(back_left, height:
set_feet_pos_rewards(‘front_right|, heigh

set_feet_pos_rewards(back_right, heigh

Example answer code:
import numpy as np
set_torso_targets(0.1, np.deg2rad(5))

Example

Remember:

1. Always format the code in code blocks Rules

Motion Controller ‘
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“Recycle the coke can”

» ou

“coke can”, “recycle bin”

“coke can” found at (x1, y1)
“recycle bin” found at (x2, y2)

” u

“go to coke can”, “pick up coke can”,
“put down coke can”, ....

2 e
EXN;
|

Scene: coke can, recycle bin
Robot: | should

1. find the coke can

2. pick up coke can

3. go to recycle bin

4. put down coke can

pick up the coke can

0.00
find the recycling bin

000
put down the coke can

0.00
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Environment
Poses, coordinate system, bboxes,
frame conventions, orientations.

Embodiment
Embodiment constraints, Robot
API skeleton with documentation.

# Define poses and bbox conventions.
Poses are a dictionary, ‘position’ indicates [x, y, z.
Bounding boxes are z-aligned ... in robot frame.

# Directional information.
Positive x is forward.
Negative x is backward.

# Gripper orientation
Euler degree angles (roll, pitch, yaw) for the gripper.
Positive z and fingers aligned with x axis [0,8,-98]...

You are a robot with one arm and a mobile base... The
gripper fingers are 1ecm long...

Class RobotAPI(object):

def detect_objects(self, obj_names):

*** Docymentation ...

def follow_trajectory(self, poses, allow_base,
constraint_orientation):

* Documentation ... *
def gripper_open(self, arm_name, obj_name):
def gripper_close(self, arm_name, obj_name):

Example

# Task: User defined task.

# 1/0: Allows LLM to decide
when to add bboxes to prompt.

# bboxes: scene state in prompt.
# Code w. COT:Enforces spatial
and geometric reasoning.

# Instruction: Pick the bottle on the right.
objects = robot_api.detect_objects(...)
print(objects)

#1/0

# objects = {‘cabinet': [{'centroid_pose':
{'position’: [2.07,8.54,0.2], 'orientation':
"size': [3.81 , 3.86,0.4]}], 'water bottle'

# COT: Select object to interact with
#... Second bottle is the right most.
right_bottle_position = objects'water bottle][1]

# COT: Select gripper orientation.

# Grasp orientation quaternion corresponding to [186,
@, 0] roll,pitch and yaw ...
grasp_orientation_quaternion

# COT: Calculate grasp pose and pregrasp
robot_api. follow_arm_trajectory( [pregras_pose, grasp_po
se],allow_base=True, orientation_constraint=True)

# COT: Calculate 1ift arm trajectory
1ift_arm_pose = {'position’: arm_pose['position'] +
{0.0, 6.15],

# COT: Decide trajectory parameters for IK controller
robot_api.follow_arn_trajectory([11ft_arm_pose],allow_
base=True, orientation_constraint=False)

% Instruction: Open middle drawer

objects = robot_api.detect_objects(["drawer’,...])
print(objects)

#1/0

# # objects = {'drawer handle’: [{'centroid_pose':
{'position’: [0.8,-8.93,0.11], ‘orientation’: [...]},
“size': [0.10 , .01 , 0.84 ]}, {

# ... The middle handle is the third one
right_bottle_position = objects('water bottle'][1]

# Front grasp with fingers aligned with the z-axis.
Grasp orientation in euler is (0, 99, 0]
grasp_orientation_quaternion =
robot_api.orientation_quaternion_fron_euler(-99,0,-98)

pregrasp_pose has a -x delta over the grasp pose.
pregrasp_pose = {*position’: grasp_pose|'position'] +
{-niddle_handle_size[0]/2 - 0.03, 6, 0], ...}
robot_api.. follow_arn_trajectory([pregras_pose, grasp_po
se],allow_base=True, orientation_constraint=True)
robot_api gripper_close()

# Opening the drawer is moving the handle on x-axis
pull_arm_pose = {'position’ : arm_poselposition] +
[-0.15, 6, ], ‘orientation’: ...}

# We don’t care about the final orientation of the
object after opening it
robot_api.follow_arm_trajectory((pull_arm_pose],
allow_base_noves=True. follow_arm_position_only=True
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# stack the blocks in the empty bowl.
empty_bowl_name = parse_obj(’empty bowl’)
block_names = parse_obj(’blocks’)

obj_names = [empty_bowl_name] + block_names
stack_objs_in_order (obj_names=obj_names)
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Internet-Scale VQA + Robot Action Data Vision-Language-Action Models for Robot Control Closed-Loop
Robot Control
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Instruction Relevance with LLMs Combined Skill Affordances with Value Functions
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Tabletop
Rearrangement (Sim)

Tabletop
Rearrangement (Real)

Kitchen Mobile
Manipulation (Real)
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The Giants of
Industrial Robotics

Estimated global market share of industrial
robotics companies in 2022, by value

® 21% ABB

® 9% Kawasaki

® 9% KUKA

8% Fanuc

5% Mitsubishi
5% Yaskawa

3% Epson

3% Omron Adept
3% Staubli

34% Others

Source: Statista Market Insights

statista %
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Current Agent (f) Dynamic Boxes (g) Past Agent Poses (h) Future Agent Poses
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High-Level Software Architecture of AVs in 2022
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Types of sensors

Several sensors collect data that is analyzed
by the car’s computer and used to steer and
brake the car along with information from
environmental maps stored in the cloud
and updated by data from other cars.

Park assistai
Surround view

Rearview mirror

Environment
mapping

detection

) Rear collision
warning

Cross-
traffic
alert Park

assistance

Pedestrian
Detection

Emergency
braking
Collision
avoidance
Adaptive
cruise control

)
3

Long-range radar
Microwave radar at 77
GHz has low resolu-
tion but can measure
speed and detect
vehicles and obstacles
0 200 meters away.

Environment
mapping

warning

Ultrasound

Short range, but that
makes it the best
choice for identify-
ing close objects,
particularty for
parking. Used in
some parking assist
systems today. Can
spot people close

to cars.

Lane m-’{m

Short/medium-
range rodar

Mature and inex-
pensive technology
in 24-GHz and 76-
80-GHz bands used
in some cars today.
Can detect velocity
and distance, but
broad beams and
long wavelengths
limit resolution and
produce complex
return signals.

Digital side mirror

Surround view

Optical cameras
Good spatial resolu-
tion, but cannot
directly measure
distance or velocity.
They rely on external
light, so they see
traffic signals and
daytime scenes, but
at night can miss
pedestrians or
wildlife not ittumi-
nated by headlights
or street lights. Color
yields valuable infor-
mation, but analysis
of color data is time-
consuming.

Lidar

Emits short pulses

in a steerable and
tightly focused beam,
measuring a million
points or more a
second. 905-nm
systems limited in
range, but 1550-nm
<an detect objects at
200-300 m. Coherent
lidars can measure
velocity directly. High
resolution is valuable
for identifying
objects. Can map
static environment
as well as detect

and identify moving
wvehicles, pedestrians.
and wildlife. High
cost now a limit, but
prices are coming
down with new
technology.

Infographic: Alessia Kirkiand and Jeff Hecht
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